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SUMMARY 

 

Most definitions for the Smart Cities paradigm have one common characteristic: being 

resilient. Transportation is associated with all aspects of urban life, including recreation, 

education, and business. Ensuring an efficacious, accessible, and integrated transportation 

system is vital to building resilience in our cities. Reduction in the transportation system's 

performance, as the heart of urban life, may compromise the city’s operations across 

several sectors, leading to large and costly disruptions. A resilient transportation system is 

crucial to avoid such incidents, and it can provide accessible service to the public even 

during disruptions, emergencies, accidents, and special events 

Public transit disruption is becoming more common across different transit services 

and can have a destructive influence on the resiliency of the transportation system. Even 

though transit agencies have various strategies to mitigate the probability of failure in the 

transit system by conducting preventative actions, some disruptions cannot be avoided 

because of their either unpredictable or uncontrollable nature. Utilizing recently collected 

data of transit users in the Chicago Metropolitan Area, the current study analyzed how 

transit users respond to unplanned service disruption and disclose the factors that affect 

their behavior. The results of the analysis reveal that a wide range of factors, including 

socio-demographic attributes, personal attitudes, trip-related information, and built 

environment, are significant in passengers’ behavior in case of unplanned transit 

disruptions. Our findings provide insights for transportation authorities to improve the 

transit service quality in relation to user satisfaction and transportation resilience. These 

insights help transit agencies to implement effective recovery strategies. 



 xii 

We also focused on another threat to public transit and the transportation system, 

which is the COVID-19 pandemic. In this study, we investigated risk perceptions toward 

using shared mobility solutions during the pandemic. It is vital for policymakers to 

accurately characterize the different types and degrees of behavioral changes among 

various social groups. Risk perception of using various modes is one of the major factors 

which can substantially explain individuals’ travel behavior changes during a health crisis. 

This study focused on public transit and ridesharing services since these options are the 

most widespread forms of shared mobility in the current transportation system. We utilized 

a recent multidimensional travel-behavior survey data conducted in the Chicago 

Metropolitan Area, focusing on the impacts of the COVID-19 pandemic on individuals’ 

travel behavior. According to the results, a wide range of explanatory variables is found to 

be significant in the risk perception model, including socio-demographic variables, built 

environment, health condition, virus spread, and the restriction factor. Our findings provide 

insights into the influential factors on being risk-averse versus risk-taker with respect to 

use shared mobility services during the pandemic. The findings assist policymakers in two 

main directions. First, the results showed that minority groups, including African 

Americans and extremely low-income families, were more at risk of exposure to the novel 

coronavirus while using shared mobility options. Such findings highlight the importance 

of achieving “equity” in access to a safe transportation system, especially during a health 

crisis such as the COVID-19 pandemic. Second, the results revealed that risk perception 

behaviors might vary based on places’ spatial characteristics, where individuals reside. 

Besides, the spread of the novel coronavirus might also affect the risk perception behavior 

in each neighbor.  
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1 INTRODUCTION 

1.1 Background 

The concept of “Smart Cities” is gaining growing attention in the world. There is no unique 

definition for the Smart Cities paradigm; however, being sustainable and resilient as characteristics 

of a smart city are in common in most definitions (Allam and Newman 2018). Recently, the 

development of Information and Communication Technologies (ICTs) provides an opportunity to 

make the critical infrastructure components and services of a city more intelligent, interconnected, 

and efficient, resulting in more sustainable and resilient cities.      

Transportation is associated with all aspects of urban life, including recreation, education, 

and business. Ensuring an efficacious, accessible, and integrated transportation system is vital to 

sustaining social and economic development. Reduction in performance of transportation system, 

as the heart of urban life, may compromise the city’s operations across several sectors, leading to 

large and costly disruptions (Arup and Siemens 2015). A resilient transportation system is crucial 

to avoid such incidents, and it can provide accessible service to the public even during disruptions, 

emergencies, accidents, and special events (Transportation Systems Resilience Section 2017).  

Among all modes of transportation, public transportation plays a crucial role in evacuation 

and other emergency response measures. Thus, keeping the transit system operational or able to 

quickly recover when an incident occurs is critical for the entire community’s resiliency (Golshani 

et al. 2019). Enhancing the resiliency of public transportation systems can also encourage people 

to use this green mobility option more frequently, which is aligned with the Smart Cities paradigm.  

In the past several years, a sizable number of studies have been published that explore the 

dynamic and evolving state of the practice in the transportation sector related to the resiliency of 

public transit system concerning natural disasters related to extreme weather events (FTA 2017; 
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Amekudzi et al. 2013; Golshani et al. 2019). Such natural disasters comprise temperature extremes, 

severe storm events and coastal storms, sea-level rise, winter storms, earthquakes, wildfires, and 

droughts and dust storms (National Academies’ Transportation Research Board; 2017). However, 

unplanned transit disruptions due to non-disaster events (e.g., crashes, system failure, cyber-attack) 

and health disasters (e.g., the COVID-19 pandemic) as the two significant threatening incidents to 

the resiliency of public transit are overlooked.  

1.2 Study Framework  

Public transportation has long been a matter of concern in many cities around the world. Offering 

affordable, efficient, and green service to the public, the transit infrastructure of every municipality 

acts as the veins of its transportation system. The Chicago metropolitan area is not an exception, 

where the Chicago Transit Authority (CTA) provides service to over 3.5 million riders in the city 

of Chicago and 35 suburbs surrounding the city (Chicago Transit Authority 2017). More 

importantly, building resilience into transportation systems is crucial at all levels of federal, state, 

and local government agencies (Baylis et al. 2015). Thus, this study focuses on two incidents 

threatening the resiliency of public transit and urban mobility: (1) Transit disruptions and (2) health 

disasters (e.g., the COVID-19 pandemic). The first step to mitigating such events is to investigate 

citizens’ behaviors in response to those incidents. 

 To do so, we characterize the transit users’ behavior during transit disruption in Chicago 

and discuss some potential solutions to mitigate the impacts of disruptions. Focusing on the 

COVID-19 pandemic as one of the major 21st-century health threats, we shed light on the dramatic 

transit ridership decline and explore the perceived risk of using this mobility option among people.  
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1.3 Transit Disruptions 

Maintaining a satisfactory quality of service is a major challenge ahead of having the transit 

options adopted by as many customers as expected by the planning agencies. Even though transit 

agencies, including CTA, have various strategies to mitigate the possibilities of service disruption, 

some disruptions cannot be avoided due to their either unpredictable or uncontrollable nature. For 

instance, consider the situation that the normal operation of a bus line is interrupted due to a road 

closure caused by a severe traffic accident along the way or failure of a traffic signal. Such 

incidents can cause unpredictable difficulties to maintain the quality of service by the affected 

transit line, and thereby, a service disruption.  

Service disruptions can cause severe damage to transit users’ experience, which calls for 

taking a more in-depth look into the transit riders’ expectations of the system. In a study in 

Melbourne, Currie and Muir (2017) observed that the rail disruption has the potential to increase 

the level of dissatisfaction of passengers by up to fourfold based on the recovery conditions. Hence, 

it is of great interest for transportation authorities to understand transit users’ decision behavior 

during a disruption in order to implement efficacious recovery strategies.   

Transit disruptions can be classified into two groups of pre-planned and unplanned 

disruptions. Pre-planned disruptions occur due to disruptive activities planned ahead of time such 

as labor strikes and road or rail closures for maintenance activities. On the other hand, unplanned 

disruptions are mostly caused by unpredictable or uncontrollable incidents such as natural disasters 

(e.g., earthquakes, storms, blizzards, and floods), infrastructure failures (e.g., I35W Mississippi 

River bridge collapse), accidents, and terrorist attacks. Studies on their decision behavior in case 

of unplanned disruptions in still scarce, although transit users’ response behavior in case of pre-

planned disruptions has been extensively investigated in the literature. In this study, we focus on 

the unplanned disruptions which are not caused by disasters (e.g., terrorist attack, fire), since a 
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disaster might impose drastic disruptions to the whole city and needs to be studied from a different 

perspective, similar to Golshani et al. (2019). 

We breakdown the decision-making process of transit users during a non-disaster, 

unplanned disruption into two major phases. First, the passenger would probably wait for a while 

before starting to think about an alternative solution. Second, reaching a waiting threshold, he/she 

would decide about an alternative solution, which can be canceling the trip, changing the 

destination, using another travel mode to reach the planned destination, etc. Obtaining a profound 

understanding of both of these aspects is critical for transportation authorities to devise and 

implementing strategies to recover from service disruptions (TYT Lin 2017). 

The analyses reported in the current research are based on an intercept SP-RP survey which 

was designed and conducted in the Chicago metropolitan area, within which participants were 

asked to provide detailed information about their ongoing transit trips. They were also faced with 

a hypothetical scenario in which the transit service was disrupted, and they were asked to indicate 

how long they would be willing to wait for the service to be restored before planning for an 

alternative solution. A unique aspect of this web-based survey is that it is fairly comprehensive 

with respect to the transit options taken into account. The fact that the respondents are among users 

of both buses and rail services enables us to analyze the behavioral differences between the two 

groups.  

Focusing on the first phase, the first portion of the current research (presented in section 

2.2) aims to add to the literature by exploring transit users’ waiting tolerance during unplanned 

service disruptions and disclose the factors that affect their behavior. In order to model the waiting 

tolerance, interval-censored accelerated failure time (AFT) models with four different distribution 

alternatives (i.e., Exponential, Weibull, Log-logistic, and Log-normal) are developed, compared, 
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and the factors influencing the survival functions of the waiting tolerance are identified. Focusing 

on the second phase, furthermore, we estimated a random parameters multinomial logit model 

considering all the potential choice alternatives at the time the survey was designed (i.e., canceling 

the trip, changing the destination, or switching to other travel modes such as a personal vehicle, 

taxi, or a ride-sharing services) to gain a comprehensive understanding of people’s decision 

behavior. 

1.4 Public Transit and the COVID-19 pandemic 

 The novel coronavirus (SARS-CoV-2) has caused upheaval around the world and has caused our 

daily routines to change quickly. The World Health Organization (WHO) reported more than 60 

million confirmed cases and more than 1.4 million deaths globally as of November 26th, 2020 

(WHO 2020). Governments around the world are striving to fight against the pandemic by 

substantial diagnosis tests and enacting restrictive guidelines, including stay-at-home and social 

distancing. In the U.S., despite all preventive policies implemented so far, the cases are still 

increasing at an alarming rate, and the situation is getting worst in various states across the country. 

On March 14, 2020, the Illinois Department of Public Health (IDPH) announced the first 

confirmed COVID-19 case in the state (IDPH 2020). Currently, Illinois is among the four states 

with the highest number of COVID-19 cases, with 685,467 confirmed cases and 12,440 deaths as 

of November 26th, 2020 (Worldometer 2020).  

COVID-19 spreads from person to person through sneezing, coughing, or touching 

contaminated surfaces. According to the Harvard Medical School, the virus can be airborne for up 

to several hours and can live on various surfaces for multiple days (Harvard Medical School 2020). 

Thus, individuals can be at risk of exposure to it when visiting different locations to fulfill their 
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daily activities (e.g., workplace, school, shopping center, bar and restaurant, and hospitals) or when 

using different modes of transportation, especially the ones which are shared with other passengers.   

The pandemic provokes public fear, which may result in changes in travel behavior, and 

more specifically, alterations in the activities people engage in and transportation modes they use 

to reach their activity locations. One of the major factors which can substantially explain people’s 

behavior during a health crisis (e.g., COVID-19 pandemic) is the perceived risk of performing 

various activities (Hotle, Murray-Tuite, and Singh 2020). It is imperative for transportation 

authorities to properly identify the different types and degrees of behavioral changes among 

various groups of society. In this sense, investigating the inter-personal variations in the perceived 

risk of exposure to COVID-19 is the first step in understanding the adjustments people may make 

in their travel behavior to protect themselves, including canceling their trips, avoiding public 

transit, and avoiding public places, among others (Hotle, Murray-Tuite, and Singh 2020). These 

adjustments can certainly impact the behavioral process of activity planning and scheduling, 

destination choice, mode choice, and eventually traffic congestion patterns and emissions.  

 Concrete evidence could be found on the impacts of the viral pandemics and other public 

threats alike in the past. However, the impacts of the recent COVID-19 pandemic on travel 

behavior are relatively understudied. Among the limited number of studies on the impacts of 

COVID-19, we can refer to (Ito, Hanaoka, and Kawasaki 2020; Teixeira and Lopes 2020; Hotle, 

Murray-Tuite, and Singh 2020; Sobieralski 2020; Bucsky 2020; De Vos 2020). Although these 

studies are informative and provide invaluable insights into the changes in performing various 

activities and use of different modes, characterizing individuals’ risk perception due to the 

COVID-19 pandemic has yet to be investigated. The present study is thus designed to investigate 

the risk that individuals perceive while using public transit and ridesharing services (as the 



 7 

widespread types of shared mobility solutions) during the COVID-19 pandemic. Early evidence 

highlights the vital role of shared mobility, and more importantly, public transit, in economic 

recovery after the pandemic (Sifuentes 2020).  

1.5 Dissertation structure 

The rest of the dissertation is organized as follows. Chapter 2 reviews the earlier studies on transit 

users’ disruption behavior and the impacts of COVID-19 on transport mobility. Chapter 3  

elaborates on the first phase of transit user’s response (i.e., the waiting tolerance) to service 

disruptions. This is followed by Chapter 4, which provides the analysis of mode choice decisions 

for transit users whose service is disrupted (i.e., Phase II). Chapter 5 is devoted to characterizing 

the perceived risk of exposure to the COVID-19 pandemic while riding with public transit and 

ridesharing services. Finally, this work is concluded in Chapter 6 by providing a summary of 

findings as well as several directions for future research.   
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2 LITERATURE REVIEW 

2.1 Transit Disruptions 

The research on pre-planned or unplanned transit disruptions is relatively new but has been 

receiving growing attention over the past few years. The literature on transit service disruption 

consists of multiple research streams focusing on its various aspects, including transit users’ 

response behavior, transportation network conditions, transit ridership, mitigation strategies, the 

effect of information provision, and service recovery duration. Table 2-1 presents a summary of 

previous studies on these aspects. With respect to the focus of the current study, a review of studies 

on transit users’ response behavior during unplanned transit disruptions is presented in what 

follows. 

As one of the very few studies focusing on transit users’ behavior during unplanned transit 

disruptions, Murray-Tuite et al. (2014) explored the long-term impacts of the deadly Metrorail 

accident, which occurred in June 2009 in Washington, D.C., on users’ travel behavior. Focusing 

on those who had used the Metrorail in the period of six months before the accident, the authors 

investigated potential changes in users’ travel mode and seat location decisions as a result of the 

incident. They found out that factors such as gender, transit type, number of delayed services in 

the past month, and number of children in the household could affect transit users’ decision 

regarding either trip mode or seat location. While the results are fairly informative, this study has 

limited ability to provide more generalized insights due to its incident-based nature. 

In another study, Currie and Muir (2017) conducted an online revealed preference (RP) 

survey to understand rail passengers’ behavior, perceptions, and priorities in response to unplanned 

urban rail disruptions in Melbourne, Australia. Utilizing a statistical analysis approach, the authors 

found that system’s ability to quickly recover after the incident is an important factor in rail users’ 
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response behavior. Moreover, the authors observed that experiencing unplanned rail disruptions is 

highly associated with users’ level of dissatisfaction. Interestingly, the authors also reported that 

more than 70% of rail users would wait for either resumption of the disrupted service or arrival of 

shuttle bus replacements. 

Most of the reviewed studies have used RP surveys to collect required data for their 

analysis. RP surveys typically suffer from several issues such as lack of variation in data to study 

all variables of interest and potential strong correlation between explanatory variables (Kroes and 

Sheldon 1988). Due to limitations of RP surveys, some scholars suggested use of stated preference 

(SP) surveys to reveal transit users' behavior during service disruptions. In an SP survey, 

respondents are presented with one or multiple hypothetical scenarios and are asked to indicate 

their decisions when facing such a situation in the real world. Conducting an SP survey from train 

passengers in Klang Valley, Malaysia, Bachok (2008) focused on modal shift behavior of rail users 

due to a service disruption. In this study, train passengers were asked to choose an alternative 

among a set of provided options, including other trains, shuttle bus, private vehicles, and wait for 

the restoration of the rail system in a hypothetical scenario. 

Similarly, Fukasawa et al. (2012) investigated the effect of providing information such as 

estimated arrival time, arrival order and congestion level on passengers’ modal shift behavior in 

response to unplanned transit disruption using a data from an SP survey. They found that train 

users, who have access to the information, generally have a higher tendency of shifting to other 

trains in comparison with those without access to the information. In contrast, Bai and Kattan 

(2014) conducted an SP survey on light rail transit passengers in Calgary, Canada, and found out 

that respondents without access to the information concerning possible recovery period have more 

willingness to switch their travel mode. 
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SP surveys might not necessarily represent transit users’ behavior in real transit disruption 

incidents. One approach to address such issues is to combine RP and SP surveys. As an example 

of this approach, Lin (2017) proposed a combined RP-SP survey to analyze rail users’ behavior in 

response to a subway disruption in the Toronto area. In the survey, the RP section collected 

information about respondents’ last experience with unplanned rail disruptions. Further, in the SP 

section, several hypothetical disruption scenarios were included in which respondents were asked 

to indicate their response to the incident such as canceling the trip or switching to other available 

modes. Focusing on subway commuters, the authors found that household income, age, travel cost, 

waiting time, the length of delay, weather condition, trip purpose, and being frequent rail user 

affect transit users’ behavior during subway service disruptions.   

Previous studies provide valuable insights into transit users’ preferences regarding 

alternative options during unplanned transit disruptions. To the best of our knowledge, there is yet 

no study focusing on transit users’ waiting tolerance before starting to think about alternative 

options when an unplanned disruption occurs. Furthermore, while the literature is mostly focused 

on one specific transit mode, this study is designed to consider the entire transit system in the 

Chicago region. In addition, as an improvement to the recall SP-RP survey conducted by Lin 

(2017), we have designed a new SP-RP survey in which the respondents are intercepted while 

waiting in the transit stations. The results of such surveys can be more reliable than recall surveys 

particularly if they are conducted during the trip (Sudman and Bradburn 1973). The details of our 

conducted survey are fully described in Auld et al. (2018) and briefly presented in the following 

sections.  



 11 

Table 2-1 Literatures on different aspects of transit disruption 

Study 
Geographical 

context 

Disruption 

type a  Study method  Research focus 

P
re

-p
la

n
n

ed
 

U
n

p
la

n
n

ed
 

 

D
is

cr
et

e 
ch

o
ic

e 
an

al
y

si
s 

S
ta

ti
st

ic
al

 a
n

al
y

si
s 

Q
u

al
it

at
iv

e 
an

al
y

si
s 

P
ro

b
ab

il
is

ti
c 

an
al

y
si

s 

S
im

u
la

ti
o

n
 

C
o

m
p

le
x

 n
et

w
o

rk
 

an
al

y
si

s 

S
u

rv
iv

al
 a

n
al

y
si

s 

M
at

h
em

at
ic

al
 

p
ro

g
ra

m
m

in
g

 

L
it

er
at

u
re

 r
ev

ie
w

 

 

N
et

w
o

rk
 c

o
n

d
it

io
n

 

T
ra

n
si

t 
ri

d
er

sh
ip

 

M
it

ig
at

io
n
 

In
fo

rm
at

io
n

 e
ff

ec
t 

S
er

v
ic

e 
re

co
v

er
y

 

d
u

ra
ti

o
n
 

U
se

rs
 ‘

re
sp

o
n

se
 

b
eh

av
io

r 
U

se
rs

 ‘
w

ai
ti

n
g

 

to
le

ra
n

ce
 

(Company., Authority., and 

Zimmermann. 1967) 
New York City, U.S. ×  

 
 ×        

 
     ×  

(Crain and Flynn 1975) Los Angles, U.S. ×    ×              ×  

(Blumstein and Miller 1983) Pittsburgh, U.S. ×    ×              ×  

(N.Job A. van Exel and Rietveld 

2001) 
Netherlands ×  

 
        × 

 
     ×  

(Walker, Snowdon, and Ryan 2005) New Zealand × ×         ×     ×     

(Lo and Hall 2006) Los Angles, U.S. ×    ×         ×       

(N.J.A. van Exel and Rietveld 2009) Netherlands ×   ×               ×  

(Zeng, Durach, and Fang 2012) Munich, Germany × ×         ×     ×     

(Murray-Tuite, Wernstedt, and Yin 

2014b) 
Washington D.C.  × 

 
×         

 
     ×  

(Pender et al. 2014) Australia  ×          ×     ×    

(Pnevmatikou, Karlaftis, and 

Kepaptsoglou 2015) 
Athena, Greece ×  

 
×         

 
     ×  

(Papangelis et al. 2016) United Kingdom × ×    ×           ×  ×  

(H. Sun et al. 2016) Beijing, China × ×    × ×       × ×      

(Jacob Louie, Shalaby, and Habib 

2017) 
Toronto, Canada 

× ×  
      ×   

 
    ×   

(Currie and Muir 2017) Melbourne, Australia  ×   ×              ×  

(Ghaemi, Cats, and Goverde 2017) Netherlands × ×         × ×    ×     

(Srikukenthiran and Shalaby 2017) Toronto, Canada × ×      ×      ×  ×     

(Teddy Lin et al. 2018) Toronto, Canada  ×  ×               ×  

(Saberi et al. 2018) London, U.K. ×    ×    ×          ×  

(Nazem et al. 2018) Montreal, Canada ×    ×              ×  

(Yap, Nijënstein, and van Oort 

2018) 
Hague, Netherlands ×  

 
   ×      

 
 ×      

(Nguyen-Phuoc et al. 2018) Melbourne, Australia ×   ×               ×  

(Hua and Ong 2018) Singapore × ×         ×      ×    

Current study Chicago, U.S.  ×  ×      ×         × × 

a Both types are marked for studies focused on the general nature of disruption. 
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2.2 The COVID-19 pandemic and mobility 

The association between travel behavior and perceived risk of exposure to a public health crisis 

similar to the COVID-19 pandemic has received little attention in the literature, despite the fact 

that the risk perception significantly characterizes individual travel behavior (Hotle, Murray-Tuite, 

and Singh 2020). In a recent study, Elias, Albert, and Shiftan (2013) investigated the changes in 

travel behavior caused by a terror threat in Israel and showed that fear and risk perception are vital 

in understanding travel behavior with respect to public transportation. In this study, women were 

found to perceive more risk than men, and thus, such impacts on women’s travel behavior are 

found to be more exhaustive. As a result, an undesired modal shift from public transportation to 

personal cars might occur.  

Focusing on the effect of perceived risk of viral outbreaks on travel behavior, 

Rittichainuwat and Chakraborty (2009) conducted a study in Thailand and found that people did 

not completely discontinue traveling during the outbreak caused by SARS; instead, they selected 

different options from less dangerous destinations. Moreover, the authors showed that although all 

travelers perceived risk of diseases, the level of risk might be different from person to person, 

depending on whether one is either a first-time or repeatedly traveler. In another study, Wen, 

Huimin, and Kavanaugh (2005) analyzed the impact of SARS (Severe Acute Respiratory 

Syndrome) on the travel behavior of Chinese domestic tourists focusing on their leisure travel. 

Running a survey among those who were affected, the authors found that SARS has dramatically 

changed people’s life, work, and traveling during the SARS period; however, the level of the 

impacts on people’s preference to travel and the preference of leisure trips might be different. 

Besides, the decrease in travel was caused by a combination of internal motivation (e.g., perceived 

risks) and external enforced measures (e.g., travel bans, stay-at-home orders). 
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Moreover, Liu, Moss, and Zhang (2010) studied the effects of the SARS outbreak on travel 

between the U.S. and three destinations: China, Hong Kong, and Taiwan. The authors found that 

although frequency of trips was decreased in all countries, the level of risk was perceived 

differently among those countries, highlighting the influence of lifestyles on travel behavior during 

an outbreak. Hotle, Murray-Tuite, and Singh (2020) investigated risk perception and risk 

mitigation of travel-related decisions concerning influenza to characterize the risk perceptions. 

The authors highlighted that being female and self-experience of having influenza-like symptoms 

significantly increased risk perception at the locations that people perform mandatory and health-

related activities (e.g., doctor’s office and hospitals). Furthermore, their results showed that high 

perceived risks of exposure to an influenza virus do not lead people to travel to their workplaces 

less frequently. 

There are a limited but growing number of studies focusing on the impacts of the COVID-

19 pandemic on individuals’ travel behavior. Bucsky (2020) analyzed the demands for various 

modes of transport such as public transport, personal vehicle, and bike during the COVID-19 

pandemic in Budapest, Hungary. The author observed that usage of public transit decreased 

dramatically by 80%, while the overall mobility was reduced, at least by 51% and maximally by 

64%. On the other hand, modal shares of personal vehicles and bikes increased to 65% and 4% 

from 43% and 2%, respectively.  

In another study conducted in Netherland, de Haas, Faber, and Hamersma (2020) found 

that approximately 80% of people engaged in out of home activities less frequently. Moreover, 

seniors are turned out to be less active than before the pandemic. The authors also observed that 

the number of trips and VMT are reduced by 55% and 68%, respectively, as compared with the 

fall of 2019. The demand for public transit is impacted severely with a decrease of over 90% of 
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ridership; Most people preferred individual modes compared to public or shared modes of transport. 

Teixeira and Lopes (2020) focused on the usage of bike-sharing and subway system during the 

COVID-19 pandemic in New York and observed that Citi Bike (i.e., the bike-sharing system 

operating in New York) was revealed to be more resilient than the subway system, with a less 

significant ridership reduction and an increase on its trips’ average duration. Moreover, the author 

found a potential modal transfer from some subway users to the bike-sharing system. 
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3 PHASE I OF TRANSIT USERS’ DISRUPTION BEHAVIOR:       

WAITING TOLERANCE 

 

3.1 Introduction 

This chapter sheds light on transit users’ waiting tolerance, defined as the length of time that transit 

users are willing to wait for a disrupted transit service to be restored before starting to think about 

switching to another mode or canceling/adjusting the trip. According to our recent survey in the 

Chicago region, about 33% of the transit users reported that they would wait more than 20 minutes 

for the system to be restored, and more interestingly, about 8% of them would wait more than 45 

minutes. The heterogenous behavior of riders can be attributed to several factors including their 

personal attitudes and preferences, trip characteristics, and accessibility to other modes, among 

others. Yet, there is limited empirical evidence on how these factors affect riders’ decision 

behavior.  

3.2 Survey Design and Data Descriptions  

The main source of data used in the current study is a survey recently designed and conducted by 

a research team from Argonne National Laboratory, University of Illinois at Chicago, and 

University of Chicago. Full information about design of various parts of the survey, 

implementation process, and summary statistics of the collected data can be found in Auld et al. 

(2018). Here, we only elaborate on the sections that are related to the scope of the current study. 

The survey was designed as an in-station intercept survey with the objective of analyzing transit 

riders’ decision behavior in case of facing an unplanned service disruption in the Chicago 

metropolitan area. Passengers were intercepted by the survey implementation team at each of the 

four major transit systems in the Chicago area: CTA bus, CTA rail, Metra, and PACE suburban 

bus. Stations and stops were sampled employing a Probability Proportional to Size (PPS) sampling 
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approach, with the size represented by the average daily ridership as well as the boarding 

information of each agency (Auld et al. 2018). As a result, around 100 separate stations were 

selected belonging to all major operators of the transit network.  

With respect to the survey operation, trained interviewers were positioned in or near 

stations, considering rights that were granted by each transit agency (Auld et al. 2018). For CTA 

buses, passengers were intercepted at stations. For CTA trains and Metra, interviewers were 

positioned right after the turnstiles to intercept riders who are either boarding or alighting multiple 

lines at each station (Auld et al. 2018). Interviewers were instructed to 1) select all passengers 

entering or exiting the station, 2) provide a short description of the research, and 3) offer a tear-off 

sheet that includes all the information necessary for completing the online survey (Auld et al. 2018). 

Besides, interviewers explained that a $5 Amazon E-gift card would be offered when the passenger 

completed the survey. We ensured that the entire interaction between the interviewer and the 

passenger lasted about 3 minutes (Auld et al. 2018).  

Around 15,500 invitation cards were printed to be handed out to passengers at the selected 

stations, and ultimately, a total of 6,377 transit passengers were approached and given the 

invitation card. Among those who received the invitation, 892 passengers logged in to the online 

survey and 659 of them completed the full survey in an average time of 21.9 minutes. Accordingly, 

the rate of participation for the survey was turned out to be 10.3 percent of the intercepted 

passengers.     

The survey was designed using a web-based surveying platform and it was accessible 

through a survey link and PIN distributed to the intercepted respondents. Passengers who agreed 

to participate in the study were given a contact card with a unique PIN which identified the service, 

contact time, and station. Through entering the PIN, respondents were directed to the online 
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questionnaire. In the survey, a full set of individual- and household-level socio-demographic 

information as well as comprehensive information about the intercepted transit trip including fare, 

time, origin, destination, access/egress, ride quality, time use, and trip purpose among others were 

collected. Further, passengers’ preferences and attitudes towards transit and other mobility options 

such as taxi, ridesharing, and bike-sharing programs were collected. 

This survey uses Google Maps API to collect information regarding the origin and 

destination of transit trip, display transit routes, and calculate travel time (Figure 1). Taking 

advantage of Google Map APIs, travel-related information such as travel times, waiting times, and 

the number of transfers is automatically stored. 

  
(a) (b) 

  
(c) (d) 

Figure 1.  Collecting the intercepted transit trip information using Google Maps API: a) Identifying the 

intercepted station, b) Choosing the start/stop stations, c) Choosing the location before arrival 

to the station, d) Choosing the location following the departure from the station (Adapted 

from (Auld et al. 2018) ). 
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In the current study, the outcome variable is derived from a question in the survey which 

asks the riders to indicate how long they are willing to wait for the service to be restored before 

planning for an alternative solution (i.e., waiting tolerance). The frequency of the observations is 

shown in Figure 2.  

 
Figure 2. Waiting tolerance for the transit system to be restored. 

 

We have also complemented the data from the survey with built-environment information 

from the Smart Locations provided by the Environmental Protection Agency (EPA). This 

information is provided at the census block group level and could provide insights into 

understanding the effect of built-environment settings at the block-group, where the origin station 

is located, on transit user’s waiting tolerance during a disruption.  

  Figure 3 illustrates Chicago transit system mapped on the color scheme of two variables 

(that are turned to be significant in the final model as will be discussed in the next sections) 

including pedestrian-oriented network density and aggregate frequency of transit service at block 

groups. Pedestrian-oriented network density defines as a walkability criterion and is calculated by 

summing pedestrian-oriented links within a block group dividing by the area of that block group 

(Ramsey and Bell 2014). The aggregate frequency of transit service for each block group is 
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calculating by summing the frequency of transit routes with service that stops within 0.25 miles 

from the block group’s boundary (Ramsey and Bell 2014).   

The final sample comprises of 630 observations, each for a separate transit trip. Table 3-1 

outlines the definition of independent variables introduced into the models, along with their 

summary statistics. As can be seen, the independent variables can be categorized into 4 groups of 

socio-demographics, attitudes, trip characteristics, and built-environments. 

  

    a) Pedestrian-oriented network density at a block group level 
 

        b) Aggregate frequency of transit service within 0.25 

miles of block group boundary per hour  

during evening peak period  

 

Figure 3. Chicago transit system at a glance 
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Table 3-1. Variables used (found to be significant) in the Log-Normal AFT model 

Category Name Definition Mean Std. Dev. 

Demographics Senior 1: If the age of transit user is more than 65 years old/ 0: 

Otherwise 

0.030 0.171 

Younger boomer 1: If the age of transit user is between 55 and 65 years 

old/ 0: Otherwise 

0.118 0.323 

Millennial 1: If the age of transit user is between 25 and 34 years 

old/ 0: Otherwise 

0.329 0.470 

GRADUATE 1: If the transit user has a master degree and more/ 0: 

Otherwise 

0.336 0.473 

     

Attitudes COMPETITIVENESS 1: The transit mode is selected because there is a lack of 

other options/ 0: Otherwise  

0.193 0.395 

TRAFFIC 

 

1: The transit mode is selected because there is no need to 

pay attention to the traffic/ 0: Otherwise  

0.374 0.484 

PRIVACY 1: If the transit user believes that privacy is restricted in 

the transit/ 0: Otherwise   

0.316 0.465 

TRUST 1: If the transit user trusts and follows the instructions 

releasing by the transit authority/ 0: Otherwise 

0.915 0.280 

FRND_TRNST 1: If the person uses transit as a travel mode almost every 

day/ 0: Otherwise 

0.513 0.500 

TNC 1: If the person has the experience of using ride-hailing 

(e.g., Uber, Lyft) in the past as a travel mode/ 0: 

Otherwise 

0.335 0.472 

DIVVY 1: If the person has the experience of using the bike-

sharing program in the past as a travel mode/ 0: 

Otherwise 

0.191 0.394 

     

Trip characteristics  DISTANCE The distance between the trip origin and destination in 

miles (Ranged between 0.39 and 59) 

15.29 26.44 

DIST_L5 1: If the distance between origin and destination is less 

than 5 miles/ 0: Otherwise  

0.264 0.441 

DIST_5_10 1: If the distance between origin and destination is less 

than 10 miles and more than 5 miles/ 0: Otherwise 

0.286 0.452 

MANDATORY 1: If the purpose of the trip is work or school/ 0: 

Otherwise  

0.510 0.500 

FLEXIBLE 1: If the transit user has time flexibility for arrival at the 

destination/ 0: Otherwise  

0.703 0.457 

DURATION_O The activity duration at the origin before going to a 

transit station (Ranged between 0 and 23 hours) 

7.164 5.069 

ALONE 1: If the transit user is traveling alone/ 0: Otherwise  0.863 0.345 

WAIT_TIME The waiting time at the origin’s transit station (Ranged 

between 0 and 45 min) 

7.556 6.334 

CTA_BUS 1: If the person is waiting for CTA bus/ 0: Otherwise  0.164 0.371 

     

Built environment FRQ. TRANSIT The aggregate frequency of transit service within 0.25 

miles of block group (where the origin station is located) 

boundary per hour during the evening peak period 

(Ranged between 1 and 2003) 

295.7 412.2 

FRQ.TRANSIT_L50 1: If FRQ.TRANSIT < 50/ 0: Otherwise 0.188 0.391 

NDNSTY_PED Network density of block group (where the origin station 

is located) regarding facility miles of pedestrian-oriented 

links per square mile (Ranged between 1.42 and 50.5) 

19.19 9.539 

NDNSTY_PED_L20 1: If NDNSTY_PED < 20/ 0: Otherwise 0.645 0.479 
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3.3 Modeling Approach 

In this study, we are interested in understanding the transit users’ waiting tolerance before planning 

for an alternative solution in case of unplanned transit disruptions; that is, the interval from the 

time that the rider arrives at a station and the time he/she starts to make a decision about the 

alternative options. This period of time, T, is the survival variable of interest and can be thought 

of as a non-negative random variable. Let us assume this variable has a cumulative distribution 

function, denoted by F(t), and a probability density function, denoted by f(t). In survival analysis, 

F(t) is also interpreted as the failure function and provides the probability of occurrence of an event 

before any specific value of interest t. Also, the survival function, denoted by S(t), gives the 

probability that the random variable T being higher than a specific value of interest t. (J. Sun 2006) 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡),       0 < 𝑡 < ∞ 
Eq. 1 

The hazard function, h(t), can be defined as the conditional probability of occurrence of an 

event between time t and t+∆t, provided that the survival time is greater than t.  

  

𝑆(𝑡) = ∫ 𝑓(𝑠)𝑑𝑠
∞

𝑡

 Eq. 2 

 

ℎ(𝑡) = 𝑓(𝑡) 𝑆(𝑡)⁄ = lim
∆𝑡→0+

𝑃(𝑡<𝑇<𝑡+∆𝑡 | 𝑇>𝑡)

∆𝑡
  Eq. 3  

 

Therefore, it can be proved that (J. Sun 2006): 

 

𝑆(𝑡) = exp [− ∫ ℎ(𝑠)𝑑𝑠
𝑡

0

] Eq. 4 

 

The form of hazard function in Eq. 4 should be assumed to define the survival function. 

Three basic types of hazard functions are common including non-parametric, semi-parametric, and 

parametric (Kleinbaum and Klein 2012). In this study, we utilized a fully parametric approach 
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which allows using different distributional alternatives for the survival function such as 

Exponential, Log-logistic, Weibull, and Log-normal. Besides, parametric survival models are 

more consistent with the theoretical definition of survival (Kleinbaum and Klein 2012).   

Proportional hazard (PH) and accelerated-failure time (AFT) are two alternative modeling 

approach for parametric survival analysis (Greene 2003). The critical assumption for an AFT 

model is that the effect of explanatory variables is proportional with respect to survival time, while 

the critical assumption for a PH model is that the effect of explanatory variables is proportional 

with respect to the hazard (Kleinbaum and Klein 2012). We adopted AFT formulation due to 

several reasons: 1) The structure directly includes the effects of explanatory variables on the 

survival time, 2) It facilitates the interpretation of results, and 3) the objective of this study is 

developing a model to predict duration itself, rather than the probability of occurrence over time 

(Rashidi and Mohammadian 2011; Haque and Washington 2015).  

In an AFT model, a linear relationship is considered between the logarithm of the survival 

time and the vector of explanatory variables (J. Sun 2006):   

 log 𝑇 = 𝑋′𝛽 + 𝜀 Eq. 5  

 

where 𝑋′ is the vector of explanatory variables, 𝛽 is the vector of coefficients to be estimated, and 

𝜀 is the error term with a known distribution. Define 𝜀∗ = exp(𝜀) and let ℎ𝑤(𝑡) denote the hazard 

function of 𝜀∗, which is independent of 𝛽. Then, 𝑇 = exp(𝑋′𝛽) 𝜀∗, and the survival function of T 

given 𝑋′ would be (J. Sun 2006): 

 

𝑆(𝑡, 𝑋′) = exp [−(𝑡𝑒−𝑋′𝛽) ∫ ℎ𝑤(𝑠)𝑑𝑠
𝑡

0

]   Eq. 6 
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In estimating Eq. 6, four commonly used distributions for T were considered, including 

Exponential, Weibull, Log-normal, and Log-logistic to find the best fit for the waiting tolerance 

data. The distributions and corresponding survival functions are listed in Eq. 7 to Eq. 10. 

 Exponential:  𝑆(𝑡) = 𝑒−𝜆𝑡 Eq. 7 

 
Weibull:  𝑆(𝑡) = 𝑒−(𝜆𝑡)𝑝

 Eq. 8 

 
Log-normal: 𝑆(𝑡) = Φ[−𝑝. ln(𝜆𝑡)] 

ln 𝑡 is normally distributed with mean − ln 𝜆 and standard deviation 1/p 

Eq. 9 

 

Log-logistic: 𝑆(𝑡) = 1/[1 + (𝜆𝑡)𝑝] 
ln 𝑡  has a logistic distributed with mean − ln 𝜆  and standard deviation 

𝜋2/(3𝑝)2 

Eq. 10 

 

Where 𝜆  is the location parameter, 𝑝  is the scale parameter, and Φ(. ) is the standard normal 

cumulative distribution function.  

A standard approach to estimate the coefficients and parameters is using a maximum 

likelihood estimator, which is shown in Eq. 11.  

𝐿 = ∏ 𝐿𝑖

𝑛

𝑖=1

= ∏ ℎ(𝑡𝑖)𝑑𝑖𝑆(𝑡𝑖)

𝑛

𝑖

 Eq. 11 

 

Where, 𝑑𝑖 is the failure indicator for individual 𝑖 = 1, 2, … , 𝑛.   

As explained in the previous sections, the data used in this study records the length of time 

in which the failure occurs rather than the exact value. Thus, the models need to be corrected for 

the so-called interval and right censorship (Kleinbaum and Klein 2012). Interval censorship occurs 

if an individual’s exact survival time is within a known time window in the follow-up period. 

Similarly, the right censorship occurs when the failure does not happen during the study period 

due to ending the follow-up period or losing the observation. Different methods have been 

suggested in the literature to address this issue. One popular approach proposed for an AFT model 
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suffering from interval and right censorship is to adjust its likelihood function (Finkelstein 1986; 

Lindsey and Ryan 1998; Odell et al. 1992; J. Sun 2006). Let 𝑇𝑖 denote the survival time of the 

outcome for individual 𝑖, and consider the survival function of a AFT model, 𝑆(𝑡, 𝜹), where 𝜹 =

(𝛿1, 𝛿2, … , 𝛿𝑝)
′
 denotes unknown parameters. Also, suppose that [𝐿𝑖 , 𝑅𝑖] is the period that 𝑇𝑖  is 

given. Then the adjusted log-likelihood function would be (J. Sun 2006) :  

log 𝐿(𝑋′, 𝜹) = ∑ 𝑆𝑗(𝐿𝑖, 𝜹)

𝑛

𝑗=1

− ∑ 𝑆𝑗(𝑅𝑖, 𝜹)

𝑛

𝑗=1

 
Eq. 12 

   

3.4 Estimation Results 

This section is devoted to elaborating on modeling and results, and is organized as follows: First, 

different model specifications are tested to find the outstanding model. Next, the best-fitted model 

and its results are presented. Last, the survival function is illustrated in different scenarios and 

based on the results, several policy implications of this study are discussed.   

3.4.1 Model specification   

As described in Section 3.3, four different AFT models are fitted to the data, using the Exponential, 

Weibull, Log-Logistic, and Log-Normal distributions. Also, following the underlying literature 

(Machin, Cheung, and Parmar 2006; B. Lee and Timmermans 2007; Tavassoli Hojati et al. 2013; 

J Louie, Shalaby, and Habib 2016; Rashidi and Mohammadian 2011), we employed different 

techniques to robustly compare the models. 

First, the general goodness of fit of the AFT models is compared with each other using the 

BIC index (Rashidi and Mohammadian 2011). BIC is a criterion for choosing a well-fitting model 

among a set of parametric models with different number of explanatory variables (Rashidi and 

Mohammadian 2011) complexity (i.e., number of explanatory variables). The lower the value of 
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BIC, the better is the fitted model. The BIC values for the AFT models’ specifications are presented 

in Table 3-2. As can be verified from Table 3-2, AFT models with Log-Logistic and Log-Normal 

distributions provide a better fit than the rest. However, the values of BIC for Log-Normal and 

Log-Logistic AFT models are very close and thus proposing the best one might need further 

investigations.  

Table 3-2. BIC analysis for the Exponential, Weibull, Log-Logistic, and Log-Normal AFT models 

Model Type Log-Likelihood at the convergence  Number of variables BICª 

Exponential -1231.24 17 2572.14 

Weibull -1172.54 21 2480.44 

Log-Logistic -1159.5 23 2467.25 

Log-Normal -1165.42 21 2466.20 

ª BIC =  −2 ln[𝐿(𝛽)] + 𝑘. ln(𝑁), Where ln[𝐿(𝛽)] is the log-likelihood value at convergence, 𝑘 is the number of variables, and 

𝑁 is the number of observations.    

 

Another approach used to compare the models’ specifications is based on the Cox-Snell 

residuals (Cox and Snell 1968; Machin, Cheung, and Parmar 2006). In this approach, the Cox-

Snell residuals are plotted against the cumulative hazard function to assess the overall fit of models. 

A Cox-Snell residuals plot for the most well-fitting model specification should closely align with 

a slope of 1 and an intercept of 0. Figure 4 shows Cox-Snell residuals plots for the AFT models 

with four distributional alternatives. According to Figure 4, Log-Normal specification remains the 

best out of the four AFT models, since its slope of Cox-Snell residuals plot is closest to 1. 

Interestingly, this visualization could justify the outcome of BIC approach as well.    

 

 

                     



 

 26 

  
(a) Exponential (b) Weibull 

  
(c) Log-Logistic (d) Log-Normal 

Figure 4. Cox-Snell residuals plot for the Exponential, Weibull, Log-Logistic, and Log-Normal AFT 

models 

3.4.2 Lessons from the best-fitted model 

The explanatory variables that are found to be significant (with at least 80% confidence level) in 

the best-fitted model (i.e., the Log-Normal AFT model) are discussed in this section, in four 

categories of 1) socio-demographics, 2) attitudes, 3) trip characteristics, and 4) built environments. 

Table 3-3 presents the estimated parameters, along with their level of significance. To interpret 

the results, an estimated parameter with positive sign reveals an increase in the duration of transit 

users’ waiting tolerance. 
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Table 3-3. Results for the Log-Normal AFT model 

Variable Category Explanatory Variable 
Lognormal AFT model 

Coefficient p-value 

Demographics Senior 0.284 0.115 

Younger boomer 0.214 0.026 

Millennial  -0.146 0.031 

 GRADUATE -0.0778 0.161 

Attitudes COMPETITIVENESS 0.214 0.005 

TRAFFIC 0.189 0.003 

PRIVACY -0.140 0.038 

PRIVACY * TNC -0.326 0.078 

FRND_TRNST 0.130 0.035 

DIVVY -0.164 0.036 

TRUST 0.289 0.008 

Trip characteristics DISTANCE * DIST_L5  -0.079 0.002 

DISTANCE * DIST_5_10 -0.026 0.007 

MANDATORY -0.108 0.100 

FLEXIBLE 0.128 0.005 

ALONE 0.217 0.014 

WAIT_TIME 0.015 0.002 

CTA_BUS -0.248 0.003 

Built environment FRQ. TRANSIT * 10-3 -0.159 0.041 

FRQ. TRANSIT * FRQ.TRANSIT_L50 * 10-2 0.428 0.195 

NDNSTY_PED_L20 0.097 0.139 

Constant   2.111 0.000 

Ln (P) -0.327 0.000 

P 0.721  

LL (β)  -1165.42 

LL (c) -1233.52 

LL (0) -1368.53 

Number of observations 

           Right-censored  

           Left-censored  

           Interval-censored  

630 

23 

0 

607 

 

3.4.2.1 Attitudes  

In terms of individual attitudes toward transit, our results indicate that those who have selected the 

transit option to avoid the hassle of traffic congestion might have more willing to wait at the station 

during a disruption. This could be because such individuals could take advantage of the waiting 

time to either socialize with others or do other activities such as reading a book or newspaper. This 
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finding is in line with Beirão and Sarsfield Cabral (2007) where the authors argued that for some 

individuals who have selected the transit as a worry-free option, the time spent on public transit 

would be an opportunity to relax, read a book or talk to others.  

Moreover, the availability of alternative modes to the riders is found as an influential factor 

on transit users’ waiting tolerance at the station. In-line with the intuition, we found that those who 

have selected the transit due to the lack of other alternatives might have more tendency to wait at 

a station during unplanned disruptions.  

Our results also show that those transit users who trust and follow the information provided 

by transit authorities stay at stations more than others. This finding is consistent with the literature 

arguing that passengers prefer to have some information about the disruption, and such information 

significantly impacts their decision-making process in such situations (TYT Lin 2017; Fukasawa 

et al. 2012). Moreover, the results indicate that although transit users prefer to receive information 

regarding an unplanned disruption, such information is not expected to have the same effect on 

each passenger; this effect might vary depending on how transit users trust authorities.  

As can be seen in Table 3-3, interestingly, the experience of using the ride-hailing and 

bike-sharing program in the past could accelerate leaving the station during an unplanned 

disruption, especially for those who have concerns about their privacy while traveling by transit. 

This is possibly because privacy concerns regarding public transit, as one of the most important 

factors of transit dissatisfaction (Tyrinopoulos and Antoniou 2008), encourage the transit user to 

decrease the duration of waiting time at the station and choose ride-hailing as an alternative 

transport mode. This is in line with the literature arguing that ride-hailing option theoretically has 

a complementary relationship with public transit (Stillwater, Mokhtarian, and Shaheen 2008). Our 

finding, also, is justifiable with respect to Murphy and Feigon (2016) who revealed that ride-
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hailing users consider transit as the most preferred alternative mode to perform their trips. Thus, if 

a ride-hailing user select transit and the system become disrupted, he or she might probability shift 

the mode sooner than others. 

Another attitudinal attribute is the frequency of public transit usage. Supported by the 

intuition, our results reveal that those individuals, who are more dedicated to transit, have more 

tendency than others to wait during unplanned disruptions. 

3.4.2.2 Socio-demographics 

Compared to individuals aged between 44 and 54 (as the base group), millennials (i.e., 24-34 years 

old) are found to have lower tolerance to wait at the station during a disruption. One possible 

reason for this finding is that millennials are more tech-savvy than older groups (Clayton, Jain, 

and Parkhurst 2017; Lyons, Jain, and Weir 2016), which leads them to be adept at finding 

information on the alternative travel modes such as ride-hailing services. They are also physically 

and mentally more open to switching to active modes such as shared bicycles and walking. 

Furthermore, this group might have tighter activity-travel schedule compared to older generations. 

On the other hand, seniors (this variable found to be significant at 85% level of confidence) might 

prefer to stay at stations longer than millennials and younger boomers (i.e., 55-65 years old) 

because they are most probably retired (Burris and Pendyala 2002) and have more flexible activity-

travel schedules (Frei, Hyland, and Mahmassani 2017). 

Moreover, the results reveal that highly educated individuals might stay at the station less 

than others during a disruption. This is possibly because this group of society is more likely to be 

knowledgeable about alternative options such as ride-hailing due to their greater propensity to use 

information and communication technologies (Dias et al. 2017). This group also might have tighter 

activity-travel schedules compared to others.  
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3.4.2.3 Trip characteristics 

With respect to the influence of trip distance, per the results, short-distance transit users intend to 

decide about alternative modes in a shorter period while the service is disrupted. In fact, the more 

the distance, the more is the transit users’ waiting time at the station. This is probably because, in 

short-distance trips, walking could be a preferred alternative of transit (Rodrı́guez and Joo 2004) 

and thus short-distance transit users might consider this free mode in a shorter period of time. 

Moreover, since ride-hailing options are already competitive with public transit on short distances 

(New York Public Transit Association 2018), this alternative could be utilized rapidly by short-

distance users when transit service is disrupted.  

The results also indicate the significant associations of trip purpose and arrival time 

flexibility at destination. It is found that those who are traveling to work or school (i.e., performing 

a mandatory trip) prefer to stay at the station less than others. This effect might be because 

mandatory trips have less arrival time flexibility than other trips. Furthermore, intuitively 

appealing, our results suggest that having flexibility for arrival time at destination increases the 

duration of the transit users’ waiting tolerance at the station while a transit service is disrupted.   

As can be seen in Table 3-3, we found that transit users who are accompanied by others 

have less waiting tolerance at stations during an unplanned disruption. This could be because group 

travelers might have more constraint on their activity-travel scheduling. In addition, the possibility 

of sharing the cost of the alternative modes for group travelers could encourage them to leave the 

station ahead of others.  

Our findings also suggest that those transit users who are used to wait more at the transit 

station in the normal (undisrupted) situations have the intention to stay more than others in case of 

unplanned disruptions. This is possibly because the waiting time in a normal situation, over time, 

increases the transit user’s overall expectation for the transit service operation. This is in line with 
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Murray-Tuite, Wernstedt, and Yin (2014a) where the authors argued that transit users’ experiences 

regarding their past transit trips is an influential factor on their future decisions about transit 

services.  

Also, our results reveal that the type of transit service (i.e., bus or rail) is a significant factor 

in transit users’ waiting tolerance during an unplanned disruption. Per the results, compared to rail 

transit users, those who travel by bus have less intention to stay at the station when an unplanned 

disruption occurs. This is might be due to the ease of accessibility to other options from bus stations 

compared to rail.   

3.4.2.4 Built environment  

With respect to transit accessibility, the results indicate that the frequency of transit services within 

the block group, where the trip is originated, accelerates transit users’ decision making about 

alternative modes at the station during a disruption. This is possibly because individuals who are 

affected by an unplanned disruption in a block group with the high frequency of transit service 

might have shorter-time access to another transit service to get to their destinations.  

The density of pedestrian-oriented roadways at the block group, where the trip is originated, 

are negatively associated with transit users’ waiting tolerance during an unplanned disruption. Per 

the results, the low density of pedestrian-oriented facilities within the block group could decelerate 

the survival function of waiting tolerance. Since the density of pedestrian-oriented facilities is 

positively correlated with the percentage of sidewalks within the block group, these findings might 

be because the higher density of pedestrian-oriented links increases the utility to choose walking 

in a shorter period as a less expensive alternative of transit. This finding is in line with (Rodrı́guez 

and Joo 2004) where the authors showed that the frequency of sidewalks has a positive impact on 

the utility of walking in short-distance trips.     
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3.5 Policy implications 

To compare the influence of explanatory variables on the waiting tolerance during a transit 

disruption, survival curves were plotted using estimated parameters of the Log-normal AFT model. 

The probabilities of waiting tolerance could be estimated using the survival function of the Log-

normal AFT model presented in Eq. 9. In this approach, the reference curve is evaluated at the 

mean values of all explanatory variables, and by assuming specific values for explanatory variables, 

the new curve could represent a specific scenario. 

Figure 5 presents the survival curves in different scenarios during a disruption where transit 

users are performing a mandatory or non-mandatory trip, and they have either flexibility in their 

arrival time or not. According to the curves, although having flexibility in arrival time regardless 

of trip purpose increases the probability of survival at a specific amount of time, trip purposes (i.e., 

mandatory or non-mandatory) could either accelerate or decelerate this effect. For instance, as can 

be seen in , the probability of survival at the upper bound average value of waiting tolerance 

variable (i.e., 20 minutes) when a transit user is performing a mandatory trip without flexibility 

(the worst case) would be 40% less than when he/she is performing a non-mandatory with 

flexibility (the best case). Consequently, since the most portion of trips during morning rush hours 

might be mandatory trips without flexibility, disruptions occur in that time should be given more 

priority in recovery strategies.   

Figure 6 depicts the effect of having experience of using ride-hailing services on the 

survival function of waiting tolerance period during an unplanned disruption for those transit users 

who have privacy concerns about transit service. As can be seen, the probability of survival at the 

upper bound average value of waiting tolerance for transit users who have ride-hailing experience 

is 34% less than other transit users. This finding highlights the potential of collaboration between 

transit authorities and transportation network companies in providing recovery options for transit 
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users who are facing a service disruption. This collaboration can significantly help transit 

authorities to mitigate affected users’ dissatisfaction. Moreover, it can also improve the overall 

transportation resilience since ride-hailing services can transfer transit users to their planned 

destinations or closest operational transit service in a significantly shorter period compared to 

shuttle bus replacements provided by transit authorities. A suitable platform to facilitate such 

collaboration can be provided through mobility-as-a-service (MaaS), which is recently introduced 

to the transportation market. This innovative concept combines various transportation modes to 

offer a personalized mobility package which includes other complementary services such as trip 

planning, booking, and payments (Jittrapirom et al. 2017). The results of this study suggest 

considering the possibility of collaboration between transportation service providers in the MaaS 

concept, which can result in enhancing both systems resiliency as well as users’ satisfaction.   

The relationship between the density of pedestrian-oriented links within a block group 

where a trip is originated and the survival function of waiting tolerance is illustrated in Figure 7. 

As can be seen, the probabilities of survival within a block group with a high density of pedestrian-

oriented links are lower in comparison with a block group with a low density of pedestrian-oriented 

links. For instance, at the upper bound average value of waiting tolerance, the survival probability 

within block groups with a low density of pedestrian-oriented links would be 10% more than other 

block groups. Focusing on the resiliency of the system, these findings indicate that transit users 

living in the areas with low density of pedestrian-oriented facilities (e.g., suburban areas) are 

probability more reliant on the transit mode due to the lack of accessibility to other transport 

options (e.g., active modes, other transit lines). Thus, these areas should be given a higher priority 

when a transit service is disrupted.       
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Figure 5.The effect of trip purpose and flexibility of arrival time on the survival function of waiting 

tolerance during a disruption 

 

 
Figure 6. The effect of having ride-hailing experience on the survival function of waiting tolerance 

during a disruption  
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Figure 7. The effect of walkability level within the block group where the trip is originated on the 

survival function of waiting tolerance during a disruption 

3.6 Summary and Conclusions 

This study presents the results of a recent web-based SP-RP survey about transit users’ response 

to an unplanned transit disruption. In this survey, respondents were intercepted in the field at the 

CTA bus, CTA rail, Metra, and PACE stations based on a sampling plan, and they were given a 

survey link and unique PIN to access to the questionnaire. Focusing on transit users’ waiting 

tolerance for a disrupted transit service to be restored, we utilize interval-censored accelerate 

failure time models including Exponential, Weibull, Log-logistic and Log-normal. In this approach, 

a hypothetical disruption scenario with respect to the intercepted trip was provided to a transit user 

and he/she was asked to choose their waiting threshold for the disrupted transit service to be 

restored before thinking about other alternative options. We aim to identify which explanatory 

variables either accelerate or decelerate the survival function of waiting tolerance. Our results find 

variables such as socio-demographics, having experience of using ride-hailing services or the bike 

share program, the availability of alternative options, trip purpose, distance, arrival time flexibility, 
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transit service type, and the density of pedestrian-oriented links within the block group where the 

trip is originated to be influential in the waiting tolerance. The findings of this paper can be used 

to understand the response of transit users when transit service is disrupted. The results, also, could 

improve the transit service quality in terms of user’s satisfaction and transportation resilience and 

could help transit agencies in order to implement most efficacious recovery scenarios. 

This study has several suggestions for future research directions. First, the structure of 

interval-censored AFT model can be improved by adding attitudinal variables into the model as 

latent. Second, the waiting time tolerance can be analyzed in different scenarios. For example, 

transit users might have a specific amount of waiting tolerance based on their travel-scheduling or 

past experiences. However, they can extend this time after figuring out the characteristics of 

alternative options such as price, waiting time, etc. 
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4 PHASE II OF TRANSIT USERS’ DISRUPTION BEHAVIOR: 

MODE CHOICE DECISION 

 

4.1 Introduction 

Using an intercept stated preference (SP)-revealed preference (RP) survey recently conducted in 

the Chicago metropolitan area, the present chapter contributes to the literature by looking deep 

into the diverse aspects of transit users’ response behavior to understand how a non-disaster 

unplanned disruption in the transit system affects their travel preferences. To the best of our 

knowledge, the present study is among the first to scrutinize the decision behavior of transit riders 

in Chicago in case of facing a non-disaster, unplanned service disruption, while accounting for the 

various alternatives that a user of the interrupted service could consider. In case of facing a 

disrupted service, one may cancel the trip, change the destination, or switch to other travel modes 

such as a personal vehicle, taxi, or a ride-sharing services. We estimated a random parameter 

multinomial logit model considering all these choice alternatives to gain a comprehensive 

understanding of people’s decision behavior. The random parameter multinomial logit formulation 

also enabled us to account for the underlying heterogeneity in the behavior. 

4.2 Dependent variables 

For this study, we utilized the data described in Section 3.2. In the survey, respondents were 

presented with multiple hypothetical disruption scenarios based on the intercepted transit trip and 

were asked to indicate which action they would likely take while the intercepted transit service is 

disrupted (Figure 8). Their response to this question has been considered as the variable of interest 

(dependent variable) in the current study. In the survey design, it is assumed that passengers have 

full information about the alternative options and their characteristics. 
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In each scenario, seven potential actions were listed including waiting for a back-up shuttle 

bus, asking for a ride from family/friend, picking up his/her own auto (if any), taking a taxi, using 

ride-sharing services, changing the trip destination, and canceling the trip. Each option, if 

applicable, was further described in terms of waiting time, travel time, arrival time, and cost. 

Alternative-specific attributes were generated considering the characteristics of the intercepted trip 

as the basis for a set of SP questionnaires with randomly altered modal characteristics set according 

to an experimental design which is fully described in Auld et al. (2018). The information displayed 

to the respondents all pivots off of the exact transit and driving trip characteristics as determined 

by the Google Direction API router at the actual time of departure, so real-time traffic congestion, 

transit schedule, etc. are accounted for when setting the scenario values. For instance, the waiting 

time attribute for shuttle bus was determined as a portion of travel time of the undisrupted journey.  

Further, a set of piece-wise functions was used to generate travel cost and waiting times. Figure 8 

illustrates an example of an SP transit disruption scenario presented to each respondent.  
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Figure 8.  An example of an SP transit disruption scenario (Adapted from (Auld et al. 2018)). 

 

After rejecting observations with either missing or invalid information, the final database 

for this study includes 628 respondents who were faced with 2498 disruption choice situations. 

The collected dataset consists of 45.2% male and 54.0% female participants who live in Chicago 

metropolitan area. As for the age, 17.6% are less than 24 years old, 32.8% are between 25 and 34, 

19.6% are between 35 and 44, and the rest are older than 45 years old. As for the employment 

status, the data contains 72.1% full-time workers, 10.6% part-time workers, and the rest consists 

of unemployed and retired people. Table 4-1 presents summary statistics of respondents’ key 

demographic attributes in the collected sample. In addition, Figure 9 presents a comparison 

between our sample and weighted estimates from the last Chicago Metropolitan household travel 

survey (CMAP) for transit riders 18 and over (CMAP 2008).   
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Table 4-1. Summary statistics of the respondents’ key characteristics. 

Variable     Category       Share (percentage) 

Household size 

    1 28.53 

    2 47.80 

    3 13.66 

    4 5.92 

    5 or more 3.49 

Household income 

    Under $15K 6.37 

    $15K - $35K 8.95 

    $35K - $50K 11.99 

    $50K - $75K 12.90 

    $75K - $100K 14.72 

    $100K or more 30.80 

Gender 
    Male 45.22 

    Female 54.02 

Age 

    ≤ 24 17.60 

    25-34 32.78 

    35-44 19.58 

    45-54 15.02 

    55-64 11.99 

    ≥ 65 2.89 

Race 

    White/Caucasian 56.90 

    African American 16.54 

    Hispanic/Latino 10.47 

    Asian 8.50 

    Two or more ethnicities 4.10 

    Native American 0.61 

    Other 1.97 

Education 

    Less than high school 0.91 

    High school graduate 5.31 

    Some college credit 13.96 

    Vocational school certificate 1.06 

    Associate degree 6.53 

    Bachelor’s degree 37.94 

    Graduate degree  33.38 

Employment status 

    Full time 72.08 

    Part time 10.62 

    Other 17.30 

Note: The sum of the percentages may not equal 100 due to observations with missing values 
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Figure 9.  A comparison between our sample and CMAP transit riders (adapted from Auld et al. (Auld 

et al. 2018)). 

 

It should be noted that the personal vehicle option was not available for those who either 

had no vehicle or had no access to their vehicle at the time of the disruption. Figure 10 presents the 

distribution of selected actions with respect to the personal vehicle availability.  As can be seen in 

the figure, waiting for the back-up shuttle and using ride-sharing services are the first and second 

most frequent selected actions in the data. It is also interesting to note that, respectively, in about 

10% and 5% of scenarios, people decided to cancel their trip or change their destination.  
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Figure 10.  The distribution of alternatives in the sample with respect to auto availability 

 

We have also complemented the survey data with the Smart Location Database provided 

by the Environmental Protection Agency (EPA). The Smart Location Database is a nationwide 

geographic data which includes population density, land use density, neighborhood design, 

destination accessibility, transit service, employment, and demographics (Ramsey and Bell 2014). 

This information is provided at the census block group level and can provide insights into 

understanding the effect of built-environment settings on transit users’ travel behavior. Figure 11 

depicts the Chicago transit system mapped on the color scheme of two variables: retail 

employment density and pedestrian-oriented network (that are found to be significant in the final 

model as will be discussed in the next sections).  
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a)  Pedestrian-oriented network density at block-group level 

 

b) Retail employment density at a block-group level 

Figure 11. Chicago transit system at a glance. 

 

Pedestrian-oriented network density represents the level of walkability within a block-

group and is calculated by summing pedestrian-oriented links within a block group dividing by the 

area of that block group (Ramsey and Bell 2014). The retail employment density for each block 

group is calculating by summing the total retail jobs within a block-group dividing by the 

unprotected area of that block-group (Ramsey and Bell 2014). Table 4-2 summarizes the 

descriptive statistics of the variables used (found to be significant) in the final model. 

4.3 Modeling approach 

In this study, the random parameter multinomial logit (RPMNL) model is applied to understand 

transit users’ decision behavior in case of an unplanned service disruption. This model is highly 

flexible which obviates the three limitations of multinomial logit (MNL) model by relaxing the 
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independence of irrelevant alternatives (IIA) assumption, allowing for random taste variations, and 

potential correlation in unobserved factors over time (Greene 2012; Train 2009; Boggs, Arvin, and 

Khattak 2020; Rahimi, Shamshiripour, Samimi, et al. 2020; Mansourkhaki, Karimpour, and Yazdi 

2017; Mansourkhaki, Karimpour, and Sadoghi Yazdi 2017; Karimpour, Kluger, and Wu 2020; 

Mousavi et al. 2019). Consider 𝑈𝑖𝑛𝑡 as the utility function of alternative 𝑖 for decision-maker 𝑛 in 

choice situation 𝑡 as follows (Nazari, Rahimi, and Mohammadian 2019; Train 2009): 

𝑈𝑖𝑛𝑡 = 𝛼𝑖𝑛 + 𝛽𝑖𝑛𝑋𝑖𝑛𝑡 + 𝜀𝑖𝑛𝑡 Eq. 13 

Where, 𝛼𝑖𝑛 is the constant term for alternative 𝑖, 𝛽𝑖𝑛 represents the estimable coefficients, 

𝑋𝑖𝑛𝑡 is the vector of explanatory variables of alternative 𝑖 for decision-maker 𝑛 in choice situation 

𝑡, and 𝜀𝑖𝑛𝑡 is the error term that is Type I Extreme Value. The probability functions of RPMNL 

model are the integrals of standard logit probabilities over a density of parameters (Train 2009): 

𝑃𝑛𝑖𝑡 = ∫ (
𝑒𝛼𝑖𝑛+𝛽𝑖𝑛𝑋𝑖𝑛𝑡

∑ 𝑒
𝛼𝑗𝑛+𝛽𝑗𝑛𝑋𝑗𝑛𝑡

𝑗

) 𝑓(𝛼, 𝛽|𝜃)𝑑𝛽 Eq. 14 

here, 𝑓(𝛼, 𝛽|𝜃) is the probability density function of coefficients, and 𝜃 would be the parameters 

that describe the density of 𝛽 . Denoting 𝑇𝑛  as the number of choice situations observed for 

decision-maker n, the likelihood function for RPMNL would be (Train 2009):  

𝐿𝑛(𝜃) = ∏ ∏ [∫ (
𝑒𝛼𝑖𝑛+𝛽𝑖𝑛𝑋𝑖𝑛𝑡

∑ 𝑒𝛼𝑗𝑛+𝛽𝑗𝑛𝑋𝑗𝑛𝑡
𝑗

) 𝑓(𝛼, 𝛽|𝜃)𝑑𝛽]

𝐽

𝑗=1

𝑦𝑛𝑖𝑡𝑇𝑛

𝑡=1

 Eq. 15 

where, 𝑦𝑛𝑖𝑡= 1 if decision-maker 𝑛 chooses alternative 𝑖 in choice situation 𝑡.  

Since, in general, the integrals cannot be solved analytically, the maximum simulated 

likelihood estimator (MSLE) is suggested to estimate the parameters. In this study, we employed 

NLOGIT 6.0 to develop the RPMNL model. Also, 200 simulated Halton draws for the model 

turned to be enough in terms of model stability and accuracy as it is also suggested by the literature 
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(Bhat 2003). Moreover, the model was run assuming several distribution functions including 

Normal, Log-logistics, and Log-normal; however, the normal distribution provided better results 

in terms of model stability as well as the goodness of fit to the data. 
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Table 4-2.  Definition of variables used in the model. 

Category Name Definition Mean Std. Dev. 

Demographics BACHELOR 1: If the transit user has a bachelor degree/ 0: Otherwise 0.386 0.487 

GRADUATE 1: If the transit user has a master’s degree and more/ 0: Otherwise 0.340 0.474 

FULL_TIME 1: If the transit user has a full-time job / 0: Otherwise 0.723 0.447 

MILLENNIAL 1: If the age of transit user is between 24 and 35/ 0: Otherwise 0.330 0.470 

SENIOR 1: If the age of transit user is more than 64/ 0: Otherwise 0.030 0.173 

LOW_INCOME 1: If the household income of transit user is less than $30K 0.091 0.289 

     

Attitudes RIDESHARE 1: If the person has the experience of using TNCs (e.g., Uber, Lyft) in the past as a travel 

mode/ 0: Otherwise 

0.339 0.473 

 TECH_ACCESS 1: If the person has access to a smartphone and data/ 0: Otherwise 0.957 0.201 

     

Trip characteristics  DISTANCE The distance between the trip origin and destination in miles  16.23 26.12 

DIST_M15 1: If the distance between origin and destination is more than 15 miles / 0: Otherwise 0.315 0.465 

ALONE 1: If the transit user is traveling alone/ 0: Otherwise  0.863 0.345 

MANDATORY 1: If the purpose of the trip is work or school/ 0: Otherwise  0.510 0.500 

SHOP 1: If the trip purpose is shopping/ 0: Otherwise 0.033 0.178 

CTA_RAIL 1: If the person is waiting for CTA rail/ 0: Otherwise  0.529 0.499 

CTA_METRA 1: If the person is waiting for Metra rail/ 0: Otherwise  0.267 0.442 

PACE 1: If the person is waiting for PACE/ 0: Otherwise 0.042 0.201 

SHUTTLE_WAIT Waiting time for a shuttle bus in minutes  46.61 59.60 

TNC_WAIT Waiting time for TNC in minutes 9.55 2.84 

TNC_COST Trip cost for TNC in dollar   51.53 88.85 

DRIVE_TIME The auto travel time between the trip origin and destination in minutes (Auto, TNC, taxi) 35.81 29.00 

TAXI_WAIT Waiting time for a taxi in dollar  21.90 15.68 

LONGDIST_MNDT 1: If the distance between the trip origin and destination is more than 15 miles and the purpose 

of the trip is work or school./ 0: Otherwise 

0.266 0.441 

SHUTTLE _WAIT_METRA Waiting time for shuttle bus if the disrupted service is Metra transit 61.56 68.47 

SHUTTLE _WAIT_CTA_RAIL Waiting time for shuttle bus if the disrupted service is CTA rail  35.87 49.18 

     

Built environment RETAIL_DENSITY Gross retail employment density in a block group  3.61 9.43 

RET_SHOP Gross retail employment density in a block group if the trip purpose of transit user is shopping   0.088 0.65 

NDNSTY_PED Network density regarding facility miles of pedestrian-oriented links per square mile in a 

block group  

18.98 9.46 

NDNSTY_PED_L10 1: If NDNSTY_PED < 10/ 0: Otherwise 0.158 0.365 
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4.4 Model estimation results 

The results of the RPMNL model to analyze transit users’ behavior in response to an unplanned 

service disruption are presented in Table 4-3 and Table 4-4. Various variables and variable 

interactions are tested for each option, and the statistically significant variables at 90%, 95%, and 

99% levels of confidence are shown in the table. Based on the results, a wide range of socio-

demographic attributes, personal attitudes, trip-related information, and built-environment factors 

are significant in passengers’ response behavior in case of transit service disruptions. 

Table 4-3. Estimation results of random parameter multinomial logit model. 

Explanatory Variable Coefficient p-value 

CONSTANT (Auto)  00689          0.570     

      Std. dev. 3.261***       0.000 

CONSTANT (Shuttle bus)  4.044*** 0.000 

      Std. dev. 2.575***       0.000 

CONSTANT (TNC)  0.697 0.890     

      Std. dev. 1.803*** 0.000 

CONSTANT (Taxi)  0.690* 0.079 

      Std. dev. 1.947***       0.000 

CONSTANT (Change destination)  -3.631*** 0.000 

      Std. dev. 4.802***       0.000 

CONSTANT (Cancel trip)  -3.057*** 0.000 

      Std. dev. 5.275***       0.000 

Ask for ride: base   

Auto   

LONGDIST_MNDT 1.477** 0.038 

Shuttle bus   

SHUTTLE_WAIT -0.016*** 0.000 

ALONE 0.475* 0.088 

SHUTTLE _WAIT_METRA -0.039*** 0.000 

      Std. dev. 0.0478***       0.000 

SHUTTLE _WAIT_CTA_RAIL -0.040*** 0.000 

      Std. dev. 0.091***       0.000 

RET_SHOP -0.376* 0.066 

NDNSTY_PED_L10 1.059** 0.017 

PACE 0.985* 0.095 

*** 99% level of confidence, ** 95% level of confidence, * 90% level of confidence 
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Table 4-4. Estimation results of random parameter multinomial logit model (continued) 

Explanatory Variable Coefficient p-value 

TNC   

MILLENNIAL 1.099*** 0.000 

SENIOR -1.850* 0.063 

BACHLOR 0.598* 0.071 

GRADUATE 1.096*** 0.001 

TNC_WAIT -0.119*** 0.000 

TNC_COST -0.015***       0.000 

DRIVE_TIME -0.022***        0.006 

TECH_ACCESS 1.280*         0.062 

RIDESHARE 0.777***       0.007 

Taxi   

SENIOR -1.173* 0.090 

FULL_TIME 0.676* 0.051 

LOW_INCOME -0.593* 0.088     

DRIVE_TIME -0.030*** 0.000 

TAXI_WAIT -0.014***       0.000 

RIDESHARE 0.802**         0.013 

Change destination   

RIDESHARE  -4.852*** 0.000 

      Std. dev. 4.991*** 0.000 

Cancel trip   

SENIOR 1.041* 0.087 

MANDATORY -0.486* 0.100 

Number of observations 2495 

Loglikelihood value at convergence -2747.52 

McFadden Pseudo R-squared 0.21 

McFadden Pseudo R-squared (multinomial logit model) 0.08 

*** 99% level of confidence, ** 95% level of confidence, * 90% level of confidence 

 

Regarding the auto option, as the results in Table 4-3 indicate, long-distance commuters 

are more likely to use their own vehicle (if accessible) to reach the destination in the case of a 

transit service disruption. This is possibly because the generalized cost of personal vehicle can be 

more reasonable compared to TNC or taxi for long-distance travels. This finding is in line with 

Limtanakool, Dijst, and Schwanen (2006), who argued that auto is the dominant mode for long-

distance commutes. Moreover, due to less flexibility of mandatory trips with respect to the arrival 
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time, choosing personal vehicle can decrease the uncertainty level of arrival time to the planned 

destination.  

With respect to the back-up shuttle bus, it was found that waiting time has a negative impact 

on the utility of this option. This intuitive finding has been supported by several other studies (e.g., 

(Miller, Roorda, and Carrasco 2005; Chen, Gong, and Paaswell 2008) who indicated that higher 

waiting time can decrease the utility of public transit as travel mode. Moreover,  Lin (2017) found 

that increasing the waiting time for the shuttle bus encourages more transit users to shift to other 

modes when a service disruption occurs. Our findings, also, add that the influence of waiting time 

for back-up shuttle bus on passengers’ decision is different across various types of transit services.  

The variables reflecting the waiting time at the CTA-rail station and the waiting time at the 

Metra station are both found to be significant with normally distributed random parameters. More 

specifically, the parameter of waiting time at Metra station and the parameter of waiting time at 

CTA-rail station are associated with the higher likelihood of switching to other options for the vast 

majority of observations. It is possibly because rail users have more concerns about the service to 

be on-time compared to bus users (Currie and Muir 2017). Moreover, the average and standard 

deviation values of the parameter of waiting time at Metra station which is normally distributed 

revealed that the parameter is negative for 80% of the individuals, while it is positive for 20% of 

them. Also, the results showed that the parameter of waiting time at CTA-rail station would be 

negative for the 77% of individuals, while it is positive for 33% of them. These findings further 

support the idea that the waiting time is not necessarily perceived as a disutility by everyone, 

provided that one can engage in other activities while he or she is waiting for the transit (i.e., 

performing multitasking). This is in-line with a growing body of literature on the positive utility 

of travel (Pawlak et al. 2016; Mokhtarian 2019; Malokin, Circella, and Mokhtarian 2019; Circella, 
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Mokhtarian, and Poff 2012). Besides, the heterogeneity in individuals’ travel behavior in different 

incidents was reported in the literature (Ebnali et al. 2020, 2019; Ebnali, Lamb, and Fathi n.d.). 

Per the results, Pace users are found to have more tendency to wait for the back-up shuttle 

bus. As Pace provides bus service to suburban neighborhoods in the Chicago region, people will 

have less accessibility to other alternatives to reach their destinations or they would be much more 

expensive compared to Pace service. Thus, Pace users prefer to wait for the back-up shuttle bus in 

case of an unplanned disruption. Further, as Pace provides special paratransit services for people 

with physical disabilities, a considerable portion of its users are among such people (“Pace Bus” 

2019). Obviously, such people have less flexibility to shift their mode due to their physical 

constraints. 

Also, the indicator parameter of traveling alone is turned out to be significant with a 

positive and fixed parameter across observations. Per the result, transit users who are accompanied 

by others have less tendency to select the shuttle during a disruption. This is probably because they 

will have more constraints in scheduling their joint activity-travel compared to an individual 

traveler. Furthermore, group travelers have the possibility of sharing the cost of the alternative 

modes which can encourage them to shift to other modes rather than waiting for the recovery 

shuttle bus. 

With respect to the built-environment variables, we found that the higher density of retail 

employment in a block group decreases transit users’ likelihood to choose shuttle bus, when their 

trip purpose is shopping. Also, it is found that within a block group, where the density of 

pedestrian-oriented links is low, transit users have more tendency to wait for the shuttle bus while 

a service is disrupted. This result might be because the lower density of pedestrian-oriented links 

increases the disutility of walking to other destinations or to access other modes (Rodrı́guez and 
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Joo 2004; Shamshiripour et al. 2019), and waiting for shuttle bus could remain the only option 

with a reasonable disutility. Focusing on the resiliency of the transit system, this finding highlights 

that transit users living in the areas with low density of pedestrian-oriented facilities (e.g., suburban 

areas) might be more reliant on the transit mode due to the lack of accessibility to other transport 

options (e.g., active modes, other transit lines) (Rahimi et al. 2019). Such results support the 

importance of accessibility in transportation network (Samimi et al. 2019; Samimi, Rahimi, and 

Amini 2018; Bargegol et al. 2017; Y.-J. Lee and Nickkar 2018; Mahmoudzadeh et al. 2019; 

Mahmoudzadeh and Wang 2020).   

Turning to the variables that affect the use of ride-sharing services, it is found that 

millennials have more tendency to choose TNCs while a transit service is disrupted. This finding 

might be because they are more tech-savvy and familiar with such services compared to older 

adults (Rayle et al. 2016; Vivoda et al. 2018). In terms of the education level, our results indicate 

that having a bachelor or graduate degree increases the probability of using ride-sharing services 

as an alternative to a disrupted transit service. This might be because these people have more 

knowledge about such services (Vivoda et al. 2018) or they have higher value of time that 

discourages them to wait for the recovery shuttle bus.  

Per the results, the experience of using ride-sharing services in the past can enhance the 

probability of choosing this mode as an alternative to disrupted transit services. This is possibly 

because experiencing ride-sharing services, as a relatively new technology in the transportation 

market, not only could increase the awareness about this mode, but also could improve people’s 

technology acceptance (Wang et al. 2018). Supported by intuition, our results reveal that having 

access to a smartphone and data positively affects the probability of using TNCs in case of transit 

disruptions. We also found that, as expected, the trip-related characteristics of TNCs including 



 

52 

 

waiting time, trip cost, and travel time are negatively significant in the model. Mode choice 

literature supports this finding (Chen, Gong, and Paaswell 2008; Miller, Roorda, and Carrasco 

2005; TYT Lin 2017). Besides, comparing the waiting time parameter in the TNC’s utility function 

with the parameter in other utilities revealed that waiting for TNC causes more disutility for 

individuals during unplanned disruption.    

With respect to the factors that affect the use of taxi, our results indicate that seniors have 

less tendency than others to use taxi in case of a transit service disruption. This could be because 

this group of people have generally more flexibility in scheduling their daily activities and travels, 

and thus, they might not prefer to choose taxi which is an expensive alternative compared to other 

modes. This finding is in line with Rayle et al. (2016) who reported that share of taxi usage among 

seniors is very low. The results, also, show that low-income passengers are less likely to choose 

taxi as an alternative to a disrupted transit service. Moreover, the indicator parameter of having a 

full-time job is turned out to be positively significant in the model. This might be because 

passengers who have a full-time job have a higher value of time and less flexibility in their activity-

travel scheduling.  

As expected, our results reveal that waiting time for taxi negatively affects transit users’ 

willing to use this mode during a service disruption. This is in line with Yang et al. (2000) who 

argued that passengers consider waiting time for taxi as an important factor of service quality in 

their decision.  

 With respect to the variables that affect the decision of changing the destination of the trip, 

the indicator parameter representing having experience of using a ride-sharing service is found to 

be random in the probability of this decision. Per the model, the majority of passengers (i.e., about 
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70% of observations) who experienced ridesharing services in the past have less tendency to 

change their pre-planned travel destination when a transit service disruption occurs. 

As Table 4-4 indicates, seniors are more likely to cancel their trip when a service disruption 

occurs. This parameter is found to be fixed across observations. It might be because seniors are 

most probably retired (Burris and Pendyala 2002), and have more flexibility in their daily activity-

travel scheduling (Frei, Hyland, and Mahmassani 2017). We also found that the indicator variable 

of mandatory trips has a significant and negative effect on the utility of canceling the trip. 

Supported by intuition, our result indicates that transit riders who are traveling to conduct a 

mandatory activity (e.g., to workplace or school) have less flexibility to cancel their trip.   

4.5 Summary and Conclusions 

This study presents the results of a new SP-RP survey framework in the Chicago Metropolitan 

Area about transit users’ behavior in response to an unplanned service disruption. In this approach 

each respondent was faced with four different disruption scenarios in which seven potential actions 

were listed including waiting for a back-up shuttle bus, asking for a ride from family/friend, 

picking up his/her own auto (if any), taking a taxi, using ride-sharing services, changing the trip 

destination, and canceling the trip. Each option, if applicable, was further described in terms of 

waiting time, travel time, arrival time, and cost. Accounting for heterogeneity across observations 

as well as panel effects, the random parameter multinomial logit (RPMNL) model is utilized to 

understand transit users’ decision behavior in case of an unplanned service disruption.  

According to the results, a wide range of socio-demographic attributes, personal attitudes, 

trip-related information, and built-environment factors are significant in passengers’ response 

behavior in case of transit service disruptions. Interestingly, our results showed that the effect of 

service recovery time on passengers is not the same among all types of disrupted services; rail 
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users are more sensitive to the recovery time as compared to bus users. Moreover, although 

providing information about a service disruption is crucial, our results suggested that the 

passengers’ response to disruption is associated with the fact that how they trust and follow the 

information. This can provide insights for transit authorities to prepare efficient communication 

strategies during a service disruption. The findings of this paper can be used to understand the 

response of passengers when a service is disrupted. The results also could provide insights for 

transportation authorities to improve the transit service quality in terms of user’s satisfaction and 

transportation resilience. These insights could help transit agencies in order to implement effective 

recovery strategies.  

Like any other research, this study has some limitations and could be further improved in 

future works. For instance, future research could contribute to our study by considering rerouting 

in the existing public transit network as a choice alternative in the implementation of the survey. 

We did not consider this option since rerouting is not available for majority of the pairs of origins 

and destinations in the context of the present study; yet, we acknowledge that not providing this 

option may overestimate the “waiting for shuttle service” option. Moreover, crowding might be an 

important attribute when individuals are deciding about alternative options during a disruption. In 

this study, we could not investigate the effect of this factor due to the lack of data; however, this 

factor should be incorporated in future surveys. Furthermore, in the survey design, it is assumed 

that passengers have full information about the alternative options and their characteristics which 

may not be realistic. Also, in the survey, the option “call a friend or family to give a ride” is always 

assumed to be available which may cause the dominance of the alternative. Although, we did not 

face the issue in this study. Furthermore, the highly educated respondents are relatively 

overrepresented in our sample which may cause biasedness toward switching the transit system 
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with other options including TNC. For future studies, one might investigate to which extent mode 

choice effects are temporary (only during disruptions), or if some passengers do not return to public 

transit after (several) disruptions and experiencing an attractive alternative transport mode. 

Moreover, it would be helpful if the travel time values provided to respondents in SP survey in 

“HH:MM” format instead of in minutes.  
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5 PERCEIVED RISK OF USING SHARED MOBILITY DURING THE 

COVID-19 PANDEMIC 

5.1 Introduction 

In this chapter, we used the data collected through a multidimensional travel behavior survey 

instrument conducted in the Chicago region from April 25 to June 2, 2020. The online survey 

collected a rich set of data regarding the residents’ socio-demographic details, their health-related 

background, as well as an extensive set of information about their daily activity-travel behavior. 

Specifically, two questions of the survey were designed to inquire about individuals’ risk 

perception toward using public transit and ridesharing services during the COVID-19 pandemic. 

To characterize individuals’ perceived risk of exposure to COVID-19, we utilized the bivariate 

ordered probit model which characterizes the influential factors affecting the risk perception of 

using those modes while accounting for the potential correlation between their unobserved factors. 

Our findings help policymakers better understand changes in people’s travel behavior during a 

health crisis such as COVID-19 pandemic.  

5.2 Survey Design & Data Description 

5.2.1 Survey design and general demographics 

We designed and performed a stated preference-revealed preference (SP-RP) survey in the 

Chicago metropolitan area (including the counties of Cook, DuPage, Kane, Kendall, Lake, 

McHenry, and Will) to understand the dynamics of daily travel behavior, as well as multiple 

aspects of people’s long-term travel habits, attitudes, and preferences during the COVID-19 

pandemic. For the RP part of the survey, the respondents were asked to provide their travel 

behaviors before and during the pandemic. For the SP part, they were asked to indicate their 

expected behavior for the future when the pandemic is over.   
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The survey was structured to collect a rich set of information in the following major areas: 

1) socio-demographic information such as residential location, age, gender, ethnicity, as well as 

the economic factors such as job status and household income; 2) health-related factors including 

disability status, having a pre-existing condition, and physical exercise habits, as well as COVID-

19 exposure risk factors such as smoking and having obesity; and 3) an extensive set of questions 

regarding perceived risk of exposure to the SARS-CoV-2 virus while using shared mobility, 

including public transit and ridesharing services. 

We used Qualtrics online platform to distribute the survey from late April to early June of 

2020 in the Chicago metropolitan area. In order to consider the variation of the spread of COVID-

19 within the study area, we incorporated the Google Maps API to collect respondents’ 

approximate residential locations (i.e., the nearest intersection to their home address) in the 

questionnaire. Figure 12 shows a screenshot from our survey.  Furthermore, multiple quality 

checks were utilized in the questionnaire to identify the respondents who have not devoted 

sufficient attention to the survey. In this way, we excluded those who failed to correctly pass the 

quality checks, overly fast responses (i.e., less than 15 min), and responses with missing 

information. Full information about design of various parts of the survey, implementation, and 

summary statistics of the data can be found in authors’ previous work (Shamshiripour et al. 2020b).  

Although the final and cleaned data contains 915 responses, due to the scope of this study, 

we utilized 398 observations in which respondents indicated they had an experience of using public 

transit as well as ridesharing services before. Table 5-1 reports a summary of respondents’ key 

characteristics such as age, gender, ethnicity, household income, education employment status, 

and having a personal vehicle. As can be seen in this table, the collected dataset consists of 54% 

male and 45% female respondents who live in the Chicago metropolitan area. With respect to the 
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annual household income, 27% of households have less than $50K, 39% earn between $50K and 

$100K, 17% earn between $100K and $150K, and the rest earns more than $150K. As for the 

employment status, the data comprises 45% full-time workers, 14% part-time workers, and the 

rest consists of unemployed and retired people.  

Moreover, we incorporated the survey data with built environment information from the 

Smart Location Database (SLD) prepared by the Environmental Protection Agency (EPA) (EPA 

2014). This information is provided at the census block group level and could provide insights into 

understanding the effect of built environment settings on the perceived risk of exposure to the 

SARS-CoV-2 virus. To better account for the effect of spreading the virus on the perceived risk of 

exposure to it, we also used the frequency of confirmed COVID-19 cases at a zip code-level 

resolution throughout the study area provided by Illinois Department of Public Health (IDPH) 

(IDPH 2020). Figure 13  presents the respondents’ approximate residential locations mapped on 

the zip code boundaries of the Chicago metro area, which are color-coded based on the number of 

confirmed COVID-19 cases. As can be seen in Figure 2, the respondents were decently scattered 

across the study area.
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Figure 12 a screenshot of the online survey (using Google Map API to specify residential location) 

 

 
Figure 13 Respondents’ residential locations mapped on the number of positive COVID-19 cases (as of 

June 6, 2020) in each zip code within the study area 
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Table 5-1. Summary statistics of the respondents’ key characteristics 

Variable     Category       Share (percentage) 

Household income 

    Under $50K 29.92 

    $50K - $100K 42.42 

    $100K - $150K 16.67 

    $150K or more 10.98 

Gender 
    Male 60.30 

    Female 39.70 

Age 

    18-24 19.35 

    25-34 21.11 

    35-44 18.34 

    45-54 12.31 

    55-64 17.09 

    65-74 9.80 

    75 and above 2.01 

Ethnicity 

    White/Caucasian 64.97 

    African American 12.69  

    Hispanic/Latino 9.39  

    Asian 7.61 

    Two or more ethnicities 3.81 

    Other 1.52  

Education 

    Less than high school 6.28  

    High school graduate 27.14  

    Some college credit 21.86  

    Associate degree 8.29  

    Bachelor’s degree 22.11  

    Graduate degree  14.32  

Employment status 

    Full time 72.14  

    Part time 21.07  

    Other 6.79  

Household vehicle ownership 

    No vehicles 11.56 

    One to three vehicles 84.17 

More than three vehicles 4.27 

 

 

5.2.2 Risk perception variables in the survey 

Perceive the risk of exposure to the virus underlies many of the dynamics of travel behavior during 

the COVID-19 pandemic, including working from home, online shopping, mode choice, and 
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airplane travels. This section is dedicated to exploring the perception of people towards the 

exposure risk given a variety of travel choices. 

Figure 14 summarizes the perceived risk of using various travel modes. According to the 

results, personal vehicles turned out to be associated with the lowest perceived risk of exposure. 

ranked after personal vehicles, biking with private bicycles and walking are found to have the 

second- and third-lowest perceived risks of exposure – respectively, 29% and 23% categorized as 

medium to high risk of exposure. This shows the notable role of active transportation and micro-

mobility during the pandemics in preventing the users of transit, taxi, and ride-hailing services 

from switching to personal vehicles. Similarly, (Teixeira and Lopes 2020) found evidence on a 

possible modal shift from the subway to the bike sharing system in New York, U.S.  

Furthermore, transit, taxi and ride-hailing services (e.g., UberX), as well as pooled ride-

hailing (e.g., Uberpool) are the first three highest risky modes in people’s view. Around 93% of 

the respondents indicated that they associate transit with medium to extremely high risk of 

exposure to the novel coronavirus. This finding is in line with Bucsky (2020) who observed that 

usage of public transit decreased dramatically by 80%, while the overall mobility was reduced 

maximally by 64%. However, out of this 93% portion, more than 26% either reported that their 

household owns no personal vehicles or someone else in their household is the main driver of the 

vehicles owned. Moreover, around 14% were found to be senior citizens older than 65 (who 

probably have difficulty substituting transit with active modes), over 13% are from lower income 

households (i.e., annual income of $50K or less) who neither own a bike nor have a bike-sharing 

membership. As mentioned in the previous section, we collected the nearest intersection to the 

home address of the respondents via Google Maps API. Linking this information to the Smart 

Locations database (cite), we also noticed that over 24% out of the 93% portion of the observations 
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belong to those who live in low pedestrian-oriented neighborhoods (i.e., where the density of 

pedestrian-oriented facilities is lower than the 25th percentile).  

These results, collectively, shed light on the importance of pro-actively planning for a more 

“equitable” future transportation system to minimize the disparities in accessibility among various 

socio-demographic groups and residents of various urban settings. Explaining the sensitivity of 

the demand for using transit, Taxis and, ride-hailing services to the pandemics, the results also 

highlight the need to expand the concept of “resiliency” beyond its current domain of service 

disruptions (Rahimi et al., 2020; Rahimi et al., 2019). The recent pandemic experiences showed 

us that there should also be a longer-term aspect to “resiliency of the transportation systems” to 

focus on the resiliency during the prolonged pandemics.  

 
Figure 14. Perceived risk of traveling with different modes during the COVID-19 pandemic 

 

In addition to the risk of using various modes of transportation, we also included a question 

asking about the perceived risk of visiting various locations and participating in various activities 

during the pandemic. The results are summarized in Figure 15. The results indicated that the risk 

of indoor activities is generally considered to be more than outdoor activities. Interestingly, also, 

going to gyms or fitness centers are found to be almost as risky as going to the hospitals in people’s 

view—around 91% of the respondents associated medium to extremely high risk of exposure to 
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these activities. In-store shopping and restaurants stand at the second and third ranks, respectively, 

with 86% and 83% categorizing as a medium to extremely high-risk activity. 

 
Figure 15. Perceived risk of visiting different locations during the COVID-19 pandemic 

 

5.2.3 Defining the dependent variable 

Our dependent variables are derived from questions focusing on people’s perceived risk of 

exposure to the SARS-CoV-2 virus when using shared mobility options. As mentioned earlier, we 

asked respondents to indicate how they perceive the risk of being exposed to the SARS-CoV-2 

virus while using public transit (i.e., bus system) or ridesharing services (e.g., Uber, Lyft) during 

the COVID-19 pandemic. For this question, we provided each respondent with a five-point Likert 

scale ranging from “extremely high risk” to “extremely low risk” to choose based on their 

experience of using these options. Figure 16 shows the distribution of responses in our sample. For 

the sake of comparison, we also presented the perceived risk of exposure to the virus while driving 

a personal vehicle in this figure. As can be seen, more than 90% of the respondents indicated that 

they associate transit and ridesharing services with medium to extremely high risk of exposure to 

the SARS-CoV-2 virus, while this value is around 15% for personal vehicle. Table 5-2 also defines 

explanatory variables turned out to be significant in the final model.   
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Figure 16. Perceived risk of traveling with public transit and ridesharing services as compared with 

personal vehicle during the COVID-19 pandemic 
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Table 5-2. Definition of explanatory variables turned out to be significant in the model 

 

Explanatory variable Definition Mean Std. Dev. 
Frequency 

(%) 

Socio-demographic: AfricanAmerican 1: If the respondent’s ethnicity is African American/ 0: 

Otherwise 
  14.57 

Socio-demographic: LowIncome 

 

1: If the respondent is less than $20K/ 0: Otherwise 
  3.77 

Socio-demographic: Female 

 

1: If the respondent’s gender is female/ 0: Otherwise 
  39.70 

Socio-demographic: Senior 

 

1: If the respondent’s age is 65 years old or more/ 0: Otherwise 
  11.81 

Socio-demographic: MainDriver 1: If the respondent is the main driver of household’s vehicle/ 0: 

Otherwise  
  79.40 

Socio-demographic: Job_Transportation 1: If the occupation of the respondent is transportation services/ 

0: Otherwise 
  3.27 

Socio-demographic: LivingWithGrandparent 1: If the respondent is living with their grandparent(s)/ 0: 

Otherwise 
  1.76 

Health: Covid_Positive 1: If the respondent has been a confirmed case of COVID-19 in 

the past 14 days/ 0: Otherwise 
  1.76 

SARS-CoV-2 virus spread: ConfirmedCaseDensity The number of confirmed COVID-19 cases within a zipcode 

divided by the publulation of the zipcode, where the respondent 

is living 

0.012 0.007  

Built environment: SLD_D3aao Network density in terms of facility miles of auto-oriented links 

per square mile in a census block group, where the respondent is 

living  

1.05 2.96  

Built environment: SLD _D4b050 Proportion of census block group employment within ½ mile of 

fixed-guideway transit stops in a block group, where the 

respondent is living    

0.37 0.43  

Built environment: SLD _D4d Aggregate frequency of transit service per square mile in a block 

group, where the respondent is living    
1930.41 4344.48  

Built environment: SLD _D3apo Network density in terms of facility miles of pedestrian-oriented 

links per square mile in a block group, where the respondent is 

living    

15.05 6.75  

Law: OverActingBasedOnLaw 1: if the respondent is following restrictive measures (i.e., self-

quarantine) on the top of the official restrictions enacted/ 0: 

Otherwise      

  49.75 
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5.3 Method 

Since the dependent variables in this study are ordinal in nature, we utilized an ordered probit 

structure to characterize the factors affecting the risk perceptions. Ordered probit models assume 

a normal distribution for error terms and prevent the estimation difficulties related to the logit 

structure; thus ordered probit models is preferred as compared with ordered logit models in the 

literature (Washington, Karlaftis, and Mannering 2010).   

The model structure has an underlying random utility or latent regression component, in 

which the probabilities of ordinal outcomes in the ordered probit model is driven by considering a 

continuous latent utility (i.e., measure), 𝑦∗(Greene 2003; Greene and Hensher 2010; Washington, 

Karlaftis, and Mannering 2010). This measurement variable is typically specified as a linear 

function for each observation (Greene 2003; Washington, Karlaftis, and Mannering 2010), as in 

Eq. (1), where, 𝐗 is a vector of explanatory variables, 𝜷′ is a vector of parameters to be estimated, 

and 𝜀~𝑁(0,1) is the error term which is normally distributed across observations. 

𝑦∗ = 𝐗𝜷′ + 𝜀 Eq. 1 

 

The dependent variable (𝑦) that is observed in discrete form through a censoring structure 

as in Eq. (2) (Greene 2003; Washington, Karlaftis, and Mannering 2010; Greene and Hensher 

2010), where 𝜇1, … , 𝜇𝐽−1 are threshold parameters which are estimated jointly along with 𝜷′. 

𝑦 = 0       𝑖𝑓    𝑦∗ ≤ 0   

𝑦 = 1       𝑖𝑓    0 ≤ 𝑦∗ ≤ 𝜇1    

𝑦 = 2       𝑖𝑓    𝜇1 ≤ 𝑦∗ ≤ 𝜇2 

Eq. 2 



 

67 

 

… 

𝑦 = 𝐽       𝑖𝑓    𝜇𝐽−1 ≤ 𝑦∗ 

In this chapter, we aim to model people’s perceived risk of exposure to the SARS-CoV-2 

virus during travel with two types of shared mobility options: 1) public transit and 2) ridesharing. 

Accordingly, there might be a correlation between unobserved factors of the models. To account 

for the potential correlation, we implemented a bivariate mechanism of ordered probit approach 

instead of a univariate one. The bivariate ordered probit model is an extension of traditional 

ordered probit model, in which two measurement variables, 𝑦1
∗ and 𝑦2

∗ , are estimated 

simultaneously while error terms are assumed to be correlated (Greene and Hensher 2010).  

𝑦1
∗ = 𝐗𝟏𝜷𝟏

′ + 𝜀1, 𝜀1~N[0,1],  𝑦1
∗ = 𝐽 if  𝜇𝐽−1 ≤ 𝑦1

∗ < 𝜇𝐽               

𝑦2
∗ = 𝐗𝟐𝜷𝟐

′ + 𝜀2, 𝜀2~N[0,1],  𝑦2
∗ = 𝐾 if  𝛾𝐾−1 ≤ 𝑦1

∗ < 𝛾𝐾 

 

(
𝜀1

𝜀2
) ~𝑁[(

0
0

) (
𝜌 0
0 𝜌

)], Cor (𝜀1, 𝜀2) = ρ.  

 

Eq. 3 

The joint probability for 𝑦1 = 𝐽  and 𝑦2 = 𝐾  are presented in Eq. 4, where Φ(. ) is the 

cumulative density function of the standard normal distribution. 
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𝑃(𝑦1 = 𝐽 and 𝑦2 = 𝐾 |𝐗𝟏, 𝐗𝟐)

= [Φ2[(𝜇𝐽 − 𝐗𝟏𝜷′
𝟏

), (𝛾𝐾 − 𝐗𝟐𝜷′
𝟐

), 𝜌 ]

− Φ2[(𝜇𝐽−1 − 𝐗𝟏𝜷′
𝟏

), (𝛾𝐾 − 𝐗𝟐𝜷′
𝟐

), 𝜌 ]]

−  [Φ2[(𝜇𝐽 − 𝐗𝟏𝜷′
𝟏

), (𝛾𝐾−1 − 𝐗𝟐𝜷′
𝟐

), 𝜌 ]

− Φ2[(𝜇𝐽−1 − 𝐗𝟏𝜷′
𝟏

), (𝛾𝐾−1 − 𝐗𝟐𝜷′
𝟐

), 𝜌 ]].  

Eq. 4 

  Having the joint probabilities from Eq. (4), the log-likelihood function is calculated to 

estimate the parameters. 

5.4 Results and discussion 

Table 3 presents the estimation results for the bivariate ordered probit model. The results include 

the estimated parameters, t-statistics, and the log-likelihood values at both convergence and zero. 

We assured that the coefficients in the model are statistically significant at least within a 90 percent 

confidence level. More importantly, the correlation of error terms turned out to be significant with 

a positive sign. This indicates that the unobserved factors increasing the perceived risk of exposure 

to the SARS-CoV-2 virus while riding public transit might also increase the perceived risk of 

exposure to the virus during use of ridesharing services.    

 

 

 

 

 

 

 



 

69 

 

Table 5-3. Estimation results of the bivariate ordered probit model 

Parameters 
Public transit   Ridesharing services 

Coefficient t-stat  Coefficient t-stat 

constant 0.830*** 12.50  0.830*** 12.50 

Explanatory variables       

Socio-demographic: AfricanAmerican -0.331** -2.05  -0.308** -1.97 

Socio-demographic: LowIncome 0.477* 1.70   - 

Socio-demographic: Female 0.395*** 3.25  0.271** 2.39 

Socio-demographic: Senior ─ ─  0.372*** 2.62 

Socio-demographic: MainDriver 0.156* 1.75  ─ ─ 

Socio-demographic: Job_Transportation -0.634*** -2.52  ─ ─ 

Socio-demographic: LivingWithGrandparent ─ ─  0.422* 1.68 

Health: Covid_Positive -0.584* -1.69  -0.654* -1.69 

SARS-CoV-2 virus spread: 

ConfirmedCaseDensity 

─ ─  15.108** 2.45 

Built environment: SLD_D3aao 0.038** 2.17  ─ ─ 

Built environment: SLD _D4b050 -0.159* -1.69  ─ ─ 

Built environment: SLD _D4d ─ ─  -0.00013* -1.68 

Built environment: SLD _D3apo ─ ─  0.0197*** 2.69 

Law: OverActingBasedOnLaw 0.229** 2.01  0.137* 1.68 

Thresholds      

𝜇1  -1.733*** -9.10  ─ ─ 

𝜇2  -1.328*** -7.81  ─ ─ 

𝜇3  -0.600*** 4.00  ─ ─ 

𝜇4  0.397*** 2.60  ─ ─ 

𝛾1 ─ ─  -1.570*** -7.51 

𝛾2 ─ ─  -0.684*** -4.09 

𝛾3 ─ ─  0.296* 1.86 

𝛾4 ─ ─  1.065*** 6.66 

Model Statistics       

Number of observations 398  

Log-likelihood at zero -922.038  

Log-likelihood at convergence  -907.87  

Joint parameter      

Correlation of error terms (ρ)  0.680***  

Note: *, **, and *** mean 90%, 95%, and 99% level of confidence, respectively.  
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5.4.1 Socio-demographics 

As shown in Table 5-3, the model indicates that ethnicity might be an important factor influencing 

the perceived risk of exposure to the SARS-CoV-2 virus while using shared mobility options. Per 

the results, African Americans are more likely to be risk-takers with respect to shared mobility 

use. This finding is in line with the early evidence, showing the rate of confirmed COVID-19 cases 

among African Americans is much higher than other groups in Chicago (Goudie et al. 2020; NPR 

2020).  

Also, the annual household income is found to be significant in the risk perception 

associated with the usage of public transit. Based on the model, individuals living in extremely 

low-income households (i.e., who earn less than $20K per year) are more likely to be risk-averse 

than others. This finding supports the idea that as people’s income levels increase, their overall 

perceptions of the world as a risky place decrease (Dosman, Adamowicz, and Hrudey 2001). One 

possible explanation is that high-income individuals can spend more on minimizing their exposure 

to (or mediate the level of) the risks. This is in good agreement with Dosman, Adamowicz, and 

Hrudey (2001) and Hotle, Murray-Tuite, and Singh (2020).   

With respect to gender, the results indicate that females are more risk-averse than males 

with respect to using shared mobility options during the COVID-19 pandemic. Overall, the 

literature evidenced that males usually tend to perceive lower levels of risk as compared to females 

in similar circumstances (Flynn, Slovic, and Mertz 1994; C.-T. J. Lin 1995; Gustafsod 1998; 

Davidson and Freudenburg 1996; Dosman, Adamowicz, and Hrudey 2001; Hotle, Murray-Tuite, 

and Singh 2020). For instance, Davidson and Freudenburg (1996) highlighted that the traditional 

gender role of females, who are care providers within a household, might lead them to perceive 

higher health risks. Furthermore, Hotle, Murray-Tuite, and Singh (2020) showed that females are 

more likely than males to avoid public transit due to the threat of outbreaks.    
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According to Table 5-3, the age of respondents is found to affect the risk-perception 

behavior associated with choosing ridesharing services as a transport mode. Specifically, seniors 

are more likely to perceive the exposure to the SARS-CoV-2 virus as higher risk than younger 

respondents. Several possible reasons might explain this finding. First, seniors are more likely to 

have underlying health conditions, increasing the risk of dying from coronavirus. According to the 

CDC, the highest risk for severe illness from COVID-19 is among older adults, including seniors 

(CDC 2020).. As another reason, seniors have experienced previously the possible effects of health 

issues associated with viral diseases similar to the COVID-19; thus, they perceive similar crises as 

high-risk incidents (Dosman, Adamowicz, and Hrudey 2001). Besides, seniors are less 

knowledgeable than younger individuals about the risk, as a result, they perceive the risk to be 

more threatening to their life (Dosman, Adamowicz, and Hrudey 2001) 

We found that being the main driver of a household’s vehicle affects the perceived risk of 

exposure to the COVID-19 during the use of the public transit system. This variable can be a proxy 

for having highly auto-oriented lifestyles. Auto-oriented individuals might be more risk-averse 

while using public transit during the COVID-19 pandemic. Moreover, we also found that 

individual’s occupation might impact the perceived risk of exposure to the virus. Specifically, 

individuals who work in transportation service industries (e.g., bus drivers) are more likely to be 

risk-taker than others. Supported by intuition, such individuals might have more experience in 

dealing with such health-related issues, thus they perceive less threat than others. 

5.4.2 Virus spread 

The perceived risk of exposure to the SARS-CoV-2 virus, also, varies by being a confirmed case 

of COVID-19. More specifically, respondents who have experienced the novel coronavirus disease 

in the past 14-days are more likely to be risk-takers than others to use shared mobility options. One 

possible reason is that such individuals trust the early evidence, showing that levels of neutralizing 
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antibodies against the SARS-CoV-2 virus remain relatively high for a few weeks after infection, 

but then usually begin to decline (Callaway, Ledford, and Mallapaty 2020). In line with our 

finding, moreover, Hotle, Murray-Tuite, and Singh (2020) studied the risk perception associated 

with visiting public places during an influenza outbreak for individuals, who had experienced the 

flu symptoms in the past 6 months. They found that having such experiences might to some extent 

lead individuals to be more risk-taker than others in terms of visiting public places during an 

outbreak.  

 Another variable that turned out to be significant in the model is the density of confirmed 

COVID-19 cases within a zip code (i.e., the number of confirmed COVID-19 cases within a zip 

code divided by the population of the zip code) where the respondent resides. Per the model, the 

more the novel coronavirus spreads among the population of a specific zip code where an 

individual is living, the more he or she might perceive the risk of exposure to the virus during the 

use of ridesharing services. This finding is in good agreement with the literature (Davidson and 

Freudenburg 1996; Dosman, Adamowicz, and Hrudey 2001), emphasizing the effect of 

surroundings on shaping risk perceptions.            

5.4.3 Built environment settings  

Our results show that the transportation network density in terms of facility miles of auto-oriented 

links per square mile in the census block group where respondents reside, might lead them to 

become more risk-averse regarding the use of public transit system during the COVID-19 

pandemic. In line with the literature, highlighting the effect of the built environment on shaping 

individuals’ modality styles (i.e., the lifestyle associated with long-term mode choice decisions) 

(Shamshiripour et al. 2020a) and risk perception (Davidson and Freudenburg 1996), this finding 

provides another implication of built environment settings in forming people’s travel behavior. 

Arguably, those who live in such areas are more prone to personal vehicles than shared mobility. 
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Thus, they might perceive higher levels of risk while using public transit during a health crisis like 

the COVID-19 pandemic, since they are less acquainted with this mode. This result also further 

supports our findings on the effect of being the main driver of a household vehicle (as the proxy 

of being auto oriented). With a similar argument, our results reveal that individuals who live in 

transit-oriented areas are more likely to be risk-taker than others in terms of using public transit 

during the COVID-19 pandemic.  

 Another transit-related built environment variable that turned out to be significant in the 

model is the aggregate frequency of transit service per square mile in a block group where the 

respondent resides. Living in such transit-oriented areas leads people to be less risk-averse and 

more prone to use shared mobility options. Furthermore, the results show that individuals who live 

in areas with a higher level of access to active-transportation infrastructure might be more risk-

averse to use ridesharing services as compared with active modes. This finding is in good 

agreement with the (Bucsky 2020) who observed that people are more inclined to substitute shared 

mobility options such as public transit with active transport modes such as walking and biking as 

safer options.   

5.4.4 Laws and restrictions 

In the survey, we asked the respondents to indicate which types of official restrictions associated 

with the COVID-19 pandemic currently exist in their residential area. Then, we compared 

individuals’ responses with the official guidelines available during the time of the survey according 

to the specific guidelines put forth by the governor of the state of Illinois (State of Illinois 2020). 

An indicator variable (i.e., Law: OverActingBasedOnLaw) was created for individuals who 

selected more restrictions than the ones that were already put in place. Therefore, if an individual 

selected more restrictions than those already in place (i.e., the indicator variable takes 1), it could 

be concluded by the rationale that the individual is voluntarily imposing more limitations to his/her 
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way of life, which could be due to perceiving higher levels of risk. Accordingly, our results reveal 

that such individuals are likely to be more concerned than others about using shared mobility 

options, including public transit and ridesharing services.  

5.4.5  Simulation of the perceived risks  

To demonstrate the spatial distributions of perceived risk of using public transit and ridesharing 

services, we simulated the proposed model for individuals who live in the Chicago metropolitan 

area at a census block-group level resolution.  Figure 17 and Figure 18 present the perceived risk 

of exposure to the novel coronavirus while riding public transit and ridesharing services, 

respectively. We also aggregated the risk levels into three categories of (1) low risk, (2) medium 

risk, and (3) high risk. Overall, the perceived risk of exposure to the novel coronavirus while using 

the public transit system is significantly higher, as compared with using ridesharing services in the 

region. More interestingly, the simulation results reveal a distinction between individuals who live 

in the suburbs and those who live in the city for the perceived risk of exposure to the virus while 

using ridesharing services. According to Figure 18, individuals who live in the suburbs perceive 

less risk when using ridesharing services, as compared with those who live in the city. Accounting 

for the perceived risk of using public transit, however, we found no distinction between the two 

groups of the population. In other words, the use of public transit system is perceived to be 

associated with high levels of risk in most census block groups in the Chicago metro area.  
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Figure 17. Perceived risk of exposure to the novel coronavirus for using public transit 

 

 

 
Figure 18. Perceived risk of exposure to the novel coronavirus for using ridesharing services 
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5.5 Summary and Conclusion 

In this chapter, we aimed to investigate risk perceptions toward using shared mobility solutions 

during the pandemic. It is vital for policymakers to accurately characterize the different types and 

degrees of behavioral changes among various groups of society. Risk perception of using various 

modes is one of the major factors which can substantially explain individuals’ travel behavior 

changes during a health crisis. The focus of this study is on public transit and ridesharing services 

since these options are the most widespread forms of shared mobility in the current transportation 

system. We utilized a bivariate ordered probit modeling approach in order to consider the 

correlation among unobserved factors while accounting for the ordinal nature of risk perception 

outcomes. The data used in this study is provided by a recent multidimensional travel-behavior 

survey instrument in the Chicago Metropolitan Area focusing on the impacts of COVID-19 

pandemic on individuals’ travel behavior. We launched the online survey in the Chicago region 

from April 25 to June 2, 2020, and collected a rich set of data regarding the residents’ socio-

demographic details, their health-related background, as well as an extensive set of information 

about their daily activity-travel behavior. 

According to the results, a wide range of explanatory variables is found to be significant in 

the risk perception model, including socio-demographic variables, built environment, health 

condition, virus spread, and the restriction factor. Our findings provide insights into the influential 

factors on being risk-averse versus risk-taker with respect to use shared mobility services during 

the pandemic. The findings assist policymakers in two main directions. First, the results showed 

that minority groups, including African Americans and extremely low-income families perceived 

to be more at risk of exposure to the SARS-CoV-2 virus while they use shared mobility options. 

Such findings highlight the importance of achieving “equity” in access to a safe transportation 

system, especially during a health crisis such as the COVID-19 pandemic. The considerable 
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economic and demographic diversity, along with the racial segregation in the Chicago 

Metropolitan Area, have created challenges in ensuring transportation equity in the region. Thus, 

policymakers should focus on the minority groups’ needs and specific behavior when planning for 

recovering the shared mobility options, including public transit and ridesharing services. Second, 

the results revealed that risk perception behaviors might vary based on the special characteristics 

of places, where individuals reside. Besides, the spread of the novel coronavirus might also affect 

the risk perception behavior in each neighbor. These findings highlighted the idea that mitigating 

strategies should be adaptive based on the specific characteristics of each neighbor. In other words, 

a common strategy will not be able to mitigate the risks associated with the use of shared mobility 

options throughout the area. 
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6 CONCLUSION AND FUTURE RESEARCH 

6.1 Summary and Conclusion  

Public transit not only provides an affordable, efficient, and green service but also plays a critical 

role in the development of resilient transportation systems in urban areas. Transit disruption as a 

common incident in transit service operations can severely affect the resiliency of the 

transportation system and users’ satisfaction. While it is of great interest to transportation 

authorities to understand passengers’ decision behavior during unplanned transit disruptions to 

implement efficacious recovery strategies, little is known about users’ behavior in case of such 

incidents. The scarcity of available data is a major underlying factor for this gap. Utilizing recently 

collected data of transit users in the Chicago metropolitan area, the current work investigates transit 

users’ behaviors during unplanned service disruptions and discloses the factors that affect their 

behavior. For the first phase of the behavior (i.e., waring tolerance), a set of interval-censored 

accelerated failure time models using different survival distributions are developed, compared, and 

the factors influencing the survival functions of the waiting tolerance are identified. The results of 

the analysis reveal that, for instance, having experience of using ridesharing services decreases 

users’ waiting tolerance during a disruption. Further, built-environment attributes (such as the 

density of pedestrian-oriented links and transit service frequency), availability of alternative modes, 

transit service type, user’s attitudes, and trip characteristics turn to be significant in users’ decision 

behavior. 

For the second phase of the transit users’ behavior during unplanned disruptions (i.e., mode 

choice decision), a random parameter multinomial logit model is employed to consider 

heterogeneity across observations as well as panel effects. The results of the analysis reveal that a 

wide range of factors, including socio-demographic attributes, personal attitudes, trip-related 
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information, and built environment, are significant in passengers’ mode choice behavior in case of 

unplanned transit disruptions. Moreover, the effect of service recovery time on passengers is not 

the same among all types of disrupted services; rail users are more sensitive to the recovery time 

as compared with bus users.  

We also investigated the impacts of COVID-19 pandemic on the transit and shared mobility 

options. The COVID-19 pandemic has caused our daily routines to change quickly. The pandemic 

provokes public fear, resulting in changes in what modes of transport people use to perform their 

daily activities. It is imperative for transportation authorities to properly identify the different 

degrees of behavioral change among various groups of society. A major factor that can 

substantially explain individuals’ behavior changes is the personal risk perceptions toward using 

shared mobility solutions. Thus, we aimed at exploring the risk that individuals perceive while 

using public transit and ridesharing services (as the most widespread forms of shared mobility) 

during the COVID-19 pandemic. To do so, we designed and implemented a multidimensional 

travel-behavior survey in the Chicago metropolitan area that comprises socio-demographic 

information, retrospective questions related to attitudes, and travel behavior before and during the 

pandemic. Utilizing a bivariate ordered probit modeling approach to better account for the 

potential correlation between unobserved factors, we simultaneously modeled the perceived risk 

of exposure to the novel coronavirus in case of riding transit and using ridesharing services. A 

wide range of factors is found to be influential on being risk-averse or risk-taker users, including 

the socio-demographic attributes, built environment settings, and the virus spread. Further, our 

results indicate that the mitigation strategies to increase the ridership of shared mobility services 

should not only be focused on equality among minority groups but also adaptive considering the 

spatial variations. 
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6.2 Future directions of research 

In the previous chapters, we found the potential of collaboration between transit authorities and 

transportation network companies in providing recovery options for transit users who are facing a 

service disruption. This collaboration can significantly help transit authorities to mitigate affected 

users who are facing such incidents. Moreover, it can also improve the overall transportation 

resilience since travels can be directed to another alternative through a platform as quickly as 

possible. A suitable platform to facilitate such collaboration can be provided through mobility-as-

a-service (MaaS), which is recently introduced to the transportation market.  

In the last few years, the Mobility as a Service (MaaS) concept has gained growing 

attention in the mobility sector. Several countries (e.g., Finland, UK, Australia) have stated their 

intentions to implement this new mobility solution, which restructures the mobility sector that 

would satisfy users’ every transportation need through a single digital platform. This innovative 

concept combines various transportation modes to offer a personalized mobility package which 

includes other complementary services such as trip planning, booking, and payments (Jittrapirom 

et al. 2017). Depending on the local environment, the plans include the various public transport 

options, which in many cities are already offered in monthly subscriptions and a taxi, TNCs, new 

micro-mobility options such as shared E-scooters and bike-sharing. These plans would 

conceptually be similar to cellphone plans, where users pay for a specific amount of services (calls, 

texts, and data) each month (Matyas and Kamargianni 2019). 

However, there is still a vast gap in knowledge about the ideal design of mobility plans. 

Accounting for the heterogeneity of travelers’ needs, the plans need to cater to all the 

sociodemographic user groups’ different preferences. Further, with careful design, MaaS mobility 

plans can be used as a travel demand management tool to assist during emergencies. Thus, future 

research should investigate users’ preferences toward the MaaS solution and guiding the 
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developments and best practices of MaaS plans. Future research should also further explore how 

MaaS can improve the transportation system’s resiliency in the context of the Smart Cities 

paradigm.  

Furthermore, we characterized the perceived risk of exposure to the COVID-19 virus while 

riding with shared mobility (i.e., public transit and ridesharing). The next step is to investigate how 

the perceived risks might lead to individuals’ mode choice decisions during and after the COVID-

19 pandemic.  Moreover, most activity-based travel behavior frameworks overlook the perceived 

risk of using various modes associated with long-term disasters, including outbreaks. Therefore, 

future research should incorporate the mode choice decisions while accounting for the perceived 

risk of using different modes during an outbreak (e.g., COVID-19 pandemic).    
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APPENDIX 

The materials of chapter 3 are previously published as:  

“Rahimi, E., Shamshiripour, A., Shabanpour, R., Mohammadian, A., Auld, J. 2019. Analysis of 

Transit Users’ Waiting Tolerance in Response to Unplanned Service Disruptions. Transp. Res. 

Part D Transp. Environ”. 

As indicated in Elsevier permission guidelines in APPX 1 (and available online at 

https://www.elsevier.com/about/policies/copyright/permissions), the author of the article can 

include their articles in full or in part in a dissertation. 

 

APPX 1. Elsevier permission guidelines for re-using a published article (a screenshot from Elsevier’s website) 

The materials of chapter 4 are previously published as:  

“Rahimi, E., Shamshiripour, A., Shabanpour, R., Mohammadian, A., Auld, J. 2020. Analysis of 

Transit Users’ Response Behavior in Case of Unplanned Service Disruptions. Transp. Res. Rec. J. 

Transp. Res. Board”. 

As indicated in SAGE’s author archiving and re-use guidelines in APPX 2 (and available online 

at https://us.sagepub.com/en-us/nam/journal-author-archiving-policies-and-re-use), the author of 

the published article can re-use the accepted manuscript at any time after the paper is accepted and 

at any format. 

https://us.sagepub.com/en-us/nam/journal-author-archiving-policies-and-re-use
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APPX 2. SAGE’s author archiving and re-use a published article (an screenshot from SAGE’s website)  

The materials of the sub-chapter 5.2.2 are part of a previously published article as follows: 

“Shamshiripour, A., Rahimi, E., Shabanpour, R. and Mohammadian, A.K., 2020. How is COVID-

19 reshaping activity-travel behavior? Evidence from a comprehensive survey in 

Chicago. Transportation Research Interdisciplinary Perspectives, 7, p.100216. 

https://doi.org/10.1016/j.trip.2020.100216”. 

The above article was published by Elsevier, and it is allowed to re-use it either in part or full as 

is stated in the publisher guidelines (please refer to APPX 1 for the guidelines).  
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