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Abstract

Energies from the GW approximation and the Bethe-Salpeter equation (BSE) are
benchmarked against the excitation energies of transition metal (Cu, Zn, Ag, and Cd)
single atoms and monoxide anions. We demonstrate that best estimates of GW quasi-
particle energies at the complete basis set limit should be obtained via extrapolation or
closure relations, while numerically converged GW-BSE eigenvalues can be obtained
on a finite basis set. Calculations using real-space wave functions and pseudopotentials
are shown to give best-estimate GW energies that agree (up to extrapolation error)
with calculations using all-electron Gaussian basis sets. We benchmark the effects
of a vertex approximation (I'rpa) and the mean-field starting point in GW and the
BSE, performing computations using a real-space, transition-space basis and scalar-

relativistic pseudopotentials. While no variant of GW improves on perturbative GoWj



at predicting ionization energies, GoWyl'Lpa-BSE computations give excellent agree-
ment with experimental absorption spectra as long as off-diagonal self-energy terms are
included. We also present GoWj quasiparticle energies for the CuO~, ZnO~, AgO~,

and CdO™ anions, in comparison to available anion photoelectron spectra.

1 Introduction

The excited state properties of transition metals are of interest for a variety of energy and
electronics applications. However, quantitative simulations of one- and two-particle exci-
tations can be difficult for these systems due to their enhanced correlation interactions.
Density-functional theory (DFT) calculations using hybrid exchange-correlation functionals
or a Hubbard U interaction have been successful and computationally efficient in simulating
excited-state properties of certain transition-metal systems;™” however, the transferability
of such functionals across a variety of materials is still being tested and verified. At the other
extreme, the accuracy of quantum chemistry methods can be systematically increased, but
the computational cost of post-Hartree-Fock methods is much larger.

With computational costs between that of DFT and quantum chemistry calculations,
the GW approximation and the Bethe-Salpeter equation (BSE) provide an alternate first-
principles route to modeling one- and two-particle excitations.® 1! When the GW equations
are solved self-consistently, the sole deviation of GW and GW-BSE from the exact one-
and two-particle solutions, respectively, is the vertex approximation. Complications in in-
terpreting GW and BSE results arise, however, as additional numerical and physical ap-
proximations — such as the use of finite basis sets, the pseudopotential approximation, and
non-self-consistency — are applied to reduce computation time. For transition-metal systems,
the impact of these approximations may be magnified due to the larger correlation energies
that must be computed within the GW approximation. For example, GW calculations for
the bulk ZnO band gap received particular attention after values were published in a wide

range from 2.1 to 3.9 eV, as discussed in Ref. 12 and references therein. Materials con-



taining transition-metal atoms thus act as a rigorous test set for many-body perturbation
theory, and earlier benchmarks examining the effects of core-valence electron partitioning,
mean-field starting points, self-consistency, and relativistic effects have already highlighted
some of the successes and obstacles in simulating such systems. 317

Motivated by the increasing use of the GW approximation and the BSE in studying
excited-state properties, we benchmark the impact of various numerical and theoretical ap-
proximations on excitations of Groups IB and IIB atoms and monoxides. GW quasiparticle
energies are computed for ground state atoms in three valence electron configurations: d*°
(Cu™, Ag*t, Zn?**, and Cd?T), d'%! (Cu®, Ag®, Zn*, and Cd*), and d'%s* (Cu~, Ag~, Zn°,
and Cd%). For the same species, we also determine low-lying GW-BSE neutral excitation
energies. Highly accurate reference data for the corresponding ionization and absorption
energies are obtained from the NIST Atomic Spectra Database.'® This benchmark set allows
us to examine d angular momentum orbitals while avoiding complications associated with
partially-filled d-shells, such as multiplet splitting.'® We address the effect of the basis set
and the pseudopotentials, and study the influence of an approximate vertex and non-self-
consistent solutions.

We begin with an overview of GW and BSE theory and methodologies in Sec. 2, in-
cluding discussion of the vertex approximation, eigenvalue self-consistency, and off-diagonal
self-energy terms. In Sec. 3.1, we address the basis set dependence of our computations for
quasiparticles with s, p, and d character. Pseudopotential GW calculations on a real-space
grid are compared to Gaussian basis set, all-electron GW calculations for the Zn atom and
cations (Zn°, Zn™, and Zn?*"), and perturbative GoW, and eigenvalue self-consistent GW
(evGW) results are extrapolated to the complete basis set limit. The numerical convergence
of GW-BSE energies relative to basis set size is presented in Sec. 3.2. We then discuss the im-
pact of the pseudopotential approximation, relativistic effects, and exact exchange in mean-
field starting points in Sec. 3.3. This validates the use of scalar-relativistic pseudopotentials

and a real-space, transition-space implementation of GW-BSE within the remainder of this



work, and contextualizes the choice of mean-field starting points associated with local or
semilocal exchange-correlation density functionals. In Sec. 4, we benchmark the effects of the
vertex approximation and non-self-consistent GW across our full test set. For comparison to
experimental ionization energies, quasiparticle energies are obtained across six levels of GW
theory — GoWo@QLDA, GoWyl'Lpa@LDA, evGWQLDA, evGWT'pa@QLDA, GoWyQGGA,
and evGWQGGA — where GyW, is perturbative GW, evGW is eigenvalue self-consistent
GW, QLDA and @GGA indicate mean-field starting points of DF'T with the Perdew-Wang
local-density approximation or the Perdew-Burke-Ernzerhof generalized-gradient approxima-

20.21 and T'ypa is a LDA-derived two-point

tion exchange-correlation functional, respectively,
vertex function.?? The GW quasiparticles computed at each level of theory are subsequently
used in constructing and solving the BSE; the resulting eigenvalues are compared to time-
dependent DFT energies and experimental absorption energies. In Sec. 5, GoW, energies for
CuO~, ZnO~, and AgO~ are compared to experimental anion photoelectron spectra,?32°

and the CdO™ spectrum is computed for the first time. We summarize and conclude in

Sec. 6.

2 Theory and methods

2.1 GW approximation

The one-particle Green’s function, whose poles are associated with energies of electron or

hole injection into a system, can be expressed as the Dyson equation,
G(1,2) = Go(1,2) + /d(34)G0(1,3)AE(3,4)G(4, 2) (1)

where (1) = (r1,01,t1) is many-body notation for the spatial, spin, and time coordinates,
Gy is defined here as a mean-field Green’s function (possibly including mean-field exchange

and correlation effects), and AY is the difference between the self-energy term ¥ and the



mean-field exchange-correlation potential. In principle, the interacting one-particle Green’s
function can be determined self-consistently using four other equations that define the po-

larizability v, screened Coulomb interation W, self energy ¥, and vertex function I':8

V(1,2) = —i / d(34)G(1,3)G(4, 11)T(3, 4 2), 2)
W(1,2) =Vg(1,2) + /d(34)VH(1,3)X(3,4)W(4, 2), (3)
(1,2) _i/d(34)G(1,3)W(4, 1H1(3,2: ), (@)
I(1,2;3) = 6(1,2)8(1,3) (5)
+f d(4567)§2& ?>G(4,6)G(7, 5)I(6,7:3), (6)

where 17 denotes that ¢; — t; +n for some positive infinitesimal 7, V}; is the bare Coulomb
potential, and 6(1,2) is the Dirac delta function.

Hedin’s equations (Egs. 1-5) are too computationally expensive for studying realistic
systems, and instead the GW approximation is typically used. In the GW approximation,

Eqgs. 1-4 remain unchanged, but the three-point vertex function is reduced to
[(1,2:3) = 6(1,2)0(1,3), (7)

which removes the need to evaluate a four-point integral. In this work, we compare the
conventional GW approximation (with vertex defined by Eq. 7) to the GWT'py method,

where the two-point vertex satisfies, 22:26

FLDA(L 2; 3) = 5(1, 2)(5(1, 3) — i(S(l, Q)fxc(l)
(8)
« / d(45)G(1, 4)G(5, 1) Tupa (4,5: 3),
fee = 0Ve/dp, and V. is the LDA exchange-correlation potential.?>?” While a three-point

vertex is needed to accurately describe certain physical properties,?® 3% this two-point form



of the vertex allows computations that increase the cost relative to conventional GW by only
a prefactor (with computation time ~30% longer than conventional GW in our implemen-
tation).

With our focus on atoms and molecules, we perform computations with the software suites
RGWBS? and MmoLGw,3! both of which use a transition-space and spectral (frequency)
representation of excited-state properties that is particularly efficient for evaluating GW
and BSE energies of isolated systems. In this formulation, the conventional GW self energy
is partitioned into two contributions: a bare exchange part >* and a correlation part >¢.
The bare exchange self-energy matrix element between quasiparticles j and j’ can be written

as a sum over occupied states:

occ.

(G12e1") Z o gt 9)

where the exchange kernel is

Kt = [ dr [ dv'eu(e)eumVae. ) (s (), (10)

and @(r) are real-valued quasiparticle wave functions. Since only quasiparticles j, j’, and
occupied states contribute to this finite summation, the evaluation of »* is computationally
straightforward.

This leaves the correlation term as the bottleneck for GW computations. In the sum-
over-states formulation, the energy-dependent 3¢ is expressed as a double infinite sum over

quasiparticles n and transitions s

(Ize(E ZZ Vgl (11)
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where 7,, is -1 for occupied state n (quasihole) and +1 for empty state n (quasielectron), and

occ. empty e 1/2
V=2 Y K (M57) 7 (12)

where ¢, are quasiparticle eigenvalues (poles of ), v is the index over occupied states, and
c is the index over empty states. The transition energies w, (poles of W) and eigenvectors
with components Z%, are from the solution of Casida’s equations.*® The poles of G are
complex-valued, but in this framework, the quasiparticle lifetimes are assumed to be long; the
imaginary part of €, has an infinitesimal negative value for occupied n and an infinitesimal
positive value for empty n.

In addition to the exchange and correlation terms of conventional GW, GWTpa has a
vertex correction to the self energy. Similar to the correlation self energy, this vertex term

also involves infinite sums. The LDA vertex contribution is

o o Vs Fs +F$ VS

I (& ZZ R — (13)

— &p — WsTn

where
occ. empty —e 1/2
Sy () (1)

and the LDA exchange-correlation kernel is

lﬁ%Z/¢%®%®&®%@Mﬁ) (15)

The vertex correction ¥/ is added to the bare exchange and correlation terms (Egs. 9 and 11)
to give the total GWT'py self-energy. Note that for benchmarks simulating spin-polarized
atoms or molecules in this work, the GW self-energies are evaluated separately for the spin-up
and spin-down configurations, i.e., spin-flip and mixed-spin interactions are not considered.

For the evaluation of the correlation self energy (Eq. 11) and the vertex correction

(Eq. 13), the summations converge very slowly, especially for orbitals with larger corre-



lation interactions. More generally phrased, the convergence with basis set size is slow. In
Sec. 3.1, we discuss how the form of the basis set and the properties of the quasiparticle
under investigation affect the convergence of the GW self energy and apply techniques to
compute best estimates of energies at the complete basis set limit.

The computation of the GW self energy is typically initialized with quasiparticles (occu-
pations, eigenvalues, and wave functions) from a mean-field calculation. The initial electronic
structure has a significant impact on “one-shot” GyW, energies, although its effect can be
reduced or eliminated through fully self-consistent GW iterations. Our excited-state calcula-
tions in MOLGW use DFT electronic structures computed directly within the same package,
while RGWBS uses DFT electronic structures computed in PARSEC.33

At GW iteration k, we compute the diagonal terms of the GW Hamiltonian as

k k— . k .
Ejy) = BV + Re(i|AS(ES))), (16)

where EJ(?) are the eigenvalues for the initial mean-field electronic structure and AXY is the
difference in self-energies between the current and immediately prior steps. The off-diagonal

terms are computed slightly differently as
k) . (k=1)y |
Eij = Re(i|[AX(E;)7), (17)

where the energies are not renormalized to reduce computational cost. Note that since the
energy-dependence of ¥ is not well-defined for off-diagonal terms, we choose to associate the
off-diagonal self energy with the “left” quasiparticle.

In this work, we focus on perturbative and eigenvalue self-consistent GW (or self-consistent
GW in the diagonal approximation). Since wave functions remain unchanged in both types
of GW calculation, contrasting GoW, and evGW energies allows us to differentiate between
the effects of the initial eigenvalues and the initial wave functions. Off-diagonal terms are

only considered in the context of GW-BSE, in computations using smaller basis sets.



2.2 Bethe-Salpeter Equation

The energies associated with neutral excitations can be determined from the BSE, which

expresses the two-particle correlation function L as'®

L(1,2;1,2) = Lo(1,2;1',2)
(18)
+/d(3456)L0(1,4; 1,3)K(3,5;4,6)L(6,2:5,2)),

where

Lo(1,2;1",2") = G(1,2")G(2,1"), (19)

with G being a one-particle Green’s function, and the electron-hole interaction kernel ex-

pressed as
03(3,4)

K(3,5:4,6) = —i6(3,4)5(5,6)Vi(3,6) + 5063

(20)

As in the GW calculations, we use a transition-state basis in our computations. The

electron-hole amplitudes of transition [ can then be expressed as

occ. empty

p(r, ') =) 0 Y Xl (') + Yo (r)pelr') (21)

v

for some coefficients X!, and Y. Assuming that G can be represented using quasiparticles
and that electron-hole excited states are long-lived, the BSE becomes a generalized eigenvalue

problem with block matrix form:3*

A B X X
= : (22)
—-B -A] \Y Y,

where €2; is the energy of an electron-hole excitation, the resonant block A corresponds
to transitions from occupied to empty orbitals, and antiresonant block —A corresponds to

transitions from empty to occupied orbitals. The off-diagonal blocks, B and — B, have been



found to be important for certain finite systems, and are included in our calculations, i.e.,
we do not use the Tamm-Dancoff approximation.

From the definition of the BSE kernel (Eq. 20), it is clear that G determines the form of A
and B and significantly impacts the quality of ensuing BSE predictions. At the lowest level
of approximation considered in this paper, the BSE uses G constructed directly from wave
functions and energies (¢ and ¢) corresponding to the Kohn-Sham DFT electronic structure,
and the BSE kernel is defined as the exchange-correlation kernel, f,.. This form of the BSE
is well known as linear-response time-dependent DFT (TDDFT) in Casida’s formalism.??

In the GW-BSE framework, G is instead obtained from the GW approximation. Ne-
glecting dynamical effects, the BSE kernel can be split into an exchange part K* (Eq. 10)
and a direct part,

vev'c! v’ ce

Ve Ve,

K%, =K*" ,+4;”L—S“, (23)
and the block submatrices for GW-BSE corresponding to the spin-conserving excitations
(and ignoring spin-orbit interactions) are

Ay = Ay =D+ K+ K¢,
Byygy = By gy = K* + K¢, (24)
Apt = By = Ay = By = K7,

where

Dvcv’c’ = (Ec - 51})500/51111’7 (25)

with ¢, ¢ being indices for empty states and v, v’ being indices for occupied states, and &,
and ¢, denote the quasiparticle energies. If the ground state is not spin polarized, its neutral

excitations can be computed with a basis set two times reduced, with singlet excitations

10



corresponding to a BSE Hamiltonian with

A=D+2K*+ K9,
(26)
B =2K°®+ K%
When a vertex function is used in GW calculations (as in GWT'p,), an additional vertex

contribution must be added to the BSE kernel to maintain a consistent level of theory. The

LDA vertex term,

Ve, S, + F5, V2,
'UCUC 722 = = + ) (27)

is added to the BSE Hamiltonian wherever K¢ contributes for GW T pa-BSE calculations. 28
We also note that the terms V", and F};; have some ambiguity in their definition during the
computation of the BSE kernel. Before self-consistency is reached, the old quasiparticles,
which were used in calculating the GIW quasiparticle energies, are not the same as the new
quasiparticles obtained after the latest GW iteration; these terms can be computed with
either the old or the new quasiparticles. In this work, we use V; and F};; corresponding to
the old quasiparticles for our perturbative GW-BSE calculations.

The GW-BSE framework outlined above most often uses GG obtained from calculations
using the diagonal approximation; off-diagonal terms of the GW self energy are assumed to
be negligible. However, past work as shown that contributions from off-diagonal terms can
alter GoW, and GyW,-BSE energies by more than 1 eV when a LDA starting point is used.3*
Off-diagonal contributions appear to be largest for unoccupied states in finite systems, but
can also arise for occupied states that are poorly described within DFT.3435 In this work, we
test the impact of the diagonal approximation by performing GW-BSE computations that
account for off-diagonal terms of the GW self energy through their mean-field contribution.

In quasiparticle self-consistent GW, the GW matrix (Eqgs. 16 and 17) is symmetrized and
diagonalized to account for off-diagonal terms and generate improved quasiparticles energies

and wave functions within a mean-field description.3® However, for our comparisons to calcu-

11



lations in the diagonal approximation, we would like to keep the same electron density, V.,
and DFT wave function basis. We compute improved quasiparticles that leave the electron
density and V. unchanged by symmetrizing, then separately diagonalizing the subspace cor-
responding to occupied orbitals and the subspace corresponding to empty orbitals. Applying
Eq. 25 to the transition-space basis of improved quasiparticle wave functions, then changing

back to the transition-space basis of original DFT wave functions, Eq. 25 becomes

Dvcv’c’ = 51}1}’ Z€E<c|é> <é|cl>
‘ (28)
= dec Z e (v[D) (O|'),

where ¢ and v are indices for the original Kohn-Sham DFT electronic structure and the
overbar indicates energies and wave functions of the diagonalized quasiparticle basis. Our
GW-BSE calculations that account for off-diagonal GW self-energy terms thus retain the
same K*, K9 and K7 contributions in the BSE kernel (corresponding to the original quasi-

particles), but Eq. 25 is replaced with Eq. 28.

3 Numerical accuracy

3.1 GW and the basis

In MmoLGw and RGWRBS, a finite set of quasiparticles, and the transitions between those
quasiparticles, act as the basis set for computing the GIW and BSE energies. In MOLGW,
the full set of states whose wave functions can be defined on Dunning basis sets — ranging
from aug-cc-pVTZ (93 basis functions) to aug-cc-pV5Z (202 basis functions) — become the
basis for the excited-state calculations. In RGWBS, the wave functions are defined on
a uniform real-space grid in a spherical domain, and calculations require convergence of
the simulation cell parameters as well as the quasiparticle and transition space basis sets.

The domain must be sufficiently large, and the grid sufficiently dense, to accurately model

12



the benchmarked quasiparticle wave functions’ spatial extents and fluctuations.?” These
parameters are listed in the Supporting Info. In addition, for the quasiparticle and transition-
space basis in RGWBS, cutoffs are used so that the quasiparticle basis set is restricted to
the lowest-energy N states, and the transition space is defined by the transitions between

all occupied and empty states up to state V.
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Figure 1: Contributions to GoWy@GGA correlation self energy (Eq. 11) for various orbitals
of the Zn?* ion, summed over transitions, and binned every 4 eV for quasiparticle energies
en. These calculations truncate the correlation self-energy sum at N = 2325 (RGWBS)
or use a aug-cc-pVTZ basis set (MOLGW). Note that MOLGW has terms in its summation
outside of the range of ¢, shown here.

As mentioned in Sec. 2.1, the convergence of the correlation self energy (Eq. 11) with basis
set size is slow, so the overall convergence of the GW self energy is dependent on this term.
Part of this basis set dependence is illustrated in Fig. 1, where we plot Re(j|X¢(E)|j) for j
corresponding to the 3d, 4s, and 4p quasiparticles in Zn?", and E set to the DFT eigenvalue
of the orbital. The correlation self energy is partitioned into quasiparticle contributions,
where each bar corresponds to the correlation self energy associated with quasiparticles n
whose energies lie within 4 eV bins (and summing over all transitions s in the basis). We
observe that the 3d orbitals have correlation self-energies an order of magnitude larger than

that of the 4s or 4p; this illustrates the increased difficulty in obtaining d-state correlation
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self-energies numerically converged to the same absolute cutoff. There are small but non-
negligible contributions for both MOLGW and RGWBS from high-energy quasiparticles. We
also see that the basis set choice affects the form of the high-energy quasiparticles, and thus
their contributions to the correlation self energy. The atom-centered orbitals of MOLGW
induce fewer but sharper contributions to the self energy, compared to orbitals defined on
the real-space grid of RGWBS.

The difficulties in obtaining the convergence of excited state energies with basis set size
has motivated the development and testing of techniques to obtain the complete basis set

limit, including extrapolation,®® 3 the common energy denominator approximation,** 6 con-

struction of more efficient basis sets,4">°

and terms to approximate the missing basis set
contributions. 2630425153 Tp this work, we use extrapolation to estimate the complete ba-
sis set limit after calculating GyWj quasiparticle energies with a range of basis set sizes.

In MmoLGw, the GW energies at the complete basis set limit are obtained by fitting the

extrapolated energy F,, and coefficient ¢; to

BE(X) =B+ X0, (29)

where X = 3, 4, or 5 for aug-cc-pVTZ, aug-cc-pVQZ, or aug-cc-pV5Z, respectively. A X3
dependence (equivalent to N~! scaling, where N is the number of basis functions) is most
commonly used for extrapolating the total correlated energy with Dunning basis sets.?4 6
However, a smaller exponent (« & 2) is empirically a better fit to the quasiparticle energies
computed on finite basis sets.355" Later in this section, we compare extrapolated energies
obtained with a = 2 and o = 3.

For RGWBS, extrapolation to the complete basis set limit applies the same N~! depen-

dence suggested by earlier works, arising from the electron-electron cusp condition.*® We fit

14



FE. and coefficients ¢; and ¢y to

&1
N+cy

E(N) = E, + (30)

The RGWBS extrapolations are performed using at least five GIWW computations at increasing
values of N, and parameters E.,, ¢, and ¢y are fit using least-squares regression weighted
by N. The largest computation used to fit each extrapolation has N > 4000, and the DFT
eigenvalue of the highest-energy state, which is a more consistent measure of convergence
than the number of quasiparticles,®” ranges from 60-220 eV depending on the species being
studied.

Two different extrapolations are tested for RGWBS, fitting either to (1) the GW energy
computed using the truncated correlation self-energy summation or (2) the GW energy
from the truncated summation plus a static remainder. The remainder term in the second
type of RGWBS extrapolation is derived from the static Coulomb-hole screened exchange
(COHSEX) energy, which can be expressed equivalently as a sum over transitions s, and as a
double summation over both transitions s and quasiparticles n.2¢ For a given set of transitions
s, the COHSEX quasiparticle basis truncation “remainder” is the difference between the
double summation evaluated up to quasiparticle cutoff N, and the single summation. This
COHSEX remainder can be added directly to truncated GW correlation energies to enhance
numerical convergence.?® However, more recently it was shown for jellium that the high-
energy contributions of the COHSEX energy overestimate the GW correlation terms by a
factor of two.4*5! In this work, we therefore scale the COHSEX remainder by a factor of one-
half to use as our static remainder.®? An extrapolation is still used to obtain the complete
basis set limit with respect to transitions s, since the half COHSEX remainder acts as a
closure relation only for the sum over n.

In Fig. 2, the performance of MOLGW and RGWBS are compared to the experimental

ionization energies of the Zn®, Zn*, and Zn?* atoms. Each ionization energy corresponds to
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Figure 2: GoWyQGGA energies (eV) for Zn°, Zn™, and Zn*" at varying basis set sizes — aug-
cc-pVTZ through aug-cc-pV5Z for MOLGW (bottom axis labels) and up to more than 4000
total states for RGWBS (top axis labels). RGWBS results are shown both with and without
a half COHSEX remainder term added (indicated by ”+r.”). Solid lines are extrapolation
curves, arrows indicate the extrapolated complete basis set limits, and dashed lines indicate
the negative experimentally measured ionization energies.
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the energy of the quasiparticle associated with the highest occupied molecular orbital (QP-
HOMO) for the same species, as well as the quasiparticle energy of the lowest unoccupied
molecular orbitals (QP-LUMO) for the species with one fewer electron. For example, the top
two sets of lines in the figure both represent the d'’s — d'%s? energy, which is the negative
of the ionization energy of Zn’; the first set of lines are the QP-HOMO energy of Zn® (d's?
configuration) at various basis set sizes, and the second set of lines are the QP-LUMO energy
of Zn™ (d's configuration). GoWy;@QGGA energies at the complete basis set limit are also
listed in Table 1.

The RGWBS extrapolations shown in Fig. 2 correspond to computations with a non-
relativistic semicore pseudopotential (see Sec. 3.3). For RGWBS, the GoW, energies ex-
trapolated to the complete basis set limit are 0.1-1.4 eV lower than the most converged
calculations, with the larger differences associated with quasiparticles with d character. In-
clusion of the static remainder can significantly change the computed quasiparticle energies
for the same basis set, but the complete basis set limit from the two RGWBS extrapolations
(for self-energies computed with and without the half COHSEX term) differ by less than
0.2 eV for all Zn GyW, energies. Since the two extrapolation schemes provide fairly consis-
tent quasiparticle energies, both extrapolations are performed in the remainder of this work,
and we report the extrapolated E,, with a smaller standard error (or better extrapolation
fit). In practice, a smaller standard error for d quasiparticle energies always corresponds to
the extrapolation of static-remainder-corrected sums, while either extrapolation can produce
smaller error for quasiparticles with s or p character. Using extrapolations and static re-
mainders to estimate GW energies at the complete basis set limit, we expect that numerical
accuracy will be ~0.1-0.2 eV, with excitations involving only s and p states having minimal
numerical error from basis set effects, and those with d states to have numerical errors at
the larger end of the range.

The MOLGW extrapolations shown in Fig. 2 use a two-parameter fit and o = 2 exponent.

The GoWj energies at the complete basis set limit differ less than 0.1 eV from the most
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converged calculations, except for the 3d state, which differs nearly 0.3 eV. Thus an increased
difficulty in converging d quasiparticle energies is still observed, even on a localized and
atom-centered basis. Furthermore, the extrapolated d quasiparticle energy tends to have
larger fluctuations depending on the choice of extrapolation scheme, as demonstrated by a
comparison of the two-parameter fit with a = 2, the two-parameter fit with a = 3, and a
three-parameter fit with o = 2 (where X in Eq. 29 is replaced with X +¢,). The extrapolated
d quasiparticle energies vary over a range of ~0.5 eV, while s and p quasiparticle energies are
more consistent with deviations less than 0.2 eV (see Table 1). The largest deviations may
be due to overfitting in the three-parameter extrapolation. Nevertheless, future tests across
a wider benchmark set would be beneficial in quantifying the GW convergence properties
for transition metals simulated using Dunning basis sets.

The above results show that the GW energies of transition metal d states at the complete
basis set limit can differ from computations on finite basis sets by more than the desired
numerical accuracy of ~0.1 eV. However, in the context of self-consistent GW, extrapolating
energies to the complete basis set limit can quickly become prohibitively expensive for larger
molecules or large basis sets. We now quantify the numerical accuracy of evGW using smaller
basis sets, focusing on A, the energy difference between evGW and GoW, quasiparticles
on a given basis set.

In MmoLGW, the Gaussian basis functions allow efficient single-atom calculations, such
that evGW energies can be obtained with the same extrapolation scheme as with GyW.
The complete basis set limits of A.,, i.e., the difference between extrapolated evGW and
extrapolated GoW, energies, are compared to A., computed on specific basis sets in Fig. 3.
The computed A, converge quickly with basis set size over a variety of mean-field starting
points. With extrapolation exponent a = 2, the value of A., at the complete basis set limit
differs less than 30 meV from the A, computed on the aug-cc-pV5Z and the aug-cc-pVQZ
basis sets, and also changes less than 60 meV from values computed on the aug-cc-pVTZ

basis. There is also no noticeable difference in the convergence of A, associated with s, p,
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Figure 3: Difference between evGW and GoWj with a DFT-GGA, DFT-BHLYP (50% exact
exchange) or Hartree-Fock mean-field starting point, computed in MOLGW with aug-cc-pV'TZ
(3), aug-cc-pVQZ (4), and aug-cc-pV5HZ (5) basis sets. The points on the right border of
each graph are the differences at the complete basis set limit (two-parameter extrapolation
with a = 2).

and d states, and the convergence of A, for all states is even faster with a = 3.

We confirm that similar basis set convergence behavior occurs in RGWBS, with better
convergence if the half COHSEX remainder is not used, and that the same scheme can be
used for GWTpa (Fig. 4). In the remainder of this work, we therefore report the evGIW
energies at the complete basis set limit as Ex evaw = Foo,cowo + Qev, Where E ¢ w, is the
GoWy quasiparticle energy extrapolated to the complete basis set limit, and A, is computed

from evGW and GoWj calculations on smaller basis sets (~1000 states) without using the

static remainder.

3.2 BSE and the basis

Similar to GW calculations, solving the BSE requires the evaluation of sums over empty
states and transitions (Egs. 10, 23, and 27); furthermore, the size of the BSE matrix is a
function of the number of transitions. In Fig. 5, we show the dependence of BSE energies on
basis set size, with the three lines indicating different choices for the quasiparticle energies:
(1) the energies are equal to the extrapolated best-estimates regardless of the BSE basis

set size, (2) the energy corresponds to a GW calculation, with the half COHSEX remainder
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Figure 4: The difference in Zn%*" quasiparticle energies between evGW and GoW, (with
and without the LDA vertex) computed in RGWBS at various basis set sizes. Eigenvalue
differences computed including the half COHSEX remainder are listed as ”+r.”
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Figure 5: Convergence of the BSE computation with basis set size for the first symmetry-
allowed neutral excitations of Zn°, Zn*, and Zn?*. Experimental absorption energies are
indicated by the dashed lines. See text for details on the quasiparticle energy terms of the
BSE, which are “Extrapolated” (1), “Only diagonal” (2), or “Diagonalized” (3).
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contribution, on the same basis set as in the BSE calculation, and (3) the energy corresponds
to a GW calculation, with half COHSEX remainder and off-diagonal self-energy terms, on
the same basis set as in the BSE.

For excitations between only s and p states, using the same basis set for both GW and
BSE results in a faster convergence of BSE eigenvalues, compared to when GW quasiparticle
energies are extrapolated to the complete basis set limit. For an excitation from a d-state,
neither the GW-BSE results with extrapolated energies nor those with energies matching
the basis set are fully converged with basis set size, but the difference is only ~0.2 eV. The
inclusion of off-diagonal terms does not significantly affect convergence properties. In the
remainder of this work, we therefore report results using matching basis sets for computing
GW and BSE energies. With this scheme, we expect s and p excitations to be converged
well within 0.1 eV, while the accuracy of the d excitations should be underestimated no more

than ~0.2 eV.

3.3 Pseudopotentials, relativistic effects, and hybrid functional

mean-field

With the finite basis set (or truncated summation) error of GW accounted for, we address a
few more approximations which affect the real-space, transition-space GW-BSE calculations
in Sec. 4. This includes the use of pseudopotentials, the inclusion of scalar-relativistic effects,
and the limiting of DFT mean-field starting points to LDA or GGA exchange-correlation
functionals (no exact exchange in the starting point).

Table 1 lists extrapolated GoWy@QGGA energies obtained from MOLGW and RGWBS. At
the complete basis set limit, and given that MOLGW and RGWBS both use a spectral rep-
resentation for GW calculations, the remaining energy differences are primarily attributed
to the pseudopotential approximation. Since the accuracy of the pseudopotential approxi-
mation necessarily depends on the specific pseudopotential used, we generate high-quality

multireference pseudopotentials in APE; our Zn “semicore” pseudopotentials have a radial
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cutoffs (r.) of 1.3 a.u. and 3s%3p%4523d'° valence (pseudized Ne core).*®* For comparison,
we also generate a “regular” Troullier-Martins pseudopotential,® with a pseudized Ar core
and 4s%3d'° valence (r, = 2.1 a.u. for the s and p channels and r, = 1.3 for the d channel).
Our computations agree with past results, where the placement of the semicore states (3s
and 3p for Zn) in valence, instead of pseudizing them into the core, has been shown to be
essential in obtaining reasonable GW energies for d quasiparticle energies, due to the spatial
overlap of their wave functions.3%%17% The GW calculations using the “regular” pseudopo-
tential results in a d quasiparticle energy for Zn?* that differs more than 6 eV from the
all-electron calculation, and s and p quasiparticles also exhibit significant differences up to
0.4 eV. On the other hand, the resulting quasiparticle energies from “semicore” pseudopo-
tential calculations generally lie within the range of all-electron complete basis set estimates.
Differences are mostly < 0.1 eV, and even the d quasiparticle differs only up to 0.2 eV from
any given all-electron extrapolated GoW, energy.

The pseudopotential approximation has been described as the combination of three
effects: the frozen-core approximation, core-valence partitioning, and the pseudo-wave-
function approximation. The frozen core approximation has little effect on overall accuracy
as long as the pseudized core states and the valence electrons are sufficiently separated in

¢

energy, as is the case here when semicore electrons are treated explicitly as “valence”.% Past
work has tried to separate out solely the core-valence partitioning error associated with the
pseudopotential approximation by using, as a proxy, the difference between an all-electron
GW computation and the same computation with core effects removed. %% However, we find
it difficult to disentangle the effects of core-valence partitioning from the changes associated
with pseudizing an atom’s core. Our results in Table 1 instead indicate that directly ignoring
the core electrons in all-electron GW calculations for Zn is a more drastic approximation
than the pseudopotential approximation. These differences arise because of the different

treatments of the nonlinearity of exchange and correlation effects. When core electrons are

ignored in a formerly all-electron calculation, the computed AY (of Eq. 1 and Eq. 16) has
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brute force partitioning errors from both the nonlinear GW energy and the nonlinear V.,
which may cancel out to a certain extent. In contrast, pseudopotential generation combines
the pseudization of the core potential and valence wave functions together with an optimiza-
tion of the partitioning (linearization) of the core and valence parts of V., such that the

eigenvalues of the Kohn-Sham orbitals match the reference all-electron eigenvalues.

Table 1: GoWyQGGA energies at the complete basis set limit, from all-electron calculations
(AE) in MOLGW using 2-point and 3-point extrapolation schemes, MOLGW calculations skip-
ping the core electrons (AE - core), and regular and semicore pseudopotential calculations
(PP) in RGWBS with and without scalar-relativistic effects (rel).

Zn**t Zn* Zn®
3d 4s 4p 4s(T) 4s(}) 4p(1) | 4s  4p

AE (a = 3, 2-pt) -39.71 -17.87 -11.91 | -18.32 -9.42 -543 | -9.14 0.80
AE (a =2, 2-pt) -39.87 -17.92 -11.95 | -18.37 -9.47 -548 | -9.19 0.75
AE (a =2, 3-pt) -40.09 -17.93 -11.99 | -18.45 -9.51 -5.55 | -9.27 0.62

AE - core (a =3, 2-pt) | -38.51 -17.66 -11.80 | -18.15 -9.26 -5.35 | -9.01 0.83
AE - core (a = 2, 2-pt) | -38.65 -17.70 -11.84 | -18.20 -9.31 -5.40 | -9.06 0.78
AE - core (a« =2, 3-pt) | -38.76 -17.73 -11.86 | -18.29 -9.37 -5.46 |-9.14 0.66

PP (regular) -33.67 -18.35 -12.37 | -18.69 -9.75 -5.62 | -9.34 0.72
PP (semicore) -39.88 -17.96 -11.94 | -18.36 -9.44 -5.45 |-9.30 0.71
PP (semicore, rel.) -39.61 -18.34 -12.07 | -18.71 -9.65 -5.45 |-9.69 0.80
Experiment -39.72  -17.96 - -17.96  -9.39 - -9.39 -

We next compare scalar-relativistic and the non-relativistic pseudopotentials. Table 1
shows that relativistic effects decrease the s and p quasiparticle energies up to 0.4 eV,
while the Zn?** d quasiparticle energy increases by 0.3 eV. Due to the observed importance
of relativistic effects, scalar-relativistic pseudopotentials are used for all results presented
in Sec. 4 and 5. As in the Zn pseudopotentials tested here, the cores of Cu, Ag, and
Cd pseudopotentials are pseudized through a multireference fit, with all semicore electrons
considered part of the “valence”. We also note that, for the elements studied in this work (up
through period five), the use of scalar-relativistic instead of fully-relativistic GW calculations
should affect the starting point by less than 0.1 eV.'"

Finally, we use MOLGW to study the effect of the mean-field starting point, and find that

the amount of exact exchange has a significant effect at the DFT, GoW,, and evGW levels of
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Figure 6: DFT (left), GoWy, and evGW (right) quasiparticle energies computed with
MOLGW, with mean-field starting points of 0% exact exchange (GGA), 50% exact exchange,
and 100% exact exchange (HF). DFT energies are computed on the aug-cc-pV5Z basis set
and GW energies are at the complete basis set limit (« = 2). Dashed lines indicate the
negative experimentally measured ionization energies.
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theory (Fig. 6). As expected, the DF'T LUMO become less bound, while the DFT HOMO is
more bound with increasing amounts of exact exchange. However, the GW approximation
decreases or even reverses the trend observed at the DFT level, with the change in trends
most evident at the evGW level of theory. We therefore emphasize that optimization of only
eigenvalues (evGW) cannot remove the starting-point dependence for this transition metal
atom, in contrast with earlier work benchmarking small water clusters.”® In fact, the largest
GW quasiparticle energy difference of 1.4 eV is between the QP-HOMO energies computed
using evGWQGGA and evGW@QHF, which is is larger than the starting point dependence
at the GoW, level of theory. Combined, these trends demonstrate the importance of the
quasiparticle wave functions in computing GW energies.

Since relativistic effects are not included in these specific all-electron calculations, we do
not attempt to determine the optimal amount of exact exchange that will allow GoW} or
evGW to match experimental ionization energies. However, referring to our comparison of
scalar-relativistic and non-relativistic pseudopotential calculations, it appears that for the
Zn atom and ions, DFT with exact exchange between 50-100% will produce the best mean-
field wave functions for both the GoW, and evGW quasiparticle energies. A possible problem
remains where the QP-HOMO and QP-LUMO that describe the same one-particle excitation
do not have the same energies at any amount of exact exchange. This problem may, in part,
be alleviated through the inclusion of the off-diagonal terms of the GW energy, which lowers
the QP-LUMO.3* However, there may be remaining differences due to the two-point vertex
approximation, as mentioned earlier in Sec. 2.1. While additional benchmarks are needed,
these tests suggest that a good (system-dependent) starting point may allow excited-state
energy predictions at a lower computational cost than fully-self-consistent GW calculations
— although self-consistency remains the only way to satisfy conservation laws and completely
remove the starting point dependence.”

For the semilocal (and local) density functionals used to compute the wave functions in

the remainder of this work, we expect lower accuracies for GW computations than if using
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an optimal hybrid starting point. These calculations also suggest that our benchmarked
GW quasiparticle energies will be lower than those computed using hybrid functional wave

functions, with a possible exception for GoW, quasiparticles with d character.

4 Vertex and self-consistency

4.1 Ionization energies
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Figure 7: Error of GW quasiparticle energies relative to experiment, with reference valence
electron configurations are in bold.

We now benchmark the effects of self-consistency and the vertex function on GW quasi-
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particle energies. The accuracies of computed isovalent Cu, Ag, Zn, and Cd quasiparticle
energies are compared to experiment in Fig. 7. The performance of GW is similar across

each valence electron configuration, and the mean errors are listed in Table 2.

Table 2: Mean error (eV) of GW quasiparticle energies relative to experiment, averaged
across the Cu, Ag, Zn, and Cd test set, with the reference valence electron configurations in
bold.

G()WO evGW G()WOFLDA eVGWFLDA G()Wo evGW
QLDA QGGA
dVs? «+ dYs | -0.19 -0.26 0.80 0.69 -0.28  -0.32
d%s — d'%s? | -0.23 0.30 0.34 0.96 -0.24 0.26
d%s + d'° -0.64  -0.67 0.36 0.31 -0.61  -0.67
d'® — d'%s -0.32  -0.06 0.52 0.72 -0.36  -0.12
d « d° -0.59  -1.63 0.22 -0.88 -0.03  -1.06

As in past work, eigenvalue self-consistency widens the fundamental gap. The energies
for QP-HOMO with s character (d'%s and d's? valence) remain fairly similar, the energies
of the QP-LUMO (all of which have s character) increase, and energies of QP-HOMO with
d character (d'* valence) decrease. The resulting d quasiparticle energies from evGW are
less acccurate than in GyWj, and there is no systematic improvement for s or p states.
The worsened quasiparticle energies differ from the majority of evGW benchmarks of pri-
marily sp-bonded molecules,?®772™ but similar results were observed in earlier studies of
azabenzenes and small transition metal molecules. 4™

In past works, the LDA-vertex-corrected GW has always been associated with a nearly
rigid shift of all energies from conventional GW values.??3%7 Here, in contrast, the energy
change associated with the vertex correction ranges from less than 0.6 eV to more than 1.1
eV. The variation is not due to differences in angular momentum character — indeed the
energy differences for d-states are ~0.8 eV, in the middle of the observed range. However,
the LDA-derived vertex function’s sensitivity to the local wave function amplitude is high-
lighted by the nature of orbitals on single atoms, which range from localized to diffuse. We

observe that the LDA vertex affects the quasiparticle energies most dramatically for the

QP-HOMO corresponding to the d'%s <— d'° and the d'%s? «+ d'%s excitations; the quasipar-
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ticle wave functions used in computing these states are overly delocalized due to the use of
the LDA exchange-correlation functional. In contrast, the LDA vertex changes the quasi-
particle energies the least for the QP-LUMO corresponding to the d'%s — d'°s? excitation;
this wave function is overly localized by the LDA exchange-correlation functional. Despite
the increased versatility of the LDA vertex in this context, the inclusion of I'pa still does
not improve agreement with experiment, and GoWj remains the best predictor of ionization
energies for these single atoms. Eigenvalue self-consistency and the LDA vertex correction
together also do not exhibit any fortuitous cancellation of effects for this test set.

Finally, in a comparison of GGA and LDA starting points, we observe only minimal dif-
ferences in the resulting GoW, and evGW energies of s and p states, with energy differences
no more than 0.2 eV. However, large differences (0.4-0.8 eV) are observed for the local-
ized d states, bringing both GoWyQGGA and evGW QGGA energies closer to experimental
measurements. The mean-field GGA electronic structure therefore appears to be a better
starting point than the LDA for GW calculations, and among the variants of GW tested
here, quasiparticle energies from GoWy@QGGA provide the best agreement with experimental

ionization energies.

4.2 Absorption energies

GW-BSE eigenvalues are computed starting from the variants of GW of the previous sec-
tion, and are compared to spin-orbit-averaged experimental absorption energies and TDDF'T
eigenvalues. We focus on low-lying, spin-conserving excitations promoting electrons from
the HOMO to the unoccupied valence s or p shells. Due to the similarity of s and p
quasiparticles from GW with the LDA and GGA starting points, BSEQG,W,@GGA and
BSEQevGWQGGA results are computed only for excitations from d-states.

In Fig. 8, we summarize the error relative to experiment for BSE eigenvalues computed
from quasiparticles in the diagonal approximation (Eq. 25) and BSE eigenvalues computed

from quasiparticles that account for off-diagonal terms of the GW self energy (Eq. 28).
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Figure 8: Error of GW-BSE predictions relative to experimental absorption energies from
a d'0 (first four sets of bars), d's (fifth set), or d'%s? (sixth set) electron configuration to
the configuration listed along the x-axis. Rectangles matching the legend indicate the error
range across the Cu, Ag, Zn, and Cd test set, with fainter colored bars providing a guide for
the eye.
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Rectangles indicate the ranges from minimum to maximum error across the Cu, Ag, Zn, and
Cd test set. In the diagonal approximation, perturbative GW-BSE eigenvalues are seen to
underestimate absorption energies, with improvements in accuracy for self-consistent GW -
BSE, which agrees with other recent GW-BSE benchmarks of confined systems.*7™ The
inclusion of the LDA vertex increases the predicted energies of optical excitations; how-
ever, without self-consistency (BSEQG W,I'Lpa@LDA), this still underestimates excitation
energies.

Table 3: Mean error of GW-BSE eigenvalues (including off-diagonal terms) associated with
excitations from the QP-HOMO to the lowest empty s or p quasiparticle, relative to exper-
imental energies.

BSE@ BSE@

TDDFT 00W0 evGW GOWOFLDA evGWPLDA G(]WO evGW
Transition QLDA QLDA QGGA
A0 = d%p ('"P) | -0.03 | -029 -0.07 ~0.10 ~0.06 - -
d0s — d'%p (2P) 051 | -0.21  -0.09 -0.05 -0.04 - -
d* — d%p ('P) -1.48 -0.28 0.72 0.21 1.11 -0.81 0.18
d* — d%p (1D) -1.90 -0.56 0.50 -0.01 0.92 -1.08  -0.03
d'% — d ('F) -1.95 -0.75 0.25 -0.23 0.67 -1.27  -0.28
d'° — ds ('D) -1.54 | -0.56  0.44 -0.11 0.84 -1.08  -0.10

With the inclusion of off-diagonal terms, the predicted absorption energies increase for
all variants of GW-BSE. This effect occurs because the low-lying LDA (and GGA) unoc-
cupied orbitals are too localized, and off-diagonal terms result in improved, more delocal-
ized quasiparticles.®* With this energy increase, eigenvalue self-consistency no longer im-
proves accuracy for all calculations. BSEQevGW @QLDA deteriorates in accuracy compared
to BSEQG Wy@QLDA, but BSEQevGW QGGA is the most accurate variant of conventional
GW tested, with errors no more than 0.5 eV (see Table 3). Surprisingly, we find that the
computationally efficient BSEQG W'y pa @LDA provides excellent agreement with experi-
ment, comparable to BSEQevGWQGGA. DFT-derived vertex corrections, when combined
with the use of the off-diagonal terms of the GW self energy and a consistent level of theory
throughout TDDFT, GW, and BSE computations, therefore may promote a cancellation of

effects that allows an accurate calculation of BSE energies from inexact GW quasiparticles.
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5 Monoxide anions

We finally compute the binding energies of CuO~, AgO~, ZnO~, and CdO~ from first
principles. Since our earlier benchmarks indicate that variants of GW do not outperform
GoWy, we limit our computations here to GoWy@QLDA and GoWyQGGA.

Neglecting spin-orbit coupling for excitations from the ground states (X'X1) of CuO~
and AgO~, there are two peaks in the experimental anion photoelectron spectra under 3 eV
corresponding to photodetachment of an electron and the formation of the neutral molecule
in the X?II ground or the A2X* excited state. The difference between GoW, results and
the experimental spectra is large, with differences up to 0.9 eV for GoWy@QLDA and up
to 0.7 eV for GoWy@QGGA. While a small part of this difference may be attributed to our
comparison of vertical binding energy predictions (from G¢Wj) to experimental adiabatic
binding energies, the bond length changes are small — less than 0.06 A for CuO~ and less
0.07 A for AgO~ from Frank-Condon simulations?*2* — so we believe that the true adiabatic
and vertical energies do not differ significantly. The larger error is attributed to the partial
d character of the orbital, and we see from CuO~ and AgO~ that even orbitals with only
some admixture of d can be difficult to accurately simulate from GW calculations.

Errors are smaller in the benchmarks of ZnO~™ —up to 0.4 eV for GoWy@QLDA and up to
0.3 eV for GoWy@QGGA, which is comparable to the errors of s and p excitations for single
atoms at the same levels of theory. These smaller errors, compared to the CuO~ and AgO~
results, are likely due to the minimal d character of the states being studied. The error
associated with comparing vertical and adiabatic energies is again expected to be small,
with the Frank-Condon simulations predicting bond length changes less than 0.08 A.25 Still,
we are unable to determine the neutral CdO ground state from these calculations, since the
133+, 311, and 'II configurations all lie within 0.5 eV of each other. Additional research into
impoving the numerical and theoretical accuracy of GW is needed to allow us to predict

these and other properties of transition-metal systems in the future.
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Table 4: Vertical binding energies (eV) for excitations from the X'X* ground states of the
CuO~ and AgO~ anions to the listed neutral CuO and AgO configurations, compared to
adiabatic binding energies from anion photoelectron spectroscopy.

23,24

CuO- AgO~
EXpt. GOWO@LDA GQWO@GGA EXpt G()W()@LDA G()WD@GGA
X211 1.78 2.45 2.05 1.67 2.15 1.81
ATVt | 275 3.37 3.25 2.70 3.56 3.43

Table 5: Vertical binding energies (eV) for excitations from the X?*XT ground states of the
ZnO~ and CdO~ anions to the listed neutral ZnO and CdO configurations, compared to

adiabatic binding energies from anion photoelectron spectroscopy. 2’

ZnO~ CdO~
EXpt G()W()@LDA GQWO@GGA G()W()@LDA G()W()@GGA
XIET | 2.09 2.31 2.20 2.45 2.36
a1l 2.40 2.38 2.11 2.08 1.81
Al 2.71 2.68 2.37 2.49 2.15
b3Y* | 3.89 4.32 4.21 4.22 4.17
BIXT - 5.11 4.99 5.11 4.97

6 Conclusions

In this work, we examine the numerical and theoretical contributions to the accuracy of the
GW approximation and the BSE equation, applied to Groups IB and IIB atoms and monox-
ide molecules, and highlight the difficulties in describing excitations involving d orbitals. We
illustrate the large GW correlation self energy associated with d states, and demonstrate
that the complete basis set limit should be used for numerically accurate GW quasiparticle
energies. We also show that d quasiparticle energies converge more slowly with basis set size
than s and p quasiparticles, regardless of the type of basis set used, or if an additional static
remainder is applied. We find that energy differences between GoW, and evGW converge
more quickly with basis set size than the energy itself, so that evGW energies can therefore
be obtained from a smaller basis set if the complete basis set limit of the GoWj energy is
already known. For the BSE, we see that using a consistent basis set throughout speeds
the convergence of energies with basis set size. For our GW and GW-BSE calculations, we

therefore estimate that excitations involving s and p orbitals are computed with accuracies
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better than 0.1 eV, while inaccuracies associated with the basis set are ~0.2 eV for d states.

The other significant numerical approximation, via the use of pseudopotentials, has neg-
ligible effect on s and p states. The d state error also appears to be small (less than the
extrapolation error) as long as semicore orbitals are not pseudized into the core. On the
other hand, our calculations show that relativistic effects can affect self-energies up to a
few hundred meV, and must be included in benchmark comparisons to experiment. We also
demonstrate that exact exchange in the initial mean-field electronic structure can tune GoW,
and evGW energy by ~1 eV. These results support the use of optimal hybrid functional start-
ing points for improved accuracy in GW calculations. Starting points using with semilocal
and local functionals, as in the remainder of this work, generally produce lower quasiparti-
cle energies (higher predicted ionization energies) than hybrid functional and Hartree-Fock
electronic structures.

Our benchmarks indicate that eigenvalue self-consistency and the LDA vertex do not
improve the ability of the GW approximation to predict ionization energies. However, we
observe a more varied effect of the approximation vertex function, I'rps, than in the past.
Instead of resulting in a rigid shift of all quasiparticle energies, the energy changes due to
the vertex correction are seen to be related to the localization of the wave functions. We also
see that GW@QGGA energies are very similar to those of GIW@QLDA for s and p states, but
for d states and overall, accounting for gradient effects in GoW,QGGA calculations produces
quasiparticle energies that are slightly more accurate than in any variants of GW that use
a LDA starting point.

For two-particle excitations, we are able to obtain excellent agreement between BSEQG W', pp QLDA
eigenvalues and experimental measurements of absorption, as long as off-diagonal terms are
included in the self-energy contributions. The more computationally expensive BSEQevGW QGGA
has comparable high accuracy. We observe that a cancellation of errors occurs for the GW
quasiparticles, with the GW-BSE variants producing mean errors ~0.2 eV. These results

suggest that inclusion of off-diagonal elements and further development of vertex correc-
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tions may be another route to cheaper, yet more accurate, GW-BSE computations of optical
properties.

Our benchmarks of transition metal monoxide anions exhibit differences between GoWj
and experimental binding energies that are consistent with the benchmarks of the Groups 1B
and I1B single atoms and ions — a few hundred meV, with larger deviations for quasiparticles
with more d character. Multiple states can coexist in such energy ranges, and the uncertainty
prevents a definitive prediction of excited state energy ordering from the GW approximation
for CdO~. Therefore, while we are able to limit numerical errors to ~0.2 eV, scientific
questions continue to motivate the search for more advanced techniques in GW theory and

computation for transition metal systems.
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