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SUMMARY

Most of the tools and methods developed for causal discovery rely on a graphical repre-

sentation based on Bayesian networks which assumes independent and identically distributed

(i.i.d) instances. Probabilistic relational models have been developed to relax this assumption.

The key advantage of these relational models is that they can represent systems involving mul-

tiple types of entities interacting with each other with some probabilistic dependence. Causal

reasoning over such relational systems is key to understanding many real-world phenomena,

such as social influence. Influence in complex dynamic systems is often mutual and represented

by a feedback loop or cycle in the relational model. Identifying mutual influence in relational

models is of great interest in the research community. For example, social scientists and mar-

keting experts are interested in studying the social dynamics between people and products in

social networks. However, there is a lack of available methods for discovering mutual influence

or cycles in complex relational systems. Most of the works on causal structure learning assume

that the observational data samples are identically and independently distributed (i.i.d) and

as a result are not directly applicable to relational models. At the same time, existing causal

discovery algorithms for relational causal models assume acyclicity and rely on prior domain

knowledge for conditional independence tests.

The primary objective of this thesis is to address the deficiencies of existing relational causal

discovery approaches by developing tools and methods for practical application of causal dis-

covery on complex relational systems with feedback loops or cycles. In my thesis, I develop

xv



SUMMARY (Continued)

sigma-abstract ground graph, a sound and complete representation for cyclic relational causal

models which can capture conditional independence relationships consistent across all possible

instantiations of the model by an operator called relational sigma-separation. Based on this

new representation and theoretical guarantees, I define relational acyclification- an important

property of cyclic relational causal models that helps identifying such models from observational

data. I prove that under certain assumptions and conditions, the existing relational causal dis-

covery algorithm (RCD) is sound and complete for cyclic relational causal models. Experimental

evaluations conducted on publicly available datasets and synthetically generated datasets sup-

port my theoretical contributions. The state-of-the-art conditional independence (CI) test for

relational data depends on domain knowledge about the type of dependence and lacks conver-

gence guarantees which makes them unsuitable for large-scale real-world applications. In my

thesis, I formalize a general notion of relational dependence and develop a consistent CI test

method based on kernel mean embeddings that can capture complex dependence functions over

node neighborhoods. Causal structure learning is NP-hard and constraint-based algorithms

reduce this complexity by learning the local structure of each variable first. I conducted a

comprehensive study of sampling strategies for relational classification which can help iden-

tify the important variables in local structures. I introduced a novel sampling method based

on Weisfeiler-Lehman isomorphism that provides competitive predictive accuracy for one-shot

active learning in relational classification.

xvi



CHAPTER 1

INTRODUCTION

Recent advances in machine learning have introduced numerous tools and methods for

informed decision-making from observational data. The utility of such methods is often limited

because of their associational nature and failure to capture causal knowledge. Researchers in

practice often look for causal answers through randomized controlled trials (RCT) which can be

costly or involve unethical manipulation (Pearl, 2009). For example, one cannot force a person

to smoke to observe how their social connections get influenced by the action. As a result,

causal inference from observational data is much desired and often the only feasible solution for

practitioners. The goal of causal structure learning (CSL) is to estimate the causal model of

the true data generating process which is typically represented with graphical models (Pearl,

2009). The discovery of such graphical models from observational samples enables causal effect

identification and estimation through the do-calculus (Pearl, 2009; Tucci, 2013).

Most of the tools and methods developed for causal discovery rely on a graphical repre-

sentation based on Bayesian networks which assume independent and identically distributed

(i.i.d) instances. Probabilistic relational models (Getoor et al., 2007) have been developed that

relax this assumption. The key advantage of these relational models is that they can represent

systems involving multiple types of entities interacting with each other with some probabilis-

tic dependence. Causal reasoning over such relational systems is key to understanding many

real-world phenomena, such as social influence. Influence in complex dynamic systems is often

1
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mutual and represented by a feedback loop or cycle in the relational model. For example, the

study by Christakis and Fowler (2007) shows the challenges in estimating the contribution of

environmental factors and peer effect in the spread of obesity in social network where a peer

effect can be represented as a feedback loop between an ego (focal node) and its alters (direct

ties) in the network. Intuitively, the true causal structure is acyclic over time since a cause

always precedes its effect– friends’ influence on a person followed by their influence on friends.

Even though the granular cause and effect happen in minutes or hours, measures of these effects

are typically cumulative averages over a much longer time period. For example, in biological

systems, interactions occur in fractions of seconds whereas the measurements are typically taken

in minutes or hours. In such cases, a cyclic representation provides a natural way of reasoning

about the causes and effects. Effective methods for identifying and estimating such phenomena

can have implications for clinical and public health interventions. For this reason, social sci-

entists and marketing experts are interested to study the social dynamics between people and

products in social networks (Bakshy et al., 2011, 2015; Ogburn et al., 2020). However, there

is a lack of available methods for discovering mutual influence or cycles in complex relational

systems.

The development of relational causal models, which generalize over structural causal models,

is an important step towards capturing interactions between non-i.i.d instances (Maier et al.,

2013b,a; Lee and Honavar, 2015; Bhattacharya et al., 2020). Relational models involve multiple

types of interacting entities with probabilistic dependencies among their attributes. Maier et al.

(2013b) developed a lifted causal representation named abstract ground graph (AGG) that
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Engagement

POST

Sentiment

USER

Preference

MEDIA
REACTS CREATES

Figure 1: Example of relational model with and without a feedback loop. Rectangle, rhombus,

and oval shapes represent an entity, relationship, and attributes respectively. Arrows refer to

relational dependence. The solid arrows constitute an acyclic relational model. The dashed

arrow creates a feedback loop in the model.

abstracts over all instantiations of a relational model. In addition, they introduced relational d-

separation criteria to answer relational queries through AGG. These tools and methods enable

relational causal discovery from observational data (Maier et al., 2013a). However, existing

studies in relational causal models assume acyclicity and do not allow for reasoning about

identification in the presence of feedback loops.

Figure 1 shows an example of a relational model where users react to news articles or posts

on a specific topic (e.g., vaccines) generated by media agencies. The preference of the media

regarding a topic (e.g., pro- vs anti-vaccination) is influenced by the engagement or feedback

(e.g., positive/negative comments) it receives on its existing posts. The sentiment of a user

towards a given post directly impacts their engagement in the post. The relational model

representation tempts one to conclude that the sentiment of users regarding vaccination is
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independent of the preference of media agencies given the engagements of the posts the users

react to. However, as I show in section 2.2.2, this is not necessarily true.

One of the fundamental challenges in learning cyclic relational causal models is the

lack of a theoretically sound abstract representation that can capture conditional independence

relationships consistent across all possible realizations of the given model. In Figure 1, users’

sentiment can also be impacted by the engagements in posts they interact with. The dashed

arrow in Figure 1 represents such a dependency which makes the model a cyclic one. Unfor-

tunately, even though the model seems simple and realistic, the abstract ground graph (AGG)

representation and relational d-separation no longer apply in the general setting due to the

presence of a feedback loop (i.e., a cycle). I propose relevant representations in Chapter 3.

To the best of my knowledge, no existing study focuses on discovering relational causal

models with cycles from observational data. The closest works on cyclic causal discovery as-

sume i.i.d data or do not consider relational data. Richardson (1996) develop a cyclic causal

discovery (CCD) algorithm which is shown to be sound but not complete. In recent work,

Mooij and Claassen (2020) provides necessary conditions for constraint-based causal discovery

algorithms developed for acyclic causal models, such as PC (Pearl et al., 2000) and FCI (Spirtes

et al., 2000), to be sound and complete for cyclic causal models under σ-separation criteria.

There are several other algorithms for cyclic causal discovery from i.i.d samples (Rothenhäusler

et al., 2015; Strobl, 2019a) but no such algorithm exists for cyclic relational causal models.

Sound and complete algorithms have been proposed for learning relational causal models from

observational data (Maier et al., 2013a; Lee and Honavar, 2016a,b). However, they assume
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acyclicity and thus cannot reason about mutual influence or cycles. A big obstacle in adopting

these existing discovery methods is reasoning about the equivalence class and identifiability of

cycles in relational causal models. I address this obstacle in Chapter 4.

Apart from theoretical aspects, relational causal discovery faces challenges for application

in real-world scenarios. One of the building blocks of constraint-based structure learning al-

gorithms is conditional independence tests. There are some conditional independence tests

proposed over the years but they are mostly intended for i.i.d propositional variables (Gretton

et al., 2005; Strobl et al., 2019; Zhang et al., 2011). The few CI test methods targeted for non-

i.i.d data make strong assumptions about the nature of dependence among the interconnected

entities (Flaxman et al., 2015; Lee and Honavar, 2017). Flaxman et al. (2015) develop a test

between propositional variables accounting for latent homophily in a grid network but do not

consider relational variables. The state-of-the-art method for relational conditional indepen-

dence test, KRCIT, considers a flattened representation of the relational data and eventually

utilizes an existing CI test designed for i.i.d data. However, their approach has three key limi-

tations. First, it requires practitioners to make explicit assumptions about the data generating

processes and to specify an aggregation function over the relational variable a priori. Second,

existing tests rely on propositionalization, which refers to the process of projecting connected

data to a single, propositional table, which raises statistical concerns (Maier et al., 2013c).

Third, it is computationally expensive and inapplicable to large relational datasets. Because of

these limitations of the state-of-the-art relational conditional independence methods, the ap-

plication of relational causal discovery faces two major challenges. First, it’s not generalizable
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and requires prior domain knowledge, and second, it’s not scalable to the size of real-world

networks. I address these limitations in Chapter 5.

Real-world relational data are often quite large and any discovery or prediction tasks on

it suffers from it. A natural solution for this is to consider a sample from the original data.

However, sampling from relational data is not a trivial task since it needs to take the relational

structure in consideration. There are several sampling methods proposed for relational data over

the years but there is a lack of understanding about the effectiveness of these sampling methods.

The closest works on such a comparative study relies on relational classification tasks for the

comparison of sampling methods Berton et al. (2016); Ahmed et al. (2013). These studies are

relatively old and doesn’t consider modern deep-learning-based relational classification methods.

In this study, I conduct a comprehensive empirical evaluation of existing sampling methods for

relational data and proposed a new sampling technique based on latent structural properties of

the data. The results and discussions on the empirical study in provided in Chapter 6.

The goal of this thesis is to develop theoretically sound methods and necessary tools to

enable relational causal discovery with cycles from real-world observational samples. Here, I

summarize the contributions of each chapter:

I Relational Causal Models with Cycles: Representation and Reasoning. In this

work, I focus on the representation of and reasoning about cyclic RCMs. I define a new

abstract representation, σ-abstract ground graph (σ-AGG) Ahsan et al. (2022a) which

generalizes over cyclic relational models. In order to reason about relational queries in

σ-AGG, I introduce relational σ-separation and provide proof for its soundness and com-
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pleteness for all instantiations of a relational model. I show the sufficient conditions for

the completeness of σ-AGG by first resolving an open problem on the completeness of

AGG. Finally, I discuss the Markov condition of relational σ-separation and its implica-

tions. This work lays the foundation for developing algorithms to discover cyclic relational

causal models from observational data.

II Learning Relational Causal Models with Cycles. Based on the development of

necessary representation and reasoning methods for cyclic relational causal models, I focus

on causal discovery from observational samples. In order to reason about the equivalence

class and identifiability of cycles in relational models, I introduce relational acyclification,

an operation that helps to reason over the scope of cyclic relational models which are

identifiable with constraint-based causal discovery algorithms. I characterize the necessary

conditions for the existence of valid relational acyclification. Following this criterion, I

show that RCD (Maier et al., 2013a), a pioneering relational causal discovery algorithm

for acyclic relational models, is sound and complete for cyclic relational models under σ-

separation and causal sufficiency assumption. I provide experimental results on synthetic

relational models in support of my claims. I also demonstrate the effectiveness of the

algorithm on a real-world dataset.

III Nonparametric Inference of Relational Dependence. In this thesis, I focus on

developing tools and techniques to make relational causal discovery methods applicable

to large-scale real-world use cases. I develop a general definition for relational depen-

dence and an accompanying statistical test, NIRD Ahsan et al. (2022b) for marginal and
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conditional relational dependence that is able to capture a family of aggregate functions

for characterizing relational dependence. Specifically, I propose using kernel mean em-

beddings as aggregations that lend themselves to a non-parametric inference of relational

dependence with standard statistical tests. Since kernel tests can be notoriously slow and

impractical, I introduce an approximation to my test which makes it scalable to larger

networks. I evaluate the proposed method by comparing it to KRCIT on a variety of syn-

thetic and semi-synthetic networks and simulate several social network characteristics,

such as structure, density, and size.

IV Effectiveness of Sampling Strategies on Relational Data. I conduct a comprehen-

sive study of sampling strategies for relational classification in a one-shot active learning

setup over four real-world datasets and four state-of-the-art relational classifiers which I

describe in Chapter 6. I consider both graph sampling algorithms as well as sampling

strategies specifically designed for semi-supervised node classification. I also propose a

sampling approach based on the Weisfeiler-Lehman algorithm which shows promising

results in the empirical evaluation. My proposed sampling method, Weisfeiler-Lehman

Sampling (WLS) Ahsan and Zheleva (2020) relies solely on the structural role of nodes for

label acquisition decisions. One of its main advantages is that it is computationally effi-

cient and yet harnesses structural information effectively. My empirical evaluation shows

that even though there isn’t one sampling method that performs the best consistently

across datasets and classifiers, Weisfeiler-Lehman ranks the highest on average.
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The rest of the thesis is structured as follows: Chapter 2 provides the necessary background

on relational causal models and causal discovery in general. Chapter 3 introduces σ-AGG, the

proposed abstract representation of cyclic relational causal models, and a theoretically sound

operator called relational σ-separation to enable answering relational queries on cyclic relational

models. Chapter 4 examines the necessary and sufficient conditions for causal discovery of cyclic

relational causal models and establishes the effectiveness of the RCD algorithm (Maier et al.,

2013a) for relational causal discovery with cycles. Chapter 5 formalizes the proposed relational

dependence and a corresponding non-parametric CI test. Chapter 6 describes the comprehensive

study of sampling strategies for one-shot active learning on relational data. Chapter 7 provides

a discussion on the overall contribution of the thesis and possible future directions in the study

of relational causal discovery with cycles.



CHAPTER 2

BACKGROUND

Discovering cyclic relational causal models largely depends on two categories of existing

studies: 1) cyclic causal discovery for propositional models, and 2) relational causal discovery

with acyclicity assumption. Therefore it is important to provide necessary background on both

these lines of works. I denote random variables with uppercase letters, realizations of random

variables with lower case, and bold to denote sets.

2.1 Graphical Causal Models

A structural causal model (SCM) consists of sets of random variables and a set of structural

equations that describes how values are assigned to the random variables (Pearl, 2009). A

directed graph G = (V ,E) is used to represent the SCM where the set of nodes V correspond

to the random variables and edges E corresponds to the structural equations. If there is an

edge X → Y , we say that X is a parent of Y and Y is a child of X. The set of parents

for some node X is denoted by parents(X). A walk between two nodes u, v ∈ V is a tuple

〈v0, e1, v1, e2, v2, ..., en, vn〉 of alternating nodes and edges in G(n ≥ 0), such that v0, ..., vn ∈ V ,

and e1, ..., en ∈ E, starting with node v0 = u and ending with node vn = v where the edge

ek connects the two nodes vk−1 and vk ∈ V for all k = 1, ..., n. If the walk contains each

node at most once, it is called a path. A directed walk (path) from vi ∈ V to vj ∈ V is

a walk (path) between vi and vj such that every edge ek on the walk (path) is of the form

10
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vk−1 → vk, i.e., every edge is directed and points away from vi. We get the ancestors of

node vj by repeatedly following the path(s) through the parents: ANG(vj) := {vi ∈ V : vi =

v0 → v1 → ... → vn = vj ∈ G}. Similarly, we define the descendants of vi : DEG(vi) :=

vj ∈ V : vi = v0 → v1 → ...→ vn = vj ∈ G. Each node is an ancestor and descendant of itself.

A directed cycle is a directed path from vi to vj such that in addition, vj → vi ∈ E. All nodes

on directed cycles passing through vi ∈ V together form the strongly connected component

SCG(vi) := ANG(vi) ∩DEG(vi) of vi.

The most common graphical representation for causal models is directed acyclic graphs

(DAGs) which doesn’t allow any cycles or feedback loops. A fundamental notion in DAGs is

the d-separation criteria Pearl (1988):

Definition 1 (d-separation). A walk 〈v0...vn〉 in DCG G = 〈V ,E〉 is d-blocked by C ⊆ V if:

1. its first node v0 ∈ C or its last node vn ∈ C, or

2. it contains a collider vk /∈ ANG(C), or

3. it contains a non-collider vk ∈ C.

If all paths in G between any node in set A ⊆ V and any node in set B ⊆ V are d-blocked by

a set C ⊆ V , we say that A is d-separated from B by C, and we write A
d

|=

G
B|C.

d-separation exhibits the Markov property in DAGs which states that:

Definition 2 (Causal Markov property). Given a graphical model G = (V ,E), if two variables

X ∈ V and Y ∈ V are d-separated given another variable Z ∈ V in a DAG representation
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then X and Y are conditionally independent given Z in the corresponding distribution of the

variables.

2.1.1 Cyclic Graphical Causal Models

DAGs provide ways for natural causal interpretation but cannot reason about cyclic causal

models. A more general class of graphs are directed cyclic graphs (DCGs) which drop the

assumption of acyclicity (and allow feedback loops). These graphs are appropriate for (possibly

cyclic) structural causal models (SCMs) where the corresponding Markov properties and causal

interpretation are more subtle (Bongers et al., 2021). Cyclic SCMs are useful to represent causal

semantics of equilibrium states in dynamical systems (Bongers et al., 2021).

Directed cyclic graphs offer certain properties that help model cyclic causal models. Given

a directed cyclic graph G = (V ,E), all nodes on directed cycles passing through node i ∈ V to-

gether form the strongly connected component SCG(i) = ANG(i)
⋂
DEG(i) of i where ANG(i)

and DEG(i) refers to the ancestors and descendants of node i ∈ V . The set of conditional

independence entailed in DCG, G is refereed to as independence model IM(G).

Unlike DAGs, DCGs are not guaranteed to satisfy the Markov property in a general case

under d-separation. Instead, a different notion of separation, called σ-separation satisfies the

Markov property of DCGs (Forré and Mooij, 2017). The σ-separation criterion is very similar

to the d-separation criterion where the main difference is σ-separation has as an additional

condition for a non-collider to block a path that it has to point to a node in a different strongly

connected component (Mooij and Claassen, 2020).

Definition 3 (σ-separation). (Forré and Mooij, 2017)
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A walk 〈v0...vn〉 in DCG G = 〈V ,E〉 is σ-blocked by C ⊆ V if:

1. its first node v0 ∈ C or its last node vn ∈ C, or

2. it contains a collider vk /∈ ANG(C), or

3. it contains a non-collider vk ∈ C that points to a node on the walk in another strongly

connected component (i.e., vk−1 → vk → vk+1 with vk+1 /∈ SCG(vk), vk−1 ← vk ← vk+1

with vk−1 /∈ SCG(vk) or vk−1 ← vk → vk+1 with vk−1 /∈ SCG(vk) or vk+1 /∈ SCG(vk)).

If all paths in G between any node in set A ⊆ V and any node in set B ⊆ V are σ-blocked by

a set C ⊆ V , we say that A is σ-separated from B by C, and we write A
σ

|=

G
B|C.

σ-faithfulness refers to the property which states that all statistical dependencies found in

the distribution generated by a given causal model are entailed by the σ-separation relationships.

Richardson (1996) show that a class of graphs called Partial Ancestral Graphs (PAG) is a

sufficient representation for the equivalence class of cyclic causal models represented by DCGs.

PAGs have also been shown to be a sufficient representation for causal discovery with cycles

and unobserved confounders (Mooij and Claassen, 2020). Since we are assuming no selection

bias for simplicity, we will only discuss directed PAGs (DPAG) in this study.

2.1.2 Directed Graphs with Hyperedges (HEDGes)

Forré and Mooij (2017) introduced the concept of directed graphs with hyperedges (HEDGes).

A HEDG is a tuple G = (V, E ,H), where (V, E) is a directed graph (with or without cycles)

and H a simplicial complex over the set of vertices V of G. A simplicial complex H over V is a

set of subsets of V such that: 1) all single element sets {v} are in H for v ∈ V, and 2) if F ∈ H

then also all subsets F ′ ⊆ F are elements of V.
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The general directed global Markov property (gdGMP) for the HEDGes is stated as follows:

Definition 4 (gdGMP Forré and Mooij (2017)). For all subsets X,Y, Z ⊆ V we have the

implication:

X
σ

|=

G
Y |Z =⇒ X |=

Pv

Y |Z

Forré and Mooij (2017) introduced an operation called acyclification for directed cyclic

graphs that generates DAGs with equivalent independence models as the given DCG. It allows

a single DPAG to represent the ancestral relationship of a DCG G and all its acyclifications G′.

Definition 5 (Acyclification (Forré and Mooij, 2017)). Given a DCG G = (V, E), an acyclifi-

cation of G is a DAG G′ = (V, E ′) with

i the same nodes V;

ii for any pair of nodes i, j such that i /∈ SCG(j): i→ j ∈ E ′ iff there exists a node k such

that k ∈ SCG(j) and i→ k ∈ E;

iii for any pair of distinct nodes i, j such that i ∈ SCG(j): i→ j ∈ E ′ or i← j ∈ E ′;

Proposition 1 ((Mooij and Claassen, 2020)). For any DCG G and any acyclification G′ of G,

IMσ(G) = IMσ(G
′) = IMd(G

′) where IMσ(G) and IMd(G) refers to the independence model

of the given DCG G under σ-separation and d-separation respectively.
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2.2 Relational Causal Model (RCM)

We adopt the definition of relational causal model used by previous work on relational causal

discovery (Maier et al., 2013a; Lee and Honavar, 2020). We use a simplified Entity-Relationship

model to describe relational data following previous work (Heckerman et al., 2007). A relational

schema S = 〈E ,R,A, card〉 represents a relational domain where E , R and A refer to the set of

entity, relationship and attribute classes respectively. A cardinality constraint on a relationship

limits how many times an entity instance is involved in a relationship. Figure 1 shows an

example relational model that describes a simplified user-media engagement system. The model

consists of three entity classes (User, Post, and Media), and two relationship classes (Reacts

and Creates). Each entity class has a single attribute. The cardinality constraints are shown

with crow’s feet notation— a user can react to multiple posts, multiple users can react to a

post, a post can be created by only a single media entity.

2.2.1 Relational Variable

We follow prior work to define a relational variable as a set of random variables (Lee and

Honavar, 2017; Maier et al., 2013a).

Definition 6 (Relational Variable). Given a relational schema S = 〈E ,R,A〉, its instantiation

G and a path predicate ρ, a relational variable σ(vi,X, G, ρ) is the set of attributes vj .X selected

by ρ of nodes vj ∈ V reachable from vi ∈ V such that X ⊂ A, where the path predicate ρ is a

function given by:

ρ(vi,X, G) : V �→ 2{vj .X|vj∈V}.
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An example path predicate could be ρ(vi, X,G) = {vj .X|vj ∈ N̂ (vi)} where N̂ (vi) refers to

the direct neighbors of vi in G. Considering this path predicate we can simplify the notation

for the relational variable corresponding to an attribute X by just σX(vi). Note that σX(vi)

can represent a propositional variable as a special case. For example, σX(vi) = {vi.X} refers

to the X attribute of node vi itself.

We will assume the following for the rest of the thesis:

A 1. Each node v ∈ V has degree of at least 1.

A 2. The network structure is fixed and doesn’t change during the generation of the observed

random variables.

A relational skeleton s is an instantiation of a relational schema S, represented by an

undirected graph of entities and relationships. Figure 2a shows an example skeleton of the

relational model from Figure 1. It shows that Alice and Bob both react to post P1. Alice also

reacts to post P2. P1 and P2 both are created by media M1. There could be infinitely many

possible skeletons for a given RCM. We denote the set of all skeletons for schema S as
∑

S .

Given a relational schema, we can specify relational paths, which intuitively correspond

to ways of traversing the schema. For the schema shown in Figure 1, possible paths include

[User,Reacts, Post] (the posts a user reacts to), as well as [User,Reacts, Post, Reacts, User]

(other users who react to the same post). Relational variables consist of a relational path and an

attribute. For example, the relational variable [User,Reacts, Post].Engagement corresponds

to the overall engagements of the post that a user reacts to. The first item (i.e. User) in

the relational path corresponds to the perspective of the relational variable. A terminal set,
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P |ik is the terminal item on the relational path P = [Ij , ..., Ik] consisting of instances of class

Ik ∈ E ∪R.

A relational causal model M = 〈S,D〉, is a collection of relational dependencies defined

over schema S. Relational dependencies consist of two relational variables, cause and effect. As

an example, consider the following relational dependency [Post, Reacts, User].Sentiment →

[Post].Engagement which states that the engagement of a post is affected by the sentiment

of users who react on that post. In Figure 1, the arrows represents relational dependencies.

Note that, all causal dependencies are defined with respect to a specific perspective. The last

example was from the perspective of Posts.

2.2.2 Ground Graph and Abstract Ground Graph

A realization of a relational model M with a relational skeleton is referred to as the

ground graph GGM. It is a directed graph consisting attributes of entities in the skele-

ton as nodes and relational dependencies among them as edges. A single relational model

is actually a template for a set of possible ground graphs based on the given schema. A

ground graph has the same semantic as a graphical model. Given a relational model M

and a relational skeleton s, we can construct a ground graph GGMs by applying the rela-

tional dependencies as specified in the model to the specific instances of the relational skele-

ton. 2b shows the ground graph for the relational model from Figure 1. The relational de-

pendencies present in the given RCM may temp one to conclude a conditional independence

statement: [User].Sentiment |= [Media].P reference|[Post].Engagement. However, when the

model is unrolled in a ground graph we see the corresponding statement is not true (i.e.
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Sentiment

ALICE

Sentiment
BOB

Engagement
P1

Engagement
P2

Preference
M1

REACTS
REACTS

REACTS

CREATES

C
R
EATES

(a) Relational Skeleton

Alice.Sentiment

Bob.Sentiment

P1.Engagement

M1.Preference

P2.Engagement

(b) Ground Graph

[USER, REACTS, POST, CREATES, MEDIA, CREATES, POST].Engagement

[USER].Sentiment [USER, REACTS, POST].Engagement [USER, REACTS, POST, CREATES, MEDIA].Preference

[USER, REACTS, POST, REACTS, USER].Sentiment

[USER, REACTS, POST, REACTS, USER, REACTS, POST].Engagement

[USER, REACTS, POST, CREATES, MEDIA, CREATES, POST].Engagement

[USER, REACTS, POST, REACTS, USER, REACTS, POST].Engagement

(c) Abstract Ground Graph

Figure 2: Fragments of a relational skeleton, ground graph, and abstract ground graph corre-

sponding to the relational causal model from Figure 1. The arrows represent relational depen-

dencies.

[Bob].Sentiment �⊥⊥ [M1].P reference|[P1].Engagement) since there is an alternative path

through [Alice].Sentiment and [P2].Engagement which is activated when conditioned on

[P1].Engagement. This shows why generalization over all possible ground graphs is hard.

An abstract ground graph (AGG) is an abstract representation that solves the problem

of generalization by capturing the consistent dependencies in all possible ground graphs and

representing them as a directed graph. AGGs are defined for a specific perspective and hop
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threshold, h. Hop threshold refers to the maximum length of the relational paths allowed in

a specific AGG. There are two types of nodes in AGG, relational variables and intersection

variables. Intersection variables are constructed from pairs of relational variables with non-

empty intersections (Maier et al., 2013b). For example, [User,Reacts, Post] refers to the set

of posts a user reacts to whereas [User,Reacts, Post, Reacts, User,Reacts, Post] refers to the

set of other posts reacted by other users who also reacted to the same post as the given user.

These two sets of posts can overlap which is reflected by the corresponding intersection variable.

Edges between a pair of nodes of AGG exist if the instantiations of those constituting relational

variables contain a dependent pair in all ground graphs. We define W as the set of nodes

augmented with their corresponding intersection nodes for the set of relational variables W :

W = W ∪⋃W∈W {W ∩W ′|W ∩W ′ is an intersection node in AGGMs }. Figure 2c presents the

AGG from the perspective of User and with h = 6 corresponding to the model from Figure 1.

The AGG shows that the sentiment of a user is no longer independent of media preference given

just engagements of the corresponding posts the user reacts to. We also need to condition on

the sentiment of other users who reacted to the same post.

2.2.3 Relational d-separation

Relational model describes a template for many possible instantiations of a relational

schema. In order to reason about conditional independence facts entailed in all instances of a

given relational template, Maier et al. (2013b) develop a relational counterpart for d-separation

criteria. Two sets of relational variables X and Y from a given perspective are said to be

d-separated by another set Z if and only if the terminal sets of X and Y are d-separated by
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the terminal set of Z from the given perspective in all possible ground graphs of the given

model. Maier et al. (2013b) introduce AGG as a means to reason about relational d-separation

queries from a given perspective. The soundness and completeness of relational d-separation

for AGG relies on the following assumptions:

A 3. The relational model is acyclic.

A 4. There are no unobserved confounders in the relational model.

Here, soundness refers to the fact that any d-separation relationship found in AGG implies

corresponding d-separation relationship in all ground graphs it represents whereas completeness

claims that the d-separation facts that hold across all ground graphs are also entailed by d-

separation on the AGG. The soundness of relational d-separation under AGG is already proved

by Maier et al. (2013b). However, the conditions under which completeness holds have been an

open question since (Lee and Honavar, 2015) show that the initial formulation of Maier et al.

(2013b) is not complete. We resolve this question in Section 3.4 and show that AGG is also

complete under certain realistic assumptions.

2.2.4 Counterexample of Completeness of AGG

Maier et al. (2013a) show that AGG is sound and complete for relational d-separation for

general relational causal models. However, Lee and Honavar (2015) point out the following

counterexample for which AGG is not complete for relational d-separation.
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Example. Let S = 〈E ,R,A, card〉 be a relational schema such that: E = {Ei}5i=1; R = {Rj}3j=1

with R1 = 〈E1, E2, E4〉, R2 = 〈E2, E3〉, R3 = 〈E3, E4, E5〉; A = {E2 : {Y }, E3 : {X}, E5 : {Z}};

and ∀R∈R∀E∈E card(R,E) = one. LetM = 〈S,D〉 be a relational model with

D = {D1.X → [E2].Y,D2.Z → [E2].Y }

such that D1 = [E2, R2, E3, R3, E4, R1, E2, R2, E3] and D2 = [E2, R2, E3, R3, E5]. Let

P.X,Q.Y, S.Z, S′.Z be four relational variables of the same perspective B = E1 where their

relational paths are distinct and

• P = [E1, R1, E2, R2, E3]

• Q = [E1, R1, E4, R3, E3, R2, E2]

• S = [E1, R1, E4, R3, E5]

• S′ = [E1, R1, E2, R2, E3, R3, E5]

Figure 3 shows a possible realization of the given example relational causal modelM. The

square and rhombus shapes correspond to the entities and relationships, respectively, and the

dashed arrows correspond to the relational dependencies. Given the above example, Lee and

Honavar (2015) make two claims. The first one says,

Claim 1. (P.X �⊥ S′.Z|Q.Y )AGGM .

Assuming that AGGM is complete for relational d-separation, we can infer (P.X �⊥

S′.Z|Q.Y )M and there must exist a pair of a skeleton s and a base b ∈ s(B) that satisfies

(P.X �⊥ S′.Z|Q.Y )GGMs
. However, they claim that such a skeleton and base may not exist.

Claim 2. There is no s ∈∑
S and b ∈ s(B) such that (P.X|b �⊥ S′.Z|b|Q.Y |b)GGMs

.
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Figure 3: A fragment of the ground graph corresponding to the example model M visually

depicted by Lee and Honavar (2015). Only this structure satisfies the cardinality constraints of

the model.

The idea of the proof is simple. Since every terminal set for P , Q, and S′ given the base

must not be empty and since every cardinality is one, terminal sets must be singletons. Let

{e3.x} = P.X|b, {e2.y} = Q.Y |b, and {e5.z} = S′.Y |b. However, due to cardinality constraints

(i.e., one), there exists only one possible structure (see Figure 3) where e3.x and e5.z are the

cause of e2.y while satisfying all previously mentioned conditions except {e5.z} = S′.Y |b. The

constraint {e5.z} = S′.Y |b violates with the set of the rest of conditions. Hence, there exists no

such skeleton and base (Lee and Honavar, 2015). In section 3.4, I formulate a general pattern for

developing such counterexamples and show that under a certain assumption on the relational

skeleton, no such counterexamples exist and thus the completeness of AGG holds.
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2.3 Causal Discovery from Observational Data

Present CSL algorithms can be roughly categorized into three groups: 1) constraint-

based (Spirtes et al., 2000; Colombo et al., 2012) 2) score-based (Chickering, 2002; Nandy et al.,

2018; Hauser and Bühlmann, 2012) 3) hybrid (Tsamardinos et al., 2006; Ogarrio et al., 2016).

Heinze-Deml et al. (Heinze-Deml et al., 2018) provides a comprehensive overview of the state-of-

the-art CSL algorithms (Heinze-Deml et al., 2018). Constraint-based CSL algorithms conduct

a series of CI tests to estimate a skeleton graph and orient the edges of the skeleton graph to

infer the causal structure (Spirtes et al., 2000). Score-based methods typically score candidate

structures using a penalized likelihood score. Since the search space to find the structure with

optimal score is too large, score-based methods utilize a greedy search technique (Chickering,

2002). Hybrid methods combine the idea of both constraint-based and score-based methods.

Typically a hybrid method generates the skeleton using a constraint-based approach and then

performs score-based search for optimal edge orientation (Tsamardinos et al., 2006).

2.3.1 Cyclic Causal Discovery

Mooij and Claassen (2020) provide the necessary conditions under which constraint-based

causal discovery algorithms for acyclic causal models, such as PC (Pearl et al., 2000) and

FCI (Spirtes et al., 2000), are sound and complete in the presence of cycles under σ-separation.

Their result depends on the following assumptions:

A 5. The underlying causal model is σ-faithful.

A 6. There exists one or more valid acyclifications of the given causal model which contains

the same set of ancestral relationships as the given model.
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Corollary 1 ((Mooij and Claassen, 2020)). The PC algorithm with Meek’s orientation rules

is sound, arrowhead-complete, tail-complete, and Markov complete (in the σ-separation setting

without selection bias) for directed cyclic graphs. (Mooij and Claassen, 2020)

2.3.2 Local and Global Causal Structure Learning

(a) Original DAG (b) Local structure (c) Global skeleton (d) Edge orientation

Figure 4: Steps of the general pipeline (LGL) of causal structure learning. The figures are

borrowed from (Aliferis et al., 2010a).

Aliferis et al. (Aliferis et al., 2010a) developed a general framework (LGL) for causal dis-

covery based on constraint-based CSL methods. Figure 4b, 4c, 4d refers to the three steps of

LGL respectively given the original DAG in Figure 4a. In this framework, the core step is to

learn the local structure around each variable (GLL). The local structure can be defined as

the parent-children set (PC ) or the Markov Blanket (MB) (Aliferis et al., 2010a; Guyon and
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Elisseeff, 2003; Tsamardinos et al., 2006; Friedman et al., 2013). There are a number of GLL

algorithms proposed in recent time (Aliferis et al., 2010a). These algorithms typically find the

candidate set for PC and MB using classification-based feature selection methods which exploit

L1- or L2-norm formulation or its convex combination for the loss function of a classifier (Alif-

eris et al., 2010a; Guyon et al., 2002; Zhu et al., 2004; Wang et al., 2006). After the candidate

set is selected, CI tests are performed on the subsets of the candidate set to find the local

structure (Tsamardinos et al., 2006, 2003a,b; Aliferis et al., 2010b). Once the local structure is

recovered, the next phase of LGL framework is to piece together the undirected skeleton from

the local GLL results and finally apply any favorable edge orientation rules.

2.3.3 Relational Causal Discovery

The first algorithm to employ constraint-based methods to learn causal models from re-

lational data is RPC but it is not complete and may introduce errors (Maier et al., 2010).

Maier et al. (Maier et al., 2013a) proposed a sound and complete CSL algorithm (RCD) for

relational data based on relational bi-variate orientation. However, it relies on the existence of

a relational dependence oracle for CI test. An operational CI test for relational data is key to

relational CSL algorithms. Moreover, a relational CI test is also able to detect causal direction

and the presence of confounders without additional parametric assumptions for sparse network

structures (Arbour et al., 2016a).

Maier et al. (2013a) applied RCD to the MovieLens+ database, a combination of the

UMN MovieLens database (www.grouplens.org); box office, director, and actor information



26

MOVIE

Rating Count

Actor Count

Critic Rating Runtime

Genre

Budget

Gross

USER

Rating Count

Gender Age

ACTOR

Gender

DIRECTOR
Gender

RATES

Rating

DIRECTS
STARS-IN

Movie Count

Age

Rank
Age

Movie Count

Figure 5: RCD-learned model of MovieLens+ (Maier et al., 2013a).

collected from IMDb (www.imdb.com); and average critic ratings from Rotten Tomatoes

(www.rottentomatoes.com). The RCD-generated output is given in Figure 5.

2.3.4 Conditional Independence Test for Relational Data

The Hilbert-Schmidt independence criterion (HSIC) (Gretton et al., 2005) is a statistical

test that has been extended to marginal independence testing for structured data (Zhang et al.,

2009) and random processes (Chwialkowski et al., 2014). Flaxman et al. (Flaxman et al.,

2015) utilize HSIC to develop marginal and conditional independence tests for propositional

variables in the presence of a latent relational confounder in a single-entity network with an

additive noise generating function. A relational dependence exhibits itself through an edge
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in the network which is a noisy surrogate of latent homophily. Lee et al. (Lee and Honavar,

2017) extend these tests to explicitly include relational variables. Recently, Lee et al. (Lee and

Honavar, 2017) introduced A CSL algorithm based on RCD while using their CI test developed

for relational data.

2.4 Active Learning for Relational Data

The most common scenario for active learning is the pool-based scenario where a pool of

labeled and unlabeled samples are present and the learner can choose from the unlabeled pool

to query for labels (Settles, 2009). An established pool-based active learning algorithm for

relational data is ALFNET (Bilgic et al., 2010) which is based on disagreement-based active

learning (Seung et al., 1992) using Iterative Classification Algorithm (ICA) as relational classi-

fier. Even though it performs well, it is computationally expensive specifically for larger graphs

due to the cost of iterative training. Recently proposed neural network-based approaches (Gao

et al., 2018; Cai et al., 2017) follow similar expensive procedure of re-training the model over

iterations without showing significant improvement over ALFNET. One-shot active learning

circumvents this cost of re-training by allowing a single chance to decide which nodes to label.

Note that, one-shot active learning is different from one-shot learning (Fei-Fei et al., 2006)

or active one-shot learning (Woodward and Finn, 2017). One-shot learning refers to learning

from one or few samples and active one-shot learning refers to active learning where one or few

samples can be labeled in each iteration. In contrast, one-shot active learning refers to active

learning with one iteration to label nodes. To the best of our knowledge there is no prior work

investigating one-shot active learning on relational data.
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2.4.1 Relational Classification

In contrast to standard classification tasks where data samples are i.i.d, relational classifica-

tion deals with interconnected samples. The fundamental idea behind relational classification

is to effectively exploit the attribute and label correlations between linked nodes to achieve

better accuracy in predicting the labels of individual samples. A trivial relational classifier is

wvRN (Macskassy and Provost, 2007) which simply infers class association probability based

on strong homophily assumption. It requires no learning, rather it classifies the entities of

a relational network based only on the relational structure (Macskassy and Provost, 2007).

Modern relational classifiers can be categorized into two families: 1) Collective classification

and 2) Graph neural networks.

Collective classification refers to the combined classification of a set of connected objects

(Sen et al., 2008). The fundamental assumption is that the label of a node not only depends on

its own node attributes but also depends on the labels and attributes of its neighboring nodes in

the network. Collective classifiers use a vector-based classifier such as logistic regression which

is trained iteratively. It learns the conditional probability for estimating node labels. The

two most common algorithms for collective classification are Iterative classification algorithm

(ICA) (Neville and Jensen, 2000; Lu and Getoor, 2003) and Gibbs Sampling (GS) (Geman and

Geman, 1984; Sen et al., 2008).

Graph neural networks (GNN) emerged with the popularity of deep learning architectures.

GNN is inspired by the success of convolutional neural networks (CNN) in computer vision.

Most of the GNN models are primarily based on redefined notions of convolution for graph data
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(Wu et al., 2019a). These convolutional GNNs can be divided into two main categories: spectral

and spatial. The most important difference between these fundamental approaches lies in their

treatment of the graph laplacian matrix. Spectral methods utilizes eigen-decomposition of the

graph laplacian to extract useful information about the graph structure. Spatial methods treat

it as spatial connectivity of nodes (Chen et al., 2020). The two most representative algorithms

from these two categories are GCN (Kipf and Welling, 2017) and GraphSage (Hamilton

et al., 2017).

2.4.2 Sample Selection from Relational Data

Graph sampling algorithms have been studied for a long time. Kolaczyk et al. (Kolaczyk,

2009) investigated sample properties from a social science perspective. Other works analyzed

the statistical properties of sampled subgraphs and how sampling changes topological network

properties (Lee et al., 2006; Yoon et al., 2007; Stumpf et al., 2005). Several studies analyzed

representativeness (Leskovec and Faloutsos, 2006), correlations of graph properties (Ahmed

et al., 2010), biases of topological approaches (Maiya and Berger-Wolf, 2011) and impact on

A/B testing (Backstrom and Kleinberg, 2011).

A few recent works studied the effectiveness of sampling methods for relational classification

(Ahmed et al., 2013, 2012; Berton et al., 2016; Macskassy, 2009). Ahmed et al. (Ahmed et al.,

2012) provided a comprehensive analysis of a variety of graph sampling methods and their

effectiveness on relational classification. They sampled subgraphs from a given source graph

based on each of the baseline sampling methods. They evaluated the sampling methods based

on accuracy of supervised classification models trained with corresponding subgraphs. Their
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experiments on four real-world networks show that induced edge sampling (Ahmed et al., 2011)

produces better accuracy than any other graph sampling methods (Ahmed et al., 2012). In

a more recent work, Berton et al. (Berton et al., 2016) experimentally evaluated effectiveness

of centrality-based sampling methods for relational classification. They showed that sampling

based on clustering coefficient provides greater accuracy in general. Note that, both these

studies considered a supervised classification task and trained the classification model only on

the sampled graph. In contrast, our evaluation is based on semi-supervised classification where

the full source graph is used in creating the features for training. Moreover, they only considered

network-based sampling methods. Moreover, they use a simple classifier, wvRN (Macskassy

and Provost, 2007), which relies on label aggregates and has no learning component. Earlier

work by Macskassy et al. (Macskassy, 2009) is closely related to ours which is motivated to

speed up active learning on graph by sampling a small candidate set of nodes using structural

properties from which an Empirical Risk Minimization (ERM) (Roy and McCallum, 2001)

method chooses the top candidate to be labeled. However, they also followed the standard

active learning procedure of multiple shots for active querying which is costly.



CHAPTER 3

RELATIONAL CAUSAL MODELS WITH CYCLES: REPRESENTATION

AND REASONING

Parts of this chapter were previously published as Ahsan, R., Arbour, D., and Zheleva, E.: Relational

Causal Models with Cycles: Representation and Reasoning. In Proceedings of the 1st Conference on

Causal Learning and Reasoning (CLeaR 2022) Ahsan et al. (2022a)

Many real-world phenomena involve feedback loops or cycles that violate the acyclicity

assumption. For example, supply and demand affect price and vice versa, hormone levels in

the body affect each other and friends can impact each other’s choices. The existing works on

cyclic causal models primarily focus on independently and identically distributed (i.i.d) data

instances (Richardson, 1996, 1997; Strobl, 2019b; Rantanen et al., 2020). However, in many

real-world systems units are often interconnected in a complex network. Causal reasoning over

such relational systems is central to understanding real-world social phenomena, such as social

influence and information diffusion.

The development of relational causal models, which generalize over structural causal models,

is an important step towards capturing interactions between non-i.i.d instances (Maier et al.,

2013b,a; Lee and Honavar, 2015; Bhattacharya et al., 2020). Relational models involve multiple

types of interacting entities with probabilistic dependencies among their attributes. Maier

et al. (2013b) develop a lifted causal representation named abstract ground graph (AGG) that

abstracts over all instantiations of a relational model. AGG enables reasoning about causal

31
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queries in relational causal models and relational causal discovery. However, existing studies in

relational causal models assume acyclicity and do not allow for reasoning about identification

in the presence of feedback loops.

In this work, we specifically study cyclic RCMs and show that they offer the necessary

representation to reason about a lot of real-world causal problems where popular assumptions

do not hold. To the best of our knowledge, this is the first work that addresses the representation

of and reasoning about cyclic relational causal models. We define a new abstract representation,

σ-abstract ground graph (σ-AGG) which generalizes over cyclic relational models. In order to

reason about relational queries in σ-AGG, we introduce relational σ-separation and provide

proof for its soundness and completeness for all instantiations of a relational model.

3.1 Cyclic Relational Causal Model

We define cyclic relational causal model which allows the formation of cycles among the

relational dependencies of the model.

Definition 7 (Cyclic Relational Causal Model). A relational model M = (S,D) is said to be

cyclic if the set of relational dependencies D constructs one or more directed cycles of arbitrary

length.

Cycles in RCM represent equilibrium states among a set of relational variables. It implies

that the abstract ground graphs are no longer guaranteed to be DAGs. In order to facilitate

this, we propose a revised definition of relational dependency provided by Maier et al. (2013b)

by relaxing the restriction of having different attribute classes for cause and effect.
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(a) Cyclic RCM
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(b) Ground Graph

[USER, REACTS, POST, CREATES, MEDIA, CREATES, POST].Engagement

[USER].Sentiment [USER, REACTS, POST].Engagement [USER, REACTS, POST, CREATES, MEDIA].Preference

[USER, REACTS, POST, REACTS, USER].Sentiment

[USER, REACTS, POST, REACTS, USER, REACTS, POST].Engagement

[USER, REACTS, POST, CREATES, MEDIA, CREATES, POST].Engagement

[USER, REACTS, POST, REACTS, USER, REACTS, POST].Engagement

(c) σ-Abstract Ground Graph

Figure 6: A cyclic relational causal model, corresponding ground graph, and σ-AGG.

Definition 8 (Relational Dependency). A relational dependency [Ij , ..., Ik].X
′ → [Ij ].X is a

directed probabilistic dependence from any attribute class X ′ to X through the relational path

[Ij , ..., Ik] such that Ij , ..., Ik ∈ E ∪R, X,X ′ ∈ A. Note that it is possible to have X = X ′.
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3.1.1 Example

Figure 6 shows an example relational model with cyclic dependencies (i.e. dashed arrows).

We see a pair of dependencies [Post, Reacts, User].Sentiment → [Post].Engagement and

[Post].Engagement → [Post, Reacts, User].Sentiment which are inverse to each other and

form a feedback loop. However, this mere feedback loop prohibits the use of AGG to answer

relational causal query that asks whether a user’s Sentiment about a post they reacted to is

independent of the preference of media given the posts. Unfortunately, the work by Maier et al.

(2013b) is not sufficient to reason about conditional independence relationships in the ground

graphs of such relational models since they contain cycles. This motivates us to introduce a

new criterion that enables the abstraction of relational queries with cyclic dependencies over

all ground graphs.

3.2 Relational σ-separation

Conditional independence facts are only useful when they hold across all ground graphs that

are consistent with the model. Maier et al. (2013b) show that relational d-separation is sufficient

to achieve that for acyclic models. However, such abstraction is not possible for cyclic models

since the correctness of d-separation is not guaranteed for cyclic graphical models (Spirtes,

1995; Neal, 2000). In this work, we propose the following definition of relational σ-separation

specifically for cyclic relational models:

Definition 9 (Relational σ-separation). Let X, Y , and Z be three distinct sets of relational

variables with the same perspective B ∈ E ∪R defined over relational schema S. Then, for

relational model structure M, X and Y are σ-separated by Z if and only if, for all skeletons
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s ∈∑
S , X|b and Y |b are σ-separated by Z|b in ground graph GGMs for all instances b ∈ s(B)

where s(B) refers to the instances of B in skeleton s.

The definition directly follows from the definition of relational d-separation. If there exists

even one skeleton and faithful distribution represented by the relational model for which X �⊥⊥

Y |Z, then X|b and Y |b are not σ-separated by Z|b for b ∈ s(B).

3.3 σ-Abstract Ground Graph

We refer to the lifted representation for cyclic RCMs as σ-abstract ground graph or σ-AGG.

A σ-AGG is constructed using the same extend method used to construct AGG (Maier et al.,

2013b).

Definition 10 (σ-Abstract Ground Graph). An abstract ground graph σ-AGGM = (V,E) for

relational model structure M = (S,D), perspective B ∈ E ∪R, and hop threshold h ∈ N0 is a

directed graph that abstracts the dependencies D for all ground graphs GGMs, where s ∈∑
S .

The σ-AGGMs is a directed cyclic graph with the following nodes and edges:

1. V = RV ∪ IV , where

(a) RV is the set of relational variables with a path of length at most h + 1.

(b) IV are intersection variables between pairs of relational variables that could intersect

2. E = RVE ∪ IVE, where

(a) RVE ⊂ RV ×RV are the relational variable edges
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(b) IVE ⊂ (IV × RV ) ∪ (RV × IV ) are the intersection variable edges. This is the set

of edges that intersection variables “inherit” from the relational variables that they

were created from

Since the construction of an AGG and a σ-AGGMs is identical, they share mostly identical

properties as defined by Maier et al. (2013b) for AGG. The main difference is the existence of

cycles. Consequently, the goal of σ-AGGMs is to reason about relational σ-separation queries

instead of relational d-separation. Figure 6c shows the σ-AGGMs corresponding to the cyclic

RCM in 6a with a pairwise feedback loop. It is similar to the AGG in Figure 2c but allows

cycles without violating the conditional independence statements under σ-separation which are

otherwise undefined with d-separation.

3.4 Theoretical Guarantees of Relational σ-separation

In order to discuss theoretical guarantees of relational σ-separation we first address the open

problem of necessary conditions for the completeness of relational d-separation.

3.4.1 Completeness of Relational d-separation Under AGG

Previous work has shown that the original claim of completeness of relational d-separation

by Maier et al. (2013a) cannot be guaranteed for any relational model (Lee and Honavar,

2015). A counterexample has been developed as well. In this work, we show that relational

d-separation is complete under the following assumption:

A 7. The degree of any entity in the relational skeleton is greater than 1.
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Note that, this assumption is about the topology of the ground graphs, i.e., the network

which defines how entities are connected to each other. It only allows entities that are con-

nected to at least two other entities. For example, if the entities are users in a social network,

the framework would only consider users who have degree at least two, i.e., are connected to

at least two other users. While this restricts the space of graph topologies allowable under the

results in this work, many networks observed in real-world domains, such as social networks,

have a minimum degree greater than one. We introduce the following lemma that establishes

sufficient conditions for AGGs to be realizable in ground graphs. This result may be of inde-

pendent interest since it provides sufficient conditions for soundness in the original presentation

of relational d-separation under additional assumptions (Maier et al., 2013b; Lee and Honavar,

2015).

Lemma 1. Under assumption 7, every abstract ground graph can be realized as a ground graph.

That is, for every acyclic relational model M and skeleton s ∈ ∑
S any relational variable in

AGGMs has non-empty terminal sets in some ground graph GGMs.

Proof. We first consider the conditions under which empty terminal sets can occur, resulting

in an AGG that is unrealizable in the ground graphs. There are two necessary and sufficient

conditions for empty terminal sets to appear in all ground graphs corresponding to an AGG.

First, there must be at least one intersection variable present in the AGG. If no intersection

variable exists in the AGG, then the completeness proof of relational d-separation by Maier

et al. (2013b) holds. The second condition is that the intersection must be on a path consisting

of only one-to-one relationships. In order to understand this condition, let’s look at an example
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with the following relational paths from a hypothetical relational model which is a generalization

of the counterexample given by Lee and Honavar (2015) 1:

• P = [Eb, . . . , Rj , . . . , Ex]

• Q = [Eb, . . . , Rj , . . . , Rm, Ex, . . . , Ey]

• S = [Eb, . . . , Rj , . . . , Rm, . . . , Ez]

• S′ = P + [Rm, . . . , Ez]

where Eb, Ex, Ey, Ez are some entity classes, Rj , Rm are relationship classes, “ . . . ” are

arbitrary valid sequences of entities and relationships, and + represents the concatenation of

relational paths. Let’s assume two relational dependencies exist in the given model, P.X → Q.Y

and S.Z → Q.Y where X,Y, Z are attributes of corresponding entity classes. By definition,

the corresponding edges P.X → Q.Y , S.Z → Q.Y appear in the AGG. Since S and S′ are

intersectable an additional edge S.Z ∩ S′.Z → Q.Y also appears in the AGG. Such a model

can be realized in many possible ground graphs. Figure 7 shows the general pattern of such

ground graphs. Now, if we restrict the relationships to be strictly one-to-one, then there is only

one skeleton structure possible to satisfy the relational dependencies at the cost of S′.Z having

empty terminal sets since an instance of Rm can connect to only one instance of Ex. If we allow

many-to-many relationships then we can always construct a skeleton where an instance of Rm

connects to two instances of Ex (through the dotted line in Figure 7) to produce non-empty

terminal sets for both Q and S′.

1The complete counterexample and figure explaining it are given in Section 2.2.4
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Figure 7: General pattern of the counterexample by (Lee and Honavar, 2015). The notations

inside the square/rhombus refer to instances of the corresponding entity/relationship classes.

The dashed arrows represent realizations of the relational dependencies. The dashed lines can be

replaced with arbitrary length valid relational paths. The dotted line represents a hypothetical

connection that can nullify the counterexample under assumption 7.

Since assumption 7 prohibits the second condition, it essentially implies that any relational

variable in AGGMs results in non-empty terminal sets in corresponding ground graphs for every

acyclic relational modelM and skeleton s ∈∑
S which completes the proof for Lemma 1.

The following proposition establishes the completeness of AGG for relational d-separation

under the assumption of a minimum degree greater than 1.

Proposition 2. AGG is sound and complete for relational d-separation under assumption 7.
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Proof. Following lemma 1, the original proof of soundness and completeness of relational d-

separation by Maier et al. (2013b) directly applies which proves proposition 2.

The correctness of our approach to relational σ-separation relies on several facts which are

similar to the case for AGG: (1) σ-separation is valid for directed cyclic graphs; (2) ground

graphs are directed cyclic graphs; and (3) σ-AGGs are directed cyclic graphs that represent

exactly the edges that could appear in all possible ground graphs. Note that we no longer need

assumption 3, but assumptions 4 and 7 are adopted from relational d-separation. Using the

previous definitions and lemmas, the following additional assumptions and sequence of results

prove the correctness of our approach to identifying independence in cyclic relational models.

A 8. The given cyclic relational model structure is σ-faithful.

3.4.2 Soundness and Completeness of σ-separation

Theorem 1. The rules of σ-separation are sound and complete for cyclic directed graphs.

Proof. Forré and Mooij (2017) show that for quite general structural equation models HEDGes1

always follow a directed global Markov property based on σ-separation which completes the

proof for soundness since directed cyclic graphs are subsets of HEDGes. The completeness

claim is already covered by Assumption 8.

1Definition given in Chapter 2
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Theorem 2. For every cyclic relational causal model M = (S,D) and skeleton s ∈∑
S such

that relational variables involved in D are non-empty, the ground graph GGMs is a cyclic

directed graph.

Proof. Let’s assume for contradiction that there exists an acyclic ground graph g which is a

realization of a given cyclic RCMM = (S,D) and skeleton s ∈∑
S . According to the definition

of ground graphs, the edges of ground graphs are directly constructed based on the relational

dependencies of the model. Definition 7 states that a cyclic RCM consists of one or more

cycles formed by relational dependencies. Assume a cycle in cyclic RCM is formed by the pair

of relational dependencies as follows: a) P.j → Q.k, and b) Q.k → P.j where P and Q are

relational paths from some perspective b and i, j refers to two attribute classes. By construction

of g there must be two nodes a, b in g corresponding to P.j and Q.k respectively. Moreover,

the definition of g requires two edges a→ b and b→ a to be present in the ground graph. But

such edges construct a cycle that is contradictory to the initial claim. Thus, the ground graph

g must be cyclic.

3.4.3 Soundness and Completeness of σ-AGGMs

Theorem 3. For every cyclic relational model structure M and perspective B ∈ E ∪R, the

σ-AGGMs is sound and complete for all ground graphs GGMs with skeleton s ∈∑
S .

The proof follows from the proof of soundness and completeness of AGG (Maier et al.,

2013b).



42

Proof. Let M = (S,D) be an arbitrary cyclic relational model structure and B ∈ E ∪R an

arbitrary perspective.

Soundness: To prove that σ-AGGMs is sound, we must show that for every edge Pk.X →

Pj .Y in σ-AGGMs , there exists a corresponding edge ik.X → ij .Y in the ground graph GGMs

for some skeleton s ∈ ∑
S , where ik ∈ Pk|b and ij ∈ Pj |b for some b ∈ s(B). There are three

subcases, one for each type of edge in an abstract ground graph:

(a) Let [B, ..., Ik].X → [B, ..., Ij ].Y ∈ RVE be an arbitrary edge in σ-AGGMs between a

pair of relational variables. Assume for contradiction that there exists no edge ik.X → ij .Y in

any ground graph:

∀s ∈ ΣS , ∀ik ∈ [B, ..., Ik]|b, ∀ij ∈ [B, ..., Ij ]|b

(ik.X → ij .Y /∈ GGMS )

By Definition 10 for σ-AGGMs , if [B, ..., Ik].X → [B, ..., Ij ].Y ∈ RVE, then the model must

have dependency [Ij , ..., Ik].X → [Ij ].Y ∈ D such that [B, ..., Ik] ∈ extend([B, ..., Ij ], [Ij , ..., Ik]).

So, by the definition of ground graphs, there is an edge from every ik.X to every ij .Y , where

ik is in the terminal set for ij along [Ij , ..., Ik]. Therefore, there exists a ground graph GGMs

such that ik.X → ij .Y ∈ GGMs , which contradicts the assumption.

(b) Let P1.X ∩ P2.X → [B, ..., Ij ].Y ∈ IVE be an arbitrary edge in σ-AGGMs be-

tween an intersection variable and a relational variable, where P1 = [B, ..., Im, ..., Ik] and
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P2 = [B, ..., In, ..., Ik] with Im �= In. By Definition 10, if the σ-abstract ground graph

has edge P1.X ∩ P2.X → [B, ..., Ij ].Y ∈ IVE, then either P1.X → [B, ..., Ij ].Y ∈ RVE or

P2.X → [B, ..., Ij ].Y ∈ RVE. Then, as shown in case (a), there exists an ij ∈ [B, ..., Ij ]|b such

that ik.X → ij .Y ∈ GGMs , which contradicts the assumption.

(c) Let [B, ..., Ik].Y → P1.X ∩ P2.X ∈ IVE be an arbitrary edge in σ-AGGMs be-

tween an intersection variable and a relational variable, where P1 = [B, ..., Im, ..., Ij ] and

P2 = [B, ..., In, ..., Ij ] with Im �= In. The proof follows case (b) to show that there exists a

skeleton s ∈ ∑
S and b ∈ s(B) such that for all ik ∈ [B, ..., Ik]|b there exists an ij ∈ P1 ∩ P2|b

such that ik.X → ij .Y ∈ GGMs .

Completeness: To prove that the σ-abstract ground graph σ-AGGMs is complete, we

show that for every edge ik.X → ij .Y in every ground graph GGMs where s ∈ ∑
S , there

is a set of corresponding edges in σ-AGGMs . Specifically, the edge ik.X → ij .Y yields two

sets of relational variables for some b ∈ s(B), namely Pk.X = {Pk.X|ik ∈ Pk|b} and Pj.Y =

{Pj .Y |ij ∈ Pj |b}. Note that all relational variables in both Pk.X and Pj.Y are nodes in

σ-AGGMs , as are all pairwise intersection variables. We show that for all Pk.X ∈ Pk.X and

for all Pj .Y ∈ Pj.Y either (a) Pk.X → Pj .Y ∈ σ-AGGMs (b) Pk.X∩P ′
k.X → Pj .Y ∈ σ-AGGMs

where P ′
k.X ∈ Pk.X, or (c) Pk.X → Pj .Y ∩ P ′

j .Y ∈ σ-AGGMs where P ′
j .Y ∈ Pj.Y .

Let s ∈∑
S be an arbitrary skeleton, let ik.X → ij .Y ∈ GGMs be an arbitrary edge drawn

from [Ij , ..., Ik].X → [Ij ].Y ∈ D, and let Pk.X ∈ Pk.X, Pj .Y ∈ Pj .Y be an arbitrary pair of

relational variables.

(a) If Pk ∈ extend(Pj , [Ij , ..., Ik]), then Pk.X → Pj .Y ∈ σ-AGGMs by Definition 10.
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(b) If Pk /∈ extend(Pj , [Ij , ..., Ik]), but ∃P ′
k ∈ extend(Pj , [Ij , ..., Ik]) such that P ′

k.X ∈ Pk.X,

then P ′
k.X → Pj .Y ∈ σ-AGGMs , and Pk.X ∩ P ′

k.X → Pj .Y ∈ σ-AGGMs by Definition

10.

(c) If ∀P ∈ extend(Pj , [Ij , ..., Ik])(P.X /∈ Pk.X), then ∃P ′
j such that ij ∈ P ′

j |b and Pk ∈

extend(P ′
j , [Ij , ..., Ik]). Therefore, P ′

j .Y ∈ Pj .Y, Pk.X → P ′
j .Y ∈ σ-AGGMs , and Pk.X →

P ′
j .Y ∩ Pj .Y ∈ σ-AGGMs by Definition 10.

Theorem 4. The abstract ground graph σ-AGGMs is a cyclic directed graph if and only if the

underlying relational model structure is cyclic.

Proof. LetM be an arbitrary (possibly) cyclic relational model structure, and let B ∈ E ∪R

be an arbitrary perspective. It is clear by Definition 10 that every edge in the abstract ground

graph σ-AGGMs is directed by construction. Assume for contradiction that no cycles exist

in σ-AGGMs even if the relational dependencies form one or more cycles. Now assume the

following two dependencies are part of the given relational model M: 1. [Ij , ..., Ik].X →

[Ij ].Y ∈ D, 2. [Ij ].Y → [Ij , ..., Ik].X ∈ D where Ij , ..., Ik ∈ E ∪R. By Definition 10, all edges

inserted in σ-AGGMs are drawn from some dependency in M, and edges in σ-AGGMs are

constructed for all the dependencies in D. As a result, there must be corresponding edges in

the σ-AGGMs for both dependencies that form a cycle, which contradicts the assumption.

Now, assume that a σ-AGGMs is acyclic even if the underlying RCM is cyclic. Using the

same argument as above we can say that the edges in the σ-AGGMs constructed based on the
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dependencies in D. If a cycle exists in the σ-AGGMs it directly implies the existence of a cycle

in the RCM which leads to a contradiction. Thus the proof completes from both directions.

3.4.4 Soundness and Completeness of relational σ-separation

Theorem 5. Relational σ-separation is sound and complete for σ-AGG. LetM be a (possibly)

cyclic relational model structure, and let X, Y , and Z be three distinct sets of relational

variables defined over relational schema S. Then, X and Y are σ-separated by Z on the

abstract ground graph σ-AGGMs if and only if for all skeletons s ∈∑
S and for all perspectives

b ∈ s(B), X|b and Y |b are σ-separated by Z|b in ground graph GGMs.

Proof. We must show that σ-separation on an abstract ground graph implies σ-separation on

all ground graphs it represents (soundness) and that σ-separation facts that hold across all

ground graphs are also entailed by σ-separation on the abstract ground graph (completeness).

The proof follows from the proof of soundness and completeness of AGG (Maier et al., 2013b).

Soundness:

Assume that X̄ and Ȳ are σ-separated by Z̄ on σ-AGGMs . Assume for contradiction

that there exists an item instance b such that X|b and Y |b are not σ-separated by Z|b in the

ground graph GGMs for some arbitrary skeleton s. Then, there must exist a σ-connecting

path p from some x ∈ X̄|b to some y ∈ Ȳ |b given all z ∈ Z̄|b. By Theorem 3, σ-AGGMs

is complete, so all edges in GGMs are captured by edges in σ-AGGMs . So, path p must be

represented from some node in {Nx|x ∈ Nx|b} to some node in {Ny| y ∈ Ny|b}, where Nx, Ny

are nodes in σ-AGGMs . If p is σ-connecting in GGMs , then it is σ-connecting in σ-AGGMs ,
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implying that X̄ and Ȳ are not σ-separated by Z̄. So, X|b and Y |b must be σ-separated by Z|b.

Completeness:

Assume thatX|b and Y |b are σ-separated by Z|b in the ground graphGGMs for all skeletons

s for all b ∈ s(B). Assume for contradiction that X̄ and Ȳ are not σ-separated by Z̄ on

σ-AGGMs . Then, there must exist a σ-connecting path p for some relational variable X ∈ X̄

to some Y ∈ Ȳ given all Z ∈ Z̄. By Theorem 3, σ-AGGMs is sound, so every edge in σ-AGGMs

must correspond to some pair of variables in some ground graph. So, if p is σ-connecting in

σ-AGGMs , then there must exist some skeleton s such that p is σ-connecting in GGMs for

some b ∈ s(B), implying that σ-separation does not hold for that ground graph. So, X̄ and Ȳ

must be σ-separated by Z̄ on σ-AGGMs .

Maier et al. (2013b) show that relational d-separation is equivalent to the Markov condition

on acyclic relational models. However, it doesn’t hold for the cyclic relational model. Here,

we show how relational σ-separation is equivalent to the Markov condition on cyclic relational

models.

3.4.5 Relational σ-separation Markov Condition

Definition 11 (Relational σ-separation Markov Condition). Let X,Y, Z be relational variables

for perspective B ∈ E ∪ R defined over relational schema S. For any solution (X , ε) of a

relational modelM which follows a simple SCM,
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X
σ

|=

M
Y |Z =⇒ XX |=

PM(X )
X Y |XZ , if and only if

x
σ

|=

GGM
y|z =⇒ X ′

x |=

PGGM (X ′)
X ′

y|X ′
z, for ∀x ∈ X|b, ∀y ∈ Y |b, ∀z ∈ Z|b

in ground graph GGMs for all skeletons s ∈ ∑
S and for all b ∈ s(B) where (X ′, ε′) refers to

the solution of the SCM corresponding to the ground graphs.

In other words, σ-separation of two relational variables X and Y given a third relational

variable Z would imply X and Y are conditionally independent given Z if and only if, for all

instances of X,Y ,Z in all possible ground graphs, the same condition holds. Since ground

graphs of cyclic RCM are directed cyclic graphs and σ-separation on σ-AGGMs is sound and

complete (by Theorem 5), we can conclude that relational σ-separation is equivalent to the

relational Markov property.

3.5 Discussion

Cycles or feedback loops are common elements of many real-world systems. Unfortunately,

it is hardly studied in the field of causal inference primarily because of the nice properties

of directed acyclic graphs. As a result, cycles and feedback loops are mostly avoided in the

domain of the relational causal model. In this study, we take a step forward to bridge this gap

by developing an abstract representation and a criterion to reason about statistical relationships

in relational models with or without cycles under a general framework. We show that the new

criterion called σ-separation can consistently capture the statistical independence relationships
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of all possible instantiations of a relational causal model. We believe that this work will open the

door for further development including but not limited to causal structure learning of relational

models with cycles.



CHAPTER 4

LEARNING RELATIONAL CAUSAL MODELS WITH CYCLES

Influence in complex dynamic systems is often mutual and represented by a feedback loop

or cycle in the relational model. Identifying mutual influence in relational models is of great

interest in the research community. For example, social scientists and marketing experts are

interested to study the social dynamics between people and products in social networks (Bakshy

et al., 2011, 2015; Ogburn et al., 2020). However, there is a lack of available methods for

discovering mutual influence or cycles in complex relational systems.

Sound and complete algorithms have been proposed for learning relational causal models

from observational data (Maier et al., 2013a; Lee and Honavar, 2016a,b). However, they assume

acyclicity and thus cannot reason about mutual influence or cycles. In this work, we examine

the problem of learning cyclic relational causal models from observational samples under a

suitable set of assumptions. We introduce relational acyclification, an operation that helps

to reason over the scope of cyclic relational models which are identifiable with constraint-

based causal discovery algorithms. Following this criterion, we establish sufficient conditions

for which, RCD (Maier et al., 2013a), a pioneering relational causal discovery algorithm for

acyclic relational models, is sound and complete for cyclic relational models under σ-separation

and causal sufficiency assumption. We provide experimental results on synthetic relational

models in support of our claims. We also demonstrate the effectiveness of the algorithm on a

real-world dataset.

49
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4.1 Relational Causal Discovery with Cycles

Cyclic relational causal models (CRCM) are relational causal models where dependencies

form one or more directed cycles (Ahsan et al., 2022a). The cycles or feedback loops can

represent equilibrium states in dynamic systems. Consider the example from Figure 1 where

sentiments of users and engagements in a media post may reach an equilibrium. Identifying

such cycles or feedback loops from observational samples requires proper representation and a

learning algorithm. In Chapter 3, I introduce an abstract representation, σ-AGG that entails

all the conditional independence relations consistent across all ground graphs of the model and

shows that it is sound and complete under σ-separation Ahsan et al. (2022a). Given σ-AGG

representation, discovering CRCM transforms into the problem of learning the σ-AGG from

observational samples of a relational model. Since σ-AGG is a DCG, we can consider DPAGs

to represent the equivalence class of σ-AGG following the previous work of Richardson (1996).

Theorem 1 (Cyclic Relational Causal Discovery). Given observational samples from a σ-

faithful cyclic relational causal model M = 〈S,D〉 with hop threshold h, learn the maximally

oriented DPAG that contains the corresponding σ-AGGs ofM.

4.1.1 RCD for Cyclic Relational Causal Models

The RCD algorithm developed by Maier et al. (2013a) is the first sound and complete

constraint-based algorithm that can learn relational dependencies of a relational causal model

(RCM) under the assumption of d-faithfulness, sufficiency, acyclicity, and a maximum hop

threshold h. It is designed based on the PC algorithm with additional steps introduced specif-

ically to handle relational aspects of the representation.
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X1
A

Y1
B

Z1
CAB BC

(a) Cyclic RCM

[A, AB, B, BC, C].Z1

[A, AB, B, BA, A].X1[A, AB, B].Y1[A].X1

(b) True AGG for perspective A

[A, AB, B, BC, C].Z1

[A, AB, B, BA, A].X1[A, AB, B].Y1[A].X1

(c) RCD output for perspective A

Figure 8: Counterexample showing RCD produces incorrect output for cyclic RCM under σ-

separation.

Following the recent development by Mooij and Claassen (2020) (Corollary 1), and consid-

ering that RCD is developed based on the PC algorithm, a natural question arises: Is RCD

sound and complete for cyclic relational causal models? To the best of our knowledge, no prior

work addresses this question. More generally, the effectiveness and theoretical guarantees of

existing relational causal structure learning algorithms for cyclic RCMs under σ-separation are

not studied in the current literature.



52

4.1.2 A Counterexample

We present a counterexample that shows that RCD is not sound and complete for discovering

cyclic relational causal models in general. Figure 8a shows a CRCM with three entity types

A,B,C, and two relationship types AB, BC and maximum hop threshold h = 2. The attribute

types X1, Y1, and Z1 refer to the attributes of entity types A, B, and C respectively. There are

three relational dependencies: 1) [A, AB, B].Y1 → [A].X1, 2) [B, AB, A].X1 → [B].Y1, and 3)

[B, BC, C].Z1→ [B].Y1. The first two dependencies form a feedback loop. Figure 8b shows the

true σ-AGG built from perspective A with maximum hop threshold h = 4 1. Figure 8c shows

the output of RCD with a σ-separation oracle. We see that RCD orients arrows [A, AB, B].Y1

→ [A].X1 and [A, AB, B].Y1→ [A, AB, B, AB, A].X1 which refers to the relational dependency

[A, AB, B].Y1 → [A].X1. However, the true model contains a feedback loop between [A, AB,

B].Y1 and [A].X1. This example shows that RCD, even with σ-separation oracle produces

incorrect edge orientations.

4.2 Learning Cyclic Relational Causal Models

In this section, we present relational acyclification which enables the discovery of relational

causal models with cycles. We also discuss how to read off features of the true model from the

output of the discovery algorithm.

1Maier et al. (2013b) showed that the AGG needs to include nodes with higher hop thresholds than
the model in order for it to be a sound and complete representation. However, the hop threshold of
relational dependencies should be bounded by the hop threshold of the model. The same arguments
hold for σ-AGGs as well. We refer readers to Theorem E.2 of (Maier et al., 2013b)
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4.2.1 Relational Acyclification

The counterexample in the previous subsection shows that the RCD algorithm is not sound

and complete for general cyclic RCMs under σ-separation. For the given counterexample, RCD

orients edges that contradict the given relational model. In order to understand what causes

this error and to find a solution, we focus on the acyclification operation introduced by Forré

and Mooij (2017) which is a key tool for the generalization results by Mooij and Claassen (2020).

[A, AB, B, BC, C].Z1

[A, AB, B, BA, A].X1[A, AB, B].Y1[A].X1

Figure 9: Invalid acyclification of σ-AGG from Figure 8b

Figure 9 shows an acyclification of the σ-AGG presented in Figure 8b following definition

5. Here we see the edges [A, AB, B, BC, C].Z1 → [A].X1 and [A, AB, B, BC, C].Z1 → [A,

AB, B, AB, A].X1 which does not follow the relational model since the hop threshold of such

dependencies (h = 4) exceed the hop threshold of the given model (h = 2). The definition of

acyclification, as given by (Forré and Mooij, 2017) essentially considers all the nodes or entities

to be of the same entity type. As a result, applying it directly to relational models creates

erroneous results. We propose a new definition of acyclification for relational models which
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specifically mentions that the maximum hop threshold of an acyclification can be different than

the hop threshold of the original model.

Definition 12 (Relational Acyclification). Given a relational schema S = (E ,R,A, card), σ-

AGG G = (V,E), and a hop threshold h, a relational acyclification of G is a σ-AGG G′ = (V,E′)

with hop threshold h′ ≥ h containing

i the same nodes V ;

ii for any pair of nodes P.X,Q.Y such that P.X /∈ SCG(Q.Y ): P.X → Q.Y ∈ E′ iff there

exists a node R.Z such that R.Z ∈ SCG(Q.Y ) and P.X → R.Z ∈ E and P.X → Q.Y is

a valid relational dependency with maximum hop threshold h′;

iii for any pair of distinct nodes P.X,Q.Y such that P.X ∈ SCG(Q.Y ): P.X → Q.Y ∈ E′

or P.X ← Q.Y ∈ E′;

The definition of relational acyclification follows from Definition 5 where the main distinction

is that it allows a new bound on the maximum hop threshold which is different than the bound

of the original model. The implication of this is that the potential dependencies RCD considers

in building the skeleton, may not be sufficient for soundness and completeness.

4.2.2 Maximum Hop Threshold for Relational Acyclification

Definition 12 suggests that the maximum hop threshold used in a relational acyclification of a

σ-AGG may be higher than the hop threshold of the given model. It is important to characterize

the maximum bound of relational acyclifications for allowing practical implementation of the
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RCD algorithm for cyclic models. The following proposition provides the maximum bound on

the hop threshold of relational acyclifications.

Proposition 3. Given a relational modelM = (S,D) with hop threshold h and corresponding

σ-AGG G = (V,E) with a given perspective, the hop threshold h′ of any relational acyclification

G′ of G can be at most �2+lc

2 �h where lc refers to the length of the longest cycle of dependencies

in the relational modelM.

The need for higher hop thresholds arises for the additional edges drawn for any incoming

edges to a strongly connected component (Definition 5). Any such incoming edge has a maxi-

mum hop threshold h of the given model. In order to reach the farthest node in the cycle where

each dependency can be of at most h hop threshold, we need at most � lc2 �h hop threshold where

lc refers to the length of the cycle. So, in total it can be at most h + � lc2 �h = �2+lc

2 �h. Note

that in order to calculate an upper bound on the hop threshold of relational acyclification we

need to assume the maximum length of any cycle, lc in the given relational model.

4.2.3 Soundness and Completeness of RCD for Cyclic Relational Causal Models

We consider RCD as a mapping PRCD from independence models (on variables V ) to

DPAGs (with vertex set V ), which maps the independence model of a σ-AGG G to the DPAG

PRCD(IMσ(G)). We assume the following:

A 9. There exists one or more valid relational acyclifications with hop threshold not exceeding

the hop threshold of the given relational causal model (h′ = h).
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A 10. The degree of any entity in the relational skeleton is greater than one.

Assumption 9 follows from Assumption 6 and also limits the set of relational causal models

for which RCD can be shown to be sound and complete. Assumption 10 satisfies the soundness

and completeness of σ-AGG (Ahsan et al., 2022a).

Theorem 6. Considering Assumption 8, 9, 10 and causal sufficiency holds, RCD is

(i) sound: for all σ-AGGs G, PRCD(IMσ(G)) contains G;

(ii) arrowhead complete: for all σ-AGGs G: if i /∈ ANG̃(j) for any DCG G̃ that is σ-Markov

equivalent to G, then there is an arrowhead j →◦ i in PRCD(IMσ(G))

(iii) tail complete: for all σ-AGGs G, if i ∈ ANG̃(j) in any DCG G̃ that is σ-Markov equivalent

to G, then there is a tail i→ j in PRCD(IMσ(G));

(iv) Markov complete: for all σ-AGGs G1 and G2, G1 is σ-Markov equivalent to G2 iff

PRCD(IMσ(G1)) = PRCD(IMσ(G2))

in the σ-separation setting given sufficient hop threshold.

Proof. The main idea of the proof is very similar to the proof of Theorem 1 from Mooij and

Claassen (2020) where they prove the soundness and completeness of FCI for cyclic models

under σ-separation.

To prove soundness, let G be a σ-AGG and P = PRCD(IMσ(G)). The acyclic soundness of

RCD means that for all AGGs G′, PRCD(IMσ(G
′)) contains G′. Hence, by Definition 12 and

Assumption 9, P contains G′ for all acyclifications G′. But then P must contain G which can

be easily shown using Proposition 3 of Mooij and Claassen (2020).
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To prove arrowhead completeness, let G be a σ-AGG and suppose that i /∈ ANG̃(j) in

any DCG G̃ that is σ-Markov equivalent to G. Since G′ is σ-Markov equivalent to G, this

implies in particular that for all AGGs G̃ that are d-Markov equivalent to G′, i /∈ ANG̃(j).

Because of the acyclic arrowhead completeness of RCD, there must be an arrowhead j →∗ i in

PRCD(IMσ(G
′)) = PRCD(IMσ(G)). Tail completeness is proved similarly.

To prove Markov completeness: Definition 12 and Proposition 1 imply both IMσ(G1) =

IMd(G
′
1) and IMσ(G2) = IMd(G

′
2). From the acyclic Markov completeness of RCD1, it then

follows that G′
1 must be d-Markov equivalent to G′

2, and hence G1 must be σ-Markov equivalent

to G2.

The statement of this theorem can be seen as a special case of the generalization claim

(Theorem 2) by Mooij and Claassen (2020). There is an important point to discuss Assumption

9. Even though Assumption 9 limits the scope of possible relational causal models, it is possible

to modify RCD in a way so that it can work for models with relational acyclification having a

hop threshold higher than the hop threshold of the given model (h′ > h). The intuition here

is that the skeleton building process should consider this new hop threshold h′ (which is upper

bounded by �2+lc

2 �h) rather than the true hop threshold h. However, it requires further proof

of soundness and completeness with this modified skeleton. We leave this for future work.

1Since relational d-separation is equivalent to the Markov condition and it is sound and complete on
abstract ground graph (Maier et al., 2013b)
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X1
A

Y1
B

AB
X2 Y2

(a) Cyclic RCM

[A, AB, B, BA, A].X1[A, AB, B].Y1[A].X1

[A, AB, B, BA, A].X2[A, AB, B].Y2[A].X2

(b) RCD output DPAG

Figure 10: An example cyclic relational model and its corresponding DPAG output by RCD

under σ-separation.

4.2.4 Identification of Relational (Non-)cycles

Mooij and Claassen (2020) show that the patterns in strongly connected components in

DCGs can be used as a sufficient condition for identifying the absence of certain cyclic causal

relations in a complete DPAG. Given Definition 12, the same condition holds for relational

models and σ-AGGs as well. We present the necessary and sufficient conditions for identifying

non-cycles in the output of RCD following Proposition 10 by (Mooij and Claassen, 2020):

Proposition 4. Let G be a σ-AGG and denote by P = PRCD(IMσ(G)) the corresponding

complete DPAG output by RCD. Let i �= j be two nodes in P. If there is an edge i ◦—◦ j in

P, and all nodes k for which k →∗ i is in P also have an edge of the same type k →∗ j (i.e.,

the two edge marks at k are the same) in P, then there exists a DCG G̃ with j ∈ SCG̃(i) that

is σ-Markov equivalent to G, but also a DCG H with j /∈ SCH(i) that is σ-Markov equivalent

equivalent to G.
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In other words, under the conditions of this proposition, it is not identifiable from P alone

whether j and i are part of a causal cycle, but they are candidates of being part of a cycle.

Figure 10 shows an example of this identifiability criteria. Figure 10b shows the output DPAG

of an example cyclic RCM from Figure 10a. The edges between nodes [A].X1, [A, AB, B].Y1

and [A, AB, B].Y1, [A, AB, B, AB, A].X1 satisfies the conditions given in Proposition 4. It

means they could be part of a cycle but it is not possible to confirm that based on the output

alone.
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4.3 Experiments

In this section, we examine the effectiveness of RCD for cyclic RCMs using both synthetically

generated cyclic RCMs satisfying relational acyclification criteria and a demonstration with a

real-world dataset. Since there is no other algorithm designed to discover cyclic RCMs, we

compare against the vanilla RCD with d-separation oracle.

4.3.1 Experimental Setup

We follow the procedure introduced by Maier et al. (2013a) for synthetic experiment except

we allow feedback loops in the model. We generate 100 random cyclic causal models over

randomly generated schema for each of the following combinations: entities (1–3); relationships

(one less than the number of entities) with cardinalities selected uniformly at random; attributes

per item drawn from Pois(λ = 1) + 1; and the number of relational dependencies (4, 6, 8, 10,

12) limited by a hop threshold of 2 and at most 3 parents per variable. We enforce a feedback

loop among the dependencies. Note that a single feedback loop can introduce arbitrary length

cycles based on the structure of the model. This procedure yields a total of 15,000 synthetic

models. Note that this generates simple Bayesian networks when there is a single entity type.

We refer to the version of RCD with d-separation and σ-separation oracles as d-RCD and

σ-RCD respectively.1

1Code available at https://github.com/edgeslab/sRCD
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4.3.2 Evaluation Criteria

The goal of the evaluation is to compare the learned causal models with the true causal

models. However, the output object for cyclic RCMs is PAGs instead of CPDAGs. Moreover, it

is expected that the skeleton of the output PAG might be different from the true causal model.

For this reason, we evaluate the algorithms based on ancestral relationships. We identify the

ancestral relationships entailed by the output and the σ-AGG of the true model and report

what percentage (recall) of the actual ancestral relationships are contained in the output. For

a sound and complete algorithm, we expect to see 100% recall. We omit precision since we are

only comparing to the true model, not all the models in the equivalence class. Moreover, we

consider the identification criterion given in Proposition 4 and evaluate the algorithms based

on their ability to correctly identify edges as possible cycle candidates. We report recall for this

evaluation as well.

4.3.3 Results

Figure 11 shows the comparison of d-RCD and σ-RCD based on isPossibleAncestor (top

row) and isPossibleCycle (bottom row) queries on synthetically generated relational models.

The columns represent the increased number of entity types (left to right). The x-axis shows

the number of dependencies and y-axis shows recall values. In the leftmost column, we see

the results for single entity models. The top left and bottom left figures are equivalent to

running the PC algorithm with d- and σ-separation oracles respectively. The rest of the figures

represent proper relational models. As expected, we see 100% recall for σ-RCD in all these

plots. However, the result for d-RCD shows some intuitive patterns. For a single entity, d-RCD
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Figure 11: Comparison of d-RCD and σ-RCD based on the recall of isPossibleAncestor (top

row) and isPossibleCycle (bottom row) queries. The number of entity types increased from left

to right.

suffers most for 6 and 8 dependencies and get relatively better recalls on lower and higher

extremes in x-axis. On the other hand, for multiple entity relational models, we see a general

upward trend from left to right which is intuitive since higher number of dependencies makes the

models increasingly denser. The difference in the trend between non-relational and relational

cases for the low number of dependencies is due to the nature of relational data. Because of

multiple entities and overlapping relational paths, there are usually more nodes in a σ-AGG

than a DCG with the same number of dependencies.
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Figure 12: Frequency of edge orientation rules for d-RCD (top) and σ-RCD for different numbers

of entity types and dependencies.

Figure 12 shows the percentage of orientation rules used for d-RCD (top row) and σ-RCD

(bottom row). The leftmost column refers to the single entity case where no RBO is in effect.

We can see some subtle differences in the distribution of rules for d-RCD and σ-RCD. For

the small number of dependencies (i.e. 4) only CD (collider detection) rule activates with σ-

RCD where d-RCD utilizes both CD and KNC (known non-collider). The increased number of

dependencies shows the difference in the overall distribution. For the middle and right column,



64

a significant difference is seen in the percentage of times rule MR3 (Meek rule 3) is executed for

σ-RCD compared to d-RCD. These differences indicate that the algorithms learn fundamentally

different structures.

4.3.4 Demonstration on Real-world Data

MOVIE

Rating Count

Actor Count

Critic Rating Runtime

Genre

Budget

Gross

USER

Rating Count

Gender Age

ACTOR

Gender

DIRECTOR
Gender

RATES

Rating

DIRECTS
STARS-IN

Movie Count

Age

Rank
Age

Movie Count

Figure 13: A possible cyclic relational model of MovieLens+ based on the output of RCD (Maier

et al., 2013a).

Maier et al. (2013a) show the output of RCD on a sample of MovieLens dataset

(www.grouplens.org) based on an approximate conditional independence test using the sig-
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nificance of coefficients in linear regressions 1. Their output contains undirected edges which

are potential candidates for cycle edges. Figure 13 shows a possible cyclic relational model

which corresponds to the original output. Following Proposition 4, we can infer that the edge

between [Movie].Rating Count and [Movie].Genre cannot be part of any cycles or feedback

loops. Some undirected edges can be oriented based on domain knowledge (i.e. Budget can

cause gross income but not the other way around). There exist many possible orientations of

dependencies that agree with the RCD output. We show one plausible case with a feedback

loop between user ratings and critic ratings of a movie. It is possible that rating information

is public and users and critics influence each other with their ratings.

4.4 Discussion

Despite several methods developed for cyclic causal discovery from i.i.d samples, no such

algorithm exists for cyclic relational causal models even though cycles are ubiquitous in real-

world relational systems. In this work, we investigate the necessary conditions for discovering

cyclic relational causal models from observational samples. We introduce relational acyclifi-

cation operation which facilitates the theoretical guarantees for identifiability of such models.

We prove that an existing state-of-the-art relational discovery algorithm, RCD is sound and

complete for cyclic relational models for which valid relational acyclification exists. To the best

of our knowledge, this discovery is the first of its kind. We hope that this work will play an

important role in the study of mutual influence and interference in complex relational systems.

1The original output is given in Figure 5



CHAPTER 5

RELATIONAL DEPENDENCE TEST

Parts of this chapter were previously published as Ahsan, R., Fatemi, Z., Arbour, D., and Zheleva,

E.: Non-parametric Inference of Relational Dependence. In Proceedings of the 38th Conference on

Uncertainty in Artificial Intelligence (UAI 2022) Ahsan et al. (2022b)

Measuring statistical dependence is a fundamental task in statistics. However, most existing

independence tests assume that the observed data is independent and identically distributed

(i.i.d.). This makes them unsuitable for capturing the dependencies in real-world relational

systems, from social networks to protein-protein interactions, in which data instances depend

on each other. In this chapter, we characterize the notion of statistical dependence in relational

data. Furthermore, we provide a non-parametric consistent method to operationalize the test for

relational dependence. We empirically evaluate our proposed method on a variety of synthetic

and semi-synthetic networks and demonstrate its effectiveness compared to the state-of-the-art

kernel-based relational independence test.

5.1 Relational Dependence

Relational dependence refers to a statistical dependence, either marginal or conditional,

between two variables where at least one of the variables is relational. The goal of a relational

dependence test is to determine whether to reject the null hypothesis of independence between

these variables or not. The representation of relational data for such a test is non-trivial because

66
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data instances are not i.i.d. A common practice to deal with relational data is propositional-

ization (Kramer et al., 2001), which refers to the process of projecting a set of connected data

samples down to a single, propositional table. In the context of relational dependence testing,

flattening has three main deficiencies. First, the entities in the flattened data are not i.i.d.

Second, choosing the appropriate aggregation function is non-trivial as discussed in Chapter 1.

Failing to appropriately define the aggregate, in this case, could lead to increased type I errors

in marginal tests and both type I and II errors for conditional tests. Third, flattening raises

statistical concerns for relational causal discovery, one of the application areas of relational

conditional independence tests, by violating the causal Markov condition (Maier et al., 2013c).

Lee and Honavar (2017) address the first deficiency by proposing a solution framework based

on graph kernels using an existing i.i.d. kernel-based CI test method. However, their approach

does not directly address the other two concerns.

5.1.1 Example of Relational Dependence

Let’s look at the problem with a few concrete examples. We consider an entity Person

which exhibits attributes like smoking (S) and drinking (D) that represent a person’s smoking

and drinking behavior respectively and G represents the network of social ties. We might be

interested to detect the impact of social influence on a person’s smoking behavior. It can be for-

malized as both marginal and conditional independence tests based on the choice of a relational

variable. For example, detecting whether one’s smoking behavior is marginally independent

of one’s friends’ smoking behavior could be carried out by a test of vi.S |= σS(vi). Similarly, a

conditional test of vi.S |= σS(vi)|vi.D should be able to detect whether one’s smoking behavior
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is conditionally independent of neighbors’ smoking behavior given one’s drinking behavior. We

pick three such diverse cases for evaluation and formally introduce those in the experimental

evaluation section.

5.1.2 General Relational Independence

In this work, we propose a general notion of relational dependence which captures complex

dependencies between relational variables without relying on flattening or explicit aggregate rep-

resentations. We extend the definition of conditional independence for non-parametric functions

by Daudin (1980) and propose the following definitions of marginal and relational conditional

independence:

Definition 13 (Relational Marginal Independence). Two relational variables, σX(vi)

and σY (vi) are said to be marginally independent of each other if and only if,

E [gX(σX(vi))gY (σY (vi))] = E [gX(σX(vi))]E [gY (σY (vi))] for any smooth square measurable

functions gX(·), gY (·).

Definition 14 (Relational Conditional Independence). Two relational variables, σX(vi)

and σY (vi) are said to be independent of each other given a third, σZ(vi) if and only if,

E [gX(σX(vi))gY (σY (vi))|gZ(σZ(vi))] = E [gX(σX(vi))|gZ(σZ(vi))]E [gY (σY (vi))|gZ(σZ(vi))] for

any smooth square measurable functions gX(·), gY (·), gZ(·).

Here, gX(·), gY (·), gZ(·) are aggregate functions that map σ to a real-valued vector. They

could be sum, mean or any other complex non-linear function. The rejection of the null hypoth-

esis of marginal independence would mean that the variables are possibly dependent, either due
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to a directed path between them or due to a direct, causal relationship, or the presence of a

confounding relationship. For a relational conditional independence (RCI) test, the rejection

of the null hypothesis would imply that the two variables are not independent given the con-

ditioning set. Note that because we are considering the dependence between sets of relational

variables and their propositional counterparts we circumvent the three problems with flattening

described earlier.

5.2 Relational Dependence Test

In this section, we discuss the components which operationalize the definition of relational

dependence into an empirical test. We first describe a non-parametric relational aggregate

formed by local kernel means. Then we formulate marginal and conditional independence

tests using the kernel mean embedding. Then, we discuss the theoretical boundaries for the

consistency of the proposed test. Finally, we introduce techniques for large-scale approximation

of the proposed relational kernels that can speed up the independence test significantly. We

make the following assumptions for the proposed approach:

A 11. Each node v ∈ V has a degree of at least 1.

A 12. The adjacency matrix of G is symmetric with edge weights bounded by some real constant.

A 13. Dependence between two instances i and j implies the existence of a path in the graph

between vi and vj.
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5.2.1 Non-parametric Aggregate Representations

One of the central problems in estimating dependence in relational settings is defining a

sufficient representation for the sets of observations for individual instances of a relational vari-

able. Prior work (Maier et al., 2013a; Arbour et al., 2016b; Lee and Honavar, 2017) considered

aggregation functions, usually one, which are specified apriori by the practitioner. However, in

many scenarios, it is unreasonable to expect practitioners to reason over a very complex joint

distribution or to know the exact parametric form of dependence. For example, the possible ag-

gregation in effect of the spread of obesity on social networks (Christakis and Fowler, 2007) can

be different from people’s influence on the Twitter platform (Bakshy et al., 2011). A generalized

definition and associated operationalization of relational dependence can help the practitioner

by directly measuring dependence without prior domain knowledge about aggregations on the

given relational system.

Adopting the kernel mean as an aggregation function removes the burden of reasoning over

parametric families and predefined aggregates. Specifically, the kernel mean embedding consid-

ers the mean of a variable after applying a projection φ(·) into some RKHS, μ =
∫
φ(x)p(x)dx,

with the corresponding empirical estimate of μ̂ = 1
N

∑N
i φ(xi) where N is the number of ob-

servations and x1, . . . , xN are observations from a random variable X (Smola et al., 2007).

We present the practical implementation of the kernel mean as a relational aggregate. For a

given node vi, we define the kernel mean aggregate of its neighbors with respect to the attribute

X as μ(vi) =
1

deg (vi)

∑
m∈N̂ (vi)

φ(m.x)
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where N̂ (·) refers to a path predicate that is restricted to immediate neighbors for ease of

exposition. Because φ may map to an infinite dimension, it is impractical to explicitly represent

this quantity.

Fortunately, because our statistics of interest are concerned with the covariance, the kernel

trick, i.e. considering the inner product rather than the feature representations directly, can be

employed. Specifically, the inner product between relational kernel mean is given as

〈μ(vi), μ(vj)〉 =
∑

m∈N̂ (vi)

∑
p∈N̂ (vj)

k(m.x, p.x)

deg(vi)deg(vj)
,

which can be written for an entire sample in terms of a matrix product between the network

adjacency matrix, A, the inverse degree matrix D−1 where Di,i =
1

deg(vi)
, and the kernel matrix

KX , by observing (D−1Aφ(x))(D−1Aφ(x))T = D−1AKXAD−1.

In contrast to the propositional kernel mean, the convergence of the relational to its pop-

ulation counterpart is not necessarily guaranteed because of sample dependence. We discuss

convergence and consistency guarantees under the assumption of weak dependence after de-

scribing the relational independence tests.

5.2.2 Relational Marginal Independence Test

With the relational kernel mean defined we now turn to the central task of this work, non-

parametric inference of relational dependence (NIRD). As a test statistic, we use the Hilbert-

Schmidt independence criterion (HSIC) (Gretton et al., 2005). HSIC measures the maximum

distance between an embedding of the observed joint distribution, and the product of the
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marginals, i.e., ‖E[φ(x)⊗φ(y)]−E[φ(x)]⊗E[φ(y)]‖2. We perform a hypothesis test using HSIC

as the test statistic where the null hypothesis refers to independence. The test produces a p-

value which is used to decide whether to reject the null or not. Testing relational independence

using HSIC is straightforward with the relational kernel mean by using the kernel matrix defined

earlier in the empirical HSIC estimator. Defining the centering matrix H = I − 1
n11

�, an

empirical estimate of HSIC is given by 1
n2 trace (KXHKY H), where KX and KY are kernel

matrices corresponding to the random variables X and Y , respectively. Independence testing

with HSIC can be performed by using the corresponding relational kernel in the test statistic.

5.2.3 Relational Conditional Independence Test

A similar construction can be employed to test for relational conditional independence,

defined in Definition 14. Following Strobl et al. (2019), we consider the following L2 spaces,

FXZ �
{
f̃ ∈ L2

XZ | E(f̃ | Z) = 0
}

FY Z �
{
g̃ ∈ L2

Y Z | E(g̃ | Z) = 0
}

FY ·Z �
{
h̃′ | h̃′ = h′(Y )− E

(
h′ | Z)

, h′ ∈ L2
Y

}

Each of these quantities can easily be constructed by considering regressions, e.g. f̃ can be

obtained by taking the residuals after performing a regression. We consider a mean of the feature

basis representation as an aggregation function whenever one of the variables is relational.

Under the assumption that the direct sum of the reproducing kernel Hilbert spaces, kxky and

kz is dense in L2, Strobl et al. (2019) (proposition 5) showed that conditional linear covariance
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of zero implies uncorrelatedness, i.e., E
[
f̃ g̃

]
= 0 =⇒ X |= Y |Z =⇒ ΣXY |Z = 0. This

motivates the use of a multiple output kernel ridge regression as an estimator of the conditional

expectation, β = (φ(z)Tφ(z)+λI)−1φ(z)Tφ(ẍ) where Ẍ � (X,Z) is the concatenation of x and

z. Informally, this can be seen as applying the “kernel trick” of considering linear operations

on non-linear transformations of the data allowing for observations to be dependent. The test

is then constructed by considering the residuals, φ̃(ẍ) = φ(ẍ)− φ(z)βẍz, φ̃(y) = φ(y)− φ(z)βyz

and sum of the squared covariances between them. The final form of the test is given by

1
n2 trace

(
K̃ẌHK̃Y H

)
where K̃Ẍ and K̃Y refers to the kernel matrices for the residuals φ̃(ẍ)

and φ̃(y) respectively.

There are two considerations in employing this procedure in a relational setting, namely

how to handle relational variables in the conditioning set (Z) and the test set (X), respectively.

When a member of the conditioning set is relational, the test procedure is identical after re-

placing φ(z) with its relational counterpart, 1
|N̂ (z)|

∑
m∈N̂ (z) φ(m). When a member of the test

set is relational, the problem is reduced to predicting each member of the set independently by

considering the regression of the perspective of the relational variable, as described by Maier

et al. (2013a). After regressing individual members, the mean of residuals is then considered

for the marginal tests, ˜σ(φ(x)) = 1
|N̂ (x)|

∑
m∈N̂ (x) φ(m)− φ(z)βmz.

5.2.4 Consistency of Relational Independence Test

In order to reason about the behavior of test statistics under non-i.i.d. samples and un-

derstand asymptotic behavior, we need to characterize the behavior of dependence amongst

instances as a function of some notion of distance between instances. There are a number
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of formalisms for reasoning about dependent data (Andrews and Pollard, 1994; Bickel and

Bühlmann, 1999; Dedecker et al., 2007). In this work we focus on weak dependence (Dedecker

et al., 2007), which we describe next.

5.2.4.1 Weak Dependence

In order to accommodate dependent observations and maintain consistency of the testing

procedure we will assume that observations are weakly dependent. Weak dependence provides

a flexible notion of dependence that requires only the definition of distance between instances

and the presence of a measurable probability space Arbour (2017). Within this work we will

make use of the notion of weak dependence, i.e. τ -dependence.

Definition 15. (Dedecker et al., 2007) Let π be a filtration1 over the set of nodes in a graph,

G, defined by performing a breadth first search at an arbitrary node, v ∈ G. Further, define

X to be a Lp-integrable random variable. The weak-dependence coefficient is defined as

τp,r(X) = sup(i,j) ‖ supg Cov(g
(
Xπ(i)

)
, g

(
Xπ(j)

)
)‖p, where i ≤ j and j − i ≤ r, and g() is a

Lipschitz function.

Intuitively, the weak dependence coefficient, τp,r(X) measures the covariance between a

vector, Xi and another random vector Xj drawn from the same process separated by at least

distance of r. We call a process weakly dependent if τ tends to zero as the r tends to infinity.

Note that this is a strictly weaker condition than alternative assumptions on dependence such

1A filtration is an ordering of a set such that for any two subsets, S1,...,j , S1,...,k, j ≤ k → S1,...,j ⊆
S1,...,k.
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as strong mixing and m-dependence which require independence at a finite distance, whereas

weak-dependence only requires it asymptotically.

5.2.4.2 Weak Dependence in Relational Domains

We provide a natural extension of weak dependence within the relational setting by replacing

usual definition of distance to the shortest path distance between two nodes in a graph. The role

of τ in this case can be interpreted as measuring the decay of dependence between instances as

a function of shortest-path distance. We will assume from here out that as the distance between

any two nodes in the network tends to infinity, the dependence between them converges to zero.

More formally, we will employ the following assumption similar to Arbour (2017):

A 14. (Xt)t∈π is a strictly stationary τ -dependent process with
∑∞

r=1 r
2
√
τr(X) ≤ ∞ for some

filtration π, where r is shortest-path graph distance.

The notion of weak dependence within the network setting is not novel to this work, Xiang

and Neville (2011) make use of the τ -coefficient in the context of deriving asymptotic consis-

tency for transductive learning with an assumption of linear dependence amongst instances. In

this work, I consider weak dependence with arbitrary dependence for independence testing of

relational data. Consistency of the relational independence testing is provided by the following

theorem and corollary, after applying two additional assumptions.

A 15. The maximum degree of any node in the network is bounded by a real constant.

A 16. The network structure is fixed and doesn’t change during the generation of the observed

random variables.
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Assumption 15 ensures that the average shortest path distance from any node to all other

nodes in the graph tends to infinite as the number of nodes tends to infinite, which is necessary

in order to have convergence of weakly dependent sequences. Assumption 16 ensures that the

observed neighborhoods for nodes correspond to the structure which generated the data.

Theorem 7. Under the aforementioned assumptions the Hilbert-Schmidt independence crite-

rion of two weakly dependent propositional variables converges in L1 to its population counter-

part, i.e., |HSICn − HSICpopulation| −→
d

0.

I present the proofs of consistency for HSIC and relational HSIC under weak dependence.

The approach here is to extend the results of Chwialkowski et al. (2014) and (Leucht and Neu-

mann, 2013), who analyze degenerate U and V -statistics (which includes HSIC as a specific

instantiation) under weak dependence in spaces that admit euclidean distances to the more gen-

eral setting of graph structured spaces. Much of the results carry through after modifications to

accommodate the fact that the number of reachable instances at a specific distance is irregular.

Arbour (2017) present a modification of the relevant proof which shows the convergence of the

distribution of degenerate V -statistics. Here, I describe the application of that proof to our

setting and the extension to relational variables.

5.2.4.3 Relational Marginal Independence Test

We now turn our attention to the Hilbert-Schmidt independence criterion for relational

marginal independence test.
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Theorem 8. Under the aforementioned assumptions the Hilbert-Schmidt independence crite-

rion of two weakly dependent propositional variables converges in L1 to its population counter-

part, i.e.,
∣∣HSICn − HSICpopulation

∣∣ −→
d

0.

Proof. Recall that the Hilbert-Schmidt independence criterion (HSIC) is a test of dependence,

i.e. a hypothesis test of paired samples where the null hypothesis is that the two samples are

generated independently, Px,y = PxPy. Our focus is on the empirical estimator of HSIC, which

can be written as degree-four V -statistic with a core1 defined by:

h(x1, x2, x3, x4) =
1

4!

∑
π∈S4

k(xπ(1), xπ(2))k(yπ(1), yπ(2)) + k(yπ(3), yπ(4))− 2k(yπ(2), yπ(3)) (5.1)

where k is the relational kernel and Sn is the set of permutations over a set of n elements.

Convergence then follows as a direct application of Theorem 1 by Arbour (2017) and the weak

law of large numbers.

Corollary 2. Under the aforementioned assumptions the Hilbert-Schmidt independence crite-

rion between a weakly relational and a weakly dependent propositional variable converges in L1

to its population counterpart, i.e., |HSICn − HSICpopulation| −→
d

0.

Proof. The central items to be shown in order to apply the results of Theorem 1 by Arbour

(2017) are (1) relational kernels define a valid V -statistic, and (2) the relational variable re-

mains weakly-dependent. Item (1) follows directly by denoting one of the variables in equation

1In order to prevent confusion, we follow Chwialkowski et al. (2014) and do not follow the canonical
convention of calling h the kernel.



78

Equation 5.1 to be a set of instances return by the path predicate and k to be the relational

kernel defined in the main text. Item (2) follows as a consequence of assumption 5 which bounds

the degree of each node by a finite constant, c. As a result, any path predicate which defines

a finite length path will return a set no larger than c < c′ < ∞. As a result, so long as the

initial random variable is weakly dependent, the relational variable constructed from the initial

random variable will also be weakly-dependent, albeit with a slower rate of convergence since

the coefficient τr (the weak dependence coefficient) will necessarily decay more slowly.

It is important to note that Theorem 8 and Corollary 2 show convergence in distribution

but do not claim any guarantees regarding the rates of convergence with respect to the number

of nodes and level of dependence. The rate of convergence will depend on the weak dependence

coefficient. In the case that the coefficient is 0, this reduces to results that correspond to

prior work on iid data (Zhang et al., 2011). While there is prior work studying this in more

restrictive assumptions on the dependence between instances (London et al., 2013), we are not

aware of similar results for the case of weak dependence in general structured domains even in

the simpler case of regression. This would be an important direction for future work.

5.2.5 Large Scale Approximations

While the proposed model is theoretically appealing, the associated time and space com-

plexity render it infeasible for most modern network settings. To address this, we appeal to an

approximation of the kernels known as Random Fourier Features (Rahimi and Recht, 2008).

Random Fourier Features exploit Bochner’s theorem, which states that a continuous, time-

invariant kernel is positive definite if and only if the kernel is the Fourier transform of some
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non-negative measure. For example the Gaussian kernel can be represented with the following

Fourier transformation k̂(ω) = 1
2π

∫
e−jω�δk(δ)dδ. This property implies that a kernel can be

approximated via the following procedure:

• Draw D samples, from some distribution (i.e Normal), to approximate the Gaussian kernel

where the variance σ corresponds to the bandwidth of the kernel.

• Construct the Fourier basis explicitly as z (x) =
√

2
d

[
cos

(
wT
1 x

)
, sin

(
wT
1 x

)
, . . . ,

]
.

• Perform linear operations using z.

Following (Zhang et al., 2018; Strobl et al., 2019), we approximate HSIC using random Fourier

features by considering ĤSIC(X,Y ) =
∥∥ 1
nZ

T
XHZY

∥∥2 where Z is a n × d dimensional matrix

with each row consisting of the random Fourier features for an observation. We can represent

the relational kernel mean as D−1AZ, and the corresponding test statistic as ‖ 1nZT
XAD−1HZY ‖

where D and A are the diagonal degree and adjacency matrix as before. In several experiments

we show that using approximate statistic leads to significant performance improvements with

minimal effect on the efficacy of the test, even with only a few random features.

5.2.6 Extension to Multi-relational Systems

In our problem definition we assumed a single-entity, single relationship relational schema for

ease of exposition. Here, we discuss necessary extensions for a multiple entity, multi-relational

system. We consider a set of item classes I to be the union of entities and relationship classes,

I = E ∪R, following prior work (Lee and Honavar, 2017; Maier et al., 2013a). We refer to

the attribute class of an item class I ∈ I as A(I). Moreover, let G(I) denote a set of items of

an item class I ∈ I.
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Here, we point out two major differences in a multi-relational system:

1. The relational dependence is specifically defined between two item classes I ∈ I and

I ∈ J .

2. The path predicate ρ is likely to be defined with relational queries rather than random

walks over a neighborhood.

Now, we revisit definition 1 from the main text with the new notation as follows:

Definition 16 (Relational Variable). Given a relational schema S = 〈E ,R,A〉, its instantia-

tion G, two item classes I, J ∈ I and a path predicate ρ, a relational variable σ(vi,X, G, ρ) is

the set of attributes vj .X selected by ρ of items vj ∈ G(J) reachable from items vi ∈ G(I) such

that X ⊂ A(J), where the path predicate ρ is a function given by:

ρ(vi, G) : G(I) �→ P(G(J))

The necessary assumptions and relational dependence definitions still hold. The major

difference arises in the compact representation of the relational kernel. Equation 1 stays valid

with an updated notion of path predicate. However, the compact representation in equation

2 is no longer trivial since the adjacency matrix A is no longer directly applicable. There are

two potential workarounds. First, since the compact representation is not mandatory for our

method to work, we can still work with equation 1 for multi-relational systems. Second, we can

essentially consider the bipartite graph between sets of items between item classes I, J ∈ I and
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use the adjacency matrix AIJ of this bipartite graph instead of A. Similarly a corresponding

degree matrix DIJ can be constructed from AIJ .
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5.3 Experimental Evaluations

To evaluate the effectiveness of the proposed test, we run experiments with multiple network

datasets, relational dependence cases, and synthetic attribute generators.

5.3.0.1 Network Datasets

We consider networks from two synthetic graph generators and three non-PII real-world

networks. First, for the Barabási-Albert (BA) model, we vary the parameter that controls

the number of nodes a new node can attach to. For the Erdős-Rényi (ER) model, we vary

the probability of edge creation between each pair of nodes. For each set of parameters, we

generate 100 networks with size 100. The small size of the synthetic networks is driven by the

baseline method which does not scale well, as shown in Figure 17a. We also demonstrate the

applicability of our approach through a Facebook ego-network with 4, 039 nodes and 88, 234

edges (Leskovec and Mcauley, 2012) and a Twitter ego-network with 11, 176 nodes and 1, 44, 653

edges where we sampled a subgraph of 10, 000 nodes (Leskovec and Mcauley, 2012). We also

demonstrate results on the 50 Women dataset (Michell and Amos, 1997). This dataset has

the smoking, sport, drug, alcohol consumption habits of 50 female students, along with their

friendship information, over the course of three years.

5.3.1 Four Cases of Relational (In)dependence

We choose three representative relational dependence cases and one relational independence

case to cover a range of possible tests. We consider attributes Z,X, Y ∈ A which measure

characteristics in time steps t−1, t, t+1 respectively. All the cases are represented with arrows

showing the direction of dependence:
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1. Case 1: σX(vi)→ vi.Y

2. Case 2: σX(vi)← vi.Z → vi.Y ← σX(vi)

3. Case 3: vi.X ← σZ(vi)→ vi.Y ← vi.X

4. Case 4: σX(vi)← vi.Z → vi.Y

where σX(vi) and σZ(vi) are relational variables on the attributes X and Z of the direct

neighbors of vi. Case 1 refers to marginal independence between a relational and a propositional

variable (σX(vi) |= vi.Y ). Cases 2 and 3 introduce conditional independence given a confounder.

Case 2 refers to a propositional confounder (σX(vi) |= vi.Y |vi.Z) whereas case 3 refers to a

relational confounder (vi.X |= vi.Y |σZ(vi)). A test should be able to reject the null hypothesis

of no dependence in the first three cases. Case 4 represents conditional independence and the

test should not reject the null hypothesis and it should produce high errors. Note that direction

is ignored in the test.

5.3.1.1 Synthetic Attribute Generation

Here, we describe the synthetic attribute generation procedure for the three cases mentioned

in the main text. Note that, only the generation of vi.Y differs in null and alternate hypothesis

while others stay the same. We consider polynomial dependency model for most of our experi-

ments. vi.X for case 0 and vi.Z for cases 1,2 is drawn from a uniform distribution U(0, 1) while

vi.X is always binarized to resemble the effect of treatment assignment. The outcome vi.Y is

generated according to the following equation for marginal dependence (case 0):
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vi.Y ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
U(0, 1) null

βd · (g(σx(vi)))2 + ε alternate

(5.2)

Conditional dependence (case 1) is reflected by the following equation:

vi.X ∼ βc · (vi.Z)2 + ε

vi.Y ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
βc · (vi.Z)2 + ε null

βd · (g(σX(vi)))
2 + βc · (vi.Z)2 + ε alternate

(5.3)

Here, βd and βc are dependence and confounding coefficients respectively. βc is considered

1.0 in our experiments. ε is noise drawn from standard normal (N(0, 1)) distribution. g refers

to the mean aggregate function. We can get the generating function for case 2 by replacing

g(σX(vi)) and vi.Z with vi.X and g(σZ(vi)) respectively in equation Equation 5.3. Next, we

consider the following procedure to simulate linear threshold model (LTM) for the diffusion

experiment which falls under case 0:

Ti ∼ U(0, 1)

vi.xt+1 = �(mean(σxt(vi)) > Ti)

vi.yt+1 = �(g(σxt(vi)) > Ti)

(5.4)

where we reassign vi.x values to simulate each diffusion step based on its value in previous step.

The vi.y values are assigned based on vi.x values in the last diffusion step.
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5.3.2 Experimental Setup

We empirically evaluate the proposed approach, NIRD, to the state-of-the-art RCI test

method, KRCIT (Lee and Honavar, 2017). 1 We report the average Type I and Type II errors

with significance level 0.05 over 100 trials for each set of parameters. We use Radial Basis

Function kernel (RBF) as the base kernel. KRCIT is implemented with HSIC as the kernel-

based marginal independence test method and KCIT (Zhang et al., 2011) as the kernel-based

conditional independence (CI) test. We use the approximate method of NIRD in all experi-

mental evaluation with 20 and 50 random Fourier features for marginal and conditional test

respectively. We estimate the null distribution via permutation on the non-relational variable

since the marginal distribution remains unchanged. We compare both RCI methods (NIRD,

KRCIT) to a recent i.i.d. CI test method, Sobolov Independence Criterion (SIC) (Mroueh

et al., 2019). We study NIRD’s strengths and weaknesses in five experimental setups:

• Relational dependence sensitivity: We evaluate the sensitivity of the dependence tests

to different relational dependence strengths. We report results on polynomial models while

varying the dependence coefficient in range {0.1, 0.3, 0.5, 0.7, 0.9} for the alternate hypothesis

and report both Type I and Type II errors. Edge connectivity is 3 for Barabási-Albert and

edge probability is 0.02 for Erdős-Rényi model.

• Network sensitivity: We examine performance over a variety of network structures.

We vary edge connectivity of Barabási-Albert in range {1, 2, 3} and edge probability of

1Code available at https://github.com/edgeslab/nird-uai22
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Erdős-Rényi in range {0.005, 0.01, 0.015, 0.02, 0.025}. For these experiments we use a fixed

dependence coefficient value of 0.5.

• Scalability: To evaluate the scalability of the proposed method against the baseline, we

generate Erdős-Rényi synthetic networks (edge probability 0.02) with varying number of

nodes and report the execution time for both NIRD and KRCIT on marginal and conditional

independence test. We vary the network size (x-axis) in the range {100, 200, 300, 400, 500}.

This experiment is executed on a 2.4GHz 8-core machine with 50GB memory.

• Diffusion: We demonstrate the application of our proposed method on testing for conta-

gion through information diffusion on the semi-synthetic Facebook network. We use a linear

threshold model (Granovetter, 1978) to characterize dependency in our attribute generation

process and simulate the diffusion process by reassigning the X attributes over several diffu-

sion steps. We generate the Y values based on X generated in the last diffusion step. The

initial state of all nodes is 0, then nodes get activated (set to 1) with probability 0.1. We

expect the distribution of σX(vi) to change with increasing diffusion steps and we want to

investigate at what step it is easier to detect relational dependence. We vary the number

of steps and sample size to observe the Type II error for our relational dependence test.

We also investigate the impact of activation probability on the Type-II error on the Twitter

ego-network with 10,000 nodes.

• Real world demonstration: We demonstrate the applicability of our test for detecting peer

influence in a well-studied real-world social network (50 Women) where our test discovers

smoking-, drug- and sport-related peer dependencies that concur with previous research.
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5.3.3 Results
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(f) ER: Case 3

Figure 14: Relational dependence impact on Type I/II errors.

5.3.3.1 Relational Dependence Sensitivity

Figure 14 shows Type I and Type II errors for the polynomial dependency model on synthetic

data. The rows correspond to the network models and the columns to relational dependence

cases. The solid and dashed lines correspond to Type II and Type I errors respectively. The

test is most challenging when the dependence coefficient, βd (x-axis) is low. The figure shows
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that both RCI methods are well calibrated with low Type I error (max 0.06 by KRCIT in

Erdős-Rényi) for the first two cases. In these cases, NIRD consistently produces lower Type II

errors compared to KRCIT. It is most visible in Erdős-Rényi model (14e) with 86% reduction in

Type II error for βd = 0.9. The performance gain of NIRD increases slightly from case 1 to case

2 as the difficulty increases. In case 3, KRCIT is poorly calibrated and exhibits an unusually

high Type I error. Across cases, NIRD shows desired behavior: it is consistently well-calibrated

and its Type II error decreases with the increase of relational dependence. Case 4 provides a

sanity check and both methods produce high Type II errors (0.9 to 1.0) with good calibration.

The error is nearly constant irrespective of strength of dependence coefficients or network model

parameters used. In order to test for sensitivity to noise, we repeat these experiments varying

the noise variance over multiple trials instead of drawing from a fixed distribution. The results

look very similar. From Figure 15 we can see a slight change of type-II errors compared to

Figure 14. However, the trend seems to be very similar.

5.3.3.2 Network Sensitivity

Figure 16 shows Type I and Type II errors for two network models. The x-axis represents

the corresponding parameter values for each model. We observe that increased parameter values

exhibit higher Type II errors in general for Barabási-Albert model but not for Erdős-Rényi. A

possible reason is that Barabási-Albert exhibits a more skewed degree distribution compared to

Erdős-Rényi. Note that the increased parameter values indicate higher density of the network.

We expect Erdős-Rényi to show a similar trend if the edge probability is further increased.

NIRD outperforms KRCIT in terms of Type II error (except in Figures 16c and 16f which is
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Figure 15: Relational dependence impact on Type I/II errors while variance of noise varied

∼ N (1, 0.2) over multiple trials.

due to poor calibration of the baseline method) irrespective of network density. Type II error

is reduced as high as 65% for Erdős-Rényi model with edge probability 0.025 (Figure 16e).

Moreover, Type I error for NIRD is consistent whereas KRCIT suffers in case 2 (Figures 16c,

16f).

5.3.3.3 Scalability

Figure 17a shows execution time in minutes (y-axis) for both marginal (case 1) and con-

ditional (case 3) independence test for different network sizes in terms of number of nodes
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Figure 16: Impact of network parameters on Type I/II errors.

(x-axis). The solid and dashed lines represent the conditional and marginal test result respec-

tively. KRCIT exhibits an exponential complexity whereas NIRD shows much less sensitivity

to network size. This is expected given the complexity of the corresponding algorithms.

5.3.3.4 Diffusion

Figure 18a shows the impact of the number of diffusion steps (lines) and sample size (x-

axis) on the effectiveness of NIRD. At initial activation (1 diffusion step) there is a high Type

II error across sample sizes which decreases with higher number of steps. We see a significant

decrease in error with just 5 diffusion steps. Further steps drastically lower the Type II error
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Figure 17: Test scalability.

and at 20 steps and larger samples it can reject the null hypothesis consistently. This suggests

that relational dependence is easier to detect after several diffusion steps rather than at early

activation. It also demonstrates the effectiveness and scalability of NIRD in terms of detecting

social phenomena in real world networks. Note that it is computationally infeasible to run the

baseline method on such size of samples.

In order to understand the impact of activation probabilities on the results of the test, we

run a different experiment with varying activation probabilities. We consider a similar semi-

synthetic setup with Twitter ego-network which is a larger real world network consisting 11,176

nodes and 1,44,653 edges (Leskovec and Mcauley, 2012). We consider a sample of 10,000 nodes

and vary the initial activation probabilities. Figure 18b shows the Type-II errors (y-axis) for

different diffusion step sizes (x-axis). The lines correspond to the initial activation probabilities



92

500 1000 1500 2000 2500 3000 3500
Sample size

0.00

0.25

0.50

0.75

1.00

T
y

p
e-

II
 E

rr
o

r

Step 0

Step 1

Step 3

Step 5

Step 10

Step 20

(a) Varying sample sizes (Facebook)

1 5 10 20
Step size

0.0

0.2

0.4

0.6

0.8

1.0

T
y
p
e-

II
 E

rr
o
r

AP 1E-4

AP 1E-3

AP 3E-4

(b) Varying activation probability (Twitter)

Figure 18: Type II error for the Linear Threshold Model on Facebook and Twitter ego-network.

(AP) for the diffusion process. We see the general trend of decreasing Type-II error with higher

step sizes. It seems to be almost saturated with step 10. Moreover, the result indicates that

the test is sensitive to activation probabilities and with higher activation probability, it shows

higher type II error.

5.3.4 Comparison to Sobolev Independence Criterion (SIC)

To show the effectiveness of relational CI methods vs. CI methods developed for i.i.d.

data, we compare both RCI methods (NIRD, KRCIT) to a recent i.i.d. CI test, the Sobolov

Independence Criterion (Mroueh et al., 2019). SIC is an interpretable dependency measure

between multivariate random variables characterized by integral probability metric between

the joint distribution and the product of the marginals. We perform the SIC test on the

flattened representation of the relational data, similar to KRCIT. Figure 19 extends the results
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(d) Case 1: Erdős-Rényi
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Figure 19: Type I/II errors with polynomial dependency model on synthetic networks for all

three cases.

shown in Figure 1 in the main text. In all three cases, the i.i.d. baseline SIC exhibits high Type

I error which shows its poor calibration to reasoning over the relational data.

5.4 Real-world Demonstration

One of the main challenges in social studies is to identify the effect of friends on their peers

and the strength of such effects in different domains, e.g. health and violence. Studies show

that patterns of interactions among adolescents can reveal possible reasons for changes in their
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behavior over time. The central question in such studies is how to identify and measure the

existence of such effects. The proposed independence test can facilitate reasoning over the

existence of dependence between peers’ behaviors in social networks by providing a mechanism

for falsifying statistical hypotheses.

As a demonstration, we examine the 50 Women dataset (Michell and Amos, 1997). This

dataset has the smoking, sport, drug, alcohol consumption habits of 50 female students, along

with their friendship information, over the course of three years. Each of the behavioral vari-

ables are coded as categorical variables indicating how regularly women engage in each of the

behaviors. Assuming independence between the behavior peers as the null hypothesis, the goal

of this analysis is to explore whether the habits of a student’s friends are associated with her

habits in subsequent years.

Table I shows p-values estimated by our kernel test method considering four attributes in

50 Women dataset. We use column Period to indicate the years we consider for the test,

e.g., in Period 1 → 2, 3, we explore students’ behavior change from first year to the second

and third year. We consider both the original categorical coding and a binarization of the

categorical attributes, which is 1 if the student uses a substance at least once during the year

and 0 otherwise. The number of students who did not engage in the behavior during the first

time point is shown in column t0, e.g, in the first row of the table, 4 students did not drink

alcohol in the first year. We exclude t0 for categorical data (indicated by NA) because the

frequency of the habit is intrinsic to the hypothesis of interest in these cases. The last two

columns ( NIDR all and NIDR t0 ) show p-values measured by NIRD. In NIDR all and
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TABLE I: Real-world demonstration: exploration of the dependence between the habits of

students and their first-hop neighbors in 50 Women dataset

period attribute attribute type t0 NIRD all NIRD t0

1 → 2 alcohol binary 4 0.425532 0.000000

1 → 2 alcohol categorical NA 0.000000 NA

1 → 2 drug binary 35 0.000000 0.138298

1 → 2 drug categorical NA 0.000000 NA

1 → 2 smoke binary 35 0.000000 0.021277

1 → 2 smoke categorical NA 0.000000 NA

1 → 2 sport binary 12 0.925532 0.978723

1 → 2 sport categorical NA 0.925532 NA

1 → 2,3 alcohol binary 5 0.114583 0.197917

1 → 2,3 alcohol categorical NA 0.000000 NA

1 → 2,3 drug binary 35 0.000000 0.583333

1 → 2,3 drug categorical NA 0.000000 NA

1 → 2,3 smoke binary 36 0.000000 0.000000

1 → 2,3 smoke categorical NA 0.000000 NA

1 → 2,3 sport binary 12 1.000000 0.166667

1 → 2,3 sport categorical NA 1.000000 NA

2 → 3 alcohol binary 3 0.125000 0.666667

2 → 3 alcohol categorical NA 0.281250 NA

2 → 3 drug binary 32 0.000000 0.125000

2 → 3 drug categorical NA 0.000000 NA

2 → 3 smoke binary 31 0.000000 0.281250

2 → 3 smoke categorical NA 0.000000 NA

2 → 3 sport binary 20 0.864583 0.479167

2 → 3 sport categorical NA 0.864583 NA
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NIDR t0 we consider all women (whether they have the habit in a year or not), and women

who do not have the habit in the first time point, respectively. Overall we find:

• Sports activity of peers is not associated with whether a student plays a sport or not. High

values of NIDR t0 and NIDR all are enough evidences to accept the null hypothesis of

independence.

• Peer smoking habits are associated with students’ frequency of smoking: NIDR all = 0 and

NIDR t0 < 0.022 for all time periods, except period 2→ 3 where NIDR t0 ≈ 0.28.

• Peer drug use is not associated with subsequent drug use in previously non-drug using stu-

dents ( NIDR t0 > 0.05). However, when we consider the effect of drug users on the overall

population, it seems to be associated (NIDR all = 0).

• Peer alcohol consumption is associated with the level subsequent alcohol use (NIDR all = 0,

except in period 2→ 3 where NIDR all > 0.1 ), but not with the decision for a non-drinking

student tot begin drinking.

Different studies (Michell and Amos, 1997; Michael Pearson, 2000) deploy 50 women data to

explore the association between gender, risk-taking or social position and smoking or drug usage

in groups of youngsters. In particular our results comport with Pearson et al. (Michael Pearson,

2000) who show that drug usage and smoking are contagious among group of friends who are

highly connected and people who are loosely connected to a friendship group.
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5.5 Discussion

In this work we examine the problem of defining and measuring dependence in relational

data. We proposed NIRD, a consistent, non-parametric test for detecting relational dependence

that improves the state-of-the-art in relational dependence testing by capturing a wider range

of possible relational dependencies than previous methods and improved computation time. We

evaluated the effectiveness of our method across diverse relational settings and found that our

proposed test exhibits significantly less sensitivity to network properties and dependence type.

Our work paves the way for a promising future research direction on causal structure learning

from relational data.



CHAPTER 6

EFFECTIVENESS OF SAMPLING STRATEGIES ON RELATIONAL

DATA

Parts of this chapter were previously published as Ahsan, R., and Zheleva, E.: Effectiveness of Sam-

pling Strategies for One-shot Active Learning from Relational Data. In the 16th International Workshop

on Mining and Learning with Graphs (MLG 2020) Ahsan and Zheleva (2020)

Real-world networks have millions of nodes, and one of the biggest challenges in dealing

with real-world relational data is its large size. A general and standard remedy is taking a

smaller but representative sample from the relational data considering both the structure and

distribution of the data. There are several sampling methods proposed over the years but

there is a lack of understanding regarding their effectiveness. The closest works comparing

their effectiveness rely on relational classification tasks for the comparison Berton et al. (2016);

Ahmed et al. (2013). These studies are relatively old and don’t consider modern deep-learning-

based relational classification methods. In this study, I conduct a comprehensive empirical

evaluation of existing sampling methods for relational data for the task of relational classification

and propose a new sampling technique based on the latent structural properties of the data.

Standard practice for reducing the labeling complexity of classification methods is active

learning which allows the classifier itself to select samples to be labeled by an oracle (Settles,

2009). State-of-the-art active learning strategies repeatedly select batch of samples in multiple

iterations until a pre-specified budget of labels is reached. ALFNET (Bilgic et al., 2010),

98
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RAL Kuwadekar and Neville (2011),(Kuwadekar and Neville, 2011) and ANRMAB (Gao et al.,

2018) are some examples of such active learning approaches for relational data. However, these

strategies generally learn a model at each iteration, in order to compute utility scores for all the

unlabeled samples over all iterations which incurs a substantial computational cost. In order to

address this issue for large networks, we consider a constrained problem setup where the active

learner is allowed only a single iteration to select samples to label. We refer to it as one-shot

active learning.

A popular approach to active learning is carefully selecting a representative sample of the

source data. Prior works have empirically evaluated the effectiveness of sampling methods for

one-shot active learning in the context of relational classification (Berton et al., 2016; Ahmed

et al., 2013). However, the main difference between previous works with ours is twofold. First,

they consider only the labeled subgraph for classification whereas we use the full source graph

which gives us the opportunity to utilize the structural properties better. Second, they primarily

consider a naive relational classifier, wvRN (Macskassy and Provost, 2007) whereas we compare

the performance of collective classification and modern neural network-based approaches.

In this study we consider a wide variety of sampling strategies to compare their relative

performance for one-shot active learning. We consider both graph sampling algorithms as well

as sampling strategies specifically designed for semi-supervised node classification (Wu et al.,

2019b). We also propose a sampling approach based on the Weisfeiler-Lehman algorithm (We-

isfeiler and Lehman, 1968) which shows promising results in the empirical evaluation. Our

proposed Weisfeiler-Lehman Sampling (WLS) relies solely on the structural role of nodes for
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label acquisition decisions. One of its main advantages is that it is computationally efficient

and yet harnesses structural information effectively. Our empirical evaluation shows that even

though there isn’t one sampling method that performs the best consistently across datasets and

classifiers, Weisfeiler-Lehman ranks the highest on average.

The rest of the chapter is organized as follows: Section 6.1 presents the preliminary concepts

used in this work. Section 6.2 defines the one-shot active learning problem for relational classifi-

cation and provides an overview of existing solutions to consider along with the proposed WLS

method. Section 6.3 describes the experimental evaluation and results. Section 6.4 presents a

concluding discussion about the work.

6.1 Preliminaries

Here, we first describe the basic notations used for this work. Note that, even though we

follow the definition of the relational model from section??, we reintroduce the notations here

specifically for a relational classification task. Moreover, we present an overview of the classic

Weisfeiler-Lehman (Weisfeiler and Lehman, 1968) algorithm that the proposed method is based

on.

6.1.1 Basic Notations for Relational Classification

We consider an undirected graph G = (V,E) where V and E are the set of vertices and

edges correspondingly. Each node Vi is associated with a feature vector �Xi and a corresponding

class label Yi which may be unknown, Vi = 〈 �Xi, Yi〉. A set of individual attributes comprises the

vector �Xi = 〈X1
i , X

2
i , ..., X

p
i 〉 where 1, 2, ..., p are feature dimensions. The set of node features

for all nodes is denoted by X = { �Xi|Vi ∈ V } and the set of class labels for all nodes is denoted
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Figure 20: Illustration of classic Weisfeiler-Lehmanalgorithm: 1) same initial label to all nodes,

2) first relabeling after sorting signature strings, 3) final stable labels.

by Y = {Yi|Vi ∈ V }. The domain of class labels Yi is discrete and the set of possible labels is

denoted by Y = {y1, y2, ..., ym}. The domain for �Xi can be either discrete or continuous. An

edge Eij = 〈Vi, Vj〉 represents an explicit link between two nodes Vi and Vj in the network. Let

Ni denote the set of neighboring nodes of Vi, Ni = {Vj |〈Vi, Vj〉 ∈ E}.

6.1.2 Weisfeiler-Lehman Algorithm

The Weisfeiler-Lehman algorithm (Weisfeiler and Lehman, 1968) is a graph labeling al-

gorithm that generates canonical ordering of the vertices of a given graph. The classic

Weisfeiler-Lehman algorithm is presented in Algorithm 1. One key benefit it offers is the rela-

tive representation of the vertices based on their structural roles in the graph. Because of this

feature, it has inspired several works in the network domain, especially for graph classification

(Shervashidze and Borgwardt, 2009), graph embedding (Shervashidze et al., 2011) and link

prediction (Zhang and Chen, 2017). The algorithm starts by assigning the same initial label
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to all vertices (line 1). For each node, it forms a multiset of labels from its direct neighbors’

color labels (line 4). After sorting the elements in the multiset and concatenating them to the

node’s label, it generates signature strings (lines 5-6). These signature strings are then sorted

and compressed and used to assign new labels to the nodes (lines 8-9). This process continues

until the labels have stabilized.

The effectiveness of the Weisfeiler-Lehman algorithm has been demonstrated for graph

classification (Shervashidze et al., 2011) and link prediction (Zhang and Chen, 2017).

Weisfeiler-Lehman is used to encode the subgraph properties for a given link for link pre-

diction. This subgraph property is then used as input features to a neural network model to

predict the existence of links, exploiting the ability of Weisfeiler-Lehman to encode relative

structural roles of nodes in subgraph (Zhang and Chen, 2017). Our work is the first to study

the application of Weisfeiler-Lehman encoding in the context of active learning sampling.

6.2 One-shot Active Learning for Relational Classification

In this section, we first formulate the problem and then describe the sampling methods we

consider as potential solutions.

6.2.1 Problem Definition

One-shot active learning is a constrained version of the active learning problem. The main

difference between them is that in the case of one-shot active learning the learner can query

only once to acquire labels from the oracle.

Problem 2 (One-shot Active Learning for Relational Classification). Given an undi-

rected graph G = (V,E), node features X, a labeling budget B, a relational classifier C, and a
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Algorithm 1 Weisfeiler-Lehman Graph Labeling

Input: Graph G = (V,E), initial labels l0(v) = 1 for all v ∈ V

Output: Final labels l(v) for all v ∈ V

1: Let l(v) = l0(v) for all v ∈ V

2: while l(v) has not converged do

3: for each v ∈ V do

4: Build a multiset {l(v′)|v′ ∈ Γ(v)} concatenating

its neighbor’s labels
5: Sort elements in the multiset in ascending order

6: Concatenate the sorted multiset to l(v) to generate

a signature string s(v) = 〈l(v), {l(v′)|v′ ∈ Γ(v)}〉
7: end for

8: Sort all of the strings s(v) for all v in ascending order

9: Map each string s(v) to a new compressed label,

using a function f such that f(s(v)) = f(s(w)) if and

only if s(v) = s(w).
10: end while
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labeling oracle, select a set of nodes of size B to be labeled by the oracle in one shot such that

Micro-F1 score of classifier C on unseen data is maximized upon training on the labeled set.

Note that, the active learning budget B is typically much less than the size of the available

pool of unlabeled nodes. In such a scenario the classifier can either exploit the full graph

structure or restrict itself to the subgraph induced by the labeled nodes. In this work, we focus

on the first option with the availability of the full graph structure, making it a semi-supervised

classification problem.

6.2.2 Sampling for One-shot Active Learning

Since the initial data has no labels available, smart sampling strategies are key to solving

the one-shot active learning problem. The existing sampling methods for relational data can

be categorized into three groups: 1) Network sampling methods, 2) Non-network sampling

methods and 3) Hybrid sampling methods.

6.2.2.1 Network Sampling Methods

This category of sampling method is the state-of-the-art sampling for relational data. Their

effectiveness in preserving the structural properties of networks makes them good candidates

for one-shot active learning. These methods can be grouped into four major types:

• Node Sampling: This is a standard sampling strategy where the algorithm can sample

nodes based on their structural properties (e.g., highest or lowest degree). One of the defi-

ciencies of this sampling strategy is that it doesn’t preserve the connectivity of the original

graph. We consider two different node sampling methods. NS-DC-H refers to a sampling
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method that prioritizes nodes with a high degree of centrality (Berton et al., 2016). We also

consider sampling proposed by Berton et al. (Berton et al., 2016) which prioritizes nodes

with high clustering coefficients (NS-CT-H).

• Edge Sampling: This is another standard sampling strategy where one can sample edges

instead of nodes. Generally, all nodes incident to the edges is subsequently added to form

the induced subgraph. The advantage of this method is that, unlike Node Sampling, it

can preserve the connectivity of the original graph better. However, due to the independent

selection of edges, it fails to preserve clustering properties. We consider random edge sampling

(ES-RS) where edges are selected at random.

• Topological Sampling: Both Node Sampling and Edge Sampling methods exhibit short-

comings in preserving the structural properties of the graph. In order to overcome these

shortcomings, several topology-based sampling algorithms have been proposed. These algo-

rithms mostly utilize either breadth-first search or random walks over the graph to construct

a representative sample (Ahmed et al., 2013). For example, Snowball Sampling (SS) selects

nodes and edges following a breadth-first search from a randomly selected seed node. It stops

when a certain threshold is reached. Another example is Forest Fire Sampling (FFS) which

also follows a breadth-first search, but only considers a proportion (we consider 70%) of the

neighborhood for exploration.

• Graph Clustering: Nguyen et al. (Nguyen and Smeulders, 2004) showed that clustering

the data can help improve the performance of an active learning strategy. Inspired by this,

we consider sampling based on graph clustering. We choose modularity-based clustering
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(Newman, 2006) since it is a standard method for community detection in networks and has

been used for active learning in the past (Bilgic et al., 2010). We generate modularity-based

clusters and then iteratively select random nodes from each cluster until the labeling budget

is exhausted. We refer to this sampling method as MS.

6.2.2.2 Non-network Sampling Methods

We consider sampling methods that are not based on networks for a comprehensive compar-

ison. The primary reason for choosing this is to evaluate how much the structural information

helps in prediction. The trivial choice for this category is random sampling (RS). Moreover, we

consider sampling based on k-means clustering over the node features X in order to utilize the

strength of clustering in active learning (Bilgic et al., 2010). We create the k-means clusters

for a given k value. Then in each iteration, we pick a random node from each cluster until the

labeling budget is exhausted. We refer to this method as KMS.

6.2.2.3 Hybrid Sampling Methods

Several recent works use an intuitive idea of combining the power of both structural prop-

erties and node features. Most of those works follow a standard active learning strategy with

multiple iterations. FeatProp proposed by Wu et al. (Wu et al., 2019b) can be considered a

hybrid approach for one-shot active learning. It clusters the samples using K-Means clustering

based on a distance function derived by both propagated node features and graph structure.

Then it iteratively selects the closest nodes to the cluster centers until the active learning budget

is exhausted.
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6.2.2.4 Weisfeiler-Lehman Sampling

We propose a new sampling algorithm, Weisfeiler-Lehman Sampling (WLS) for one-shot

active learning for networks. It is adapted from the Weisfeiler-Lehman node labeling algo-

rithm (Weisfeiler and Lehman, 1968). WLS considers the structural role of a node as the main

predictor for label acquisition. Since Weisfeiler-Lehman method has been proven to be useful

for encoding relative structural roles of nodes in link prediction problem (Zhang and Chen,

2017), we investigate its effectiveness for one-shot active learning.

The basic idea behind WLS is to explore different local neighborhoods of the graph and pick

the nodes based on their relative structural roles. In order to achieve this, WLS utilizes the

final color labels produced by Weisfeiler-Lehman algorithm. The color labels encode relative

neighborhood properties of nodes which plays an important role in isomorphism testing. For any

two isomorphic graphs, the first nodes exhibit similar structural properties in the corresponding

orderings. The key benefit of this process is that the algorithm is able to pick the structural

roles specific to each network, so they do not have to be defined a priori. Note that, in our case,

a neighborhood is formed around a given seed node. An exploration budget Be is introduced to

limit the number of hops of neighborhood the algorithm can explore from the given seed node.

The WLS algorithm is presented in Algorithm 2. It starts with an empty set of labeled

nodes (L) and a set of all nodes U (line 1). Then the algorithm keeps selecting k informative

nodes until the labeling budget B is exhausted (lines 3-10). Note that, the number k here is

the batch size for WLS. The true labels for these selected nodes are acquired from the oracle.

Then the labeled set L and unlabeled set U are updated accordingly (lines 11-12). At the end
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Algorithm 2 Weisfeiler-Lehman Sampling

Input: A network G = (V,E)

Parameter: Batch size k, labeling budget B, exploration budget Be

Output: Set of labeled nodes L

1: L = ∅,U = V

2: while |L| < B do

3: Lk = ∅

4: Pick k random seed nodes, Sk from U

5: for each Vi ∈ Sk do

6: Ni ← Up to Be hop neighborhood subgraph of Vi

7: Ri ← Weisfeiler-Lehman(Ni)

8: vi ← top ranked v ∈ (Ni ∩ U) in Ri

9: Lk = Lk ∪ vi

10: end for

11: L = L ∪ Lk

12: U = U \ Lk

13: end while

14: return L
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of the iterations, the labeled set L is ready to be used as training samples for classification. The

core functionality of the algorithm lies in lines 3-10. Here, it first chooses k distinct random

seed nodes from the unlabeled pool U (line 4). Then, for each of the seed nodes, it constructs

a subgraph with up to Be hop neighbors of the seed node Vi (line 6). This subgraph is sent

to the Weisfeiler-Lehman method (line 7) to produce the labels which we will consider as the

canonical ordering of nodes based on structural properties. The algorithm always picks the first

node in the produced ordering of the subgraph (line 8). It breaks ties arbitrarily. The selected

node is added to the current set Lk (line 9). The algorithm selects k nodes for label acquisition

for corresponding k seed nodes. These nodes may or may not overlap with the seed nodes. In

order to avoid duplication, once a node is picked it is no longer considered in the neighborhood

of any other nodes. At the end of the iterations, the algorithm returns the set of k selected

nodes (line 14). We use exploration budget Be = 2, 3 for our evaluation and WLS-2, WLS-3

represent the corresponding versions of our algorithm.

The computational complexity of WLS directly depends on the complexity of

Weisfeiler-Lehman algorithm. Let’s denote the complexity of Weisfeiler-Lehman al-

gorithm as W (n) where n is the number of nodes to label. Also, let Ni(h) refer to the average

number of nodes in the h-hop neighborhood of any node Vi. The time complexity of WLS

becomes O(B ∗W (Ni(h))).
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Dataset |V | |E| Number

of

Features

Number

of

Classes

Class

Entropy

Average

Degree

Clustering

Coeff.

Homophily Class

Label

Citeseer 3312 4660 3703 6 1.71 2.81 0.1711 0.74 Topic

Cora 2708 5278 1433 7 1.83 3.90 0.2376 0.80 Topic

Hateful 3218 9620 1036 2 0.47 5.98 0.0785 0.72 Hatefulness

PubMed 19717 44327 500 3 1.06 4.50 0.0602 0.80 Topic

TABLE II: Properties of the datasets used in experimental evaluation.

6.3 Experimental Evaluation

6.3.1 Data

We conduct experiments on four real-world datasets, three of which are based on citation

networks: Cora, Citeseer, and Pubmed 1. The first two correspond to publications in computer

science and the third one is based on publications on Diabetes diseases. The fourth dataset

is sampled from the Hateful Users on Twitter dataset (Ribeiro et al., 2018). The original

network contains around 100k users whereas around 5k users are annotated as either “hateful”

or “normal”. Our sample consists of the annotated nodes and the edges between them.

We pre-process all datasets by removing all nodes that are not connected to the largest

connected component. Table II summarizes the properties of the datasets after pre-processing.

The column titled Class Entropy represents the entropy of the distribution of classes in a

1All datasets available at https://linqs.soe.ucsc.edu/data.
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dataset. The higher the entropy means more balanced class distribution and vice versa. Cora

and Hateful seem to be the best and worst datasets in terms of class balance.

The next three columns of Table II shows several important network properties. We can see

all the datasets exhibit a reasonably good amount of homophily where homophily is measured

by the proportion of edges that connect two nodes from the same class. One interesting property

to notice here is the distinction of clustering coefficient among the datasets. Based on these

properties we can categorize the datasets into two groups. Citeseer and Cora fall into Group I

with a smaller number of nodes and edges, relatively high clustering coefficient, and low average

degree. They also consist of a higher number of classes with reasonable class balance. On the

other hand, Hateful and Pubmed form Group II with a higher number of nodes and edges, high

average degree, and low clustering coefficient. They exhibit strong class imbalance, especially

Hateful.

6.3.2 Experimental Setup

6.3.2.1 The Hash Function for WLS

We use a specific hashing function, Pallette-WL (Zhang and Chen, 2017), compatible

with the standard Weisfeiler-Lehman algorithm (1) for implementing WLS. Pallette-WL

not only avoids higher computational cost by using a refined normalized hash function, but it

also preserves vertex orders across iterations. This technique has been shown to be effective in

link prediction for utilizing subgraph features (Zhang and Chen, 2017). In our work, we use the

Pallette-WL method for the implementation of the Weisfeiler-Lehman algorithm. Note that,

the complexity for Pallette-WL is O(n2) where n is the number of nodes to label (Zhang
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and Chen, 2017). So, according to the description in Section 6.2.2.4, the overall complexity of

WLS becomes O(k ∗W (Ni(h)
2)).

6.3.2.2 Relational Classifiers

We consider Logistic Regression as the local classifier for ICA and Count function as the

aggregator. We choose Simplified GCN (SGC) (Wu et al., 2019c) and GraphSage (Hamilton

et al., 2017) classifiers as representatives of GNN. SGC is a faster approximation of the popular

relational classifier GCN.

6.3.2.3 Evaluation Methodology

We randomly split 80% of the nodes for training and keep the other 20% for testing. We

run all our experiments 5 times and take the average.

Most of the datasets in this study contain multiple classes and there is a considerable class

imbalance present in the data as shown in Table II. To reduce the impact of class imbalance in

evaluation, we used stratification while splitting the train and test samples. We also considered

class-weighted loss functions for the classifiers. We considered Micro-F1 score as the evaluation

metric. This is a popular metric used to evaluate multi-class classification.

We varied the active learning budget B from 32 up to 224. We used the same budget for

all datasets for consistency. The maximum budget, 224 represents 10% of the training nodes

for all datasets except PubMed. We consider batch size k = 8 for some sampling methods in

our experiments. It represents the number of nodes selected per iteration for WLS whereas for

MS and KMS it represents the number of clusters.
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6.3.2.4 Packages and Hardware

We use NetworkX 2.3 (Hagberg et al., 2008) for representing and processing graphs. Scikit-

Learn library is used for implementation of Logistic Regression and K-means clustering. We use

StellarGraph (Data61, 2018) package for implementing SGC and GraphSage 1. For running

all our experiments and recording execution time we use Ubuntu 18.04 OS running on a 96-core

Intel(R) Xeon(R) Platinum 8275CL @ 3.00GHz processor with 185GB memory.

6.3.3 Results

Figure 21 shows results for all the candidate sampling methods using four classifiers (wvRN,

ICA, SGC, GraphSage) on four different datasets. In the figure, the rows represent different

datasets and the columns represent different classifiers used. Moreover, the y-axis represents

Micro-F1 score and the x-axis shows the number of training nodes considered as active learning

budget B. We can observe a great deal of variance in terms of performance of different sampling

methods. To better understand the relative performance, we list down all the Micro-F1 scores

for the highest budget (224) in table:f1. Each row in this table corresponds to a specific dataset

and a specific relational classifier. The bold cell represents the best Micro-F1 score in the

corresponding row. For example, in the first row, for Citeseer dataset and wvRN classifier,

NS-DC-H performs the best. We rank the algorithms based on this table and present the final

ranking in Table IV. We used the following process to generate the final ranking: first, rank all

sampling algorithms for each row of Table III separately and then calculate the average rank of

1The code is available online at https://github.com/edgeslab/sampling-osal
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TABLE III: Micro-F1 scores of 11 sampling methods across 4 datasets and 4 classifiers for an

active learning budget of 224 nodes.

Dataset Classifier RS NS-DC-H NS-CT-H ES-RS FeatProp WLS-2 WLS-3 SS FFS KMS MS

Citeseer wvRN 0.378199 0.424171 0.332701 0.419431 0.388132 0.405213 0.400474 0.298803 0.278156 0.354976 0.361611

Citeseer ICA 0.712322 0.581991 0.716588 0.702844 0.648728 0.733745 0.737602 0.361347 0.425220 0.718483 0.727962

Citeseer SGC 0.758588 0.700552 0.742451 0.715568 0.670169 0.737108 0.748460 0.457079 0.441471 0.758101 0.749000

Citeseer GSAGE 0.682464 0.656398 0.688152 0.661611 0.663981 0.676303 0.697630 0.356634 0.403149 0.677725 0.669668

Cora wvRN 0.418511 0.627767 0.361617 0.499396 0.558551 0.495372 0.449497 0.308099 0.276676 0.449253 0.443461

Cora ICA 0.765392 0.721932 0.753320 0.741247 0.786318 0.742455 0.760161 0.536877 0.493188 0.754930 0.771429

Cora SGC 0.762181 0.812475 0.752918 0.756856 0.800000 0.775742 0.785630 0.412851 0.397802 0.756111 0.765896

Cora GSAGE 0.783501 0.803219 0.764185 0.776660 0.793159 0.773843 0.785111 0.562559 0.467780 0.774245 0.788330

Hateful wvRN 0.813704 0.333333 0.817037 0.848519 0.837407 0.812593 0.810741 0.695926 0.456296 0.813704 0.814444

Hateful ICA 0.888519 0.896296 0.888519 0.905556 0.900741 0.890000 0.889259 0.872593 0.888889 0.884444 0.879259

Hateful SGC 0.899083 0.545549 0.899083 0.545549 0.899083 0.899083 0.899083 0.781238 0.427704 0.899083 0.899083

Hateful GSAGE 0.867598 0.340110 0.884077 0.856113 0.888896 0.899083 0.857594 0.720681 0.514434 0.899083 0.899083

Pubmed wvRN 0.409381 0.479817 0.401217 0.435446 0.409381 0.427840 0.430680 0.424074 0.420188 0.409432 0.408773

Pubmed ICA 0.715112 0.503296 0.734888 0.695538 0.550963 0.690974 0.709533 0.537221 0.472110 0.730781 0.727890

Pubmed SGC 0.523560 0.669704 0.525552 0.592995 0.496082 0.626141 0.610570 0.608615 0.549057 0.518602 0.594904

Pubmed GSAGE 0.775913 0.767546 0.776318 0.773986 0.744371 0.775355 0.779513 0.672577 0.605269 0.756542 0.769320
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TABLE IV: Average ranks of sampling methods for different categories of relational classifiers

over all datasets.

Sampling
Avg. Rank

All GNN wvRN, ICA

WLS-3 4.19± 1.81 3.38± 1.80 5.00± 1.41

WLS-2 4.56± 1.87 4.38± 1.87 4.75± 1.85

MS 4.88± 2.60 4.25± 1.39 5.50± 3.28

FeatProp 5.28± 3.20 6.00± 3.24 4.56± 2.99

RS 5.31± 2.21 4.62± 2.29 6.00± 1.89

ES-RS 5.44± 2.71 7.12± 1.45 3.75± 2.63

KMS 5.66± 2.54 5.62± 2.83 5.69± 2.22

NS-DC-H 5.75± 4.07 5.88± 3.92 5.62± 4.21

NS-CT-H 5.88± 2.98 5.50± 2.69 6.25± 3.19

SS 9.19± 1.94 9.00± 2.06 9.38± 1.80

FFS 9.88± 1.76 10.25± 1.30 9.50± 2.06



116

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ic
ro

-F
1
 s

co
re

Citeseer-wvRN Citeseer-ICA Citeseer-SGC Citeseer-GraphSage

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ic
ro

-F
1
 s

co
re

Cora-wvRN Cora-ICA Cora-SGC Cora-GraphSage

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ic
ro

-F
1
 s

co
re

Hateful-wvRN Hateful-ICA Hateful-SGC Hateful-GraphSage

32 64 96 128 160 192 224

Budget (#Nodes)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ic
ro

-F
1
 s

c
o
re

Pubmed-wvRN

32 64 96 128 160 192 224

Budget (#Nodes)

Pubmed-ICA

32 64 96 128 160 192 224

Budget (#Nodes)

Pubmed-SGC

32 64 96 128 160 192 224

Budget (#Nodes)

Pubmed-GraphSage

RS

KMS

NS-DC-H

NS-CT-H

ES-RS

FeatProp

WLS-2

WLS-3

SS

FFS

MS

Figure 21: Macro-F1 scores by different sampling methods using different relational classifiers.
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each sampling algorithm over all 16 rows. The first column of Table IV represents the sampling

methods sorted by their average ranks over all 16 combinations. The next three columns show

the average rank along with the standard deviation of the corresponding sampling methods

based on different categories of relational classifiers. The column All shows the average ranks

for all classifiers whereas the column GNN shows average ranks for only GNN-based classifiers

(over 8 rows). The last column shows average ranks for wvRN and ICA classifiers (over 8

rows). Both versions of our proposed method (WLS-3, WLS-2) top the overall ranking and

show relatively low standard deviation. This establishes its robustness across multiple datasets

and classifiers. Next, we present the main takeaways by analyzing the performance of the

sampling methods from several different perspectives:

Group I vs Group II datasetsWe can observe from the results that our proposed method

WLS performs relatively better in Group II where the network is larger and exhibits a higher

average degree. On the other hand, random sampling (RS) and Degree Centrality (NS-DC-H)

work better in Group I. This indicates that in smaller networks with high clustering coefficients,

simple node sampling or even random sampling is good enough for one-shot active learning.

On the other hand, larger graphs with low clustering coefficients require more sophisticated

methods like WLS.

Network Sampling vs others. Next, we observe how different categories of sampling

methods perform across all setups. Figure 21 shows that graph sampling methods like Snowball

Sampling (SS) or Forest Fire Sampling (FFS) exhibit poor performance for relational classifica-

tion. This is intuitively provided that these methods are heavily biased in spatial exploration.
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They fail to explore diverse local regions of the graph. Another expected observation is that

the non-network sampling approach KMS suffers in almost all cases since it can not exploit

any of the relational information. Note that even though it shows a high Micro-F1 score for

the Hateful dataset, that could be due to the high class imbalance in that dataset. Node sam-

pling approaches seem to do best in Cora and Pubmed where higher homophily is observed. In

general graph-based clustering method (MS) shows a consistently good performance across all

setups. Surprisingly, the hybrid approach FeatProp only performs great in Cora but produces

relatively poor results for other cases.

GNN vs others. Most of the sampling methods produce higher Micro-F1 score when

used with GNN approaches compared to wvRN and ICA. GNN approaches show consistently

better performance across all datasets except for Hateful. Surprisingly, FeatProp works best

with ICA even though it was primarily designed for SGC. It is interesting to note that cer-

tain sampling methods show significant variation in performance based on the classifier. For

example, degree centrality (NS-DC-H) shows good result using SGC (3rd row) but quite poor

using ICA (2nd row) on Citeseer dataset. In contrast, WLS-2 and WLS-3 show less variance

across different classifiers and datasets. The last two columns of Table IV show the difference in

performance for GNN-based classifiers versus previous relational classifiers. The cells marked in

bold represent the top three average ranks in each category and the top three overall sampling

methods also perform the best for GNN-based classifiers. However, ES-RS takes the top spot

in the last column which supports the findings by Ahmed et al. (Ahmed et al., 2012)
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Figure 22: Top three sampling methods vs ALFNET using ICA classifier on Citeseer dataset.

One-shot vs Multi-shot. In order to show the effectiveness of one-shot active learning,

we compare the sampling methods with ALFNET, a state-of-the-art active learning algorithm

for relational data which requires iterative training over the acquired samples. Figure 22 shows

both Micro-F1 score (22a) and execution times (22b) for the sampling methods and ALFNET

on the Citeseer dataset. We choose only the top 3 (second row of Table III) sampling methods

(WLS-3, WLS-2, MS) for convenience of comparison. In 22a, we can see the sampling methods

show competitive results compared to ALFNET. However, in 22b the difference in execution

time is significant. Note that, the execution times presented here is in minutes, and lines for

WLS-2, WLS-3 overlap with each other. This big difference in execution time and competitive

Micro-F1 score justifies the motivation behind one-shot active learning.
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6.4 Discussion

We address a constrained classification problem, one-shot active learning for relational data.

The objective is to reduce both the labeling and computation costs of relational classification in

large real-world network datasets. We explore a wide variety of sampling methods as solutions

and proposed a node sampling method based on Weisfeiler-Lehman algorithm. We experimen-

tally evaluate all these sampling methods on four real-world network datasets and four popular

relational classifiers. The main takeaways are as follows:

• WLS performs best with GNN-based classifiers whereas ES-RS shows the best results for

wvRN and ICA classifier. WLS also shows overall best performance across all setups.

• Network-based node sampling methods work well for smaller networks with high clustering

coefficients.

• One-shot active learning methods produce competitive results compared to state-of-the-art

multi-shot active learning methods with much smaller computational costs.



CHAPTER 7

CONCLUSION

Learning relational causal models from observational data is of central importance for under-

standing real-world complex relational systems. It can help identify and understand the mutual

influence and interference in social networks, organizational networks, medical diagnostics, and

many other real-world phenomena. However, few relational causal discovery methods have

been developed in recent years and they make strong assumptions (i.e. acyclicity) which make

them unsuitable to reason about real-world dynamic systems with feedback loops and cycles.

Moreover, the tools and techniques (i.e., conditional independence test) used in the existing

algorithms lack generalizability and scalability. This thesis aims to address these deficiencies

in the current literature.

In this thesis, I first develop an abstract representation for cyclic relational causal models

that can capture the conditional independence statements consistent across all possible instan-

tiations of the model. I introduce relational σ-separation criteria which can answer relational

queries on cyclic relational causal models. I provide theoretical guarantees for representa-

tion and reasoning with the proposed methods under some suitable assumptions. Based on

the newly developed representation and understanding of cyclic relational models, I focus on

learning cyclic relational causal models from observational samples. I develop and characterize

relational acyclification that helps to reason about the identifiability of cycles in relational sys-

tems. I establish necessary conditions and assumptions for learning these models using existing
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relational causal discovery algorithms with theoretical guarantees. I provide adequate experi-

mental evaluations in support of my claims. In order to facilitate the practical application of

relational causal discovery methods for real-world data, I address the issues of generalizability

and scalability of existing conditional independence tests for relational data. I develop a general

definition of relational dependence for relational variables and I propose a nonparametric test

for measuring relational dependence based on the given definition. I provide asymptotic guar-

antees for the convergence of the test. The proposed relational dependence test can generalize

over a family of aggregate functions and can scale much better than the state-of-the-art. I show

the effectiveness of the test in real-world applications. To benefit from the advancement of

machine learning and relational classification for relational causal discovery, I study the effec-

tiveness of varieties of sampling strategies for relational classification. I conduct experimental

evaluations on several real-world datasets and state-of-the-art relational classifiers to compare

the performance of different sampling strategies. Moreover, I propose a computationally effi-

cient and robust sampling strategy for relational data which produces competitive performance

in my experimental study.

7.1 Limitations and Future Directions

During the development of this thesis, I came across several limitations and challenges

of both prior works and my own proposals which present a great opportunity for the future

direction of research in this field of study. In the following subsection, I point out some of the

limitations of the works presented in this thesis and possible future research directions.
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1. Latent confounders: Presence of latent confounders is a big challenge for causal in-

ference and discovery methods in general. All of the existing studies in relational causal

discovery, including this thesis, assume that there are no latent confounders present in the

relational system. However, this is counter-intuitive in many real-world applications and

it is an important limitation of the current literature. Understanding and identifying the

presence of latent confounders in relational models can help discovery methods be use-

ful in practical scenarios. There are few algorithms proposed for causal discovery in the

presence of latent confounders (i.e. FCI (Spirtes et al., 2000), BackShift (Rothenhäusler

et al., 2015)). However, these algorithms were developed for propositional, i.i.d data. The

abstract representation proposed in this thesis poses an opportunity to adopt the existing

propositional causal discovery methods for relational causal discovery. A promising future

direction is to understand the implication of latent confounders on relational models and

how they are different than their propositional counterparts.

2. Cardinality constraint: The completeness of relational σ-separation (and relational d-

separation) depends on the assumption that any node in the relational skeleton has degree

of more than one. Even though it can still be reasonable for different kinds of application

areas, it prohibits application to general real-world cases. A possible future direction

could be relaxing this assumption to allow the broader area of application while ensuring

some theoretical guarantees. It has been shown that a weaker sense of completeness can

be used to learn an acyclic relational causal model from data (Lee and Honavar, 2015).

A similar approach can be taken for cyclic relational causal models.
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3. Relational acyclification: In this thesis we introduced relational acyclification crite-

ria and established the soundness and completeness of RCD for cyclic relational causal

models based on a strong constraint on the hop threshold of the relational acyclifications.

The constraint states that the RCD is sound and complete only for the cyclic models

for which the hop thresholds for its acyclifications do not exceed the hop threshold of

the model itself. It essentially limits the scope of the algorithm to a smaller set of mod-

els. An intuition to alleviate this problem is to allow a higher hop threshold during the

skeleton-building phase of the RCD algorithm. However, this requires further study of

the equivalence of different cyclic causal models with a different cap on hop thresholds

which can be an important direction for future research.

4. Convergence rate of relational dependence test: The relational dependence test

proposed in this thesis is shown to converge in an asymptotic sense. However, it doesn’t

help estimate sample complexity for convergence in real-world cases. The rate of conver-

gence will depend on the weak dependence coefficient. In the case that the coefficient is

0, this reduces to results that correspond to prior work on i.i.d data (e.g., Zhang et al.

(2011)). While there is prior work studying this in more restrictive assumptions on the

dependence between instances (e.g. London et al. (2013)), I am not aware of similar

results for the case of weak dependence in general structured domains even in the simpler

case of regression. Thus, any development in the characterization of the convergence rate

for the proposed test would help practitioners utilize the test for practical scenarios.
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5. Learning from intervention: Most of the work in relational causal discovery, including

this thesis, primarily focuses on causal discovery entirely from observational data. While

it is reasonable in many cases, it misses the opportunity to exploit interventional data to

guide the learning process further. There are several causal discovery algorithms proposed

for propositional data which can utilize intervention for causal learning (Rothenhäusler

et al., 2015; Hauser and Bühlmann, 2012; Hyttinen et al., 2012). In recent work, Besserve

and Schölkopf (2022) took advantage of the automatic differentiation techniques to opti-

mize for a special kind of intervention, called soft interventions in cyclic causal models.

Earlier, Schmidt and Murphy (2009) developed a representation that can be used to model

the effects of interventions through a directed cyclic graph. However, no such approach

was developed for relational models. There are several challenges to reasoning with inter-

ventions in relational casual models. To start with, we first need a better understanding

of interventions in relational variables. Intervention can happen on both the structure (i.e

cutting friendship ties) and on values (i.e forcing attribute values). Moreover, interven-

tion on a relational variable (i.e friends’ preference) may be tied with intervention on a

propositional variable (i.e individual preference). To the best of my knowledge, the char-

acterization of intervention on relational variables is not studied in the existing literature.

This can be a great direction for future research.

6. Score-based and hybrid approaches: A general observation is that all the studies

in relational causal discovery primarily focus on constraint-based approaches. However,

there are several score-based methods and hybrid methods (constraint-based + score-
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based) available for propositional data (Chickering, 2002; Hauser and Bühlmann, 2012;

Nandy et al., 2018; Tsamardinos et al., 2006). Score-based methods can open a new

avenue for relational causal discovery methods in the future.

7. Practical considerations: The contributions in my thesis lay a theoretical foundation

for reasoning with relational causal models in the presence of cycles or feedback loops

and learning such models from data. I hope future developments would be able to benefit

from my work, especially with its application to practitioners. For this reason, I’d like to

briefly discuss the key challenges of adopting my work for real-world applications. Even

though the proposed relational dependence test, NIRD, is relatively more scalable than the

baseline method, it still needs improvements to run on real-world data. Either theoretical

or empirical estimates of the convergence rate of the test would also help identify the scope

of the test. Finally, latent confounders are unavoidable in real-world scenarios. Adopting

FCI-based approaches for relational causal discovery would be beneficial for the practical

applications of this work.
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