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Computational studies of biological networks can help to id entify components and wirings responsible for observed phe notypes. How-

ever, studying stochastic networks controlling many biolo gical processes is challenging. Similar to Schrödinger’s equation in quantum

mechanics, the chemical master equation (CME) provides a ba sic framework for understanding stochastic networks. Howe ver, except

for simple problems, the CME cannot be solved analytically. Here we use a method called d irect c hemical m aster e quation (dCME) to

compute directly the full steady-state probability landsc ape of the lysogeny maintenance network in phage lambda from its CME. Results

show that wild type phage lambda can maintain a constant leve l of repressor over a wide range of repressor degradation rat e, and is

stable against UV irradiation, ensuring heritability of th e lysogenic state. Furthermore, it can switch efficiently to the lytic state once

repressor degradation increases past a high threshold by a s mall amount. We find that beyond bistability and nonlinear di merization,

cooperativity between repressors bound to O R1 and OR2 is required for stable and heritable epigenetic state of ly sogeny that can switch

efficiently. Mutants of phage lambda lack stability and do no t possess a high threshold. Instead, they are leaky and respo nd to gradual

changes in degradation rate. Our computation faithfully re produces the hair triggers for UV-induced lysis observed in mutants and the

limitation in robustness against mutations. The landscape approach computed from dCME is general and can be applied to s tudy broad

issues in systems biology.
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Section 1: Introduction

Bacteriophage lambda is a virus that infectsE. coli cells. It has served as a model system for studying regulatory networks and for engineering

gene circuits [1–5]. Of central importance is the molecularcircuitry that controls phage lambda to choose between two productive modes of

development, namely, the lysogenic state and the lytic state (Fig 1a). In the lysogenic state, phage lambda represses its developmental function,

integrates its DNA into the chromosome of the hostE. coli bacterium, and is replicated in cell cycles for potentiallymany generations. When

threatening DNA damage occurs, phage lambda switches from the epigenetic state of lysogeny to the lytic state and undergoes massive replications

in a single cell cycle, releases 50–100 progeny phages upon lysis of theE. coli cell. This switching process is calledprophage induction [5].

The molecular network that controls the choice between these two different physiological states has been studied extensively during the past

40 years [5–9]. All of the major molecular components of the network have been identified, binding constants and reactionrates characterized,

and there is a good experimental understanding of the general mechanism of the molecular switch [5]. Theoretical studies have also contributed

to the illumination of the central role of stochasticity [3]and the stability of lysogen against spontaneous switching[4,10]. With the advent
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of systems biology, studying the switching network of phagelambda and lysogeny maintenance has gained added importance, as it provides an

ideal ground for developing models and algorithms to study regulatory networks.

However, a general bottle-neck problem for computational studies of regulatory networks is the limitation of existingtechniques for studying

stochastic networks. Because reactions often involve onlylow copy numbers of molecules and have large separations in time scale, stochasticity

has a strong influence on the behavior of molecular networks [3,4,10]. Deterministic models based on the principles of mass action are often

incapable of capturing the multi-stable nature of the network when copy numbers are small [11]. Although the theory of the chemical master

equation (CME) provides a general framework for studying stochastic networks [12,13], there are no analytical solutions to the CME except for

simple toy problems [14].

One approach is to approximate the CME through various formulations of stochastic differential equations, including the Langevin and the

Fokker-Planck formulation [12]. However, the consequences of such approximations for realistic problems involving many molecular species

and complex reactions are unknown. Another approach is to carry out extensive stochastic simulations. Powerful simulation tools, including the

Gillespie algorithm, have been developed [13,15]. With this approach, many trajectories of simulated reaction eventsare followed, which are

analyzed to reconstruct a probabilistic picture of the stochastic network.

As the CME plays roles in systems biology equivalent to the roles the Schrödinger equation played in quantum mechanics,the development

of computational solutions to the CME has important implications, just as the development of techniques for solving theSchrödinger equation

for systems with many atoms is [16,17]. However, currently no numeric algorithms can solve the CME directly. Stochasticsimulations can

follow many cellular events, but have difficulty characterizing rare events that may be biologically critical. As the switching network in phage

lambda is stable against random fluctuation, the transitionfrom lysogeny to lysis occurs rarely under normal conditions. In this case, it is difficult

to determine whether adequate sampling has been achieved, and for each trajectory whether the simulation time is sufficient.

In this paper, we describe a general approach to study molecular stochastic networks, called dCME, by directly obtaining accurate steady state

solutions to the CMEthat underlies a molecular network. Using a model of the network for the maintenance of lysogeny in phage lambda, we

calculate its steady state probability landscape, including those associated with the transition phase from lysogenyto lysis. Such a full stochastic

characterization was previously computationally inaccessible. To understand the basic properties required for the maintenance of lysogeny, we

characterize the probability landscape of the networks of wild type and mutant phage lambda at different physiologicalconditions and identify the

molecular and architectural determinants of the observed biological behavior. We aim to understand the origin of the network’s stability against

environmental fluctuations in UV irradiation, the basis of its efficiency in switching, its robustness against changes in network components, as

well as the mechanism of the heritability of the epigenetic state of lysogeny.

Section 2: Results

Subsection 2.1: Model of Epigenetic Switch of Phage Lambda. To study how lysogeny is maintained and how it transitions tothe lytic state,

we assume that lysogeny has already been established. We usea simplified stochastic model for the molecular regulatory network that controls

the epigenetic switch in phage lambda (Fig 1b). Using a totalof 54 biochemical reactions involving 13 molecular species, our model explicitly

includes key components, essential reactions, and cooperativities of the phage lambda decision circuitry. Details can be found in Methods and

SI Appendix.

A stochastic biochemical network is characterized at any instant by the probability associated with each microstate ofthe network, namely,

the probability of a specific combination of copy numbers of the molecular species. If the probabilities for all possiblemicrostates at an instant are

known, we have theprobability landscape of the biochemical network for that instant. For a given initial condition, this landscape usually evolves

with time. Our interest here is the steady state probabilistic landscape, which describes the overall behavior of phagelambda in the steady state.

This landscape also governs the transient chemical reaction dynamics of the system. As the microstates of a biochemicalnetwork in general are
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too numerous, the probabilistic landscape usually cannot be directly computed. Here we show the probability landscapeof the decision circuit of

phage lambda can be studied using the newly developed methodfor optimal enumeration of microstates and for exact calculation of the steady

state probability landscape [18]. Briefly, this method slices through the high dimensional space of microstates following the submanifold of

accessible microstates for a given initial condition, without visiting the vast space outside this submanifold. Technical details of this algorithm

can be found in [18].

Subsection 2.2: Probability Landscape of Phage Lambda in Ly sogenic and Lytic States. The epigenetic network model shown in Fig 1b

can reach around 1.7 million microstates. We have calculated through dCME the steady state probability associated witheach of these microstates.

Since the space of the microstate is 13D for 13 molecular species, we project the landscape to the 2-dimensional subspaceand record only the

total copy numbers of CI2 dimer and Cro2 dimer molecules. With a high copy number of CI2 repressor, the lysogenic state of the phage lambda

is maintained, whereas a high copy number of Cro2 protein signifies the lytic state [6]. The CI2 copy number therefore can be regarded as an

indicator of the physiologic state of the phage. Fig 2a showsa probability landscape of the lysogenic state, which has one pronounced peak

centered at around the location of 14 copies CI2 dimer and 0 copies of Cro2 dimer. As a range of CI2 values all have high probability in the

lysogenic state, our results suggest that minor changes in CI2 concentration during cell growth and cell division will notaffect this epigenetic

state. This is important to ensure the heritability of the lysogenic state. Such a conclusion cannot be drawn from studies obtained using the ODE

(ordinary differential equation) model, which would give only a fixed point of CI2 concentration for the lysogenic state, rather than a probability

distribution.

We then examine the effects of accelerated CI degradation due to DNA damage from UV irradiation that leads to the activation of RecA-

mediated CI cleavage [5,19]. Fig 2c shows that when the CI degradation rate is raised fromkd = 7.0 × 10
−4/s tokd = 3.6 × 10

−3/s, the

probability landscape peaks at a different location, with about 4 copies of Cro2 dimer and 0 copies of CI2 dimer.

Our results show that the steady state probability landscapes change adaptively. In the lysogenic state, the probability landscape has one peak,

which accounts for the vast majority of locales where there is a significant amount of CI2 molecules and few Cro2 molecules. The probability

for the system to have high Cro copy numbers spontaneously isvery small. In conditions that eventually lead to the lytic state, the probabilistic

landscape adapts and changes, becoming dominated by a peak at different locations where there is a large amount of Cro andfew CI molecules.

At the same time, the peak for the lysogenic state disappears(Fig 2c).

Subsection 2.3: High Threshold and Efficient Switching of Ph age Lambda. To model the effects of UV irradiation on RecA-mediated

acceleration in CI degradation [5,19], we have systematically examined the behavior of the network by computing its probability landscape

at different CI degradation rates. To summarize our results, we calculated the mean copy numbers of CI2 and Cro2 of the network from the

probability landscape. For example, for the probability landscape shown in Fig 2a, we integrate with properly weightedprobabilities of the copy

numbers of CI2 and Cro2 at each microstate, and obtain the mean copy numbers of 14.3 and 0.0. This is repeated for 36 different values of CI

degradation rate. The results are summarized in computationally generated titration curves shown in Fig 3a (solid lines).

Our results show that the epigenetic network of phage lambdais very stable against changes in CI degradation rate due to environmental

fluctuation of UV irradiation (Fig 3a, solid lines). Phage lambda stays firmly in the lysogenic state at normal condition.Even when UV irradiation

is at a dosage that leads to doubling of the degradation rate of CI, the expected copy number of CI2 in the system changes very little. Over a wide

range of CI degradation rates (1.0 × 10
−4/s − 1.7 × 10

−3/s), the lysogenic state is maintained. The switching threshold for the lytic state is

high.

Once the switching threshold of degradation ratekd = 1.8× 10
−3/s is reached (Fig 3a, solid lines), a further small increaseof 0.4× 10

−3/s

turns the expected copy number of CI2 from 88% of its maximum value atkd = 1.8× 10
−3/s to 16%. The system therefore can be fully thrown

efficiently to the lytic state with a small additional increase in CI degradation at the threshold.
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Subsection 2.4: Cooperativity between O R1 and OR2 Enables the Lysogenic State. Next we studied the effects of cooperativity. It is well

known that repressor dimer CI2 binds cooperatively to neighboring operator sites [20]. Similarly, Cro dimers also bind cooperatively, although

to a lesser extent [21]. These cooperativities are fully incorporated in our model (see SI Appendix for details). In addition, we assume that the

looping cooperativity always exists in the form of enhancedCI synthesis when OR2 is occupied by a CI2.

We first studied the effects of removal of all cooperativities between neighboring repressor CI2 and between neighboring Cro2. The results

show that without these cooperativities, phage lambda cannot maintain the lysogenic state (Fig 3a, dashed lines). As soon as CI degradation

becomes slightly above zero, CI repressors are depleted in the steady state, and Cro proteins accumulate.

The strength of the cooperativity between CI2 dimers and between Cro2 dimers at different operator sites is uneven. An interesting question

is whether the coordination of multiple cooperativities isrequired, or whether one key cooperativity is sufficient to lead phage lambda to the

lysogenic state. We tested different alternative possibilities. When all of the 5 cooperativities are removed (CI2 binding to OR1-OR2, to OR2-

OR3, Cro2 to OR1-OR2, to OR2-OR3, and to OR1-OR2-OR3, respectively), phage lambda cannot lysogenize (Fig 3a, dashed lines, and details

shown in Fig S4 in SI Appendix). Restoring the cooperativitybetween CI2 dimers binding to OR1 and OR2 alone can recover the lysogenic state

of phage lambda (Fig 3b, solid lines, and Fig S4 in SI). In contrast, the stability and the high threshold are still missingwhen all cooperativities

other than that between CI2s binding to OR1-OR2 are restored (Fig 3b, dashed lines, and Fig S4 in SI). This shows the cooperativity of CI dimer

binding to OR1 and OR2 is a key enabling factor for phage lambda to maintain the lysogenic state.

Our results are consistent with the experimental observation that the cooperativity between CI2 dimer binding to OR1 and OR2 plays the

dominant role [20,22,23]. The stronger affinity and higher occupancy of OR1 bound by CI2 dimer leads to cooperative binding of CI2 to the

neighboring operator site OR2. This CI2 dimer precludes the alternative cooperative binding of CI2 dimers between OR2 and OR3 [5]. Our

findings support the model that stability against prophage induction largely results from cooperative DNA binding by CI2 to the OR1 and OR2

sites [22,23]. Zhuet al. also showed the importance of cooperativity between CI dimers in an earlier computational study [10]. The new finding

emerging from this study is that the cooperativity of CI2 dimers between OR1 and OR2 is the dominant enabling factor and it alone is sufficient

to endow phage lambda with the ability to adopt the lysogeniclife style.

Subsection 2.5: Effects of Altered Operators: Mechanism of Hair-Triggers of the Little Mutants. To assess the robustness of phage lambda

against changes in the molecular components of the epigenetic network, Littleet al replaced the ordered operator sites ofOR321 in the wild

type phage lambda with the symmetric variants ofOR323,OR121, andOR3’23’, respectively. InOR3’23’, the OR3’ site has one of the OR3

nucleotides replaced by that of OR1 [8]. In this seminal work, all of the mutants are found to have functional epigenetic circuits, all have the

ability to form lysogens, to grow lytically, and to undergo prophage induction upon UV irradiation. However, these mutants have markedly

different tolerance to UV irradiation. The wild type lysogen has a high threshold and requires the highest level of UV irradiation for prophage

induction to occur. In contrast, all mutant variants exhibit the behavior of a hair-trigger, and require much less UV irradiation for the onset of

prophage induction.

To study the effects of different dosage of UV irradiation onthe Little mutants, we calculated their probability landscapes at different CI

degradation rates (Fig 4a-d and details shown in Fig S3 of SI Appendix). Overall, we find that the Little mutants all exhibit threshold behavior in

our model, as was found experimentally [8]. However, these mutants are generally defective, with reduced thresholds for prophage induction, and

are hair-triggered. As seen in Fig 3a (solid lines), wild type phage lambda has a deep threshold for prophage induction (kd = 2.0×10
−3/s at about

50% induction). In contrast, although all mutants have thresholds for the lytic response, these thresholds are much shallower (≤ 1.0 × 10
−3/s)

(Fig 4a-d). This is consistent with the experimental findingthat they are hair-triggered [8].

Our model can also reproduce detailed differences in UV responses among the mutants. BothOR121 (Fig 4a) andOR3’23’ (Fig 4b)

mutants are experimentally found to have a higher thresholdof UV irradiation than mutantOR323 (Fig 4c) for prophage induction [8], which

we reproduced in our model. We find that the degradation rate at which the amount of Cro2 surpasses CI2 for both mutantsOR121 andOR3’23’
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is kd = 1.6 − 1.7 × 10
−3/s, while theOR323 mutant has a lower value ofkd = 4.0 − 5.0 × 10

−4/s. There is also another subtle difference

in the behavior among the Little mutants. MutantOR121 is found experimentally to be slightly more stable thanOR3’23’ according to Fig 3

in reference [8], which is again reflected in our results. When CI degradation is small, the mutantOR121 (Fig 4a) has a larger amount of CI

repressor molecules than the mutantOR3’23’ (Fig 4b), hence it has a higher tolerance for UV irradiation.

We find that these mutants cannot maintain a constant level ofCI2. Although it has been suggested that the Little mutants havelower

levels of CI, which contributes to the reduced threshold, the full mechanism of how the switching network functions in these mutants is not well

understood. From our model, we find that although prophage inductions can occur in bothOR121 andOR3’23’ mutants, their lysogenic states

are different from that of wild type and can be characterizedas “leaky”. There is a gradual reduction in the level of CI in response to a gradual

increase in the CI degradation rate (Fig 4a and b), corresponding to graded amounts of DNA damage. When the degradation rate of CI increases,

the level of CI also decreases, and this effect is cumulative, even though phage lambda remains overall in the lysogenic state. In contrast, wild

type phage lambda exhibits a true high threshold behavior that is very stable: there is little change in the amount of CI, even when there is a

large increase in the CI degradation rate. This state is maintained until the set-point of switching threshold is reached (Fig 3a, solid lines). Even

the best mutants OR121 and OR3’23’ with relatively high thresholds respond to gradual changes in CI degradation rate and do not have a high

threshold.

The epigenetic circuit of lambda phage is generally robust against system parameter perturbations [8]. However, thereare limits to this

robustness. As shown in reference [8], a nonsymmetric mutant OR123, with the positions ofOR1 andOR3 swapped could not lysogenize, a

finding our results also reproduce. In our model (Fig 4d), this mutant has a severely impaired ability to generate CI repressor, even when there

is little or no CI degradation due to UV damage.

Subsection 2.6: Comparison with Other Methods. To examine whether the same results can be obtained using stochastic simulation algorithm,

we carried out simulation using the Gillespie algorithm [24]. For rare events such as transition from lysogenic to lyticstate (kd = 0.0020/s),

the algorithm failed to converge to the steady state probability distribution after> 6 times of more computation time compared to the dCME

method, and the results strongly depend on the initial conditions. There remain significant residual errors at each of the initial conditions tested.

Conclusions drawn from non-converged simulations can giveincorrect prediction that the system is still in the lysogenic state. Such failure

of convergence can be difficult to detect. Residual error remains significant when the system is in the region of starting to enter the lytic state

(kd = 0.0022/s). Furthermore, the expected copy number of CI2 can be over-estimated by 300% in this region, and the small amount of Cro2

calculated in the lysogenic region can be off by 3-order of magnitude with comparable computational time, which would lead to unreliable

estimation of the frequency of very rare events such as spontaneous lysis in lysogenic state. Details of error analysis can be found in SI.

For this comparison, we assume that the steady state can be established during the life span of a cell. As the models of the reactions are

Markovian, the probability landscape of the steady state computed by all stochastic methods should be independent of the initial condition. The

issue of assessing differences in computed time-evolving probability landscape before reaching the steady state using different methods requires

further investigations.

We also carried out calculation using both stochastic differential equation (SDE) and ordinary differential equation(ODE) models based on

the studies of Santillán and Mackey [25] and Gillespie [26], with modifications so it is directly comparable to our model. There are significant

qualitative differences in both cases. The SDE model failedto reach the correct steady state, with the landscape much further away than that from

the stochastic simulation algorithm. In the ODE model, which can be regarded as the skeleton of the stochastic models, there is no stabilization

of the CI2 concentration against fluctuations in the CI degradation rate, as the amount of CI2 rapidly decreases when the CI degradation rate

increases. Wild type phage lambda would be hair-triggered by this model, which disagrees with experimental data. In addition, the transition

from lysogeny to lysis in the 1-2-1 and 3’-2-3’ mutants occurs at higher CI degradation rate than the wild type, which would lead to the erroneous

conclusion that these mutants are more resistant to UV irradiation. Details of these comparison can be found in the SI.
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Section 3: Discussion

In this study, we characterized the properties of the epigenetic decision network of phage lambda through direct computation of its steady state

probability landscape using the method of dCME, an approachpreviously unfeasible. We find that phage lambda is very stable and is strongly

buffered with a high threshold against fluctuations in CI degradation rate due to environmental changes in UV irradiation, a behavior only

observed in the wild type phage lambda. This high threshold against environmental fluctuations is important for the self-perpetuating nature of

the epigenetic state ofE. coli cells, allowing lysogeny to be passed on to its offspring. Wealso find that once the degradation rate of CI reaches

a threshold, phage lambda switches very efficiently to the lytic state, and this efficiency is not built at the expense of stability against random

fluctuation. Phage lambda can integrate signaling in the form of different CI degradation rates and can distinguish a true signal above the high

threshold from random noise fluctuating below this threshold.

Our results further indicate that the cooperativity of CI2 binding between OR1 and OR2 plays the key role in enabling the wild type behavior

of phage lambda. Nevertheless, the phenotype of a high threshold and robustness against mutations are best viewed overall properties of the

network. In addition to this cooperativity, disruptions ofother structural and architectural features may also result in the loss of these phenotypes.

The distributive nature of such network properties have been discussed in reference [27].

Our results are consistent with many experimental findings [8]. Our results point out that the Little mutants have a leakyswitch, compromising

stability against fluctuation in UV irradiation and reducing switching efficiency. Our finding suggests that the leaky response to UV-damage and

the lack of a high threshold in mutants OR121 and OR3’23’ are responsible for the hair-trigger of prophage induction upon UV damage.

There exist a number of theoretical studies of phage lambda and its mutants [4,10,25]. Here we discuss the main differences in biological

findings. In a pioneering study, Aurellet al. investigated the effects of two free parameters on the stability of lysogenic state in a stochastic

differential equation model of phage lambda based on measured lysis frequencies, with the goal of exploring unrecognized control mechanism for

the stability of lysogeny. A major conclusion is that the total affinity of Cro for OR3 is a key factor in determining the stability of lysogenic state,

which affects the transcription rate of derepressed PRM , and therefore the synthesis rate of CI. In addition to the differences in underlying model and

computational techniques, a focus of our study is to explorethe effects of cooperativity between CI dimers, with otherwise experimentally derived

model parameters. We are able to pinpoint to the cooperativity between CI dimers on OR1 and OR2 as the key factor for the stability of phage

lambda. An effect of this cooperativity is the increased repression of PR, which promotes the production of CI. Santillán and Mackeydeveloped

an ODE model [25]. Without stochasticity, this model shows neither stability against small increases of CI degradationrate, nor switching

efficiency when CI degradation rate reaches the set-point threshold. The study of Zhuet al was based on a potential surface reconstructed from a

stochastic differential equation model [10], with three free parameters adjusted for best fit of experimental data. Allparameters in our model are

derived from the literature. Although both studies show theimportance of cooperativity between CI dimers, our resultspinpoint to the important

role of the cooperativity between CI dimers binding to OR1 and OR2 (see SI).

This work is also a significant improvement over a preliminary version of our model [28], which does not consider cooperativities between

CI dimers or Cro dimers, and does not account for self-promoted synthesis of CI. Without such considerations, lysogeny can only be reached by

increasing CI synthesis rate, which is unrealistic and cannot be used to model the effects of UV irradiation.

Overall, our study indicates that an important mechanisticunderstanding of the system behavior of a stochastic network can be gained

through direct computing of the network probability landscape. The study of the effects of altered molecular components and altered wiring of

the network further suggests that we could predict the outcome of manipulated phage lambda through computational studies, as elegantly laid

out experimentally by Littleet al [8, 29]. In addition, we can explore evolutionary history ofhow modern organism emerges. Our focus in this

work is exploring the overall global behavior of the phage lambda switching network. There are many aspects of the model that can be further

improved, for example, the non-specific binding of CI molecules to DNA and the effects of cooperative looping between OR and OL are currently

only modeled implicitly. In addition, if discrepancies in reported andin vivo parameters can be reconciled and obtained, we expect that better

quantitative predictions can be made.
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Computational studies of biological systems allows exploration of many alternative hypotheses, and facilitate the identification of key

elements responsible for phenotypic observations [3,4,10,30,31]. We show that the approach of dCME can offer fresh insight and generate

testable predictions. An advantage of this approach is thatrare events can be characterized, without difficulties associated with stochastic

simulation in determining whether millions or billions of samples are required.

The approach of obtaining exact solutions of simplified models with enumerated microstates advocated has an analogy in previous studies of

protein folding. Models such as lattice self-avoiding walks with only hydrophobic and polar (HP) interactions allow the complete enumeration

of all feasible conformations and the calculation of exact thermodynamics as well as folding dynamics from the master equations for model

molecules. Such studies have played important roles in elucidating the principles of protein folding [32–35].

It is likely that direct solutions to simplified but realistic stochastic networks can lead to the elucidation of the mechanisms of many biological

processes. As the molecular mechanism underlying the control of phage lambda applies to many other biological regulatory processes as well,

and as similar processes are likely underlie many developmental and epigenetic processes, including cooperative control of histone coding [27],

the decision control of phage lambda has offered us a paradigm for studying broad issues in cell development and cell fate[4,5,10,36,37]. The

approach described in this study is generally applicable and can be extended to these other systems as well.

Materials and Methods

Our model includes the repressor protein CI, its dimer CI2, the Cro protein, and its dimer Cro2. The synthesis and degradation of CI monomer and Cro monomer, as
well as their dimerizations are modeled explicitly. In addition, the three operator sites, OR1, OR2, and OR3, are modeled to bind to either CI2 dimer or Cro2 dimer with
different affinities. These sites can also be unoccupied. The cooperativity between CI2 dimers and between Cro2 dimers on neighboring sites is included. In addition, the
enhanced CI synthesis when OR2 is occupied by CI dimer (currently understood to be due to the looping effect between OL and OR) is also included [38,39]. The self
repression of CI2 at high concentration is also included. The values of protein-operator binding affinities, cooperativity, protein synthesis rate, and protein degradation
rates are based on experimental measurement and are described in detail in the SI Appendix. In our model, we assume that there are a total of about 100 copies of CI
repressors [4,40], of which about 50 copies are free in a cell volume available to bind to the operator sites in lysogen. The remaining 50 copies are assumed to bind to
DNA non-specifically, as it is expected that a significant amount of CI repressors are bound to DNA in regions other than the operators, and the copy number of free CI
repressor may be as few as 10–20 [40]. The rationale of this assumption is further described in the SI Appendix.
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Fig. 1. Different selection of cell fate of E. coli infected by phage lambda and a model of the epigenetic circuit for lysogeny maintenance. (a) The

lysogenic and lytic states of phage lambda. (b) A simplified model of the epigenetic switch for lysogeny maintenance.
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Fig. 2. The probability landscape of the epigenetic circuits of lysogeny maintenance in phage lambda. (a) At the CI degradation rate of kd =

7.0× 10−4/s, probability landscape centers at locations with high copy numbers of CI and close to 0 copy of Cro. This corresponds to the lysogenic

state of phage lambda. The landscape is shown both in three- and two-dimensional projections. (c) When CI is degraded at a faster rate of

kd = 3.6 × 10−3/s, the probability landscape centers at locations where there are higher copy numbers of Cro dimer and close to 0 copy of CI.

This corresponds to the lytic state of phage lambda. (b) The probability landscape in transition with simultaneously two peaks when phage lambda

is being induced to the lytic state. When kd increases from kd = 1.8 × 10−3/s to 2.2 × 10−3/s, the peak located at lysogenic states gradually

diminishes, whereas the peak located at lytic states gradually increases. At about kd = 2.0× 10−3/s, phage lambda has about equal probability to

be in either lysogenic or lytic state (see SI Appendix for more information).
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Fig. 3. Stability of the epigenetic network for lysogeny maintenance against fluctuation in UV irradiation and its switching efficiency in wild type phage

lambda and key role of cooperativity between CI2 bound on neighboring OR1 and OR2 sites in maintaining lysogeny. The mean copy number of

CI2 and Cro2 are plotted against the CI degradation rate kd (in per second unit). (a) Solid lines: The lysogenic state in wild type phage lambda is

stable against fluctuation of UV-induced CI degradation rate. The level of CI2 is constant for a wide range of CI degradation rate. The threshold

for switching to the lytic state is deep. Switching occurs efficiently once the threshold (kd = 1.8 × 10−3/s) is reached: a further small increase

of 0.4 × 10−4 /s completely throws the phage lambda to the lytic state. (Dashed lines): When all cooperativities are removed, phage lambda

cannot generate sufficient amount of CI2 and therefore cannot maintain lysogenic state. (b) The stability and the deep threshold are missing if all

other cooperativities except that between neighbor CI2 dimers on OR1 and OR2 are restored (∆G12 = 0, dashed line). In contrast, if all other

cooperativities are missing, but that between CI2 dimers on OR1 and OR2 is restored (∆G12 6= 0, solid line), phage lambda recovers to a large

extent the stability and gained significant depth in its switching threshold. (c-d) The same phenomenon is observed in mutant 1-2-1 studied by Little

et al [8]. With cooperativity between OR1 and OR2, this mutant can still enter the lysogenic state, albeit without much stability and the threshold is

shallow. Without this cooperativity (∆G12 = 0), mutant 1-2-1 cannot maintain lysogeny (see Fig S4 in SI Appendix for more details).
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Fig. 4. Instability, shallow threshold, and switching inefficiency of the network against fluctuation in UV irradiation in mutant phage lambda [8]. (a-b).

In contrast to wild type (Fig 3a, dashed lines), mutant 1-2-1 and 3’-2-3’ do not maintain a stable level of CI2. They are leaky and responds gradually

to graded changes in kd. Their thresholds and that of 3-2-3 (c) for lytic transition are much shallower. (d) Mutant 1-2-3 does not maintain a sufficient

amount of CI2, and therefore cannot maintain lysogeny.
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