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Summary

To assess and optimize the performance of combustion systems, it is

necessary to characterize fuel ignition quality. Acquiring ignition properties

of fuels is a tedious process that involves sample preparation and ignition

quality testing. With advances in alternate approaches to defining fuels,

particularly through a digital spectroscopic signature, a new possibility to

simplify and automate the process of getting such knowledge has emerged.

In this work, we harness automated statistical learning to map between the

underlying chemical properties of fuel and the spectroscopic data it is im-

printed on. Ensuring that such mapping is accurate and interpretable, it

establishes a pathway for efficiently and totally automating the extraction

of various attributes from any fuel. However, the high-dimensional nature

of spectroscopic data, its scarcity, and the noise associated with the data

collection process are key roadblocks to accomplish such task.

In this research, we address these issues by integrating machine learning

predictive modeling, interpretable feature selection techniques, and syn-

thetic data generation, respectively. In the first part, we investigate the most

commonly used feature selection techniques and adopt the most recent and

advanced explainable AI techniques to interpret the prediction outcomes

of high-dimensional and limited spectral data. Interpretation of the predic-

tion outcome is beneficial for the domain experts as it ensures the trans-

parency and faithfulness of the ML models to the domain knowledge. Due

to the instrument resolution limitations, pinpointing important regions of

the spectroscopic data creates a pathway to optimize the data collection pro-

cess through the spectrometer device miniaturization. Reducing the device

size and power, and hence, cost is essential for a real-world deployment of

such a end-to-end system.

xii



Furthermore, we consider a wide range of machine learning models that

have been proven to be successful for the prediction of the Cetane Num-

ber of fuels. We specifically design three different scenarios to ensure that

the evaluation of ML models is robust for the real-time practice of the de-

veloped methodologies and to uncover the hidden effect of various noise

sources (statistical and from data collection) on the final outcome. The eval-

uation is performed for both the full model and reduced models using dif-

ferent feature selection techniques on a real dataset. In the second part, we

devise a deep generative technique to produce high fidelity and high di-

versity synthetic spectroscopy samples learned from the original dataset to

expand our limited data pool and improve the representation. Our devel-

oped GAN model is then evaluated using statistical similarity, prediction

model efficacy, and domain-expert conformance metrics. The results indi-

cates tangible improvement in prediction model generalization ability for

unforeseen data. To further enhance the transparency of the entire process,

we employ GAN to produce samples of a specific group of pure alkane

mixtures and compare them to the expected output. We demonstrate that

our data synthesis approach can learn and reproduce spectroscopic samples

that have the physical attributes of real fuels despite being artificial.

xiii
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Introduction

Deriving fuel properties from spectroscopic signatures is not a new idea. Spec-

troscopy is a commonly used technique for determining the composition of ma-

terials as well as its physical and chemical properties. However, since fuels are

typically composed of a mixture of multiple pure chemical components, each

having unique properties, their presence and exact positioning in spectral re-

gions of a fuel mixture are unknown. With years of research in this field, only a

few of these components have been successfully connected to their placements

in spectral regions. While chemical researchers continue to explore this prob-

lem from the domain standpoint, an alternative approach for determining fuel

properties is being investigated as a resolution. This new direction combines

the power of Machine Learning (ML) and chemometrics to build a robust data-

driven approach for mapping spectral features and fuel properties to identify

chemical components in mixtures. The spectroscopic data are typically limited

to the number of physical mixtures produced, prepared, and processed by a re-

searcher using a particular spectroscopy collection method. Therefore, collecting

large numbers of observations is a time-consuming and expensive task, an issue

that we address in this research proposing a synthetic data generation approach.

At present, Machine Learning (ML) is widely used in a variety of fields. It

1



Chapter 1. Introduction

refers to a group of computational and statistical techniques that maps a set of

input characteristics to a response, with a priori unknown relationships, such

that the estimated mapping (model) can be utilized for response prediction of

unseen future observations.

There are a group of ML models with explicit functional form, either linear

(e.g., Linear Regression (2)) or non-linear (e.g., K-Nearest Neighbor (3)). Several

problems can be addressed by modeling linear relationships between a response

value and a set of predictor variables that a human observing the process easily

understands. In contrast, other problems require a more sophisticated map-

ping, leading to various non-linear ML modeling techniques. Within this group,

a subset of more advanced ML modeling techniques has recently become more

prevalent. Such techniques have no explicit functional form associated with the

modeling, and instead, the mapping follows an architecture connecting input

characteristics to output through a large set of nodes with a chain of transforma-

tions. Although such network-based models yield black-box complex functional

form, they successfully capture the non-linearity and specific properties of the

underlying unknown function. In reality, the nature of the underlying mapping

is not known in advance.

Presently, machine learning has been successfully implemented to solve a

range of problems from finance, engineering, and medicine to applied sciences.

In some applications, these models achieve better performance than humans,

such as object recognition, detection, and tracking (4; 5), beating world Chess

and Go champions (6; 7), solving protein folding problems (8), etc. Unlike a hu-

man, however, a trained black-box model cannot provide reasons for a specific

decision or choice, even though the results are often accurate, lacking a very im-

portant component of human behavior – explainability. Therefore, to claim that

ML is truly capable of correlating the underlying relationship between spec-

2



Chapter 1. Introduction

troscopic data and material physical and chemical properties, it must be fully

transparent for domain experts.

That being said, we employ the most advanced algorithms to explore the

peaks and valleys of spectral data and accurately predict the ignition properties

of fuel in real-time and at scale. Having access to a limited number of training

samples and a large number of attributes results in a complex problem setting.

Hence, we develop a framework that adopts a reduced subset of attributes for

prediction instead of the entire set of attributes. This approach is two-folded, as

it makes the prediction efficient and scalable in real-time and reduces the com-

plexity to avoid overfitting issues on the unobserved noisy data. Furthermore,

the reduced dimensionality of such a tool enables a more interpretable and ac-

cessible model for domain specialists to evaluate.

While the data collection is typically peripheral to constructing predictive

models, it is essential to scale such models to solve real-world engineering prob-

lems. Thereby, we consider an end-to-end process from collecting the spectro-

scopic data to obtaining the results. The data collection often requires a robust,

sizable sensor. Such sensors, however, can be miniaturized to capture only a

selected region of spectroscopic signature if, and only if, there is enough infor-

mation in those regions to differentiate between various types of fuels and their

properties. Although the response of substrate fuel molecules is continuous over

a specified light frequency range, the response is recorded in discrete steps due

to instrument resolution limitations. Thereby, the underlying fuel chemical com-

position is represented by discrete feature locations on the wavelength axis. That

being said, pinpointing these regions creates a pathway to optimize the data col-

lection process, which is a requirement for the real-time deployment of such a

sensor-to-prediction system as a whole.

There are several spectroscopy techniques used in real-time applications to

3



Chapter 1. Introduction

collect fuel spectroscopic data. The two datasets used in this work consist of

fuel spectra collected using Raman and diamond Attenuated Total Reflectance

(ATR) spectroscopy. These spectroscopic methods work on the light scattering

principle, where the incident laser light is scattered by the sample’s molecules to

produce a unique spectrum. The spectroscopic data can be visualized as a series

of data where each feature is recorded as the scattering intensity value occurring

at a particular wavelength axis position. These techniques are frequently used in

chemistry to provide a structural fingerprint by which substrate molecules can

be identified. Explicitly, the fundamental Chemical Functional Groups (CFG)

present in the sample are the main reason for producing unique chemical fin-

gerprints of the sample under observation. As a unique structural fingerprint is

acquired for each sample, fuel ignition quality such as Derived Cetane Number

(DCN) can be measured for each sample and associated with its spectral data,

thus providing a framework for predicting the DCN of unknown and unseen

fuel samples.

DCN (i.e., CN) is one of the main indicators of fuel ignition quality. Similar to

spectroscopic and CFG correlations, CN is highly correlated to the quantity and

type of functional groups present in the fuel (9; 10; 11). Thus, feature selection is

performed to extract wavenumbers important for CN prediction and, therefore

likely correspond to CFG locations. This can be validated using the knowledge

gained from the physical chemistry analysis, completing the human-in-the-loop

approach.

Spectroscopy can suffer from several measurement accuracy issues: poor sig-

nal intensity, broad fluorescence baseline interference, and dark current noise.

Although various pre-treatment and calibration techniques are often used before

the analysis to ensure precise and consistent data readings, both spectroscopic

data and measured CN values have an observable level of statistical noise. Bear-

4



Chapter 1. Introduction

ing that in mind, we particularly focus on models capable of extrapolating pre-

dictions for any and all unseen fuel samples.

Ultimately, we show that our end-to-end spectroscopy mapping and predic-

tion framework is capable of identifying important features (wavenumbers) that

are likely correlated with locations of chemical functional groups in the spec-

trum. Further, we show that using a reduced subset of important features to

train the prediction model helps improve CN prediction accuracy, which is a

measure of one of the underlying fuel properties. Therefore, the techniques used

to map these relations remain transparent to users, and models are scalable for

real-time deployment.

The biggest constraint, however, is the limited dataset size. Lack of diverse

training dataset results in overfitting on the seen data and poor generalization

ability to predict CN for unforeseen fuel samples. Moreover, spectroscopic data

has an inherent noise associated with instrument resolution and collection pro-

cess in a real setting where exogenous factors, such as room temperature, hu-

midity, etc., affect laser power and result in noisy data. Therefore, to ensure that

a robust prediction model is used for rapid data analysis in a real-time setting,

it must be trained on a large and diverse dataset that considers various types of

mixtures and above discussed noise levels. To that end, a simple perturbation

of existing data will not be sufficient to produce new and well representative set

of samples to train on.

As a resolution, we develop a generative technique to produce realistic, high-

quality fuel spectra variations similar to ones that can be encountered in real-

time. The main goal is to create a strong simulation core capable of generat-

ing quality synthetic spectroscopic data that complements the existing training

dataset and improves overall data representation. As a secondary goal, by ex-

panding our dataset in a meaningful way, we aim to enhance the prediction

5



Chapter 1. Introduction

performance.

To this end, we design a complex Generative Adversarial Network (GAN)

model capable of learning the underlying distribution of given spectroscopic

data. GAN is a popular, deep generative technique for improving data rep-

resentation through the synthesis of new artificial samples that hold the same

properties as original data. The use of GAN for boosting prediction performance

spans many domains. The examples where generation of new data points helps

to improve video frames prediction (12), risk prediction (13) or medical ailment

classification (14) are just a few to name. A robust trained GAN model is then

used to produce a variety of synthetic samples that are distinct from the orig-

inal ones but follow the same distribution. Using additional domain informa-

tion on real mixtures’ known functional group concentrations, we further refine

our model to target the production of synthetic spectra with predefined, desired

properties. The evaluation of the quality of generated samples relies on esti-

mating their similarity to the original training data that GAN was trained on,

as well as expert evaluation to ensure synthetic spectra adherence to the chem-

istry domain. The former is achieved using statistical similarity tests, such as

Kolmogorov–Smirnov (KS) statistic, which measures the similarity between real

and synthetic cumulative distributions across all wavenumbers, and principal

component decomposition analysis. The latter is achieved by producing tar-

geted samples using conditional information to evaluate how well GAN learned

a particular mixture mapping. Next, we employ a weak supervision approach

to generate imperfect but plausible labels for our unlabeled synthetic dataset.

This artificially generated and labeled dataset is then used for training a new

CN prediction model in a supervised setting. The quality of the generated data

is evaluated once more using the ML efficacy test, which determines whether

substituting synthetic data with real data provides a comparable prediction er-

6



Chapter 1. Introduction

ror, indicating that the generated data are realistic and thus trustworthy.

In this research, we show that synthetic spectra generated with stable, trained

GAN can address the limited spectroscopic data issue and boost dataset diver-

sity. The quality of the synthetic data is assessed and found to be consistent

with observable data. We present an improvement in prediction accuracy over

baseline upon retraining prediction models on the new synthetically-expanded

dataset, further contributing to our goal of building a powerful, robust and ex-

plainable end-to-end spectroscopy mapping and prediction framework. With

the entire process grounded in domain-expert approval, we achieve clear em-

pirical proof that the map between fuel properties and sample spectrum rep-

resentation can be generated using ML technologies. From feature selection to

synthetic data generation, we show that connections that exist between materi-

als and their digital fingerprints can be learned and exploited. Given the limited

size of fuel spectroscopy data, comprehensive learning and ignition property

prediction model can be developed.

In Chapter §2 we begin with analyzing the current literature on machine

learning, the role of spectroscopic data analysis in chemometrics, and the signif-

icance of machine learning in spectra data analysis. We further discuss feature

selection and explainable AI techniques research and how these methods help

to interpret complex models. Next, we review popular predictive modeling,

feature selection and interpretation techniques. In Section § 2.2.1 we provide

background on popular and successful machine learning models, particularly

in the chemometrics domain, including Support Vector Machines and Neural

Networks. In Section § 2.1.1 we review feature selection methods which help

us identify important spectroscopy features and provide details on interpreta-

tion techniques used to explain the behavior of prediction models. In Section

§ 2.3 we focus our attention on the practical implementation of these methods

7



Chapter 1. Introduction

and include details about the deployment challenges in the real-time setting. In

Section § 2.3.5 we provide experimental results and discuss our findings.

In Chapter §3 we shift our attention to addressing the issue of the limited size

of spectroscopy data. We begin by discussing popular data augmentation and

data synthesis approaches in §3.1 and cover existing literature on using gener-

ative modeling, particularly GAN, for spectroscopy data synthesis in §3.1.1.

In §3.2 we review common GAN variants, their advantages and disadvan-

tages, and underlying technical principles. We then provide details on evalu-

ation methods used throughout the rest of the Chapter to establish the quality

of the generated samples. Moving to §3.3, we discuss step by step implementa-

tion of GAN to generate realistic artificial spectroscopy that holds information

about the physical properties of real fuels. After obtaining the desired quality

of generated data, we perform a final domain-expert evaluation, generating an

expanded spectroscopy dataset, and investigate the significance of using a new

dataset for boosting prediction model accuracy. We then summarize the results

of our research in §4.

8



2

Feature Selection

The majority of this chapter’s content are adopted from our recently published

paper, (1).

2.1 | Background
To interpret the ML decision process, there exists three groups of decomposition-

based, model-based and model-agnostic techniques, whose advantages and disad-

vantages are summarized in Table 2.1. The widely used decomposition tech-

niques such as Principal Components Analysis (PCA) (15), and Partial Least

Squares (PLS) (16) with its variants, such as Interval PLS (17), Forward and Back-

ward Interval PLS (18), Moving Window PLS (19) and few others, are prepro-

cessing methods that can be used to reduce the input space dimensionality be-

fore the training stage. The model-based interpretability is focused on constrain-

ing the structure of ML models so that they readily provide useful information

about the uncovered relationships. "As a result of these constraints, the space of

potential models is smaller, which may sacrifice training predictive accuracy"

(20) to achieve a better generalization performance. Linear Regression (LR)

(2), Logistic Regression (21) and Decision Trees (22) are innately interpretable.

9



Chapter 2. Feature Selection 2.1. Background

Therefore, analyzing the interactions between features or between features and

response within such models enables explaining the model outcome. On the

other hand, the model-agnostic methods can be used on any ML model and are

usually applied post hoc (post-model) following the model training stage.

Local and global interpretation methods are two types of model-agnostic in-

terpretation methods (23). Global methods explain the on-average effect of fea-

tures on the final prediction outcome. Local techniques, however, seek to explain

particular predictions. The latter group of techniques is more useful when we do

not have access to a lot of data and want to explain the behavior of the model for

every single instance of the data. Most of the local model-agnostic interpretable

techniques require a “surrogate or a simple proxy model that can be applied to

learn a locally faithful approximation of a complex, black-box model based on

outputs returned by the black-box model” (24). This approach is also known as

knowledge distillation (25). Alternative to local interpretation that helps explain

individual prediction, are global methods that describe entire model behavior

across all predictions. Global methods offer “transparency about what is going

on inside a model on an abstract level” (26). The advantage of Model-agnostic

techniques is their flexibility to explain any model, providing consistency in ex-

planation across various prediction methods. Therefore, we can select certain at-

tributes that affect the target outcome using these interpretable methods, which

will be summarized later. As mentioned above, some models are interpretable

by nature, and some are complex black-box. The biggest advantage of model-

agnostic techniques is their ability to explain such complex models. Moreover,

this advantage can be extended from complex models to simpler ones as well.

10



Interpretability Models Advantage Disadvantage

Decomposition-
based

PCA Computationally efficient. Re-
moves correlated features.

Loss of direct mapping from fea-
tures to output. Information loss
due to improper number of compo-
nents.

PLS Estimates correlation between fea-
tures and target variable. Calcula-
tions are fast

More prone to overfitting on lim-
ited datasets. Assumes linear re-
lationship between features and re-
sponse

Model-based

RF Ability to provide ranked fea-
ture importance. Handles miss-
ing values. Works well on high-
dimensional data. Less biased to-
wards more important attributes.

Validity dependant on sample size
(sample bias). Computationally
complex.

Ridge Ability to address multicollinearity
issue. Shrinks unimportant vari-
ables.

Assumes linear relationship be-
tween predictors and target vari-
able. Requires penalty parameter
tuning. Low sparsification ability.

Model-
agnostic

SHAP Global interpretations are consis-
tent with the local explanations.
Solid theoretical foundation. Abil-
ity to provide local interpretations.

Computationally inefficient. Ig-
nores feature dependence. Unre-
producible interpretations. Live ex-
planations require access to data.

GS Intuitive and straightforward.
Ability to use any model as surro-
gate. Ability to measure surrogate
models’ performance to approxi-
mate black box predictions.

Draws conclusions about model
and not data. Surrogate model
interpretations can be not equally
good for all subsets of data.

LIME Works for any data type. Explana-
tions are selective and contrastive.
Provides fidelity measure to esti-
mate explanation reliability.

Instability of explanations, as re-
peated explanations differ. Iden-
tifying correct sampling neighbor-
hood is imperative. Unrepro-
ducible interpretations.

Table 2.1: Summary of feature selection methods, their advantages and disadvantages.



Chapter 2. Feature Selection 2.1. Background

While the body of research on spectroscopic analysis is extensive, to the best

of our knowledge, there is no single comprehensive work focused on devel-

oping both explainable and scalable predictive models for spectroscopic data.

Most publications in the field either solely focus on obtaining prediction, for

example, applying popular ML methods for octane prediction using infrared

spectroscopy (27), or the use of common feature elimination techniques (28) to

improve the prediction accuracy. The implementation of explainable black-box

models is limited to interpreting functional near-infrared spectra data in devel-

opmental cognitive neuroscience using simple multi-variate analysis (29) and

using Local Interpretable Model-Agnostic Explanations (LIME) (30) on optical

emission spectroscopy of plasma (31).

Therefore, we investigate the performance of a wide range of successful pre-

dictive models and implement model-based and model-agnostic interpretable

techniques to achieve at-scale models for real-time practice. We consider three

predictive models, from basic Linear Regression to non-linear Support Vector

Machine (SVM) (32) and network-based Neural Network (NN) (33) regressions.

Furthermore, we consider PCA, PLS, Ridge Regression (34) and Random Forest

(35) for model-based feature selection methods, as well as popular local model-

agnostic interpretable techniques, such as LIME and Shapley Additive Expla-

nation (SHAP) (36), and Global Surrogate (GS) (37) as global model-agnostic

method.

Performing a set of comprehensive experiments, we discuss the set of tools

for spectroscopy data analysis beyond what has been covered in literature so far

and provide informative insights on their challenges in a high-dimensional and

limited spectra data setting. To provide a precise evaluation of feature selec-

tion techniques, we propose two metrics: Correctness, which measures selected

features’ adherence to known chemistry using domain expertise, and Perfor-
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Chapter 2. Feature Selection 2.1. Background

mance, which measures testing error on a predicted CN value. Additionally,

we construct a trade-off scale between Correctness and Performance to evalu-

ate the overall accuracy of the above-mentioned techniques in identifying such

attributes.

In Section § 2.1.1, we analyze the current literature on machine learning, the

role of spectroscopic data analysis in chemometrics, and the significance of ma-

chine learning in spectra data analysis. We further discuss feature selection and

explainable AI techniques research and how these methods help to interpret

complex models. Next, we review two major components of our work: pre-

dictive modeling and feature selection and interpretation techniques. In Sec-

tion § 2.2.1 we provide background on popular and successful machine learning

models, particularly in the chemometrics domain, including SVM and NN. In

Section § 2.1.1 we review feature selection methods which help us identify im-

portant spectroscopy features and provide details on interpretation techniques

used to explain the behavior of prediction models. In Section § 2.3 we focus

our attention on the practical implementation of these methods and include de-

tails about the deployment challenges in the real-time setting. Finally, in Section

§ 2.3.5 we provide experimental results and discuss our findings.

2.1.1 | Related Works
Spectroscopic techniques have been widely used for different purposes in var-

ious domains such as petrochemical (38; 39), medical, pharmaceutical, and bi-

ological (40; 41; 42), food and agricultural (43; 44; 45; 46), engineering (47) and

material and geologic (48; 49) analysis to monitor reactions and conditions of a

final product.

There is an extensive literature in the petrochemical industry and the chemo-

13



Chapter 2. Feature Selection 2.1. Background

metrics discipline that outlines various methods to predict fuel Cetane or Oc-

tane Number. The relationship is often established using information from fuel

Quantitative Structure Property Relationships analysis (50), Fatty Acid Methyl

Esters composition analysis (51) or, most commonly, spectroscopy analysis. There

are too many forms of spectroscopy to mention, but some popular ones are:

Gas Chromatogramy-Mass Spectroscopy (27; 52), Nuclear Magnetic Resonance

Spectroscopy (9), Fourier-transform Infrared (FTIR) Spectroscopy (53; 54; 55; 56)

and Raman Spectroscopy (56; 57; 58). Using infrared (IR) technique is arguably

one of the most popular spectroscopy techniques, with some researchers focus-

ing on probing Near Infrared (NIR) (28; 46; 57; 59; 60) or Mid-Infrared (MIR)

regions. However, Raman Spectroscopy provides a big advantage over IR Spec-

troscopy since it allows collecting spectra in similar IR regions without major

preparation or damage to the sample. Due to its shorter runtime, we choose

Raman spectroscopy to further aid the goal of real-world deployment of our

evaluation framework.

Summarizing the existing body of work on spectroscopy analysis (Table 2.2),

it is worth mentioning that the majority of studies on fuel spectroscopy do not

collect their own data or have a limited dataset size. The number of avail-

able fuel samples is likely a major limiting factor in producing a large, diverse

dataset. While spectroscopy is arguably the fastest, cheapest, and least destruc-

tive way of gaining insight into materials, the overall data collection process for

spectroscopy analysis, from fuel mixture creation, equipment setup, calibration

to the final reading, is still a time-consuming task. While the majority of the liter-

ature covers fuel ignition qualities prediction, the choice of the predictive model

is often limited to either linear or non-linear methods, and rarely are both com-

pared. Additionally, fewer topics are dedicated to extracting or explaining (see

Interpretability column in Table 2.2) spectroscopic features. To this end, most

14
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researchers apply model-based feature selection techniques to identify and re-

move noisy features in order to improve prediction accuracy, and computational

efficiency (27; 28; 56; 57; 59; 60; 61; 62; 63; 64; 65; 66; 67; 68) and avoid discussion

on model scalability and interpretation on a noisy test set. Furthermore, the ex-

isting literature mainly focused on model-based and decomposition-based tech-

niques that consider global importance, which is less effective for limited data

settings. In another body of work, popular feature selection methods such as

PCA (69), and PLS (70) were employed to discover the correlation between de-

composed fuel spectra and fuel sample clustering results (53), help isolate cer-

tain chemical groups responsible for the deviation in predicted values (27; 46),

and correlate certain spectra regions of pharmaceutical tablets to the concentra-

tion of antiviral drug (60).
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Work Collected Data Linear Models Non-linear Models Model-based FS Model-agnostic FS Scalability Interpretability

(50) - - + - - - -
(61) - - + - - + -
(54) - - + - - - -
(57) + + - + - + -
(39) + + - - - - -
(71) + + - + - - -
(60) + + - + - + +
(58) + + + - - - -
(72) + + + - - - -
(73) + + - + - - -
(53) + - + + - - +
(62) - + + + - + -
(52) + + + - - - -
(46) + + - + - - +
(27) - + + + - + +
(63) + + - + - + -
(55) + + - - - - -
(74) + + + - - - -
(38) - - + - - - -
(51) - + + - - - -
(56) + + - + - + -
(28) - + + + - + -
(59) - + + + - + -
(75) + + + - - - -
(29) - + - + - - +
(76) + - + - - - +
(31) - - + - + - +
(64) + + + + - + -
(77) + + + - - - -
(9) + + - - - - -

This Work + + + + + + +

Table 2.2: Summary of related work in comparison to this work



Chapter 2. Feature Selection 2.1. Background

As previously discussed, few works focus on explaining learning and pre-

dictive modeling using spectra data. In (29) authors applied linear multi-variate

analysis to interpret development cognitive neuroscience spectroscopy data. Di-

rect visualization of gradient-weighted class activation mapping of Convolu-

tional Neural Network was developed in (76) to interpret detection of volatile

organic compounds.

Recently, model-agnostic methods have attracted a lot of attention for fea-

ture evaluation, such as Shapley Additive Explanation (SHAP) (36) and LIME

(30). Explainable AI techniques in general have been widely used to explain

predictions in financial and chemical time-series data (78; 79; 80; 81) vibrational-

based Structural Health Monitoring signals (47), hyperspectral imaging (82) and

electrocardiogram data (83). However, to the best of our knowledge, only one

recent work focused on using the model-agnostic method (LIME) to explain the

non-linear predictions of spectroscopy data to characterize plasma solution con-

ductivity (31).

After investigating the existing research, we develop an efficient, scalable

framework that ensures prediction accuracy and transparency together. This

chapter simultaneously investigates the performance of the most successful ML

models in the literature, including SVM and NN, and covers a comprehen-

sive examination of both model-based and model-agnostic explainable AI tech-

niques for spectroscopy data analysis. The goal is to derive the most accurate,

scalable prediction model specifically with limited data and in noisy settings.

More importantly, we aim to ensure the interpretability and transparency of the

prediction outcome to the human expert, supporting the fact that predictions are

grounded in domain science and, therefore, can be fully trusted to make further

decisions. We also focus on modeling raw, unscaled, noisy data to ensure it can

be deployed fast in the real world without any major preprocessing. Finally, we
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promote feature selection techniques that are able to determine local explana-

tions rather than global to provide deeper insights on the impact of attributes on

the response when the data are limited.

2.2 | Methodologies

2.2.1 | Predictive Modeling
Machine Learning is referred to a statistical tools encoded in a machine to make

predictions about future observations based on historical data. There are many

ways to categorize ML methods; supervised and unsupervised, linear and non-

linear, etc. In this paper, we group them into two categories: interpretable and

non-interpretable (black-box), with Linear Regression (2) being an example of

the former one, and Support Vector Machines (32), and Neural Networks (33)

being an example of the latter. As discussed in § 2.1.1, the two popular meth-

ods in chemometrics are PLS Regression (16), and PCA Regression (15), as they

can first provide insight into important features in high-dimensional data by de-

composing it into latent structures using PCA and PLS, and build interpretable

linear regression models on top for prediction.

There is a long tradition of employing linear models in chemometrics. As

more recent examples, Jameel et al. used multiple LR and nuclear magnetic

resonance spectroscopy to predict fuel ignition quality (9). Barra et al. used

PLS regression with FTIR spectroscopy to predict cetane number in diesel fuels

(55). Balabin et al. also compared the performance of PLS and PCA regression

models with NN while analyzing biodiesel properties using near-infrared (NIR)

spectroscopy (64). However, the main drawback of any linear model is its in-

ability to capture complex non-linear relationships within the data, especially
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when the access to the training data are limited. Therefore, the use of Support

Vector Regression (SVR) and deep learning models has been particularly promi-

nent in chemometrics. Using SVR, Kiefer et al. achieved superior results on

Raman spectroscopy of algal production of complex polysaccharides over LR

(71), while Alves et al. noted that SVR outperformed PLSR for NIR spectra anal-

ysis (72). Balabin et al. has also explored the deployment of NN and SVR for

analytical chemistry and concluded that not only SVR outperforms PCA and

PLS regression methods (64), but that SVR also performs similarly to NN, with

SVR having the advantage in producing a more generalized model capable of

efficiently dealing with non-linear relationships (75). Similarly, NN is also capa-

ble of capturing unique spatial features and have been shown to perform well

on spectroscopy data analysis (27; 38; 52; 53), given a wealthy amount of data.

In our work, we investigate the performance of LR, SVR, and NN models to

process high-dimensional spectra data for prediction and explainability effort.

2.2.1.1 | Support Vector Regression

Support Vector Machine is a supervised learning model grounded in Vapnik–

Chervonenkis computation learning theory (84), which explains the learning

process from a statistical point of view, ensuring high generalization ability on

unseen data. SVM solves both classification and regression problems by identi-

fying an optimal separating hyperplane with maximum margin to the training

observations, formulated as a convex optimization problem. In a regression set-

ting, the optimal hyperplane is the decision surface that best approximates the

continuous-valued function (85). The goal is to first arrive at a minimized con-

vex loss function that produces an error in predicted values at most equal to the

specified margin, called the maximum error ε (epsilon). At the same time, the de-

cision surface must stay as flat as possible while containing most of the training
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samples (86). An important property of SVR is its ability to map input vectors

to a high-dimensional feature space where a non-linear decision surface can be

constructed that fits the data within a threshold of values within a specified mar-

gin. Since the data can often not be separable in initial finite-dimensional space,

mapping it into a much higher-dimensional space, aka kernel space, makes the

separation easier.

The optimization, which has a unique solution, is further solved, and since

not all points are going to fall within the margins, slack variables ξn and ξ∗n,

which denote deviation from the margin, are introduced to deal with otherwise

infeasible constraints. The constant C is then introduced to impose a penalty

on observations that lie outside the margin to prevent overfitting and determine

the trade-off between the flatness and amount of deviation that can be tolerated.

Ultimately, the decision surface is confined using support vectors, which are

the most influential instances that lie outside the tube boundaries and affect its

shape. In order to minimize the computational complexity of the described opti-

mization problem, it is solved using Lagrange dual formulation. Mathematically

speaking, given the set of observations X where each Xi ∈ RM, for i = 1, . . . , N

and where N is the number of samples and M is the number of features (di-

mensions), with yi being the predicted value, we can express the optimization

problem as:
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min
1
2
||w||2 + C

N

∑
i=1

ξi + ξ∗n (2.1)

s.t.

yi − wT φ(Xi) ≤ ε + ξ∗i i = 1, . . . , N (2.2)

wT φ(Xi)− yi ≤ ε + ξi, i = 1, . . . , N (2.3)

ξn, ξ∗n ≤ 0, i = 1, . . . , N (2.4)

Where w is the weight vector of the separating hyperplane and φ(·) is a

transformation function, i.e. kernel, that maps vector X to a high-dimensional

space, that computes inner products of the input vectors. Using kernel, or ker-

nel trick, pairwise similarity comparisons between training data observations

are used instead transforming data to avoid extremely high number of combi-

nations. Two popular kernel functions include: Linear dot product φ(Xi, Xj) =

⟨Xi Xj⟩ and Polynomial φ(Xi, Xj) = (γ⟨Xi, Xj⟩ + Coe f 0)d, for d > 0 where γ

is a scale factor that defines how a support vector shapes the decision surface,

and Coe f 0 is an independent term used to overcome dot product computation

issues for high-dimensional data. The parameters are further covered in Section

§ 2.3.3.

2.2.1.2 | Neural Networks

NN is a computing system that is commonly used for supervised learning. It

is represented by a network of artificial neurons or nodes connected by links,

where each link has an associated randomly initialized weight and activation

level. Each node has an input function (typically summing over-weighted in-

puts), an activation function, and an output. The weights are updated through

a forward and backward propagation until they converge to optimal estimates.
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Through the forward approach, the input function of each unit is passed

through the activation function, typically a non-linear function, and transformed

to a new value that would be passed to the nodes in the subsequent layer. This

process is known as forward propagation, during which a network learns and cre-

ates its own features. Mathematically, the operations in input layer are shown

in Equation 2.5, where a1 is input layer activation, expressed as function g of

weights w and training data X. Working forward through the network, the in-

put function of each unit is applied to the weighted sum of the activation on

the links feeding into that node. Forward propagation ends at the final (output)

layer L, which produces a value based on function hw(X) of all previous layer

transformations (Equation 2.6). Lastly, the total prediction error is calculated

using problem-specific loss (or cost) function, e.g. mean squared error (Equa-

tion 2.22), cross-entropy (Equation 2.7), so that the gradients which are used to

update the weights in next step can be derived.

a1 = g(w1X) (2.5)

hw(X) = aL = g(wLaL−1) (2.6)

J(w) = (1 − y)(log(1 − ŷ) + ylog(ŷ) (2.7)

Each node j in layer l is “responsible” for fraction of the error δl
j in output

nodes it is connected to. Hence, through the backward approach, the error as-

sociated with each unit from the preceding layers are back-calculated following

Equations 2.8- 2.9 and the contributing weights are adjusted, accordingly. This

process is known as backpropagation, during which partial derivatives of error
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measurement are calculated to track gradient descent, ∆l, Equation 2.10 that

minimizes cost function until convergence is reached.

δL = aL − y (2.8)

δl = (wl)Tδl+1(al ∗ (1 − al)) (2.9)

∆l = ∆l + δl+1a(l)
T

(2.10)

The choice of network hyperparameters determines the network architecture

and how the network is trained and, therefore, is crucially important to obtain a

high-performing model. The most common methods of hyperparameter selec-

tion are Grid Search, Random Search, and Bayesian Optimization. In this paper,

we will adopt Bayesian Optimization to identify the optimal NN architecture.

There has been several activation functions proposed in the literature including

the most common ones such as Sigmoid and Relu.

2.2.2 | Decomposition-based Feature Selection Techniques

2.2.2.1 | Principal Component Analysis.

PCA is an unsupervised dimension reduction method that transforms data to a

new coordinate system with a reduced set of variables that retains most of the

information from the original space. The transformed space can be imagined as

P-dimensional ellipsoid, where longest axis of an ellipsoid represent direction

of maximum variance within the data for P < M, where M is the number of

original features (dimensions). Given N number of samples and an N ∗ M ma-

trix of data X, where Xi ∈ RM, for i = 1, . . . , N and j = 1, . . . , M, the data has to

23



Chapter 2. Feature Selection 2.2. Methodologies

be standardized to be centered around 0 by subtracting the mean value of each

variable from individual data points in a given dimension. The key idea behind

PCA is to combine original variables into a set of latent vectors Z in a linear

way, where Zp ∈ RM for p = 1, . . . , P same as X since it is its linear combination.

More formally, the latent vectors can be presented as follows:

Zp =
M

∑
j=1

wjXj (2.11)

The latent variables are constructed sequentially. The first projection z1 can

be written as:

Z1 = w1X1 + · · ·+ wjXj, (2.12)

Where w is the vector of weights constrained so that its sum of squares is

equal to 1. According to (87), since the matrix X contains variation relevant to

the problem, it seems reasonable to have as much as possible of that variation

also in Z. Suppose this amount of variation in Z is appreciable. In that case, it

can serve as a good summary of the X variables, hence, allowing us to reduce

the number of variables used in the original space. The problem is therefore con-

structed as maximizing the variance of Z with respect to the optimal weights. By

substituting (Equation 2.12) into mathematical notation for returning the argu-

ment w of the maximization function and rewriting it in a vectorized format, we

obtain the following objective function:

wp = arg max
||w||=1

(var(Z)) = arg max
||w||=1

(wTXTXw) (2.13)

Using the result of the covariance matrix, XTX, we find that the optimal w

are therefore the eigenvectors of XTX, where the first ordered eigenvector cor-

responds to w1 and so on. Scaled by the variance, which is squared root of

24



Chapter 2. Feature Selection 2.2. Methodologies

corresponding orthogonal eigenvalues, columns of w are therefore called load-

ings in PCA. As a result, reconstructed back to the original space and applied to

fuel spectroscopy, the output of the PCA model contains information on scores

of various features that contribute most to the explained variance in recorded

absorbance or scattering intensity values.

2.2.2.2 | Partial Least Squares

PLS is a supervised alternative to PCA and is arguably the most widely used

technique in the chemometrics domain. Similar to PCA, it identifies a set of

features that are linear combinations of the original features. Unlike PCA, how-

ever, PLS considers the response y and finds the multidimensional coordination

of the feature space X that contributes to most variance in the response y. Es-

sentially, partial least squares seek directions that have high variance and have

a high correlation with the response, in contrast to principal components regres-

sion which keys only on high variance (88). After standardizing the data to have

0 mean and variance of 1, both X and y are decomposed as a product of a com-

mon set of orthogonal vectors and a set of specific loadings (89). The data and

response matrices are decomposed as:

X = ZPT

y = ZQT
(2.14)

Where Z is a matrix of latent vectors, and P, Q are the loading coefficient

matrices. A rank regression is then performed to construct a matrix of latent

components Z as linear transformation of X, where w is a vector of weights:

Z = Xw (2.15)
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The idea behind PLS is to perform decomposition so that the information

from both X and y is taken into account.

The elements of the weight vector w are defined such that the squared sam-

ple covariance between response and the latent components is maximal under

the condition that the latent components are mutually uncorrelated (90). Finally

we adopt the following objective function to find optimal set of weights for each

latent vector p = 1, . . . , P, that we later use for feature selection:

wp = arg max
w

(wTXTyyTXw) (2.16)

2.2.3 | Model-based Feature Selection Techniques

2.2.3.1 | Random Forest

Random Forest is an ensemble learning method, which constructs multiple de-

correlated decision trees trained on different subsets of the data and subsets of

selected attributes to reduce the variance in y. Although Random Forest is a

prediction tool, it is widely used to rank the importance of the variables based

on the number of times they are used during node splitting. For each node

t = 1, . . . , K, where K is total number of nodes within a binary tree r = 1, . . . , T,

where T is number of trees of the random forest, the optimal split in a classifi-

cation setting is determined by impurity, measuring how well a potential split

separates observations that are similar to each other (91). In regression prob-

lems, the measure of impurity (i(t)) is variance of the predicted value of obser-

vations within each partition. Therefore, the importance (w) of a feature (j) is

computed as the (normalized) total reduction of variance (∆i) brought by that
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feature across all trees. Mathematically it can be expressed as:

wj =
T

∑
r=1

K

∑
t=1

∆ij(t, r) (2.17)

2.2.3.2 | Ridge Regression

The linear regression regularization method is used to reduce model complexity

by adding penalties to coefficients of variables in the cost function, such that the

Residual Sum of Squares (RSS) loss function for i = 1, . . . , N and j = 1, . . . , M,

where N is number of samples and M is number of data dimensions, takes the

form:

RSS =
N

∑
i=1

(yi − ŷi)
2 + α

M

∑
j=1

w2
j (2.18)

The first term in the above equation is the sum of squared error and the second

term is the regularization component. α is the penalty parameter used over all

weights of features w to shrink the magnitude of the unimportant ones to ensure

that the model does not overfit.

Tuning α hyperparameter controls the strength of the penalty term or essen-

tially the amount of feature shrinkage, which results in sparse models with less

number of parameters, easier to analyze than high-dimensional data models.

2.2.4 | Model-agnostic Feature Selection Techniques

2.2.4.1 | SHAP

SHAP stands for Shapley additives Explanations, which is considered a popu-

lar state of the art in explaining black-box machine learning models. SHAP is

a technique to calculate the impact of each feature on the prediction outcome

using Shapely Values. Shapley values were introduced in the 1950s by Lloyd
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Shapley (92), who introduced it as a solution concept in cooperative game the-

ory. The main idea is that any model output does not rely only on one single

feature but on the entire set of features in the data set.

Suppose that we have a predictive model, where the game outcome repre-

sents the model prediction, and the players in the game represent the features.

Considering all possible coalition among the players (features) and their effect

on the game (model outcome), each player contributes to the team’s result. The

sum of the contributions for each player from each possible coalition returns the

value of the target variable (model outcome) given a particular feature. As a

result, Shapely Values calculates the contribution of each feature to the target

value, which is referred to as local marginal contribution or local Shapley Val-

ues. Repeating the same process using combinatorial calculus and retraining the

model over all possible combinations of features, we can calculate all local Shap-

ley Values for a specific feature. The average absolute value of the local Shapley

Values can be used as a measure of feature importance.

More formally, let S be a subset of features that does not include the feature

for which we calculate the importance. Let M be the full set of features. Given a

model g(x) trained to predict f (x), the marginal contribution of feature i to the

model’s prediction and accordingly to the f (X) is:

wj = ∑
S⊆M∖j

|S|!(|M| − |S| − 1)!
|M|! [g(S ∪ j)− g(S)], (2.19)

Where S ∪ j is the subset that includes features in S plus feature j and S ⊆ M ∖ i

indicates all sets S that are subsets of the full set of features M, excluding feature

j.

As discussed by (23), “the computation time increases exponentially with the

number of features. One solution to keep the computation time manageable is to

compute contributions for only a few samples of the possible coalitions”. Lately,

28



Chapter 2. Feature Selection 2.2. Methodologies

Lundberg and Lee developed an algorithm for interpreting model predictions

(36), which uses the Shapely Values to reverse-engineer the output of any pre-

dictive algorithm and identify features’ contributions. SHAP approximates the

conditional expectations of SHAP values by using a selection of background

samples to reduce the computation time. By aggregation over multiple back-

ground samples, SHAP estimates values such that they sum up to the difference

between the expected model output on the passed background samples and the

current model output ( f (x)− E[ f (x)]). Features that contribute the most to the

difference between the expected model output on the passed background sam-

ples and the naive case prediction are chosen as important features by SHAP.

SHAP method can be used to analyze the prediction for both classification and

regression models.

2.2.4.2 | LIME

The LIME explanation method was originally proposed by Ribeiro et al. in 2016

(30). The key idea of LIME is to locally approximate a black-box model by a

simpler glass-box model such as Linear Regression or Random Forest, which is

easier to interpret. Such an interpretable model must be locally faithful, mean-

ing it must correspond to how the black-box model behaves in the vicinity of the

instance being predicted. LIME works by perturbing any individual data point

and generating synthetic data, which gets evaluated by the black-box model and

is ultimately used as a training set for the simple model. The variables are per-

turbed by sampling from a normal distribution and doing the inverse operation

of mean-centering and scaling the values according to the means and standard

deviations in the original training set. The LIME is capable of explaining any

model, and thus it is model-agnostic. The aim of LIME is to minimize a loss

function L( f , g, πx) that can be expressed mathematically in the following way:
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ξ(x) = arg min
g

L( f , g, πx) + Ω(g) (2.20)

Where f is the original model, g is an interpretable model, and πx is the

similarity kernel that measures the proximity of a new perturbed sample point

z to the original data point x. Additionally, the Ω( f ) is referred to as a measure

of complexity, opposed to interpretability. The Equation 2.20 demonstrates that

perturbed samples are generated around x and weighted by πx to approximate

L( f , g, πx). Using this approximation LIME can explain local behaviour of the

original model f and measure the relative error between the explanation ξ(x)

and the original model predictions.

2.2.4.3 | Global Surrogate

Similar to LIME, the global surrogate model is used to approximate the predic-

tions of highly non-linear ML models with simpler, interpretable models. Since

it is a global method, the surrogate model tries to mimic the function of the entire

black-box model to understand its overall behavior. A global surrogate model

does not require any information on how the original black-box model works

and thus is considered model-agnostic. The process of training a surrogate in-

volves obtaining the predictions of the black-box model on the training dataset

X. Then, a selected interpretable model is trained on (X, Ŷ) using black-box pre-

dictions as targets. The surrogate model can be any interpretable model, such

as Linear Regression, Decision Tree, K-nearest neighbor, or any model that the

coefficients could provide insights into the model behavior. The ability of the

surrogate to capture the behavior of the black-box model is estimated by com-

puting the error between surrogate and black-box predictions, typically using

the r-squared score. A caveat of global surrogate models is that the performance
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of the underlying black-box model in predicting the actual outcome plays no

part in training the interpretable black-box model (23).

2.2.5 | Evaluation Metrics

2.2.5.1 | Correctness

In this paper, the goal of feature selection is to select a subset of features in

the spectra data that are considered most informative or relevant to the pre-

dicted CN values while adhering to known chemistry. The selected subset of

features can be further compared to the theoretical locations of chemical func-

tional groups within the spectroscopy data known from the domain expertise.

Incorporating human knowledge in the learning loop allows us to evaluate the

faithfulness of the applied techniques and ensure that a model can be trusted. To

evaluate the performance of the feature selection techniques discussed in Section

§ 2.1.1, we define a measure to calculate the alignment of the selected subset of

features using different techniques with the selected features by the expert. We

refer to this measure as correctness.

The selected wavenumbers are binned by unique centered intervals to rep-

resent their true location, which can be otherwise shifted by several wavenum-

bers due to instrument noise. The method Correctness is then calculated using

simple Jaccard Similarity (J) (93) between a given subset of binned features in-

dicated by SF, which is obtained from considered feature selection techniques,

and expert-selected locations indicated by SEx. The method Correctness can also

be measured by converting proportion J to percentage to obtain values between

0 and 100%, representing a percent match to all expert-selected locations. The

Jaccard Similarity is calculated as follows:
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J(SF, SEx) =
|SF ∩ SEx|
|SF ∪ SEx|

=
|SF ∩ SEx|

|SF|+ |SEx| − |SF ∩ SEx|
(2.21)

Although the performance of a predictive model after reducing the original

feature space is important for at-scale implementation in real-time, the correct-

ness of the feature selection techniques is inevitable for transparency. In §2.3.5

we provide numerical results for the correctness of different considered tech-

niques.

2.2.5.2 | Performance

To aid the scalability and efficiency of the model deployment in practice, the

model fitted on the reduced subset of features must be comparable in terms

of performance to the model trained on full-spectrum and to a reduced model

trained on an expert-selected subset of features. However, note that the reduced

model is more efficient for the data collection process. Since fuel CN is measured

and predicted as a real value, each model’s performance is assessed using the

Mean Squared Error (MSE) metric, which is commonly used in regression prob-

lems. MSE calculates the difference between the predicted and true response

values. As a result, the model with a lower MSE value on the testing set is

deemed to be more favorable, as it predicts values that are close to the ground

truth. The MSE is formally represented as follows:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (2.22)
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2.3 | Experimental Results

2.3.1 | Domain
In the Physical Chemistry and Combustion domain, it is well established that

chemical functional groups are the building blocks of any hydrocarbon struc-

ture such as fuels. (94) defines a functional group as “any portion of a molecule

composed of a group of atoms, which governs both its physical and chemical

properties as well as chemical reactivity”. Practical fuels, such as gasoline, com-

prise a large number of hydrocarbon molecules, which in turn might contain dif-

ferent functional groups. Knowing the quantity and type of functional groups

present in a compound allows researchers to determine its properties. One of

such properties is fuel ignition quality, which indicates how easily the fuel will

ignite. Fuel ignition quality is one of the most important properties that scien-

tists from the applied combustion field have been working for over the years.

It is critical to measure ignition quality and correlate it to the fuel’s functional

groups. Each functional group gives rise to unique peaks in the spectra in their

characteristic regions. Therefore, this paper aims to detect their location on the

spectral band using explainable AI tools and feature selection techniques.

In the context of predicting fuel ignition properties, the task of feature se-

lection is to select a subset of wavelengths that improves model interpretability

(further called correctness) and at-scale prediction performance. In a model with

higher correctness, selected features must represent locations of CFG that deter-

mine fuel ignition properties, making the overall process transparent to the hu-

man operator. Involving a group of domain experts, we choose 120 wavenum-

bers (95) that correspond to chemical bonds in different functional groups within

our data and compare them to the outputs of the above-listed feature selection
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techniques (Section § 2.1.1). Note that each functional group stretches over cer-

tain regions of spectra, which can be identified by multiple peaks in that region.

The exact locations of these peaks are unknown, however, using the literature

on pure components (95) that make up the mixtures, we can try to estimate their

locations. Each peak is considered as a feature selected by the expert SEx.

Taking into account the uncertainty associated with expert features and the

shift in wavenumber read that may occur during the spectroscopy collection

process due to instrument noise, we generate “bins” that capture the discrete

output of attribute selection methods and match it to the expected locations. In

other words, we divide the entire spectroscopy range into equal intervals (bins),

assign discrete wavenumbers to the intervals they fall into, and calculate the

fraction of unique intervals that were selected by both expert and feature selec-

tion methods. Each interval is arbitrarily chosen to be five wavenumbers wide

in order to account for two wavenumber deviations from its potential location,

which can be substantially bigger in practice. The precision of such a procedure

would be exceedingly poor and unreasonable from a practical standpoint if each

wavenumber from two subsets was attempted to be mapped exactly one to one.

Furthermore, there is a need for miniaturized spectroscopic instruments for

high-profile applications in collecting the respective spectra for detailed anal-

ysis. Feature selection opens up a pathway towards such miniaturization. By

selecting the important subset of wavelengths over the entire range of the spec-

trum, which affects the prediction performance of the output variable, it is pos-

sible to group the features into regions of importance. Once these regions are

known, the spectroscopic instrument can be miniaturized by selecting filters

such that the data are only collected for the important subset of wavelengths.

As the scope of the spectral range has reduced, a smaller instrument could be

designed for the same application without trading off the prediction accuracy.
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Also, another approach could be to use lower resolution instruments which

would require smaller components and thus a smaller instrument.

2.3.2 | Dataset
The spectroscopy data used in this chapter was collected at UIC High-Pressure

Shock Tube Laboratory using a Raman spectrometer. The entire dataset includes

245 observations from 49 unique fuel samples collected at various times. The

first 145 observations (based on 29 unique mixtures replicated five times each)

were collected at a single session over four hours nonstop, where the laser power

stayed consistent with minimizing the instrument noise. The second 100 obser-

vations (based on another 20 distinct mixtures reproduced five times each) were

collected over a two-hour period using the same settings in a separate session.

Environmental circumstances (e.g., ambient temperature) are exogenous factors

that can affect laser power and, thus, spectroscopy repeatability, that cannot be

completely controlled in real-world setting. Thus, this separate data collection

allows us to consider statistical noise in the data for our scenario analysis. Dur-

ing the collection of the old dataset’s observations, the laser power was mea-

sured as 350.5 mW, and for the new dataset, it was measured as 364.2 mW.

For both collected datasets, the resolution was set to 7.1 cm−1, with wave-

length range between 52.52 and 3712.89 cm−1. The Raman laser power was set at

the maximum laser power setting to ensure consistent readings for all observa-

tions. Each sampled spectra data initially had 2048 features (intensity values at

different wavelength locations) and a measured CN value as the response. The

datasets were pre-processed to filter out highly noisy regions outside of wave-

lengths range [181.45, 3200.82] cm−1, resulting in 1562 features. Note that the

fingerprint region normally starts at 500 cm−1, however, in this paper, we aim
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to investigate the presence of functional groups in the [181.45-500] cm−1 region.

We specifically trimmed [50.52-181.45] cm−1 since no scattering intensity value

is recorded in this region. Similarly, we removed the data in [3200.82, 3712.89]

cm−1 region since no spectral features indicating functional group activity were

present.

For simplicity we call the first 145 collected observations as old dataset and

the 100 observations as new dataset.

Three scenarios are constructed accordingly to observe the effect of statisti-

cal and data collection noise on feature selection and prediction accuracy that

is inevitable in the real-time practice of ML for ignition delay. The Control sce-

nario includes 145 old observations, and the Mixed scenario includes 245 old,

and new observations merged, both split into training, testing and validation

set 80/10/10. As for the Real-time scenario, 145 old data points are split into

training and validation sets 80/20, while the new 100 points are used as the

testing set.

Using the preprocessed dataset for each scenario the reduced subset of at-

tributes is identified implementing considered feature selection techniques in-

cluding PCA, PLS, RF, Ridge, SHAP, GS, and LIME. Each predictive model,

that shall be elaborated in Section § 2.3.3, is then fitted on the reduced subsets

for each scenario as well as full set of 1562 features of data. The former is referred

to as Full model and the latter as Reduced models.

2.3.3 | Predictive Modeling For Spectra Data
To implement ML models for CN prediction there are hyperparameters associ-

ated with each considered models discussed in Section § 2.2.1 including SVR

and NN. Due to the small overall dataset size and to avoid data splitting and
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model training bias, the data are randomly split 30 different ways using a ran-

dom seed generator during each model development. The performance of the

models is assessed based on the mean (µ) and standard deviation (σ) across 30

random executions. To choose optimal hyperparameters, we perform Bayesian

Optimization (BO) using a predefined range of parameters for SVR (Table 2.3)

and NN (Table 2.4) for both Full and Reduced models trained on various subsets

of features for each scenario. We use epsilon-SVR from the libsvm (96) package

for SVR modeling and Keras (97) sequential model package to construct our NN.

Parameters Options

Kernel [’poly’, ’rbf’, ’sigmoid’,’linear’]

Degree (d) [1 : 4]

Gamma (γ) [0.0001 : 1]

Coef0 [0.01 : 10]

C [0.1 : 1000]

Epsilon (ε) [0.01 : 10]

Table 2.3: SVR hyperparameters considered for optimization

Parameters Options

Activation (hidden) [’relu’, ’sigmoid’]

Number of hidden layers [1 : 10]

Hidden units min_value=32, max_value=8000, step=32

Activation (output) [’linear’, ’sigmoid’]

Optimizer [’adam’, ’sgd’, ’rmsprop’]

Learning rate [1e-4 : 1.0]

Kernel regularization [0.0001 : 0.01]

Kernel weight initializers [’random_normal’, ’glorot_uniform’, ’he_normal’]

Batch size [32 : 100]

Epochs [100 : 1000]

Architecture [’up’, ’down’, ’up-down’, ’down-up’, ’random’]

Table 2.4: Keras Neural Network hyperparameters considered for optimization

For SVR, the regularization hyperparameter C is a free parameter that trades
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off the influence of higher-order versus lower-order terms in the polynomial.

Gamma(γ) is a scaling parameter that controls the shape of Support Vector cur-

vature, allowing it to fit the peaks observed in our data. Epsilon(ε) is a margin

term that allows more points to be included in the decision surface without pe-

nalizing them during the training. The choice of the kernel in SVM determines

the shape of the transformed high-dimensional hyperplane and allows to avoid

complex calculations, while the parameters Degree(d) and Coe f 0 are typically

used for the polynomial kernel to determine the degree of polynomial fit and

adjust the independent term accordingly. It is worth mentioning that the (im-

plicit) feature space of a polynomial kernel is equivalent to that of polynomial

regression, but without the combinatorial blowup in the number of parameters

to be learned (98). The algorithm used in epsilon-SVR calculates the outer prod-

uct of two vectors of features (or a vector with itself), which can be used as

an approximation of the polynomial kernel feature space instead of explicitly

computing the outer product, which can be extremely inefficient. The resulting

kernel space has the same dimensions as original training data, while full third-

degree polynomial expansion of 1562 features would result in over 620 million

features.

The optimal hyparameters of SVR for both Full and Reduced models are

obtained using open source Bayesian Optimization tool (99) as: Kernel=’poly’,

Degree (d)=3, Gamma (γ)=0.7, C=0.7, Coef0=0.1, Epsilon (ε)=0.1, with maximum

number of iterations of the solver fixed to 100,000. This model is therefore re-

ferred to as BO-Tuned SVR.

The complexity of the SVR model is defined based on the number of support

vectors defining the decision boundary. Table 2.5 illustrates the complexity of

the SVR model for each scenario. Since the reduced subsets are created based

on a smaller subset of individual wavenumbers to capture the complexity of the
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spectra data, the model needs a larger number of support vectors to define the

decision boundary. For example, in Table 2.5 we observe that 50 support vectors

are selected for the Full model setting, and on average, 63 support vectors are

necessary for the Reduced setting in a Real-time scenario. Moreover, the number

of support vectors increases from 50 in the Control scenario (145 observations) to

113 vectors in the Mixed scenario (245 observations) for the Full model setting,

where the noisy observations were included. This is also reflected in the average

runtime shown in Table 2.7 as training time increases drastically for SVR with

the addition of new noisy samples 1. For example, the average training time for

the BO-Tuned SVR model in Control scenario is 0.17 seconds, compared to 1.4

seconds in the Mixed scenario.

Since our goal is to ultimately deploy a strong predictive model in real-time,

it requires a certain level of generalization to ensure accurate prediction of new,

previously unseen observations. The SVR hyparameter Epsilon(ε) plays a sig-

nificant role in the generalization power of the model. While BO maximizes

exploitation of training data distribution, fine-tuning this parameter allows the

construction of decision surfaces both accurate in shape and wide enough to

generalize to unseen fuel spectroscopy samples, as will be shown in the Real-

time scenario when test data are noisy. Using softer epsilon margin (Epsilon(ε) =

0.66) results in a reduced number of support vectors (33 compared to 50 for

Full model in Real-time scenario), which further simplifies the model and makes

computation more efficient (Figure 2.3a), aiding our scalability effort. More im-

portantly, fine-tuned SVR drastically improves the performance of SVR for our

Real-time scenario, in some cases decreasing testing error by the factor of 10.

When constructing Neural Network, the following hyperparameters are con-

1Note that the values represented under column “Time (s)” is the total computation time of
30 executions.

39



Chapter 2. Feature Selection 2.3. Experimental Results

# of Support Vectors

Control Mixed Real-time

Full Model 50 113 50

B
O

-Tuned
SV

R
Expert 52 107 52

PCA 73 126 73

PLS 79 132 79

RF 64 122 64

Ridge 66 122 66

SHAP 61 121 61

GS 63 128 63

LIME 48 119 48

Full Model 33 67 33

Fine-Tuned
SV

R

Expert 28 63 28

PCA 36 77 36

PLS 53 88 53

RF 34 75 34

Ridge 28 60 28

SHAP 37 68 37

GS 33 66 33

LIME 32 70 32

Table 2.5: SVR Complexity

sidered. Kernel weight initializer determines the distribution of weights associ-

ated with each layer before the commencement of training and their consequent

update through backpropagation. The number of hidden layers and Hidden units

determines the power of the network to perform a linear or non-linear trans-

formation on inputs and guides over model complexity. An Activation function

in a neural network defines how the weighted sum of the input is transformed

into an output from a node or nodes in a layer of the network (100). The Kernel

regularization, also known as weight decay, is aimed at reducing the likelihood

of model overfitting by keeping the values of the weights and biases small. Op-

timizer is an algorithm used to adjust model parameters (weights) to maximize
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a selected loss function (in our case, it’s mean squared error), while the Learning

rate determines the rate of adjustment. Batch size defines a number of samples

to propagate through the network at one time, and Epochs is a measure of the

number of cycles it takes to train the network with all training data.

We select optimal hyperparameters for Full and Reduced models using Keras-

Tuner (101) framework with the objective function aimed at reducing valida-

tion Mean Squared Error (MSE). The MSE mathematical formula is provided

in Equation 2.22. The global random seed is set to ensure consistent kernel

weight initialization and reproducible results. We also include an architecture-

specific hyperparameter that dictates whether the overall architecture shape ex-

pands/shrinks or is produced at random in the optimal setting, for each con-

secutive layer of the network. We introduce a set of constraints to limit the ex-

ponentially large solution space of hyperparameters and make the optimization

computationally stable while exploring versatile architectures. The number of

nodes and layers are given the flexibility to be chosen at random or follow the

pattern where the number of nodes is doubled or reduced by a factor of 2 for

each subsequent hidden layer and constrained to a maximum of 8,000 nodes.

The widening and shrinkage of the network can be both symmetric or asym-

metric, with respect to the number of layers before and after the layer with min-

imum/maximum number of nodes. In an asymmetric case, the number of layers

and nodes is selected randomly after picking layers with minimum/maximum

nodes.

Given the budget of 1000 trials for BO, the optimal Full model architecture

is determined to consist of the input layer, one hidden layer, and a final output

layer with 1562-5984-1 nodes. The optimal Reduced model is selected using an

asymmetric architecture that has input, four hidden layers and output layer with

512-1024-2048-4096-512-1 nodes. Total of 11,800,000 and 13,170,000 trainable pa-
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rameters are used in the Full and Reduced models, respectively. The optimal

selected Activation (hidden) function for the input and hidden layers is ’sigmoid’

for the Full model and is ’relu’ for the Reduced model. Other hyperparameters

for both Full and Reduced NN models are selected as: Batch size=32, Learning

rate=0.0011 and Optimizer=’Adam’. No significant difference is found using dif-

ferent kernel regularizers and weight initializers. Therefore no regularization

was used, and weights were set using default glorot_uniform initializer. Other

parameters are fixed to Epochs=200 and Activation (output)=’linear’.

When dealing with high-dimensional limited sample data, Network models

lead to overfitting and model instability due to highly variant gradients (102).

Hence, identifying the optimal Reduced model architecture requires more com-

plexity and includes more trainable parameters than the Full model during the

optimization step. Such behavior can be justified by that the network models

tend to compensate through the generation of new internal features to capture

hidden non-linearity in the Reduced sparse setting. Unlike SVR, the number

of parameters for NN is fixed and does not increase with the addition of new

noisy data. As a result, computational time increases marginally, which can be

observed in average runtime in Table 2.7. After testing the final model in the

Real-time scenario, we observe that the model performs worse than the Full

model. Therefore, hyperparameter optimization is biased towards reducing the

validation error that follows the training set distribution. Hence, Bayesian opti-

mization does not find the optimal model capable of generalizing on unobserved

data.

Since we obtain two distinct architectures through BO, referred to as Shallow

for Full model and Deep for Reduced model, we now cross-check their overall

generalization ability. To this end, we employ heuristics on the constructed mod-

els, i.e., Shallow and Deep architectures for both Full and Reduced settings for
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the Real-time scenario (Table 2.6). As determined through optimization for the

Reduced setting, the Shallow model performs better on unseen data than the

Deep model for the Full setting. In contrast, through an iterative reduction in

the number of trainable parameters, based on the training (Figure 2.1a), valida-

tion (Figure 2.1b) and testing (Figure 2.1c) error, we observe that a less complex

Shallow model (with only 0.5 million parameters) performed better in predict-

ing unseen data observations compared to previously found “optimal” Reduced

model with Deep architecture (Figure 2.2). Such scaled model is also computa-

tionally more efficient (Figure 2.3b). Hence, a more simple Shallow architecture

proves to have better generalization ability for both Full and Reduced settings.

Fine-tuned Reduced model with one hidden layer (472-954-1 nodes) is selected

as the new optimal architecture.

Full Model Reduced Model

Shallow NN 32.3 42.5

Deep NN 34.2 55.8

Table 2.6: NN architecture generalization ability on Real-time data, recorded as
Test MSE using different architectures on Full and Reduced sets of data

2.3.4 | Feature Selection for Spectra Data
The following steps and tuning are performed to employ the considered feature

selection and explainable AI techniques discussed in Section § 2.1.1 for spec-

troscopy analysis.

First, we select the optimal number of latent components for PCA and PLS by

iteratively fitting spectroscopy data in scikit-learn corresponding decomposition

libraries. For PCA, the number of components can be determined by plotting

cumulative explained variance for p components and selecting optimal num-

ber using point of maximum curvature (Figure 2.4). Since PLS considers the
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(a) Train MSE

(b) Validation MSE

(c) Test MSE
Figure 2.1: Average (a) Training, (b) Validation and (c) Testing error of Shallow
NN on reduced subsets for various number of trainable parameters in three sce-
narios
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Figure 2.2: Shallow NN vs DNN testing error on reduced subsets in Real-time
scenario.

relationship between feature space and predicted output, we can determine an

optimal number of components based on the uncertainty of test results for the

different numbers of latent variables. Therefore, using PLS Regression, we fit

the cross-decomposed data and record Mean Square Error (MSE) between pre-

dicted and true values of CN for a given number of components (Figure 2.5).

Hence, the optimal number of latent components is selected based on the lowest

associated MSE value. The optimal number of PCA components is determined

to be P = 4, and the optimal number of latent dimensions for PLS is determined

to be P = 7.

Consequently, we employ one additional step to determine the true contribu-

tion of each feature to the overall explained variance within the data. To accom-

plish that, we first calculate Explained Variance (EV), which is the ratio between

the variance of that principal component and the total variance in data for PCA

or predictions for PLS. We then take each component and multiply its EV with

the loading vector to obtain individual feature importance.
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(a) SVR

(b) NN

Figure 2.3: Average computation time of (a) SVR (b) NN on reduced subsets of
data for Real-time scenario with various model complexity levels.
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Figure 2.4: PCA cumulative sum of explained variance by number of compo-
nents

Figure 2.5: PLS Regression cross-decomposition and prediction results by num-
ber of components

EV1 = 1 − MSE1

∑N
i (yi − ȳ)2

) (2.23)

EVp+1 = EVp − (1 −
MSEp+1

∑N
i (yi − ȳ)2

), (2.24)

The sklearn toolbox allows us to directly access both the explained variance

by component and loading vectors for PCA, while for PLS, we calculate EV of

the first component p = 1 using formula (2.23). For the remaining components
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p = 2, . . . , P, the EV is calculated using Equation (2.24) to return the final cu-

mulative explained variance by component normalized between 0 and 1. The

features with the highest absolute weight values across all components are then

aggregated and sorted. After filtering out features with zero weight, we achieve

a true collection of selected features and their corresponding wavelengths that

help explain most of the variance in the data.

To determine the optimal number of trees (T) to be used in the Random For-

est Regression model and select the optimal α parameter for the Ridge Regres-

sion model, we use a similar approach as for PLS. We iteratively fit the data to

the above-mentioned models and record MSE between predicted and true val-

ues of CN for given parameter T in the range [0.001, 1] and α in the range [1, 200].

The optimal number of trees for the Random Forest Regression model is T = 91.

Similarly, for Ridge Regression we find optimal parameter value α = 0.001.

After the adjustments, 299 features are found to explain over 80% of the total

variance in training data using PCA, and 604 features are necessary using PLS,

which is twice more than PCA selects. By extracting feature importance (w)

from the Random Forest model, we observe that 119 features account for 80%

of explained variance in data, significantly less than both PCA and PLS. As for

Ridge Regression, 175 features with the highest corresponding linear weights

(w) explain most of the variance in the data.

We use the LimeTabular package (103) to locally explain the behavior of op-

timized and trained NN and SVR models using Linear Regression as a simple

model approximation. After perturbing the interpretable model input, features

that contribute to individual fuel sample CN prediction are calculated, one ob-

servation at a time. In order to obtain a global explanation across the entire

distribution of data, we record features with the highest associated coefficients

(weights w) for each individual sample explanation using LR as a surrogate
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model. We then rank features selected most commonly across all sample in-

stances and select them as the final subset of the most important features.

The SHAP explainer (104) takes any combination of a predictive model and

masker, which constrains the rules of the cooperative game used to explain the

model and returns a callable subclass object that implements an estimation algo-

rithm. We use SVR and NN prediction functions as input models to be explained

and select a random subset of samples, generated by random seed function, to

be used as a background (masking) set. By stratifying the background set on

the model output results, instead of using the whole training data, we drasti-

cally reduce calculation time while maintaining a good representation of our

sample distribution. For Global Surrogate (105), similar to LIME, we use an in-

terpretable linear regression model to estimate general model behavior.

2.3.5 | Discussion
Figure 2.6 illustrates the results of the considered feature selection techniques on

our Control scenario dataset. The red bars indicate the selected features by the

feature selection methods and the yellow bar indicates the features selected by

the domain expert. As we can observe, the results indicate partial overlap of se-

lected features with expert features around “fingerprint” region (500-1800 cm−1)

and “Carbon-Hydrogen (CH) stretching” (2800-3200 cm−1) region, depending

on the feature selection technique. Visual inspection suggests that similar sub-

set of features is selected with model-agnostic methods. Note that features se-

lected by Random Forest are notably more uniformly spread across the entire

spectrum than other approaches and have the least number of features from the

CH stretching region. This behavior can be justified by the fact that Random

Forest considers different subsets of features randomly selected for each of the

49



Chapter 2. Feature Selection 2.3. Experimental Results

(a) PCA

(b) PLS

(c) RF

(d) Ridge

(e) SHAP

(f) GS

(g) LIME

Figure 2.6: Regions of importance selected by various techniques. (a) PCA, (b)
PLS, (c) Random Forest, (d) Ridge, (e) SHAPley, (f) Global Surrogate, (g) LIME
are highlighted with red and expert features are highlighted with yellow.
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individual models (Decision Trees) in its bag of models. Such considerations al-

lows different attributes to be shown up in the tree structures and be considered

for model construction. As a result, we can observe a wider range of locations

selected as important in the spectra data. PLS and PCA results are more clus-

tered in different regions. Both of these techniques are based on components

that are linear combinations of original features. Hence, if attributes in one spe-

cific region are all important, they are assigned large loading values in multiple

components and ranked higher in the final selected attributes.

Figure 2.7 represents the correctness evaluation of the considered techniques.

The plot shows similarity proportion between subset of 120 Expert features SEx

and 120-500 features selected using various techniques SF. We immediately ob-

serve that PCA and PLS are outperformed by other techniques in correlating to

expert features even when we increase the upper bound on the number of se-

lected features, averaging 17%-60% from 120 to 500 features. The results indicate

that LIME, SHAP, Ridge, GS, and Random Forest feature selections performed

competitively in model explainability resulting on average in 33%-85% of over-

lap with the selected features by the expert going from 120 to 500 features. Fur-

ther, we notice that selecting 120 features from each method only partially over-

laps with features selected by the expert. Recall that the exact locations of the

majority of 120 expert-selected wavenumbers are rough estimations by the do-

main practitioners. Further, only a small subset of these features contribute to

the variance in CN prediction. It is worth mentioning that the features selected

by the considered feature selection methodologies are mainly returned, optimiz-

ing prediction performance. Hence, there are other locations than SEx selected

by such techniques. Since the expert selected features are based on rough peak

location approximations, there might be actual locations that are missed. ML-

based feature selection techniques might actually be able to discover the true
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locations of the functional groups’ peaks. However, there is no solid approach

to confirm this statement.

Figure 2.7: Method Correctness, displayed as proportion of wavenumbers
matched with the domain-defined features.

The performance is measured using mean training and testing error (µ) with

corresponding mean standard deviation (σ) across 30 random splits of data. The

model is considered to have better prediction performance when testing MSE

is low and has better stability when deviation values are low as well. As can

be seen in Table 2.7, the NN model tuned through the Bayesian Optimization

approach (BO-Tuned NN) initially results in low testing MSE for Control and

Mixed scenarios for both Full and Reduced sets of features. In a Real-time sce-

nario, however, the minimum MSE is found to be 32.3 and 39.5 for Full and Re-

duced sets, accordingly. In contrast, after fine-tuning the NN, we can observe an

increase in testing MSE for both Control and Mixed scenarios, while the error for

Real-time scenarios becomes significantly smaller, achieving the new minimum

MSE of 16 in the Reduced setting using Random Forest. While not included in

the table, using Linear Regression, we achieve the lowest MSE of 88.8 for the

Full model and 233 for the Reduced model, using the Random Forest subset of

attributes.
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Using the BO-Tuned SVR model, we initially obtained more competitive test-

ing results across all three scenarios, achieving the lowest MSE of 33.7 for the

Full set and even lower 32.9 for the Reduced set of features. After adjusting

the SVR margin parameter, the Fine-Tuned SVR model achieves an all-time low

MSE of 14.8 for Full and 4.6 for the Reduced set of attributes, also selected by

Random Forest. Figure 2.8 summarizes numerical prediction results and associ-

ated deviation of the Fine-Tuned Support Vector and Neural Network regression

models for the Real-time scenario for ease of comparison between two models.

Figure 2.8: Testing error for Fine-Tuned SVR and NN models on Full and Re-
duced subsets in Real-time scenario.

The “curse of dimensionality”(106) affects both models equally, therefore

only through a careful selection of hyperparameters we are able to avoid exces-

sive overfitting. Although we reach similar performance for NN in some cases

compared to SVR, parameter optimization for SVR, in general, is a much eas-

ier task, as fewer parameters are considered. As a result, after thorough tuning,

Fine-Tuned SVR performs significantly better across all three scenarios. As men-

tioned above, the Reduced Fine-Tuned SVR and NN models trained on features
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selected by Random Forest have significantly lower testing error and variance in

Real-time scenarios compared to the Full model and is, therefore, selected as the

best performing feature selection technique. We can explain the superior perfor-

mance of RF feature selection in that it creates decision trees on boot-strapped

subsets of observed data and randomly selected subsets of features (as discussed

in Section § 2.2.3.1) before taking the majority vote on features that reduce the

variance. Since this ensemble model considers different combinations of data

and features, it has a better ability to identify important attributes for prediction.

Since we are dealing with a small number of samples, one or two observations

can really change overall data distribution. Therefore, RF has a better sense of

variance when translated to unobserved data and results in better generalization

ability.

Using the Fine-Tuned SVR model as a benchmark, we observe that reduced

models trained on features selected by Ridge, SHAP, GS, and LIME have com-

petitive testing error with that of expert-selected features. One explanation, as

mentioned earlier, is that not all expert features affect the CN prediction, while

features selected with the above-mentioned techniques actually do.

PCA and PLS show the most unexpected results since these revered meth-

ods perform noticeably worse under different settings in both correctness and

performance categories compared to all other methods. One possible explana-

tion for their previous widespread use in chemometric analysis is the assump-

tion that most chemical processes and reactions are linear. Both PCA and PLS

decompose the data into linear combinations of original features and are com-

monly paired with linear regression in the literature.

However, given the non-linearity of spectroscopic data, presence of statistical

noise, and overall high dimensionality, we argue and attempt to support with

our data that the particular relationship between fuel spectroscopy data and its
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associated Cetane Number is not linear. Therefore, further attempt at selecting

a reduced number of important attributes using these methods results in their

poor performance. Additionally, PCA and PLS have simple and efficient im-

plementation. As a result, advanced methods that can be superior to PCA and

PLS in identifying the importance of spectroscopic features appear to have been

overlooked in the literature thus far. While PCA and PLS analytical methods

have been effectively used in many applications even outside of chemometrics,

they prove to be the least suitable feature extraction method for our scope of

work when compared to other methodologies.

Figure 2.9 demonstrates the Correctness versus Performance trade-off for

both Fine-Tuned SVR and NN models, we can conclude that Random Forest

selects the most meaningful subsets of attributes both from an explainability

and prediction performance standpoint. This paper shows that optimizing hy-

perparameters for NN can be a challenging task that requires paying significant

attention to the underlying data distribution. We also determine that given the

high-dimensional limited size of data, SVR predictive model outperforms NN,

although a further increase in the size of data can tip the scales back in favor of

NN.
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(a) SVR

(b) NN

Figure 2.9: Testing Error on Real-time dataset vs Correctness trade-off for 120
selected features using (a) SVR and (b) NN models
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Number of samples 145 245 165

FS method
Control Mixed Real-time

B
O

-Tuned
N

N

Train (µ,σ) Test (µ,σ) Time (s) Train (µ,σ) Test (µ,σ) Time (s) Train (µ,σ) Test (µ,σ) Time (s) # parameters

Full Model (0.006, 0.004) (0.04, 0.04) 2338 (0.02, 0.05) (0.07, 0.13) 2404 (0.01, 0.01) (32.3, 6.7) 2533 11.8 mil

Expert (0.02, 0.006) (0.04, 0.02) 3506 (0.02, 0.03) (0.03, 0.15) 4170 (0.03, 0.02) (64, 19) 2922 13.2 mil

PCA (0.05, 0.02) (0.07, 0.03) 3607 (0.08, 0.02 (0.17, 0.06) 4230 (0.04, 0.02) (48, 20) 2439 13.2 mil

PLS (0.29, 0.18) (0.5, 0.58) 3896 (2.07, 0.85) (1.6, 1) 4832 (1.66, 0.7) (92, 17.2) 2835 13.2 mil

RF (0.05, 0.01) (0.08, 0.03) 3421 (0.04, 0.02) (0.06, 0.02) 4260 (0.09, 0.08) (39.5, 12.8) 2421 13.2 mil

Ridge (0.05, 0.03) (0.07, 0.03) 3327 (0.05, 0.01) (0.07, 0.03) 4122 (0.06, 0.07) (58.5, 20.6) 2855 13.2 mil

SHAP (0.04, 0.02) (0.05, 0.02) 3266 (0.02, 0.01) (0.02, 0.01) 4620 (0.04, 0.025) (46, 32) 2806 13.2 mil

GS (0.04, 0.01) (0.06, 0.03) 3285 (0.04, 0.02) (0.06, 0.02) 4410 (0.03, 0.027) (50, 12) 2460 13.2 mil

LIME (0.03, 0.01) (0.05, 0.03) 3217 (0.05, 0.02) (0.09, 0.03) 4350 (0.06, 0.035) (52, 14) 2444 13.2 mil

Avg. runtime 111 139 88

Full Model (0.006, 0.004) (0.04, 0.04) 2404 (0.024, 0.045) (0.07, 0.127) 2617 (0.01, 0.01) (32.3, 6.7) 2613 11.8 mil

Fine-Tuned
N

N

Expert Features (0.05, 0.03) (0.25, 0.2) 344 (0.19, 0.35) (0.26, 0.5) 375 (5, 1) (63.7, 3) 351 0.5 mil

PCA (1.3, 0.3) (4.9, 2.5) 380 (0.5, 0.83) (0.67, 1.1) 391 (0.21, 0.5) (42.6, 11) 381 0.5 mil

PLS (22, 15) (19, 20) 391 (12.3, 1.9) (13.9, 4.6) 462 (11.7, 0.68) (73.8, 7.2) 366 0.5 mil

RF (0.86, 1.15) (1.62, 1.9) 377 (4.6, 0.8) (5.7, 1.9) 358 (0.73, 1.32) (16, 1) 456 0.5 mil

Ridge (0.73, 0.96) (2.7, 3.8) 361 (0.6, 0.96) (1.03, 1.95) 377 (3, 0.34) (31.7, 2) 396 0.5 mil

SHAP (0.001, 0.0015) (0.06, 0.13) 384 (0.67, 0.87) (0.82, 0.996) 470 (3, 0.4) (38.6, 0.9) 357 0.5 mil

GS (0.001, 0.008) (0.02, 0.029) 362 (0.83, 1.19) (0.83, 1.07) 383 (0.35, 0.63) (38, 2.1) 369 0.5 mil

LIME (0.048, 0.07) (0.225, 0.18) 366 (0.42, 0.72) (0.5, 0.67) 376 (0.13, 0.43) (38, 2.3) 333 0.5 mil

Avg. runtime 19.89 21.51 20.82

Full Model (0.006, 0.002) (0.02, 0.008) 0.58 (0.007, 0.0002) (0.05, 0.019) 11.4 (0.006, 0.002) (33.67, 5.44) 0.63

B
O

-Tuned
SV

R

Expert Features (0.006, 0.002) (0.02, 0.009) 1.2 (0.01, 0.007) (0.05, 0.02) 35.97 (0.006, 0.002) (33.95, 6.4) 1.2

PCA (0.007, 0.002) (0.04, 0.015) 2.75 (0.026, 0.04) (0.1, 0.08) 42.25 (0.007, 0.002) (34, 5.5) 2.65

PLS (0.016, 0.007) (0.32, 0.115) 30.8 (1.3, 1.5) (2.46, 2.3) 61.12 (0.016, 0.007) (42.5, 9.2) 30.27

RF (0.008, 0.002) (0.06, 0.03) 5.2 (0.8, 0.74) (0.36, 0.22) 56.78 (0.008, 0.002) (41.2, 2.1) 5.35

Ridge (0.006, 0.003) (0.03, 0.013) 1.3 (0.07, 0.07) (0.13, 0.08) 41.97 (0.007, 0.003) (37.9, 9.1) 1.33

SHAP (0.006, 0.002) (0.03, 0.01) 1.8 (0.11, 0.3) (0.46, 1.83) 39.84 (0.006, 0.002) (32.85, 4.7) 1.83

GS (0.006, 0.002) (0.03, 0.013) 1.7 (0.14, 0.58) (0.44, 1.67) 38.93 (0.007, 0.003) (36, 6.3) 1.63

LIME (0.006, 0.002) (0.02, 0.008) 1 (0.027, 0.06) (0.08, 0.05) 37.63 (0.006, 0.002) (36, 3.74) 1.06

Avg. runtime 0.17 1.4 0.2

Full Model (0.07, 0.001) (0.08, 0.02) 0.41 (0.007, 0.0002) (0.11, 0.03) 5.18 (0.006, 0.002) (14.8, 1.1) 0.45

Fine-Tuned
SV

R

Expert Features (0.06, 0.001) (0.08, 0.02) 0.36 (0.06, 0.001) (0.11, 0.04) 17.2 (0.006, 0.002) (14, 2.1) 0.36

PCA (0.07, 0.003) (0.11, 0.03) 0.97 (0.06, 0.002) (0.1, 0.08) 24.1 (0.007, 0.002) (15.2, 1.2) 0.98

PLS (0.07, 0.003) (0.13, 0.04) 5.1 (1, 0.79) (1.5, 0.9) 39.2 (0.016, 0.007) (16.2, 1.4) 5

RF (0.06, 0.002) (0.08, 0.03) 0.49 (0.06, 0.001) (0.09, 0.02) 5.5 (0.008, 0.002) (4.6, 0.2) 0.5

Ridge (0.06, 0.002) (0.08, 0.02) 0.37 (0.06, 0.001) (0.1, 0.03) 7.9 (0.007, 0.003) (11.8, 0.7) 0.37

SHAP (0.07, 0.003) (0.1, 0.03) 0.7 (0.06, 0.002) (0.14, 0.05) 22.3 (0.006, 0.002) (12.5, 0.7) 0.73

GS (0.06, 0.002) (0.1, 0.02) 0.68 (0.06, 0.002) (0.12, 0.04) 16.1 (0.007, 0.003) (11.8, 1.1) 0.7

LIME (0.06, 0.002) (0.1, 0.02) 0.56 (0.06, 0.002) (0.12, 0.03) 14.7 (0.006, 0.002) (13.9, 0.9) 0.55

Avg. runtime 0.04 0.6 0.04

Table 2.7: Performance of NN and SVR predictive models fitted with Full and
Reduced sets of features.
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Synthetic Data Generation

3.1 | Background
The idea of generating synthetic representations of real-time data using algo-

rithms has a long history. Artificial data generation processes has been widely

applied in many fields including perception (107; 108; 109) and speech synthe-

sis for natural language processing (110; 111), where large volume of samples is

required to train image recognition and speech models.

Before introducing deep generative models capable of generating unique

new samples, the common approach to increase the size of an existing dataset

was data augmentation. This technique is used to create slightly modified copies

of existing data and serves the role of regularizer to reduce overfitting when

training a predictive model. Popular data augmentation strategies include in-

verting, scaling, shifting or simply adding statistical noise to existing data to

produce new samples. Data augmentation is a viable solution for many ML

modeling domains, particularly image processing, since visual transformations

only affect the context in which the item is displayed, not the object itself. How-

ever, permuting primary data might result in cardinal changes and the loss of

key information in a new sample. As a result, it is indeed critical to create new
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samples that retain the knowledge about the underlying sample intact. Hence, a

reliable domain-agnostic technique for synthesizing data called generative mod-

eling is introduced.

Generating realistic data that meet certain conditions absent in real data to

design new cases and simulate new outcomes is well-motivated. Synthetic data

can also be used to represent real outcomes without disclosing information about

real data and therefore jeopardizing its confidentiality and privacy. Up until the

introduction of Autoencoder networks (112), the term generative model broadly

meant a class of statistical models that learned a joint probability distribution

of observable and target variables. Simple generative models memorize the

given input data distribution and have the ability to reproduce new samples

that come from such distribution. However, the advance in neural network pro-

cessing opened a new pathway for deep unsupervised representation learning.

The two most popular deep generative methods currently are Autoencoders,

and Generative Adversarial Networks (GANs) (113). In Autoencoder, by con-

verting high-dimensional data to lower-dimensional data, an encoder model is

forced to learn a compressed knowledge representation of the original data. This

transformation is accompanied by trading off between two parameters: first, re-

construction accuracy, which measures the differences between original input

x and the reconstructed x̂ space L(x, x̂), second, regularization term, i.e., L1 or

Kullback–Leibler divergence, that discourages memorization or overfitting of

training data. The compressed representation, therefore, learns to reproduce the

input without holding onto its redundancies, allowing the production of diverse

samples different from the original ones yet faithful to their underlying proper-

ties. Gradient descent is typically used for fine-tuning such network weights.

Alternatively, the approach of using adversarial training focuses on produc-

ing samples that are more realistic, rather than memorized with the greatest
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accuracy, resulting in a more diverse output. Both techniques have their pros

and cons. While GAN currently produces higher fidelity samples than Autoen-

coder networks, it is also difficult to optimize due to unstable training dynam-

ics. However, since our goal is to produce the highest possible quality samples

to improve data representation, all the while adhering to domain explainability

constraint, we chose GAN approach for synthetic data modeling and discuss its

details further.

3.1.1 | Related Works
Since its inception, GAN has been predominantly used in text, image, and video

processing applications, generating near-perfect synthetic text (114) and images

that are often indistinguishable from real by the human eye (115). Particularly

for image processing, this ability to capture knowledge about given objects and

interpolate it to new, unique object space was soon used to create image-to-

image models capable of reconstructing and colorizing images (108; 116), blend-

ing different images together (117), improving image resolution quality (118),

and create a whole spectrum of another photo/video editing applications. Many

works are also dedicated to employing GAN for engineering design applications

and are able to successfully generate chemical (119) and complex materials(120),

compact electric circuits (121), and many other novel objects and designs. At this

point, the application of GAN spans many domains, including but not limited

to medical record synthesis (122), anomaly detection systems in cyber security

(123), business, and data privacy-preserving (124), and many more.

While many classic generative and data augmentation techniques still are

widely used in various applications, many fall short in robustness of GAN and

its ability to deliver diverse, quality outputs. That being said, we review most
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popular and recent literature on the use of data augmentation, encoding net-

works and GAN models for generating spectroscopy data.

The spectroscopic data augmentation process has been extensively investi-

gated in (125) on a vegetable oils dataset for training a classification model to

distinguish between spectra of 6 different vegetable oil species classes. The data

augmentation procedure consisted of creating artificial samples by blending the

weighted sum of input spectra from other samples, offsetting absorbance val-

ues on the spectral range axis, and adding white noise to observed values. The

authors reported slightly improved classification accuracy, particularly through

the use of samples generated with added statistical noise. The noise addition

methods included uniform Gaussian noise, intensity dependant noise, and log-

normal noise multiplication. It is also observed that only a small level of statis-

tical noise injection leads to classification improvement before the performance

drops off. Overall, data augmentation does not lead to a massive performance

gain, so we turn our attention to deep generative techniques.

The application of Autoencoders for spectroscopic data synthesis was pre-

sented by (126) and was demonstrated to outperform state-of-the-art synthesis

approaches at the time. Generating compressed representations of Raman spec-

troscopy via an encoding network allowed authors to produce new samples and

yield improved classification accuracy for binary classification of samples that

contain chlorinated solvents. The approach also incorporates the use of a trained

autoencoder as an outlier detector which results in a model that both “produces

high classification accuracy and is robust in the presence of negative outliers”.

Several papers have been released since 2020 that demonstrate how to use

GAN to generate spectral data in order to improve baseline prediction model

accuracy. In (127) 480 infra-red spectra of cumin and fennel plants were col-

lected and used for classification using Quadratic Discriminant Analysis (QDA),
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Multi-layer Perceptron network, and Convolutional Neural Network (CNN).

The training data were decomposed using Principal Component Analysis (PCA)

prior to fitting the model. The GAN model was used to expand the training set

and improve classification performance by generating new samples. Each sub-

set of plant samples was replicated using a separate GAN model, providing a

narrow representation of real sample distribution, even within given classes of

cumin or fennel. The classification accuracy results suggest that using GAN was

not necessary in the first place, as the model accuracy was already high due to

low problem complexity.

In (128) authors use Bidirectional GAN (129) to improve the result of CNN

prediction model used for drug identification. In this work, 1721 samples of four

drugs from 29 manufacturers were used to train the generative network and test

the classification model. The motivation to use GAN was to solve the problem

of insufficient samples necessary for efficient neural network training and un-

balanced representation of all drug classes in terms of their training data subset

size. The researchers collected FTIR spectral data and implemented an addi-

tional condition for the generator to generate the data for a given class. This was

done by including an additional loss parameter that calculates classification er-

ror between synthetic data label and training data label. The authors discussed

that such conditional GAN enhanced classifier performance over other models

considered when at least 50% of data was used for training GAN. Although

hyperparameter selection was mentioned, it was unclear how the model was

impacted. The uniformity of generated samples used to balance the size of un-

derrepresented subsets of drug classes suggests that such a model could suffer

from a mode collapse.

In (130) GAN was used to expand the training set for laser-induced break-

down spectroscopy (LIBS) classification problem. Vanilla GAN was used to gen-
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erate new samples that were normalized between 0 and 1. After synthesizing the

data, the synthetic and real samples were compared using unsupervised PCA

and K-means clustering techniques. The first two principal components and

clusters of each spectra type were plotted against each other for visual inspec-

tion to compare their similarity. The percentage of generated spectra that was

classified into experimental spectra was used as an estimation of given class syn-

thetic data similarity with training data. The resulting sets of real and synthetic

spectra were combined and a SVM classifier was fitted to estimate the change in

classification performance. Correct classification rate (CCR) went from 88.89%

to 95.33%, which indicated positive classification accuracy improvement.

In (131) the authors used hyperspectral image translated to normalized spec-

troscopic data to create additional samples to improve baseline classification

performance for a limited size dataset. Two GAN architectures, namely Condi-

tional GAN (CGAN) and Deep Convolutional GAN (DCGAN), were compared.

Using CGAN, the image representations were conditioned with encoded label

information, resulting in higher quality generated samples than using DCGAN

architecture. The difference in quality was evaluated using a comparison of PCA

components, training SVM and RF classifiers on the combined synthetic and real

data, and observing changes in classifier recall and accuracy metrics. Although

it was suggested that using this technique improves the baseline classifier’s gen-

eralization ability, sufficient empirical or technical evaluation of this claim was

present.

In another work by (132), the 100 spectra of three classes of marine pathogens

were used to train separate GAN models to generate samples of a particular

strain. The trained GAN discriminator was then used as a classifier model to

evaluate pathogen classification accuracy using real and synthetic data. How-

ever, using a discriminator model in such a capacity is not meaningful, as it
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is optimized for distinguishing between real and artificial samples rather than

a multi-class classification task. No details on the GAN architecture or choice

of hyperparameters were provided. Further, the difference in intensity values

within generated data was used for region significance estimation. The au-

thors argue that areas of highest variance are most significant for differentiat-

ing unique classes. Unfortunately, this claim is not further explored, leading to

the belief that such variance is likely a result of statistical generated through the

GAN training process.

A new approach was created using terahertz (THz) spectroscopy of rice and

carbendazim powder tables to build 2-D heatmap "pictures" of such spectra,

which were then used to train an image classifier to categorize samples depend-

ing on their pesticide residue content. The spectroscopy was transformed from

a one-dimensional array to a two-dimensional picture I using the transpose of

the THz spectrum absorbance coefficients as a function of I = x ∗ xT, where x

is the sample absorbance vector (133). The classifier was then retrained using

the ResNet network, and the authors argued that using transfer learning solves

the issue of overfitting. The WGAN framework was used to ensure training

convergence, and the generated samples were used for training SVM, KNN,

and ensemble classifiers to compare their performance with CNN. The deep

ResNet network scored slightly higher on differentiating between 13 classes than

its reduced version. No solid evidence was provided that features extracted

from training ResNet on 3.2 million images in 5247 categories of the ImageNet

database reduced overfitting on unseen spectroscopic data. It can also be argued

that such a deep network promoted overfitting and, therefore, yielding a higher

testing accuracy on a given set.

Another interesting approach was discussed by (134), where GAN was used

as a spectroscopy pre-processing tool instead of popular scatter-correction tech-
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niques. Alternative to using scattering corrections to smooth the effects of mea-

surement geometry and instrumentation noise, the proposed method involves

using low-resolution spectra as latent statistical noise input in the generator por-

tion of GAN, trained on high-quality spectra to process low-quality spectra into

smoothed, processed ones. The results indicated that it is more computationally

efficient to read raw spectroscopy in low resolution and process it with GAN

rather than using long shutter collection time and standard pre-processing tech-

niques. However, the real data with higher shutter stabilization yielded better

classification results upon using such data for the training classification model.

Another work that must be mentioned is published by (135) and builds on a pre-

vious work of (130) by introducing γ parameter to the WGAN network to con-

trol diversity and quality trade-off for generated data. The proposed parameter

automatically controls the effort allocated to the training generator or discrimi-

nator module. However, no details on the implementation were presented.

After a thorough literature review, we noticed that using spectra blending

and statistical noise injection to generate new samples via data augmentation

yields marginal improvement. While encoding networks are shown to perform

deep representation learning, GAN remains the most promising approach for

spectroscopic data synthesis. However, given the preponderance of works pub-

lished on this topic, the exact implementation, reproducibility of the results, and

generalization still remain unclear. The majority of existing works fall short in

providing clear details on technical solutions to address GAN training stabil-

ity for spectra data, with many displaying model collapse behavior. Moreover,

the methodology for evaluating the quality of the generated spectra is only lim-

ited to severe simple statistical analyses, with no discussion on how realistic it

is or how reliable the data is. Therefore, we prioritize our work on develop-

ing a comprehensive technical guide to optimal spectroscopy GAN training and

65



Chapter 3. Synthetic Data Generation 3.2. Methodologies

investigating synthetic data quality from the domain standpoint and Machine

Learning efficacy approach.

3.2 | Methodologies

3.2.1 | Generative Adversarial Network
GAN (113) is the most successful generative model developed in recent years,

used in many applications from video editing and restoration to engineering

design. Introduced in 2014 as a new way to generate data, this implicit density

deep generative model aims to learn the true distribution of given data to gen-

erate new samples indistinguishable yet different from the original data. GAN

is a hot topic of research currently, and there have been a variety of GAN imple-

mentations. The so-called “vanilla” GAN architecture is the simplest and most

commonly used form of GAN. It is composed of two adversarial deep neural

network models, generator (G) and discriminator (D), that compete in a min-

max two-player game until near-Nash equilibrium is reached to generate data

that plausibly follows the original data distribution. To this end, the generator

(G) first creates a mapping function from a supplied statistical noise distribu-

tion pz(z) to a new data space that resembles training data space. The latent

statistical noise vector z is typically initialized by sampling values from Gaus-

sian distribution with mean 0 and standard deviation of 1. The noise vector is

later transformed into a synthetic sample once the underlying data distribution

is learned. The role of discriminator (D) is to output a variable that represents

the probability that a sample (x) is generated following the training data rather

than a generator. GAN trains both models simultaneously, adjusting generator’s

parameters to minimize log(1 − D(G(z)) and adjusting discriminator’s param-
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eters to minimize logD(x). This process can be represented mathematically as:

min
G

max
D

V(D, G) = Ex∼p(x)[logD(x)] + Ez∼pz [log(1 − D(G(z)))], (3.1)

where p is the real data distribution and pz is the input latent noise vector.

The goal of function G is to map from latent space to the data space, while func-

tion D differentiates between real and artificial samples.

Training a stable GAN is a challenging task as it is a highly hyperparameter-

dependent model and involves improving both discriminator and generator

models that work in tandem. Consequently, changes to one model can affect

the performance of the other. Moreover, as discussed by (136), in practice, find-

ing this Nash Equilibrium is a difficult task. Due to the non-convexity of D and

G, there is no theoretical guarantee of obtaining the Nash Equilibrium. Hence,

this optimization problem is usually solved using a gradient descent approach.

The most common issue arising from training a GAN is called mode collapse. This

happens when the generator begins repeatedly producing the same output (or

a subset of outputs) while the discriminator fails to reject it. The task of the

generator is to create plausible samples indistinguishable from real data to the

discriminator, and the default strategy of the discriminator is to attempt to reject

them. However, if, during one of the epochs, the discriminator gets stuck in a

local minimum and cannot reject fake samples, the generator will then over-

optimize for this particular configuration of generator weights and continue

to generate the same samples that are proven to mislead it. Additionally, the

respective loss functions of generator and discriminator models are not infor-

mative on their own, making tracking model convergence and hyperparameter

optimization difficult, with most of the model tuning ending manually.
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3.2.2 | Advanced GAN Architectures
Several GAN modifications have been proposed to enhance the model conver-

gence and quality of data generated, such as Conditional GAN (CGAN) (137),

Deep Convolutional GAN (DCGAN) (138), Wasserstein GAN (WGAN) (139),

WGAN + Gradient Penalty (WGAN-GP) (140), Packing GAN (PacGAN) (141)

and many others. Each approach utilizes particular subset of technical solutions

that we refer to as modules. In this research, we compile a list of modules that

can be utilized to train stable synthetic spectral data generators and attempt to

determine their relative effectiveness through comprehensive ablation test. The

following parameters and modules were considered:

Latent Dimensions. The latent dimension size determines the range of diver-

sity of generated statistical noise. The generator takes the sampled vector and

then maps it to the training data distribution by minimizing the Jensen-Shannon

Divergence of the probability distribution of the sampled vector and the distri-

bution of all the training data. Higher dimension value results in more variety of

latent variables generated and slows down the convergence of generator train-

ing.

Latent Noise Space. The latent space defines the shape and distribution of the

input to the generator model used to generate new samples. Most works advise

sampling from a standard Gaussian distribution to initialize latent space. As

such, the shape of the latent space is a hypersphere, with a mean of zero and a

standard deviation of one.

Network Capacity. The model for the discriminator is usually more complex

than the generator. Increasing generator capacity shows no improvement in

the quality of the generated data if the discriminator is not providing quality

feedback in the first place. Therefore, it is essential for the discriminator to be

ahead of the generator.
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Activation Function. Network activation functions are critical to construct a

balanced, high-performing model with sparse activations. Activation sparsity

is defined by the number of hidden units with the non-zero output after being

activated, promoting more effective learning. The sigmoidal activation function

is typically a good starting point for most research. However, it can also lead to

saturation in both function directions, thereby resulting in a vanishing gradient

problem. To remedy the vanishing gradient and promote sparse activations, a

more advanced rectified linear activation unit (ReLU) function (142) was intro-

duced in 2018 and is currently the most popular choice of activation function for

deep networks. While most works recommend using the ReLU activation func-

tion for the generator (143), a variation of ReLU, called Leaky ReLU, is preferred

to use in the discriminator for all layers. Leaky ReLU allows values less than

zero by specifying its negative slope (default value is 0.2) and learns where the

cut-off should be in each node of the network.

For classification and sampling tasks, such as differentiation between real

and synthetic samples in discriminator or sampling from mixture of Gaussian

distributions, as will be discussed later, we also use Softmax and Gumbel-Softmax

activation functions. Since sampling discrete data from categorical distribution

is not differentiable, a Gumbel-Softmax is used instead of Softmax to ensure

that gradient estimation can be acquired. The Gumbel-Softmax function takes

advantage of Gumbel distribution, which is a continuous distribution that ap-

proximates samples from a categorical distribution and enables the ability to

backpropagate through samples. It has the essential property that it can be

smoothly annealed into a categorical distribution (144) and therefore used for

sampling discrete data.

Batch Normalization. Batch normalization standardizes the activations of a

previous layer, which are added to the model after the hidden layer. Recentering
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and rescaling the layer’s inputs to have zero mean and unit variance produces

smoother parameter space and stabilizes the training process.

Dropout. Introducing a dropout layer in the architecture would avoid the

discriminator’s overconfidence. By randomly dropping a subset of the layer’s

outputs in the discriminator, this method changes the number of nodes and con-

nectivity of layers. Dropout makes the training process noisy, simulating the

network to learn a sparse representation and is a better alternative to active reg-

ularization.

Minibatch Discrimination. To avoid a mode collapse of the generator, separate

batches of real and synthetic data are used to train the discriminator. Hence,

we discriminate between whole minibatches of samples rather than between

individual samples. These minibatches are computed in the intermediate layer

of the discriminator separately and are fed to the next layers together. Since

the task of the discriminator is to classify individual examples as real data or

generated data, it is able to simultaneously use labeled examples of both real and

synthetic samples in the current batch of model inputs as reference information

to make better decisions about whether new samples are real or not.

Mode-specific Normalization. Continuous value representation with arbitrary

distribution is non-trivial. Based on an investigation conducted by (122), contin-

uous values in tabular data are typically non-Gaussian, and min-max transfor-

mation result in vanishing gradient problems. Since spectroscopic data is stored

as tabular data, with each individual column representing material absorbance

or scattering intensity value for a certain spectrum wavenumber. Hence, the is-

sue of appropriately pre-processing spectroscopic data are similar to that of tab-

ular data. To deal with columns having non-trivial distributions, in other words

columns whose values follow a mixture of multiple distributions, each column

is treated independently using a mode-specific normalization. Therefore, given
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data of size j × i, where j represents a row and i a column index, a variational

Gaussian Mixture Model (GMM) is applied for each column (Ci) to estimate the

number k of Gaussian distributions (which we will refer to as modes m) present

in that column. The equation for learned GMM is given in 3.3, where µ and σ

are mode weight and standard deviation accordingly.

For each value cij in column Ci we compute probability of it coming from par-

ticular mode, with probability densities given in equation 3.2. Once the mode is

sampled, each value cij is normalized following equation 3.4. The mapping that

stores data-specific GMM information is stored and used to transform newly

generated data back to the original range.

ρk = µkN (ci,j; mk, σk), (3.2)

PCi(ci,j) =
k

∑
1

µkN (ci,j; mk, σk), (3.3)

ai,j =
ci,j − mk

4σk
, (3.4)

where PCi is a given Ci column’s mixture model, represented as sum of k Normal

distributions ρ1 + ρ2...ρk with µ and σ being the weight and standard deviation

of respective mixture mode m, and where ai,j is output vector of column values

normalized by given mode mk.

Conditional Information. The core principle of Conditional GAN is a method

that extends the performance of vanilla-GAN models by conditioning both gen-

erator and discriminator on additional information (y), which can be any “aux-

iliary” information such as class labels. The latent noise, together with y, is

combined in a joint hidden representation for the generator. In the discrimina-
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tor, x and y are both used as inputs for a discriminative function. The updated

Conditional GAN objective function then is as follows:

min
G

max
D

V(D, G) = Ex∼p(x)[logD(x|y)] + Ez∼pz [log(1 − D(G(z|y)))], (3.5)

where p(x) is the rel data distribution and pz is the input latent noise vector. The

goal of function G is to map from latent space to the data space, while function

D differentiates between real and artificial samples. In this configuration, both

real data x and latent noise z are conditioned on some information y.

Wasserstein Loss. Wasserstein GAN (WGAN) is one of the most popular GAN

models and consists of an objective change that results in training stability and

interpretability. As a result, WGAN is less sensitive to the choice of the Network

architectures and hyperparameters. This approach challenges the classic GAN

idea of learning the probability distribution of data by learning its probability

density so that a family of densities is selected that maximizes the likelihood of

the data. As the authors claim, to apply the likelihood maximization approach,

such density must exist in the first place, which is not always the case when

“dealing with distributions supported by low dimensional manifolds” (139).

When the model manifold and the true distribution intersect, the divergence be-

tween them becomes undefined, leading to infinite values and mode collapse as

a result. To counter this issue, a new method of determining how close the model

and real distributions are is presented. In the process of identifying various ways

to define a divergence, they introduce the Wasserstein-1 distance loss function,

which essentially replaces a probability of discriminator loss with a score that

correlates with the quality of generated data. Following the description from

(140), the Wasserstein (or Earth-Mover) loss function (W(q, p)) is informally de-

fined as “the minimum cost of transporting mass” used to transform the distri-

bution q into the distribution p where the cost is mass times transport distance.
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This method allows for continuous training of the critic (discriminator) without

reaching saturation, avoiding the mode collapse that the usual GAN method is

prone to. Using such a distance function, which has solid theoretical properties

compared to the originally defined distance metric, induces a stronger topology

by delaying the convergence for a sequence of distributions.

Furthermore, the discriminator’s parameters are clipped to a certain compact

space to enforce a Lipschitz constraint, under which all neural network trans-

formations and pointwise nonlinearities are smooth Lipschitz functions. While

clipping weights, is “clearly a terrible way to enforce a Lipschitz constraint”

(140), the authors left it for further research in the initial paper. Additionally, the

discriminator’s parameters are updated more often than the generator’s param-

eters throughout each iteration to ensure a robust discriminator (named critic in

this configuration) model is used to speed up the convergence to optimal model

equilibrium. The new objective function is described as follows:

min
G

max
D∈D

E
x∼Pr

[D(x)]− E
x̃∼Pg

[D(x̃)], (3.6)

where D is the set of 1-Lipschitz constraint and Pg is the model distribution

implicitly defined by x̃ = G(z), z ∼ p(z). In this setting, using optimal critic,

minimizing the value function with respect to the generator parameters mini-

mizes W(Pr, Pg).

Gradient Penalty. As mentioned by (139), using weight clipping was not opti-

mal solution to enforce Lipschitz constraint. Therefore, an alternative approach

of penalizing the norm of gradient of the discriminator (critic) model with re-

spect to its input is proposed (140). This method uses soft version of the 1-

Lipschitz constraint with a penalty on the gradient norm for random samples

x̂ ∼ Px̂. The following penalty component is added to (3.6):
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λ E
x̂∼Px̂

[(||∇x̂D(x̂)||2 − 1)2], (3.7)

where λ is a penalty coefficient and Px̂ is uniform sampling the lines between

pairs data distribution Pr̂ and the generator distribution Pĝ points. It has been

shown that this method outperforms the standard WGAN and enables stable

training of a wide variety of GAN architectures with almost no hyperparameter

tuning (140).

Packing. PacGAN solution to problem of mode collapse was introduced by

(141). The main idea of packing is to “modify discriminator to make decisions

based on multiple samples from the same class together, either real or artifi-

cially generated”, by passing combined samples to generator and discriminator

simultaneously. It was demonstrated via binary hypothesis testing that packing

penalizes generators with mode collapse, favoring generator distributions with

less mode collapse. This approach requires minimal architecture adjustment and

is proven to aid in GAN training convergence.

3.2.3 | GAN Evaluation
As mentioned in § 3.2, training GANs is difficult as the loss curves of the gener-

ator and discriminator oscillate in a non-informative manner, with no clear indi-

cation of whether the model is improving. This is the result of the min-max zero-

sum game nature of GAN, where both players can undo each other’s progress

(145). While several evaluation metrics exist, there is no clear consensus regard-

ing which metric is the most appropriate to evaluate the GAN training process,

or the quality of the output sample (146). While there is a number of proven met-

rics dedicated to the evaluation of images (146), we chose the following three

categories of methods to evaluate the quality of generated spectroscopic data:
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Figure 3.1: Complete synthetic data generation and evaluation process diagram.

Statistical Similarity, Model Efficacy, and Domain-expert Conformance. Figure

3.1 presents a complete overview of GAN training, sample generation, and eval-

uation process flow.

Statistical Similarity. Using Kolmogorov-Smirnov (KS) test, we can esti-

mate the similarity between generated (Ssynth) and training (Sreal) data (147) as

a function of the distance between cumulative distribution functions (CDFs) of

the data they were respectively drawn from. The Kolmogorov-Smirnov statistic

equation is:

Dn = sup
x

|Fn(x)− F(x)|, (3.8)
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where n is the number of samples, supx is the supremum of the set of distances

between values in each distribution. The statistic D therefore takes the largest

difference between two distributions and converges to 0 when divergence is

non-existent and, therefore, goes to infinity. Since spectroscopic data can be

effectively described as tabular data where each column follows some underly-

ing GMM, we apply a two-sided KS test on each column C between real and

synthetic data samples and subtract 1 from the average of the results across all

columns to get final KS score used for evaluation:

Davg =
i

∑
1

Dn, (3.9)

KSscore = 1 − Davg, (3.10)

where final output KSscore indicates the maximum distance between the ex-

pected CDF and observed CDF values for two subsets of data. While a high KS

score indicates that GAN successfully captured the underlying distribution of

training data, an overly-high score might indicate a mode collapse of the gener-

ator. We use the KSscore to evaluate the quality of the generated data and overall

GAN training stability.

As discussed in §2.2.2.1 principal component analysis (PCA) is commonly

used to convert multiple indicators in high-dimensional data into a few repre-

sentative lower-dimensional components (principal components (PC)), where

each PC holds the significant amount of information about the original data.

Various works take advantage of PCA simplicity and power to evaluate the

prominent directions in GAN latent learning space (148) and estimate similar-

ity between spectral data generated by GAN and real spectral data (131). In

this research, PCA is used to project high-dimensional spectral data into low-
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dimensional space to quantify the similarity between the spectra generated by

GAN and the real spectra.

Model Efficacy and Synthetic Data Labeling. Machine Learning Efficacy

can be used in addition to statistical analysis to evaluate the performance of us-

ing synthetic data as training data for predictive models (122). Using our predic-

tive modeling framework discussed in Chapter §2.3.3, we train the best-suited

prediction model on a synthetic dataset and evaluate prediction models using

an independent test subset of the real data. While we can generate quality spec-

troscopic data, we also need an associated CN value for each sample to use this

data in a supervised learning setting of a regression model. The “ground truth”

CN values are commonly calculated using compressed fuel measured ignition

delay obtained through Ignition Quality Tester (IQT) (149) or Cooperative Fuel

Research (CFR) methods. However, since no real substance exists that is associ-

ated with generated spectroscopy, we devise a different strategy to acquire CN

labels for our spectra. There is a recent branch in machine learning, referred

to as Weak-supervision learning (150) that mainly deals with situations when

large amounts of unlabeled data are available for a supervised learning setting.

The core idea of this approach is that weak, noisy signals can be used to super-

vise the labeling process of such data and ultimately help create a strong pre-

dictive model. The assumption is that using data with “weak” (lower-quality)

labels while understanding that they are imperfect ultimately leads to predic-

tive model performance compared to not utilizing unlabeled data at all. Using

this approach, we use a machine learning model trained on the existing labeled

dataset to assign weak (CN) labels to newly generated samples. While it is ex-

pected that using imperfect labeling (oracle) model results in such weak labels,

we expect to enhance model stability and overall model generalization to un-

foreseen data by expanding the diversity of the labeled dataset. As discussed
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in §2.2.5.2, Mean Squared Error (MSE) is used as a performance metric to eval-

uate the accuracy of the regression model trained on synthetic data MSEsynth

and compare with that of the baseline model trained on real dataset MSEbase. To

ensure the reported results are robust and accurate, we take average MSE across

30 observations, generating new samples and relabeling them with randomly

split real data every time. Lower quality of generated samples should result in

lower prediction accuracy compared to baseline. In contrast, if the MSE values

are equally similar, the synthetic data can be judged of acceptable quality.

Domain-expert Conformance. Domain-expert evaluation serves as a final

evaluation step to ensure the quality of synthesized data. While the generated

data might look real to non-domain practitioners, containing similar peaks and

valleys to the original data, it must also contain information about real fuel ma-

terial properties. For such a data generation process to be trusted further, these

artificial representations of possible real samples must be evaluated by an ex-

pert. By training conditional GAN on information about Chemical Functional

Groups (CFGs) present in existing fuel samples, we design a sample generation

approach that generates spectroscopy of theoretical fuel with the desired chemi-

cal properties. We focus on synthesizing pure alkane mixtures that contain only

CH2 and CH3 functional groups, as they are prominently distinguishable by

the domain expert from other mixtures contained in the training set. We over-

lay these artificially generated samples with real pure alkanes from our dataset

to visualize the difference. Then, we let the domain experts confirm their au-

thenticity via the presence (or absence) of certain peaks in the expected regions

of spectroscopy and their intensities. If successful, such a GAN sample gener-

ation core can be trusted further to produce new samples to enrich the existing

dataset.
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3.2.4 | Data
The spectroscopic data consists of two datasets, namely Raman and ATR, that

were collected at the UIC High-Pressure Shock Tube and Lynch Laboratories us-

ing Raman and diamond Attenuated Total Reflectance (ATR) spectrometers ac-

cordingly. The Raman dataset consists of 245 observations from 49 unique fuel

samples, as discussed in Chapter §2.3.2, while the ATR data has 145 observa-

tions from 29 fuel mixtures. Each ATR sample has close to 60,000 features, which

are absorbance/intensity values recorded across the entire wavelength range be-

tween [400, 4000] cm−1. The data are processed to filter out noisy, uninformative

regions between 1800 and 2500 wavenumbers. We reduce the number of features

via cubic spline interpolation to 1562, as in Raman spectra, for consistency and

without any major resolution quality loss. ATR data are then split into training,

and testing sets 80/20 for ML efficacy testing. For domain-expert conformance

checking, we also acquire information about the known CFG concentrations for

ATR samples. These concentrations represent ratios from extracted UNIFAC

functional groups for pure components and mixtures that were collected at the

Lynch Laboratory. The resulting array consists of the fraction of concentrations

(scalar values) that sum up to 1 for each mixture sample. In this study, we only

use CH2 and CH3 functional group concentrations for the collected 145 ATR

samples. Since pure alkanes only consist of CH2 and CH3 groups, the resulting

concentration array consists of pairs of values (i.e., [0.4, 0.6]). This information

is later used for the final stage of model evaluation.

3.3 | Experimental Results
The initial GAN model is first trained on Raman spectra data using classic “Vanilla”

architecture with appropriate network capacity capable of holding the com-
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pressed knowledge from given spectroscopic data. We use two fully connected

layers with 256 nodes for discriminator and generator. The choice of number of

hidden layers and nodes is dictated by general guidelines throughout the GAN

literature and following implementation by (122).

We use the ReLU activation function for all layers and binary cross-entropy

loss function to calculate the gradient for differentiating between real and syn-

thesized samples incorrectly. We also employ minibatch discrimination and ex-

amine how changing latent space parameters affects the model performance.

Finally, we artificially add statistical noise to the system to improve training sta-

bility using smooth labeling. Instead of using hard binary labels for identifying

real and synthetic samples, we apply a small random offset to the label and pe-

nalize the discriminator when the prediction for any real samples exceeding a

certain probability threshold (i.e., 0.9 instead of 1), thereby promoting sparse

activations. The resulting Ssynth data scaling and overall resemblance to Sreal

remains low (Figure 3.2 (a, b)). The model is highly unstable and sensitive to

gradient updates, partially because data are not normalized and hard to pro-

cess for neural network activation functions in the original range of values. In-

creasing latent data dimension size from 128 dimensions to the size of training

data, which is 1562 dimensions, slightly improves the quality of generated sam-

ples. However, the output range for absorbance values is still 1,000 orders of

magnitude smaller than for real data. Therefore, we employ mode-specific data

normalization to address the scaling and immediately observe improved model

convergence towards realistic data scaling and proportions, as can be seen in

Figure 3.2(c).
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(a) Real

(b) Vanilla GAN

(c) MS-norm GAN

Figure 3.2: Comparison between (a) real Raman training data and synthetic data
generated using trained (b) Vanilla GAN model (c) GAN with Mode Specific
(MS) normalization 81
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Figure 3.3: PCA first and second principal component overlay between real
training spectra and synthetic spectra generated via GAN with mode specific
normalization
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Component

A
vg

USE Conditional Label Discriminatory steps Gumbel-Softmax Packing BCE loss Gradient Penalty

MSE (Test) 220.58 229.19 224.21 203.07 297.22 221.20

KS Score 0.316 0.356 0.353 0.325 0.286 0.366

CN Label Min 36.9 36.1 34.6 38.7 25.1 34.4

CN Label Max 48.1 47.4 50.5 50.5 37.3 45

Diff CN 11.2 11.2 15.9 11.8 12.1 10.5

NOT USE

MSE (Test) 241.52 232.91 237.89 259.03 164.88 240.9

KS Score 0.32 0.279 0.282 0.311 0.349 0.269

CN Label Min 36.7 37.4 40.7 34.9 48.8 39.2

CN Label Max 48.2 48.8 45.8 45.8 59.4 51.4

Diff CN 11.5 11.4 6.9 10.8 10.5 12.1

Table 3.1: ML Ablation test for Advanced GAN components
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To evaluate the quality of the generated data, we first consider the resulting

Ssynth KS score. The newly generated data has KSscore = 0.536 indicating that ar-

tificial and real data CFDs are partially similar. We also use PCA decomposition

to project the first two PCs of each data subset onto each other (Figure. 3.3) to

observe if two subsets are decomposed similarly. The explained variance (EV)

by the first component PC1 is 43.77 and 38.27% for synthetic and real data, cor-

respondingly. The EV for PC2 is recorded as 27.01 and 33.48%. The two subsets

can be concluded to be similar, as their projections to lower-dimensional man-

ifold carry almost identical information. Next, we evaluate the performance of

our fitted GAN using model efficacy test and observe yet high MSEsynth = 119

explained in the evaluation section compared to the MSEbase = 14.8, which in-

dicates further improvement is necessary. To understand the effect of statistical

noise associated with the choice of the prediction model and labeling oracle for

model efficacy evaluation, we compare the use of the two most advanced model

architectures from §2.3.3. Using both the Fine-tuned Neural Network and the

Fine-tuned Support Vector Regression models as labeling oracle and final CN

prediction model, we record their corresponding testing MSEs to establish op-

timal model combination. We establish that using the Fine-tuned SVR model

as both labeling oracle (Figure 3.4(a)) and final prediction model (Figure 3.4(b))

leads to lowest testing error, and is therefore an optimal model for both use

cases. We perform a comprehensive ablation test to further explore the value

of using various advanced GAN techniques described in §3.2.2. We conduct

the test by iterative removal of components to understand their contribution to

overall model performance. We consider various metrics, such as model efficacy,

generated label range, diversity, and standard statistical tests, to evaluate the

change in GAN behavior with and without these components (Table 3.1). Due

to the high stochastic nature and computational power required to train GAN, a
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(a) Oracle evaluation. SVR(green), NN(red)

(b) Prediction model evaluation. SVR(orange), NN(blue)

Figure 3.4: CN Prediction and synthetic data Labeling accuracy measured for
both SVR and NN models. Four combinations of Oracle-Prediction models
tested on Real-time data, (a) Oracle and (b) Prediction model evaluation
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comprehensive ablation test for all possible combinations of components is not

feasible within a given amount of time. Therefore we rely on general patterns

observed during the limited series of tests (total of 114 model configurations

trained), to fix multiple parameters and advance the architecture complexity in-

crementally afterwards.

The complete set of modules and parameter considerations for ablation test-

ing employs the following modifications. We use mode-specific normalization,

which includes conditioning both generator and discriminator on a discrete GMM

modes and activate them separately from continuous spectra attributes using

Gumbel-Softmax activation. In addition, the transformed absorbance/intensity

values disseminate through a chain of Leaky ReLU activation functions in the

hidden layers. The generator architecture is updated with Batch Normalization

layers, and discriminator/critic is equipped with Dropout layers respectively

after each activation step. The binary cross-entropy loss function is compared

against the Earth-Movers distance transportation function, effectively replacing

discriminator with WGAN critic configuration. Gradient penalty is used in-

stead of weight clipping for improved training stability. Additionally, we eval-

uate packing for the discriminator model, multi-step critic model update (as

discussed in §3.2.2), and several variants of conditioning GAN on additional

information, which we shall discuss later.

Building on top of our initial observations and ablation test results (Table

3.1) we observe the following. After applying mode-specific normalization, the

transformed spectroscopic data now holds information on each wavenumber’s

underlying Gaussian distribution mode and has an optimal value range for effi-

cient deep network modeling. We also confirm that using binary cross-entropy

loss function for discriminator leads to a mode collapse, as the output of gener-

ator becomes uniform and lacks diversity in output samples. Hence, it results in
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higher model efficacy MSE and a narrow range of CN values after labeling the

samples. Therefore, the optimal GAN model for synthesizing both Raman and

ATR spectroscopy is found to consist of generator and critic models, known as

WGAN, with several other modifications discussed further. Using conditional

information, such as CN labels as part of the ablation test, also shows improve-

ment in the generated data diversity . Although packing multiple samples into

one observation using the PacGAN approach improves the model convergence

for the baseline discriminator architecture, it is not practical to use packing for

Conditional GAN configuration with W-loss function. While it is straightfor-

ward to pack samples for the standard discriminators based on whether they

are real or synthetic samples, labeled 1 or 0, using the similarity loss function

negates this option. To maintain mixture-specific information, such packing pro-

cedures must be selected, ensuring that the same mixtures are packed together.

However, due to the disparity in sample sizes across mixtures, determining the

ideal packing degree is a difficult task. Further, having an imbalanced num-

ber of mixtures in each pack can cause fluctuations in the learning rate of the

generator and critic, skewing learning towards particular mixtures and causing

overall training instability. Therefore, packing is not used to construct the opti-

mal model. Changes to the latent space initialization method, size, or network

relative processing capability are not required at this stage because they do not

induce any changes in results and are thus not recorded or evaluated further. We

also note that the oscillations of the training loss are stabilized when a 2-4 step

critic update is performed before calculating and propagating gradients back to

the network weights of the generator model. Based on the review of ablation

test results, we finally conclude that the optimal spectra GAN model has Con-

ditional WGAN architecture with two layers of Leaky ReLU activations, Batch

Normalization, and Dropout hidden layers. The optimal model utilizes mode-
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Figure 3.5: Optimal GAN training loss history.

specific normalization with Gumbel-Softmax and hyperbolic tangent (htan) as

the final output layer activations for discrete and continuous values, respec-

tively. Moreover, our optimal GAN model uses multi-step critic update and

gradient penalty instead of weight clipping for efficient gradient update.

To measure the effectiveness of the optimal GAN model for spectroscopic

data, we first evaluate the training process convergence by tracking generator

and critic losses. We observe that after 66 epochs, the generator and critic loss

functions converge as shown in Figure 3.5, indicating that we achieve a stable

trained model. Next, we apply statistical similarity and ML efficacy tests to esti-

mate the quality of the newly generated data. Recording distribution similarity

between Sreal and Ssynth generated data results in a KSscore = 0.748, which is a

significant improvement. Plotted over the entire spectrum, Figure 3.8, we ob-

serve that lower KS-score locations correspond to locations of the highest spec-

tral peaks, hence, the highest variance in data, as expected. The model efficacy

evaluation results in MSEsynth = 37.9 with a standard deviation of σ = 4.1,

indicating a significant improvement over the initial GAN configuration that re-

sulted in MSEsynth = 119. Also, adopting the Mixed data scenario (described in
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§2.3.2), training GAN on all 245 available Raman samples did not improve pre-

diction accuracy over baseline. The range of CN values generated for synthetic

data as part of the Weak labeling process ([19.5− 80.5]) revealed even more vari-

ability in the data produced and the overall quality of the generating process.

To evaluate the conformance of our sample generation core with the domain

knowledge, we enforce the generator to produce samples of a certain alkane

mixture. In particular, we condition our GAN on given CH2 and CH3 chemical

functional group concentrations encountered in such alkane. The concentration

values provided by Lynch Laboratory were only available for the ATR dataset.

Therefore we train GAN on ATR data instead of Raman for this evaluation. The

network architecture is updated to introduce an additional dimension that holds

spectroscopic data and two concentration values as three unique channels (di-

mensions) of information (Figure 3.7, 3.6). This allows GAN to concurrently

process and condition the generator to produce spectroscopy based on the pro-

vided concentration labels. Consequently, the critic also analyzes input samples

regarding their corresponding labels to calculate the difference in similarity be-

tween artificial and real samples.

Both the generator and critic models, learn the underlying data distribution

and are able to construct compact representations of real spectroscopy to ad-

just the generation of new samples according to input concentration values.

Ultimately, we train our GAN on 145 available ATR samples and enforce the

trained GAN generator to generate pure alkane samples by providing condi-

tional concentrations of CH2 and CH3 as a tuple of proportion float values (i.e.,

[0.35, 0.65]). Note that pure alkanes are defined as mixtures, the sum of which

CH2 and CH3 concentrations add up to 1. The synthetic pure alkane samples

(Figure 3.9) are then visually evaluated by overlaying real Sreal and generated

Ssynth, and inspecting the important spectroscopy “peaks” learned by GAN. The
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Figure 3.6: GAN Spectra generator optimized architecture.
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Figure 3.7: CGAN Spectra critic optimized architecture.
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Figure 3.8: The KS score for each wavenumber for CGAN output.

synthetic data are considered acceptable, as it captures important regions associ-

ated with the underlying properties of such a mixture with a low variance level

(the purple band shows the 95% Confidence Interval). It should, however, be

noted that due the presence of other mixtures in the data we may observe noisy

patterns. In addition, since the number of observations is limited particularly

for a certain “classes” of mixtures, disproportional learning of certain mixtures

over others is resulted. Furthermore, after performing model efficacy test on the

GAN conditioned on the concentration information, we observe improvement,

MSEsynth = 14.04, over ATR with MSEbase = 25.76. This leads to a reasonable as-

sumption that by expanding the diversity of the existing dataset with synthetic

samples produced by a robust generator, we are able to improve CN predic-

tion accuracy and improve the generalization capacity on unforeseen samples.

Since using GAN without CFG concentration labels did not result in improve-

ment over MSEbase for the Raman dataset, we also conclude that domain-driven

conditional information is a necessary tool to guide GAN towards meaningful

differentiation of samples. GAN can operate and diversify samples in an extra
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dimension of representation by providing additional details regarding empirical

properties of data.

Moving one step further, we restructure our generator as a multi-output

model that, besides generating new spectroscopic samples, outputs the esti-

mated remaining concentration of unknown chemical functional groups. This

serves as a sanity check of whether our GAN does indeed condition spectroscopy

on “known” functional group concentrations. Since we know that for all mix-

tures the remaining concentration levels should equal to 1−CH2− CH3, which

is 0 for all pure alkanes, we compare the predicted remaining concentrations

of generated samples to their theoretical remainder values (Table 3.2). We pro-

duce 10,000 random samples using the trained conditioned multi-output GAN,

record the predicted output and averaging the difference between predicted and

expected remaining concentration values across all generated samples. As a

result, we estimate a mean prediction error of 0.2572. In other words, from

a Domain-expert standpoint, the prediction accuracy of the sum of remaining

CFG concentrations for 10,000 generated samples is 74.28%. This result further

supports the claim that conditioning GAN on real fuel chemical properties al-

lows GAN to successfully map those properties to spectroscopy and generate

realistic artificial fuel samples.
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Fuel CH2 CH3 1-CH2-CH3 Predicted Remaining Error

Alk 1 0.848 0.152 0.000 0.251 0.251

Alk 2 1.000 0.000 0.000 0.154 0.154

Alk 3 0.700 0.300 0.000 0.038 0.038

Alk 4 0.867 0.133 0.000 0.172 0.172

Alk 5 0.823 0.177 0.000 0.071 0.071

Alk 6 0.808 0.192 0.000 0.106 0.106

Alk 7 0.789 0.211 0.000 0.140 0.140

Mix 1 0.293 0.315 0.392 0.313 0.079

Mix 2 0.678 0.226 0.096 0.019 0.077

Mix 3 0.767 0.168 0.065 0.150 0.085

Table 3.2: Remaining concentration prediction result for first 10 mixtures
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(a) Alk 1

(b) Alk 2

Figure 3.9: Pure alkane Mixtures ATR comparison between Real (red) and gener-
ated (black) data with 95% Confidence Interval (blue) across generating 10,000
samples of given spectra. CH2-CH3 concentration (a) Alk 1: [0.848, 0.152] (b)
Alk 2: [0,1]
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(c) Alk 3

(d) Alk 4

Figure 3.9: Pure alkane Mixtures ATR comparison between Real (red) and gen-
erated (black) data with 95% Confidence Interval (blue) across generating 10,000
samples of given spectra. CH2-CH3 concentration (c) Alk 3: [0.7, 0.3] (d) Alk 4:
[0.867, 0.133]
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(e) Alk 5

(f) Alk 6

Figure 3.9: Pure alkane Mixtures ATR comparison between Real (red) and gen-
erated (black) data with 95% Confidence Interval (blue) across generating 10,000
samples of given spectra. CH2-CH3 concentration (e) Alk 5: [0.823, 0.177] (f) Alk
6: [0.808, 0.192]
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(g) Alk 7

Figure 3.9: Pure alkane Mixtures ATR comparison between Real (red) and gen-
erated (black) data with 95% Confidence Interval (blue) across generating 10,000
samples of given spectra. CH2-CH3 concentration (g) Alk 7: [0.789, 0.211]
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Conclusion

This research has been initiated with the assumption that there is indeed a deep

connection between fuel mixture ignition properties and the corresponding fuel

spectroscopy pattern. We reasonably assumed that such a connection could be

compressed and learned using Machine Learning tools. To test this assump-

tion, we developed a comprehensive methodology to evaluate such mapping

tools grounded in explainability and domain-expert evaluation for complete re-

sult transparency. We tasked ourselves with solving a real-world chemometrics

and engineering problem and provided a detailed description of the theoretical

background and implementation considerations for all techniques used. In the

process of exploring this relation, we have also identified a gap in the literature

on scalability and interpretability approaches for ML-based analysis and syn-

thetic data generation of spectroscopy data. Given the high-dimensionality and

limited size nature of spectroscopy data, we explored the option of generating

additional synthetic samples to expand our training dataset size and diversity.

With the lack of quality research on the technical implementation of generative

modeling for spectroscopy data, we implemented and evaluated the best avail-

able techniques to build a robust, transparent synthetic spectroscopy simulation

core.
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Using various feature selection techniques, we were able to confirm that the

reduced subset of features in general results in a less complex, computationally

more efficient, and yet accurate prediction model. Based on our interpretabil-

ity evaluation, we were also able to confirm the conformance of the attribute

selection and prediction results in terms of known chemistry, ensuring that the

domain expert can trust such algorithmic results. We were able to explain the

behavior of complex ML models using various model-agnostic methods, which

has not been done before in chemometrics to this extent, and report on the per-

formance of model-based methods. As discovered, using model-agnostic expla-

nation techniques, features derived from complex ML models were generally

of higher quality than from model-based methods, with the exception of a sub-

set of Random Forest features that performed best overall on the Performance-

Explainability trade-off scale. While the PCA and PLS decomposition methods

are still considered primary and most widely-used techniques for spectroscopy

data analysis, our investigation concluded that these methods were inferior to

all other feature extraction techniques covered in this work to establish an accu-

rate relationship between fuel spectroscopy and associated CN. This claim does

not necessarily extend to all possible processes considered in chemometrics, as

PCA and PLS have been shown to function effectively for other applications.

In the second part of this research, we developed a robust synthetic sample

generation model to address the issue of the limited size of fuel spectroscopy

data. By analyzing and testing the most advanced generative techniques, we

were able to construct a powerful GAN model capable of synthesizing high-

quality, artificial Raman and ATR fuel spectroscopy data. Such a model was

shown to not only improve data representation but also boost the performance

of our optimal CN prediction model, resulting in almost twice better prediction

accuracy. Through a series of comprehensive statistical similarity, ML efficacy,
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and domain-expert conformance evaluations, we were also able to show that

such data are generated in a meaningful, explainable way and hold the same

physical properties as real data.

All in all, from isolating particular regions in spectroscopy using statistical

explanation behind the selection process to mapping underlying spectroscopy

distribution with GAN, we were able to develop an explainable framework of

spectroscopy to fuel property mapping. Our results demonstrate that such a

connection exists and can be efficiently compressed and represented to predict

empirical sample properties. As every step of this evaluation remains explain-

able, such methods are likely to be trusted and used by domain practitioners,

which we encourage.

Based on the provided discussion, a further investigation into the efficacy of

employing the conditional GAN model to generate Raman spectroscopy is nec-

essary. While we show that conditioning GAN on CFG concentrations improves

prediction accuracy for ATR data, the same claim cannot be fully concluded for

Raman data since no CFG concentrations were not available for mixtures in the

Raman dataset. Future work must also include a comprehensive analysis of

synthesizing reduced data based on the regions selected with feature selection

methods, described in Chapter §2, as well as the generated reduced data for

CN prediction. An analysis of signal filtering and spectroscopy pre-processing

methods must also accompany such investigation to ensure a complete end-to-

end solution from spectroscopy collection to CN prediction is developed.

In practice, such framework can be deployed as a complete AI solution for

mapping material properties to material spectroscopy and generating novel ma-

terials (products) with desired properties that have not been designed or ex-

plored yet. The proposed solution and the accompanying analysis, plus method-

ology, are not limited to merely fuel spectroscopy domain either. The provided
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insight and findings of this study can be generalized to other domains as well.

Using automated explainability metrics and effective data generation process a

pharmaceutical, food or energy industry expert can easily decide on the quality

of newly generated design or property prediction. The decision to refuse or ac-

cept new outcome becomes less arbitrary. Instead, it is based on data analysis.

Since such framework can be employed for any type of spectroscopy and un-

derlying material in question, it can be scaled across entire organisation or span

across multiple industries, saving time and money to evaluate and develop new

and existing products.
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