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SUMMARY 
 

Ovarian follicle development involves intracellular and intercellular metabolic communication between 

the female germ cells, oocytes, and the neighboring somatic cells, granulosa, and theca cells. The 

development competence of the oocyte that can render a successful pregnancy depends on the 

accumulation of the required metabolites and other materials (e.g., proteins, transcripts) essential for 

later stages, such as fertilization and subsequent embryo pre-implantation. The complex dynamic and 

bi-directional communication between the oocyte and granulosa cells to achieve a competent oocyte 

warrants the use of systems biology approaches. Here we created a context specific model of the human 

ovarian follicle by overlaying human single-cell transcriptomic data from different stages of follicle 

development to the latest genome-scale human metabolic model (Recon3D) using FASTCORE. 

Analysis of single cell RNA sequencing data revealed that there were 18,741 actively transcribed genes 

in the oocyte samples and 17,092 actively transcribed genes in granulosa samples at the different stages 

of follicle development. Using an unsupervised method, we identified five different clusters that were 

indeed associated with the different follicular stages (i.e., primordial, primary, secondary, antral, and 

pre-ovulatory) and cell-type (oocyte and granulosa cells). The Follicle metabolic model contains 10,538 

reactions, 3,484 metabolites and 2,954 genes that encode enzymes. As expected, the follicle metabolic 

model included several key follicle metabolic pathways during follicle development in vivo (such as, 

pyruvate metabolism, steroid metabolism, androgen and estrogen synthesis and metabolism). In 

summary, we have developed a human follicle metabolic model for the first time that could help to better 

understand the biology of human ovarian follicle development and thus serve to develop novel 

treatments for reproductive diseases in the future, such as polycystic ovarian syndrome (PCOS), 

endometriosis, or improve in vitro fertilization. 
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Chapter 1 

Introduction 

1.1. Background 

Ovary in the female reproductive system can carry out the function of producing a mature female germ 

cell that is necessary for fertilization. The ovarian tissue is highly organized and comprises different cell 

types like germ cell and somatic cells [1]. These different cell types interact with each other and form a 

functional unit called ovarian follicle. A human ovarian follicle has a germ cell (oocyte) at the center, 

and it is surrounded by somatic cells (granulosa, and theca cells) [1,5]. Within ovarian tissue and during 

reproductive age, resting and maturing follicles coexist. During each menstrual cycle, several resting 

follicles are activated by local signaling pathways in response to Follicle Stimulating Hormones (FSH) 

produced by pituitary glands [23]. Upon binding to its receptor (FSHR), FSH activates several signaling 

pathways, such Phosphoinositide 3-kinase-Serine Threonine Protein Kinase -Forkhead Box O3 (PI3K-

Akt-FOXO3) that regulated the activation of dormant follicles and deactivates several inhibitory and 

maintenance signaling pathways like Phosphate and Tensin Homolog (PTEN) and Hippo signaling 

pathway that plays a role in maintaining the dormancy of the follicle [1,4]. One of the activated follicles 

becomes dominant and ovulates for subsequent fertilization. Rest of the follicle degenerates and dies 

(atresia) at different stages of follicle development.  

The development competence or quality of the oocyte depends on the synthesis and utilization of 

metabolites and proteins required for growth, fertilization, and embryo formation. Oocyte and granulosa 

cells communicate with among themselves and with other cells through juxtacrine communications, via 

gap junctions between cells, and autocrine and paracrine factors to orchestrate the maturation of the 
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ovarian follicle. Oocyte and granulosa cell exchange metabolites, and metabolites produced by one cell 

can be substrates for other ovarian cell types. For instance, the energy coin of the oocyte is pyruvate, 

which is produced by the surrounding granulosa cells, and androgen synthesized by the theca cells 

diffuses to the nearby granulosa cells where it is converted to estrogen. This bidirectional metabolic 

crosstalk between the oocyte with the surrounding somatic cells is still unexplored. Disturbance in this 

communication can be a result of female infertility such as polycystic ovarian syndrome (PCOS) or 

premature ovarian failure (POF), chemotherapy-induced infertility [5,18,27]. Women with infertility 

may choose to undergo some form of Assisted Reproductive Technology like in vitro Fertilization (IVF) 

and in vitro Maturation (IVM). IVF involves multiple hormonal injections to retrieve a mature follicle 

from the ovary, while in IVM only non-maturate follicles (secondary/antral) are collected. These 

immature late secondary and antral follicles are matured in culture which is supplemented with 

gonadotropin hormones like Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH) and other 

nutrients.  While IVM has less side-effects as the hormones are given to the follicles outside the body, 

IVM success rate is still quite low, with the lack of understanding ovarian follicle development 

metabolism as one of the leading reasons. Also, the earlier stages of follicle development (primordial 

and primary) which are most abundant, is incapable for in vitro maturation yet. This is due to lack of 

studies on metabolism in the initial stages of follicle development which is in turn due to lack of 

availability of ovarian tissue samples. To address these challenges the cell-specific genome-wide 

metabolic models could be a great tool to increase our understanding of the intercellular and intracellular 

metabolism during ovarian follicle development and could also generate new data-driven hypotheses for 

further studies. 
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1.2. Ovarian Follicle Development in Humans 

Ovarian follicle development or folliculogenesis in humans is a complex, dynamic and highly selective 

process. The ovarian tissue, where the follicles reside, can be generally divided into two regions: - the 

inner region containing blood vessel and nerves called medulla and the outer peripheral region, which 

has numerous follicles forming the ovarian reserve, is called cortex.[4]. The ovarian reserve is formed 

by mitosis of female germ cells while in utero by a process called oogenesis. There are up to 6 million 

germ cells in the future fetal ovary when the mitosis is completed. These germ cells then enter meiosis 

and are arrested in the prophase I. While many germ cells die due apoptosis during this stage, the 

remaining ones become surrounded by pre granulosa cells to form primordial follicles. At birth, it is 

estimated that there are up to 1 million follicles in the ovarian reserve and does not increase after birth. 

The number of follicles decreases bi-exponentially by age and approximately 400,000 follicles remain 

in the ovarian reserve at the time of puberty. During the reproductive age of women, up to 1,000 follicles 

enter folliculogenesis in each menstrual cycle [10]. In a highly selective process, only one follicle usually 

in humans, the most responsive to the presence of the follicle stimulated hormone (FSH), becomes the 

dominant follicle, and will ovulate and the same time that secretes components to trigger atresia in the 

rest of the activated follicles. [5]. 
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Figure 1: Hypothalamic -Pituitary -Ovarian Axis that regulates follicle development. 

Human follicle development is a rhythmic cycle which begins when the hypothalamus of the brain 

releases Gonadotropin regulating hormone (GnRH) every month. GnRH diffuses to the anterior pituitary 

gland and binds to 7-transmembrane G-protein receptor and activates secretion of Follicle Stimulating 

Hormone (FSH) in blood. FSH is transported to the ovary where it binds to its receptor in the follicle 

(FSHR) and activates the dormant follicle indirectly through a PI3K-Akt-FOXO3, Akt, calcium-

dependent signaling pathway. Once the dormant follicle is activated the follicular phase of the ovarian 

follicle development begins [23]. 
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Figure 2: Human Ovarian Follicle Development Stages 

Follicular phase can be divided into five major developmental stages based on the size and morphology 

of the follicle and the number of granulosa cells [1]: primordial, primary, secondary, antral, and pre-

ovulatory follicles (Fig. 2). These developmental stages are tightly regulated by the positive and negative 

feedback of hormones in the hypothalamus-pituitary-ovarian axis which is known as the female 

reproductive axis [6]. Primordial follicles are in a resting, yet metabolically active, stage in the cortex 

region of the ovarian tissue,[36] and their oocyte is surrounded by squamous granulosa cells. Autocrine 

and paracrine factors, such as Newborn Ovarian Homeobox (NOBOX) and Spermatogenesis and 

Oogenesis Helix Loop Helix family (SOHLH1, SOHLH2) also influence the activation of the primordial 

follicle [21,31].  Upon activation, the oocyte grows and squamous granulosa cells surrounding the oocyte 

start proliferating and differentiate into cuboidal cells, rendering the primary follicle. The granulosa cells 

of primary follicle express FSH receptor to which FSH can bind promoting further granulosa cell 

proliferation and later estradiol production.[4] Primary follicles grow further in size as the mitotic rate 

of granulosa cell increases, leading to the next developmental: secondary follicle. At this point, theca 

cells, which are responsible for the conversion of cholesterol into androgens, start surrounding the 

granulosa cells and trigger the formation of blood vessels and lymph networks around the follicle. The 

androgen synthesized in the theca cells diffuse to the granulosa cells where it is converted to estrogen 

metabolites [22]. The secondary follicle releases Inhibin that along with the estrogen provides a negative 
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feedback to the FSH production by anterior pituitary. Subsequently, the antral cavity starts forming and 

it is filled with antral fluid that contains granulosa cell debris and is enriched in hyaluronic and taurine 

acids produced by the granulosa cells. The formation of the antral cavity is essential to maintain the 

required oxygen flow to the oocyte. The last stage of follicle development is the preovulatory stage 

during which the oocyte becomes surrounding by a differentiated type of granulosa cells, called cumulus 

cells, forming what is called cumulus oocyte complex (COC). The increase in estrogen causes a positive 

feedback loop to produce Luteinizing Hormone (LH) from the posterior pituitary gland. Surge of LH 

causes the follicle to rupture (Ovulation) and the COC migrates towards the fallopian tubes. Ovulation 

marks the beginning of the luteal phase during which the ruptured follicle forms the Corpus Luteum. 

The Corpus Luteum produces progesterone which is required to maintain pregnancy. Progesterone 

stimulates the endometrium and prepares the uterus for implantation. The rise in progesterone causes a 

negative feedback loop and decreases the release of FSH and LH from pituitary hormone. If the fertilized 

egg is implanted in the endometrium (pregnancy), the corpus luteum remains and maintains the level of 

hormones essential for embryo development (progesterone and estrogen). Otherwise, the corpus luteum 

regresses into corpus albicans and progesterone and estrogen levels fall. This fall represents the end of 

the menstrual cycle and beginning of new cycle is caused due to feedback loop which produces FSH for 

the next cycle [13,21,23,26,36]. 

1.3. Metabolism during Ovarian follicle development 

Oocyte metabolism changes during ovarian folliculogenesis and thus it is plausible that it could be 

employed to predictor the maturation and competence of the oocyte for a successful pregnancy. 

Consumption profiles of human oocyte in vitro culture has revealed that several amino acids like 

glutamate, glutamine, arginine, and valine were different in maturing oocytes as compared to 

degenerating oocytes (Atretic) [16,19]. Although these studies have identified the metabolic profile of 

oocytes in in vitro culture, the metabolic profile during each stage of follicle development still needs to 
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be further explored in humans. Hence, we will be using the literature on metabolism in animal models 

when no information is available in human. There might be species specific differences which need to 

be considered while using these previous studies. 

Major pathways for the metabolism of carbohydrates in follicle is Glycolysis. Glucose is the primary 

source of energy in the granulosa cells due to presence of SLC2A1 and SLC2A4 which are the genes 

that encode for the Glucose Transporter. Also, the enzymes that are linked to glucose metabolism like 

Phospho-fructo-kinase have high activity in the granulosa cells [4]. Whereas, in oocyte the activity of 

these enzymes is low due to which the oocyte has less glycolytic activity. The pyruvate produced by the 

granulosa cells is transported to the oocyte. In the oocyte, pyruvate is metabolized through the citric acid 

cycle followed by oxidative phosphorylation to produce energy. Other pathways that are known to 

metabolize glucose in the follicle are pentose phosphate pathway (PPP), hexosamine biosynthetic 

pathway (HBP), which involves glutamine and glucose for glycosylation of proteins, hyaluronic acid 

synthesis and polyol pathway that produces sorbitol and fructose [9]. In mice, oocyte from primordial 

stage secretes lactate and consumes pyruvate at twice the rate of lactate indicating its dependence on 

pyruvate as a primary source of energy. Also, the rate of consumption of pyruvate and oxygen increase 

in mice oocytes from the primary follicle till the antral stage. After the antrum formation, the follicular 

fluid acts a source of oxygen for the oocyte and the lactate, which is present in follicular fluid, is 

converted to pyruvate by the enzyme Lactate Dehydrogenase (LDH).  In the final stage of follicle 

development (preovulatory), there is increase in glucose consumption and lactate production which is 

mediated by the glucose transporters and glycolytic enzymes [9].  
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1.4. Genome-scale Metabolic Model of Human 

Genome-wide metabolic models (GEMS) are in silico tools that can be employed to study cellular 

metabolism of different organisms, from unicellular (e.g., bacteria) to multicellular (e.g., human). 

Genome- wide metabolic models are mathematical representations of cellular metabolism in the form of 

a set of linear equations each corresponding to a biochemical reaction known to be present in a given 

organism. The model also includes the enzymes that catalyze each biochemical reaction as well as the 

associated genes that encode for them, which is useful for integration of different types of omics data 

(e.g., transcriptomics, proteomics) [2]. With advancement of sequencing techniques and increase 

computational power, generation and simulations of mathematical metabolic models is much easier and 

faster than manual curation by literature mining [14].  

The GEM models can be used for a various application to: a) predict the active metabolic reactions 

(called metabolic flux); b) optimize culture media in biotechnology applications (e.g., degradation of 

biomass, production of natural products); c) study the effect of genetic mutations on metabolism; or d) 

analyze drug metabolism, just to name a few [29]. As the problem is ill-posed multiple solutions are 

possible, optimization techniques are employed to identify the set of conditions that enable the desired 

solution, with linear programming one of the common ones (Flux Balance Analysis).   

Flux Balance Analysis (FBA) uses linear programming (LP) to calculate the activity or metabolic flux 

through each reaction. It is a constraint-based optimization method that uses stoichiometric constraints 

as well as inequalities that bound the metabolic reconstruction to maximize biological objective 

functions, such as biomass production, or secretion or consumption of a metabolite [30]. The assumption 

of the flux balance analysis is that the system is at steady state. Steady state of Flux balance Analysis is 

an ideal state and adding kinetic parameter would be logical for accurate predictions. Although FBA 

cannot handle dynamics, one of its main advantages is that it can compute metabolic fluxes in large 

metabolic networks quickly, thus allowing the prediction of key endo and exo-metabolites.  
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Latest genome-wide reconstruction of human metabolism was a large international community effort 

and was called Recon3D [3]. Recon3D consists of 13,543 reactions, 4,140 unique metabolites, 3,697 

genes encoding for enzymes and 111 metabolic subsystems and contained 9 compartments, including 

cytosol, nucleus, mitochondria, inner mitochondria, lysozyme, endoplasmic reticulum, golgi apparatus, 

peroxisome, extracellular matrix. The reactions and the metabolites in the Recon3D is attached in 

supplementary File B.  

Stoichiometric matrix (S) is the representation of biochemical pathways, in which the columns of 

stoichiometric matrix represent a biochemical reaction (n=13,543 in the case of Recon3D) and in rows 

represent a given metabolite (m= 8,399 for Recon3D). A product of a given reaction is represented by a 

positive integer with value equal to the stoichiometric coefficient in the biochemical reaction. A substrate 

(consumed metabolite) is depicted by a negative integer with value equal to the stoichiometric 

coefficient in the biochemical reaction. If a metabolite (i) does not participate in a given reaction (j), the 

value of S is set to 0 (S [j, i] = 0).  Recon3D model also includes a biomass reaction, which depicts the 

metabolites needed for a given cell or to maintain a given structure. S also includes spontaneous 

reactions—those that do not require enzymes to occur, and transport reactions between the cellular 

compartments (e.g., media to the cytoplasm, cytoplasm to the nucleus or mitochondria). Other than these 

metabolic reactions, there are three more types of reactions in metabolic reconstruction that use and 

recycle accumulated metabolites, or produce the required metabolites: 

1. Exchange reactions - are reactions that move metabolites across in silico cellular compartments 

that do not require a transporter. These compartments are intra- and inter- cellular membranes 

present in the cell.  

2. Sink reactions - As there are still multiple metabolic pathways that are not known, some metabolites 

can accumulate in the system. Thus, sink reactions are a mathematical artifact to prevent 

metabolites from accumulating inside the cell and avoid blocking reactions. Sink reactions are 

reversible. 
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3.  Demand reactions - Like sink reactions, demand reactions are also a mathematical artifact to add 

metabolites that need to be consumed but do not have any reaction that allows them to access the 

given compartment where they are needed.  

Each reaction present in the system can be constrained by adding limits to the flux through the reaction. 

For instance, irreversible reactions can be modelled by adding a lower limit of 0 and a positive upper 

limit.  This is useful to simulate conditions like anaerobic systems or limiting cellular growth etc [3]. 

 

 

Table 1: Human Metabolic Model (Recon3D) Properties 

Model Recon3D GapFilled Recon3D 

Reactions in Model 13543 14083 

Metabolites in Model 4140 4289 

Genes 3697 3697 

Subsystem 111 111 

Metabolites in Cytoplasm 3346 3417 

Metabolites in Mitochondria 966 996 

Metabolites in Peroxisome 514 529 

Metabolites in Extracellular space 1646 1657 

Metabolites in Lysosome 453 494 

Metabolites in Endoplasmic Reticulum 955 995 

Metabolites in Nucleus 182 204 

Metabolites in Golgi apparatus 335 390 

Metabolites in inner mitochondrial chamber 2 24 

Blocked Reactions 1582 1112 
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1.5. Context specific Metabolic Model 

 

Genome scale model aims to include all the reaction that are present in an organism which has wide 

range of application from understanding the physiology to simulate the organism in different conditions. 

Although these models represent all the plausible metabolic reactions that can occur in an organism. 

However, in the case of multicellular systems, such as humans, not all the genes can be transcribed in 

all the cell types, thus their metabolism is distinct. Cell specific models have been proven to be a better 

predictor of the cellular metabolism of a given entity than using the entire set of plausible reactions. 

Context specific models are subset of the genome scale model which contains all the active reactions 

occurring in a specific context (Cell type, diseased stage, developmental stages) [33]. There are different 

algorithms that allow to generate context specific metabolic models by integrating different types of 

omics data with the entire organism metabolic model. 

Context specific models provide a framework for in silico experiments involving simulations of cellular 

metabolism. These models can be used to predict the outcome of experiments, saving time and resources. 

Several methods have been proposed to create context-specific models and each method has different 

assumptions and requirements. These  methods can be classified into three main categories based on 

their algorithm which are: 1) Group Iterative Multiple Model Estimation(GIMME)-like: This algorithms 

involve minimizing flux through lowly expressed genes; 2) Integrative Metabolic Analysis 

Tools(iMAT)-like: This algorithms finds optimal trade-off between the removing reactions that have 

low gene expression and keeping reaction with  high gene expression; 3) Model Building 

Algorithm(MBA)-like: This  algorithm takes core reactions that are retained and active while adding 

only a minimal set of additional reaction. Different algorithms can be used to integrate specific types of 

omics data (metabolomics, proteomics, transcriptomics).[35]  
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FASTCORE belongs to the MBA family of algorithms. It is a fast and efficient method that requires a 

core set of reactions to reconstruct a large context specific model. Different types of omics data can be 

integrated using FASTCORE.  
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Chapter 2 

 Methods 

2.1 Identification of metabolic enzymes present in the distinct ovarian 

follicle cells during ovarian follicle development using single-cell 

transcriptomic. 

 

Single cell RNA sequencing data was retrieved from the European Bioinformatics Institute database, 

GSE107746 [41]. Follicles were isolated from 7 donor patients who underwent ovariectomy as described 

in Table 2 and 3. The follicles were selected from different stage of follicle development based on their 

morphology. The median age of donor was 28. The dataset comprises 80 samples from oocyte cells and 71 

samples from granulosa cells isolated from different stages of follicle development. The follicle was further 

split into oocyte from 5 stages (17 Primordial,25 Primary, 12 Secondary, 23 Antral, 3 Preovulatory) and 

granulosa (8 Primordial,15 Primary, 6 Secondary, 24 Antral, 18 Preovulatory). 

 

 Table 2: Reason for ovariectomy in donors. 

Reason for Ovariectomy  Number of Donor 

Sex Reassignment 1 

Fertility Preservation for Cervical Cancer 1 

Fertility Preservation for Endometrial Cancer 2 

Fertility Preservation for Benign Ovarian Mass 2 

Fertility Preservation for Lymphoma 1 
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Table 3: Donor’s biodata and number of follicle isolated [41] 

Donor Follicle number obtained Age The day of menstrual cycle 

Donor 1 16 25 Day 10 

Donor 2 13 26 Day 13 

Donor 3 26 24 Day 15 

Donor 4 4 31 Day 8 

Donor 5 4 34 Day 14 

Donor 6 11 26 Day 9 

Donor 7 3 28 Day 11 

 
 

The raw data was processed as described in the flowchart in Figure (3). Briefly, low quality reads and 

artificial sequences like Illumina adapter, UP1, UP2 and polyA tails were removed from each sample using 

Cutadapt [28]. The trimmed sequences were mapped to the human latest available reference genome using 

splice aware mapping tool: STAR [7]. The quality of the reads was checked and only samples which had 

greater than 60% of uniquely mapped reads were used for further analysis. Final dataset had 73 cells from 

oocyte and 64 cells from granulosa cells.The mapped reads were quantified using HTSeq [37]. Expressed 

genes whose total counts were less than 10 or were only expressed in less than 30% of the samples at each 

stage of both the cell types were further removed. Principal component analysis (PCA) was employed to 

understand the variance between the samples. Differentially expressed genes between subsequent stages 

for each cell type were identified using DESeq2 [24] to detect the dynamic expression patterns during 

follicle development. Genes which had Benjamin Hochberg adjusted p-value less than 0.05 and log fold 

change greater than or equal to 0.5 were considered significant. The prevalence of each gene was calculated 
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for each stage of follicle development and cell type and was then used to create the context specific follicle 

metabolic model for each cell and each developmental stage. 

 

                       

 

 

 

 

 

 

 

 

 

             

                     Figure 3: Pipeline to process single cell RNA sequencing data
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2.2 Generation of context-specific genome-wide metabolic models 

using ovarian follicle development in humans using FASTCORE. 
 

 

Context- specific metabolic model of human ovarian follicle cell was created by integrating the processed 

single cell-transcriptomic data from different follicular developmental stages to the latest available 

reconstruction of the human metabolic model (Recon3D) [4]. The workflow of creating a context-specific 

model is represented in Figure (4). 

 

 

Figure 4: Generation of Context specific model using FASTCORE. The genes that are expressed during a particular stage of 

follicle development were mapped onto the metabolic genes present in the genome scale human metabolic model (Recon3D). 

Mapped genes or common genes was overlaid on the reaction gene matrix to obtain core set of reactions. Recon3D was subjected 

to Gap filling algorithm(fastGapFill) which reduces the number of blocked reactions (Reactions with zero metabolic flux). The 

obtained Gapfilled model still had blocked reactions which was removed using fastcc function. The Consistent model (Model 

without any blocked reaction)   
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Reconstruction of context-specific genome-wide metabolic models for ovarian follicles was generated 

using the FASTCORE algorithm implemented in the Constraint based Reconstruction and Analysis 

(COBRA)Toolbox [15]. The input for the FASTCORE algorithm is the global consistent model, in this 

case Recon3D, and core reactions which are active in a particular context of interest, using as a proxy the 

genes that are transcribed in the oocyte and granulosa cells each stage during ovarian follicle development. 

FASTCORE identified the subset of core reactions that includes those reactions for which the genes that 

encode their associated enzymes were present during follicle development and a subset of reactions that 

allow to reconstruct a flux consistent subnetwork of core reactions from the global consistent model. 

 

2.3 Stage-specific model of Oocyte and Granulosa Cells 

 

We constructed cell specific (oocyte, O; and granulosa cells, S) and stage specific models (primordial, PR; 

primary, PR; secondary, SC; antral, AT; and preovulatory, PO) using FASTCORE. Each model was 

constrained to plasma concentrations in females obtained from the human metabolome database 

(https://hmdb.ca/) and then tested for 295 metabolic function reactions of humans provided in the 

supplementary File B. 
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2.4 Community detection of Follicle Model 

Enzyme-metabolite network (bipartite) and enzyme network of the ovarian follicle model were constructed. 

The bipartite graph consists of connections between enzymes and metabolites they catalyze. The enzyme 

network consists of the edges connecting enzymes that catalyze common metabolites. Infomap, a well-

known community detection algorithm, was employed to identify the communities or modules in which the 

enzyme network could be split. Infomap decomposes the enzyme network into communities based on the 

amount of information flow, through the elements in the network. Infomap algorithm calculates the flow of 

information through the network using the map equation [34]. Closely related enzymes that have common 

metabolites have higher information flow through them as compared to the enzymes which do not have 

common metabolites. This flow was used to calculate normalized flow through communities, pathways, 

metabolites, and enzymes represented as follows: 

 

𝑓𝑁𝑖
=

∑ 𝑤𝑘𝑓𝑘𝐶𝑘
𝑘=𝑛𝑖
𝑘=1

√∑ 𝑤𝑘
𝑘=𝑛𝑖
𝑘=1

                          (eq.1) 

where fNi is the normalized intensity flow of the community [32] (or pathway, or metabolite) i, fk is the flow 

calculated with Infomap for element k in the community i, wk is the number of metabolites that are catalyzed 

by the enzyme k according to the enzyme-metabolite bi-partite graph, Ck is the normalized mean count for 

the given gene in the transcriptomic data. If the gene is not present, not transcribed, then Ck was set to zero. 

These normalized flow intensity calculations account for the differences in the community size as well as 

dynamic expression of the genes. Infomap was run with default parameters and setting the number of 

bootstraps to 1,000. The normalized flow intensity was used to calculate the enriched pathways, 

metabolites, and enzymes. 
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2.5 Significant metabolites, genes, and metabolic pathways during   

ovarian follicle development  

 

Metabolic pathway enrichment using the subsystem definition in Recon3D, fp was calculated as the 

normalized intensity flow of all the genes or nodes that belongs to a specific pathway (subsystem) within 

the follicle model (e.g., pyruvate metabolism), and it was compared with the background normalized 

intensity flow of the equal number of randomly selected genes for the entire network using the enzyme 

metabolite bigraph [30]. 

𝑍 𝑆𝑐𝑜𝑟𝑒(𝑃𝑎𝑡ℎ𝑤𝑎𝑦,𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑠,𝐸𝑛𝑧𝑦𝑚𝑒𝑠) =
𝑓𝑝−𝜇

𝜎
         eq.2 

 

 These values were employed to calculate a Z-score for each metabolic pathway in the ovarian follicle 

metabolic model. Similarly, enzyme and metabolite Z-scores were established. In the case of enzymes, the 

flow was determined accounting for all the metabolites that are catalyzed by the given enzyme in the entire 

network, wk. Similarly, for metabolites, the flow was determined based on the flow of the enzymes that 

catalyze the reactions in which the metabolite participates, setting wk to 1. Common metabolites, such as 

water, oxygen, or ATP, for instance, were removed from the list. 
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Chapter 3  

Result and Discussion 

3.1 Ovarian follicle transcription activity  

3.1.1  Highly variable genes during follicle development 

 

Transcriptomic analysis revealed the dynamic expression pattern at each stage of the follicle development. 

The count data was normalized using DESeq2 method. i.e., Median of ratio’s method and then the samples 

were further filtered stage wise to reduce the background noise or false expression. After processing it was 

observed that the oocytes expressed 18,741 genes while the granulosa cells expressed 17,092 genes.  

 

              Figure 5: Heatmap of the 100 most variable genes across the Oocyte Samples.  



21 
 

 

The oocyte transcriptional profile was dynamic over the entire folliculogenesis process, with the primary 

and primordial oocytes having similar levels of transcription compared with secondary follicles onwards 

(Fig. 5). Oocyte specific genes such as ZP1, OOSP4B, OTX2 were among the most variable transcripts in 

the oocyte. Most of the oocyte transcripts increased their abundance as folliculogenesis took place, except 

for a small cluster from UBL4B, H2AC19, KRT19. Of note, two antral samples from oocytes presented a 

different transcriptional profile pattern compared with the rest of the oocyte antral samples. While we 

cannot conclude the reason for this deviation, one plausible explanation could be that the quality of the 

antral oocytes was not adequate and were in a degenerative stage due to atresia. 

 

Figure 6: Heatmap of variable genes across the samples in Granulosa Sample 
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From the expression pattern of the most variable genes in the granulosa samples, the expression patterns 

during primordial and primary stages were the most similar as compared to the rest of the stages of follicle 

development—as it was in the oocyte profiles. Some of the most notable genes which appeared in the 

heatmap are HSD11A1, STAR and KRT18. 

HSD11B1 increased at the last stage of follicle development, an enzyme involved in the conversion of 

glucocorticoid to cortisol [38]. STAR is granulosa specific gene with high expression in the later stage of 

follicle development, which was also observed in the principal component analysis in Figure 8B. KRT18 

had higher expression in the antral stage of follicle development which have been identified as a potential 

gene that might be associated with maintaining the ovarian reserve cause atresia in follicle when the 

expression of KRT18 decreases [11]. The expression level of TIMP1 and MRO was notably higher in all 

the stages and maximum in the preovulatory stage. TIMP1 is an inhibitor of collagenases and can inhibit 

ovulation [12]. MRO gene expression changes in PCOS pathophysiology. [20] ALDOC gene which encodes 

for the Aldolase enzyme was observed in granulosa sample.  
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3.1.2  Principal Component Analysis 

Using Principal Component Analysis (PCA), we observed that the sequencing data separated clearly by cell 

type and ovarian follicle cellular stage, indicating that indeed there is a unique transcriptional program for 

oocytes and for granulosa cells during folliculogenesis.  Also, the variability in the oocyte cluster was 

greater than the variability within the granulosa transcriptional pattern, which indicates that the oocyte 

transcriptional pattern is more dynamic and diverse that the granulosa transcription during folliculogenesis. 

Also, the PCA separated the folliculogenesis stages within a given cell type in the same temporal order as 

during the developmental process (e.g., primordial cells were closer to primary and primary to secondary).   

 

 

 
 

 
Figure 7: Principal Component Analysis of Samples based on A) Cell Type B) Stage of follicle development.  

 

 

 

 

A) 

B) 
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Figure 8: Expression of A) Oocyte Specific Markers, B) Granulosa Specific Markers in samples. X-axis represents 

Principal Component 1(PC1) and Y-axis is Principal Component 2(PC2). The scale represents normalized count. 

 

 A B 
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We further validated the PCA results with several cell specific markers of oocyte and granulosa cells from 

the ovarian kaleidoscope database. We selected 12 genes which was localized in oocyte like DAZL, OOSP2, 

PADI6, ZP2, ZP4, DDX4, OOEP, ADCY3, ALMS1, LRR1, DPYSL5, ESR2.Out of these 12 genes 3 were 

previously observed in the previously published result (DAZL, ZP2, DDX4). The genes which code for 

enzyme in oocyte are ADCY3 and PADI6 involved in oocyte maturation. Similarly, 12 genes localized in 

granulosa cells were selected which includes INBHA, CYP11A1, CYP19A1, PDK4, ZFP36, STAR, CD44, 

ZEB2, AMH, PGRMC1, FADS1, HSD11B1.Out of these 12 genes,6 genes were previously observed 

(INBHA, AMH, STAR, ZEB2, CD44, CYP11A1). The genes which code for enzymes in granulosa are 

HSD17A1 and CYP19A1 involved in steroid metabolism. The genes like STAR and CYP11A1 are expressed 

only from secondary stage of follicle development which could be observed in the plot in Figure 8B. 

 

3.1.3 Differentially expressed genes during follicle development  

 

The samples were separated into their cell types and differentially expressed genes between the subsequent 

stage was estimated using DESeq2. Genes were considered as differentially expressed if the FDR corrected 

p value was less than 0.05 and the log fold change was greater than 0.5. The heatmaps (Figure 9 and 10) 

were generated by combining the log fold change of all the differentially expressed genes during the follicle 

development stages. If the gene was not significant the fold change was set to 0. 

There were 9,996 genes (Table 4) which were significant gene in oocyte (p<0.05, LFC>0.5) during the 

follicle development. Differential Expression of the genes that encode the Zona Pellucida family (ZP1, ZP2, 

ZP3, ZP4), which is essential in primordial and primary follicles, was localized to the initial stage of 

follicular development and were not significant in later stages, although the ZP transcripts were present in 

the oocyte during all the stages of follicle development. 
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Table 4: Differentially Expressed genes between subsequent stages of follicle development in Oocyte. 

Comparison Total Significant Genes  

(FDR<0.05 & LFC >0.5) 

 

Upregulated  

(LFC>0.5) 

Downregulated 

(LFC<-0.5) 

Primary vs Primordial 6039 5595 444 

Secondary vs Primary 3212 156 3056 

Antral vs Secondary 2741 2606 135 

Preovulatory vs Antral 4551 1896 2655 

 

 

 

Figure 9: Differential gene expression between the subsequent stages of follicle development in oocyte cells 

 

 

p<0.05 

LFC> abs (0.5) 

PRvsPM- Primary vs Primordial 

SCvsPR-Secondary vs Primary 

ATvsSC-Antral vs Secondary 

POvsAT-Preovulatory vs Antral  
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Figure 10: Differential gene expression between the subsequent stages of follicle development in 

granulosa cells 

 

 

 

p<0.05 

LFC> abs (0.5) 

PRvsPM- Primary vs Primordial 

SCvsPR-Secondary vs Primary 

ATvsSC-Antral vs Secondary 

POvsAT-Preovulatory vs Antral  
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There are 7,931(Table 5) genes which were differentially expressed (p<0.05, LFC>0.5) in granulosa during 

the follicle development, with a smaller number of significant genes between the primary and primordial 

stage. The expression levels in primary granulosa cells were higher as compared to the secondary granulosa 

samples with 1,662 genes downregulated which means the genes had higher expression in the primary stage 

of follicle development. Steroidogenic enzymes like CYP19A1, CYP11A1, HSD17B1 were not significant 

between secondary and primordial but were highly upregulated between Antral and Preovulatory stages. 

Genes which encode for hormone receptor like AR, ESR1 were only significantly expressed in preovulatory 

and antral stages. While ESR2 and PGR receptors for estrogen and progesterone was not significant in the 

samples. 

   

Table 5: Differentially expressed genes between subsequent stages of follicle development in Granulosa 

Cell. 

Comparison Total Significant Genes  

(FDR<0.05 & LFC >0.5) 

 

Upregulated 

(LFC>0.5) 

Downregulated 

(LFC<-0.5) 

Primary vs Primordial 1016 902 114 

Secondary vs Primary 1729 67 1662 

Antral vs Secondary 4736 4702 34 

Preovulatory vs Antral 3139 1177 1962 
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3.2 Ovarian Follicle Model 

 
We generated a follicle-specific genome-wide metabolic model by overlaying the genes that were 

transcribed in the oocyte and granulosa cell during folliculogenesis into Recon3D using FASTCORE [39]. 

FASTCORE works the following:  

1) The algorithm first identifies all the reactions that are blocked. Blocked reactions are those that 

their metabolites are not produced by another reaction and/or their products are not consumed by 

other reactions. Blocked reactions are common as our knowledge of human metabolism is not 

complete. Removal of blocked reactions in Recon3D rendered a consistent model. The consistent 

part of the Recon 3D model has 12,971 reactions, 4,389 unique metabolites, and 3,013 genes. 

2) Then the set of follicle biochemical reactions that could be active during folliculogenesis were 

overlaid over the consistent Recon3D model. 

3) Finally, FASTCORE identified the minimum set of reactions from the consistent part of Recond3D 

that minimize the number of block reactions in the context-specific ovarian follicle.  

 

The consistent ovarian follicle model has 10,538 reactions,3,484 unique metabolites and 2,954 metabolic 

genes that code for enzymes. Then, we determined whether the model was able to carry out all the reactions 

that are well-known to take place in human cells (e.g., production of ATP) as well as the functions specific 

from ovarian cells (e.g., estrogen and progesterone production). The ovarian follicle model was able to 

model 276 metabolic functions out of 295, including the secretion of estradiol and progesterone by the 

granulosa cells; the consumption of pyruvate by the oocyte (Attached in supplementary file). 
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3.3 Bi-partite Graph of Enzyme and Metabolites 

 

 

 

 
 

 

 

Figure 11: Enzyme-Metabolite Bipartite network of Recon3D(Left) and Human Ovarian Follicle Model (Right). 

 

The bipartite graph is a connection between the enzyme and metabolite that is catalyzed by the enzyme. 

The green node indicates the metabolites, and the red node indicates the enzyme. There were 8824 nodes 

and 94054 edges in Recon3D whereas the follicle model has 7953 nodes and 70138 edges. 

Enzyme network was created by finding the connection between two enzymes that catalyzes same 

metabolites It is a highly connected network and requires community detection algorithms like Infomap to 

identify the hotspots in these networks. We obtained 31 communities or hotspots from the enzyme network 

and calculated the enrichment scores for pathways, metabolites, and enzymes.   

Metabolite 

Enzyme 

FASTCORE 

Recon3D Follicle Model 
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3.4 Metabolites present in stage specific models. 

 

 
Figure 12: Venn diagram Metabolites obtained from at different stages in Oocyte Models.  

(PM: Primordial, PR: Primary, SC: Secondary, AT: Antral, PO: Preovulatory) 

 

 

There are 75% of metabolites which are common in all the stages of follicle metabolites in oocyte. 

Metabolite f1Alpha which is involved in the keratan sulfate pathway was unique only oocytes from 

primordial follicles. Glycolipids and 4-hydroxy benzoic acid, which is involved in phenylalanine 

metabolism, were unique in the oocytes of primary follicles. Oocytes from secondary follicles presented 

methyl histamine, part of histidine metabolism and dihydroxyacetone phosphate in oocytes of antral 

follicles, part of the triacylglycerol pathway. Dimethylallylpyrophosphate involved in cholesterol 

metabolism was the unique metabolite in preovulatory follicle model. 
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Figure 13: Metabolites obtained from at different stages in Granulosa Models. 

 (PM: Primordial, PR: Primary, SC: Secondary, AT: Antral, PO: Preovulatory) 

 

There are 63% metabolites that were common in all stages of follicle development in granulosa cells. The 

granulosa cells from the primordial stage had hydroxybutyric acid in the mitochondrial compartment as 

unique metabolite which is involved in butanote pathway. The granulosa cells from the primary stage had 

cysteinyl glycine as unique metabolite that is involved in the glutathione pathway. The granulosa cells from 

the secondary stage had formaldehyde as unique metabolite that is involved in the various amino acid 

metabolic pathways like glycine, serine, threonine, tyrosine, and tryptophan pathway. The granulosa cells 

from the antral stage had creatine as unique metabolite that is involved in one of the central reactions in 

urea metabolism and the granulosa cells from the preovulatory stage had folic acid as unique metabolites 

involved in folate metabolism. These metabolites maybe used as identifiers after proper of cell stages in 

oocyte and granulosa. 
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3.5 Top Metabolites based on Metabolite Flow Intensity 

 
Figure 14: Top Metabolites in stage specific models based on Z score of normalized flow intensity through the 

metabolites.  

 

The heatmap of Z score normalized flow intensity through metabolites revealed stage specific clustering of 

metabolites. The metabolites enriched in the primary and primordial models of both cell types were similar 

(Figure 14). The normalized flow intensity of the metabolites was lower in the oocyte antral and pre-

ovulatory stages which indicates that the initial stage of follicle presents higher transcriptional activity, 

whereas in number of metabolites in the granulosa cells were enriched throughout the follicle stages. 

OPM- Oocyte Primordial 
OPR- Oocyte Primary 
OSC- Oocyte Secondary 
OAT- Oocyte Antral 
OPO- Oocyte Preovulatory 
SPM- Somatic Primordial 
SPR- Somatic Primary 
SSC- Somatic Secondary 
SAT- Somatic Antral 
SPO- Somatic Preovulatory 
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Oocytes are transcriptionally silence after the primordial primary stage, while the granulosa cells are 

reproducing during most of the stages of ovarian follicle development. 

Coenzymes like Acyl-CoA (accoa), Malonyl-CoA (malcoa), DodecylCoA (dd5ecoa), Hydroxy-CoA 

(hbcoa), Eicosatetraenoyl-CoA (eitetcoa), Hydorxydodcyl-CoA (hdcoa), Eicosanoyl-CoA (arachdcoa), 

Tetracosahexaenoyl-CoA (tethexcoa), which are involved in the fatty acid oxidation, were highly enriched 

on the initiate stages of follicle development in the oocyte. During maturation, lipids get accumulated in 

the form of droplets in oocyte which are later become an important and energy source after ovulation [9]. 

The fatty acid oxidation has been previously linked to development competence of oocyte in mice. 

Supplementing the culturing system with l-carnitine has increased the lipid metabolism and improved the 

development competence in oocyte [8]. Role of Co-enzymes in development competence enzymes has not 

been explored are could be an interesting area because many co-enzymes are involved in the fatty acid 

oxidation.  

Amino acids like alanine, valine, glycine and cysteine were enriched in the granulosa metabolic model in 

the initial primordial and primary stages. Out of well-known steroid hormones that participate in ovarian 

follicle development, such as estrogen, androgen, testosterone, and progesterone, only progesterone was 

amount the top metabolites in the granulosa preovulatory model, which agrees with the literature.  Estrogen, 

androgen, and testosterone were indeed produced by the granulosa cells but were not among the top 

metabolites from any stage.  
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3.6 Top Enzymes based on the Enzyme flow intensity. 

 
Figure 15: Top Metabolites in stage specific models based on Z score of normalized flow intensity through the 

metabolites.  

 

MT-CYB gene encodes a mitochondrial enzyme which was prominent in all the stages and cell types except 

for the oocyte antral stage of follicle development. MT-CYB expression level is an indicator of oocyte 

quality. Compromised oocytes tend to have decreased levels of mitochondrial genes, [17] which may 

indicate that the quality of some antral oocytes from the transcriptomic data might be compromised as 

OPM- Oocyte Primordial 
OPR- Oocyte Primary 
OSC- Oocyte Secondary 
OAT- Oocyte Antral 
OPO- Oocyte Preovulatory 
SPM- Somatic Primordial 
SPR- Somatic Primary 
SSC- Somatic Secondary 
SAT- Somatic Antral 
SPO- Somatic Preovulatory 
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observed in the heatmap in Figure 5. CYP19A1 gene, which encodes for an aromatase enzyme essential for 

the productions of estrogen, had the highest elevated normalized flow at the later stages of folliculogenesis. 

ALDH3A2, which codes for aldehyde dehydrogenase that reduces toxic effect of acetaldehyde on cell 

viability by breaking down acetaldehyde generated during steroidogenesis. ALDH3A2 was localized in 

granulosa cells. LDHA encoding for lactate dehydrogenase A enzyme and GAPDH encoding for the 

glyceraldehyde 3 phosphate was localized to granulosa cells. Bothe are enzyme involved in glycolysis. 

Genes like NDUFAB1 and PLAAT3 involved in fatty acid pathways are less explored in follicle 

development in human. NDUFAB1 which is NADH: Ubiquinone Oxidoreductase enzyme which is a acyl 

carrier protein involved in the mitochondrial fatty acid oxidation was significant in all the oocyte model 

and has been previously explored in Chicken ovarian follicle but not in human. PLAAT3 which codes for 

Phospholipase and acyltransferase 3 which is significant in Granulosa models.  
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3.7 Enriched Pathway in stage specific model 

Next, we checked which pathways were significant at any given stage based on the normalized flow 

intensity through the genome-wide metabolic models. For instance, the oocyte had high normalized flow 

intensity through very well-known pathways in the oocyte like pyruvate metabolism, glycolysis, and 

pentose phosphate pathways. In granulosa cells, glycolysis pathway was the most active one compared to 

the other stage specific models. The granulosa cells in preovulatory metabolic model had high flow intensity 

through the glycolysis pathway as expected, because of the surge in the FSH before ovulation which 

increases the uptake of glucose and production of lactate. The presence of LDHA and GADPH enzymes in 

the most significant enzymes localized to granulosa cells further validates the possibility of glycolysis as a 

major energy in granulosa cells (Figure 15). 

Fatty acid oxidation was higher in all the cell specific models except in oocyte of preovulatory follicle due 

to the high flow intensity (enrichment) of many Coenzymes A during follicle development (Figure 14). 

Granulosa cells in the secondary follicles had consistently low normalized flow intensity. The glycolytic 

pathway had higher enrichment as compared to the oocyte model which is what was expected because 

granulosa cells are glycolytic function. Similarly, the major energy source in the oocyte model was 

pyruvate. 

The folate metabolism is prominent in the initial stages of follicle development of mice and the same was 

observed in the follicle models of oocyte in human interestingly the granulosa model also showed 

significance in the folate metabolism which might be due to species specific difference in metabolism in 

mice [32]. 

Of note, none of the common active steroid pathways in the granulosa cells were enriched, yet the granulosa 

cells were able to produce them.  These apparently contradictory observations are not, as the canonical 

metabolic pathways we commonly employed to describe cellular metabolism are a human-made division 

of the complex cellular metabolic pathways.  
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Figure 16: Some known pathways which were significant based on the Z scores of normalized flows intensity. 
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Chapter 4 

Conclusion 

 

Ovarian follicle development is a complex and dynamic process which is regulated at different cellular 

levels. While the follicle development has been studied at the transcriptomic level, there is limited 

information at the metabolic level. This may be due to the costs of metabolomics analysis, the difficulty to 

understand non-targeted metabolomics, the lack of relevant and significant biological samples available or 

lack of technology that allows to simulate the condition inside the body. Genome-wide scale metabolic 

models could be used to overcome such hurdles and make use of the available omics data to generate new 

data-driven hypothesis that can be tested in the laboratory to develop better technology. Although the global 

genome-wide scale models can be used to study and understand the metabolism in humans, specific 

difference in cellular function might be masked. Genome-wide scale context specific metabolic modelling 

has led to the fast and easy re-construction of cell specific metabolic models with the integration of available 

omics data such as transcriptomics, proteomics, or metabolomics. 

In this study, we re-analyzed publicly available, single cell transcriptomic data from oocyte and granulosa 

cell from five different stages of follicle development to create cell-specific genome-wide metabolic models 

of oocyte and granulosa cells at each stage during ovarian follicle development. The most comprehensive 

and latest reconstruction of human (Recon3D) was employed to model the metabolism in the cell types. 

We have created the first human follicle model that consist of all the plausible metabolic reactions that 

could occur during follicle development. We also created stage specific metabolic models of oocyte and 

granulosa to study the difference in metabolism at different stages (primordial, primary, secondary, antral 

and preovulatory) and cell types during follicle development. Our ovarian follicle model is relevant as it 

could simulate 276 essential human metabolic functions for survival and growth (biomass reactions, ATP 

production from glucose) and reactions specific to the follicle development like secretion of progesterone 
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and estrogen, production of androgen, to name few. To study the difference in the metabolism at every 

stage of follicle development, we used stage specific models to identify the differences in the metabolites 

present at each stage of follicle development. We could observe that there were lot of metabolites that were 

unique to specific stages. Using a community detection algorithm, we obtained the flow of information 

through the network of metabolites and enzymes. There were several known pathways for energy which 

were significant based on the normalized flow intensity in the models like pyruvate metabolism, fatty acid 

oxidation, glycolysis, and Pentose phosphate pathway. The fatty acid oxidation and synthesis were highly 

active in all the models and since the lipid metabolism is still unknown during each stage of follicle 

metabolism makes it a good place to start for future studies. We also obtained top metabolites and enzymes 

that are active in each stage of follicle development. Many of the top metabolites obtained were Co-enzymes 

which again points towards the lipid metabolism. The enzymes like LDHA and GADPH can be used for 

validation of future in silico models of follicle development with different datasets as it has been studied 

previously in the mammals [9]. 

4.1 Future perspectives 

Genome-wide context specific metabolic models have great potential to understand metabolism at the 

cellular level. The advancement of high throughput analysis combined with efficient algorithms to integrate 

multiomics data with the genome scale metabolic models has led to easy and fast reconstruction of 

metabolic relevant models. These models can be employed to shed light into the metabolomic behavior of 

the cells in different condition and can be employed to design new culture media according to the 

consumption pattern in the cell. 

There are several limitations in our study. For instance, although all the ovaries appeared histologically 

healthy, the donors were preserving their tissue for fertility preservation due to cancer, tumor, or sex 

reassignment (which required testosterone treatment). Thus, it is plausible that some of the samples do not 

represent healthy follicles.  It would have been ideal to have samples from healthy donors. The model 
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generated from these data could simulate some of the well-known metabolic pathways during ovarian 

follicle development like glycolysis, pyruvate metabolism, fatty acid oxidation, but integration of 

proteomics and metabolomic data will enhance the model further in terms of prediction of key metabolites 

consumed and secreted. Also, other cell types available in the ovarian tissue needs to be added in the model 

to make a complete follicle model at each stage of follicle development, including theca cells, mural and 

cumulus granulosa cells. 

Genome-wide models of ovarian follicle development can be used to study the diseased state like PCOS in 

which genes involved in steroid hormones are affected which leads to excess production of androgens. 

These conditions can be simulated by knocking out genes responsible for PCOS and checking its effect on 

the pathways and members of our laboratory are currently exploring this application. 

In future, the use of machine learning and artificial intelligence combined with high-throughput sequencing 

could pave the way to build efficient and personalized culture systems for IVF and IVM and increase the 

success rate of pregnancy in women with infertility. 
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