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Abstract.  

Recent advances in quantitative imaging allow unprecedented views into cellular 
chemistry of whole organisms in vivo. These novel imaging modalities enable the 
quantitative investigation of spatio-temporal reaction and transport phenomena in the 
living animal or the human body. This article will highlight the significant role that 
rigorous systems engineering methods can play for interpreting the wealth of in-vivo 
measurements. A methodology to integrate medical imaging modalities with rigorous 
computational fluid dynamics entitled image-based computational fluid dynamics (iCFD) 
will be introduced. The quantitative analysis of biological systems with rigorous 
mathematical methods is expected to accelerate the introduction of novel drugs by 
providing a rational foundation for the systematic development of new medical therapies. 
Rigorous engineering methods not only advance biomedical research, but also aid the 
translation of laboratory research results into the bedside practice. 
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1. Motivation  

Recent scientific discoveries have advanced systems biology - a new research field at the 

interface of biochemistry, molecular biology, and genetics at the cellular level (Bailey, 

2001; Doyle and Stelling, 2006; Westerhoff and Palsson, 2004). The engineering 

community has so far paid less attention to revolutionary developments in medical 

imaging that capture the biological processes for an entire organism. During the past 

decades, new quantitative medical imaging techniques have opened a window to the 

detailed anatomy as well as quantified the biochemical and physical transport phenomena 

inside living organisms. Medical imaging techniques can today measure key metabolic 

functions in-vivo in three spatial dimensions and as functions of time such as oxygen 

consumption in organ tissues, expressions of proteins, and amount and species 
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concentration inside single cells, specialized cell clusters or entire organs. Also, blood 

flow or dispersion of tracer molecules can be tracked non-invasively. These new medical 

imaging techniques offer unprecedented observations about the physical and biochemical 

functions in the living organism.  

 

Specifically, medical images provide detailed anatomical information about the 

geometric shape of cells, tissues, and organs up to the entire organism. In addition, 

quantitative imaging renders precise measurements such as drug concentrations, fluid 

flows or drug bioaccumulations. Anatomical and quantitative information provided by 

medical imaging allows the creation of computer models that capture faithfully the 

anatomical complexity of biological systems as well as their biochemical and transport 

mechanisms. The integration and interpretation of medical imaging data with rigorous 

computational fluid dynamics analysis is the object of the image-based computational 

fluid dynamics (iCFD). The iCFD process allows modeling patient-specific geometry and 

biochemical kinetics.  

 

The wealth of novel information acquired by medical imaging enables the systematic 

identification of the fundamental reaction and transport phenomena as well as the precise 

determination of their model parameters such as rate laws, reaction or binding constants 

or diffusion coefficients. Medical images provide precisely the data needed to establish 

mathematical models with methods already developed by the chemical systems 

engineering community for studying chemical process systems. These first principles 

models enforce rigorous mass, species and momentum balances and incorporate 

constitutive relations for drug dispersion and action in the biological system. 

Accordingly, organs and their interaction are treated similar to reactors and separators in 

a chemical plant. Well-established systems engineering methods for flowsheet analysis, 

design and optimization are also suitable for unraveling pharmacokinetics and 

pharmacodynamics of new drugs. The integration of medical images into complex 

systems analysis will accelerate the introduction of new drugs, deepen the understanding 

about diseases and possible remedies, and more readily transfer scientific knowledge 

between disciplines engaged in biomedical research. System engineering may also offer 
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the toolset and methodologies needed to achieve transformative changes to designing and 

optimizing novel therapies for individual patients (Bogle et al., 2009; Dua and 

Pistikopoulos, 2005). Systems methods are the key for implementing personalized 

medicine. 

  

To better put into perspective current trends for the introduction of systems engineering 

methods into biomedicine, this paper will first highlight recent developments in 

quantitative medical imaging. Systems engineering will play a substantial role in closing 

the wide gap between fundamental research and translational clinical applications. These 

possibilities will be illustrated by describing examples drawn from interdisciplinary 

research collaborations over the past decade. 

 

The paper is organized as follows. In Section 2, a brief overview of novel quantitative 

imaging modalities is presented. Section 3 introduces iCFD as process to seamlessly 

integrate patient-specific imaging with rigorous engineering analysis. Section 4 

demonstrates biomedical case studies highlighting new methods and processes in which 

systems engineering methods played an essential role in advancing fundamental 

knowledge about the human brain. The discussion in Section 5 summarizes key areas of 

systems approaches in biomedical engineering and offers our perspective on future 

educational and research needs. The paper closes with conclusions and an outlook to 

future research. 

 

2. Overview imaging  

The revolution in medical imaging began with CT scanning. For the first time high 

resolution three-dimensional information became available and this knowledge has 

transformed medical diagnosis and treatment. Physicians could not only see the location 

of pathology — a tumor for example — but also observe its relationship with other 

internal structures and its precise location for biopsy, removal, or radiation treatment. 

Furthermore, the pathological condition could be followed over time to help determine 

how medical treatments were working.  
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MRI technology has expanded these capabilities — without the need for X-rays — by 

increasing the sensitivity for soft tissues (Tofts, 2003). A variety of pulse sequences can 

be used to emphasize different tissue properties such as grey matter and white matter in 

the brain. Timed examinations can be performed to measure blood flow and 

cerebrospinal fluid (CSF) pulsations. All these types of images provide three-

dimensional, patient-specific information. The capabilities of MRI scanning have been 

expanded to display the complex architecture of entire organs like the brain. Anisotropic 

and heterogeneous soft tissue properties like molecular diffusivity, hydraulic and electric 

conductivity can be correlated to in vivo MRI Diffusion Tensor imaging (DTI) 

measurements. Tensor fields measured with DTI for specific patients can be drawn to 

account for more realistic soft tissue models needed in realistic bio-transport calculations.     

 

3. Image-based computational fluid mechanics (iCFD) 

Before modern imaging techniques became widely available, biological systems analysis 

was hampered by their complex anatomical shape. Early engineering models of 

biological systems were constructed with simplified geometries of idealized shapes. For 

more realistic modeling of flow and reaction phenomena, image reconstruction of 

patient-specific medical image data helps create computational models that precisely 

matches anatomical dimensions and shapes. The procedure of converting medical image 

data into realistic computational representations that preserve anatomical and 

physiological detail is termed geometric image reconstruction. The accurate mapping 

between biological and computational domain is also crucial for validating simulations 

with experimental data. It is a prerequisite for realistic computer simulations in an 

emerging field known as image-based Computational Fluid Dynamics (iCFD). 

 

Geometric image reconstruction involves the assembly of three-dimensional imaging data 

into computational meshes usually unstructured grids. Computational surface meshes 

delineate system boundaries like an organ or the contrast between different tissue types 

like fluid-filled spaces versus soft tissues. Geometric image reconstruction also involves 

smoothing, contrast enhancement and automatic edge detection. The computational 

surface meshes are further divided into a finite number of volumes, typically 
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tetrahedrons. Grid generation algorithms perform mesh regularization to optimally divide 

the domain into finite balance envelopes with suitable aspect ratios to form a volumetric 

mesh. Advanced semi-automated meshing software can be employed for rapid generation 

of multi-block structured or unstructured volume meshes. A sample of reconstructed CSF 

filled spaces in the brain and the effect of surface smoothing are displayed in Figure 1.   

 

Figure 1:  
 

A great aide in converting pixilated imaging data into physiologically consistent surfaces 

and domains is offered by automatic image reconstruction software. Several free tools 

available for spatial image reconstruction such as ImageJ, ITK-Snap, and VTK 

substantially accelerate the generation of computational maps (Ibanez et al., 2003; 

Schroeder et al., 2006). Commercial tools such as Mimics (Materialise Inc, 2011) have 

excellent features for contrast enhancement, automatic boundary detection and surface 

smoothing. A list of software for iCFD is listed in Table 1. Most software tools provide 

several file output formats for reconstructed surface or volume meshes. These file export 

formats are essential for importing reconstructed meshes obtained from imaging data into 

state-of-the-art CFD software such as ANSYS Fluent (ANSYS, 2011) or Adina (ADINA, 

2010).  

 

Table 1. List of image reconstruction tools and CFD software for iCFD 
 

Tools Applications Source 
Image Reconstruction Software 
Image J Graphics software that defines point and line 

data; primarily useful for two-dimensional 
model construction. Reads TIFF, PNG, GIF, 
JPEG, BMP file formats. 

Open(Rasband, 
2011)  

ITK-SNAP Software application used to reconstruct 
medical images into computational maps. 

Open(Yushkevich 
et al., 2006)  

VTK Software library for visualization and 
reconstruction of medical images. 

Open(Schroeder 
et al., 2006)  

Mimics Medical image reconstruction software; 3D 
prototyping of complex biological shapes. 

Materialise, Corp. 
Belguim 

(Materialise Inc, 
2011)  

Analyze Biomedical imaging software for AnalyzeDirect, 
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reconstruction of medical images. Inc. 
(AnalyzeDirect, 

2010) 
 

Mesh generation software 
ICEM CFD A semi-automated meshing module which 

provides rapid generation of multi-block 
structured or unstructured volume meshes 

ANSYS, 
Inc.(ANSYS, 

2011) 
Gambit Geometry creation and mesh generation with 

structured and unstructured volumes.  
Fluent, 

Inc.(Gambit, 
2006) 

 
Rigorous CFD Simulation Software 
Elmer Finite element software for the solution of 

multi-physical problems. 
Open 

 (Elmer, 2011) 
FOAM CFD Finite element software with fluid-structure 

interaction modules. 
Open 

 (OpenFOAM, 
2011) 

STAR CD Flow, thermal, and stress simulation software 
for performing powerful multi-physics 
simulations. 

CD-adapco (CD-
adapco, 2010) 

COMSOL Multi-physics simulation and finite element 
software; fluid-structure interaction capability; 
also solves thermal and electromagnetic 
problems. 

COMSOL, Inc. 
(COMSOL, 

2011)  

ADINA Finite element analysis software for structural, 
thermal, fluid-structure interaction analysis; 
robust for 3d simulations of complex 
geometry. 

ADINA R&D, 
Inc. (ADINA, 

2010) 

ANSYS FLUENT Finite volume and flow modeling software; 
fluid-structure interaction capability. 

ANSYS, Inc. 
(ANSYS, 2011) 

 

The next section will demonstrate iCFD capabilities for designing novel therapies. To 

illustrate the current capabilities of systems approaches in biomedical engineering, two 

case studies will be provided. These examples also emphasize the need for 

interdisciplinary cooperation. An overview of active research areas in which chemical 

systems engineers may play a critical role will be given in the discussion section.  

 

4. Case studies 
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4.1. Rigorous prediction of drug transport in the brain  

The first case study illustrates the rational design of novel drug administration therapies 

based on patient-specific medical imaging information. Rather than optimizing infusion 

parameters by expensive trial-and-error animal experimentation, iCFD allows to 

accurately predict expected drug dispersion in-silico. Optimal infusion parameters can be 

found with fast and inexpensive computer simulations; only the best design solutions 

need to be verified with fewer validation experiments than the current purely empirical 

practice. 

 

Convection-enhanced delivery (CED) is an invasive drug administration technique in 

which drugs are infused directly into the brain via a catheter. It is used to overcome the 

blood-brain-barrier, which prevents many potentially therapeutic drugs from reaching 

brain cells. In addition, the infusate propels these drugs deeper inside the porous tissue by 

convective flow. This promising new treatment option has a wide range of applications 

including Parkinson’s disease, brain tumor and gene therapy. However, clinical trials 

employing CED have failed to meet clinical end points, because current infusion 

techniques have not covered desired target areas and there is a wide variability between 

experiments and from patient to patient (Sampson et al., 2010) .  

 

An iCFD workflow procedure with four stages is developed (Somayaji et al., 2008). In 

step 1, MR imaging techniques accurately delineate the patients’ individual brain 

geometry. In step 2, image reconstruction is used to convert the patient-specific MR data 

into accurate three-dimensional surfaces and volume representation. In step 3, mesh 

generation, the volume is partitioned into a finite number of small non-overlapping 

tetrahedrons. In step 4, the equations of fluid motion and species transport defined over 

the volume mesh are solved numerically.  

 

The distribution of a nerve growth factor (NGF) administered invasively from an infusion 

catheter was predicted with iCFD. NGF promotes the survival and differentiation of 

sensory and sympathetic neurons in the brain. It has been used for preventing nerve loss 

in patients suffering from Alzheimer’s disease. The aim of the therapy design was to 



 8

maximize achievable treatment volumes by optimal choices of infusion parameters such 

as catheter position, bulk flow rate and drug concentration in the infusate. By applying  

the iCFD procedures, an accurate anatomical model of the patient’s brain was recreated 

on the computer with physiological brain structures including clear gray and white matter 

boundaries, tissue permeability and anisotropy, and realistic transport properties.  This 

iCFD model enables patient-specific infusion design by predicting drug transport and 

biodistribution after infusion via a catheter.     

 

First, the geometry of the patient’s brain was captured with MRI. In addition, the 

prediction of drug biodistribution after infusion requires an anatomically consistent 

model of anisotropic and heterogeneous brain tissue. Brain tissue anisotropy is taken into 

account by incorporating information derived from diffusion tensor imaging (DTI). Drug 

infusion and transport in the brain was simulated with image-based computational fluid 

dynamics.  The bulk infusate–an aqueous solution–obeys the laws of incompressible fluid 

motion in a porous medium as in eq. (1) and (2). The momentum balances of bulk fluid 

flow inside the anisotropic extracellular space can be expressed by Darcy’s law with 

interstitial fluid pressure, p, and the hydraulic conductivity tensor, K . Species transport 

of drug molecules is due to convection with the bulk as well as diffusion according to 

concentration gradients. The convective-diffusive drug dispersion can be calculated 

according to the species transport equation given in eq (3). Drug dispersion by convection 

is given by v C∇
ur

. The diffusion flux, C∇
ur

D e , is a vector equal to the product of the 

effective molecular diffusion tensor,D e , with the with gradient of the interstitial species 

concentration, ( )C x,tr
. In anisotropic media the diffusion flux is not necessarily collinear 

with the concentration gradient. Drugs are more likely to diffuse radially along axonal 

white matter tracts than perpendicular to the fibers.  This preferential direction of the 

diffusive transport in each point of the white matter can be quantified with an anisotropic 

molecular diffusion tensor field. Anisotropic transport properties can be estimated using 

tensor fields acquired with diffusion tensor imaging (DTI). Figure 2 shows an example 

for capturing anisotropic material properties exhibiting strong directionality of fibrous 

white matter tracts in a 38 year old normal subject.   
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Figure 2.   

 

The reaction term, ( )R C,x
r , represents enzymatic drug decomposition, possible metabolic 

interactions of the drugs with neurons or other pharmacokinetic reactions. In addition, 

drug-receptor binding ∂
∂
B
t

, or drug internalization, ( )S C,xr , for can be accounted for with 

additional sink terms. The solution of the fundamental conservation laws of mass, 

momentum and species transport gives the desired drug distribution, ( )C x,t
r , the 

interstitial velocity, ( )v x ,t
r r , as well as the pressure fields, ( )p x ,t

r  as functions of space, 

xr , and time, t.  

 
In step 3, the brain tissue and the infusion catheter were meshed using boundary 

conditions depicted in Figure 3. The computational grid for a two-dimensional axial 

human brain segment had more than 20,000 volumes. Achievable treatment volumes 

were calculated using the finite volume method for the injection of a nerve growth factor 

(NGF) with convection enhancement. A detailed discussion of the finite volume 

discretization procedure can be found elsewhere (Somayaji et al., 2008).  In step 4, drug 

distribution was computed numerically.   

 

Typical simulation results for intra-parenchymal drug infusion are shown in Figure 4. A 

comparison of predicted steady state drug dispersion in a homogenous ideal porous 

Continuity:  
      0v∇⋅ =

r r  
(1) 

CSF fluid seepage through the porous extracellular space of the brain:  

      2 1v v v p v v
t

ρ μ −∂⎛ ⎞+ ⋅∇ = −∇ + ∇ −⎜ ⎟∂⎝ ⎠

r r r rr r r rK  (2) 

Drug transport for convection-enhanced delivery: 

     
( ) ( ) ( )C Bv C C R C,x S C,x

t t
ε ∂ ∂

+ ⋅∇ = ∇ ⋅ ∇ + + −
∂ ∂

ur ur urr r r
eD  (3) 

 

Figure 3.   
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medium versus a non-homogenous anisotropic tissue model obtained from real patient 

DTI data depicted in frames A and B respectively. These simulation experiments 

predicted irregular drug dispersion due to tissue anisotropy. The anisotropic drug 

dispersion patterns are more realistic and better approximate NGF distribution in real 

anisotropic brain tissues. After the injection of a drug, the final drug distribution volume 

determines the efficacy of the expected therapeutic outcome. In clinical trials, many 

infusion therapies fail to meet treatment objectives because drug molecules fail to reach 

the desired target cells or only ineffective sub-therapeutic drug concentrations area 

realized in the target zone. Optimizing infusion parameters a-priori with iCFD ensures 

that the drug reaches the desired brain tissue in therapeutically effective concentrations.  

Simulations such as the result shown in Figure 4B assists physicians in determining 

whether infusion parameters are adequately chosen to achieve the desired treatment 

objectives.  The case study illustrates the potential of iCFD for the systematic design of 

novel drug therapies.  

 

Figure 4.  

 

4.2. Discovery of cerebral transport and metabolic reaction properties 

Image-based computational fluid dynamics (iCFD) not only predicts patient-specific drug 

distribution with known drug kinetic parameters, but also enables the discovery of 

unknown drug kinetic parameters. The following case study combines iCFD with 

parameter estimation to create mechanistic models of drug transport and reaction 

chemistry in distributed systems. Non-linear optimization (mathematical programming) 

offer powerful techniques to estimate reaction and transport properties from distributed 

imaging data. The key advantage with iCFD techniques is the possibility to incorporate 

large datasets about unknown reaction and transport phenomena acquired in spatial 

dimensions and at different time intervals. The wealth of data available should 

dramatically improve the quality of the parameter estimation.  
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Somayaji et al. used in vivo medical image data to determine both transport and 

metabolic reaction parameters for therapeutic agents (Somayaji, 2008; Zhang et al., 

2007). A brief outline of the concept using the levodopa treatment for Parkinson’s as an 

example follows.  

 

Figure 5.  
 

In this example, a simplified diffusion-clearance model aims at quantifying the transport 

and clearance of F-dopa in the brain tissue with a distributed parameter estimation 

technique. First, previously published positron emission tomography (PET) data for 

infusion of radio-labeled F-dopa into the brain were collected.  The color intensity of the 

PET image corresponds to the F-dopa distribution in the basal ganglion depicted in 

Figure 5a in a horizontal cut of the human brain. The pixel color intensities in the PET 

scan were converted to infer the concentration profiles obtained in vivo, Ĉ . Using the 

iCFD workflow, a model of the patient’s brain was reconstructed from the PET image 

and used to estimate kinetic parameters of F-dopa in the brain. The aim of the inversion 

problem is to estimate the rate of tissue-to-blood clearance, 2k , of F-dopa and blood-to-

tissue clearance parameter, 1K , of methyl-F-dopa. In addition, diffusivities of both 

species, D, were determined. The steady state extravascular concentrations of F-dopa and 

methyl-F-dopa in the brain tissue are given in eq (5). The mathematical program in (4)-

(5) has a quadratic objective with partial differential equation constraints, with F being 

the covariance matrix of the experimental measurements. It allows for the estimation of 

diffusion-clearance parameters in the F-dopa model. Eq (5) constitutes steady state 

diffusion with reactions, with R denoting the reaction kinetic model for blood-tissue 

clearance for F-dopa and methyl-F-dopa.   

1 2

1
1 2

, , ,
ˆ ˆmin ( , , ) ( ) ( ) ( ) ( )

T

D K k C
D K k C x C x F C x C xψ −⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦  (4)

s.t. 

1 2
( ) ( , , )

D D D
D C R C K k∇ ∇ = C = (F-dopa, methyl-F-dopa)  (5)

An anatomically consistent computational grid was constructed from the PET image 

depicted in Figure 5a through the image reconstruction technique described in step 2 of 
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the iCFD workflow. The reconstructed domain was converted into an unstructured 

computational grid shown in Figure 5b through the mesh generation technique described 

in step 3. Finally, the solution of parameter estimation problem gives the values of the 

unknown parameters that best align the predictions with the image data. Figure 5c depicts 

the predicted F-dopa concentration field for the optimal parameter set.  

 

The construction of an iCFD model from medical images enables kinetic parameter 

estimation of a drug from distributed imaging data such as PET scans.  Matching the 

imaged with simulated concentration profiles allows the determination of unknown 

parameters to describe the transport and reaction mechanisms taking place in vivo.  While 

this case study used a simplified reaction network with only two-dimensional data, it 

demonstrated the enormous potential of discovering metabolic and transport phenomena 

from medical images. The simultaneous identification of metabolic and transport 

properties from medical images is a novel capability for biomedical engineering.  

 

5. Discussion 

The case studies demonstrate quantitative analysis of complex transport and reaction 

phenomena using in vivo observations from medical imaging. In the examples, iCFD 

produced quantitative results such as spatio-temporal drug concentration in the porous 

brain parenchyma. Despite the large data set necessary to accurately represent the 

patients’ brain geometry, the first principle fluid mechanics approach only requires a 

small number of physical parameters such as density, viscosity or frictional coefficients. 

These computer predictions can be compared to Cine MRI measurements. When 

simulations and measurements are in good qualitative and quantitative agreement, it is 

reasonable to assume that mathematical model captures main phenomena occurring in 

vivo. In this sense, iCFD analysis should not be considered merely a tool to reproduce 

transport phenomena, but as an investigative process to explain dynamic forces that cause 

fluid motion in the living organism. Thus, iCFD supports biomedical discovery. Open 

questions and future research activities are suggested in the subsequent section. 
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Interstitial transport at the nanoscale. Many biomedical applications require a molecular 

description of interstitial transport. Several research groups with chemical engineering 

background have made progress in experimentally describing transport phenomena at the 

nanoscale (Neeves et al., 2007; Saltzman and Olbricht, 2002; Stephanopoulos, 2005). 

Yet, the theoretical models explaining transport of large molecular weight drugs or 

functionalized nanoparticles through the extracellular space are in their infancy. It 

appears that continuous convection-diffusion models are not sufficient to describe 

hindered diffusion or particulate transport inside the tortuous extracellular space. Discrete 

particle simulations may offer the flexibility to incorporate molecular forces, charge 

interactions and steric diffusive impedance of the molecular species transport in the nano-

pore space of the interstitium with relative ease.   

 

Drug transport dynamics in pulsating media. Natural fluid flow such as the pulsatile CSF 

flow pattern in the central nervous system (CNS) critically affects mass transfer of 

therapeutic species in intrathecal and intraventricular delivery modalities. For example, 

the apparent transport speed of proteins infused into the CSF of the lumbar region – a 

modality known as intrathecal drug delivery (IT) - is far greater than can be explained by 

molecular diffusion alone. In the future, detailed three-dimensional simulations may 

explain the mystery of accelerated transport phenomena in IT drug delivery providing 

invaluable insights for anesthesiology or the design of gene therapies for the CNS.  

 

Inversion methods for distributed system optimization. The transport and kinetic 

inversion problems discussed for dopamine therapy demonstrated the feasibility of 

estimating unknown transport and reaction kinetic parameters from distributed image 

data. The solution of parameter estimation problems leads to mathematical programming 

formulations with quadratic objectives; but partial differential equation constraints 

defined over three dimensional domains and as functions of time. Advances in 

optimization techniques for distributed partial differential equation systems, avoiding the 

repeated solution of the entire set up transport equations to obtain the required sensitivity 

information would need to be developed.  Some techniques such as the In Situ Adaptive 

Tabulation (ISAT), already successfully developed for large scale chemical kinetic 



 14

inversion problems, are also promising for the inversion of distributed image data 

(Hedengren and Edgar, 2005; Pope, 1997). Another active area of investigation for 

systems area is to address the solution multiplicity in parameter estimation problems in 

distributed domains (Lucia and Feng, 2003). The presence of measurement errors 

introduces multiple extrema in the residual error surface. Global optimization methods to 

systematically identify all local solutions are needed. Currently, few methods such as 

niche algorithms or hybrid niche methods have been used for distributed systems 

optimization (Moon and Linninger, 2009). Selecting the physically meaningful extremum 

among the many local solutions is another open point of interest. Lucia argues 

convincingly that the global minimum is not necessarily the desired solution in all cases 

(Lucia et al., 2008). Engineering insight has to be incorporated into the parameter 

estimation routine (Biegler and Grossmann, 2004). Yet few researchers have tackled 

these open issues in the literature.  

 

Implications for software development and modeling needs. The ad-hoc generation of 

physiological models requires frequent adjustments of the mathematical models.  

However, it is impractical to maintain large, rapidly changing projects by hand.  State-of-

the-art modeling tools such as the excellent equation-oriented gProms language 

(gPROMS, 2010) support version management via object-oriented software engineering 

techniques. Yet, in distributed systems coupling of mass and momentum equations 

affects even the choice of solution algorithms. An evolving technique for computer-aided 

problem formulation is entitled model generation. Model generation is a graphically-

driven modeling paradigm, which separates automatic or semi-automatic model 

formulation from its numerical solution procedure. In model formulation, the physical 

domain is represented graphically by a network.  Network models are typically 

assembled by the user with the help of image-reconstruction software.  Once the network 

of spatial domain is drawn, the phenomenological modeling elements are added to the 

geometry context.  This task means that the user selects relevant transport and reaction 

mechanisms.  Given the user choices of physical phenomena, the model generation 

software instantiates fully automatically the fundamental conservation balances defined 

over the geometry context given by the domain mesh.  In practice, these model 
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generation steps can automatically synthesize species and momentum conservation 

equations. These equations are created symbolically in the syntax of a user’s preference 

such as Matlab, C or Fortran code. The symbolic code generated in the model 

formulation phase can be exported to any target language or platform. Especially for 

parallel supercomputer applications, the code export may be an indispensible feature in 

large-scale biological systems modeling. In addition, systems theoretical methods can 

check model consistency.  Automatic model generation based on physical conservation 

principles, in addition to the common mathematical consistency, is an interesting concept 

proposed recently (Preisig, 2006).   

 

Implications for education. The new trends in biomedical engineering research create 

opportunities for young chemical systems engineers.  Is there further a need to adjust the 

curriculum for a better preparation of our graduates? In the author’s opinion, engineering 

fundamentals in core courses like reaction engineering, transport and dynamics or control 

should not be sacrificed in favor of qualitative introductory courses on biomedical hot 

topics.  A useful adjustment to existing courses could be the introduction of biomedical 

case studies as projects into core courses.  One example from the author’s experience 

includes a basic mass and energy balance course in which undergraduate student teams 

constructed whole-body vasculature models of common test animals and humans 

(Linninger, 2011).  This project allowed students to practice large scale linear algebra, yet 

required students to research blood flow circulation and to investigate suitable material 

properties like flow resistances in common test animals. The senior design course also 

offers chemical engineering students ample opportunity to strengthen their 

interdisciplinary capabilities. Instead of redesigning a standard chemical plant, medical 

device design projects foster undergraduate experiences in product design.  Students were 

encouraged to use of CFD software such as Ansys, or Comsol for their projects.  Design 

projects with CFD tools engage students in the application of fundamental principles 

(conservation laws, constitutive equations), introduce state-of-the-art CFD software, yet 

get students excited about putting their newly acquired rigorous engineering knowledge 

into the service of life sciences. Versatility with advanced CFD tool is becoming a special 
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bonus for graduates seeking assignments in interdisciplinary corporate research and 

development teams. 

 

At the graduate level, there also appears to be trend towards the use of CFD software 

applications in life science applications. While CFD tools accelerate problem formulation 

and solution of biological models, the coupling of mass transfer with species and 

momentum transfer makes a fundamental understanding of the mathematical principles of 

transport more important then ever.  Courses taught in computational fluid dynamics 

methods emphasize on the principles of partial differential equation discretization  such 

as the finite volume method, degree-of-freedom analysis as well as detailed discussion of 

boundary condition selection in distributed systems.  Class projects included coding 

assignments such as the finite volume discretization of convection diffusion equations 

with Matlab, with validation by commercial CFD tools.  

 

Finally, medical faculty should be brought in to teach about the patho-physiology of 

specific diseases that relate to student case studies. Engineers need to be exposed to the 

language of biology and medicine. The excitement of translational projects that use 

engineering to solve medical problems needs to be illustrated with specific examples. The 

goal of contributing to patient care should always be a principal motivating factor. 

 

6. Conclusions 

Systems engineering which deals with complex interacting chemical processes along with 

medical imaging technologies are in the ideal position to make biomedical discoveries. 

While enormous biological progress has been made identifying specific tissues, fluids, 

and structures, an understanding of how these systems function as a whole will require 

different skills and approach. Medical imaging provides an overwhelming amount of 

spatial and tissue information which has not been exploited fully to answer important 

functional questions. These questions are very significant to medical interventions in 

numerous diseases. For example, MR images of the patient's brain only offers qualitative 

insight into the anatomical structure, but from these images, transport rate and final 

distribution volume cannot be deciphered. Coupled with iCFD, these images are 
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converted into three-dimensional models where infusion can be tested quantitatively. 

Current empirical attempts and pure trial-and-error animal testing have failed. This is the 

time and place for engineers to take up these clinical problems. Their strong analytical 

skills provide the framework to design new tools for solving these problems. For this to 

interdisciplinary field to advance, a partnership with clinicians is necessary. Physicians 

and systems engineers use very different languages and methods. However, the goal-

oriented, problem solving in complex and not completely understood situations is 

common. The key to any effective cooperation is for engineers and physicians to 

recognize their similar interests as problem solvers and to identify medical problems 

amenable to quantitative engineering analysis. Engineers need to learn a great deal of 

biology and use their knowledge to formulate proper data gathering from patients. The 

mutual education is best implemented in small groups. A sufficient time is necessary to 

learn about each other’s strengths, but the potential gains for patients are great.  

 

Abbreviations  

CED Convection-enhanced delivery 

CSF Cerebrospinal fluid 

CNS Central nervous system 

CT Computed tomography 

DTI Diffusion tensor imaging 

iCFD Image-based Computational fluid dynamics 

F-dopa 3,4-Dihydroxy-6-fluoro-DL-phenylananine Monohydrate 

MRI Magnetic resonance imaging 

NGF Nerve growth factor 

PET Positron emission tomography 
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