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SUMMARY

Sparse count data such as microbiome data, transcriptomics or RNA-seq data, or insurance claim
data, are typically overdispersed and sparse with an exceeded number of zeros, which are often chal-
lenging to be modeled.

In this dissertation work, we aim to answer two questions: (1) How do we identify the most appro-
priate probabilistic model for a given sparse data? (2) With available covariates, how do we build the
most appropriate regression model for predicting a sparse response?

In response to the first question, we propose a statistical procedure for identifying the most ap-
propriate discrete probabilistic models for zero-inflated or Hurdle models based on the bootstrapped
p-values of a sequence of discrete Kolmogorov-Smirnov (KS) test. We develop a general procedure for
estimating the parameters for a large class of zero-inflated models and Hurdle models. We also develop
a bootstrapped likelihood ratio testing procedure based on Neyman-Pearson theorem for selecting the
best model when there are more than one probabilistic model candidates.

We develop a new R package “iZID” as a software tool to facilitate potential users to answer the first
question as well. For zero-inflated count data, we use bootstrapped Monte Carlo procedure to control the
bias issue in estimating the p-value of a KS Test, as well as bootstrapped likelihood ratio tests for zero-
inflated model selection. Our package also provides some functions to simulate zero-inflated and hurdle
count data and calculate maximum likelihood estimates of unknown parameters. Compared with other
R packages available so far, our package covers more types of zero-inflated and hurdle distributions and

provides adjusted p-value estimates after incorporating the influence of unknown model parameters.
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SUMMARY (Continued)

To answer the second question, we build a fairly general class of regression models, called Zero-
Inflated Regression Models (ZIRM), which not only cover currently available zero-inflated regression
models, such as ZIP, ZINB with fixed r, ZIBB with constant prior parameters, but also include new
regression models, including ZINB with flexible r, ZIBB with flexible prior parameters, and ZIBNB. We
also build the corresponding Hurdle Regression Models for zero-altered responses. With the enriched
model candidates, we perform model selection based on AIC and BIC criteria. Our application to
Insurance Claim Data shows that ZINB with flexible r is more appropriate than any others.

For general zero-inflated regression models, we derive and simply its general form of Fisher infor-
mation matrix and then perform significance tests for variable selection. We compare the confidence
intervals based on the Fisher information matrix with the ones built by bootstrapping. The results are
consistent with each other. Compared with the bootstrapping solutions, the variable selection based on
Fisher information matrix is apparently more efficient. Nevertheless, we suggest the use of bootstrap-

ping confidence intervals when the sample size is moderate or small.
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CHAPTER 1

INTRODUCTION

Parts of this chapter were previously published as:
Metwally, A. A., Aldirawi, H., and Yang, J. (2018). A review on probabilistic models used in
microbiome studies. Communications in Information and Systems, 18(3), 173-191. Copyright ©2018,

International Press of Boston. (1)

1.1 A Review on Probabilistic Models Used in Microbiome Studies

The microbiome, a dynamic ecosystem of microorganisms (bacteria, archaea, fungi, and viruses)
that live in and on us, plays a vital role in host-immune responses resulting in significant effects on host
health (2). The microbiome has been linked to some diseases such as diabetes, obesity, asthma, and
transplant rejection (3; 4; 5; 6; 7). The human microbiome can be divided into the core microbiome and
the variable microbiome (8). The core microbiome is the set of taxa or genes that present in a given
body location (gut, kidney, skin, oral, etc.) in almost all humans. The variable microbiome arises from
various factors such as host physiological status, host environment, host genotype, host lifestyle, and
host pathobiology. Moreover, given the strong association between microbiome and various diseases,
computational models have been built to predict phenotypes from microbial profiles (9; 10; 11).

In this chapter we briefly introduce microbiome data and the related probabilistic models to people

who are interested in microbiome research and the corresponding analysis. We introduce the typical



format of microbiome data and we review the probabilistic models for modeling count data from each

microbial feature independently.

1.1.1 Microbiome Data Resources and Data Representation

There are several initiatives to store and manage data from microbiome studies in order to make
them available and free for everyone to use. The major public servers are MG-RAST (https://www.
mg-rast.org/) and QIITA (https://qiita.ucsd.edu/). Also, National Center of Biotechnology
Information (NCBI, https://www.ncbi.nlm.nih.gov/) is one of the most comprehensive resources
that have a database of curated and updated microbial genomes and taxonomic tree.

To analyze these massive amount of sequence data, metagenomic reads are processed for each mi-
crobiome sample to construct taxonomic and/or functional profiles (12; 13; 14). The taxonomic profiles,
functional profiles, or both for all samples, are then combined into one count table (see Table I and Ta-
ble II as an example of a toy taxonomic profile) with a dimension of m X n, where m denotes the number
of microbial features F,..., F, and n denotes the number of metagenomic samples S,,...,S,. The
entry z;; represents the number of reads from sample j that mapped to microbial feature 7, while its cap-
italized version Z;; represents the corresponding random variable. In the table, N; = > " | z;; denotes
the total number of reads for the m features in sample S ;, and z; = Z?:] zjj denotes the total number
of reads mapped to features F; in all samples. Since metagenomic samples may have different sequenc-
ing depths, the aggregated metagenomic counts need to be normalized among samples (15). There are
several methods developed to tackle the normalization problem of a count table, such as centered log-
ratio (CLR) transformation (16), cumulative sum scaling (17), median-of-ratios scaling factor (18), and

trimmed mean of M values (19).



TABLE I: A TYPICAL MICROBIAL COUNT TABLE

H Feature/Sample | S, S, §; .. S, H Total H
F, Zi1 %1z 213 .- Zan 21.
F, 221 222 223 .- Zom 22.
Fy Zmi  Zmz2 Zm3 .- Zmn Zm.

| Total Nh N, Ny .. N,]| N |

TABLE II: A TOY EXAMPLE OF TAXONOMIC PROFILE COUNT TABLE

H Species/Sample ‘ S S §; Sy H Total H
Streptococcus pneumoniae | o 0 102 3 105
Staphylococcus aureus o 75 o 0 75
Escherichia coli 14 o 278 o 202

| Total 14 75 380 3 [ 472 |




1.1.2  Probabilistic Models for Single Feature

In this dissertation, we focus on probabilistic models built for sequence read counts from a single
microbiome feature, that is, Z;; for feature F; and subject S ;. Assuming Z;; follows a probabilistic model
with a few unknown parameters, statistical inference can be made based on estimated parameters from
the data. In practice, there are two types of experimental design for microbiome studies: (1) snapshot
studies, where each subject provides only one sample, (2) longitudinal studies, which include multiple

samples per subject over time.

1.1.3 Models Used in Snapshot Microbiome Studies

e Poisson model
Poisson distribution has been widely used for modeling non-negative outcomes as a count. If a

random feature count Z;; follows a Poisson distribution with mean 6 > 0, it assigns the probability

e
P(Z,'j = k) = Ee
for k = 0,1,2,.... As the mean count increases, the skewness diminishes, and the Poisson distri-

bution becomes approximately a normal distribution (20). One property of Poisson distribution is

that its variance equals the mean.

o Negative binomial model
The negative binomial (NB) distribution is an alternative probabilistic model for count data (21). It

is especially useful when the sample variance exceeds the sample mean, known as over-dispersion.



Given a sequence of independent Bernoulli trials with probability p of success, Z;; is the number

of failures observed before the 7 success with the probability

rz =0 =" iy

where r > 0 and 0 < p < 1 are two parameters that can be estimated from the data.

Zero-inflated models

For microbiome OTU counts, typically there are much more zeros than expected under the as-
sumption of Poisson or negative binomial distributions. This phenomenon is known as zero-
inflation. In order to solve this issue, zero-inflated models are used to model read counts that
have an excess of zeros. A zero-inflated model assumes that the observed zeros are of two kinds;
“sampling” or “structural”. The sampling zeros come from a Poisson, negative binomial, or some
other distribution due to chance. Other observed zeros are due to some specific structure in the

data (22). As a result, the combined probability under a zero-inflated model is
Pz1(Zij = k) = ¢ly—o) + (1 — @) P(Z;; = k) (1.1)

where ¢ > 0 is a parameter estimated from the data, P(Z;; = k) stands for the probability de-
termined by a Poisson, negative binomial, or other parametric distribution. Note that the zero-
inflated model assigns the probability ¢ + (1 — ¢)P(Z;; = 0) to zero, which is larger than

P(Z;j = o) itself. The corresponding distributions are known as zero-inflated Poisson (ZIP),



zero-inflated negative binomial (ZINB), zero-inflated beta binomial (ZIBB), zero-inflated Gaus-

sian (ZIG) distributions, etc.

Example 1.1. Zero-inflated beta binomial model (ZIBB)

As a special kind of zero-inflated models introduced in Section 1.1.3, the zero-inflated beta bino-
mial (ZIBB) model provides a flexible option for modeling Z;;. In a ZIBB model, the probability
P(Z;j = k) in (Equation 1.1) is formulated by a beta-binomial distribution. It has two folds: (1)
Given a probability p;;, Z;; follows a binomial distribution with parameters N; and p;; (2) In order
to make the model flexible, the probability p;; itself is also random, which follows a beta distri-
bution with parameters @, > 0, @, > 0. As a result, the probability based on the beta-binomial

distribution is

P(Z,-j:k):(k

Beta(a,, a,)

The probability Pz;(Z;; = k) based on the ZIBB model takes the same form as in (Equation 1.1).

Hurdle models

Hurdle models, also known as zero-altered models, provide another way of dealing with the ex-
cess zeros in OTU counts (21). A hurdle model consists of two components, one generating the
zeros and one generating the positive values. In contrast to zero-inflated models, a hurdle model
assumes that all zeros are from the “structural” source. In order to make the comparison clearly,

we define the hurdle models using a similar formula as in (Equation 1.1):

Pza(Zij = k) = ply—gy + (1 — @) P (Z;j = k) (1.3)



1.2

where P;-(Z;; = k) is a truncated version of P(Z;; = k) determined by P;.(Z;; = 0) = 0 and
P.(Zij =k) = P(Z;; = k)/[1 — P(Z;; = 0)] for k > 0. For example, if P(Z;; = k) comes from a
Poisson distribution, then P,.(Z;; = k) is known as a zero-truncated Poisson distribution (23).

The hurdle model Pz4(Z;; = k) collapses to the standard model P(Z;; = k) if ¢ = P(Z;; = o).
It clearly allows for excess zeros when ¢ > P(Z;; = 0). Different from zero-inflated models, in
principle, hurdle models can also model too few zeros when ¢ < P(Z;; = 0). In other words,

hurdle models are more flexible than zero-inflated models.

Similar to zero-inflated models, hurdle models include zero-altered Poisson (ZAP) or Poisson
hurdle (PH), zero-altered negative binomial (ZANB) or negative binomial hurdle (NBH) models,

etc.

A Review of Regression Models

In section 1.1 we discussed the probabilistic models without covariates. In this section we introduce

the methods used for modeling sparse count data given some covariates.

Generalized linear models (GLM) can be used for modeling count data (24; 25). However, when

the count data is sparse with a significant percentage of zeros, GLM is not recommended because the

proportion of zeros (¢;) must be linked to some distributions (26; 27).

Modified Poisson models that handle excess zeros without any covariates were described by Cohen

(28). Allowing for covariates, the zero-altered Poisson or hurdle Poisson model was proposed (29; 30;



31). Based on this work, a zero-inflated Poisson (ZIP) model was proposed by Lambert (32; 33) with

an application to defects in manufacturing as follows:
In our notations, the response Y = (Y4,..., Y,,)T are independent and

0 with probability ¢;
Y~

Poisson (y;)  with probability 1 — ¢;

¢i+(1—¢)et ify;=o0
Pr(Y;=y)=

(1—¢i)e bkl ify;>o0
The parameters A = (A,,...,4,)", and ¢ = (¢,,...,¢,)7 satisty: log(d) = BB, and logit(¢) =
log(¢p/(1 — ¢)) = Gy for covariate matrices B and G.
Later on, Greene (34) used an extended version of the negative binomial model for sparse count

data, the zero-inflated negative binomial model (ZINB) as follows:

—1

¢i+(1—6) (vir) ity =0

Lk ') ( ki Vi k=1 .
(1—¢i) Tl 1) (vi!) (H‘K/li) (1+1K/1i) ify; >0

Pr(Y;=y) =

fori =1,---,N. The mean and variance of the ZINB random variable are E (Y;) = (1 — ¢;) A; and
Var (Y;) = (1 — ¢;) 4; (1 + (k + ¢;) A;) , where « is an overdispersion parameter.

The parameters A = (A,,...,4,)", and ¢ = (¢,,...,¢,)7 satisty: log(d) = BB, and logit(¢) =
log(¢/(1 — ¢)) = Gy for covariate matrices B and G.

Z1P, ZINB, HP, and HNB regression models have lots of real life applications. We list some appli-

cations here:



¢ Insurance claim data: Using historical insurance data to predict the number of future claims is
one of the main interests to insurance companies. Modeling insurance claim data is very chal-

lenging because the data are highly right skewed and sparse.

e Health care data: Majo (35) used ZIP for modeling health care data. In addition, Gilles (36)

used ZIP and ZINB regression models to predict the number of doctor visits.

e Ecology: Sileshi et al. 2009 (37) compared four regression models (Poisson, negative binomial,
ZIP, and ZINB) for modeling sparse ecological count data. They did the comparison using five
data sets, and they concluded that the ZINB regression model fits better than the regular Poisson,

and negative binomial regression models.

e Security: Chen (38) constructed ZINB regression model to predict number of bicycle thefts at
either an intersection or a mid-block given some covariates such as number of street lights in
the area, number of bus stops in the area, unemployed percentage in the area, and some other

covariates.

Although GLMs have been widely used, they are largely confined to one-parameter distributions
belong to the exponential family. Since there are many situations where the distribution is not a member
of the exponential family, we need a method for more flexibility than GLMs.

Yee (2017) described a larger and more flexible statistical framework to extend GLMs, called vector
generalized linear models (VGLMs) and vector generalized additive models (VGAMs) (39).

VGLMs model is based on assigning a link function g; for each parameter 6;, where the parameter

6; is a linear combination of the explanatory variables.
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gi(6:) =mi=Blx =Buxi+ - +Pupkp i=1,....b (1.4)

VGAMs is an extension of (Equation 1.4). That is,

gi(Hi)ZﬂiZZf(i)k(xk), i=1,...,b (1.5)

where f(;); is a smooth function.
The models discussed in this dissertation work, including Hurdle Regression Models (HRM), and
Zero-inflated Regression Models (ZIRM) are special cases of extended VGLMs.

We model HRM and ZIRM as follows:

gl¢g:)=Gly, i=1,...,n (1.6)

hi(0) =Bl B, i=1,....mj=1,....b (1.7)

where g and h,, ..., hp, are known link functions. y,B,,...,B, are regression coeflicients, G; =
(ri(xi),...,rs(x:))T € R® and Bij = (gj:(xi),... ,qj,j(xi))T € R% are the corresponding predictors, r;’s

and g;;’s are known functions. Examples include G; = B;; = (1, x;,..., xig)T for main-effects model
and G; = B;; = (1, Xj1,..., Xid, X1 Xz, - - - Xid—1Xiq)! for model with both main effects and order-2
interactions. We will review and discuss our approach with more details in 3.2, and 3.3.

The zero-Inflated regression models (ZIRM) here are a fairly general class of regression models,

which not only cover currently available zero-inflated regression models, such as ZIP, ZINB with fixed
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r, ZIBB with constant prior parameters, but also include new regression models, including ZINB with
flexible r, ZIBB with flexible prior parameters, and ZIBNB. We also build the corresponding Hurdle
Regression Models for zero-altered responses. With the enriched model candidates, we perform model

selection based on AIC and BIC criteria.



CHAPTER 2

IDENTIFYING APPROPRIATE PROBABILISTIC MODELS FOR SPARSE DATA

Previously published as:

o Aldirawi, H., Yang, J., and Metwally, A. A. (2019). Identifying Appropriate Probabilistic Models
for Sparse Discrete Omics Data. 2019 IEEE EMBS International Conference on Biomedical and

Health Informatics (BHI) (pp. 1-4). Copyright ©2019, IEEE. (40)

e Wang, L., Aldirawi, H., and Yang, J. (2020). Identifying zero-inflated distributions with a new
R package iZID. Communications in Information and Systems, 20(1), 23-44. Copyright ©2020,

International Press of Boston. (41)

2.1 Introduction

Sparse discrete count such as microbiome (1), transcriptomics (RNA-seq), insurance claim data
(42), healthcare (35), and security (38) data are typically skewed, overdispersed, with an exceeded
number of zeros. It is challenging to model this kind of data which are skewed and zero-inflated.

The selection of an appropriate probabilistic model is critical for sparse count data. For example, in
order to determine if there is an association between an omic feature, such as gene or bacteria, and the
disease, we may need to detect the significance of the difference between two groups of records. With
appropriate probabilistic models identified successfully, we can improve the power of the statistical
test significantly. Even when covariates are recorded with medical records, the correctly identified

probabilistic model is critical for validating the model assumption for regression analysis.

12
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In this chapter, we propose to use a bootstrapped Monte Carlo method to deal with all discrete
KS tests, and estimating the p-value of the corresponding KS test with reduced biased. Besides the
commonly used probabilistic models for sparse count data, in this chapter, we introduce new discrete
models such as beta binomial (BB), beta negative binomial (BNB), zero-inflated beta binomial (ZIBB),
beta binomial hurdle (BBH), zero-inflated beta negative binomial (ZIBNB), beta negative binomial hur-
dle (BNBH). The new models could be more flexible by attaching a beta prior distribution. We also

introduce “iZID” R package, which contains all of the algorithms discussed in this chapter.

2.2 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test has been widely used for determining whether a random sample
comes from a specific continuous distribution(43), known as “goodness-of-fit” in statistics. Suppose
that we have a simple random sample X, X5, - - - , X, with its empirical distribution function defined as
Fp(x) = n ' Y I(_oon(Xi). The KS test statistic D, = sup,|F,(x) — Fo(x)| is used for testing if
the random sample follows the specified continuous cumulative distribution function (CDF) F,(x). The
null hypothesis of KS testis X ={X;, -+, X} ~ Fo(X).

The KS test can be used for any distribution with a continuous CDF F,(x). It’s one of the most
popular goodness of fit tests, and used for lots of applications for continuous distributions. However,
in many real applications, the distribution is either discrete (such as Poisson or NB) or mixed (such as
zero-inflated half-normal) (44).

The following two strategies of goodness-of-fit tests have been practically used for testing if the data

follows some discrete distributions.



14

Strategy 1: use the continuous KS test for discrete distributions. More specifically, in order to test
if the data X ={X,,--- , X,,} from a discrete distribution f(x) with unknown parameter #, one may first
obtain an estimate § from the data and simulate a random sample ¥ = {Y,,---,Y,} from f3(x), then
calculate the p-value using ks.test(X,Y) in R. However, the p-value obtained by this way could be
significantly biased.

As an illustrative example, we simulate a random sample X, - -, Xs000 ~ NB(2,0.5). By using

Strategy 1, we obtain a p-value as small as 8.8 x 1078

, along with a warning message saying p-value
will be approximate in the presence of ties. These ties are mainly due to the discreteness
of the distribution.

Strategy 2: would be the classical Chi-square goodness-of-fit test which could be used both for
continuous and discrete distributions. Nevertheless, it is known that the KS test has greater power than
Chi-Square test (45). Therefore KS test is more recommended than Chi-Square goodness of fit.

Recently, Dimitrova et al. (46) developed a feasible solution for extending the KS test for general
discrete and mixed distributions. They expressed the complementary CDF of the distribution through the
rectangle probability for uniform order statistic and compute it using Fast Fourier Transformation. They
also provided an R package “KSgeneral” for calculating the p-value of the KS test when the distribution
is discrete or mixed. Unfortunately, Dimitrova et al.’s method requires that the distribution parameters
are known, which is not the case in general for real applications. Plugging in the parameter values

estimated from the data tends to overestimate and thus biased the p-value, which would make the testing

too conservative (47; 48).
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In the statistical literature, Lilliefors (1967) considered the KS test for normal distribution with un-
known parameters (47), Lilliefors (1969) explored the KS test for exponential distribution with unknown
parameter (48), and Parsons (1982) discussed Weibull distributions with unknown parameters (49). In
the R package “KScorrect”, Monte Carlo method was used for estimating the p-value for more general
continuous distributions with unknown parameters (50). Unfortunately, many real data contain tied ob-
servations and thus a continuous distribution assumption is often not valid. All these results show that
the p-value has to be adjusted when the model parameters are unknown. Nevertheless, they dealt with
KS tests case by case. In this thesis, we propose to use a bootstrapped Monte Carlo method to deal with

all discrete KS tests.

2.3 Methods

In order to use our bootstrapped KS test algorithm, some necessary derivations must be calculated.
For example, we have to find the MLE for the Zero-inflated and Hurdle distributions. Also, we have to

find a way to generate a random samples from Zero-inflated and Hurdle distributions.

2.3.1 MLE:s of zero-altered (Hurdle) models and zero-inflated models

e Zero-altered or Hurdle model and their MLEs
We have discussed Zero-altered models, or Hurdle models in chapter 1. Given a baseline discrete

distribution Py(Y = y) with parameter 6, the corresponding hurdle model can defined as follows:

Pzu(Y =y) = ¢1{y:0}+ (1—=@)P, (Y =)
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where ¢ > 0 is a weight parameter of zeros, P,(Y = y) is the zero-truncated version of the
baseline distribution determined by P;.(Y =0) =o0and P, (Y =y) = Pg(Y = y)/[1—Py(Y = 0)]
fory # 0.

The parameters of a Hurdle model include both ¢ and 6. Let Y4, ..., Y, be a random sample from
a Hurdle model. Suppose its baseline distribution has a probability mass function (pmf) or density

function (pdf) fy(y). Then its distribution function can be written as

1_

¢
,0) =¢ - 1f,_ _— -1 2.1
fza(y 1 ¢.0) = ¢ - 1) + 1—p0(0)f0(y) [y#0} 2.1)
and the likelihood function of (¢, 8) is
L(¢,0) =¢" (1 —¢)"-[1—po(@) " ] | fo(¥. 22)
i:Y;#0
Where m = #{i : Y; # 0} is the number of nonzero observations, p,(6) = Py(Y = 0). Note that ¢

and @ are separable in the likelihood function. the log likelihood function of (¢, 8) is

1(8,0) = (n—m)log g+ mlog(1 — ¢) —mlog(1 — po(6)) + Y_logfol¥) ~ (23)

iY;#0

Note that py(6) = fy(0) for discrete cases or 0 for continuous cases.

= - =0 (2.4)
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Therefore, the maximum likelihood estimate (MLE) maximizing (Equation 2.2) is

~ m
¢:1—;, @—argmaxal—po Hfg

iY;#0
That is, 8 is simply the MLE for the truncated model with pmf or pdf f;-(y;0) = fa(y)/[1 —
Po(0)],y # 0. Note that f,(y;0) = fa(y) for y # o if the baseline distribution is continuous.

Example 2.1. For zero-altered Poisson or Hurdle Poisson distribution, the pmf of the baseline

distribution is f;(y) = e 42 /y! with p,(1) = e~*. The truncated pmf is

et A
ftr()’Vl) = 1 —67/1 : ;a y= 1,2,...
The loglikelihood for the zero-truncated Poisson is
(1) = —mAd—mlog(1 —e +ZY log A — log( HY'
i:Y;>0 i:Y;>0
ol(A)
—_ = Yi/A=0
a +_ v
i:Y;>0
It’s easy to verify that the MLE A of A solves the likelihood equation A = ¥(1 — ¢~ 1) with

Y=m"Y ,y.,Yi,which can be solved numerically. O
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Example 2.2. For zero-altered negative binomial or negative binomial hurdle distribution, the pmf

of the baseline distribution is

fl.rp) :(y+;—1)py(l —p),y=0,1,2,..

Where r > 0 is the number of failures, k is the number of successes, and p is the probability of
success.

(yrp) ("‘Jr;il)[’y(l—[’)r

o S
The truncated pmf is = =Gy

1—pg(yi=0)

. where (y+r—1) _ ITly+r)

The likelihood for the zero-truncated negative binomial is given by:

Lep=li— (- pl 1] %pﬁu Y

=1

The loglikelihood for the zero-truncated negative binomial is

U(p.r) = Y logl(yi+r)—) logl'(yi+1)—mlogl'(r)+ ) _yilogp

i=1 i=1 =1
+mrlog(1 — p) —mlog[1 — (1 — p)’]

a YLy omr mr(1—p)!

op p 1—p 1—(1—=p)

ol =z m(1— p)log(1— p)

- = ; — l —

o ;w(y + ) = mp(r) + mlog(1 = p) + =

r'(y)

Where ¢(y) = Vio is the digamma function. We can find the implicit solution to the above two

differential equations numerically using Newton’s method. O
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Example 2.3. For zero-altered Beta Binomial or Beta Binomial Hurdle (BBH) distribution, the

pmf of the baseline distribution is

Let @ = (n, @, B). The pmf of beta-binomial distribution is

) _(n)Beta(y—i—a,n—y—i—,B)
o) = y Beta(a, )
withy =0,1,...,nand
0) I'n+B)a+pB)
P = T+ a + T (B)

Let L(6) be the likelihood of zero-truncated Beta Binomial distribution, then

L(n,a,B) = argmax [Liyiso fol) :( Lla+n+p)I(B) )m.
' S o0~ \T(a+n+B)(B) —(n+B)I(a+p)
" T'n+ 1Oy +a)(n—yi+B) (a+p)

(7 )

yi+ ) (n—yi+ 1) (a+n+pB)(a)l(B)

i=1

The loglikelihood of zero-truncated Beta Binomial is given by:

I(n,a,B) = mlogl(n+1)+mlogl(a+p) —mlogl'(@) +Zlogl“(y,~+a)

i=1

— mlog(l(a+n+B)B)—T'n+pB) I (a+p)) +Zlogf(n—y,-+,3)

i=1

m m
Zlogf(yi+ 1) —Zlogl’(n—yﬁ— 1)
i=1 i=1

Numerically, log[I'(n+ a + B)I'(B) — I'(n+ B)I' (@ + B)] may be undefined for large n since both

I'(n + a + B) and I'(n 4+ B) are numerical infinity. In this case, we use the fact log(A — B) =
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log(1—exp(log B—logA))+logAif A > B, where A = I'(n+a+B)[(B), B =T (n+B)I(a+p).
To apply this fact, we have to verify that A > B, which means I'(n+a+g)I(B) > I'(n+B8)I"(a+B).

I'(a+pB)

To show I'(a +n+B)C(B) > I'(a + B)I'(n + B), it’s sufficient to show r(ra(::f;)ﬂ) > Now,
Fla+n+p) (a+B+n—1)(a+B+n—2)...(a+p)I(a+p)
rn+p (B+n—1)...8T(B)
(a+B+n—1)@+B+n—2)...(@+p)'(a+p)
B B+n—1)(B+n—2)...8 r'(B)

(a+B+r—1)(a+B+r—2)...(a+B)

The fraction B Bir—2).8

contains the positive values of § in the numerator, which

I'(a+n+pB) S I'(a+p)
I(n+p) r(p)

makes it greater than 1. Therefore,

Let ¥(-) =I'’(-)/I'(-), known as the digamma function. In order to apply Theorem 2.1, we need

the formulae as follows:

olln,a.p)  [expllogB—logA)(y(n+B) —y(n+a+p))
on N m( 1 —exp(logB — logA) ) +mp(n+1)
+) wln—yi+B) =) vln—yi+1)—my(a+n+p)
olln,a,p) " ;xp(logB—logA)((//En +B8)—yn+a+p))
Oa N 1 —exp(logB — logA)
+) wlyi+a) +myla+pB) —myla+n+p) —my(a)
dln,a.p) m(EXP(IOgB—ZOgA)(l//(n +B) +yla+p) —yla+n+p) —y(B)
oB N 1 —exp(logB — logA)

m

—my(B) + Y yln—yi+B) +myla+B) —my(a+n+p)

i=1
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e Zero-inflated models and their MLEs

Unlike zero-altered models, a zero-inflated model always assume an excess of zeros. Besides zeros come
from a baseline distribution, such as Poisson or negative binomial, there are additional zeros modeled
by a weight parameter ¢ € [0, 1].

When the baseline distribution is discrete with a pmf fy(y), the corresponding zero-inflated model

has a pmf written as follows

fz1(y 1 ¢,0) = ¢l + (1 — @) fo(y) (2.5)

When the baseline distribution is either continuous with a pdf fy(y) or discrete but with p,(8) = o, the

corresponding zero-inflated model is essentially the same as the corresponding zero-altered model.
Given a random sample y,,...,y, from a zero-inflated model fz;(yl¢, 8), we aim to find the maxi-

mum likelihood estimate @ for ¢ and @ for 6. Similar as in Section 2.3.1, we denote m = #{j : yi # O}

If the baseline distribution satisfies P(Y = 0) = 0, the likelihood function

Lg.0) =¢" " (1—¢)"- || fol)

iy #0

Then ¢ =1 — m/n and 0= argmaxy Hi:yﬁto fo(y:i), which are the same as for Hurdle models.
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If the baseline distribution has a pmf fy(y), the likelihood function is

L(¢,0) =l + po(0)(1 — )" (1 — )" (1 — po(0)" [ [ fir(0 (2.6)

i:y;#0

where po(0) = fy(0), fir(v;0) = fo(y)/[1 — po(0)],y # 0. By reparametrization, we let

U=1—1[p+po(0)(1 — )] = (1 —¢)[1 — po(6)] 2.7

Then ¢ = 1 — /[1 — po(@)] and the likelihood of ¢ and 0 is

Ly.0) = (1 —y)" """ || 35 0)

i:y;#0

which is separable for  and 6.

Theorem 2.1. Let 6, = argmax, Hi:y,-;to fir(yi; ). The maximum likelihood estimate ($,§) maximizing

(Equation 2.6) can be obtained as follows:
(1) fm/n<1—po(0),then® =6, andd=1—m/n- (1 — po(6.))".

(2) Otherwise, & = argmaxq(1 —y(8))""y(0)" [ 15,0 fir(i:6) and & = 1 —y(8) - (1 — po(8)) ",

where /(0) = min{m/n,1 — py(6)}.

Proof of Theorem 2.1: First of all, we denote .. = argmax,,(1—y)" "™ and 0. = argmax, l_[l-:yl_io for(yi;0).
It can be verified that ¥, = m/n.
On the other hand, ¢ = (1 — ¢)[1 — po(0)] with ¢ € [0, 1], which implies ¥ € [0,1 — po(@)]. If

m/n < 1—po(6,), then J = m/n, @ = 6, is the mle. In this case, the mle of ¢ is @ = 1—J(1—po(6.))".
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Otherwise, we have m/n > 1 — po(6,). Then §y = ¢(0) = min{m/n, 1 — po(6)} is the mle of ¢
given 6. In order to find the mle of ¢ and 6, we first find 8* = argmaxyL(¥(0),6). Then 0 = 6" and
U =y(0). O

In order to apply Theorem 2.1, we need to deal with two maximization problems, 6, = argmaxgL,(0)

and 0" = argmaxyL(y(6),0), where L,.(6) = Hi:yﬁﬁo fir(yi; 8). Note that

dlog L;-(6) _ Z dlog fy(yi) _mﬁlog[l — pol8)]
06 = o 06
dlogL(y(6),0) dlog fy(yi) dlog[1 — po(6)] . m
00 - iygo o0 " 00 A1 = po(8) >
dlog L(y(0),6) dlog fo(yi) dlog po(6) . m
ST T = o0 —m) 0 if g — =
50 ,-.y.Zio 50 + (n—m) 9 ,if 1 — po(0) < ”
Note that
dlog[1 — p,(0)] _ Pol(6) ) dlog po(8)
00 11— po(6) 00

Thus only dlog fp(y)/00 and dlog py(6)/00, or equivalently, dfy(y)/00 and dp,(0) /00, are needed.

Example 2.4. Zero-inflated negative binomial model (ZINB) The pmf of negative-binomial distribu-
tion is

y+r—1y\ ,
fly.rp) :( y )py(l —p),y=0,1,2,..
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Wherewhere (W;ﬂ) = 1;](;?:))’ and r > 0 is the number of failures, k is the number of successes, and p

is the probability of success.

r

pol8) = (1—p)
log(p(6)) = logl'(y+r)—logl'(y+1)—1logl'(r)+ylog(p)+rlog(1— p)

log(p(6)) = logl'(y+r)—logl'(y+1)—1logl'(r)+ylog(p)+ rlog(1— p)

dlog py(6)

6r} = yly+r)—y(r) +log(1—p)
dlog p,(6) _ oy

op p 1—p
o0l 0

r

dlogpy(0)  —r

ap 1-p

Example 2.5. Zero-inflated beta-binomial model (ZIBB) Let § = (n,@,8). The pmf of beta-

binomial distribution is

foly) = (n)Beta(y +a,n—y+p)

y Beta(a, B)

withy =0,1,...,n and

) I'(n+B)(a+p)
Po Tnt+atBIB)
po(0) I'(n+pB)I (a+p)

1—po(@)  T'n+a+B)B) —T'n+p)I(a+p)
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Let ¥(-) = I'’(-)/I'(-), known as the digamma function. In order to apply Theorem 2.1, we need the

formulae as follows

(910%50()’) _ y/(n+1)—5”(n—y+ 1)+y/(n_y+,3)—‘}’(n+oz+,3)
aloif’b’) = Yh+a)—¥n+a+p)+¥a+p) —¥)
aloiljg”o(y) = Y(n—y+pB) —Pn+a+p) +¥la+p)—¥{p)
‘”%Zo(") = Y(n+p)—Pintatp)
dlogpo(6) _ Y(a+B)—¥n+a+p)

oa
810%20(0) — Y4B+ P a+tB) —Pntatp) — PP

2.3.2 Consistency of Hurdle and zero-inflated distributions

e Consistency of Hurdle Distribution

Lemma 2.1. LetY,,...,Y, be arandom sample from Hurdel model (Equation 2.1) and /(¢, 8) be

the loglikelihood function. Then

o\ ol\  n(1—¢) dlog fo(Y’)
E(%)oandE(%)l_pow)-E[ 50 }

which is 0 if and only if E[dlog fy(Y’)/d6] = 0, where Y’ follows the baseline distribution fy(y).



Proof of Lemma 2.1: The loglikelihood function of Hurdel model is

1($,6) = logo- Zl{y oy +Hlog(1—¢ Zl{m}

i=1

— log[1 — po(6 Z Liyz0) + Z log fo(Yi)1{y,20)

Then

ol 1 <« 1

= - _. E Ty —

ol Pol(0) 510gpo dlog fy(Y:)

06 1= po(6) Z tfiz0} Z oo ol

i=1

Since P(Y; = 0) = ¢, then E(0l/0¢) = 0. Let Y{,...,Y, beiid ~ fy(y). Then

dlog fy(Y;) o 1—¢ dlog fo(Y/)
1—¢ dlog fo(Y/) dlog po(6)
N l—po(e)'{E[ o6 ]_”O(a)' 96 }

Then

E(ﬂ) 1—¢ i [Zﬂogfg )]n(l—fb)_E[alngo(Y{
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As a direct corollary of Theorem 17 in (51), the MLEs of Hurdle model have strong consistency

under fairly general conditions.
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Theorem 2.2. Let Yy,...,Y, be a random sample from Hurdel model (Equation 2.1) with true

parameter value (do, 8,) € (0, 1) X @, where @ is compact. Let

#{iIYi:O}
— 0

b= = argmaxyeg H fur(Y3;0)

iY;#0

Suppose (1) fo(y) is continuous in € for all y; (2) fo(y) = fo,(y) for all y always implies 8 = 6,;
and (3) there exists a nonnegative function K(y) such that E[K(Y)] < oo for Y ~ f;.(y;6,) and

log[f;r(v;0)/fir(v;0,)] < K(y) forall y # 0 and € ©. Then

/N a.s.

2 b0, 0, 22 0,

as n goes to infinity.

Example 2.6. For zero-altered Poisson or Hurdle Poisson distribution, the pmf of the baseline

distribution is fi(y) = e 1Y /y! with py(1) = e, It can be verified that

(Honsr))
o1

if Y’ ~ f1(y). The truncated pmf is

foy;A) = C—, y=1,2,...
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The loglikelihood for the zero-truncated Poisson is

(1) = —mA —mlog(1 — e ) + Z Y; -log A —log( H Yi!)

i.Y;>0 i.Y;>0

The MLE 1 of A solves the likelihood equation 1 = Y(1 —e ) with ¥ =m ™' 5_ Y; , which

iY;i>o
can be solved numerically. If the true value A, € [1,, 4] for some 0 < A, < A, < 0o, then K(y) in
Theorem 2.2 can be chosen as

—1,

A 1—e
K(y) =log=-y+log ——
/l] 1—€

p» + A, — A,

. . . . . A A a.s.
Since there is no difference in practice as longas 0 < 4, < 4 < 4, < 00, we know 4 = Ay as n

goes to infinity. O

Example 2.77. For zero-altered negative binomial or Hurdle negative binomial distribution, the
pmf of the baseline distribution with parameters = (r, p) € (0,00) X [0, 1] is given by fy(y) =
I'(y+r)

mp"(l —p),ye{o,1,2,...}. Then py(8) = (1 — p)". In order to apply Lemma 2.1, we

obtain

log fo(y) = logl'(y+r)—logl(y+1)—logl'(r)+ ylogp+ rlog(1 — p)
o1
%ﬂ()’) = Yy+r)—¥(r)+log(1—p)
dlogfaly) _ y _r

dp p 1—p

where ¥(-) = I'’(-)/I'(-) is known as the digamma function.
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If Y’ ~ fo(y), then E(Y’) = pr/(1 — p) and E (0log fy(Y’)/dp) = 0. On the other hand, since

ry)= [P e 'drand I'"(y) = [J° £ 'e ' logtdt for y > 0, then

, - X I'(y+r) I'ly+r) .
S R ACERV T LA

y
o0
1—p)’ Y
_ (-=p Py + 1)
r(r) =

r 00

1 — Yy
- —( p) Z P_'J P e log tdt
Y- Jo

y=0

e

1—p) = (pt)
_ ( r(r?) [Z (];') ept] . trflefl(lfp) log tdt
JO .

y=0
)r OO
= 0 e 0P Jogtdr (let s = (1 — p)1)
r JO
1 . r roo
- ! F(rl))) s e " [logs —log(1— p)lds- (1—p)™"
JO

1 o0 o0
= J s 'e " log sds — J s e *log(1 — p)ds
(0]

—— " (r) —log(1 — p)I'(r)]

= ¥(r) —log(1—p)

Therefore, E (dlog fy(Y')/0r) = E(¥(Y' + 7)) — ¥(r) + log(1 — p) = 0. By Lemma 2.1, we

know that Hurdle negative binomial distribution satisfies the regularity conditions. O

o Consistency of Zero-inflated Distribution
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Lemma 2.2. LetY,,...,Y, be arandom sample from the zero-inflated model (Equation 2.5) and

(¢, @) be the loglikelihood function. Suppose 0 < ¢ < 1. Then

o\ ol dlog fo(Y")
R N A

which is 0 if and only if E[dlog fy(Y’)/06] = 0, where Y’ follows the baseline distribution fg(y).

Proof of Lemma 2.2: The loglikelihood of the zero-inflated model is

1(¢,0) = loglg+(1—¢ ZI{Y —o}

+ log(1—¢ Zl{Y¢o}+Zlogfa My,20)

Then

n

ol 1_p0(0) 1 n
oy T . Ly _o — . Liy o
99 ¢+ (1 —¢)po(6) Z im0} ™ 777 Z {Y;#0}

i=1 =1

or (1—¢)po(6) alngo 510gf0 i)
B ~ ¢+ —9)pld) Zl” °}+Z e

Since P(Y; = 0) = ¢+ (1 — ¢)po(0) and P(Y; # 0) = (1 — ¢)[1 — po(@)], then E(dl/d¢p) = o.
LetY/,...,Y, beiid ~ fy(y). Then
dlog fo(Y;) dlog fy(Y/)
E[ga—gelm#o}} = (1—9¢) 'E[a—gl{n’;&o}]

_ dlog fy(Y/) dlog po(8)
= -0 {E| T e DR
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Then

n al Y.I 8 ’
E(ﬁ) =(1-9) ZE[—ngg( : )] =n(1 —¢)E[—1°g£(yl)}

2.3.3 Sampling from general Hurdle and zero-inflated models

There are some functions in R for sampling data from some distributions such as “rpois” to generate
a random samples from Poisson distribution, “rnbinom” to generate a random samples from Negative
Binomial distribution. To the best of our knowledge, there is no such ways for sampling from some

probabilistic models such as zero-inflated beta binomial.

e Sampling from general Hurdle models
Here we propose an efficient algorithm based on the Central Limit Theorem to simulate data for
from a general Hurdle model with reduced loops. The probability mass function of a general
Hurdle model is defined by: Py (Y = k) = ¢1,—o) + (1 — ¢) P, (Y = k), where ¢ > 0 is a weight
parameter of zeros, P,.(Y; = k) is a zero-truncated version of the baseline distribution determined
by P;(Y; =0) =o0and P, (Y; = k) = Py(Y; = k)/[1 — Py(Y = 0)] for k > 0. Given n,¢ and 9, a
general algorithm is described as follows:
(i) Simulate X,, X5, .., X,, iid ~ Bernoulli(1 — ¢).
(i) Let m = {i : X; # o} and simulate Y,,Y,,..,Y,, iid ~ P,.(Y = k), the zero-truncated distri-
bution. More specifically, we first let M = (1 — po) ! [m +2 \/m + 2p0] and simulate
Z\,Z>,..,Zy iid ~ P(Y = k), the original distribution before truncation, where p, = P(Y = 0);

then we remove all zeros from Z;’s and get U,, U,,..,U;. If t > m we end with U,, U, .., Uy;
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otherwise we use a reject-accept procedure to obtain Uy, Uyys, .., Uy, from the zero-truncated

distribution. It can be verified that ¢ is fairly closed to m if it is less than m.

Note that in step (ii), let T = #{i | Z; # o}. Then T ~ Binomial(M,1 — p,). Therefore,
E(T) = M(1 — po) and Var(T) = Mpo(1 — po). According to the central limit theorem,

(T — E(T))/\/Var(T) ~ N(o, 1). It can be verified that (m — M (1 — po))/ \/Mpo(1 — po) = —2.

Therefore, P(T < m) ~ 0.023.

Sampling From General Zero-Inflated Models

Sampling from Zero inflated distribution is much easier than Hurdle distribution. The probability
mass function of a general zero-inflated model is given by: Pz (Y; = k) = ¢ly—q + (1 —
¢)P(Y; = k), where ¢ > 0 is a weight parameter of zeros. To generate a dataset from Zero inflated
distribution, we (i) simulate Z,, Z,, .., Z, iid Bernoulli(¢), (ii) if Z; = 1, let X; = 0. If Z; = o,

sample X; ~ p.

2.3.4 Bootstrapped Monte Carlo estimate for the p-value of a discrete KS test

For a continuous distribution with unknown parameters, Monte Carlo simulation based on the
estimated parameters has been used to correct the biased p-values of the KS test (see R package
“KScorrect”). Since the estimated parameters may not be reliable for small samples or inappro-
priate distribution assumptions, we propose a bootstrapped Monte Carlo estimate for estimating

the p-value of discrete KS test.

More specifically, the goal is to test if the sample X = {X;, X,, .., X,;} comes from the discrete

distribution with CDF Fy(x) where the parameter 6 is unknown. Algorithm 1 provides the details.
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Algorithm 1 Estimating p-value of Discrete KS test

1:
2:

Given X - (X17X2’ o Xl’l)
For b = 1,...,B, Resample X with replacement to get a bootstrapped sample X} =
1 0 sAp -

3. For each b, calculate the MLE A of 6.

Simulate X'¢) = {XEC), - X,(,C)} iid from Fpy), which is the CDF Fy(x) with parameter 6 = ob).
Calculate the KS statistic ij’) = supxlﬁ,(,c) (x)—Fyu) (x)], where ﬁ,(,c) (x) is the empirical distribution
function of X'°.

()
Estimate the p-value by w

the original data and its MLE 9.

where D,, = supx|ﬁn(x) — Fy(x)| is the KS statistic based on

In step (6), we add 1 to both the numerator and denominator to avoid zero p-value (52).

For step (4) above, we can simulate data easily from the regular distribution using standard R
functions. For example, rpois function is used to generate data from Poisson distribution, rn-
binom to generate Negative Binomial dataset. In addition, there are a few other R packages for
generating a dataset from some Hurdle distribution. For example, “countreg” package provides a

hpois function for generating dataset from PH distribution.

In our study, we allow the use of some new distributions such as BB and BNB distributions, as

well as the corresponding zero-inflated and Hurdle models.

¢ An Illustrative Example
Reconsider the example of X, -+, X5000 ~ NB(2,0.5) in Section 2.1 (see the example in Strat-
egy 1). We are interested in testing whether the data follows a NB distribution or not. By using
our discrete KS test with unknown parameters, we obtain a large p-value (0.867) based on the

bootstrapped Monte Carlo simulation, which means the data follows a NB distribution. As a
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comparison, by using the regular KS test mentioned in Strategy 1 of Section 2.1, we obtain a very

small p-value (8.8 X 107%). It shows that our estimate is more reliable.

Example 2.8. “dgof” is another existing R package for computing the exact p-value for some discrete
distributions. In this example, we consider a random samples X;,- -, X0 ~ NB(2,0.01). We are
interested in testing whether the data follows a NB distribution or not. By using our discrete KS test
with unknown parameters, we obtain a non-significant p-value (0.23) based on the bootstrapped Monte
Carlo simulation, which means the data follows a NB distribution. As a comparison, by using the
KS.test in “dgof” R package, we obtain a very small p-value (2.2 x 10~ '%). It shows that our estimate is

more reliable when p is small.

> set.seed(2310)

> x=rnbinom(100, 2, 0.01)

> ks.test(x, ecdf(rnbinom(100, 2, 0.01)), exact=TRUE) #using "dgof" package
One-sample Kolmogorov-Smirnov test

data: x

D = 0.22, p-value < 2.2e-16

alternative hypothesis: two-sided

> dis.kstest(x, nsim=100, bootstrap=TRUE, distri="nb")$pvalue

[1] 0.23
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2.3.5 Likelihood ratio test for selecting the best model

In case two or more distributions pass the KS test, we perform a likelihood ratio test for selecting
one model against another. According to the Neyman-Pearson theorem, the test based on likelihood
ratio is the most powerful one. More specifically, suppose we are interested in testing the hypothesis
Hy: X, X5,,..., X, iid ~ f(x;0) with unknown parameter 6 against H, : X, X, , ..., X,, iid ~ g(x; @) with
unknown parameter ¢. The likelihood ratio test statistic is given by:

A =log M (2.8)
[T g(xi @)

where @ and 8 are the the corresponding MLE’s. The Neyman-Pearson theorem (53) guarantees that the
test based on A is the most powerful test given a significance level.

To estimate the p-value of the likelihood ratio test, we use the following Bootstrapped Monte Carlo

algorithm:

Algorithm 2 Estimating p-value of Likelihood Ratio Test
1: GivenX = (X, X,,---X,)
2. For b = 1,...,B, resample X with replacement to get a bootstrapped sample X} =
X700,
For each b, calculate the MLE %) and $(b ),
Simulate Zib), e ,Z,(lb) from the null distribution f(x; 0@)).

Calculate A®) = A(Zgb), e Zr(zb) ).
#Hb:AD) <A1
B+1

AN A

Estimate the p-value by




36

Small p-value indicates that the two distributions are different, and g(x, ¢) is the more appropriate
distribution. Large p-value means that there is no statistical difference between the two distributions.

For example, Based on KS discrete test, one feature follows both ZIBB and ZINB distributions. To
see which distribution is more appropriate, we use the Nerman Pearson lemma as have discussed above.
We test Hy : X1,X5,,..., Xy, ~ZIBB vs. H, : X{,X,,, ..., X;,,~ ZINB with unknown parameter ¢. The
test p-value is significant(p-value= 0.0341). We conclude that ZINB is more appropriate for modeling

that feature than ZIBB.

2.4 Results

We applied the proposed discrete KS test with unknown parameters to a list of 229 bacterial and
fungal OTUs from (Tipton et al. study) (54). We are interested in knowing how many of the 229 OTU
follows each of the following distributions: Poisson, Negative Binomial, Beta-Binomial, Beta Negative
Binomials, and the corresponding zero-inflated and Hurdle models.

Table III summarizes the number of species with not statistically significant p-value (KS p-value >
0.05).

As shown, Poisson, zero-inflated Poisson, and Poisson Hurdle are not appropriate distributions to
model sparse microbial features as only 0.4%, 2%, 1% out of 229 the features were able to be appro-
priately fitted using these distributions, respectively. On the other hand, binomial and negative binomial
families can be used to approximate sparse microbial data, with BNBH as the best distribution to model
such dataset (being able to appropriately fit 53% of the 229 features) using the proposed conservative

method.
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Figure 1: Quantile-quantile plot between six different theoretical distributions for a specific feature.
Each figure represents a different discrete distribution: (a) ZIBB distribution, (b) ZIBNB distribution,
(c) ZINB distribution, (d) ZIP distribution, (¢) NB distribution, (f) Poisson distribution. The p-value
above each figure represents the significance of the discrete KS test between the theoretical quantiles
and the sample quantiles of the corresponding distribution. The ZIBB, and ZIBNB distribution are most
appropriate distributions for modeling the OTU count among some other standard distributions

Figure 2 shows the quantile-quantile or q-q plot for modeling one arbitrary read count using the fol-
lowing different distributions (ZIBB, ZIBNB, ZINB, ZIP, NB, and Poisson). The vertical line represents
the Sample quantiles, and the horizontal line represents the theoretical quantiles which are calculated by
generated a random numbers from each of the distributions. If the data follow the assumed distribution,

then the g-q plot points will fall approximately on a straight line.
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TABLE III: NUMBER AND PERCENTAGE OF SPECIES OUT OF 229 SPECIES WITH NOT STA-
TISTICALLY SIGNIFICANT P-VALUE ( P-VALUE > 0.05)

Distribution | Number | Percentage
Poisson 1 0.4%
NB 23 10%
BB 76 33%
BNB 60 26%
ZIpP 3 2%
ZINB 25 11%
Z1BB 89 39%
ZIBNB 110 48%
PH 2 1%
NBH 56 24%
BBH 92 40%
BNBH 121 53%

The p-value above each sub-figure of Figure 2 represents the discrete KS test p-value. High p-
value indicates that the feature follows a specific discrete distribution, and small p-value indicates that
the feature does not follow that distributions. Most of g-q plot points of graphs (a), and (b) lie on the
straight line, which means that the feature follows ZIBB, and ZIBNB. This result is consistent with their
large p-value.

We conclude that zero-inflated and Hurdle models for Beta-Binomial and Beta Negative Binomial

are the most appropriate models for Tipton et al. dataset.
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2.5 iZID R Package

2.5.1 Introduction

In this chapter we have seen that when conducting one-sample Kolmogorov-Smirnov (KS) test for
count data, the estimated p-value is biased due to plugging in sample estimates of unknown parameters.
To overcome the bias issue induced by plugging in estimated parameters, We proposed a bootstrapped
Monte Carlo procedure to estimate the p-value of a KS test for discrete probabilistic models (40). In the
circumstance that more than one models pass the KS tests, We proposed a bootstrapped procedure for
estimating the p-values of the likelihood ratio tests for pairwise comparisons of candidate models (40).
We develop a new R package named “iZID” for identifying Zero-Inflated and Hurdle Distributions,
available from the Comprehensive R Archive Network (CRAN, https://cran.r-project.org/)
(41). For user’s convenience, we cover regular Poisson, negative binomial, beta binomial, and beta
negative binomial distributions as well. Using “iZID”, the p-value is estimated by counting the number
of random samples whose KS test statistics are greater than the KS statistic derived from the original
data. Since the random samples are generated using the maximum likelihood estimates obtained from
the bootstrapped or original data, the resulting p-value is automatically adjusted for the influence of

plugging in sample estimates.

2.5.2 Existing R packages for analyzing zero-inflated data

Several packages are currently available from the Comprehensive R Archive Network (CRAN) for

analyzing zero-inflated data, including “bzinb”, “hurdlr”, “mazeinda”, “mhurdle”, “rbtt”, “ZIBBSe-

99 Gl EE T

gDiscovery”, “ZIBseq”, “zic”, “ZIM”, “ziphsmm”, etc.
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Package “bzinb” provides tools for random sample generation, maximum likelihood estimation and
log likelihood computation for bivariate zero-inflated negative binomial and Poisson distributions. With
“hurdlr”, users are able to fit hurdle or zero-inflated negative binomial and Poisson regression models
using Bayesian strategy. Package “mazeinda” is tailored to compute and test the significance of pairwise
monotonic association for count data with any degree of zero-inflation. The creation of “mhurdle” is
inspired by the households’ expenditure survey data where many zeros exist in predictors recording the
cost of some goods or activities. The function mhurdle in package “mhurdle” enables the estimation of
a large class of regression models with up to three hurdles, which allows that zero observations in pre-
dictors occur by up to three structural reasons. Package “rbtt” tries to tackle the inflation of type I error
in two-sample t-tests comparing two groups of zero-inflated data via robust bootstrapped test. Package
“ZIBBSeqgDiscovery” models the relationship between the count data and some covariates of interest
by zero-inflated beta-binomial models. Package “ZIBseq” regresses the counts on categorical clinical
conditions in zero-inflated beta models. Package “zic” outputs the Bayesian estimate of zero-inflated
count models while assuming that the parameters follow certain prior distributions. Package “ZIM” en-
ables both observation-driven and parameter-driven modeling for time series with excess zeros. Package
“ziphsmm” analyses longitudinal continuous-time data via zero-inflated Poisson hidden (semi-)Markov
models.

Except for packages “mazeinda” and “rbtt”, the rest fit count data to specific models. To the best
of our knowledge, our package “iZID” is the first one to conduct KS test for count data with p-values
adjusted for the influence of sample estimate of unknown parameters. Example 2.9 below shows that

our function dis.kstest is more reliable than the basic R function ks. test in estimating p-values.
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Example 2.9. In this experiment, we simulate N = 100 random numbers from a zero-inflated negative
binomial (ZINB) distribution with parameters ¢ = 0.6,r = 2,p = 0.01. The maximum likelihood
estimates @ = 0.590,7 = 2.06,p = 0.011 are fairly accurate. Nevertheless, if one wants to test if
the original sample from a ZINB distribution by simulating another random sample using the estimated
parameter values, the classical R function ks. test rejects ZINB model with p-value 0.01 and a warning

message. If we use our function dis.kstest in package “iZID”, the adjusted p-value is 0.12 which

passes the ZINB model. For readers’ reference, we provide the R code and output below:

> set.seed(343)
> nsimu=100
> x=sample.zi(N=nsimu, phi=0.6, distri = "nb", r=2, p=0.01)
> mle=nb.zihmle(x, r=5, p=0.5, type="zi")
> mle
r p phi loglik
[1,] 2.058397 0.0112907 0.5899598 -316.7666
> y=sample.zi(N=nsimu, phi=mle[3], distri = "nb", r=mle[1], p=mle[2])
> ks.test(x,y)
Two-sample Kolmogorov-Smirnov test
data: x and y
D = 0.23, p-value = 0.01008
alternative hypothesis: two-sided

Warning message:
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In ks.test(x, y) : p-value will be approximate in the presence of ties
> dis.kstest(x, nsim=200, bootstrap = TRUE, distri = "zinb")$pvalue

[1] 0.12

2.5.3 Architecture of the package ‘“iZID”

The package “1ZID” contains four main functions: dis.kstest, model.1lrt, sample.zi and sam-
ple.h. Function dis.kstest computes bootstrapped or Monte Carlo p-value of one-sample KS test
under a specific discrete distribution. Function model .1rt implements a likelihood ratio test to select
between two candidate models, in the case that more than one models have p-values greater than the pre-
specified significance level. Functions sample.zi and sample.h are random sample generators, where
the former outputs random deviates of zero-inflated models and the latter generates random counts from
hurdle models. This package also provides some miscellaneous functions to calculate maximum like-
lihood estimate and the corresponding log likelihood value for a large set of models modeling count
data. To accelerate the calculation process, we parallelize the computation of bootstrapped Monte Carlo

estimates using R package “doParallel” and “foreach”.

o dis.kstest
To estimate the p-value of a KS test given a pre-specified distribution as null hypothesis, the user

may call the function dis.kstest with the syntax:

dis.kstest(x,nsim=100,bootstrap=TRUE,distri="Poisson’,r=NULL,p=NULL,

alphal=NULL, alpha2=NULL,n=NULL, lowerbound=0.01,upperbound=10000, parallel=FALSE)



nsim

distri

alpha(1,2)
and n

alpha(1l,2)
and r

lowerbound

upperbound

Independent non-negative integers which stands for counts. Can be

a vector or a matrix.

Number of bootstrapped samples generated for computing maximum
likelihood estimate of unknown parameters.

The distribution under null hypothesis. Currently, standard Poisson,
negative binomial, beta binomial, beta negative binomial distributions
as well as their zero-inflated and hurdle versions are available in the
package. Accordingly, distri can be set to be one of {Poisson, nb, bb,
bnb, zip, zinb, zibb, zibnb, ph, nbh, bbh, bnbh}. Note that users do not
need to provide an estimate for unknown parameters. Instead,
dis.kstest automatically carries out the task.

Optional arguments for assigning initial values of unknown parameters
of standard, zero-inflated and hurdle negative binomial distributions.
Optional arguments for assigning initial values of unknown parameters
of standard, zero-inflated and hurdle beta binomial distributions.

Optional arguments for assigning initial values of unknown parameters

of standard, zero-inflated and hurdle beta negative binomial distributions.

The lower searching bound.

The upper searching bound.

43
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Details:

— dis.kstest will be initialized with naive sample estimates if initial values are not given.
The negative log likelihood function is minimized via basic R function optim with the
searching interval decided by lowerbound and upperbound, except that the optimization
of p takes 1-lowerbound as the upper searching bound.

— The way to calculate p-value of KS test is illustrated in Algorithm 1. Given a random
sample x = {x;, x5, - , xn}, nsim bootstrapped samples are obtained by resampling x with
replacement if setting bootstrap=TRUE (by default). If setting bootstrap=FALSE, nsim
new samples will be simulated with mle of original data x, and KS statistics of the new
samples will be computed.

— dis.kstest returns an object of class “dis.kstest” which contains all the input values, max-
imum likelihood estimate of the bootstrapped samples and original data x, and most impor-

tantly, the p-value.

e model.Irt
If the p-values returned by dis.kstest are not significant for more than one distributions, a
likelihood ratio test can be performed to select a relatively “better” model for the data on hand.

The way to call model .1rt is as follows:

model.1lrt(dl,d2,parallel = FALSE)

where d1 and d2 are two objects of class “dis.kstest” under different distributions. The likelihood

ratio test statistic is the difference between log likelihood of the alternative and the null distribu-
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tion decided by d2 and d1, respectively. The algorithm is given in Algorithm 2. One may simulate
nsim new samples under the null distribution using nsim mles inherited from d1$mle _new, and
then calculate the differences between log likelihood of new samples under the alternative and the
null hypotheses as statistics of the likelihood ratio tests. Function dis.kstest returns the pro-
portion of test statistics of new samples that is greater than the statistic of original data x. A small
p-value indicates that the data on hand is more likely to come from the alternative distribution.

Otherwise, the null distribution shows no significant difference to the alternative one.

Generate random samples from zero-inflated and hurdle distributions

Random deviates from standard Poisson and negative binomial distributions can be generated by
basic R functions rpois and rnbinom, respectively. With R package “ExtraDistr” , functions
rbbinom and rbnbinom are available for standard beta binomial and beta negative binomial dis-
tributions, respectively. In addition, there are a few other R packages for generating a dataset
from some hurdle distributions. For example, package “countreg” provides function hpois for

generating dataset from Poisson Hurdle distribution.

In our package “iZID”, we allow the use of new distributions including beta binomial and beta
negative binomial distributions, and more importantly, their corresponding zero-inflated and hur-
dle models. We introduced a procedure grounded upon the central limit theorem to produce
random values from zero-inflated and hurdle models. In package “iZID”, we implement the pro-

cedure to the following two functions:

sample.zi(N,phi,distri="poisson’,lambda=NA,r=NA,p=NA,
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alphal=NA,alpha2=NA, n=NA)}
sample.h(N,phi,distri="poisson’,lambda=NA,r=NA,p=NA,

alphal=NA,alpha2=NA, n=NA)

These two functions have exactly the same arguments. Here N represents the size of random
sample to return. Argument phi stands for the value of structural parameter ¢ in zero-inflated
and hurdle models, e.g., formulae (Equation 2.5). The input distri currently belongs to the
set of four standard distributions {Poisson, nb, bb, bnb}. For example, by setting distri=nb,
sample.zi and sample.h return zero-inflated and hurdle negative binomial distributed random
deviates, respectively. Arguments lambda, r, p, alphal, alpha2 and n are parameter values
for different distributions, which must be specified. For instance, with distri=nb, users need to

provide values for r and p.

Calculate maximum likelihood estimate and log likelihood

In order to calculate the maximum likelihood estimate as well as the value of log likelihood of the
aforementioned four standard distributions and their zero-inflated and hurdle versions, one may

simply use the following lines of code with package “iZID”:

poisson.mle(x)
bb.mle(x,n,alphal,alpha2,lowerbound = 0.01, upperbound = 10000)
nb.mle(x,r,p,lowerbound = 0.01, upperbound = 10000)

bnb.mle(x,r,alphal,alpha2,lowerbound = 0.01, upperbound = 10000)
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poisson.zihmle(x,type=c(’zi’,’h’),lowerbound = 0.01, upperbound = 10000)
bb.zihmle(x,n,alphal,alpha2,type=c(’zi’,’h’),lowerbound = 0.01,
upperbound = 10000)
nb.zihmle(x,r,p,type=c(’zi’,’h’),lowerbound = 0.01, upperbound = 10000)
bnb.zihmle(x,r,alphal,alpha2,type=c(’zi’,’h’),lowerbound = 0.01,

upperbound = 10000)

The first four functions are designed for standard distributions. The rest are for zero-inflated
models with setting type="zi’ and hurdle models with setting type="h’. Note that the value
of arguments will not be checked within the functions. Thus, results could be misleading with
improper inputs. When calling nb.zihmle and bnb.zihmle, the users may receive warning
messages such as ““. . .cannot obtain mle with the current model type...” if the op-
timization procedure by R function optim does not converge. In this case, the output will be
identical to the maximum likelihood estimates for standard negative binomial or beta negative

binomial distribution.

IMlustration

e Quick start
In order to utilize the “iZID” package, one may start with simulating random samples given

appropriate arguments:

library(iZID) ##load the package

##generate random deviates from zero-inflated negative binomial distr
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sample.zi(N=28,phi=0.3,distri="nb’,r=6,p=0.4)

[1] 811 160 12 13 06 0 10 7 0 58 11 11577 615059 14 10 5 10 12

##generate random deviates from hurdle beta negative binomial distr

sample.h(N=28,phi=0.6,distri="bnb’,r=6,alphal=3,alpha2=7)

[11 0140200017000 18000003619 142002407 21000

One may test if the maximum likelihood estimates of parameters are close to the truth.

templ=sample.zi(N=300,phi=0.3,distri="poisson’,lambda=5)

poisson.zihmle(templ, type="zi’)

lambda phi loglik

[1,] 5.058126 0.2955213 -640.1416

From the above output, the estimates of A and ¢ approximate the true values. In the circumstances

when the underlying distribution of data temp1 is unknown, one may fit other models as follows:

nb.zihmle(templ,type="zi’,r=3,p=0.5)

r ) phi loglik

[1,] 340.5231 0.9853779 0.295327 -640.1886

bb.zihmle(templ,type="zi’,n=3,alphal=3,alpha2=5)

n alphal alpha2 phi loglik

[1,] 637.37 28.23 178.30 0.3 7120.57
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bnb.zihmle(templ, type="zi’,r=3,alphal=3,alpha2=5)
r alphal alpha?2 phi loglik

[1,] 10000 1614.465 541.4786 O 30367934
Warning message:
In bnb.zihmle(templ, type = "zi", r = 3, alphal = 3, alpha2 = 5,
cannot obtain mle with the current model type, the output estimate is
derived from general beta negative binomial distribution.
Note that the log likelihood of beta binomial distribution for data templ exceeds that of zero-
inflated Poisson distribution, though the latter is the true underlying model. It suggests the need
of conducting KS tests to identify an “appropriate” model before estimating model parameters.

Without specifying any initial guess on parameters, the procedure of obtaining p-values works as

follows:
dis.kstest(templ,nsim=100,bootstrap=TRUE,distri="Poisson’)$pvalue
[1] ©
dis.kstest(templ,nsim=100,bootstrap=TRUE,distri="nb’)$pvalue

[1] ©
dis.kstest(templ,nsim=100,bootstrap=TRUE,distri="bb’)$pvalue

[1] ©

dis.kstest(templ,nsim=100,bootstrap=TRUE,distri="bnb’)$pvalue



[1]1 ©®

dis.kstest(templ,nsim=100,bootstrap=TRUE,distri="zip’)$pvalue

[1] 0.97

dis.kstest(templ,nsim=100,bootstrap=TRUE,distri="zinb’)$pvalue

[1] 0.97

dis.kstest(templ,nsim=100,bootstrap=TRUE,distri="zibb’) $pvalue

[11 ©®

dis.kstest(templ,nsim=100,bootstrap=TRUE,distri="zibnb’)$pvalue

[1] ©

Warning message:

In bnb.zihmle(x, r, alphal, alpha2, type = "zi")

cannot obtain mle with the current model type, the output estimate is

derived from general beta negative binomial distribution.

dis.kstest(templ,nsim=100,bootstrap=TRUE,distri="ph’)$pvalue

[1] 0.98

dis.kstest(templ,nsim=100,bootstrap=TRUE,distri="nbh’)$pvalue

[1] 0.94

dis.kstest(templ,nsim=100,bootstrap=TRUE,distri="bbh’)$pvalue

50
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[1] ©®

dis.kstest(templ,nsim=100,bootstrap=TRUE,distri="bnbh’) $pvalue

[1]1 ©®

Warning message:

In bnb.zihmle(x, r, alphal, alpha2, type = "h")

cannot obtain mle with the current model type, the output estimate is

derived from general beta negative binomial distribution.

The divergence of empirical distribution of templ from zero-inflated Poisson and negative bino-
mial distributions and their hurdle versions is not significant with p-values close to 1. Since a
zero-inflated model and its hurdle version are closely related, we are more interested in distin-
guishing two types of distributions, say, zero-inflated Poisson or negative binomial, which can
be done by using the function model.lrt. Define the two “dis.kstest” objects returned from

zero-inflated Poisson and negative binomial as “d1” and “d2”, respectively.
model.lrt(d1,d2)
[1] 0.5
With the current sample size of data templ, the likelihood ratio test, which is the most powerful

test, does not tell the difference between zero-inflated Poisson and negative binomial distribution.

In this case, a larger sample size would be needed.
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e Comparison with R package ‘“KSgeneral”
Package “KSgeneral” (46) supports the computation of p-value for discrete KS test, assuming that
parameter values in the null distribution are already known. To conduct a KS test via “KSgen-
eral”, we need to substitute the unknown parameters with their maximum likelihood estimates.
Suppose that a random sample {X,, ..., X000} is generated from a zero-inflated negative binomial

distribution as below:

library(iZID)

library(extraDistr)

library(KSgeneral)

##generate random deviates from zero-inflated negative binomial distr
set.seed(10086)

x=sample.zi(N=1000,phi=0.7,distri="nb’ ,p=0.6,r=5)

table(x)

® 1 2 3 4 5 6 7810 11 12

726 52 58 59 40 24 22 10 4 1 2 2

## some naive initial estimates of unknown parameters
r=max(x)

p=sum(x>0) /length(x)



n=max(x)+1

alphal=abs(mean(x)*(mean(x)*(l-mean(x))/var(x)-1))

alpha2=abs((1-mean(x))* (mean(x)*(1-mean(x))/var(x)-1))

To test if the simulated data follows from zero-inflated negative binomial distribution:

## maximum likelihood estimates of unknown parameters

templ=nb.zihmle(x,type="zi’,r=r,p=p)

templ

r p phi loglik

[1,] 5.477278 0.6428991 0.6992482 -1127.7

yl=stepfun(0:max(x), c(0, templ[3]+(l-templ[3])*pnbinom(0:max(x),

size=ceiling(templ[1]),p=templ[2])))

## conduct discrete KS test with function disc ks_test in ‘‘KSgeneral”

disc ks_test(x=x, y=yl, exact=T, tol=1e-08)%p

[1] 0.6051321

## conduct discrete KS test with function dis.kstest in ‘‘izZID"

dis.kstest(x,nsim=100,bootstrap=TRUE,distri="zinb’,r=r,p=p) $pvalue

[1] 0.27

53
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From the results above, there is no significant evidence showing that the simulated data comes
from distributions other than ZINB. However, a more realistic scenario is that we may also testify

other null distributions like ZIBB, ZIP or ZIBNB.

## when the null distribution is ZIBB

templ=bb.zihmle(x,type="zi’ ,n=n,alphal=alphal,alpha2=alpha2)

yl=stepfun(0:max(x), c(0, templ[4]+(l-templ[4])*pbbinom(0:max(x),

size=round(templ[1]), alpha=templ[2], beta=templ[3])))

disc ks_test(x=x, y=yl, exact=T, tol=1e-08)3$p

[1] 1

dis.kstest(x,bootstrap=TRUE,distri="zibb’,n=n,alphal=alphal,

alpha2=alpha2) $pvalue

[1]1 ©®

## when the null distribution is ZIP

templ=poisson.zihmle(x,type="zi’)

yl=stepfun(0:max(x), c(0, templ[2]+(l-templ[2])*ppois(0:max(x),

lambda=temp1[1])))

disc ks_test(x=x, y=yl, exact=T, tol=1e-08)3$p

[1] 0.4722135

dis.kstest(x,nsim=100,bootstrap=TRUE,distri="zip’) $pvalue
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[1] 0.47

## when the null distribution is ZIBNB

templ=bnb.zihmle(x,type="zi’ ,r=r,alphal=alphal,alpha2=alpha2)

yl=stepfun(®:max(x), c(0, templ[4]+(l-templ[4]) *pbnbinom(0:max(x),

size=round(templ[1]), alpha=templ[2], beta=templ[3])))

disc_ks_test(x=x, y=yl, exact=T, tol=1e-08)3$p

[1] 1

dis.kstest(x,bootstrap=TRUE,distri="zibnb’ ,r=r,alphal=alphal,

alpha2=alpha2) $pvalue

[1]1 ©®

Neither function disc_ks_test in package “KSgeneral” nor our function dis.kstest could
distinguish between ZINB and ZIP distributions with the current sample size. As for ZIBB and
ZIBNB distributions, the p-value 1 obtained by disc_ks_test is apparently misleading, while

our dis.kstest correctly rejects the two null hypothese with p-values equal to 0.

A real data example

In this subsection, we use the real dataset “dataCar” from R package “insuranceData” for illustra-
tion. The data consists of 67,856 one-year vehicle insurance policies issued in 2014-2015. The
variable number of claims is a sparse count variable. The goal is to identify the distribution of

the variable. Table IV shows the numbers of claims as well as percentages.
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TABLE IV: NUMBER OF CLAIMS IN DATASET “DATACAR”

Occurrence | Frequency | Percentage
0 63,232 93.18%

1 4,333 6.39%

2 271 0.40%

3 18 0.03%

4 2 0.00%

Total 67,856 100.00%

To check if the data follows any specific discrete distribution, we use dis.kstest in our package.
A large p-value implies that the data may follow the pre-specified discrete distribution. The

following R codes show how to test if the variable number of claims follows Poisson, negative

binomial, ZIP, or ZINB distribution.

library(insuranceData)
library(car)
data(dataCar)
attach(dataCar)

X=dataCar[,4] #Number of claims variable

dis.kstest(X,nsim=200,bootstrap=TRUE,distri="Poisson’) $pvalue

[1]0.035

dis.kstest(X,nsim=200,bootstrap=TRUE,distri="nb’)$pvalue

[1]10
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dis.kstest(X,nsim=200,bootstrap=TRUE,distri="zip’) $pvalue
[1] 0.955
dis.kstest(X,nsim=200,bootstrap=TRUE,distri="zinb’)$pvalue
(110
dis.kstest(X,nsim=200,bootstrap=TRUE,distri="zip’)$mle_ori
lambda phi loglik
[1,] 0.1324475 0.4506756 -18052.2
The above output implies that the data follows ZIP distribution with estimated parameters ¢ =

0.451, and 1= 0.132. To confirm this conclusion, we simulate a random sample from the ZIP

distribution with ¢ = 0.451, and A = 0.132 as follows:
Y=sample.zi(N=length(X),phi=0.4506756,distri="Poisson’,lambda=0.1324475)

Using R function table, we can see that the distributions of the original data X and the simulated

data Y match each other very well (see also Figure Figure 2).

table(X)

63232 4333 271 18 2

table(Y)

63172 4371 298 14 1
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Figure 2: Chart plot to compare the given data and the simulated data

2.5.4 Conclusion

In this chapter, we introduce a new R package “iZID” which provides the bootstrapped Monte Carlo
estimates of p-values of discrete KS tests, as well as a function model.lrt to perform a likelihood
ratio test when two or more distributions pass the KS test. Besides, “iZID” supports the generation
of random deviates from zero-inflated distributions as well as hurdle models, and the computation of
maximum likelihood estimates of a large class of models. The implementation of functions dis.kstest
and model.1lrt are speeded up by parallel computing via packages “foreach” and “doParallel”.

Due to the nature of gamma functions, the optimization of the likelihood function of zero-inflated
and hurdle beta binomial and beta negative binomial distributions may not converge. In this circum-

stance, the results of corresponding standard distributions are returned. We plan to further improve and
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update the functions in the package for obtaining more robust and reliable sample estimates of parame-

ters.



CHAPTER 3

REGRESSION MODELS

3.1 Probabilistic Model vs. Regression Model

In order to test whether the data follow a specific discrete distribution with unknown parameters, we
developed a bootstrapped procedure for estimating the p-values of Kolmogorov—Smirnov (KS) tests and
applied it to a list of 229 bacterial and fungal OTUs. Their 12 candidate distributions include Poisson,
negative binomial (NB), beta binomial (BB), beta negative binomial (BNB), and the corresponding
zero-inflated and Hurdle models.

The model selection performed in was for probabilistic models without covariates. Nevertheless, the
following simulation study shows that it may still be informative for selecting regression models when

the coefficients of covariates are relatively small.

Example 3.1. Suppose the covariates are x; € R%, i = 1,..., N and the assumed parameters are v, B €
R, y,8 € R For ¢ = 0.5,0.2,0.1 0r 0.01, b = 1,.. ., 100, we simulate the responses Yl.(b) ~ ZIP(¢;,0;)

with ¢; = g '(vo + ¢ - ¥7x;) and 6; = h™'(Bo + ¢ - BT x;). Then we apply the bootstrapped KS-test

intoY Eb), LY 1(\;’ " and check if it follows a probabilistic ZIP model. The results are summarized into
Table V. It shows that Y l(b), LY ;Vb ) passes the ZIP test with a high chance when c is relatively small.

60
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TABLE V: ZIP PROBABILISTIC KS-TEST APPLIED TO ZIP REGRESSION RESPONSES

c Number of Passed KS Tests | Percentage

0 100 100%
0.01 96 96%
0.05 88 88%
0.10 47 47%
0.20 8 8%
0.50 1 1%

3.2 Hurdle Regression Models

In this section, we consider fairly general zero-altered or Hurdle regression models for independent

observations (Y;,x;), i = 1,...,n, where Y; is a univariate response following a zero-altered model
fza(y|¢i, 0;) with parameters ¢; € [0,1],6; = (0;1,...,03)7 € R?, and covariates x; = (X;1,...,xig)! €
Rd

A zero-altered or Hurdle regression model considered here assumes the existence of link functions g
and h,, ..., hy such that g(¢;) = G!y and h;(6;;) = Bl.Tj Li=1,...,mj=1,....b,wherey.B,,.... B,
are regression coefficients, G; = (r;(x;),...,rs(x;))" € R¥ and B;; = (g;i(x),...,q5,(x;))" € RY
are the corresponding predictors, r;’s and ¢gj;’s are known functions. Examples include G; = B;; =
(1, i1, ..., %iq)" for main-effects model and G; = B;; = (1, Xi1, .. ., Xigs Xi1 Xizs + - - s Xig—1Xig)! for model

with both main effects and order-2 interactions.
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Recall that with the baseline distribution function (pmf or pdf) fg(y), the distribution function of ¥;

given ¢; and 6; can be written as

¢,’ ify,' =0
f2ayi | i, 6;) =

i fa i) ifyi#o

where p,(0;) = fo,(0) for discrete case or 0 for continuous case.
Given the link functions g, h,, ..., h,, we have ¢; = g '(G!y), and 6;; = h! (B/,8,). Then the

likelihood function for the regression coefficients is

LB B) =[] [J—0) ]] Sal) 3.1)

1 — pol6;
iy;/=0  1y;#0 i:y;#0 pO( l)

Since y is separable from S, ..., B, in (Equation 3.1), the mle of  can be obtained by fitting a gener-

alized linear model (GLM) with responses 1y,—;’s.

Theorem 3.1. The MLEs for the Hurdle regression model coefficients can be obtained as follows:

(1) By fitting a GLM with binary response z; = 1,,—,, predictors G; and link function g, we obtain

the MLE 9.

(2) By fitting the zero-truncated regression model on the nonzero observations, we obtain the MLEs

B......B, that maximize [ Liyz0 fo:(vi) /Tt — po(6;)].

Proof of Theorem 3.1: Recall that

Pza(Y =) = ¢iljy—o) + (1 — ¢i) Prr(¥16;)
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Assign link functions for the parameters ¢;, and 6;. Therefore, g(¢;) = xl.Ty, and h;(6;;) = xl.Tﬂ I

Then

Iy,Bi,--- .8 ZIOg¢tl{y,_0}+Zlog — &) 1{y¢o}+Zlogﬁr )’|9)1{y¢0}

i=1

Hence,

n n
y =2 loggily o+ ) log(1— )1z}

i=1 i=1

Which is a regular GLM with binary response.

(B Ba) = arg Y _log fir(y16)) Ly 0)

i=1
O
In order to find the MLEs of B,’s, we need the formulae of the first-order derivatives of the log-

likelihood of the zero-truncated regression model:

1(Byr-- - By) =Y log fo,(yi) — Y loglt — po(6))]

i:y;#0 i:y;#0

For j = 1,..., b, the first-order derivatives are

_ Z [alogfg () X Po(6;) ‘HIOgPo(ei)

—1\/ T B
ﬂf 1—po(6:) 86;; ](hj )'(B;;8;)Bi

i:y;#0 l]

Thus only dlog fy,(y:)/06;; and d1og p,(6;)/06;; are needed.
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Example 3.2. Hurdle beta negative binomial (HBNB) regression model In a HBNB model, Y; follows

a beta-negative binomial distribution with the pmf

rityi—1 Beta(r; + @i, yi + Bi)
fo,yi) =

Vi Beta(a;, i)
aty; = 0,1,... with 8, = (r;,;,8;)". Then

I'(ri +a)l (a; + B;)

6,) =
PO = e T AT )
Pol6;) _ I'(ri+ )T (e + Bi)
1 — po(6;) I'(ri+ a; + B () — I'(ri + o) (a; + B;)
Jdlo Vi
gajrcél o V(ri+yi) = ¥(ri) + V(i + i) = V(ri +yi + @i + Bi)
Jdlo A\ Vi
ORI () — Wi+ B0) + W+ — )
Jdlo A yi
ga—?(y) = Yyi+Bi)—Y¥(ri+yi+ai+B)+ ¥lai+p)— V(B
ol 0;
Oga+0() = Y(it+a)—¥rit+a+p)
ol 0;
TOELO) (4 a) 4 Wlas +) — ¥+ ) — W)
0l 0;
Olog polfr) _ V(i +Bi) — ¥ri+ai+pBi)
OBi
If we define the link functions &, = h, = h; = log, then (h]fl ) = exp. O

3.3 Zero-inflated Regression Model (ZIRM)

In this section, we consider a fairly general class of zero-inflated regression models for independent

observations (Y;,x;), i = 1,...,n, where Y; is a univariate response following a zero-inflated model

fz1(y|oi, ;) with parameters ¢; € [0,1],0; = (6;1,...,03)7 € R, and covariates x; = (xi,...,xq)".
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With the baseline distribution function (pmf or pdf) fp(y), the distribution function of Y; given ¢; and 6;

can be written as
¢i+ (1 —¢i)po(6:) ifyi=o0
Sz (yi | ¢i,6;) =
(1—¢i)fo,(yi) ifyi#0
where p,(0;) = fp,(0) for discrete case or 0 for continuous case.
Similar as in Hurdle regression models, a general zero-inflated regression model requires link func-
tions g and A, ..., hy such that ¢; = g~ ' (G} y) and ;; = h;l(BiTj . i=1,....mj=1,...,b, with

regression coefficients y € R*, 8, € R",...,B, € R". The likelihood and log-likelihood functions for

the regression coefficients are

Ly.Bi--By) = ] —¢dfa(i)- []1gi+ (1 —¢:)po(6)]

iy #0 ity;=0
(7.Bi--.By) = D log(i—¢)+ ) log fo, (i)
i:y;#0 i:y;#0
+ ) loglg; + (1 — ) po(6;)]
ity;=0
The first-order derivatives are
al g ") (G
L p gy e e
4 1:y; #0 ! ity;=0 ! l
ol olog fo,(yi) , _ T
= Y S () (BLB,)By,
9B; iylZiO 590 o
—¢i)po(6;)  Ologpo(6) ., 7
+ - (h B:.B:)B;;
qu, T ope@) om0 )V BuBIBy

1y;i=0

Thus only dlog fp,(yi)/06;; and dlog py(6;)/06;; are needed.
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3.4 Fisher Information Matrix

Let m = (7, ﬂlT, - ﬁZ)T € R? be the vector of regression coefficients, where p = s + #; +

-+ + 1, . Under regularity conditions (see, for example, Ferguson (1996, Theorem 18))(51), the Fisher

information matrix
ol 0l

F(n) = E(% : (97rT) (3.2)

where dl/dr = (01/dy",d1/0BT, ..., 01/ BﬁZ)T. Note that E(dl/0r) = o under the regularity conditions.

3.4.1 Fisher information of zero-inflated regression models

Theorem 3.2. Under regularity conditions, the Fisher information matrix of Zero-inflated Regression

Model (ZIRM) defined in section 3.3 is given by:

oo oo ol
gy oyt Oy op" dy opt
oo ool ol ol
op, oyT 9B, opT 0B, 08T

F(ﬂ') —E B, dy B, B B, By, (33)
I R R N8
L 9By dyT 9B, 6B1T By 6BZ |




where

al ol
El=. 2| =
((97 67T)

) -
B, op!
where
A;
B,
P;
€ist

Note that under regularity conditions, £ ( B

ol
El—
(3.3,-

) = Z(h;I),(BlTj )Bij(1 _¢i)E[
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n

1— P;
Y T AAT

i=1 !

s Po(6:) 8log po(6) a10g fo, YN\« (o1

;( _¢’){ P; 96, _E[ 36y HA’C”
n n T

lZ(l _¢i)eiscls : Z(l _¢i)eitcit

_ Z 1—¢;) elseltclscll‘ + Z

—Z ¢l

¢z elStClSClt

dlog po(6;)
00y,

5 log Pol(0; )
agis

— ¢i)po(6;)

C;,C!
1 - ¢1)p0( )

1

— (o 1Y)/ T . s
= 1T-a (g7)'(Gj7)Gi €R
— Pol0; —1y/ s

= P(Yi=0)=¢;+ (1 —¢i)po(6:)

= (h;l),(BiTj ;)Bij € RY

GInggi(Yi/) 610gf9,-(yi’)
= FE .
005 00y

6—) = 0 and e¢;; = 0, while in general,

‘ 810gf6‘i(Yi’)
69,'j

i=1
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Proof of Theorem 3.2: For zero-inflated regression models,

I(mr) = Z log( 1— ¢i)1{Yi¢0} + Z log fﬂ,—(Yi)l{Y,-;to}

i=1 i=1

+ Z log [¢; + (1 — ¢:)po(6:)] 1y,

In order to simplify the notations, we let

R 1 . —1\/ T . K
A = — & (g )(Gl 7)G; €R
1_Po(0i) —1\7 T s
B, = . G/ v)G; €eR
bt (—onpoiey & VGG <
dlog fy,(Y;)
hij(Y;)) = ———¢€R
! 90,

Cj = (h;')'(B]B;)B;j R

J
A (1 —¢i)po(6:)  Ologpo(6i) .\, o7 -
Di = U=y am, ) BBB <R

P; = P(Yi=0)=¢+ (1 —¢i)po(6;)

1—P; = P(Y;#0)=(1—¢;)[1 — po(6)]
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% = — Z Ail{yﬁto} + Z Bil{YiZO}
ﬁ = Z hi; (Y, C,jl{y #0) T Z Djjly,—o)
aﬂj i=1
E((%l,) - _ZA,-(l Pi)—f—ZBiPi =0
£ (ﬁ) B Z CijE [hu )y, io}] Z Di;Pi

- dlo
= > () BB)B, {E[%()l{ym}] +

J J!
i=1
n

= D (h;")(B[B)Bi(1— ) {E[

i=1
n

= D (") (B, ,->Bi,~<1—¢l->E[

i=1

where Y/ ~ fg,, a baseline distribution. Note that if E [6 log fo,(Y/)

E(0l/0B;) = ofor j=1,....b.

dlog po(6:)
30, (1 —¢i)po(6;)
dlog fy,(Y!) dlog po(6;)
1 1 , _erV. i
e, W ;to}] + a0, Po(0 )}
alogf&'(yi/)
89,‘1‘

/60;j] =ofori =1,...,n, then

The leading term of the Fisher information matrix (Equation 3.5) can be written as follows

oo ol ol oL ol
dy oy Oy opT dy 0B
oL ol o1 ol ol oL
E B, ayT 9B, opT B, 9B} (3.4)
o ol dl ol ol ol
L 9By ay" 9By 0T By, op; |

We calculate these entries one by one. Note that matrix (Equation 3.6) is symmetric if [ € C?, that

is, twice continuously differentiable.



ol ol

n
i=1

i#j

= D_AB 1y oly, g~ ) BATly glyg

i i+
n
T T
+ 2 BB/ Ly o+ ) BB Ly gly—
i=1 i#]

ol al u

E(— . _T) = ZA,‘AI-T(I —P,') + ZA,‘AJT(I —P,')(l —Pj)
5‘)/ ay i=1 i#j

— ZAlBj(l _Pi)Pj_ZBjA,T(l —Pi)Pj
i#] i#]

+ > BB[P;+> BBIPP;

i=1 i#j

iA,-(l —P)) iAi(l —P;)

T n
+) AATP(1—P)

i=1

[ n n T n

+ ZB,‘P,' . ZB,‘P,‘ +ZB,'B[-TP,'(1 —Pi)
Li=1 i=1 =1
[ n n T n

—[> A =P)|-|> BP| +> AB/P(1-P)
Li=1 =1 =1
[ n n T n

— ZB,'P,' . ZA[(I—P,') +ZB5AI-TP,'(1—P,')
L i=1 =1 i=1




Since (1 —

ol

ol

P))A; — PB; =oforeachi=1,.

g9 9L\ _
oy T

ol

i=

1

— Z A:Chhy (Y,

- Z AD) Ly sl iy,—0) + ) BiCHR(Y )y 1iy20)

i#]

,n, it can be verified that

)(A; +B;)(A; + B)"

RN

T

Myeop— Y ACTR(Y )y 20y 20)

i#j

i#j

n
T T
+ Z BiDil l{y[:()} + Z BiDﬂl{Y[:O}l{YI:O}

Note that for zero-inflated models

E|hy(Y

Iy, ;&0}]

i=1 i£]
Glogfg_.(Yj)
5[5 o)
( £ dlog fo, (Y]
19 96,
dlog fy, (Y]
—HNE| —

Ej

)
! l{ij;to}

)
)— (1—¢;)po(6;)

dlog po(6;)

00,
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where Y ]’ follows the baseline distribution fp, (y). Then

E(ﬂ | H_IT]
dy op]

- ZEnACd > (1= P)EAC) — ) (1—P)P,AD]

i#] i*]

+> PE;BCl+ Z PBD] + > PPBD)
i#] i=1 i¢j
[ n n

= - Z(l_ )Al : ZEilCi +Z 1—P 1 llAC

L i=1 i=1
[ n n

—|1> (1—pP)A;|-|Y_ PD] +ZP P)AD]
L i=1 i=1
[ n n

+|Y PBi| Y E/CH| - ZP,-EﬂBicg
L i=1 i=1 i=1

+ i PBD! + i PB;|- i PDj | — i PB.D;
, — i=1 i=1
— ZPB Z Al iEﬂCg‘FiPiDg
P ~ i=1
- Z PiEsACh + Z Pi(1— P)AD;
i=1
- Z P.E;B,C] + Z Pi(1 — P)BD]

n
= — Z PEy(A; +B;)C], + Z P;(1— P;)(A; + B;)D,
=1

i=1

— —ZE,AC +Z P;)AD]

n
— Y EiAC]
i=1

72



73

since A; = P;(A; + B;). On the other hand,

ol (Y!
E; = (1¢i)E(—Og6]Z( l))(1¢i)170(0i)
il

D, — (1 —¢i)po(6;) .ﬁlogpo(e,-)cﬂ
Pi 80,'[

dlog po(6;)
06;

Then

where Y/ follows the baseline distribution fy, (y).

ol
5 Z his (Yi)his (Y)CisCl iy no) + ) his(Y)hju(Y)) CisChliy o iy 20
BS alBt i=1 i#]
+ ) his(Y)CiD Ly o) lyy,—o) + ) hie(Y)DisCllyy,—o) Ly 0)
i#j i#j

n
i=1 i#]



74

Recall that E;; = E [h,s Iy, ¢0}] Denote E;;; = E [hls ; (Y,’)I{Yi;to}:l. Then

ol 0l T
E(aﬁs . W) - ZEtstClv j +ZEiSEffCiSCJl

i#]
- Z PECiDY + Y PiE;D;Ch

i#j i#j

n
+> PDiD}+ ) PiPD;D
i=1 i£]

n
= Z ElstCls Z ElSClS Z EllClt Z EisEitCisC,Y;
i=1
+ Z E;sCis Z PiDn — Z P,E;;C;;D};
Li=1 i=1 i

n T n n
> Eq«Cy| — ) PED;CL+) PD;D}
i=1 i=1 i=1
[ n n T n
+|> PDy|-|> PDy| —> PD;D]
Li=1 i=1 i=1

T
n n n n
> EiCis+ ) PDi||> EiCi+ ) PD;
i=1 i=1 i=1 i=1

n n
+) EiyCiCl — Y EiEqCiC],

n n
_ZPiEisCisD[T, _ZPiEitDlg —|—ZP 1— P;)D;D!
i=1 i=1

[ n
+ Z PiDjs
Li=1

Denote e;; = E [5 log fgi(Yi,)/agis:l and

810gf0i(Y,’,) alnggi(Yl.’)
eis = FE :
06;s 06;
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It can be verified that

dlog po(6;) dlog po(6:)

Eist - (1 - ¢i)eist - (1 - ¢l)p0(01) : 89 60
is it

Recall that

dlog po(6;)

Eis = (1= ¢i)eis— (1= ¢i)po(0i)—
(1 —=9i)po(6;) dlogpo(:)
Pis = P; 965 Cis

It can be verified that E;;C;; + P;D;; = (1 — ¢;)e;sC;s and

—E;E;C;sCl, — P,E;;C;;D}, — P,E;D;,C}, + P;(1 — P;)D;,D],

P5(6:) dlog po(8;) dlog po(6))
Pi aeis agtt

= (1—¢i)2[—€is€n+ ]C cl

Therefore we obtain the simplified formula:

n T

Z(l — ¢i)eiCi;

i=1

al ol .
E(%%) = lZ(l—(pi)eisCiS :

i=1

n

- Z( ¢1) elseltClSCl[ + Z ¢l elStClSCl[

i=1

_Z ¢, —¢i)po(6i)  Olog po(6;) dlog po(6))
1_¢1)P0( ) 89is 801'[

C;,C!

Note that there is no Dj; in the simplified formula. For many cases, e;; = 0 which further simplifies the

formula. Note that s = ¢ is allowed in the above formula. O



3.4.2 Fisher information of Hurdle regression models
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Theorem 3.3. Under regularity conditions, the Fisher information matrix of Hurdle Regression Mode

defined in section 3.2 is given by:

a o o . Al

Iy oy oy opT dy opr

oL oL o a . al o
F(ﬂ') —E 9B, dyT 9B, 6ﬂ1T B, 5[3;

oL o e ol oL

T By 6[3,{ ]

where
ol al =~ (1—¢i) , .7
El— —| = AjA;
(37 87T) ; ¢i
al ol (1—¢;) [6logfe( )} T
El=. = — A;C
(87’ (9,31T) Z 1— po(6 06;; i
n n T
ol ol 1—¢; 1—¢;
——] = —¢;Cis |- —¢;C;
((9,BS 8ﬁ,T) l; 1 — po(6;) ; 1 — po(6;) e
(1 —¢i)po(6:) [ 0Olog po(6;) te dlog po(6;)
is 591’: it 691’3

t T 0F
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where

1

A = (g7 (GTy)G; eR®
P—s () (G;7)Gi €
K, = i(gﬂ)'(GiTY)GiZ l_¢iAi
bi bi
dlog fo,(Y;)
hij(Yi) = TER
ij
G, = (hfl)'(BiTj ;)Bj; €RY
Po(6;)  dlogpo(6) .., & N
T,; = . - (h B B:)B;i € RY
’ 1— pol(6) 06;; () (BB, By <

Note that under regularity conditions, £ (0‘%’) = 0 and ¢;; = 0, while in general,
J

ol _ . -1/ i (1_¢i) alogft‘)i(Yi,)
E(a_ﬁj)Z(h] ) (BiTj j)Bljl—Po(oi)E[ 06; ]

i=1

Proof of Theorem 3.3: For Hurdle regression models,

() = Z log(¢i)1{y,—o) + Z log(1 — ¢i)1iy,20)

i=1 i=1

+ > log fo,(Yi)liyzop — Y _log [t — po(6)] 1iyu)
i=1

i=1



In order to simplify the notations, we let

A = (g7 (G]7)G; eR’
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l bi ' I bi
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E 9B, = ZCUE[}ZU I{Y;to}] ZT’J P;)
J i=1
= 50gf0-( Y;) Po(0;) 0log po(6;)
= WY (BIBIB i E| ——"""1y, — ¢
> 05y B | T |+ 2R TR g
"o (1—¢;) dlog fo,(Y/) dlog po(6;)
= oY) (BLB)B;; E 1y — = po(6;
Z( ;) (BB)) Ty 30, (vrzo}| 36, Pol(6))

=1

—1\/(pT
(hjl) (B,’j j)Bij

1 — po(6;)

i=1

_ 3 (1—¢1) E[alogfei(

00; j

Y/) ]

78



79

where Y/ ~ fp,, a baseline distribution. Note that if E [6 log fo.(Y/)/06; j] =ofori = 1,...,n, then
E(dl/0B;) =ofor j=1,....b.

The leading term of the Fisher information matrix (Equation 3.5) can be written as follows

oo oo . ol _o
dy yT Oy T dy opt
oo oL o .. oL _dl
B, oyT 9B, 9pT B, op!
E| P 1B, 1 OBy (3.6)
L 9By dyT 9B, 6B1T Py, BBbT |

We calculate these entries one by one. Note that matrix (Equation 3.6) is symmetric if / € C?, that

is, twice continuously differentiable.

ol ol

n
T D AA s+ ) AAT Ly gLy 20
i=1

i)
— ) AK yeqly—o— ) KAy, gLy 40

i*] i#]

n
+ ) KKy + ) KK 1,1y,

i=1 i#j



Since (1 — P;)A; — P;,K;, =oforeachi =1,

g9 9L\ _
dy oyt

ol
AC hi (Y,
dy 8[31 Z it

, n, it can be verified that

l{y #0} — Z A; C]lhjl( j)l{YﬁtO}l{Y_,-qﬁo}

i#j

- Z AT L rs0) = D AT yz0) 1y 50)

i=1 i#j
+ Z Kinjy(Y)Clly oLy 0y + D KTy —oliy,zo)
i#j i*j
Note that for Hurdle models
dlog fo,(Y;)
E[ha(Y) | = E (Tﬂl{wo})
1 — po(6;) 00 trjzol
N dlog fo,(Y) 19 ) (0_)810gpo(9j)
1—po(6;) 00 1—po(6;) 00

>

Ej
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where Y ]’ follows the baseline distribution fp, (y). Then
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since A; = P;(A; + K;). On the other hand,

1 — & 0log fo.(Y/ 1—¢; 0l 0;
Ell ¢l E( gfal( l)) ¢l po(ol) ngO( l)
1— pol(6;) 06; 1— po(6;) 08y
Powi) 610gp0(01) —1\/(pT
T, = . - (h BlB B
il 1_]70(01') 59;'1 ( 1 ) ( il j) il
Then
ol ol = (1—¢; dlog fo,(Y/
(2 )y ) [P
67 " i 1 — po(6:) 06;
where Y follows the baseline distribution fy, (y).
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Recall that E;y = E [h,s Iy, ¢0}] Denote E;;; = E [hls ; (Y,’)I{Yi;to}:l. Then
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Denote ¢;; = E [6 log fo.( Yl.’)/aél-s] and

[8logfg,.(Yi’) along’i(Yl‘,)
eis = E :

It can be verified that
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Therefore we obtain the simplified formula:

T

elS i

Z . iie.lc.t
aﬂ; 8ﬁt 1_Po ’ — 1—po(6) "

i Z — ¢i)po(0 _(910gp0(0[) e_alogpo(oi) 0log po(6;) 0log po(6;)
= 1= ol n T o6y " 86, 06 36

]c cl

. 1—¢; T . [ 1—¢; r T
o, Cis CiSC[ - | €is€i CisC,'
l._Zl 1—pol(6,) " ! Z 1 — po(6;) ' !

i=1
Note that there is no T;; in the simplified formula. For many cases, e;; = 0 which further simplifies the
formula. Note that s = ¢ is allowed in the above formula. O

Example 3.3. For zero-inflated Poisson (ZIP) regression, the pmf of the baseline distribution is fp(y) =

e 99" /y! withy = 0,1, .... Then dlog fy(y)/00 = y/6 — 1. If Y’ ~ fp, then

a 1 ’ ’
(DoY) B
06 6
Therefore, E (01/0B) = o for ZIP regressions. |

3.5 Significance Test for Model Coefficients via Bootstrap

LetS = {(x1,y1), (x2,32), - (X yn)}

1. Resample S with replacement to get S} = {(xﬁb),y(f') ), (x(zb), éb) ), - (x,(qb),y,gb))}

2. Refit the model to get 8?) = (@ff’), /H\Eb), - -@g)))

3. The (1 — @)% Bootstrap confidence intervals of 6; are (£

= fi‘_a/z), where & is the ’th sample

quantile of (95”, @;2), . -95.3) ).
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Here we used simple bootstrapped percentiles. More advanced bootstrapped confidence intervals

could be used such as in (Wu, 1986) (55).

Example 3.4. ZIP regression model (continued) The baseline distribution of Poisson distribution is
fily) = e 127 /y! with po(1) = e~ That is, it has only one parameter § = A with b = 1. In order to
calculate the Fisher information matrix of ZIP regression model, the needed quantities are listed below.

Note that s = ¢ = 1 in this case.

dlogful¥)) ¥/
00;s A
dlog po(6;)
e —1
591'5
O0log fo.(Y!
. — E g fo,(Y/) _
aeis
dlog fo,(Y/) Olog fo,(Y/) Y/ 1
. E i i —vyar| 2L — 1) = =
oo [ 9, 90 ] ‘”( ; ) x4
m|
Lemma 3.1. If Y’ follows Negative Binomial(r, p) with pmf %py(l —p),yef{o,1,2,...}, then

E[Y(Y +r)] = ¥(r)—log(1—p)

EY'®(Y +7) = lfrp [¥(r+ 1) —log(1 — p)]

where ¥(-) = I'’(-)/I'(+) is the digamma function.
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Proof of Lemma 3.1: From Example 2.7, we get E [P(Y’ +r)] = ¥(r) —log(1 — p) . Recall that

r(y) =[S ¢ e 'drand I (y) = [° £ 'e ' logdi for y > 0. Then

> I'(y+r) I'y+r)
>

EY' P +r)] = y:OyF(err) -r(y+1)r(r)py(1—p)’
_ (lr—(r;)a)r yi . fyl)! I''(y+7) (replace y withy + 1)
= % 3 %F’(y—i—r-i— 1)
=0
— p(lr(—_r)p)r i I;—j J:O P e log tdt
—o
— % Eo (i (l; t!)y e”’] e P Jog tdt
_ % J:o e P logtdr (let s = (1 — p)it)
_ W”)m) LOO e [log s —log(1 — p)] ds
_ m U:O s"e " log sds —log(1 — p) J:O s’e_sds}
- m [ (r+ 1) —log(1 — p)T'(r + 1)]
_ lfirp [P(r+1) —log(1—p)] (since I'(r + 1) = rI'(r))

Example 3.5. ZINB regression model (with flexible ») For zero-inflated negative binomial distri-

butions, the pmf of the baseline distribution with parameters 8 = (r, p) € (0,00) X [0, 1] is given by
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I'(y+r ) : ’
foly) = (1 = p)', y € {0,1,2,..} with po(6) = (1 — p)". Recall that E(Y’) = £ and

Var(Y') = # if Y ~ fo(y). Fori =1,...,nand 6; = (r;, pi),

01 ;
Oga—rf.at(y) = Y(y+r)—¥(r) +log(1—p)
dloghly) _ y  _n
opi Di 1= pi
ol 0;
Oga—i(’() = log(1—p;)
dlogpo(6:) _ __ni
api 1=pi

where ¥(-) = I'’(-)/I'(-) is known as the digamma function. Recall that I'(r + 1) = rI'(r) and ¥ (r +

1) = ¥(r) +r~'. According to Lemma 3.1, it can be verified that if Y ~ NB(r;, p;), then

[810gf01(Y,'/)—
8r,- ]
[810gf0,(Yi/)—
€ip = ——| = O
opi ]
>610gf9i(Yi’) alongi(Yi,)— ,
ein =E o : o = E[?(Y/ +r)]l —llog(1 — pi) — (r))”
alog fo,(Y!) dlog fo,(Y))] 1
o =€y = E or : op; = = p;
ers — E >610gf0i(Yi’) ) 810gf0,-(Yi,)— . ri
22 dpi api | pili—pi)?

Since an explicit formula of E [?’Z(Yi’ + rl-)] is not available, we calculate it numerically. That is, for
eachi=1,...,n, wesimulate Y/,..., Y/ iid~NB(r;, p;), where m is a predetermined sample size, for

example, m = 1000. Then E [&”Z(Yi’ + ri)] is estimated by m™" ) )" V(Y] + ;). m]
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3.6 Comparison between Fisher-Information-Based and Bootstrapped Confidence Intervals

In this section, we perform two simulation studies to examine the parameter estimation of ZIP and

ZINB (r is flexible) regression models, implemented in R Studio 1.3.959.

o ZIP Regression: Let Y; be the ZIP outcome of interest for the i participant. Also, let x;; =1
and let x;,, x5, x;, be additional covariate desired in regression model where they generated from
a standard normal distribution. The true parameters are ¥ = (—2.1,0.5,—0.2,0.7)7, and 8 =
(0,—0.9,0.11,1.19)T. We assign a logit link function g(¢;) = logit(¢;) = log %’@ = X;"y, and

a log link function to A; > 0;2(4;) = log(4;) = X,”B.

Based on 500 simulations in section 3.5, the 95% bootstrap confidence intervals and Fisher in-
formation matrix confidence intervals are given in Table VI. Based on the simulation study,
the bootstrap and Fisher-information confidence intervals are very similar. However, the Fisher-
information confidence intervals are more symmetric about the true value in general especially
for y,. The true value of vy, is -0.20 and the bootstrap confidence interval is (-0.0131, -0.2205),
it’s clear that -0.20 is not in the center of the Bootstrap confidence interval. On the other hand, the
Fisher-information confidence interval is (-0.1225, -0.3358) where -0.20 is exactly in the center

since the mle in this case is fairly accurate.

o ZINB Regression: Let Y; be the ZINB outcome of interest for the i participant. Also, let x;; =1
and let x;», xi3, X4 be additional covariate desired in regression model where they generated from
a standard normal distribution. The true parameters are y = (—2.5,0.30, —0.20,0.50)7, B, =

(—0.20,—0.85,0.11,—0.16)7, B, = (—0.30,—0.53,0.15,0.30)7 .
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We assign a logit link function g(¢;) = logit(¢;) = log %’@ = X;"y, alog link function h, (r;) =
log(r;) = X" By, and logit link function h (p;) = logit(p;) = log = X' Bs.

Based on 500 simulations in section 3.5, the 95% bootstrap confidence intervals and Fisher in-
formation matrix confidence intervals are given in Table VII. Based on the simulation study,

the Fisher-information confidence intervals are shorter than the bootstrap confidence intervals in

general.

The true value of Sy, is -0.20 which is a significant negative value. However, the bootstrap con-
fidence interval of S8y, is (-0.311, 0.040) which includes 0. The Fisher-information confidence

interval is (-0.259, -0.177) which is more accurate than the bootstrap confidence interval.

In conclusion, we prefer Fisher-information-based confidence intervals when it is available. Nev-
ertheless, when Fisher information matrix is not available due to intensive computation involved
or the lack of explicit formula, or when sample size is relatively small, bootstrapped confidence

intervals provide us a feasible solution.
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TABLE VI: ZIP REGRESSION: BOOTSTRAP CONFIDENCE INTERVAL VS. FISHER INFORMA-
TION MATRIX CONFIDENCE INTERVAL

Parameter | True Value | Bootstrap Cl Fisher-information CI
Confidence Interval | Length | Confidence Interval | Length

Yo 2.1 (-2.419, -1.959) 0.46 (-2.385,-1.951) 0.434
Y1 0.50 (0.395,0.614) 0.219 | (0.400, 0.668) 0.268
Y2 -0.20 (-0.221, -0.013) 0.208 | (-0.336, -0.123) 0.213
Y3 0.70 (0.653, 0.996) 0.343 | (0.613,0.962) 0.349
Bo 0 (-0.012, 0.046) 0.058 | (-0.029, 0.039 0.068
B -0.90 (-0.910, -0.879) 0.031 | (-0.913,-0.882) 0.031
B 0.11 (0.099, 0.129) 0.03 (0.097, 0.127) 0.03
B 1.19 (1.170, 1.201) 0.031 (1.175, 1.208) 0.033

TABLE VII: ZINB REGRESSION: BOOTSTRAP CONFIDENCE INTERVAL VS. FISHER INFOR-
MATION MATRIX CONFIDENCE INTERVAL

Parameter | True Value | Bootstrap Cl Fisher-information CI
Confidence Interval | Length | Confidence Interval | Length

Yo -2.5 (-3.231,-1.881) 1.35 (-2.997, -2.141) 0.856
Y1 0.30 (0.198, 0.381) 0.183 | (0.246, 0.513) 0.267
Vs -0.20 (-0.391, -0.059) 0.332 | (-0.403, -0.064) 0.339
Y3 0.50 (0.431, 0.620) 0.189 | (0.435, 0.668) 0.233
Boi -0.20 (-0.311, 0.040) 0.351 (-0.259, -0.177) 0.082
B -0.85 (-0.910, -0.774) 0.136 | (-0.871, -0.838) 0.033
Bai 0.11 (0.087, 0.201) 0.114 | (0.084, 0.128) 0.044
B -0.16 (-0.188, -0.125) 0.063 | (-0.172,-0.136) 0.036
Boz -0.30 (-0.458, -0.192) 0.266 | (-0.419, -0.282) 0.137
Biz -0.53 (-0.587, -0.416) 0.171 (-0.561, -0.446) 0.115
B 0.15 (0.090, 0.266) 0.176 | (0.139, 0.219) 0.08
B3> 0.30 (0.202, 0.322) 0.12 (0.298, 0.346) 0.048




CHAPTER 4

APPLICATION TO INSURANCE DATA

4.1 Introduction: Modeling Insurance Claim Data

The prediction of the number of future claims is one of the major interests of insurance companies.
It is challenging to model the insurance data due to highly right-skewed distribution and a large point
mass at zero.

Poisson and negative binomial regression have been widely used for fitting count data. In the in-
surance area, for examples, Antonio et al. 2010 (56) used Poisson distribution to model the number of
claims. David et al. 2015 (57) analyzed auto insurance claim data using Poisson and negative binomial
models. Aitkin et al. 2005 and Renshaw 1994 (58; 59) fitted Poisson regression to data sets of U.K. mo-
tor claim data. Bartoszewicz 2005 (60) discussed Poisson and negative binomial and conclude that
negative binomial regression with log link is more flexible comparing to the Poisson regression model.
Lambert 1992 (32) proposed ZIP as a new technique for modeling sparse data with an application for
modeling number of defects in manufacturing, since then ZIP has been applied to many sparse count
data including insurance claim data and healthcare data. For example, Lee et al. 2002 (61) used ZIP
for modeling young driver motor vehicle crashes. Yip et al. 2005 (62) suggested several zero-inflated
distributions for insurance claim data. They showe that zero-inflated models provide a better fit than the
regular regression models. Mouatassim et al. 2012 (63) applied zero-inflated models to analyze private

health insurance data. They show that ZIP regression performs better that Poisson model.

92
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In this chapter, we aim to analyse the relationship between the number of claims and some covariates
such as vehicle age, vehicle type, driver gender, etc . For example, questions like “Are bigger cars more
likely to be damaged in an accident?” and “Do teenagers cause significantly more accidents than adults?”

frequently arise and need an answer.

4.2 Model Selection

Akaike information criterion (AIC) and Bayesian information criterion (BIC) have been widely used

in the literature for model selection purpose (see, for example, (64), for a good review).
AIC = —2loglik + 2d
For Logistic Regression Model AIC is given by:
AIC = _Wz-loglik—kz‘%
The Bayesian information criterion (BIC) is given by:
BIC = —2 - loglik + (logN) - d

4.3 Parameters Estimation

We applied our zero-inflated and hurdle regression model the dataset “dataCar”. The parameters are

estimated using our maximum likelihood estimation (MLE) method. Table X, and Table XI represent
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TABLE VIII: POSSIBLE LINK FUNCTIONS FOR ¢

Name | Link function: n = g(¢) o=g"'(n)
logit log(¢/(1 — ¢)) exp(n)/(1 + exp(n))
probit D' () D(n)

cloglog log(—log(1 — ¢)) 1 —exp(—exp(n))

the parameters estimates and their corresponding loglikelihood, AIC, and BIC with three link functions

for the parameter ¢. Table VIII has the link functions and the corresponding inverse.

4.4 Data set

We use the data set “dataCar” in R package “insuranceData”. The data consists of 67,856 one-year

vehicle insurance policies issued in 2014-2015.

Number of Claims, N=67856
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Figure 3: The percentage of total zero claims occurrences are 93.2%.



TABLE IX: NUMBER OF CLAIMS IN THE DATASET
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Occurrence | Frequency | Percentage
0 63,232 93.18%
1 4,333 6.39%
2 271 0.40%
3 18 0.03%
4 2 0.00%
Total 67,856 100%

Table IX represents the response variable, which is number of claims. The table shows that the data
is sparse; more than 93% of the response variable are zeros. Figure 3 shows that the data is highly right
skewed. The mean of the data is 0.0728, and variance is 0.0773 which is greater than the mean.

In our application to Insurance Claim Data several zero-inflated and Hurdle regression models were
built. Our Zero-Inflated Regression Models (ZIRM) not only cover currently available zero-inflated
regression models, such as ZIP, ZINB with fixed r, ZIBB with constant prior parameters, but also
include new regression models, including ZINB with flexible r, ZIBB with flexible prior parameters,
and ZIBNB. We also build the corresponding Hurdle Regression Models for zero-altered responses.
With the enriched model candidates, we perform model selection based on AIC and BIC criteria. We
assign three different candidate link functions (logit, c-log-log, and probit) to the parameter ¢;.

We conclude that ZINB with flexible r and probit link function for ¢ has the smallest AIC comaring
to some other regression models. In addition, ZINB with flexible r using probit link function for ¢ has
the smallest BIC. To the best of our knowledge, ZINB with fixed r is used in the literature for modeling

sparse data. However, ZINB with flexiable r is not included in the literature.



TABLE X: AIC USING DIFFERENT LINK FUNCTIONS FOR ¢.
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Distribution logit c-log-log | probit

Hurdle Poisson(HP) 35078.2 | 53078.2 | 42449.1
Hurdle Negative Binomial(HNB) 34847.1 | 53142.1 | 42354.6
Hurdle Beta Binomial(HBB) 34938.2 | 53233.3 | 42445.8

Hurdle Beta Negative Binomial( HBNB) 35093.4 | 53357.1 4298.6
Zero-inflated Poisson(ZIP) 34742.1 | 34737.4 | 34743.6
Zero-inflated Negative Binomial, r is fixed(ZINB) | 34722.7 | 34848.1 34721
Zero-inflated Negative Binomial(ZINB) 34745.6 | 34716.8 | 34714.4
Zero-inflated Beta Binomial(ZIBB) 34729.6 | 34744.1 | 34721.6
Zero-inflated Beta Binomial(ZIBB), n is fixed 34849 34898 34887.5
Zero-inflated Beta Binomial(ZIBB), fixed «, 8 35163.9 | 35008.1 | 34785.2
Zero-inflated Beta Negative Binomial(ZIBNB) 34935.1 | 34819.8 | 34878.1
TABLE XI: BIC USING DIFFERENT LINK FUNCTIONS FOR ¢.

Distribution logit c-log-log | probit

Hurdle Poisson(HP) 35151.2 | 53381.7 | 425129

Hurdle Negative Binomial(HNB) 34956.5 | 53251.6 42464.1
Hurdle Beta Binomial(HBB) 35084.2 | 53379.3 42591.8

Hurdle Beta Negative Binomial(HBNB) 35239.4 | 53408.5 | 42598.2
Zero-inflated Poisson(ZIP) 34815.1 | 348104 34816.3
Zero-inflated Negative Binomial, r is fixed(ZINB) | 34804.8 | 34930.22 | 34802.89
Zero-inflated Negative Binomial(ZINB) 34855.1 | 34826.3 | 34791.04
Zero-inflated Beta Binomial(ZIBB) 34875.6 | 34938.4 | 34867.56
Zero-inflated Beta Binomial(ZIBB), n is fixed 34967.6 | 34954.7 34987.8
Zero-inflated Beta Binomial(ZIBB), fixed «, 8 35255.2 | 35141.5 34876.4
Zero-inflated Beta Negative Binomial(ZIBNB) 34887.1 | 34974.8 34908.6




CHAPTER 5

CONCLUSION

In this thesis, we develope a statistical procedure for identifying the most appropriate probabilistic
models for discrete sparse data. Our procedure is based on the modified KS test for discrete distributions
with unknown parameters. We developed a general approach for estimating the parameters for a large
class of zero-inflated models and Hurdle models, such as ZIP, ZINB, ZIBB, ZIBNB, PH, NBH, BBH,
and BNBH. We also proposed a general likelihood ratio test based on Neyman-Pearson lemma for
choosing the best model from multiple candidate ones. Based on the a real dataset from a metagenomics
experiment, we found out that zero-inflated Beta-Binomial, zero-inflated Beta Negative Binomial, and
the corresponding Hurdle models (i.e. ZIBB, ZIBNB, BBH, BNBH) are more appropriate for modeling
the sparse omics data comparing to the commonly used Poisson and Negative Binomial in the literature.

We develop a new regression model approach for modeling Hurdle models and zero-inflated models;
called Hurdle Regression Model (HRM), and Zero-inflated Regression Models (ZIRM). Our approach
assumes the existence of link functions g and A, ..., iy such that g(¢;) = Gy and h;(6;;) = Bl.Tjﬁ 7

i=1,...,mj=1,...,b, where y,8,,..., B, are regression coefficients, G; = (ri(x4), ..., rs(x;))T

€
R* and B;; = (g:(x;),.. .,qj,j(xi))T € R' are the corresponding predictors, r;’s and gj;’s are known
functions.

Our ZIRM model is not only cover currently available zero-inflated regression models, such as

ZIP, ZINB with fixed r, ZIBB with constant prior parameters, but also include new regression models,

including ZINB with flexible r, ZIBB with flexible prior parameters, and ZIBNB. We also build the cor-
97
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responding Hurdle Regression Models for zero-altered responses. With the enriched model candidates,
we perform model selection based on AIC and BIC criteria. Our application to Insurance Claim Data
shows that ZINB with flexible r is more appropriate than any others.

For general zero-inflated and Hurdle regression models, we derive and simply its general form of
Fisher information matrix and then perform significance tests for variable selection. We compare the
confidence intervals based on the Fisher information matrix with the ones built by bootstrapping. The
results are consistent with each other. Compared with the bootstrapping solutions, the variable selection
based on Fisher information matrix is apparently more efficient. Nevertheless, we suggest the use of
bootstrapping confidence intervals when the sample size is moderate or small.

In Section 3.4, the definition of Fisher information matrix was described under the regularity con-
ditions, which include exchangeability of the first and second differentiations and the integral sign. The

Fisher information matrix under more general conditions is part of our future work.
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