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Computational studies of biological networks can help to id entify components and wirings responsible for observed phe notypes. How-
ever, studying stochastic networks controlling many biolo gical processes is challenging. Similar to Schrédinger’s equation in quantum

mechanics, the chemical master equation (CME) provides a ba  sic framework for understanding stochastic networks. Howe ver, except
for simple problems, the CME cannot be solved analytically. Here we use a method called d_irect ¢ hemical m aster e quation (dCME) to
compute directly the full steady-state probability landsc ape of the lysogeny maintenance network in phage lambda from its CME. Results
show that wild type phage lambda can maintain a constant leve | of repressor over a wide range of repressor degradation rat e, and is
stable against UV irradiation, ensuring heritability of th e lysogenic state. Furthermore, it can switch efficiently to the lytic state once

repressor degradation increases past a high threshold by a s mall amount. We find that beyond bistability and nonlinear di merization,
cooperativity between repressors boundto O  r1 and O r2 is required for stable and heritable epigenetic state of ly sogeny that can switch

efficiently. Mutants of phage lambda lack stability and do no t possess a high threshold. Instead, they are leaky and respo nd to gradual
changes in degradation rate. Our computation faithfully re produces the hair triggers for UV-induced lysis observed in mutants and the
limitation in robustness against mutations. The landscape approach computed from dCME is general and can be applied to s tudy broad

issues in systems biology.
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Section 1: Introduction
Bacteriophage lambda is a virus that infeEtsoli cells. It has served as a model system for studying regylatetworks and for engineering
gene circuits [1-5]. Of central importance is the molecualacuitry that controls phage lambda to choose between twdyzxtive modes of

development, namely, the lysogenic state and the lytie §Eg 1a). In the lysogenic state, phage lambda repressdsvelopmental function,

integrates its DNA into the chromosome of the hBstoli bacterium, and is replicated in cell cycles for potentiaigny generations. When

threatening DNA damage occurs, phage lambda switches freeptigenetic state of lysogeny to the lytic state and undsrgnassive replications

in a single cell cycle, releases 50-100 progeny phages ygandf theE. coli cell. This switching process is callgdophage induction [5].

The molecular network that controls the choice betweerethes different physiological states has been studied gktely during the past
40 years [5-9]. All of the major molecular components of teéaork have been identified, binding constants and reactites characterized,
and there is a good experimental understanding of the gemehanism of the molecular switch [5]. Theoretical stsdiave also contributed

to the illumination of the central role of stochasticity [@hd the stability of lysogen against spontaneous switcing0]. With the advent
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of systems biology, studying the switching network of phkgebda and lysogeny maintenance has gained added impayr&sit provides an
ideal ground for developing models and algorithms to stegyutatory networks.

However, a general bottle-neck problem for computationaliss of regulatory networks is the limitation of existitgghniques for studying
stochastic networks. Because reactions often involve lomhycopy numbers of molecules and have large separatiom®édcale, stochasticity
has a strong influence on the behavior of molecular netw@k4, L0]. Deterministic models based on the principles ofsrection are often
incapable of capturing the multi-stable nature of the nekwehen copy numbers are small [11]. Although the theory ef themical master
equation (CME) provides a general framework for studyiraghastic networks [12, 13], there are no analytical sohgitw the CME except for
simple toy problems [14].

One approach is to approximate the CME through various ftatimns of stochastic differential equations, includihg tangevin and the
Fokker-Planck formulation [12]. However, the consequenaisuch approximations for realistic problems involvingmyg molecular species
and complex reactions are unknown. Another approach isrtg oat extensive stochastic simulations. Powerful sirtiaketools, including the
Gillespie algorithm, have been developed [13, 15]. Witls tipproach, many trajectories of simulated reaction ewameat$ollowed, which are
analyzed to reconstruct a probabilistic picture of the lsémtic network.

As the CME plays roles in systems biology equivalent to thesrthe Schrodinger equation played in quantum mechahieslevelopment
of computational solutions to the CME has important implmas, just as the development of techniques for solvingStierddinger equation
for systems with many atoms is [16,17]. However, currentynmmeric algorithms can solve the CME directly. Stochasiticulations can
follow many cellular events, but have difficulty charactérg rare events that may be biologically critical. As thdtshing network in phage
lambda is stable against random fluctuation, the tranditan lysogeny to lysis occurs rarely under normal condisio this case, it is difficult
to determine whether adequate sampling has been achieweéhraeach trajectory whether the simulation time is sugfiti

In this paper, we describe a general approach to study malestochastic networks, called dCME, biyettly obtaining accurate steady state
solutions to the CMEhat underlies a molecular network. Using a model of the pétvior the maintenance of lysogeny in phage lambda, we
calculate its steady state probability landscape, inalyithose associated with the transition phase from lysotelygis. Such a full stochastic
characterization was previously computationally inasitds. To understand the basic properties required for thmt®nance of lysogeny, we
characterize the probability landscape of the networksiloftype and mutant phage lambda at different physiologicalditions and identify the
molecular and architectural determinants of the observ@ddical behavior. We aim to understand the origin of thenwek’s stability against
environmental fluctuations in UV irradiation, the basistsféfficiency in switching, its robustness against change®twork components, as

well as the mechanism of the heritability of the epigenet@tesof lysogeny.

Section 2: Results

Subsection 2.1: Model of Epigenetic Switch of Phage Lambda. To study how lysogeny is maintained and how it transitiorthédytic state,
we assume that lysogeny has already been established. Viesimeplified stochastic model for the molecular regulatagywork that controls
the epigenetic switch in phage lambda (Fig 1b). Using a tft&¥ biochemical reactions involving 13 molecular spectes model explicitly
includes key components, essential reactions, and cdopiea of the phage lambda decision circuitry. Details ¢ee found in Methods and
S| Appendix.

A stochastic biochemical network is characterized at astaint by the probability associated with each microstate@hetwork, namely,
the probability of a specific combination of copy numbershefinolecular species. If the probabilities for all possiblerostates at an instant are
known, we have thprobability landscape of the biochemical network for that instant. For a givenialitondition, this landscape usually evolves
with time. Our interest here is the steady state probaililiahdscape, which describes the overall behavior of plerméda in the steady state.

This landscape also governs the transient chemical reedyisamics of the system. As the microstates of a biochemitalork in general are
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too numerous, the probabilistic landscape usually canadirectly computed. Here we show the probability landsaplee decision circuit of
phage lambda can be studied using the newly developed m&thogtimal enumeration of microstates and for exact calttoh of the steady
state probability landscape [18]. Briefly, this method edichrough the high dimensional space of microstates fatiguhe submanifold of
accessible microstates for a given initial condition, withvisiting the vast space outside this submanifold. Teehmetails of this algorithm

can be found in [18].

Subsection 2.2: Probability Landscape of Phage LambdainLy  sogenic and Lytic States. ~ The epigenetic network model shown in Fig 1b
canreach around 1.7 million microstates. We have calalithteugh dCME the steady state probability associatederith of these microstates.
Since the space of the microstate is 13D for 13 molecularispewe project the landscape to the 2-dimensional subspateecord only the
total copy numbers of Gldimer and Cre dimer molecules. With a high copy humber of,Gepressor, the lysogenic state of the phage lambda
is maintained, whereas a high copy number of Qomtein signifies the lytic state [6]. The £topy number therefore can be regarded as an
indicator of the physiologic state of the phage. Fig 2a shawsobability landscape of the lysogenic state, which hasmnnounced peak
centered at around the location of 14 copies @imer and 0 copies of Cgodimer. As a range of Glvalues all have high probability in the
lysogenic state, our results suggest that minor changes.ic@centration during cell growth and cell division will naffect this epigenetic
state. This is important to ensure the heritability of the&olgenic state. Such a conclusion cannot be drawn from stobitained using the ODE
(ordinary differential equation) model, which would gively a fixed point of C¢ concentration for the lysogenic state, rather than a pritibab
distribution.

We then examine the effects of accelerated Cl degradatiert@l@NA damage from UV irradiation that leads to the activatdf RecA-
mediated Cl cleavage [5,19]. Fig 2c shows that when the Cladiedion rate is raised fromy = 7.0 x 10™%/s toky = 3.6 x 10~%/s, the
probability landscape peaks at a different location, witbwt 4 copies of Crodimer and 0O copies of Gldimer.

Our results show that the steady state probability landscapange adaptively. In the lysogenic state, the probalzitidscape has one peak,
which accounts for the vast majority of locales where there significant amount of @imolecules and few Cromolecules. The probability
for the system to have high Cro copy humbers spontaneousBryssmall. In conditions that eventually lead to the lytiate, the probabilistic
landscape adapts and changes, becoming dominated by atplfférant locations where there is a large amount of CrofamdC| molecules.

At the same time, the peak for the lysogenic state disapgEay2c).

Subsection 2.3: High Threshold and Efficient Switching of Ph age Lambda. To model the effects of UV irradiation on RecA-mediated
acceleration in Cl degradation [5,19], we have systemitiexamined the behavior of the network by computing itskadoility landscape
at different ClI degradation rates. To summarize our resulescalculated the mean copy numbers of @hd Cre of the network from the
probability landscape. For example, for the probabilitydacape shown in Fig 2a, we integrate with properly weigptetabilities of the copy
numbers of CJ and Cra at each microstate, and obtain the mean copy numbers of 2d.8.8. This is repeated for 36 different values of Cl
degradation rate. The results are summarized in compuogdljogenerated titration curves shown in Fig 3a (soliddne

Our results show that the epigenetic network of phage lanibstary stable against changes in Cl degradation rate dupvicoemental
fluctuation of UV irradiation (Fig 3a, solid lines). Phagenlada stays firmly in the lysogenic state at normal conditieven when UV irradiation
is at a dosage that leads to doubling of the degradation f&tg the expected copy number of 0h the system changes very little. Over a wide
range of Cl degradation rates.Q x 10=%/s — 1.7 x 1072 /), the lysogenic state is maintained. The switching thrisfar the Iytic state is
high.

Once the switching threshold of degradation dafe= 1.8 x 10~3/s is reached (Fig 3a, solid lines), a further small increzge4 x 10~3/s
turns the expected copy number oh@lom 88% of its maximum value &; = 1.8 x 10~3/s to 16%. The system therefore can be fully thrown

efficiently to the Iytic state with a small additional incegain Cl degradation at the threshold.
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Subsection 2.4: Cooperativity between O 1 and O p2 Enables the Lysogenic State. ~ Next we studied the effects of cooperativity. Itis well
known that repressor dimer £€binds cooperatively to neighboring operator sites [20mi&irly, Cro dimers also bind cooperatively, although
to a lesser extent [21]. These cooperativities are fullpiporated in our model (see S| Appendix for details). In #ddj we assume that the
looping cooperativity always exists in the form of enhan€@aynthesis when @2 is occupied by a Gl

We first studied the effects of removal of all cooperatiatietween neighboring repressor,@hd between neighboring GroThe results
show that without these cooperativities, phage lambdaatamaintain the lysogenic state (Fig 3a, dashed lines). As s Cl degradation
becomes slightly above zero, Cl repressors are depletéatistéady state, and Cro proteins accumulate.

The strength of the cooperativity between @Imers and between Cralimers at different operator sites is uneven. An intergsjmestion
is whether the coordination of multiple cooperativitiegesgjuired, or whether one key cooperativity is sufficienteéad phage lambda to the
lysogenic state. We tested different alternative possésl When all of the 5 cooperativities are removedy(6Binding to Oz 1-Or2, to Or2-
Or3, Cro; to Or1-Or2, to Or2-Or3, and to Q;1-Or2-Or 3, respectively), phage lambda cannot lysogenize (Fig&shet lines, and details
shown in Fig S4 in SI Appendix). Restoring the cooperatibiggween Cl dimers binding to @1 and ;2 alone can recover the lysogenic state
of phage lambda (Fig 3b, solid lines, and Fig S4 in Sl). In @stf the stability and the high threshold are still missirigen all cooperativities
other than that between €4 binding to Q;1-Or2 are restored (Fig 3b, dashed lines, and Fig S4 in Sl). Tluesihe cooperativity of Cl dimer
binding to Oz 1 and ;2 is a key enabling factor for phage lambda to maintain thedgsic state.

Our results are consistent with the experimental obsematiat the cooperativity between £Cdimer binding to G;1 and Gz2 plays the
dominant role [20,22,23]. The stronger affinity and highecupancy of Q1 bound by C4 dimer leads to cooperative binding of £t the
neighboring operator site £2. This CL dimer precludes the alternative cooperative binding of @iners between @2 and ;3 [5]. Our
findings support the model that stability against prophagkdtion largely results from cooperative DNA binding by, @ the Oz1 and Q:2
sites [22, 23]. Zhwet al. also showed the importance of cooperativity between Cl dirimean earlier computational study [10]. The new finding
emerging from this study is that the cooperativity of @imers between @1 and G;2 is the dominant enabling factor and it alone is sufficient

to endow phage lambda with the ability to adopt the lysogbfastyle.

Subsection 2.5:  Effects of Altered Operators: Mechanism of Hair-Triggers of the Little Mutants. To assess the robustness of phage lambda
against changes in the molecular components of the epigeretivork, Littleet al replaced the ordered operator sitest321 in the wild
type phage lambda with the symmetric variant$§323,0r121, andOr3'23’, respectively. IN0r3'23’, the Or3’ site has one of the @3
nucleotides replaced by that ofsQ [8]. In this seminal work, all of the mutants are found to édunctional epigenetic circuits, all have the
ability to form lysogens, to grow lytically, and to undergmphage induction upon UV irradiation. However, these mtgdave markedly
different tolerance to UV irradiation. The wild type lysagbas a high threshold and requires the highest level of LAdiation for prophage
induction to occur. In contrast, all mutant variants exhibe behavior of a hair-trigger, and require much less U¥dration for the onset of
prophage induction.

To study the effects of different dosage of UV irradiationtbe Little mutants, we calculated their probability langises at different ClI
degradation rates (Fig 4a-d and details shown in Fig S3 offpledix). Overall, we find that the Little mutants all exhihireshold behavior in
our model, as was found experimentally [8]. However, theatamts are generally defective, with reduced thresholdgrfiphage induction, and
are hair-triggered. As seen in Fig 3a (solid lines), wilddyhage lambda has a deep threshold for prophage indugtioa ¢.0 x 10~3/s at about
50% induction). In contrast, although all mutants haveshedds for the lytic response, these thresholds are mudiosiea (< 1.0 x 1073/s)
(Fig 4a-d). This is consistent with the experimental findinat they are hair-triggered [8].

Our model can also reproduce detailed differences in UVaersgs among the mutants. Bafhz121 (Fig 4a) andDr3'23’ (Fig 4b)
mutants are experimentally found to have a higher thresbbldV irradiation than mutan© 323 (Fig 4c) for prophage induction [8], which

we reproduced in our model. We find that the degradation taté&h the amount of Crpsurpasses Glfor both mutants)z121 andOr3'23’
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is kg = 1.6 — 1.7 x 10~%/s, while theOz323 mutant has a lower value bf = 4.0 — 5.0 x 10™*/s. There is also another subtle difference
in the behavior among the Little mutants. Mut&nt121 is found experimentally to be slightly more stable tlia#3'23’ according to Fig 3

in reference [8], which is again reflected in our results. WK degradation is small, the mutafitz 121 (Fig 4a) has a larger amount of CI
repressor molecules than the mutént3'23’ (Fig 4b), hence it has a higher tolerance for UV irrdaba.

We find that these mutants cannot maintain a constant lev€lof Although it has been suggested that the Little mutants kawer
levels of ClI, which contributes to the reduced threshold,fthl mechanism of how the switching network functions iagh mutants is not well
understood. From our model, we find that although prophadedtions can occur in bot? 121 andOr3'23’ mutants, their lysogenic states
are different from that of wild type and can be characteriasdleaky”. There is a gradual reduction in the level of Cl@sponse to a gradual
increase in the Cl degradation rate (Fig 4a and b), correfipgrio graded amounts of DNA damage. When the degradatierof&l increases,
the level of Cl also decreases, and this effect is cumulagiven though phage lambda remains overall in the lysogéate.sin contrast, wild
type phage lambda exhibits a true high threshold behavatrighvery stable: there is little change in the amount of @newhen there is a
large increase in the Cl degradation rate. This state istaiaid until the set-point of switching threshold is reatfieig 3a, solid lines). Even
the best mutants @121 and G;3'23’ with relatively high thresholds respond to graduaanobges in Cl degradation rate and do not have a high
threshold.

The epigenetic circuit of lambda phage is generally robgsirest system parameter perturbations [8]. However, thezdimits to this
robustness. As shown in reference [8], a nonsymmetric nidbari23, with the positions o0 r1 andOr3 swapped could not lysogenize, a
finding our results also reproduce. In our model (Fig 4d) thutant has a severely impaired ability to generate Cl sspore even when there

is little or no CI degradation due to UV damage.

Subsection2.6:  Comparison with Other Methods. To examine whether the same results can be obtained usttgstic simulation algorithm,
we carried out simulation using the Gillespie algorithm][2Bor rare events such as transition from lysogenic to Igtate &; = 0.0020/s),

the algorithm failed to converge to the steady state prdipabiistribution after> 6 times of more computation time compared to the dCME
method, and the results strongly depend on the initial ¢ di. There remain significant residual errors at eachefritial conditions tested.
Conclusions drawn from non-converged simulations can gieerrect prediction that the system is still in the lysoigestate. Such failure
of convergence can be difficult to detect. Residual erroraiemsignificant when the system is in the region of startingriter the lytic state
(ka = 0.0022/s). Furthermore, the expected copy number of €An be over-estimated by 300% in this region, and the smallatof Croe
calculated in the lysogenic region can be off by 3-order ofjnitude with comparable computational time, which wouldddo unreliable
estimation of the frequency of very rare events such as gpeous lysis in lysogenic state. Details of error analyaiske found in SI.

For this comparison, we assume that the steady state candidigsed during the life span of a cell. As the models of #ctions are
Markovian, the probability landscape of the steady stategded by all stochastic methods should be independentahitial condition. The
issue of assessing differences in computed time-evolviolggbility landscape before reaching the steady statguifferent methods requires
further investigations.

We also carried out calculation using both stochastic difidal equation (SDE) and ordinary differential equatf@DE) models based on
the studies of Santillan and Mackey [25] and Gillespie [2ith modifications so it is directly comparable to our mad€here are significant
qualitative differences in both cases. The SDE model fadedach the correct steady state, with the landscape muttefaway than that from
the stochastic simulation algorithm. In the ODE model, whéan be regarded as the skeleton of the stochastic modets,igno stabilization
of the CkL concentration against fluctuations in the Cl degradatite, r@s the amount of €lrapidly decreases when the Cl degradation rate
increases. Wild type phage lambda would be hair-triggesethis model, which disagrees with experimental data. Intaad the transition
from lysogeny to lysis in the 1-2-1 and 3'-2-3' mutants occat higher Cl degradation rate than the wild type, which wadeid to the erroneous

conclusion that these mutants are more resistant to UViatiad. Details of these comparison can be found in the SI.
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Section 3: Discussion

In this study, we characterized the properties of the egitiemecision network of phage lambda through direct coitjon of its steady state
probability landscape using the method of dCME, an apprgaehiously unfeasible. We find that phage lambda is verylstahd is strongly
buffered with a high threshold against fluctuations in Clrdelgtion rate due to environmental changes in UV irradigte behavior only
observed in the wild type phage lambda. This high threshgédrest environmental fluctuations is important for the gafpetuating nature of
the epigenetic state &. coli cells, allowing lysogeny to be passed on to its offspring. alége find that once the degradation rate of Cl reaches
a threshold, phage lambda switches very efficiently to tie Btate, and this efficiency is not built at the expense albitity against random
fluctuation. Phage lambda can integrate signaling in the fafr different CI degradation rates and can distinguish e signal above the high
threshold from random noise fluctuating below this threghol

Our results further indicate that the cooperativity of Ginding between @1 and ;2 plays the key role in enabling the wild type behavior
of phage lambda. Nevertheless, the phenotype of a highhiblceand robustness against mutations are best viewedllopesgperties of the
network. In addition to this cooperativity, disruptionsather structural and architectural features may also t@sthe loss of these phenotypes.
The distributive nature of such network properties haventiiscussed in reference [27].

Our results are consistent with many experimental findiBysQur results point out that the Little mutants have a leakitch, compromising
stability against fluctuation in UV irradiation and redugiswitching efficiency. Our finding suggests that the lealspomse to UV-damage and
the lack of a high threshold in mutants:@21 and G;3'23’ are responsible for the hair-trigger of prophage iciilon upon UV damage.

There exist a number of theoretical studies of phage lamhdata mutants [4, 10, 25]. Here we discuss the main diffezeria biological
findings. In a pioneering study, Auredt al. investigated the effects of two free parameters on thelgtabf lysogenic state in a stochastic
differential equation model of phage lambda based on meddysis frequencies, with the goal of exploring unrecogdizontrol mechanism for
the stability of lysogeny. A major conclusion is that theat@tffinity of Cro for Or 3 is a key factor in determining the stability of lysogeniatet
which affects the transcription rate of derepressgg/Pand therefore the synthesis rate of Cl. In addition to tiferdinces in underlying model and
computational techniques, a focus of our study is to explweeffects of cooperativity between Cl dimers, with othemexperimentally derived
model parameters. We are able to pinpoint to the coopeatigtween Cl dimers on g1 and C:2 as the key factor for the stability of phage
lambda. An effect of this cooperativity is the increasedespion of R, which promotes the production of Cl. Santillan and Mac#eyeloped
an ODE model [25]. Without stochasticity, this model showedthrer stability against small increases of Cl degradataie, nor switching
efficiency when Cl degradation rate reaches the set-paiesitiold. The study of Zhet al was based on a potential surface reconstructed from a
stochastic differential equation model [10], with threedfiparameters adjusted for best fit of experimental datgpakiimeters in our model are
derived from the literature. Although both studies showithportance of cooperativity between CI dimers, our resuiltpoint to the important
role of the cooperativity between CI dimers binding ta Dand ;2 (see SlI).

This work is also a significant improvement over a prelimynegrsion of our model [28], which does not consider coopeitas between
Cl dimers or Cro dimers, and does not account for self-preshsinthesis of Cl. Without such considerations, lysogemyanly be reached by
increasing Cl synthesis rate, which is unrealistic and otibe used to model the effects of UV irradiation.

Overall, our study indicates that an important mechanistiderstanding of the system behavior of a stochastic nktean be gained
through direct computing of the network probability landge. The study of the effects of altered molecular companamd altered wiring of
the network further suggests that we could predict the augcof manipulated phage lambda through computational esuds elegantly laid
out experimentally by Littlest al [8,29]. In addition, we can explore evolutionary historyhmiwv modern organism emerges. Our focus in this
work is exploring the overall global behavior of the phagalala switching network. There are many aspects of the mbdekan be further
improved, for example, the non-specific binding of Cl molesio DNA and the effects of cooperative looping betweers@d Q. are currently
only modeled implicitly. In addition, if discrepancies iepgorted andn vivo parameters can be reconciled and obtained, we expect ttiet be

guantitative predictions can be made.
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Computational studies of biological systems allows exaion of many alternative hypotheses, and facilitate trentification of key
elements responsible for phenotypic observations [3,480,B1]. We show that the approach of dCME can offer frestgiisand generate
testable predictions. An advantage of this approach isrtdrat events can be characterized, without difficulties cgased with stochastic
simulation in determining whether millions or billions adrmples are required.

The approach of obtaining exact solutions of simplified M®déth enumerated microstates advocated has an analoggiiops studies of
protein folding. Models such as lattice self-avoiding veakith only hydrophobic and polar (HP) interactions allow ttomplete enumeration
of all feasible conformations and the calculation of exaeriodynamics as well as folding dynamics from the mastaatons for model
molecules. Such studies have played important roles iridgting the principles of protein folding [32—-35].

Itis likely that direct solutions to simplified but realistochastic networks can lead to the elucidation of the mm@sims of many biological
processes. As the molecular mechanism underlying theaasftphage lambda applies to many other biological reguapoocesses as well,
and as similar processes are likely underlie many develogghand epigenetic processes, including cooperativeralontthistone coding [27],
the decision control of phage lambda has offered us a pareftigstudying broad issues in cell development and cell {d{®, 10, 36, 37]. The

approach described in this study is generally applicabiecam be extended to these other systems as well.

Materials and Methods

Our model includes the repressor protein Cl, its dimer Clz2, the Cro protein, and its dimer Cro2. The synthesis and degradation of Cl monomer and Cro monomer, as
well as their dimerizations are modeled explicitly. In addition, the three operator sites, Or1, Or2, and Or 3, are modeled to bind to either Clz dimer or Cro2 dimer with
different affinities. These sites can also be unoccupied. The cooperativity between Cl2 dimers and between Cro2 dimers on neighboring sites is included. In addition, the
enhanced CI synthesis when OR2 is occupied by CI dimer (currently understood to be due to the looping effect between Oy, and OR) is also included [38, 39]. The self
repression of Cl2 at high concentration is also included. The values of protein-operator binding affinities, cooperativity, protein synthesis rate, and protein degradation
rates are based on experimental measurement and are described in detail in the SI Appendix. In our model, we assume that there are a total of about 100 copies of Cl
repressors [4,40], of which about 50 copies are free in a cell volume available to bind to the operator sites in lysogen. The remaining 50 copies are assumed to bind to
DNA non-specifically, as it is expected that a significant amount of Cl repressors are bound to DNA in regions other than the operators, and the copy number of free CI
repressor may be as few as 10-20 [40]. The rationale of this assumption is further described in the SI Appendix.
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Fig. 1. Different selection of cell fate of E. coli infected by phage lambda and a model of the epigenetic circuit for lysogeny maintenance. (a) The

lysogenic and lytic states of phage lambda. (b) A simplified model of the epigenetic switch for lysogeny maintenance.
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Fig. 2. The probability landscape of the epigenetic circuits of lysogeny maintenance in phage lambda. (a) At the Cl degradation rate of k; =
7.0 x 10~%/s, probability landscape centers at locations with high copy numbers of Cl and close to 0 copy of Cro. This corresponds to the lysogenic
state of phage lambda. The landscape is shown both in three- and two-dimensional projections. (c) When Cl is degraded at a faster rate of
kg = 3.6 x 10~3/s, the probability landscape centers at locations where there are higher copy numbers of Cro dimer and close to 0 copy of Cl.
This corresponds to the Iytic state of phage lambda. (b) The probability landscape in transition with simultaneously two peaks when phage lambda
is being induced to the lytic state. When k4 increases from k; = 1.8 x 1073/s to 2.2 x 10~3/s, the peak located at lysogenic states gradually
diminishes, whereas the peak located at lytic states gradually increases. At about k; = 2.0 x 10~3/s, phage lambda has about equal probability to

be in either lysogenic or lytic state (see SI Appendix for more information).
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Fig. 3. Stability of the epigenetic network for lysogeny maintenance against fluctuation in UV irradiation and its switching efficiency in wild type phage
lambda and key role of cooperativity between Cl, bound on neighboring Or1 and O 2 sites in maintaining lysogeny. The mean copy number of
Cl2 and Croz are plotted against the Cl degradation rate k4 (in per second unit). (a) Solid lines: The lysogenic state in wild type phage lambda is
stable against fluctuation of UV-induced CI degradation rate. The level of Clz is constant for a wide range of Cl degradation rate. The threshold
for switching to the lytic state is deep. Switching occurs efficiently once the threshold (k; = 1.8 x 10~ 3/s) is reached: a further small increase
of 0.4 x 10~%/s completely throws the phage lambda to the Iytic state. (Dashed lines): When all cooperativities are removed, phage lambda
cannot generate sufficient amount of Clz and therefore cannot maintain lysogenic state. (b) The stability and the deep threshold are missing if all
other cooperativities except that between neighbor Cly dimers on Or1 and Og2 are restored (AG12 = 0, dashed line). In contrast, if all other
cooperativities are missing, but that between Cly dimers on Or1 and ORr2 is restored (AG12 # 0, solid line), phage lambda recovers to a large
extent the stability and gained significant depth in its switching threshold. (c-d) The same phenomenon is observed in mutant 1-2-1 studied by Little
et al [8]. With cooperativity between Or1 and Or2, this mutant can still enter the lysogenic state, albeit without much stability and the threshold is

shallow. Without this cooperativity (AG12 = 0), mutant 1-2-1 cannot maintain lysogeny (see Fig S4 in S| Appendix for more details).
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Fig. 4. Instability, shallow threshold, and switching inefficiency of the network against fluctuation in UV irradiation in mutant phage lambda [8]. (a-b).
In contrast to wild type (Fig 3a, dashed lines), mutant 1-2-1 and 3’-2-3’ do not maintain a stable level of Cl>. They are leaky and responds gradually
to graded changes in k4. Their thresholds and that of 3-2-3 (c) for Iytic transition are much shallower. (d) Mutant 1-2-3 does not maintain a sufficient

amount of Clz, and therefore cannot maintain lysogeny.
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