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Summary

To assess and optimize the performance of combustion systems, it is
necessary to characterize fuel ignition quality. Acquiring ignition properties
of fuels is a tedious process that involves sample preparation and ignition
quality testing. With advances in alternate approaches to defining fuels,
particularly through a digital spectroscopic signature, a new possibility to
simplify and automate the process of getting such knowledge has emerged.
In this work, we harness automated statistical learning to map between the
underlying chemical properties of fuel and the spectroscopic data it is im-
printed on. Ensuring that such mapping is accurate and interpretable, it
establishes a pathway for efficiently and totally automating the extraction
of various attributes from any fuel. However, the high-dimensional nature
of spectroscopic data, its scarcity, and the noise associated with the data
collection process are key roadblocks to accomplish such task.

In this research, we address these issues by integrating machine learning
predictive modeling, interpretable feature selection techniques, and syn-
thetic data generation, respectively. In the first part, we investigate the most
commonly used feature selection techniques and adopt the most recent and
advanced explainable Al techniques to interpret the prediction outcomes
of high-dimensional and limited spectral data. Interpretation of the predic-
tion outcome is beneficial for the domain experts as it ensures the trans-
parency and faithfulness of the ML models to the domain knowledge. Due
to the instrument resolution limitations, pinpointing important regions of
the spectroscopic data creates a pathway to optimize the data collection pro-
cess through the spectrometer device miniaturization. Reducing the device
size and power, and hence, cost is essential for a real-world deployment of

such a end-to-end system.
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Furthermore, we consider a wide range of machine learning models that
have been proven to be successful for the prediction of the Cetane Num-
ber of fuels. We specifically design three different scenarios to ensure that
the evaluation of ML models is robust for the real-time practice of the de-
veloped methodologies and to uncover the hidden effect of various noise
sources (statistical and from data collection) on the final outcome. The eval-
uation is performed for both the full model and reduced models using dif-
ferent feature selection techniques on a real dataset. In the second part, we
devise a deep generative technique to produce high fidelity and high di-
versity synthetic spectroscopy samples learned from the original dataset to
expand our limited data pool and improve the representation. Our devel-
oped GAN model is then evaluated using statistical similarity, prediction
model efficacy, and domain-expert conformance metrics. The results indi-
cates tangible improvement in prediction model generalization ability for
unforeseen data. To further enhance the transparency of the entire process,
we employ GAN to produce samples of a specific group of pure alkane
mixtures and compare them to the expected output. We demonstrate that
our data synthesis approach can learn and reproduce spectroscopic samples

that have the physical attributes of real fuels despite being artificial.
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Introduction

Deriving fuel properties from spectroscopic signatures is not a new idea. Spec-
troscopy is a commonly used technique for determining the composition of ma-
terials as well as its physical and chemical properties. However, since fuels are
typically composed of a mixture of multiple pure chemical components, each
having unique properties, their presence and exact positioning in spectral re-
gions of a fuel mixture are unknown. With years of research in this field, only a
few of these components have been successfully connected to their placements
in spectral regions. While chemical researchers continue to explore this prob-
lem from the domain standpoint, an alternative approach for determining fuel
properties is being investigated as a resolution. This new direction combines
the power of Machine Learning (ML) and chemometrics to build a robust data-
driven approach for mapping spectral features and fuel properties to identify
chemical components in mixtures. The spectroscopic data are typically limited
to the number of physical mixtures produced, prepared, and processed by a re-
searcher using a particular spectroscopy collection method. Therefore, collecting
large numbers of observations is a time-consuming and expensive task, an issue
that we address in this research proposing a synthetic data generation approach.

At present, Machine Learning (ML) is widely used in a variety of fields. It
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refers to a group of computational and statistical techniques that maps a set of
input characteristics to a response, with a priori unknown relationships, such
that the estimated mapping (model) can be utilized for response prediction of
unseen future observations.

There are a group of ML models with explicit functional form, either linear
(e.g., Linear Regression (2)) or non-linear (e.g., K-Nearest Neighbor (3)). Several
problems can be addressed by modeling linear relationships between a response
value and a set of predictor variables that a human observing the process easily
understands. In contrast, other problems require a more sophisticated map-
ping, leading to various non-linear ML modeling techniques. Within this group,
a subset of more advanced ML modeling techniques has recently become more
prevalent. Such techniques have no explicit functional form associated with the
modeling, and instead, the mapping follows an architecture connecting input
characteristics to output through a large set of nodes with a chain of transforma-
tions. Although such network-based models yield black-box complex functional
form, they successfully capture the non-linearity and specific properties of the
underlying unknown function. In reality, the nature of the underlying mapping
is not known in advance.

Presently, machine learning has been successfully implemented to solve a
range of problems from finance, engineering, and medicine to applied sciences.
In some applications, these models achieve better performance than humans,
such as object recognition, detection, and tracking (4; 5), beating world Chess
and Go champions (6; 7), solving protein folding problems (8), etc. Unlike a hu-
man, however, a trained black-box model cannot provide reasons for a specific
decision or choice, even though the results are often accurate, lacking a very im-
portant component of human behavior — explainability. Therefore, to claim that

ML is truly capable of correlating the underlying relationship between spec-
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troscopic data and material physical and chemical properties, it must be fully
transparent for domain experts.

That being said, we employ the most advanced algorithms to explore the
peaks and valleys of spectral data and accurately predict the ignition properties
of fuel in real-time and at scale. Having access to a limited number of training
samples and a large number of attributes results in a complex problem setting.
Hence, we develop a framework that adopts a reduced subset of attributes for
prediction instead of the entire set of attributes. This approach is two-folded, as
it makes the prediction efficient and scalable in real-time and reduces the com-
plexity to avoid overfitting issues on the unobserved noisy data. Furthermore,
the reduced dimensionality of such a tool enables a more interpretable and ac-
cessible model for domain specialists to evaluate.

While the data collection is typically peripheral to constructing predictive
models, it is essential to scale such models to solve real-world engineering prob-
lems. Thereby, we consider an end-to-end process from collecting the spectro-
scopic data to obtaining the results. The data collection often requires a robust,
sizable sensor. Such sensors, however, can be miniaturized to capture only a
selected region of spectroscopic signature if, and only if, there is enough infor-
mation in those regions to differentiate between various types of fuels and their
properties. Although the response of substrate fuel molecules is continuous over
a specified light frequency range, the response is recorded in discrete steps due
to instrument resolution limitations. Thereby, the underlying fuel chemical com-
position is represented by discrete feature locations on the wavelength axis. That
being said, pinpointing these regions creates a pathway to optimize the data col-
lection process, which is a requirement for the real-time deployment of such a
sensor-to-prediction system as a whole.

There are several spectroscopy techniques used in real-time applications to
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collect fuel spectroscopic data. The two datasets used in this work consist of
fuel spectra collected using Raman and diamond Attenuated Total Reflectance
(ATR) spectroscopy. These spectroscopic methods work on the light scattering
principle, where the incident laser light is scattered by the sample’s molecules to
produce a unique spectrum. The spectroscopic data can be visualized as a series
of data where each feature is recorded as the scattering intensity value occurring
at a particular wavelength axis position. These techniques are frequently used in
chemistry to provide a structural fingerprint by which substrate molecules can
be identified. Explicitly, the fundamental Chemical Functional Groups (CFG)
present in the sample are the main reason for producing unique chemical fin-
gerprints of the sample under observation. As a unique structural fingerprint is
acquired for each sample, fuel ignition quality such as Derived Cetane Number
(DCN) can be measured for each sample and associated with its spectral data,
thus providing a framework for predicting the DCN of unknown and unseen
fuel samples.

DCN (i.e., CN) is one of the main indicators of fuel ignition quality. Similar to
spectroscopic and CFG correlations, CN is highly correlated to the quantity and
type of functional groups present in the fuel (9; 10; 11). Thus, feature selection is
performed to extract wavenumbers important for CN prediction and, therefore
likely correspond to CFG locations. This can be validated using the knowledge
gained from the physical chemistry analysis, completing the human-in-the-loop
approach.

Spectroscopy can suffer from several measurement accuracy issues: poor sig-
nal intensity, broad fluorescence baseline interference, and dark current noise.
Although various pre-treatment and calibration techniques are often used before
the analysis to ensure precise and consistent data readings, both spectroscopic

data and measured CN values have an observable level of statistical noise. Bear-
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ing that in mind, we particularly focus on models capable of extrapolating pre-
dictions for any and all unseen fuel samples.

Ultimately, we show that our end-to-end spectroscopy mapping and predic-
tion framework is capable of identifying important features (wavenumbers) that
are likely correlated with locations of chemical functional groups in the spec-
trum. Further, we show that using a reduced subset of important features to
train the prediction model helps improve CN prediction accuracy, which is a
measure of one of the underlying fuel properties. Therefore, the techniques used
to map these relations remain transparent to users, and models are scalable for
real-time deployment.

The biggest constraint, however, is the limited dataset size. Lack of diverse
training dataset results in overfitting on the seen data and poor generalization
ability to predict CN for unforeseen fuel samples. Moreover, spectroscopic data
has an inherent noise associated with instrument resolution and collection pro-
cess in a real setting where exogenous factors, such as room temperature, hu-
midity, etc., affect laser power and result in noisy data. Therefore, to ensure that
a robust prediction model is used for rapid data analysis in a real-time setting,
it must be trained on a large and diverse dataset that considers various types of
mixtures and above discussed noise levels. To that end, a simple perturbation
of existing data will not be sufficient to produce new and well representative set
of samples to train on.

As aresolution, we develop a generative technique to produce realistic, high-
quality fuel spectra variations similar to ones that can be encountered in real-
time. The main goal is to create a strong simulation core capable of generat-
ing quality synthetic spectroscopic data that complements the existing training
dataset and improves overall data representation. As a secondary goal, by ex-

panding our dataset in a meaningful way, we aim to enhance the prediction
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performance.

To this end, we design a complex Generative Adversarial Network (GAN)
model capable of learning the underlying distribution of given spectroscopic
data. GAN is a popular, deep generative technique for improving data rep-
resentation through the synthesis of new artificial samples that hold the same
properties as original data. The use of GAN for boosting prediction performance
spans many domains. The examples where generation of new data points helps
to improve video frames prediction (12), risk prediction (13) or medical ailment
classification (14) are just a few to name. A robust trained GAN model is then
used to produce a variety of synthetic samples that are distinct from the orig-
inal ones but follow the same distribution. Using additional domain informa-
tion on real mixtures” known functional group concentrations, we further refine
our model to target the production of synthetic spectra with predefined, desired
properties. The evaluation of the quality of generated samples relies on esti-
mating their similarity to the original training data that GAN was trained on,
as well as expert evaluation to ensure synthetic spectra adherence to the chem-
istry domain. The former is achieved using statistical similarity tests, such as
Kolmogorov-Smirnov (KS) statistic, which measures the similarity between real
and synthetic cumulative distributions across all wavenumbers, and principal
component decomposition analysis. The latter is achieved by producing tar-
geted samples using conditional information to evaluate how well GAN learned
a particular mixture mapping. Next, we employ a weak supervision approach
to generate imperfect but plausible labels for our unlabeled synthetic dataset.
This artificially generated and labeled dataset is then used for training a new
CN prediction model in a supervised setting. The quality of the generated data
is evaluated once more using the ML efficacy test, which determines whether

substituting synthetic data with real data provides a comparable prediction er-
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ror, indicating that the generated data are realistic and thus trustworthy.

In this research, we show that synthetic spectra generated with stable, trained
GAN can address the limited spectroscopic data issue and boost dataset diver-
sity. The quality of the synthetic data is assessed and found to be consistent
with observable data. We present an improvement in prediction accuracy over
baseline upon retraining prediction models on the new synthetically-expanded
dataset, further contributing to our goal of building a powerful, robust and ex-
plainable end-to-end spectroscopy mapping and prediction framework. With
the entire process grounded in domain-expert approval, we achieve clear em-
pirical proof that the map between fuel properties and sample spectrum rep-
resentation can be generated using ML technologies. From feature selection to
synthetic data generation, we show that connections that exist between materi-
als and their digital fingerprints can be learned and exploited. Given the limited
size of fuel spectroscopy data, comprehensive learning and ignition property
prediction model can be developed.

In Chapter §2 we begin with analyzing the current literature on machine
learning, the role of spectroscopic data analysis in chemometrics, and the signif-
icance of machine learning in spectra data analysis. We further discuss feature
selection and explainable Al techniques research and how these methods help
to interpret complex models. Next, we review popular predictive modeling,
feature selection and interpretation techniques. In Section § 2.2.1 we provide
background on popular and successful machine learning models, particularly
in the chemometrics domain, including Support Vector Machines and Neural
Networks. In Section § 2.1.1 we review feature selection methods which help
us identify important spectroscopy features and provide details on interpreta-
tion techniques used to explain the behavior of prediction models. In Section

§ 2.3 we focus our attention on the practical implementation of these methods
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and include details about the deployment challenges in the real-time setting. In
Section § 2.3.5 we provide experimental results and discuss our findings.

In Chapter §3 we shift our attention to addressing the issue of the limited size
of spectroscopy data. We begin by discussing popular data augmentation and
data synthesis approaches in §3.1 and cover existing literature on using gener-
ative modeling, particularly GAN, for spectroscopy data synthesis in §3.1.1.
In §3.2 we review common GAN variants, their advantages and disadvan-
tages, and underlying technical principles. We then provide details on evalu-
ation methods used throughout the rest of the Chapter to establish the quality
of the generated samples. Moving to §3.3, we discuss step by step implementa-
tion of GAN to generate realistic artificial spectroscopy that holds information
about the physical properties of real fuels. After obtaining the desired quality
of generated data, we perform a final domain-expert evaluation, generating an
expanded spectroscopy dataset, and investigate the significance of using a new
dataset for boosting prediction model accuracy. We then summarize the results

of our research in §4.



Feature Selection

The majority of this chapter’s content are adopted from our recently published

paper, (1).

2.1 | Background

To interpret the ML decision process, there exists three groups of decomposition-
based, model-based and model-agnostic techniques, whose advantages and disad-
vantages are summarized in Table 2.1. The widely used decomposition tech-
niques such as Principal Components Analysis (PCA) (15), and Partial Least
Squares (PLS) (16) with its variants, such as Interval PLS (17), Forward and Back-
ward Interval PLS (18), Moving Window PLS (19) and few others, are prepro-
cessing methods that can be used to reduce the input space dimensionality be-
fore the training stage. The model-based interpretability is focused on constrain-
ing the structure of ML models so that they readily provide useful information
about the uncovered relationships. "As a result of these constraints, the space of
potential models is smaller, which may sacrifice training predictive accuracy"
(20) to achieve a better generalization performance. Linear Regression (LR)

(2), Logistic Regression (21) and Decision Trees (22) are innately interpretable.
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Therefore, analyzing the interactions between features or between features and
response within such models enables explaining the model outcome. On the
other hand, the model-agnostic methods can be used on any ML model and are
usually applied post hoc (post-model) following the model training stage.
Local and global interpretation methods are two types of model-agnostic in-
terpretation methods (23). Global methods explain the on-average effect of fea-
tures on the final prediction outcome. Local techniques, however, seek to explain
particular predictions. The latter group of techniques is more useful when we do
not have access to a lot of data and want to explain the behavior of the model for
every single instance of the data. Most of the local model-agnostic interpretable
techniques require a “surrogate or a simple proxy model that can be applied to
learn a locally faithful approximation of a complex, black-box model based on
outputs returned by the black-box model” (24). This approach is also known as
knowledge distillation (25). Alternative to local interpretation that helps explain
individual prediction, are global methods that describe entire model behavior
across all predictions. Global methods offer “transparency about what is going
on inside a model on an abstract level” (26). The advantage of Model-agnostic
techniques is their flexibility to explain any model, providing consistency in ex-
planation across various prediction methods. Therefore, we can select certain at-
tributes that affect the target outcome using these interpretable methods, which
will be summarized later. As mentioned above, some models are interpretable
by nature, and some are complex black-box. The biggest advantage of model-
agnostic techniques is their ability to explain such complex models. Moreover,

this advantage can be extended from complex models to simpler ones as well.
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Interpretability | Models | Advantage Disadvantage
PCA | Computationally efficient. Re- | Loss of direct mapping from fea-
moves correlated features. tures to output. Information loss
due to improper number of compo-
Decomposition- nents.
based PLS | Estimates correlation between fea- | More prone to overfitting on lim-
tures and target variable. Calcula- | ited datasets. Assumes linear re-
tions are fast lationship between features and re-
sponse
RF Ability to provide ranked fea- | Validity dependant on sample size
ture importance. Handles miss- | (sample bias). Computationally
ing values. Works well on high- | complex.
Model-based dimensional'data. Less bi'ased to-
wards more important attributes.

Ridge | Ability to address multicollinearity | Assumes linear relationship be-
issue. Shrinks unimportant vari- | tween predictors and target vari-
ables. able. Requires penalty parameter

tuning. Low sparsification ability.

SHAP | Global interpretations are consis- | Computationally inefficient. Ig-
tent with the local explanations. | nores feature dependence. Unre-
Solid theoretical foundation. Abil- | producible interpretations. Live ex-
ity to provide local interpretations. | planations require access to data.

GS Intuitive and  straightforward. | Draws conclusions about model
Ability to use any model as surro- | and not data. Surrogate model
Model- gate. Ability to measure surrogate | interpretations can be not equally
. models’ performance to approxi- | good for all subsets of data.
agnostic . L
mate black box predictions.
LIME | Works for any data type. Explana- | Instability of explanations, as re-

tions are selective and contrastive.
Provides fidelity measure to esti-
mate explanation reliability.

peated explanations differ. Iden-
tifying correct sampling neighbor-
hood is imperative. = Unrepro-
ducible interpretations.

Table 2.1: Summary of feature selection methods, their advantages and disadvantages.




Chapter 2. Feature Selection 2.1. Background

While the body of research on spectroscopic analysis is extensive, to the best
of our knowledge, there is no single comprehensive work focused on devel-
oping both explainable and scalable predictive models for spectroscopic data.
Most publications in the field either solely focus on obtaining prediction, for
example, applying popular ML methods for octane prediction using infrared
spectroscopy (27), or the use of common feature elimination techniques (28) to
improve the prediction accuracy. The implementation of explainable black-box
models is limited to interpreting functional near-infrared spectra data in devel-
opmental cognitive neuroscience using simple multi-variate analysis (29) and
using Local Interpretable Model-Agnostic Explanations (LIME) (30) on optical
emission spectroscopy of plasma (31).

Therefore, we investigate the performance of a wide range of successful pre-
dictive models and implement model-based and model-agnostic interpretable
techniques to achieve at-scale models for real-time practice. We consider three
predictive models, from basic Linear Regression to non-linear Support Vector
Machine (SVM) (32) and network-based Neural Network (NN) (33) regressions.
Furthermore, we consider PCA, PLS, Ridge Regression (34) and Random Forest
(35) for model-based feature selection methods, as well as popular local model-
agnostic interpretable techniques, such as LIME and Shapley Additive Expla-
nation (SHAP) (36), and Global Surrogate (GS) (37) as global model-agnostic
method.

Performing a set of comprehensive experiments, we discuss the set of tools
for spectroscopy data analysis beyond what has been covered in literature so far
and provide informative insights on their challenges in a high-dimensional and
limited spectra data setting. To provide a precise evaluation of feature selec-
tion techniques, we propose two metrics: Correctness, which measures selected

features” adherence to known chemistry using domain expertise, and Perfor-

12
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mance, which measures testing error on a predicted CN value. Additionally,
we construct a trade-off scale between Correctness and Performance to evalu-
ate the overall accuracy of the above-mentioned techniques in identifying such
attributes.

In Section § 2.1.1, we analyze the current literature on machine learning, the
role of spectroscopic data analysis in chemometrics, and the significance of ma-
chine learning in spectra data analysis. We further discuss feature selection and
explainable AI techniques research and how these methods help to interpret
complex models. Next, we review two major components of our work: pre-
dictive modeling and feature selection and interpretation techniques. In Sec-
tion § 2.2.1 we provide background on popular and successful machine learning
models, particularly in the chemometrics domain, including SVM and NN. In
Section § 2.1.1 we review feature selection methods which help us identify im-
portant spectroscopy features and provide details on interpretation techniques
used to explain the behavior of prediction models. In Section § 2.3 we focus
our attention on the practical implementation of these methods and include de-
tails about the deployment challenges in the real-time setting. Finally, in Section

§ 2.3.5 we provide experimental results and discuss our findings.

2.1.1 | Related Works

Spectroscopic techniques have been widely used for different purposes in var-
ious domains such as petrochemical (38; 39), medical, pharmaceutical, and bi-
ological (40; 41; 42), food and agricultural (43; 44; 45; 46), engineering (47) and
material and geologic (48; 49) analysis to monitor reactions and conditions of a
final product.

There is an extensive literature in the petrochemical industry and the chemo-
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Chapter 2. Feature Selection 2.1. Background

metrics discipline that outlines various methods to predict fuel Cetane or Oc-
tane Number. The relationship is often established using information from fuel
Quantitative Structure Property Relationships analysis (50), Fatty Acid Methyl
Esters composition analysis (51) or, most commonly, spectroscopy analysis. There
are too many forms of spectroscopy to mention, but some popular ones are:
Gas Chromatogramy-Mass Spectroscopy (27; 52), Nuclear Magnetic Resonance
Spectroscopy (9), Fourier-transform Infrared (FTIR) Spectroscopy (53; 54; 55; 56)
and Raman Spectroscopy (56; 57; 58). Using infrared (IR) technique is arguably
one of the most popular spectroscopy techniques, with some researchers focus-
ing on probing Near Infrared (NIR) (28; 46; 57; 59; 60) or Mid-Infrared (MIR)
regions. However, Raman Spectroscopy provides a big advantage over IR Spec-
troscopy since it allows collecting spectra in similar IR regions without major
preparation or damage to the sample. Due to its shorter runtime, we choose
Raman spectroscopy to further aid the goal of real-world deployment of our
evaluation framework.

Summarizing the existing body of work on spectroscopy analysis (Table 2.2),
it is worth mentioning that the majority of studies on fuel spectroscopy do not
collect their own data or have a limited dataset size. The number of avail-
able fuel samples is likely a major limiting factor in producing a large, diverse
dataset. While spectroscopy is arguably the fastest, cheapest, and least destruc-
tive way of gaining insight into materials, the overall data collection process for
spectroscopy analysis, from fuel mixture creation, equipment setup, calibration
to the final reading, is still a time-consuming task. While the majority of the liter-
ature covers fuel ignition qualities prediction, the choice of the predictive model
is often limited to either linear or non-linear methods, and rarely are both com-
pared. Additionally, fewer topics are dedicated to extracting or explaining (see

Interpretability column in Table 2.2) spectroscopic features. To this end, most
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researchers apply model-based feature selection techniques to identify and re-
move noisy features in order to improve prediction accuracy, and computational
efficiency (27; 28; 56; 57; 59; 60; 61; 62; 63; 64; 65; 66; 67; 68) and avoid discussion
on model scalability and interpretation on a noisy test set. Furthermore, the ex-
isting literature mainly focused on model-based and decomposition-based tech-
niques that consider global importance, which is less effective for limited data
settings. In another body of work, popular feature selection methods such as
PCA (69), and PLS (70) were employed to discover the correlation between de-
composed fuel spectra and fuel sample clustering results (53), help isolate cer-
tain chemical groups responsible for the deviation in predicted values (27; 46),
and correlate certain spectra regions of pharmaceutical tablets to the concentra-

tion of antiviral drug (60).

15



Work

‘ Collected Data ‘ Linear Models ‘ Non-linear Models ‘ Model-based FS ‘ Model-agnostic FS ‘ Scalability ‘ Interpretability ‘

(50)
(61)
(54)
(57)
(39)
(71)
(60)
(58)
(72)
(73)
(53)
(62)
(52)
(46)
(27)
(63)
(55)
(74)
(38)
(51)
(56)
(28)
(59)
(75)
(29)
(76)
(31)
(64)
(77)
9)
This Work

I T T T S S A S

+ 4+ o+

+ -
- + - -
- + - -
+ - + -
+ - - -
+ - + -
+ - + -
+ + - -
+ + - -
+ - + -
- + + -
+ + + -
+ + - -
+ - + -
+ + + -
+ - + -
+ - - -
+ + - -
- + - -
+ + - -
+ - + -
+ + + -
+ + + -
+ + - -
+ - + -
- + - -
- + - +
+ + + -
+ + - -
+ - - -
+ + + +

+ o+ 4+ o+

o+ o+

A

Table 2.2: Summary of related work in comparison to this work




Chapter 2. Feature Selection 2.1. Background

As previously discussed, few works focus on explaining learning and pre-
dictive modeling using spectra data. In (29) authors applied linear multi-variate
analysis to interpret development cognitive neuroscience spectroscopy data. Di-
rect visualization of gradient-weighted class activation mapping of Convolu-
tional Neural Network was developed in (76) to interpret detection of volatile
organic compounds.

Recently, model-agnostic methods have attracted a lot of attention for fea-
ture evaluation, such as Shapley Additive Explanation (SHAP) (36) and LIME
(30). Explainable Al techniques in general have been widely used to explain
predictions in financial and chemical time-series data (78; 79; 80; 81) vibrational-
based Structural Health Monitoring signals (47), hyperspectral imaging (82) and
electrocardiogram data (83). However, to the best of our knowledge, only one
recent work focused on using the model-agnostic method (LIME) to explain the
non-linear predictions of spectroscopy data to characterize plasma solution con-
ductivity (31).

After investigating the existing research, we develop an efficient, scalable
framework that ensures prediction accuracy and transparency together. This
chapter simultaneously investigates the performance of the most successful ML
models in the literature, including SVM and NN, and covers a comprehen-
sive examination of both model-based and model-agnostic explainable Al tech-
niques for spectroscopy data analysis. The goal is to derive the most accurate,
scalable prediction model specifically with limited data and in noisy settings.
More importantly, we aim to ensure the interpretability and transparency of the
prediction outcome to the human expert, supporting the fact that predictions are
grounded in domain science and, therefore, can be fully trusted to make further
decisions. We also focus on modeling raw, unscaled, noisy data to ensure it can

be deployed fast in the real world without any major preprocessing. Finally, we
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promote feature selection techniques that are able to determine local explana-
tions rather than global to provide deeper insights on the impact of attributes on

the response when the data are limited.

2.2 | Methodologies

2.2.1 | Predictive Modeling

Machine Learning is referred to a statistical tools encoded in a machine to make
predictions about future observations based on historical data. There are many
ways to categorize ML methods; supervised and unsupervised, linear and non-
linear, etc. In this paper, we group them into two categories: interpretable and
non-interpretable (black-box), with Linear Regression (2) being an example of
the former one, and Support Vector Machines (32), and Neural Networks (33)
being an example of the latter. As discussed in § 2.1.1, the two popular meth-
ods in chemometrics are PLS Regression (16), and PCA Regression (15), as they
can first provide insight into important features in high-dimensional data by de-
composing it into latent structures using PCA and PLS, and build interpretable
linear regression models on top for prediction.

There is a long tradition of employing linear models in chemometrics. As
more recent examples, Jameel et al. used multiple LR and nuclear magnetic
resonance spectroscopy to predict fuel ignition quality (9). Barra et al. used
PLS regression with FTIR spectroscopy to predict cetane number in diesel fuels
(55). Balabin et al. also compared the performance of PLS and PCA regression
models with NN while analyzing biodiesel properties using near-infrared (NIR)
spectroscopy (64). However, the main drawback of any linear model is its in-

ability to capture complex non-linear relationships within the data, especially
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when the access to the training data are limited. Therefore, the use of Support
Vector Regression (SVR) and deep learning models has been particularly promi-
nent in chemometrics. Using SVR, Kiefer et al. achieved superior results on
Raman spectroscopy of algal production of complex polysaccharides over LR
(71), while Alves et al. noted that SVR outperformed PLSR for NIR spectra anal-
ysis (72). Balabin et al. has also explored the deployment of NN and SVR for
analytical chemistry and concluded that not only SVR outperforms PCA and
PLS regression methods (64), but that SVR also performs similarly to NN, with
SVR having the advantage in producing a more generalized model capable of
efficiently dealing with non-linear relationships (75). Similarly, NN is also capa-
ble of capturing unique spatial features and have been shown to perform well
on spectroscopy data analysis (27; 38; 52; 53), given a wealthy amount of data.
In our work, we investigate the performance of LR, SVR, and NN models to

process high-dimensional spectra data for prediction and explainability effort.

2.2.1.1 | Support Vector Regression

Support Vector Machine is a supervised learning model grounded in Vapnik—
Chervonenkis computation learning theory (84), which explains the learning
process from a statistical point of view, ensuring high generalization ability on
unseen data. SVM solves both classification and regression problems by identi-
tying an optimal separating hyperplane with maximum margin to the training
observations, formulated as a convex optimization problem. In a regression set-
ting, the optimal hyperplane is the decision surface that best approximates the
continuous-valued function (85). The goal is to first arrive at a minimized con-
vex loss function that produces an error in predicted values at most equal to the
specified margin, called the maximum error ¢ (epsilon). At the same time, the de-

cision surface must stay as flat as possible while containing most of the training
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samples (86). An important property of SVR is its ability to map input vectors
to a high-dimensional feature space where a non-linear decision surface can be
constructed that fits the data within a threshold of values within a specified mar-
gin. Since the data can often not be separable in initial finite-dimensional space,
mapping it into a much higher-dimensional space, aka kernel space, makes the
separation easier.

The optimization, which has a unique solution, is further solved, and since
not all points are going to fall within the margins, slack variables ¢, and {;,
which denote deviation from the margin, are introduced to deal with otherwise
infeasible constraints. The constant C is then introduced to impose a penalty
on observations that lie outside the margin to prevent overfitting and determine
the trade-off between the flatness and amount of deviation that can be tolerated.
Ultimately, the decision surface is confined using support vectors, which are
the most influential instances that lie outside the tube boundaries and affect its
shape. In order to minimize the computational complexity of the described opti-
mization problem, it is solved using Lagrange dual formulation. Mathematically
speaking, given the set of observations X where each X; € RM fori=1,...,N
and where N is the number of samples and M is the number of features (di-
mensions), with y; being the predicted value, we can express the optimization

problem as:
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1 al \
min S{[w|[* +C}_ &+ (21)
i=1
s.t.
yi—wlo(X)<e+é& i=1,...,N 2.2)
wlo(X))—yi<e+& i=1,...,N (2.3)
&0, & <0, i=1,...,N (2.4)

Where w is the weight vector of the separating hyperplane and ¢(-) is a
transformation function, i.e. kernel, that maps vector X to a high-dimensional
space, that computes inner products of the input vectors. Using kernel, or ker-
nel trick, pairwise similarity comparisons between training data observations
are used instead transforming data to avoid extremely high number of combi-
nations. Two popular kernel functions include: Linear dot product ¢(X;, X;) =
(X; Xj) and Polynomial ¢(X;, X;) = (v(X;, X;) + Coef0)4, for d > 0 where 7
is a scale factor that defines how a support vector shapes the decision surface,
and Coef0 is an independent term used to overcome dot product computation
issues for high-dimensional data. The parameters are further covered in Section

§2.3.3.

2.2.1.2 | Neural Networks

NN is a computing system that is commonly used for supervised learning. It
is represented by a network of artificial neurons or nodes connected by links,
where each link has an associated randomly initialized weight and activation
level. Each node has an input function (typically summing over-weighted in-
puts), an activation function, and an output. The weights are updated through

a forward and backward propagation until they converge to optimal estimates.
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Through the forward approach, the input function of each unit is passed
through the activation function, typically a non-linear function, and transformed
to a new value that would be passed to the nodes in the subsequent layer. This
process is known as forward propagation, during which a network learns and cre-
ates its own features. Mathematically, the operations in input layer are shown

in Equation 2.5, where a!

is input layer activation, expressed as function g of
weights w and training data X. Working forward through the network, the in-
put function of each unit is applied to the weighted sum of the activation on
the links feeding into that node. Forward propagation ends at the final (output)
layer L, which produces a value based on function /1, (X) of all previous layer
transformations (Equation 2.6). Lastly, the total prediction error is calculated
using problem-specific loss (or cost) function, e.g. mean squared error (Equa-

tion 2.22), cross-entropy (Equation 2.7), so that the gradients which are used to

update the weights in next step can be derived.

al — g(w1X) (25)
hy(X) = ab = g(whal™1) (2.6)
J(w) = (1—y)(log(1—7) + ylog(7) (2.7)

Each node j in layer [ is “responsible” for fraction of the error (511- in output
nodes it is connected to. Hence, through the backward approach, the error as-
sociated with each unit from the preceding layers are back-calculated following
Equations 2.8- 2.9 and the contributing weights are adjusted, accordingly. This

process is known as backpropagation, during which partial derivatives of error

22



Chapter 2. Feature Selection 2.2. Methodologies

measurement are calculated to track gradient descent, Al, Equation 2.10 that

minimizes cost function until convergence is reached.

ot =al—y (2.8)
ol = (whTs (@ « (1 —al)) (2.9)
Al = Al + 110" (2.10)

The choice of network hyperparameters determines the network architecture
and how the network is trained and, therefore, is crucially important to obtain a
high-performing model. The most common methods of hyperparameter selec-
tion are Grid Search, Random Search, and Bayesian Optimization. In this paper,
we will adopt Bayesian Optimization to identify the optimal NN architecture.
There has been several activation functions proposed in the literature including

the most common ones such as Sigmoid and Relu.

2.2.2 | Decomposition-based Feature Selection Techniques

2.2.2.1 | Principal Component Analysis.

PCA is an unsupervised dimension reduction method that transforms data to a
new coordinate system with a reduced set of variables that retains most of the
information from the original space. The transformed space can be imagined as
P-dimensional ellipsoid, where longest axis of an ellipsoid represent direction
of maximum variance within the data for P < M, where M is the number of
original features (dimensions). Given N number of samples and an N * M ma-

trix of data X, where X; € RM fori=1,...,N andj=1,..., M, the data has to

23



Chapter 2. Feature Selection 2.2. Methodologies

be standardized to be centered around 0 by subtracting the mean value of each
variable from individual data points in a given dimension. The key idea behind
PCA is to combine original variables into a set of latent vectors Z in a linear
way, where Z), € RM for p=1,...,Psame as X since it is its linear combination.

More formally, the latent vectors can be presented as follows:

M
Zp =) wiX; (2.11)
j=1

The latent variables are constructed sequentially. The first projection z; can

be written as:

Where w is the vector of weights constrained so that its sum of squares is
equal to 1. According to (87), since the matrix X contains variation relevant to
the problem, it seems reasonable to have as much as possible of that variation
also in Z. Suppose this amount of variation in Z is appreciable. In that case, it
can serve as a good summary of the X variables, hence, allowing us to reduce
the number of variables used in the original space. The problem is therefore con-
structed as maximizing the variance of Z with respect to the optimal weights. By
substituting (Equation 2.12) into mathematical notation for returning the argu-
ment w of the maximization function and rewriting it in a vectorized format, we

obtain the following objective function:

wp = argmax(var(Z)) = arg max(w’ X Xw) (2.13)

[lwl[=1 [lwl|=1
Using the result of the covariance matrix, XTX, we find that the optimal w
are therefore the eigenvectors of XTX, where the first ordered eigenvector cor-

responds to w; and so on. Scaled by the variance, which is squared root of
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corresponding orthogonal eigenvalues, columns of w are therefore called load-
ings in PCA. As a result, reconstructed back to the original space and applied to
fuel spectroscopy, the output of the PCA model contains information on scores
of various features that contribute most to the explained variance in recorded

absorbance or scattering intensity values.

2.2.2.2 | Partial Least Squares

PLS is a supervised alternative to PCA and is arguably the most widely used
technique in the chemometrics domain. Similar to PCA, it identifies a set of
features that are linear combinations of the original features. Unlike PCA, how-
ever, PLS considers the response y and finds the multidimensional coordination
of the feature space X that contributes to most variance in the response y. Es-
sentially, partial least squares seek directions that have high variance and have
a high correlation with the response, in contrast to principal components regres-
sion which keys only on high variance (88). After standardizing the data to have
0 mean and variance of 1, both X and y are decomposed as a product of a com-
mon set of orthogonal vectors and a set of specific loadings (89). The data and

response matrices are decomposed as:

X = zpPT

y =ZQ"

Where Z is a matrix of latent vectors, and P, Q are the loading coefficient

(2.14)

matrices. A rank regression is then performed to construct a matrix of latent

components Z as linear transformation of X, where w is a vector of weights:

Z = Xw (2.15)
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The idea behind PLS is to perform decomposition so that the information
from both X and y is taken into account.

The elements of the weight vector w are defined such that the squared sam-
ple covariance between response and the latent components is maximal under
the condition that the latent components are mutually uncorrelated (90). Finally
we adopt the following objective function to find optimal set of weights for each

latent vector p =1, ..., P, that we later use for feature selection:

wp = argmax(w! X yy’ Xw) (2.16)

w

2.2.3 | Model-based Feature Selection Techniques

2.2.3.1 | Random Forest

Random Forest is an ensemble learning method, which constructs multiple de-
correlated decision trees trained on different subsets of the data and subsets of
selected attributes to reduce the variance in y. Although Random Forest is a
prediction tool, it is widely used to rank the importance of the variables based
on the number of times they are used during node splitting. For each node
t =1,...,K, where Kis total number of nodes within a binary treer =1,...,T,
where T is number of trees of the random forest, the optimal split in a classifi-
cation setting is determined by impurity, measuring how well a potential split
separates observations that are similar to each other (91). In regression prob-
lems, the measure of impurity (i(t)) is variance of the predicted value of obser-
vations within each partition. Therefore, the importance (w) of a feature (j) is

computed as the (normalized) total reduction of variance (A7) brought by that
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feature across all trees. Mathematically it can be expressed as:
T K
wj =YY Aij(t,r) (2.17)
r=1t=1

2.2.3.2 | Ridge Regression

The linear regression regularization method is used to reduce model complexity
by adding penalties to coefficients of variables in the cost function, such that the
Residual Sum of Squares (RSS) loss function fori =1,...,Nandj =1,..., M,

where N is number of samples and M is number of data dimensions, takes the

form:
N M )
RSS =Y (yi—yi)* +a ) w; (2.18)
i=1 j=1

The first term in the above equation is the sum of squared error and the second
term is the regularization component. « is the penalty parameter used over all
weights of features w to shrink the magnitude of the unimportant ones to ensure
that the model does not overfit.

Tuning « hyperparameter controls the strength of the penalty term or essen-
tially the amount of feature shrinkage, which results in sparse models with less

number of parameters, easier to analyze than high-dimensional data models.

2.2.4 | Model-agnostic Feature Selection Techniques

2.24.1 | SHAP

SHAP stands for Shapley additives Explanations, which is considered a popu-
lar state of the art in explaining black-box machine learning models. SHAP is
a technique to calculate the impact of each feature on the prediction outcome

using Shapely Values. Shapley values were introduced in the 1950s by Lloyd
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Shapley (92), who introduced it as a solution concept in cooperative game the-
ory. The main idea is that any model output does not rely only on one single
feature but on the entire set of features in the data set.

Suppose that we have a predictive model, where the game outcome repre-
sents the model prediction, and the players in the game represent the features.
Considering all possible coalition among the players (features) and their effect
on the game (model outcome), each player contributes to the team’s result. The
sum of the contributions for each player from each possible coalition returns the
value of the target variable (model outcome) given a particular feature. As a
result, Shapely Values calculates the contribution of each feature to the target
value, which is referred to as local marginal contribution or local Shapley Val-
ues. Repeating the same process using combinatorial calculus and retraining the
model over all possible combinations of features, we can calculate all local Shap-
ley Values for a specific feature. The average absolute value of the local Shapley
Values can be used as a measure of feature importance.

More formally, let S be a subset of features that does not include the feature
for which we calculate the importance. Let M be the full set of features. Given a
model g(x) trained to predict f(x), the marginal contribution of feature i to the
model’s prediction and accordingly to the f(X) is:

wi= ),

SCM~j

[S[H(IM] — S| = 1)!
|M]!

[8(SUj) —8(S)], (2.19)

Where S U j is the subset that includes features in S plus feature jand S C M \i
indicates all sets S that are subsets of the full set of features M, excluding feature
j.

As discussed by (23), “the computation time increases exponentially with the
number of features. One solution to keep the computation time manageable is to

compute contributions for only a few samples of the possible coalitions”. Lately,
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Lundberg and Lee developed an algorithm for interpreting model predictions
(36), which uses the Shapely Values to reverse-engineer the output of any pre-
dictive algorithm and identify features’ contributions. SHAP approximates the
conditional expectations of SHAP values by using a selection of background
samples to reduce the computation time. By aggregation over multiple back-
ground samples, SHAP estimates values such that they sum up to the difference
between the expected model output on the passed background samples and the
current model output (f(x) — E[f(x)]). Features that contribute the most to the
difference between the expected model output on the passed background sam-
ples and the naive case prediction are chosen as important features by SHAP.
SHAP method can be used to analyze the prediction for both classification and

regression models.

2.24.2 | LIME

The LIME explanation method was originally proposed by Ribeiro et al. in 2016
(30). The key idea of LIME is to locally approximate a black-box model by a
simpler glass-box model such as Linear Regression or Random Forest, which is
easier to interpret. Such an interpretable model must be locally faithful, mean-
ing it must correspond to how the black-box model behaves in the vicinity of the
instance being predicted. LIME works by perturbing any individual data point
and generating synthetic data, which gets evaluated by the black-box model and
is ultimately used as a training set for the simple model. The variables are per-
turbed by sampling from a normal distribution and doing the inverse operation
of mean-centering and scaling the values according to the means and standard
deviations in the original training set. The LIME is capable of explaining any
model, and thus it is model-agnostic. The aim of LIME is to minimize a loss

function L(f, g, 7tx) that can be expressed mathematically in the following way:
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&(x) = argminL(f, g, 7tx) + Q(g) (2.20)
8

Where f is the original model, g is an interpretable model, and 7y is the
similarity kernel that measures the proximity of a new perturbed sample point
z to the original data point x. Additionally, the Q)(f) is referred to as a measure
of complexity, opposed to interpretability. The Equation 2.20 demonstrates that
perturbed samples are generated around x and weighted by 7y to approximate
L(f, g, mx). Using this approximation LIME can explain local behaviour of the
original model f and measure the relative error between the explanation ¢(x)

and the original model predictions.

2.2.4.3 | Global Surrogate

Similar to LIME, the global surrogate model is used to approximate the predic-
tions of highly non-linear ML models with simpler, interpretable models. Since
itis a global method, the surrogate model tries to mimic the function of the entire
black-box model to understand its overall behavior. A global surrogate model
does not require any information on how the original black-box model works
and thus is considered model-agnostic. The process of training a surrogate in-
volves obtaining the predictions of the black-box model on the training dataset
X. Then, a selected interpretable model is trained on (X, Y) using black-box pre-
dictions as targets. The surrogate model can be any interpretable model, such
as Linear Regression, Decision Tree, K-nearest neighbor, or any model that the
coefficients could provide insights into the model behavior. The ability of the
surrogate to capture the behavior of the black-box model is estimated by com-
puting the error between surrogate and black-box predictions, typically using

the r-squared score. A caveat of global surrogate models is that the performance
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of the underlying black-box model in predicting the actual outcome plays no

part in training the interpretable black-box model (23).

2.2.5 | Evaluation Metrics

2.2.5.1 | Correctness

In this paper, the goal of feature selection is to select a subset of features in
the spectra data that are considered most informative or relevant to the pre-
dicted CN values while adhering to known chemistry. The selected subset of
features can be further compared to the theoretical locations of chemical func-
tional groups within the spectroscopy data known from the domain expertise.
Incorporating human knowledge in the learning loop allows us to evaluate the
faithfulness of the applied techniques and ensure that a model can be trusted. To
evaluate the performance of the feature selection techniques discussed in Section
§ 2.1.1, we define a measure to calculate the alignment of the selected subset of
features using different techniques with the selected features by the expert. We
refer to this measure as correctness.

The selected wavenumbers are binned by unique centered intervals to rep-
resent their true location, which can be otherwise shifted by several wavenum-
bers due to instrument noise. The method Correctness is then calculated using
simple Jaccard Similarity (J) (93) between a given subset of binned features in-
dicated by S, which is obtained from considered feature selection techniques,
and expert-selected locations indicated by Sg,. The method Correctness can also
be measured by converting proportion | to percentage to obtain values between
0 and 100%, representing a percent match to all expert-selected locations. The

Jaccard Similarity is calculated as follows:
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_ ISPNSEx| _ |SF N Sex|
ISEUSEx|  |SE|l + |SEx| — |SF N SEx|

J(Sk, SEx) (2.21)

Although the performance of a predictive model after reducing the original
feature space is important for at-scale implementation in real-time, the correct-
ness of the feature selection techniques is inevitable for transparency. In §2.3.5
we provide numerical results for the correctness of different considered tech-

niques.

2.2.5.2 | Performance

To aid the scalability and efficiency of the model deployment in practice, the
model fitted on the reduced subset of features must be comparable in terms
of performance to the model trained on full-spectrum and to a reduced model
trained on an expert-selected subset of features. However, note that the reduced
model is more efficient for the data collection process. Since fuel CN is measured
and predicted as a real value, each model’s performance is assessed using the
Mean Squared Error (MSE) metric, which is commonly used in regression prob-
lems. MSE calculates the difference between the predicted and true response
values. As a result, the model with a lower MSE value on the testing set is
deemed to be more favorable, as it predicts values that are close to the ground

truth. The MSE is formally represented as follows:
1 N

MSE = =3 (yi — %) (222)
N i=1
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2.3 | Experimental Results

2.3.1 | Domain

In the Physical Chemistry and Combustion domain, it is well established that
chemical functional groups are the building blocks of any hydrocarbon struc-
ture such as fuels. (94) defines a functional group as “any portion of a molecule
composed of a group of atoms, which governs both its physical and chemical
properties as well as chemical reactivity”. Practical fuels, such as gasoline, com-
prise a large number of hydrocarbon molecules, which in turn might contain dif-
ferent functional groups. Knowing the quantity and type of functional groups
present in a compound allows researchers to determine its properties. One of
such properties is fuel ignition quality, which indicates how easily the fuel will
ignite. Fuel ignition quality is one of the most important properties that scien-
tists from the applied combustion field have been working for over the years.
It is critical to measure ignition quality and correlate it to the fuel’s functional
groups. Each functional group gives rise to unique peaks in the spectra in their
characteristic regions. Therefore, this paper aims to detect their location on the
spectral band using explainable Al tools and feature selection techniques.

In the context of predicting fuel ignition properties, the task of feature se-
lection is to select a subset of wavelengths that improves model interpretability
(further called correctness) and at-scale prediction performance. In a model with
higher correctness, selected features must represent locations of CFG that deter-
mine fuel ignition properties, making the overall process transparent to the hu-
man operator. Involving a group of domain experts, we choose 120 wavenum-
bers (95) that correspond to chemical bonds in different functional groups within

our data and compare them to the outputs of the above-listed feature selection
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techniques (Section § 2.1.1). Note that each functional group stretches over cer-
tain regions of spectra, which can be identified by multiple peaks in that region.
The exact locations of these peaks are unknown, however, using the literature
on pure components (95) that make up the mixtures, we can try to estimate their
locations. Each peak is considered as a feature selected by the expert Sg,.
Taking into account the uncertainty associated with expert features and the
shift in wavenumber read that may occur during the spectroscopy collection
process due to instrument noise, we generate “bins” that capture the discrete
output of attribute selection methods and match it to the expected locations. In
other words, we divide the entire spectroscopy range into equal intervals (bins),
assign discrete wavenumbers to the intervals they fall into, and calculate the
fraction of unique intervals that were selected by both expert and feature selec-
tion methods. Each interval is arbitrarily chosen to be five wavenumbers wide
in order to account for two wavenumber deviations from its potential location,
which can be substantially bigger in practice. The precision of such a procedure
would be exceedingly poor and unreasonable from a practical standpoint if each
wavenumber from two subsets was attempted to be mapped exactly one to one.
Furthermore, there is a need for miniaturized spectroscopic instruments for
high-profile applications in collecting the respective spectra for detailed anal-
ysis. Feature selection opens up a pathway towards such miniaturization. By
selecting the important subset of wavelengths over the entire range of the spec-
trum, which affects the prediction performance of the output variable, it is pos-
sible to group the features into regions of importance. Once these regions are
known, the spectroscopic instrument can be miniaturized by selecting filters
such that the data are only collected for the important subset of wavelengths.
As the scope of the spectral range has reduced, a smaller instrument could be

designed for the same application without trading off the prediction accuracy.
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Also, another approach could be to use lower resolution instruments which

would require smaller components and thus a smaller instrument.

2.3.2 | Dataset

The spectroscopy data used in this chapter was collected at UIC High-Pressure
Shock Tube Laboratory using a Raman spectrometer. The entire dataset includes
245 observations from 49 unique fuel samples collected at various times. The
tirst 145 observations (based on 29 unique mixtures replicated five times each)
were collected at a single session over four hours nonstop, where the laser power
stayed consistent with minimizing the instrument noise. The second 100 obser-
vations (based on another 20 distinct mixtures reproduced five times each) were
collected over a two-hour period using the same settings in a separate session.
Environmental circumstances (e.g., ambient temperature) are exogenous factors
that can affect laser power and, thus, spectroscopy repeatability, that cannot be
completely controlled in real-world setting. Thus, this separate data collection
allows us to consider statistical noise in the data for our scenario analysis. Dur-
ing the collection of the old dataset’s observations, the laser power was mea-
sured as 350.5 mW, and for the new dataset, it was measured as 364.2 mW.

For both collected datasets, the resolution was set to 7.1 cm~!, with wave-
length range between 52.52 and 3712.89 cm 1. The Raman laser power was set at
the maximum laser power setting to ensure consistent readings for all observa-
tions. Each sampled spectra data initially had 2048 features (intensity values at
different wavelength locations) and a measured CN value as the response. The
datasets were pre-processed to filter out highly noisy regions outside of wave-
lengths range [181.45,3200.82] cm !, resulting in 1562 features. Note that the

fingerprint region normally starts at 500 cm~!, however, in this paper, we aim
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to investigate the presence of functional groups in the [181.45-500] cm ! region.
We specifically trimmed [50.52-181.45] cm~! since no scattering intensity value
is recorded in this region. Similarly, we removed the data in [3200.82, 3712.89]
cm 1 region since no spectral features indicating functional group activity were
present.

For simplicity we call the first 145 collected observations as old dataset and
the 100 observations as new dataset.

Three scenarios are constructed accordingly to observe the effect of statisti-
cal and data collection noise on feature selection and prediction accuracy that
is inevitable in the real-time practice of ML for ignition delay. The Control sce-
nario includes 145 old observations, and the Mixed scenario includes 245 old,
and new observations merged, both split into training, testing and validation
set 80/10/10. As for the Real-time scenario, 145 old data points are split into
training and validation sets 80/20, while the new 100 points are used as the
testing set.

Using the preprocessed dataset for each scenario the reduced subset of at-
tributes is identified implementing considered feature selection techniques in-
cluding PCA, PLS, RF, Ridge, SHAP, GS, and LIME. Each predictive model,
that shall be elaborated in Section § 2.3.3, is then fitted on the reduced subsets

for each scenario as well as full set of 1562 features of data. The former is referred

to as Full model and the latter as Reduced models.

2.3.3 | Predictive Modeling For Spectra Data

To implement ML models for CN prediction there are hyperparameters associ-
ated with each considered models discussed in Section § 2.2.1 including SVR

and NN. Due to the small overall dataset size and to avoid data splitting and
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model training bias, the data are randomly split 30 different ways using a ran-

dom seed generator during each model development. The performance of the

models is assessed based on the mean () and standard deviation () across 30

random executions. To choose optimal hyperparameters, we perform Bayesian

Optimization (BO) using a predefined range of parameters for SVR (Table 2.3)

and NN (Table 2.4) for both Full and Reduced models trained on various subsets

of features for each scenario. We use epsilon-SVR from the libsvm (96) package

for SVR modeling and Keras (97) sequential model package to construct our NN.

| Parameters | Options \
| Kernel | ['poly’, 'tbf’, 'sigmoid’, linear’] |
| Degree (d) | [1:4] |
| Gamma () | [0.0001: 1] |
| CoefO | [0.01:10] |
| C | [0.1:1000] |
| Epsilon (¢) | [0.01:10] |

Table 2.3: SVR hyperparameters considered for optimization

| Parameters Options

| Activation (hidden) ['relu’, 'sigmoid’]

| Number of hidden layers [1:10]

\ Hidden units min_value=32, max_value=8000, step=32

| Activation (output) [linear’, "sigmoid’]

| Optimizer ['adam’, "sgd’, ‘'rmsprop’]

| Learning rate [le-4:1.0]

| Kernel regularization [0.0001 : 0.01]

\ Kernel weight initializers ['rfandom_normal’, ‘glorot_uniform’, "he_normal’]

| Batch size [32:100]
| Epochs [100 : 1000]
\ Architecture ['up’, "down’, "up-down’, "down-up’, 'random’]

Table 2.4: Keras Neural Network hyperparameters considered for optimization

For SVR, the regularization hyperparameter C is a free parameter that trades
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off the influence of higher-order versus lower-order terms in the polynomial.
Gamma(y) is a scaling parameter that controls the shape of Support Vector cur-
vature, allowing it to fit the peaks observed in our data. Epsilon(e) is a margin
term that allows more points to be included in the decision surface without pe-
nalizing them during the training. The choice of the kernel in SVM determines
the shape of the transformed high-dimensional hyperplane and allows to avoid
complex calculations, while the parameters Degree(d) and Coef0 are typically
used for the polynomial kernel to determine the degree of polynomial fit and
adjust the independent term accordingly. It is worth mentioning that the (im-
plicit) feature space of a polynomial kernel is equivalent to that of polynomial
regression, but without the combinatorial blowup in the number of parameters
to be learned (98). The algorithm used in epsilon-SVR calculates the outer prod-
uct of two vectors of features (or a vector with itself), which can be used as
an approximation of the polynomial kernel feature space instead of explicitly
computing the outer product, which can be extremely inefficient. The resulting
kernel space has the same dimensions as original training data, while full third-
degree polynomial expansion of 1562 features would result in over 620 million
features.

The optimal hyparameters of SVR for both Full and Reduced models are
obtained using open source Bayesian Optimization tool (99) as: Kernel="poly’,
Degree (d)=3, Gamma (y)=0.7, C=0.7, Coef0=0.1, Epsilon (¢)=0.1, with maximum
number of iterations of the solver fixed to 100,000. This model is therefore re-
ferred to as BO-Tuned SVR.

The complexity of the SVR model is defined based on the number of support
vectors defining the decision boundary. Table 2.5 illustrates the complexity of
the SVR model for each scenario. Since the reduced subsets are created based

on a smaller subset of individual wavenumbers to capture the complexity of the
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spectra data, the model needs a larger number of support vectors to define the
decision boundary. For example, in Table 2.5 we observe that 50 support vectors
are selected for the Full model setting, and on average, 63 support vectors are
necessary for the Reduced setting in a Real-time scenario. Moreover, the number
of support vectors increases from 50 in the Control scenario (145 observations) to
113 vectors in the Mixed scenario (245 observations) for the Full model setting,
where the noisy observations were included. This is also reflected in the average
runtime shown in Table 2.7 as training time increases drastically for SVR with
the addition of new noisy samples !. For example, the average training time for
the BO-Tuned SVR model in Control scenario is 0.17 seconds, compared to 1.4
seconds in the Mixed scenario.

Since our goal is to ultimately deploy a strong predictive model in real-time,
it requires a certain level of generalization to ensure accurate prediction of new,
previously unseen observations. The SVR hyparameter Epsilon(e) plays a sig-
nificant role in the generalization power of the model. While BO maximizes
exploitation of training data distribution, fine-tuning this parameter allows the
construction of decision surfaces both accurate in shape and wide enough to
generalize to unseen fuel spectroscopy samples, as will be shown in the Real-
time scenario when test data are noisy. Using softer epsilon margin (Epsilon(e) =
0.66) results in a reduced number of support vectors (33 compared to 50 for
Full model in Real-time scenario), which further simplifies the model and makes
computation more efficient (Figure 2.3a), aiding our scalability effort. More im-
portantly, fine-tuned SVR drastically improves the performance of SVR for our
Real-time scenario, in some cases decreasing testing error by the factor of 10.

When constructing Neural Network, the following hyperparameters are con-

INote that the values represented under column “Time (s)” is the total computation time of
30 executions.
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| # of Support Vectors |
| Control | Mixed | Real-time |
| Full Model | 50 113 50 ||
| Expert | 52 | 107 | 52 |
| PCA | 73 | 126 | 73| = |
| PLS 7 B2 |7 g
| RF | 64 | 12 | 64 |3 |
| Ridge |66 | 122 | 66 | L
|SHAP | 61 | 121 | & |7
| GS | 63 | 128 | 63 | |
| LIME |48 | 119 | 48 | |
| |
| FullModel | 33 | 67 | 3 | |
| Expert | 28 | 63 | 28 | |
| PCA | 36 | 77 | 3 | Z]
| PLS | 5 | 8 | 5 | ; |
| RF | 34 | 75 | 34 \ ,3 \
| Ridge | 28 | 60 | 28 |2
| SHAP | 37 | e | 3 |7
| GS | 33 | 66 | 33 | |
| LIME |32 | 70 | 32 | |

Table 2.5: SVR Complexity

sidered. Kernel weight initializer determines the distribution of weights associ-
ated with each layer before the commencement of training and their consequent
update through backpropagation. The number of hidden layers and Hidden units
determines the power of the network to perform a linear or non-linear trans-
formation on inputs and guides over model complexity. An Activation function
in a neural network defines how the weighted sum of the input is transformed
into an output from a node or nodes in a layer of the network (100). The Kernel
regularization, also known as weight decay, is aimed at reducing the likelihood
of model overfitting by keeping the values of the weights and biases small. Op-

timizer is an algorithm used to adjust model parameters (weights) to maximize
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a selected loss function (in our case, it’s mean squared error), while the Learning
rate determines the rate of adjustment. Batch size defines a number of samples
to propagate through the network at one time, and Epochs is a measure of the
number of cycles it takes to train the network with all training data.

We select optimal hyperparameters for Full and Reduced models using Keras-
Tuner (101) framework with the objective function aimed at reducing valida-
tion Mean Squared Error (MSE). The MSE mathematical formula is provided
in Equation 2.22. The global random seed is set to ensure consistent kernel
weight initialization and reproducible results. We also include an architecture-
specific hyperparameter that dictates whether the overall architecture shape ex-
pands/shrinks or is produced at random in the optimal setting, for each con-
secutive layer of the network. We introduce a set of constraints to limit the ex-
ponentially large solution space of hyperparameters and make the optimization
computationally stable while exploring versatile architectures. The number of
nodes and layers are given the flexibility to be chosen at random or follow the
pattern where the number of nodes is doubled or reduced by a factor of 2 for
each subsequent hidden layer and constrained to a maximum of 8,000 nodes.
The widening and shrinkage of the network can be both symmetric or asym-
metric, with respect to the number of layers before and after the layer with min-
imum/maximum number of nodes. In an asymmetric case, the number of layers
and nodes is selected randomly after picking layers with minimum /maximum
nodes.

Given the budget of 1000 trials for BO, the optimal Full model architecture
is determined to consist of the input layer, one hidden layer, and a final output
layer with 1562-5984-1 nodes. The optimal Reduced model is selected using an
asymmetric architecture that has input, four hidden layers and output layer with

512-1024-2048-4096-512-1 nodes. Total of 11,800,000 and 13,170,000 trainable pa-
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rameters are used in the Full and Reduced models, respectively. The optimal
selected Activation (hidden) function for the input and hidden layers is 'sigmoid’
for the Full model and is "relu’ for the Reduced model. Other hyperparameters
for both Full and Reduced NN models are selected as: Batch size=32, Learning
rate=0.0011 and Optimizer="Adam’. No significant difference is found using dif-
ferent kernel regularizers and weight initializers. Therefore no regularization
was used, and weights were set using default glorot_uniform initializer. Other
parameters are fixed to Epochs=200 and Activation (output)="linear’.

When dealing with high-dimensional limited sample data, Network models
lead to overfitting and model instability due to highly variant gradients (102).
Hence, identifying the optimal Reduced model architecture requires more com-
plexity and includes more trainable parameters than the Full model during the
optimization step. Such behavior can be justified by that the network models
tend to compensate through the generation of new internal features to capture
hidden non-linearity in the Reduced sparse setting. Unlike SVR, the number
of parameters for NN is fixed and does not increase with the addition of new
noisy data. As a result, computational time increases marginally, which can be
observed in average runtime in Table 2.7. After testing the final model in the
Real-time scenario, we observe that the model performs worse than the Full
model. Therefore, hyperparameter optimization is biased towards reducing the
validation error that follows the training set distribution. Hence, Bayesian opti-
mization does not find the optimal model capable of generalizing on unobserved
data.

Since we obtain two distinct architectures through BO, referred to as Shallow
for Full model and Deep for Reduced model, we now cross-check their overall
generalization ability. To this end, we employ heuristics on the constructed mod-

els, i.e., Shallow and Deep architectures for both Full and Reduced settings for
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the Real-time scenario (Table 2.6). As determined through optimization for the
Reduced setting, the Shallow model performs better on unseen data than the
Deep model for the Full setting. In contrast, through an iterative reduction in
the number of trainable parameters, based on the training (Figure 2.1a), valida-
tion (Figure 2.1b) and testing (Figure 2.1c) error, we observe that a less complex
Shallow model (with only 0.5 million parameters) performed better in predict-
ing unseen data observations compared to previously found “optimal” Reduced
model with Deep architecture (Figure 2.2). Such scaled model is also computa-
tionally more efficient (Figure 2.3b). Hence, a more simple Shallow architecture
proves to have better generalization ability for both Full and Reduced settings.
Fine-tuned Reduced model with one hidden layer (472-954-1 nodes) is selected

as the new optimal architecture.

| | Full Model | Reduced Model |
| Shallow NN | 323 | 25 |
| DeepNN | 342 | 55.8 |

Table 2.6: NN architecture generalization ability on Real-time data, recorded as
Test MSE using different architectures on Full and Reduced sets of data

2.3.4 | Feature Selection for Spectra Data

The following steps and tuning are performed to employ the considered feature
selection and explainable Al techniques discussed in Section § 2.1.1 for spec-
troscopy analysis.

First, we select the optimal number of latent components for PCA and PLS by
iteratively fitting spectroscopy data in scikit-learn corresponding decomposition
libraries. For PCA, the number of components can be determined by plotting
cumulative explained variance for p components and selecting optimal num-

ber using point of maximum curvature (Figure 2.4). Since PLS considers the
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Figure 2.2: Shallow NN vs DNN testing error on reduced subsets in Real-time
scenario.

relationship between feature space and predicted output, we can determine an
optimal number of components based on the uncertainty of test results for the
different numbers of latent variables. Therefore, using PLS Regression, we fit
the cross-decomposed data and record Mean Square Error (MSE) between pre-
dicted and true values of CN for a given number of components (Figure 2.5).
Hence, the optimal number of latent components is selected based on the lowest
associated MSE value. The optimal number of PCA components is determined
to be P = 4, and the optimal number of latent dimensions for PLS is determined
tobeP =7.

Consequently, we employ one additional step to determine the true contribu-
tion of each feature to the overall explained variance within the data. To accom-
plish that, we first calculate Explained Variance (EV), which is the ratio between
the variance of that principal component and the total variance in data for PCA
or predictions for PLS. We then take each component and multiply its EV with

the loading vector to obtain individual feature importance.
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MSE, ;1
EVy41 =EV,— (1— Wiy)z) (2.24)

The sklearn toolbox allows us to directly access both the explained variance
by component and loading vectors for PCA, while for PLS, we calculate EV of

the first component p = 1 using formula (2.23). For the remaining components
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p = 2,...,P, the EV is calculated using Equation (2.24) to return the final cu-
mulative explained variance by component normalized between 0 and 1. The
teatures with the highest absolute weight values across all components are then
aggregated and sorted. After filtering out features with zero weight, we achieve
a true collection of selected features and their corresponding wavelengths that
help explain most of the variance in the data.

To determine the optimal number of trees (T) to be used in the Random For-
est Regression model and select the optimal a parameter for the Ridge Regres-
sion model, we use a similar approach as for PLS. We iteratively fit the data to
the above-mentioned models and record MSE between predicted and true val-
ues of CN for given parameter T in the range [0.001, 1] and « in the range [1, 200].
The optimal number of trees for the Random Forest Regression model is T = 91.
Similarly, for Ridge Regression we find optimal parameter value « = 0.001.

After the adjustments, 299 features are found to explain over 80% of the total
variance in training data using PCA, and 604 features are necessary using PLS,
which is twice more than PCA selects. By extracting feature importance (w)
from the Random Forest model, we observe that 119 features account for 80%
of explained variance in data, significantly less than both PCA and PLS. As for
Ridge Regression, 175 features with the highest corresponding linear weights
(w) explain most of the variance in the data.

We use the LimeTabular package (103) to locally explain the behavior of op-
timized and trained NN and SVR models using Linear Regression as a simple
model approximation. After perturbing the interpretable model input, features
that contribute to individual fuel sample CN prediction are calculated, one ob-
servation at a time. In order to obtain a global explanation across the entire
distribution of data, we record features with the highest associated coefficients

(weights w) for each individual sample explanation using LR as a surrogate
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model. We then rank features selected most commonly across all sample in-
stances and select them as the final subset of the most important features.

The SHAP explainer (104) takes any combination of a predictive model and
masker, which constrains the rules of the cooperative game used to explain the
model and returns a callable subclass object that implements an estimation algo-
rithm. We use SVR and NN prediction functions as input models to be explained
and select a random subset of samples, generated by random seed function, to
be used as a background (masking) set. By stratifying the background set on
the model output results, instead of using the whole training data, we drasti-
cally reduce calculation time while maintaining a good representation of our
sample distribution. For Global Surrogate (105), similar to LIME, we use an in-

terpretable linear regression model to estimate general model behavior.

2.3.5 | Discussion

Figure 2.6 illustrates the results of the considered feature selection techniques on
our Control scenario dataset. The red bars indicate the selected features by the
feature selection methods and the yellow bar indicates the features selected by
the domain expert. As we can observe, the results indicate partial overlap of se-
lected features with expert features around “fingerprint” region (500-1800 cm 1)
and “Carbon-Hydrogen (CH) stretching” (2800-3200 c¢m 1) region, depending
on the feature selection technique. Visual inspection suggests that similar sub-
set of features is selected with model-agnostic methods. Note that features se-
lected by Random Forest are notably more uniformly spread across the entire
spectrum than other approaches and have the least number of features from the
CH stretching region. This behavior can be justified by the fact that Random

Forest considers different subsets of features randomly selected for each of the
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Figure 2.6: Regions of importance selected by various techniques. (a) PCA, (b)
PLS, (c) Random Forest, (d) Ridge, (e) SHAPley, (f) Global Surrogate, (g) LIME

are highlighted with red and expert features are highlighted with yellow.

50




Chapter 2. Feature Selection 2.3. Experimental Results

individual models (Decision Trees) in its bag of models. Such considerations al-
lows different attributes to be shown up in the tree structures and be considered
for model construction. As a result, we can observe a wider range of locations
selected as important in the spectra data. PLS and PCA results are more clus-
tered in different regions. Both of these techniques are based on components
that are linear combinations of original features. Hence, if attributes in one spe-
cific region are all important, they are assigned large loading values in multiple
components and ranked higher in the final selected attributes.

Figure 2.7 represents the correctness evaluation of the considered techniques.
The plot shows similarity proportion between subset of 120 Expert features Sk,
and 120-500 features selected using various techniques Sr. We immediately ob-
serve that PCA and PLS are outperformed by other techniques in correlating to
expert features even when we increase the upper bound on the number of se-
lected features, averaging 17%-60% from 120 to 500 features. The results indicate
that LIME, SHAP, Ridge, GS, and Random Forest feature selections performed
competitively in model explainability resulting on average in 33%-85% of over-
lap with the selected features by the expert going from 120 to 500 features. Fur-
ther, we notice that selecting 120 features from each method only partially over-
laps with features selected by the expert. Recall that the exact locations of the
majority of 120 expert-selected wavenumbers are rough estimations by the do-
main practitioners. Further, only a small subset of these features contribute to
the variance in CN prediction. It is worth mentioning that the features selected
by the considered feature selection methodologies are mainly returned, optimiz-
ing prediction performance. Hence, there are other locations than Sk, selected
by such techniques. Since the expert selected features are based on rough peak
location approximations, there might be actual locations that are missed. ML-

based feature selection techniques might actually be able to discover the true
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locations of the functional groups” peaks. However, there is no solid approach

to confirm this statement.
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Figure 2.7: Method Correctness, displayed as proportion of wavenumbers
matched with the domain-defined features.

The performance is measured using mean training and testing error () with
corresponding mean standard deviation (¢) across 30 random splits of data. The
model is considered to have better prediction performance when testing MSE
is low and has better stability when deviation values are low as well. As can
be seen in Table 2.7, the NN model tuned through the Bayesian Optimization
approach (BO-Tuned NN) initially results in low testing MSE for Control and
Mixed scenarios for both Full and Reduced sets of features. In a Real-time sce-
nario, however, the minimum MSE is found to be 32.3 and 39.5 for Full and Re-
duced sets, accordingly. In contrast, after fine-tuning the NN, we can observe an
increase in testing MSE for both Control and Mixed scenarios, while the error for
Real-time scenarios becomes significantly smaller, achieving the new minimum
MSE of 16 in the Reduced setting using Random Forest. While not included in
the table, using Linear Regression, we achieve the lowest MSE of 88.8 for the
Full model and 233 for the Reduced model, using the Random Forest subset of

attributes.
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Using the BO-Tuned SVR model, we initially obtained more competitive test-
ing results across all three scenarios, achieving the lowest MSE of 33.7 for the
Full set and even lower 32.9 for the Reduced set of features. After adjusting
the SVR margin parameter, the Fine-Tuned SVR model achieves an all-time low
MSE of 14.8 for Full and 4.6 for the Reduced set of attributes, also selected by
Random Forest. Figure 2.8 summarizes numerical prediction results and associ-
ated deviation of the Fine-Tuned Support Vector and Neural Network regression

models for the Real-time scenario for ease of comparison between two models.
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Figure 2.8: Testing error for Fine-Tuned SVR and NN models on Full and Re-
duced subsets in Real-time scenario.

The “curse of dimensionality”(106) affects both models equally, therefore
only through a careful selection of hyperparameters we are able to avoid exces-
sive overfitting. Although we reach similar performance for NN in some cases
compared to SVR, parameter optimization for SVR, in general, is a much eas-
ier task, as fewer parameters are considered. As a result, after thorough tuning,
Fine-Tuned SVR performs significantly better across all three scenarios. As men-

tioned above, the Reduced Fine-Tuned SVR and NN models trained on features
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selected by Random Forest have significantly lower testing error and variance in
Real-time scenarios compared to the Full model and is, therefore, selected as the
best performing feature selection technique. We can explain the superior perfor-
mance of RF feature selection in that it creates decision trees on boot-strapped
subsets of observed data and randomly selected subsets of features (as discussed
in Section § 2.2.3.1) before taking the majority vote on features that reduce the
variance. Since this ensemble model considers different combinations of data
and features, it has a better ability to identify important attributes for prediction.
Since we are dealing with a small number of samples, one or two observations
can really change overall data distribution. Therefore, RF has a better sense of
variance when translated to unobserved data and results in better generalization
ability.

Using the Fine-Tuned SVR model as a benchmark, we observe that reduced
models trained on features selected by Ridge, SHAP, GS, and LIME have com-
petitive testing error with that of expert-selected features. One explanation, as
mentioned earlier, is that not all expert features affect the CN prediction, while
features selected with the above-mentioned techniques actually do.

PCA and PLS show the most unexpected results since these revered meth-
ods perform noticeably worse under different settings in both correctness and
performance categories compared to all other methods. One possible explana-
tion for their previous widespread use in chemometric analysis is the assump-
tion that most chemical processes and reactions are linear. Both PCA and PLS
decompose the data into linear combinations of original features and are com-
monly paired with linear regression in the literature.

However, given the non-linearity of spectroscopic data, presence of statistical
noise, and overall high dimensionality, we argue and attempt to support with

our data that the particular relationship between fuel spectroscopy data and its
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associated Cetane Number is not linear. Therefore, further attempt at selecting
a reduced number of important attributes using these methods results in their
poor performance. Additionally, PCA and PLS have simple and efficient im-
plementation. As a result, advanced methods that can be superior to PCA and
PLS in identifying the importance of spectroscopic features appear to have been
overlooked in the literature thus far. While PCA and PLS analytical methods
have been effectively used in many applications even outside of chemometrics,
they prove to be the least suitable feature extraction method for our scope of
work when compared to other methodologies.

Figure 2.9 demonstrates the Correctness versus Performance trade-off for
both Fine-Tuned SVR and NN models, we can conclude that Random Forest
selects the most meaningful subsets of attributes both from an explainability
and prediction performance standpoint. This paper shows that optimizing hy-
perparameters for NN can be a challenging task that requires paying significant
attention to the underlying data distribution. We also determine that given the
high-dimensional limited size of data, SVR predictive model outperforms NN,
although a further increase in the size of data can tip the scales back in favor of

NN.
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Figure 2.9: Testing Error on Real-time dataset vs Correctness trade-off for 120
selected features using (a) SVR and (b) NN models

56



Chapter 2. Feature Selection

2.3. Experimental Results

Number of samples 145 245 165
| | Control | Mixed | Real-time | | |
| FS method | Train(u,0) | Test(u0) | Time(s) | Train(u0) | Test(,0) | Time(s) | Train(j,0) | Test(uo) | Time(s) | # parameters | |
| Full Model | (0.006,0.004) | (0.04,004) | 2338 | (002,005 | (007,013) | 2404 | (00L,001) | (323,67 | 2533 | 118mil | |
| Expert | (0.02,0006) | (0.04,0.02) | 3506 | (0.02,0.03) | (0.03,0.15) | 4170 | (0.03,002) | (6419) | 2922 | 132mil | |
| PCA | (005002 | (0.07,003) | 3607 | (0.080.02 | (0.17,0.06) | 4230 | (0.04,0.02) | (48,20) | 2439 | 132mil | |
| PLS | (029,018 | (05058 | 38% | (207,085 | (161) | 482 | (166,07 | (92,172) | 2835 | 132mil | §' |
| RF | (005001) | (0.08,0.03) | 3421 | (0.04,0.02) | (0.06,002) | 4260 | (0.09,008) | (39.5128) | 2421 | 132mil | ’i |
| Ridge | (005003 | (0.07,003) | 3327 | (0.05001) | (0.07,003) | 4122 | (0.06007) | (58520.6) | 2855 | 132mil | % |
| SHAP | (004002 | (005002 | 3266 | (002,001) | (0.02,001) | 4620 | (0.040025) | (46,32) | 2806 | 132mil | |
| Gs | (0.04,001) | (006,003 | 3285 | (0.04,0.02) | (0.06,002) | 4410 | (0.03,0027) | (50,12) | 2460 | 132mil | |
| LIME | (0.03,001) | (005003 | 3217 | (005002 | (0.09,003) | 4350 | (0.06,0035) | (52,14) | 2444 | 132mil | |
‘ Avg. runtime 111 ‘ 139 ‘ 88 ‘
| Full Model | (0.006,0.004) | (0.04,004) | 2404 | (0.024,0045) | (0.07,0.127) | 2617 | (001,001) | (323,67 | 2613 | 118mil | |
| Expert Features | (005003 | (02502 | 344 | (019,035 | (02605 | 375 | (1) | (6373 | 351 | 05mil | |
| PCA | (13,03 | (4925 | 380 | (05083 | (067,1.1) | 391 | (021,05 | (426,11) | 381 | 05mil | |
| PLS [ @215 | (19,200 | 391 | (123,19 | (139,46) | 462 | (11.7,068) | (738,72) | 366 | 05mil | 5 |
| RF | (086,115) | (162,19 | 377 | (46,08 | (57,19 | 358 | (073,132 | (161) | 45 | 05mil | g‘ |
| Ridge | (073,09) | (7,38 | 361 | (0609) | (103195 | 377 | (3,034 | (3172 | 3% | 05mil | 'i. |
| SHAP | (0.001,0.0015) | (0.06,0.13) | 384 | (0.67,087) | (0.82,09%) | 470 | (3,04) | (386,09 | 357 | 05mil | Z |
| Gs | (0.001,0.008) | (0.02,0029) | 362 | (0.83,119) | (0.83,1.07) | 383 | (035063) | (3821) | 369 | 05mil | |
| LIME | (0.048,007) | (0.225,018) | 366 | (042,072 | (05067 | 376 | (013,043) | (38,23) | 333 | 05mil | |
| Avg. runtime | 19.89 | 21.51 | 20.82 |
| Full Model | (0.006,0.002) | (0.02,0.008) | 058 | (0.007,0.0002) | (0.050019) | 114 | (0.006,0.002) | (33.67,544) | 063 | [
| Expert Features | (0.006,0.002) | (0.02,0009) | 12 | (0.01,0007) | (0.05002) | 3597 | (0.006,0002) | (339564) | 12 | |
| PCA | (0.007,0.002) | (0.04,0015) | 275 | (0.026,0.04) | (01,008 | 4225 | (0.007,0002) | (34,55) | 265 | [
| PLS | (0.016,0007) | (032,0115) | 308 | (13,15 | (246,23) | 6112 | (0.016,0.007) | (42592) | 3027 | | 3 |
| RF | (0.008,0002) | (006,003 | 52 | (08074 | (036,022) | 5678 | (0.008,0002) | (412,21) | 535 | | g |
| Ridge | (0.006,0.003) | (0.03,0013) | 1.3 | (007,007) | (0.13,008) | 4197 | (0.007,0003) | (37.9,9.1) | 133 | | & |
| SHAP | (0.006,0.002) | (0.03,001) | 18 | (011,03) | (0.46,1.83) | 39.84 | (0.006,0.002) | (32.85,47) | 183 | \é |
| Gs | (0.006,0.002) | (0.03,0013) | 17 | (014,058 | (044,167) | 3893 | (0.007,0003) | (36,63) | 163 | |
| LIME | (0.006,0.002) | (0.02,0008) | 1 | (0.027,0.06) | (0.08,0.05) | 37.63 | (0.006,0.002) | (36,374) | 106 | [
| Avg. runtime | 0.17 | 14 | 0.2 |
| Full Model | (0.07,0001) | (0.08,002) | 041 | (0.007,0.0002) | (0.11,0.03) | 518 | (0.006,0002) | (148,11) | 045 | |
| Expert Features | (0.06,0.001) | (008,002 | 036 | (0.060001) | (011,004) | 172 | (0.006,0002) | (14,21) | 036 | [
| PCA | (007,0003) | (0.11,003) | 097 | (0.06,0.002) | (0.1,008) | 241 | (0.007,0002) | (152,1.2) | 098 | | . |
| PLS | (0.07,0003) | (013,004 | 51 | (1,079 | (1509 | 392 | (0.0160007) | (162,14) | 5 | |5 |
| RF | (0.06,0.002) | (008,003 | 049 | (0.06,0001) | (0.09,002) | 55 | (0.008,0002) | (4602 | 05 | | g‘ |
| Ridge | (0.06,0002) | (008002 | 037 | (0.060001) | (01,003 | 79 | (0.007,0003) | (118,07 | 037 | | & |
| SHAP | (0.07,0003) | (01,003) | 07 | (0.060002) | (0.14,005) | 223 | (0.006,0002) | (12507 | 073 | | 5 |
| Gs | (0.06,0002) | (01,002) | 068 | (0.060002) | (0.12,004) | 161 | (0.007,0003) | (11.8,1.1) | 07 | (.
| LIME | (0.06,0002) | (0.1,002) | 056 | (0.060002) | (0.12,003) | 147 | (0.006,0002) | (139,09) | 055 | [
| Avg. runtime | 0.04 | 0.6 | 0.04 |

Table 2.7: Performance of NN and SVR predictive models fitted with Full and

Reduced sets of features.
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Synthetic Data Generation

3.1 | Background

The idea of generating synthetic representations of real-time data using algo-
rithms has a long history. Artificial data generation processes has been widely
applied in many fields including perception (107; 108; 109) and speech synthe-
sis for natural language processing (110; 111), where large volume of samples is
required to train image recognition and speech models.

Before introducing deep generative models capable of generating unique
new samples, the common approach to increase the size of an existing dataset
was data augmentation. This technique is used to create slightly modified copies
of existing data and serves the role of regularizer to reduce overfitting when
training a predictive model. Popular data augmentation strategies include in-
verting, scaling, shifting or simply adding statistical noise to existing data to
produce new samples. Data augmentation is a viable solution for many ML
modeling domains, particularly image processing, since visual transformations
only affect the context in which the item is displayed, not the object itself. How-
ever, permuting primary data might result in cardinal changes and the loss of

key information in a new sample. As a result, it is indeed critical to create new
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samples that retain the knowledge about the underlying sample intact. Hence, a
reliable domain-agnostic technique for synthesizing data called generative mod-
eling is introduced.

Generating realistic data that meet certain conditions absent in real data to
design new cases and simulate new outcomes is well-motivated. Synthetic data
can also be used to represent real outcomes without disclosing information about
real data and therefore jeopardizing its confidentiality and privacy. Up until the
introduction of Autoencoder networks (112), the term generative model broadly
meant a class of statistical models that learned a joint probability distribution
of observable and target variables. Simple generative models memorize the
given input data distribution and have the ability to reproduce new samples
that come from such distribution. However, the advance in neural network pro-
cessing opened a new pathway for deep unsupervised representation learning.
The two most popular deep generative methods currently are Autoencoders,
and Generative Adversarial Networks (GANs) (113). In Autoencoder, by con-
verting high-dimensional data to lower-dimensional data, an encoder model is
forced to learn a compressed knowledge representation of the original data. This
transformation is accompanied by trading off between two parameters: first, re-
construction accuracy, which measures the differences between original input
x and the reconstructed £ space L(x, %), second, regularization term, i.e., L1 or
Kullback-Leibler divergence, that discourages memorization or overfitting of
training data. The compressed representation, therefore, learns to reproduce the
input without holding onto its redundancies, allowing the production of diverse
samples different from the original ones yet faithful to their underlying proper-
ties. Gradient descent is typically used for fine-tuning such network weights.

Alternatively, the approach of using adversarial training focuses on produc-

ing samples that are more realistic, rather than memorized with the greatest
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accuracy, resulting in a more diverse output. Both techniques have their pros
and cons. While GAN currently produces higher fidelity samples than Autoen-
coder networks, it is also difficult to optimize due to unstable training dynam-
ics. However, since our goal is to produce the highest possible quality samples
to improve data representation, all the while adhering to domain explainability
constraint, we chose GAN approach for synthetic data modeling and discuss its

details further.

3.1.1 | Related Works

Since its inception, GAN has been predominantly used in text, image, and video
processing applications, generating near-perfect synthetic text (114) and images
that are often indistinguishable from real by the human eye (115). Particularly
for image processing, this ability to capture knowledge about given objects and
interpolate it to new, unique object space was soon used to create image-to-
image models capable of reconstructing and colorizing images (108; 116), blend-
ing different images together (117), improving image resolution quality (118),
and create a whole spectrum of another photo/video editing applications. Many
works are also dedicated to employing GAN for engineering design applications
and are able to successfully generate chemical (119) and complex materials(120),
compact electric circuits (121), and many other novel objects and designs. At this
point, the application of GAN spans many domains, including but not limited
to medical record synthesis (122), anomaly detection systems in cyber security
(123), business, and data privacy-preserving (124), and many more.

While many classic generative and data augmentation techniques still are
widely used in various applications, many fall short in robustness of GAN and

its ability to deliver diverse, quality outputs. That being said, we review most
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popular and recent literature on the use of data augmentation, encoding net-
works and GAN models for generating spectroscopy data.

The spectroscopic data augmentation process has been extensively investi-
gated in (125) on a vegetable oils dataset for training a classification model to
distinguish between spectra of 6 different vegetable oil species classes. The data
augmentation procedure consisted of creating artificial samples by blending the
weighted sum of input spectra from other samples, offsetting absorbance val-
ues on the spectral range axis, and adding white noise to observed values. The
authors reported slightly improved classification accuracy, particularly through
the use of samples generated with added statistical noise. The noise addition
methods included uniform Gaussian noise, intensity dependant noise, and log-
normal noise multiplication. It is also observed that only a small level of statis-
tical noise injection leads to classification improvement before the performance
drops off. Overall, data augmentation does not lead to a massive performance
gain, so we turn our attention to deep generative techniques.

The application of Autoencoders for spectroscopic data synthesis was pre-
sented by (126) and was demonstrated to outperform state-of-the-art synthesis
approaches at the time. Generating compressed representations of Raman spec-
troscopy via an encoding network allowed authors to produce new samples and
yield improved classification accuracy for binary classification of samples that
contain chlorinated solvents. The approach also incorporates the use of a trained
autoencoder as an outlier detector which results in a model that both “produces
high classification accuracy and is robust in the presence of negative outliers”.

Several papers have been released since 2020 that demonstrate how to use
GAN to generate spectral data in order to improve baseline prediction model
accuracy. In (127) 480 infra-red spectra of cumin and fennel plants were col-

lected and used for classification using Quadratic Discriminant Analysis (QDA),
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Multi-layer Perceptron network, and Convolutional Neural Network (CNN).
The training data were decomposed using Principal Component Analysis (PCA)
prior to fitting the model. The GAN model was used to expand the training set
and improve classification performance by generating new samples. Each sub-
set of plant samples was replicated using a separate GAN model, providing a
narrow representation of real sample distribution, even within given classes of
cumin or fennel. The classification accuracy results suggest that using GAN was
not necessary in the first place, as the model accuracy was already high due to
low problem complexity.

In (128) authors use Bidirectional GAN (129) to improve the result of CNN
prediction model used for drug identification. In this work, 1721 samples of four
drugs from 29 manufacturers were used to train the generative network and test
the classification model. The motivation to use GAN was to solve the problem
of insufficient samples necessary for efficient neural network training and un-
balanced representation of all drug classes in terms of their training data subset
size. The researchers collected FTIR spectral data and implemented an addi-
tional condition for the generator to generate the data for a given class. This was
done by including an additional loss parameter that calculates classification er-
ror between synthetic data label and training data label. The authors discussed
that such conditional GAN enhanced classifier performance over other models
considered when at least 50% of data was used for training GAN. Although
hyperparameter selection was mentioned, it was unclear how the model was
impacted. The uniformity of generated samples used to balance the size of un-
derrepresented subsets of drug classes suggests that such a model could suffer
from a mode collapse.

In (130) GAN was used to expand the training set for laser-induced break-
down spectroscopy (LIBS) classification problem. Vanilla GAN was used to gen-
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erate new samples that were normalized between 0 and 1. After synthesizing the
data, the synthetic and real samples were compared using unsupervised PCA
and K-means clustering techniques. The first two principal components and
clusters of each spectra type were plotted against each other for visual inspec-
tion to compare their similarity. The percentage of generated spectra that was
classified into experimental spectra was used as an estimation of given class syn-
thetic data similarity with training data. The resulting sets of real and synthetic
spectra were combined and a SVM classifier was fitted to estimate the change in
classification performance. Correct classification rate (CCR) went from 88.89%
to 95.33%, which indicated positive classification accuracy improvement.

In (131) the authors used hyperspectral image translated to normalized spec-
troscopic data to create additional samples to improve baseline classification
performance for a limited size dataset. Two GAN architectures, namely Condi-
tional GAN (CGAN) and Deep Convolutional GAN (DCGAN), were compared.
Using CGAN, the image representations were conditioned with encoded label
information, resulting in higher quality generated samples than using DCGAN
architecture. The difference in quality was evaluated using a comparison of PCA
components, training SVM and RF classifiers on the combined synthetic and real
data, and observing changes in classifier recall and accuracy metrics. Although
it was suggested that using this technique improves the baseline classifier’s gen-
eralization ability, sufficient empirical or technical evaluation of this claim was
present.

In another work by (132), the 100 spectra of three classes of marine pathogens
were used to train separate GAN models to generate samples of a particular
strain. The trained GAN discriminator was then used as a classifier model to
evaluate pathogen classification accuracy using real and synthetic data. How-

ever, using a discriminator model in such a capacity is not meaningful, as it
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is optimized for distinguishing between real and artificial samples rather than
a multi-class classification task. No details on the GAN architecture or choice
of hyperparameters were provided. Further, the difference in intensity values
within generated data was used for region significance estimation. The au-
thors argue that areas of highest variance are most significant for differentiat-
ing unique classes. Unfortunately, this claim is not further explored, leading to
the belief that such variance is likely a result of statistical generated through the
GAN training process.

A new approach was created using terahertz (THz) spectroscopy of rice and
carbendazim powder tables to build 2-D heatmap "pictures" of such spectra,
which were then used to train an image classifier to categorize samples depend-
ing on their pesticide residue content. The spectroscopy was transformed from
a one-dimensional array to a two-dimensional picture I using the transpose of
the THz spectrum absorbance coefficients as a function of I = x * xT, where x
is the sample absorbance vector (133). The classifier was then retrained using
the ResNet network, and the authors argued that using transfer learning solves
the issue of overtfitting. The WGAN framework was used to ensure training
convergence, and the generated samples were used for training SVM, KNN,
and ensemble classifiers to compare their performance with CNN. The deep
ResNet network scored slightly higher on differentiating between 13 classes than
its reduced version. No solid evidence was provided that features extracted
from training ResNet on 3.2 million images in 5247 categories of the ImageNet
database reduced overfitting on unseen spectroscopic data. It can also be argued
that such a deep network promoted overfitting and, therefore, yielding a higher
testing accuracy on a given set.

Another interesting approach was discussed by (134), where GAN was used

as a spectroscopy pre-processing tool instead of popular scatter-correction tech-
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niques. Alternative to using scattering corrections to smooth the effects of mea-
surement geometry and instrumentation noise, the proposed method involves
using low-resolution spectra as latent statistical noise input in the generator por-
tion of GAN, trained on high-quality spectra to process low-quality spectra into
smoothed, processed ones. The results indicated that it is more computationally
efficient to read raw spectroscopy in low resolution and process it with GAN
rather than using long shutter collection time and standard pre-processing tech-
niques. However, the real data with higher shutter stabilization yielded better
classification results upon using such data for the training classification model.
Another work that must be mentioned is published by (135) and builds on a pre-
vious work of (130) by introducing y parameter to the WGAN network to con-
trol diversity and quality trade-off for generated data. The proposed parameter
automatically controls the effort allocated to the training generator or discrimi-
nator module. However, no details on the implementation were presented.
After a thorough literature review, we noticed that using spectra blending
and statistical noise injection to generate new samples via data augmentation
yields marginal improvement. While encoding networks are shown to perform
deep representation learning, GAN remains the most promising approach for
spectroscopic data synthesis. However, given the preponderance of works pub-
lished on this topic, the exact implementation, reproducibility of the results, and
generalization still remain unclear. The majority of existing works fall short in
providing clear details on technical solutions to address GAN training stabil-
ity for spectra data, with many displaying model collapse behavior. Moreover,
the methodology for evaluating the quality of the generated spectra is only lim-
ited to severe simple statistical analyses, with no discussion on how realistic it
is or how reliable the data is. Therefore, we prioritize our work on develop-

ing a comprehensive technical guide to optimal spectroscopy GAN training and
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investigating synthetic data quality from the domain standpoint and Machine

Learning efficacy approach.

3.2 | Methodologies

3.2.1 | Generative Adversarial Network

GAN (113) is the most successful generative model developed in recent years,
used in many applications from video editing and restoration to engineering
design. Introduced in 2014 as a new way to generate data, this implicit density
deep generative model aims to learn the true distribution of given data to gen-
erate new samples indistinguishable yet different from the original data. GAN
is a hot topic of research currently, and there have been a variety of GAN imple-
mentations. The so-called “vanilla” GAN architecture is the simplest and most
commonly used form of GAN. It is composed of two adversarial deep neural
network models, generator (G) and discriminator (D), that compete in a min-
max two-player game until near-Nash equilibrium is reached to generate data
that plausibly follows the original data distribution. To this end, the generator
(G) first creates a mapping function from a supplied statistical noise distribu-
tion p,(z) to a new data space that resembles training data space. The latent
statistical noise vector z is typically initialized by sampling values from Gaus-
sian distribution with mean 0 and standard deviation of 1. The noise vector is
later transformed into a synthetic sample once the underlying data distribution
is learned. The role of discriminator (D) is to output a variable that represents
the probability that a sample (x) is generated following the training data rather
than a generator. GAN trains both models simultaneously, adjusting generator’s

parameters to minimize log(1 — D(G(z)) and adjusting discriminator’s param-

66



Chapter 3. Synthetic Data Generation 3.2. Methodologies

eters to minimize /ogD(x). This process can be represented mathematically as:

mGinmSX V(D,G) = Ex(x)[l0gD(x)] + Ez~p. [log(1 — D(G(2)))], (3.1)

where p is the real data distribution and p; is the input latent noise vector.
The goal of function G is to map from latent space to the data space, while func-
tion D differentiates between real and artificial samples.

Training a stable GAN is a challenging task as it is a highly hyperparameter-
dependent model and involves improving both discriminator and generator
models that work in tandem. Consequently, changes to one model can affect
the performance of the other. Moreover, as discussed by (136), in practice, find-
ing this Nash Equilibrium is a difficult task. Due to the non-convexity of D and
G, there is no theoretical guarantee of obtaining the Nash Equilibrium. Hence,
this optimization problem is usually solved using a gradient descent approach.
The most common issue arising from training a GAN is called mode collapse. This
happens when the generator begins repeatedly producing the same output (or
a subset of outputs) while the discriminator fails to reject it. The task of the
generator is to create plausible samples indistinguishable from real data to the
discriminator, and the default strategy of the discriminator is to attempt to reject
them. However, if, during one of the epochs, the discriminator gets stuck in a
local minimum and cannot reject fake samples, the generator will then over-
optimize for this particular configuration of generator weights and continue
to generate the same samples that are proven to mislead it. Additionally, the
respective loss functions of generator and discriminator models are not infor-
mative on their own, making tracking model convergence and hyperparameter

optimization difficult, with most of the model tuning ending manually.
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3.2.2 | Advanced GAN Architectures

Several GAN modifications have been proposed to enhance the model conver-
gence and quality of data generated, such as Conditional GAN (CGAN) (137),
Deep Convolutional GAN (DCGAN) (138), Wasserstein GAN (WGAN) (139),
WGAN + Gradient Penalty (WGAN-GP) (140), Packing GAN (PacGAN) (141)
and many others. Each approach utilizes particular subset of technical solutions
that we refer to as modules. In this research, we compile a list of modules that
can be utilized to train stable synthetic spectral data generators and attempt to
determine their relative effectiveness through comprehensive ablation test. The
following parameters and modules were considered:

Latent Dimensions. The latent dimension size determines the range of diver-
sity of generated statistical noise. The generator takes the sampled vector and
then maps it to the training data distribution by minimizing the Jensen-Shannon
Divergence of the probability distribution of the sampled vector and the distri-
bution of all the training data. Higher dimension value results in more variety of
latent variables generated and slows down the convergence of generator train-
ing.

Latent Noise Space. The latent space defines the shape and distribution of the
input to the generator model used to generate new samples. Most works advise
sampling from a standard Gaussian distribution to initialize latent space. As
such, the shape of the latent space is a hypersphere, with a mean of zero and a
standard deviation of one.

Network Capacity. The model for the discriminator is usually more complex
than the generator. Increasing generator capacity shows no improvement in
the quality of the generated data if the discriminator is not providing quality
feedback in the first place. Therefore, it is essential for the discriminator to be

ahead of the generator.
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Activation Function. Network activation functions are critical to construct a
balanced, high-performing model with sparse activations. Activation sparsity
is defined by the number of hidden units with the non-zero output after being
activated, promoting more effective learning. The sigmoidal activation function
is typically a good starting point for most research. However, it can also lead to
saturation in both function directions, thereby resulting in a vanishing gradient
problem. To remedy the vanishing gradient and promote sparse activations, a
more advanced rectified linear activation unit (ReLU) function (142) was intro-
duced in 2018 and is currently the most popular choice of activation function for
deep networks. While most works recommend using the ReLU activation func-
tion for the generator (143), a variation of ReLU, called Leaky ReLU, is preferred
to use in the discriminator for all layers. Leaky ReLU allows values less than
zero by specifying its negative slope (default value is 0.2) and learns where the
cut-off should be in each node of the network.

For classification and sampling tasks, such as differentiation between real
and synthetic samples in discriminator or sampling from mixture of Gaussian
distributions, as will be discussed later, we also use Softmax and Gumbel-Softmax
activation functions. Since sampling discrete data from categorical distribution
is not differentiable, a Gumbel-Softmax is used instead of Softmax to ensure
that gradient estimation can be acquired. The Gumbel-Softmax function takes
advantage of Gumbel distribution, which is a continuous distribution that ap-
proximates samples from a categorical distribution and enables the ability to
backpropagate through samples. It has the essential property that it can be
smoothly annealed into a categorical distribution (144) and therefore used for
sampling discrete data.

Batch Normalization. Batch normalization standardizes the activations of a

previous layer, which are added to the model after the hidden layer. Recentering
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and rescaling the layer’s inputs to have zero mean and unit variance produces
smoother parameter space and stabilizes the training process.

Dropout. Introducing a dropout layer in the architecture would avoid the
discriminator’s overconfidence. By randomly dropping a subset of the layer’s
outputs in the discriminator, this method changes the number of nodes and con-
nectivity of layers. Dropout makes the training process noisy, simulating the
network to learn a sparse representation and is a better alternative to active reg-
ularization.

Minibatch Discrimination. To avoid a mode collapse of the generator, separate
batches of real and synthetic data are used to train the discriminator. Hence,
we discriminate between whole minibatches of samples rather than between
individual samples. These minibatches are computed in the intermediate layer
of the discriminator separately and are fed to the next layers together. Since
the task of the discriminator is to classify individual examples as real data or
generated data, it is able to simultaneously use labeled examples of both real and
synthetic samples in the current batch of model inputs as reference information
to make better decisions about whether new samples are real or not.

Mode-specific Normalization. Continuous value representation with arbitrary
distribution is non-trivial. Based on an investigation conducted by (122), contin-
uous values in tabular data are typically non-Gaussian, and min-max transfor-
mation result in vanishing gradient problems. Since spectroscopic data is stored
as tabular data, with each individual column representing material absorbance
or scattering intensity value for a certain spectrum wavenumber. Hence, the is-
sue of appropriately pre-processing spectroscopic data are similar to that of tab-
ular data. To deal with columns having non-trivial distributions, in other words
columns whose values follow a mixture of multiple distributions, each column

is treated independently using a mode-specific normalization. Therefore, given
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data of size j X i, where j represents a row and i a column index, a variational
Gaussian Mixture Model (GMM) is applied for each column (C;) to estimate the
number k of Gaussian distributions (which we will refer to as modes m) present
in that column. The equation for learned GMM is given in 3.3, where y and ¢
are mode weight and standard deviation accordingly.

For each value ¢;, in column C; we compute probability of it coming from par-
ticular mode, with probability densities given in equation 3.2. Once the mode is
sampled, each value ¢;; is normalized following equation 3.4. The mapping that
stores data-specific GMM information is stored and used to transform newly

generated data back to the original range.

px = N (cij; my, o), (3.2)
k
I[)Ci(ci,j) = ZﬂkN(Ci,j; My, Ok ), (3.3)
1
C./. J— mk
ajj = 1]47, (3.4)

where [P, is a given C; column’s mixture model, represented as sum of k Normal
distributions p; + p2...0x with y and ¢ being the weight and standard deviation
of respective mixture mode m, and where a; ; is output vector of column values
normalized by given mode .

Conditional Information. The core principle of Conditional GAN is a method
that extends the performance of vanilla-GAN models by conditioning both gen-
erator and discriminator on additional information (y), which can be any “aux-
iliary” information such as class labels. The latent noise, together with vy, is

combined in a joint hidden representation for the generator. In the discrimina-
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tor, x and y are both used as inputs for a discriminative function. The updated

Conditional GAN objective function then is as follows:

minmax V(D,G) = Ey. (x)[logD(x|y)] + Ez~p. [log(1 = D(G(zly)))],  (35)

where p(x) is the rel data distribution and p; is the input latent noise vector. The
goal of function G is to map from latent space to the data space, while function
D differentiates between real and artificial samples. In this configuration, both
real data x and latent noise z are conditioned on some information y.
Wasserstein Loss. Wasserstein GAN (WGAN) is one of the most popular GAN
models and consists of an objective change that results in training stability and
interpretability. As a result, WGAN is less sensitive to the choice of the Network
architectures and hyperparameters. This approach challenges the classic GAN
idea of learning the probability distribution of data by learning its probability
density so that a family of densities is selected that maximizes the likelihood of
the data. As the authors claim, to apply the likelihood maximization approach,
such density must exist in the first place, which is not always the case when
“dealing with distributions supported by low dimensional manifolds” (139).
When the model manifold and the true distribution intersect, the divergence be-
tween them becomes undefined, leading to infinite values and mode collapse as
aresult. To counter this issue, a new method of determining how close the model
and real distributions are is presented. In the process of identifying various ways
to define a divergence, they introduce the Wasserstein-1 distance loss function,
which essentially replaces a probability of discriminator loss with a score that
correlates with the quality of generated data. Following the description from
(140), the Wasserstein (or Earth-Mover) loss function (W(g, p)) is informally de-
fined as “the minimum cost of transporting mass” used to transform the distri-

bution g into the distribution p where the cost is mass times transport distance.
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This method allows for continuous training of the critic (discriminator) without
reaching saturation, avoiding the mode collapse that the usual GAN method is
prone to. Using such a distance function, which has solid theoretical properties
compared to the originally defined distance metric, induces a stronger topology
by delaying the convergence for a sequence of distributions.

Furthermore, the discriminator’s parameters are clipped to a certain compact
space to enforce a Lipschitz constraint, under which all neural network trans-
formations and pointwise nonlinearities are smooth Lipschitz functions. While
clipping weights, is “clearly a terrible way to enforce a Lipschitz constraint”
(140), the authors left it for further research in the initial paper. Additionally, the
discriminator’s parameters are updated more often than the generator’s param-
eters throughout each iteration to ensure a robust discriminator (named critic in
this configuration) model is used to speed up the convergence to optimal model

equilibrium. The new objective function is described as follows:

minmax E [D(x)] = E, [D(¥)] ©6)

where D is the set of 1-Lipschitz constraint and P is the model distribution
implicitly defined by ¥ = G(z),z ~ p(z). In this setting, using optimal critic,
minimizing the value function with respect to the generator parameters mini-
mizes W(IP,, Pg).

Gradient Penalty. As mentioned by (139), using weight clipping was not opti-
mal solution to enforce Lipschitz constraint. Therefore, an alternative approach
of penalizing the norm of gradient of the discriminator (critic) model with re-
spect to its input is proposed (140). This method uses soft version of the 1-
Lipschitz constraint with a penalty on the gradient norm for random samples

% ~ IP;. The following penalty component is added to (3.6):
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)\fﬁx[ﬂww(f)lb—l)z]/ (3.7)

where A is a penalty coefficient and IP; is uniform sampling the lines between
pairs data distribution IP; and the generator distribution IPs points. It has been
shown that this method outperforms the standard WGAN and enables stable
training of a wide variety of GAN architectures with almost no hyperparameter
tuning (140).

Packing. PacGAN solution to problem of mode collapse was introduced by
(141). The main idea of packing is to “modify discriminator to make decisions
based on multiple samples from the same class together, either real or artifi-
cially generated”, by passing combined samples to generator and discriminator
simultaneously. It was demonstrated via binary hypothesis testing that packing
penalizes generators with mode collapse, favoring generator distributions with
less mode collapse. This approach requires minimal architecture adjustment and

is proven to aid in GAN training convergence.

3.2.3 | GAN Evaluation

As mentioned in § 3.2, training GAN:Ss is difficult as the loss curves of the gener-
ator and discriminator oscillate in a non-informative manner, with no clear indi-
cation of whether the model is improving. This is the result of the min-max zero-
sum game nature of GAN, where both players can undo each other’s progress
(145). While several evaluation metrics exist, there is no clear consensus regard-
ing which metric is the most appropriate to evaluate the GAN training process,
or the quality of the output sample (146). While there is a number of proven met-
rics dedicated to the evaluation of images (146), we chose the following three

categories of methods to evaluate the quality of generated spectroscopic data:
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Figure 3.1: Complete synthetic data generation and evaluation process diagram.

Statistical Similarity, Model Efficacy, and Domain-expert Conformance. Figure
3.1 presents a complete overview of GAN training, sample generation, and eval-
uation process flow.

Statistical Similarity. Using Kolmogorov-Smirnov (KS) test, we can esti-
mate the similarity between generated (Ss¢;,) and training (S;.,;) data (147) as
a function of the distance between cumulative distribution functions (CDFs) of
the data they were respectively drawn from. The Kolmogorov-Smirnov statistic

equation is:

D, = sup [F(x) — F(x)], (38)
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where 7 is the number of samples, sup, is the supremum of the set of distances
between values in each distribution. The statistic D therefore takes the largest
difference between two distributions and converges to 0 when divergence is
non-existent and, therefore, goes to infinity. Since spectroscopic data can be
effectively described as tabular data where each column follows some underly-
ing GMM, we apply a two-sided KS test on each column C between real and
synthetic data samples and subtract 1 from the average of the results across all

columns to get final KS score used for evaluation:
i
Daog =Y _ Du, (3.9)
1

KSscore = 1 — Duvg/ (3-10)

where final output KSse indicates the maximum distance between the ex-
pected CDF and observed CDF values for two subsets of data. While a high KS
score indicates that GAN successfully captured the underlying distribution of
training data, an overly-high score might indicate a mode collapse of the gener-
ator. We use the KSs¢re to evaluate the quality of the generated data and overall
GAN training stability.

As discussed in §2.2.2.1 principal component analysis (PCA) is commonly
used to convert multiple indicators in high-dimensional data into a few repre-
sentative lower-dimensional components (principal components (PC)), where
each PC holds the significant amount of information about the original data.
Various works take advantage of PCA simplicity and power to evaluate the
prominent directions in GAN latent learning space (148) and estimate similar-
ity between spectral data generated by GAN and real spectral data (131). In

this research, PCA is used to project high-dimensional spectral data into low-
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dimensional space to quantify the similarity between the spectra generated by
GAN and the real spectra.

Model Efficacy and Synthetic Data Labeling. Machine Learning Efficacy
can be used in addition to statistical analysis to evaluate the performance of us-
ing synthetic data as training data for predictive models (122). Using our predic-
tive modeling framework discussed in Chapter §2.3.3, we train the best-suited
prediction model on a synthetic dataset and evaluate prediction models using
an independent test subset of the real data. While we can generate quality spec-
troscopic data, we also need an associated CN value for each sample to use this
data in a supervised learning setting of a regression model. The “ground truth”
CN values are commonly calculated using compressed fuel measured ignition
delay obtained through Ignition Quality Tester (IQT) (149) or Cooperative Fuel
Research (CFR) methods. However, since no real substance exists that is associ-
ated with generated spectroscopy, we devise a different strategy to acquire CN
labels for our spectra. There is a recent branch in machine learning, referred
to as Weak-supervision learning (150) that mainly deals with situations when
large amounts of unlabeled data are available for a supervised learning setting.
The core idea of this approach is that weak, noisy signals can be used to super-
vise the labeling process of such data and ultimately help create a strong pre-
dictive model. The assumption is that using data with “weak” (lower-quality)
labels while understanding that they are imperfect ultimately leads to predic-
tive model performance compared to not utilizing unlabeled data at all. Using
this approach, we use a machine learning model trained on the existing labeled
dataset to assign weak (CN) labels to newly generated samples. While it is ex-
pected that using imperfect labeling (oracle) model results in such weak labels,
we expect to enhance model stability and overall model generalization to un-

foreseen data by expanding the diversity of the labeled dataset. As discussed
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in §2.2.5.2, Mean Squared Error (MSE) is used as a performance metric to eval-
uate the accuracy of the regression model trained on synthetic data MSEj, 4,
and compare with that of the baseline model trained on real dataset MSE,. To
ensure the reported results are robust and accurate, we take average MSE across
30 observations, generating new samples and relabeling them with randomly
split real data every time. Lower quality of generated samples should result in
lower prediction accuracy compared to baseline. In contrast, if the MSE values
are equally similar, the synthetic data can be judged of acceptable quality.
Domain-expert Conformance. Domain-expert evaluation serves as a final
evaluation step to ensure the quality of synthesized data. While the generated
data might look real to non-domain practitioners, containing similar peaks and
valleys to the original data, it must also contain information about real fuel ma-
terial properties. For such a data generation process to be trusted further, these
artificial representations of possible real samples must be evaluated by an ex-
pert. By training conditional GAN on information about Chemical Functional
Groups (CFGs) present in existing fuel samples, we design a sample generation
approach that generates spectroscopy of theoretical fuel with the desired chemi-
cal properties. We focus on synthesizing pure alkane mixtures that contain only
CH2 and CHS3 functional groups, as they are prominently distinguishable by
the domain expert from other mixtures contained in the training set. We over-
lay these artificially generated samples with real pure alkanes from our dataset
to visualize the difference. Then, we let the domain experts confirm their au-
thenticity via the presence (or absence) of certain peaks in the expected regions
of spectroscopy and their intensities. If successful, such a GAN sample gener-
ation core can be trusted further to produce new samples to enrich the existing

dataset.
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3.2.4 | Data

The spectroscopic data consists of two datasets, namely Raman and ATR, that
were collected at the UIC High-Pressure Shock Tube and Lynch Laboratories us-
ing Raman and diamond Attenuated Total Reflectance (ATR) spectrometers ac-
cordingly. The Raman dataset consists of 245 observations from 49 unique fuel
samples, as discussed in Chapter §2.3.2, while the ATR data has 145 observa-
tions from 29 fuel mixtures. Each ATR sample has close to 60,000 features, which
are absorbance/intensity values recorded across the entire wavelength range be-
tween [400,4000] cm~!. The data are processed to filter out noisy, uninformative
regions between 1800 and 2500 wavenumbers. We reduce the number of features
via cubic spline interpolation to 1562, as in Raman spectra, for consistency and
without any major resolution quality loss. ATR data are then split into training,
and testing sets 80/20 for ML efficacy testing. For domain-expert conformance
checking, we also acquire information about the known CFG concentrations for
ATR samples. These concentrations represent ratios from extracted UNIFAC
functional groups for pure components and mixtures that were collected at the
Lynch Laboratory. The resulting array consists of the fraction of concentrations
(scalar values) that sum up to 1 for each mixture sample. In this study, we only
use CH2 and CH3 functional group concentrations for the collected 145 ATR
samples. Since pure alkanes only consist of CH2 and CH3 groups, the resulting
concentration array consists of pairs of values (i.e., [0.4,0.6]). This information

is later used for the final stage of model evaluation.

3.3 | Experimental Results

The initial GAN model is first trained on Raman spectra data using classic “Vanilla”

architecture with appropriate network capacity capable of holding the com-

79



Chapter 3. Synthetic Data Generation 3.3. Experimental Results

pressed knowledge from given spectroscopic data. We use two fully connected
layers with 256 nodes for discriminator and generator. The choice of number of
hidden layers and nodes is dictated by general guidelines throughout the GAN
literature and following implementation by (122).

We use the ReLU activation function for all layers and binary cross-entropy
loss function to calculate the gradient for differentiating between real and syn-
thesized samples incorrectly. We also employ minibatch discrimination and ex-
amine how changing latent space parameters affects the model performance.
Finally, we artificially add statistical noise to the system to improve training sta-
bility using smooth labeling. Instead of using hard binary labels for identifying
real and synthetic samples, we apply a small random offset to the label and pe-
nalize the discriminator when the prediction for any real samples exceeding a
certain probability threshold (i.e., 0.9 instead of 1), thereby promoting sparse
activations. The resulting Sy, data scaling and overall resemblance to S,y
remains low (Figure 3.2 (a, b)). The model is highly unstable and sensitive to
gradient updates, partially because data are not normalized and hard to pro-
cess for neural network activation functions in the original range of values. In-
creasing latent data dimension size from 128 dimensions to the size of training
data, which is 1562 dimensions, slightly improves the quality of generated sam-
ples. However, the output range for absorbance values is still 1,000 orders of
magnitude smaller than for real data. Therefore, we employ mode-specific data
normalization to address the scaling and immediately observe improved model

convergence towards realistic data scaling and proportions, as can be seen in

Figure 3.2(c).
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|
| USE | Conditional Label | Discriminatory steps | Gumbel-Softmax | Packing | BCE loss | Gradient Penalty |
|| MSE (Test) | 220.58 | 229.19 | 224.21 | 203.07 | 297.22 | 221.20 |
| | KS Score | 0.316 | 0.356 | 0.353 | 0325 | 0286 | 0.366 |
| | CN Label Min | 36.9 | 36.1 | 34.6 | 387 | 251 | 34.4 |
| | CN Label Max | 48.1 | 47 4 | 50.5 | 505 | 373 | 45 |
| . | Diff CN | 11.2 | 112 | 15.9 | 118 | 121 | 105 |
|%| NOTUSE | | | | | | |
| | MSE (Test) | 241.52 | 232,91 | 237.89 | 259.03 | 164.88 | 240.9 |
| | KS Score | 0.32 | 0.279 | 0.282 | 0311 | 0349 | 0.269 |
| | CN Label Min | 36.7 | 37.4 | 40.7 | 349 | 488 | 39.2 |
| | CN Label Max | 48.2 | 48.8 | 45.8 | 458 | 594 | 51.4 |
| | Diff CN | 11.5 | 114 | 6.9 | 108 | 105 | 12.1 |

Table 3.1: ML Ablation test for Advanced GAN components
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To evaluate the quality of the generated data, we first consider the resulting
Ssyntn KS score. The newly generated data has KSscore = 0.536 indicating that ar-
tificial and real data CFDs are partially similar. We also use PCA decomposition
to project the first two PCs of each data subset onto each other (Figure. 3.3) to
observe if two subsets are decomposed similarly. The explained variance (EV)
by the first component PC; is 43.77 and 38.27% for synthetic and real data, cor-
respondingly. The EV for PC; is recorded as 27.01 and 33.48%. The two subsets
can be concluded to be similar, as their projections to lower-dimensional man-
ifold carry almost identical information. Next, we evaluate the performance of
our fitted GAN using model efficacy test and observe yet high MSE;,;;, = 119
explained in the evaluation section compared to the MSE;;;, = 14.8, which in-
dicates further improvement is necessary. To understand the effect of statistical
noise associated with the choice of the prediction model and labeling oracle for
model efficacy evaluation, we compare the use of the two most advanced model
architectures from §2.3.3. Using both the Fine-tuned Neural Network and the
Fine-tuned Support Vector Regression models as labeling oracle and final CN
prediction model, we record their corresponding testing MSEs to establish op-
timal model combination. We establish that using the Fine-tuned SVR model
as both labeling oracle (Figure 3.4(a)) and final prediction model (Figure 3.4(b))
leads to lowest testing error, and is therefore an optimal model for both use
cases. We perform a comprehensive ablation test to further explore the value
of using various advanced GAN techniques described in §3.2.2. We conduct
the test by iterative removal of components to understand their contribution to
overall model performance. We consider various metrics, such as model efficacy,
generated label range, diversity, and standard statistical tests, to evaluate the
change in GAN behavior with and without these components (Table 3.1). Due

to the high stochastic nature and computational power required to train GAN, a
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Figure 3.4: CN Prediction and synthetic data Labeling accuracy measured for
both SVR and NN models. Four combinations of Oracle-Prediction models
tested on Real-time data, (a) Oracle and (b) Prediction model evaluation
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comprehensive ablation test for all possible combinations of components is not
feasible within a given amount of time. Therefore we rely on general patterns
observed during the limited series of tests (total of 114 model configurations
trained), to fix multiple parameters and advance the architecture complexity in-
crementally afterwards.

The complete set of modules and parameter considerations for ablation test-
ing employs the following modifications. We use mode-specific normalization,
which includes conditioning both generator and discriminator on a discrete GMM
modes and activate them separately from continuous spectra attributes using
Gumbel-Softmax activation. In addition, the transformed absorbance/intensity
values disseminate through a chain of Leaky ReLU activation functions in the
hidden layers. The generator architecture is updated with Batch Normalization
layers, and discriminator/critic is equipped with Dropout layers respectively
after each activation step. The binary cross-entropy loss function is compared
against the Earth-Movers distance transportation function, effectively replacing
discriminator with WGAN critic configuration. Gradient penalty is used in-
stead of weight clipping for improved training stability. Additionally, we eval-
uate packing for the discriminator model, multi-step critic model update (as
discussed in §3.2.2), and several variants of conditioning GAN on additional
information, which we shall discuss later.

Building on top of our initial observations and ablation test results (Table
3.1) we observe the following. After applying mode-specific normalization, the
transformed spectroscopic data now holds information on each wavenumber’s
underlying Gaussian distribution mode and has an optimal value range for effi-
cient deep network modeling. We also confirm that using binary cross-entropy
loss function for discriminator leads to a mode collapse, as the output of gener-

ator becomes uniform and lacks diversity in output samples. Hence, it results in
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higher model efficacy MSE and a narrow range of CN values after labeling the
samples. Therefore, the optimal GAN model for synthesizing both Raman and
ATR spectroscopy is found to consist of generator and critic models, known as
WGAN, with several other modifications discussed further. Using conditional
information, such as CN labels as part of the ablation test, also shows improve-
ment in the generated data diversity . Although packing multiple samples into
one observation using the PacGAN approach improves the model convergence
for the baseline discriminator architecture, it is not practical to use packing for
Conditional GAN configuration with W-loss function. While it is straightfor-
ward to pack samples for the standard discriminators based on whether they
are real or synthetic samples, labeled 1 or 0, using the similarity loss function
negates this option. To maintain mixture-specific information, such packing pro-
cedures must be selected, ensuring that the same mixtures are packed together.
However, due to the disparity in sample sizes across mixtures, determining the
ideal packing degree is a difficult task. Further, having an imbalanced num-
ber of mixtures in each pack can cause fluctuations in the learning rate of the
generator and critic, skewing learning towards particular mixtures and causing
overall training instability. Therefore, packing is not used to construct the opti-
mal model. Changes to the latent space initialization method, size, or network
relative processing capability are not required at this stage because they do not
induce any changes in results and are thus not recorded or evaluated further. We
also note that the oscillations of the training loss are stabilized when a 2-4 step
critic update is performed before calculating and propagating gradients back to
the network weights of the generator model. Based on the review of ablation
test results, we finally conclude that the optimal spectra GAN model has Con-
ditional WGAN architecture with two layers of Leaky ReLU activations, Batch

Normalization, and Dropout hidden layers. The optimal model utilizes mode-
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Figure 3.5: Optimal GAN training loss history.

specific normalization with Gumbel-Softmax and hyperbolic tangent (htan) as
the final output layer activations for discrete and continuous values, respec-
tively. Moreover, our optimal GAN model uses multi-step critic update and
gradient penalty instead of weight clipping for efficient gradient update.

To measure the effectiveness of the optimal GAN model for spectroscopic
data, we first evaluate the training process convergence by tracking generator
and critic losses. We observe that after 66 epochs, the generator and critic loss
functions converge as shown in Figure 3.5, indicating that we achieve a stable
trained model. Next, we apply statistical similarity and ML efficacy tests to esti-
mate the quality of the newly generated data. Recording distribution similarity
between S,. and Sy, generated data results in a KSseore = 0.748, which is a
significant improvement. Plotted over the entire spectrum, Figure 3.8, we ob-
serve that lower KS-score locations correspond to locations of the highest spec-
tral peaks, hence, the highest variance in data, as expected. The model efficacy
evaluation results in MSE;,,;, = 37.9 with a standard deviation of o = 4.1,
indicating a significant improvement over the initial GAN configuration that re-

sulted in MSE;,,,;, = 119. Also, adopting the Mixed data scenario (described in
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§2.3.2), training GAN on all 245 available Raman samples did not improve pre-
diction accuracy over baseline. The range of CN values generated for synthetic
data as part of the Weak labeling process ([19.5 — 80.5]) revealed even more vari-
ability in the data produced and the overall quality of the generating process.

To evaluate the conformance of our sample generation core with the domain
knowledge, we enforce the generator to produce samples of a certain alkane
mixture. In particular, we condition our GAN on given CH2 and CH3 chemical
functional group concentrations encountered in such alkane. The concentration
values provided by Lynch Laboratory were only available for the ATR dataset.
Therefore we train GAN on ATR data instead of Raman for this evaluation. The
network architecture is updated to introduce an additional dimension that holds
spectroscopic data and two concentration values as three unique channels (di-
mensions) of information (Figure 3.7, 3.6). This allows GAN to concurrently
process and condition the generator to produce spectroscopy based on the pro-
vided concentration labels. Consequently, the critic also analyzes input samples
regarding their corresponding labels to calculate the difference in similarity be-
tween artificial and real samples.

Both the generator and critic models, learn the underlying data distribution
and are able to construct compact representations of real spectroscopy to ad-
just the generation of new samples according to input concentration values.
Ultimately, we train our GAN on 145 available ATR samples and enforce the
trained GAN generator to generate pure alkane samples by providing condi-
tional concentrations of CH2 and CH3 as a tuple of proportion float values (i.e.,
[0.35,0.65]). Note that pure alkanes are defined as mixtures, the sum of which
CH2 and CH3 concentrations add up to 1. The synthetic pure alkane samples
(Figure 3.9) are then visually evaluated by overlaying real S,.;; and generated

Ssynth, and inspecting the important spectroscopy “peaks” learned by GAN. The
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input: | [(None, 130)]
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l
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l

input: | (None, 256)
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input: | (None, 256)
output: | (None, 256)
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l
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l
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Figure 3.6: GAN Spectra generator optimized architecture.
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Figure 3.7: CGAN Spectra critic optimized architecture.
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Figure 3.8: The KS score for each wavenumber for CGAN output.

synthetic data are considered acceptable, as it captures important regions associ-
ated with the underlying properties of such a mixture with a low variance level
(the purple band shows the 95% Confidence Interval). It should, however, be
noted that due the presence of other mixtures in the data we may observe noisy
patterns. In addition, since the number of observations is limited particularly
for a certain “classes” of mixtures, disproportional learning of certain mixtures
over others is resulted. Furthermore, after performing model efficacy test on the
GAN conditioned on the concentration information, we observe improvement,
MSEg i, = 14.04, over ATR with MSEj;s, = 25.76. This leads to a reasonable as-
sumption that by expanding the diversity of the existing dataset with synthetic
samples produced by a robust generator, we are able to improve CN predic-
tion accuracy and improve the generalization capacity on unforeseen samples.
Since using GAN without CFG concentration labels did not result in improve-
ment over MSE,, for the Raman dataset, we also conclude that domain-driven
conditional information is a necessary tool to guide GAN towards meaningful

differentiation of samples. GAN can operate and diversify samples in an extra
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dimension of representation by providing additional details regarding empirical
properties of data.

Moving one step further, we restructure our generator as a multi-output
model that, besides generating new spectroscopic samples, outputs the esti-
mated remaining concentration of unknown chemical functional groups. This
serves as a sanity check of whether our GAN does indeed condition spectroscopy
on “known” functional group concentrations. Since we know that for all mix-
tures the remaining concentration levels should equal to 1 — CH2 — CH3, which
is 0 for all pure alkanes, we compare the predicted remaining concentrations
of generated samples to their theoretical remainder values (Table 3.2). We pro-
duce 10,000 random samples using the trained conditioned multi-output GAN,
record the predicted output and averaging the difference between predicted and
expected remaining concentration values across all generated samples. As a
result, we estimate a mean prediction error of 0.2572. In other words, from
a Domain-expert standpoint, the prediction accuracy of the sum of remaining
CFG concentrations for 10,000 generated samples is 74.28%. This result further
supports the claim that conditioning GAN on real fuel chemical properties al-
lows GAN to successfully map those properties to spectroscopy and generate

realistic artificial fuel samples.
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| Fuel | CH2 | CH3 | 1-CH2-CH3 | Predicted Remaining | Error |
| Ak1[0848 0152 0000 | 0.251 0251 |

| Alk2 | 1.000 | 0.000 |  0.000 0.154 | 0.154 |
| Alk3 | 0.700 | 0.300 | 0.000 0.038 | 0.038 |
| Alk4 | 0.867 | 0.133 |  0.000 0.172 0172 |
| Alk5 | 0.823 | 0.177 | 0.000 0.071 [ 0.071 |

|
|
|
|
| Alk6 | 0.808 | 0.192 | 0.000 | 0.106 | 0.106 |
|
|
|
|

| Alk7 | 0.789 | 0211 |  0.000 0.140 | 0.140 |
| Mix1 | 0293|0315 |  0.392 0.313 | 0.079 |
| Mix2 | 0.678 | 0.226 |  0.096 0.019 | 0.077 |
| Mix 3 | 0.767 | 0.168 |  0.065 0.150 | 0.085 |

Table 3.2: Remaining concentration prediction result for first 10 mixtures
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Figure 3.9: Pure alkane Mixtures ATR comparison between Real (red) and gener-
ated (black) data with 95% Confidence Interval (blue) across generating 10,000
samples of given spectra. CH2-CH3 concentration (a) Alk 1: [0.848, 0.152] (b)
Alk 2: [0,1]
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Figure 3.9: Pure alkane Mixtures ATR comparison between Real (red) and gen-
erated (black) data with 95% Confidence Interval (blue) across generating 10,000
samples of given spectra. CH2-CH3 concentration (c) Alk 3: [0.7, 0.3] (d) Alk 4:
[0.867,0.133]
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Figure 3.9: Pure alkane Mixtures ATR comparison between Real (red) and gen-
erated (black) data with 95% Confidence Interval (blue) across generating 10,000
samples of given spectra. CH2-CHS3 concentration (e) Alk 5: [0.823, 0.177] (f) Alk
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97



Chapter 3. Synthetic Data Generation 3.3. Experimental Results

0.351

—— Real data
0.30 - —— Synthetic data
— 95% ClI
> 0.25;
1S,
o 0.20
o
% 0. 1 5 1 1200 1300 1400 1500 1600 1700
£
o 0.10-
v
0
<t 0.05 h
0.00 - -4 "
-0.05

1000 1500 2000 2500 3000 3500 4000
Wavenumber (cm™?)

(g) Alk 7

Figure 3.9: Pure alkane Mixtures ATR comparison between Real (red) and gen-
erated (black) data with 95% Confidence Interval (blue) across generating 10,000
samples of given spectra. CH2-CH3 concentration (g) Alk 7: [0.789, 0.211]
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Conclusion

This research has been initiated with the assumption that there is indeed a deep
connection between fuel mixture ignition properties and the corresponding fuel
spectroscopy pattern. We reasonably assumed that such a connection could be
compressed and learned using Machine Learning tools. To test this assump-
tion, we developed a comprehensive methodology to evaluate such mapping
tools grounded in explainability and domain-expert evaluation for complete re-
sult transparency. We tasked ourselves with solving a real-world chemometrics
and engineering problem and provided a detailed description of the theoretical
background and implementation considerations for all techniques used. In the
process of exploring this relation, we have also identified a gap in the literature
on scalability and interpretability approaches for ML-based analysis and syn-
thetic data generation of spectroscopy data. Given the high-dimensionality and
limited size nature of spectroscopy data, we explored the option of generating
additional synthetic samples to expand our training dataset size and diversity.
With the lack of quality research on the technical implementation of generative
modeling for spectroscopy data, we implemented and evaluated the best avail-
able techniques to build a robust, transparent synthetic spectroscopy simulation

core.
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Using various feature selection techniques, we were able to confirm that the
reduced subset of features in general results in a less complex, computationally
more efficient, and yet accurate prediction model. Based on our interpretabil-
ity evaluation, we were also able to confirm the conformance of the attribute
selection and prediction results in terms of known chemistry, ensuring that the
domain expert can trust such algorithmic results. We were able to explain the
behavior of complex ML models using various model-agnostic methods, which
has not been done before in chemometrics to this extent, and report on the per-
formance of model-based methods. As discovered, using model-agnostic expla-
nation techniques, features derived from complex ML models were generally
of higher quality than from model-based methods, with the exception of a sub-
set of Random Forest features that performed best overall on the Performance-
Explainability trade-off scale. While the PCA and PLS decomposition methods
are still considered primary and most widely-used techniques for spectroscopy
data analysis, our investigation concluded that these methods were inferior to
all other feature extraction techniques covered in this work to establish an accu-
rate relationship between fuel spectroscopy and associated CN. This claim does
not necessarily extend to all possible processes considered in chemometrics, as
PCA and PLS have been shown to function effectively for other applications.

In the second part of this research, we developed a robust synthetic sample
generation model to address the issue of the limited size of fuel spectroscopy
data. By analyzing and testing the most advanced generative techniques, we
were able to construct a powerful GAN model capable of synthesizing high-
quality, artificial Raman and ATR fuel spectroscopy data. Such a model was
shown to not only improve data representation but also boost the performance
of our optimal CN prediction model, resulting in almost twice better prediction

accuracy. Through a series of comprehensive statistical similarity, ML efficacy,
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and domain-expert conformance evaluations, we were also able to show that
such data are generated in a meaningful, explainable way and hold the same
physical properties as real data.

All in all, from isolating particular regions in spectroscopy using statistical
explanation behind the selection process to mapping underlying spectroscopy
distribution with GAN, we were able to develop an explainable framework of
spectroscopy to fuel property mapping. Our results demonstrate that such a
connection exists and can be efficiently compressed and represented to predict
empirical sample properties. As every step of this evaluation remains explain-
able, such methods are likely to be trusted and used by domain practitioners,
which we encourage.

Based on the provided discussion, a further investigation into the efficacy of
employing the conditional GAN model to generate Raman spectroscopy is nec-
essary. While we show that conditioning GAN on CFG concentrations improves
prediction accuracy for ATR data, the same claim cannot be fully concluded for
Raman data since no CFG concentrations were not available for mixtures in the
Raman dataset. Future work must also include a comprehensive analysis of
synthesizing reduced data based on the regions selected with feature selection
methods, described in Chapter §2, as well as the generated reduced data for
CN prediction. An analysis of signal filtering and spectroscopy pre-processing
methods must also accompany such investigation to ensure a complete end-to-
end solution from spectroscopy collection to CN prediction is developed.

In practice, such framework can be deployed as a complete Al solution for
mapping material properties to material spectroscopy and generating novel ma-
terials (products) with desired properties that have not been designed or ex-
plored yet. The proposed solution and the accompanying analysis, plus method-

ology, are not limited to merely fuel spectroscopy domain either. The provided
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insight and findings of this study can be generalized to other domains as well.
Using automated explainability metrics and effective data generation process a
pharmaceutical, food or energy industry expert can easily decide on the quality
of newly generated design or property prediction. The decision to refuse or ac-
cept new outcome becomes less arbitrary. Instead, it is based on data analysis.
Since such framework can be employed for any type of spectroscopy and un-
derlying material in question, it can be scaled across entire organisation or span
across multiple industries, saving time and money to evaluate and develop new

and existing products.
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