Logo for the University of Illinois at Chicago
    • Login
    View Item 
    •   INDIGO Home
    • Dissertations and Theses at UIC
    • UIC Dissertations and Theses
    • View Item
    •   INDIGO Home
    • Dissertations and Theses at UIC
    • UIC Dissertations and Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Complexity of Natural Products at the Chemistry‒Biology Interface

    Thumbnail
    View/Open
    Qiu_Feng.pdf (10.93Mb)
    Date
    2013-06-28
    Author
    Qiu, Feng
    Metadata
    Show full item record
    Abstract
    The chemical and biological complexity associated with bioactive natural products (NPs) leads to significant challenges for mining these molecules. This dissertation developed new or enhanced methods to expedite the separation, structural elucidation, and biological evaluation of NPs. Two powerful tools, countercurrent separation (CS) and nuclear magnetic resonance (NMR), were used extensively for unraveling the chemical and biological complexity of NPs from exemplified plants, including Actaea racemosa, Camellia sinensis, Ginkgo biloba, Humulus lupulus, and Oplopanax horridus. Initially, sample-cutting was applied as a pre-separation procedure to concentrate the target compounds from the complex mixtures. In order to provide a rapid approach to optimize the CS conditions, a “K-by-NMR” method was developed for simultaneous measurement of partition coefficients (K) of multiple components in mixtures. As selectivity is important for resolving NP congeners which exhibit similar chemical properties, the orthogonal chromatography was explored for the design of efficient fractionation procedures. The basic application of NMR was expanded to further enhance the separation and characterization of NPs. For example, qHNMR was used as an offline detector for monitoring the chromatographic process. The COSY spectra were used for evaluation of the residual complexity of purified fractions. Differential analysis of HSQC spectra facilitated the identification of minor new compounds in complex mixtures. Furthermore, pattern recognition of HMBC spectra enabled rapid dereplication of multiple NP congeners in residually complex samples. A 1H NMR-based computational model was also developed for dereplication of NPs by taking advantage of easily discernible methyl 1H NMR signals. In order to correlate the chemical and biological complexity of NPs, a preliminary study was carried out for establishing quantitative purity‒activity relationship of NPs based on the foregoing NMR-based analysis of residual complexity. Finally, a biochemometric approach was employed by using a combination of CS, GC-MS dereplication and statistical analysis. This facilitates the evaluation of potential synergistic effects originating from multiple components in the crude plant extracts. The results demonstrate that these methods are helpful to resolve the complexity of NPs at the chemistry‒biology interface, and, thus, enable the efficient separation and characterization of NPs.
    Subject
    Natural Products
    Chemical Complexity
    Residual Complexity
    Biological Complexity
    Countercurrent Chromatography
    Orthogonal Chromatography
    Nuclear Magnetic Resonance
    Dereplication
    Pattern Recognition
    Purity‒Activity Relationship
    Biochemometrics
    Type
    thesis
    text
    Date available in INDIGO
    2013-06-28T17:46:13Z
    URI
    http://hdl.handle.net/10027/9993
    Collections
    • UIC Dissertations and Theses

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback | Privacy Statement
    Theme by 
    Atmire NV

    Browse

    All of INDIGOCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback | Privacy Statement
    Theme by 
    Atmire NV