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SUMMARY

Decision-making under uncertainty is common in various areas of study. Structural learning
is a decision problem that involves seeking the optimal structure typically from an exponential
number of structures. The task is usually performed on a finite set of samples observed from
uncertain environments, which may be subject to unexpected contamination thus unreliable.
The combinatorial nature and uncertainty pose challenges to relevant algorithms, particularly in
the large-scale setting. We suggest that a successful structural learning method should have
low time complexity, high sample efficiency, estimator consistency and robustness at the same
time. In this thesis, we propose a statistical learning framework that fulfills these requirements
to tackle several structural learning problems based on techniques in the emerging fields of
distributionally robust optimization (DRO). Our models hedge against a set of distributions
consistent with data in terms of certain a priori assumptions. The set constitutes our uncertainty
about the underlying data-generating mechanism and can be constructed in a flexible way.
We establish desirable theoretical guarantees and put forward practical algorithms for specific
learning problems with judiciously chosen uncertainty sets.

In the first two parts of the thesis, we study structure learning problems whose goal
is to recover the graphical structure of a probabilistic graphical model from samples. The
only assumptions we make are bounded model weights for undirected graphs and restricted
eigenvalue as well as mutual incoherence for directed graphs without faithfulness. Motivated by

neighborhood selection methods, we propose to optimize the worst-case expected regression loss

xii



SUMMARY (Continued)

over all distributions within bounded Wasserstein distances or Kullback-Leibler divergences. First,
we present iterative algorithms that find the optimal estimator with per-iteration polynomial
time complexity. Second, we illustrate equivalence between our Wasserstein DRO method
and baseline regularization methods. Third, we derive near-optimal sample complexities for
the proposed methods that match the state-of-the-art results. Experiments are conducted on
simulated and real-world data.

In the last two parts of the thesis, we consider structured prediction problems which are
supervised learning problems whose goal is to learn a mapping from features to structures.
Optimizing typical performance metrics with training data is usually intractable and elicits a
surrogate loss for efficiency. Fisher consistency is highly desirable in this setting which requires
the surrogate to yield Bayes optimal prediction given population distribution. Inspired by
the success of existing DRO methods with moment-based ambiguity sets, we propose similar
formulations for tree structured prediction and discrete probabilistic supervised learning. We
generalize existing theoretical results. Specifically, we show that such DRO problems are exactly
equivalent to a regularized empirical risk minimization problem with strong duality. Fisher
consistency is established by relating them to Fenchel-Young losses. Novel excess true risk bounds
are derived based on uniform convergence. For such class of structured prediction methods, we
illustrate their practicability by showing how to incorporate deep learning techniques into the

framework for end-to-end representation learning.

xiii



CHAPTER 1

INTRODUCTION

1.1  Structural Learning

In the big data era, machine learning approaches are widely adopted to extract information
and patterns from a massive amount of data. These data-driven methods enable automatic
decision making and provide valuable insights into data. Out of many applications, an important
class of tasks aims at understanding structural relationships among objects with respect to data
distribution. Producing an interpretable and compact representation for complicated data is
desirable especially when there are a large number of variables of interest. The learning tasks
that involve complex structures empower a lot of applications in scientific areas and daily life
such as protein-protein interaction networks (Jaimovich et al., 2006), gene regulatory networks
(Werhli et al., 2006)), medical decision making (Kyrimi et al., 2020)), spam filtering (Manjusha and
Kumar, 2010), protein structure prediction (Kuhlman and Bradley, 2019), logic theorem proving
(Bansal et al., 2019), source code generation (Svyatkovskiy et al., 2020), machine translation
(Stahlberg, 2020)), visual object localization (Yu et al., 2020), recommendation systems (He et
al., 2018)), search engines (Grbovic and Cheng, 2018), to name a few.

The structural learning tasks discussed here refer to several different tasks in the literature.
We list those we study in the thesis for disambiguation but it is worth mentioning that there

are dubious meanings for the term structural learning in related work. The task of structure



learning (Drton and Maathuis, 2017; [Heinze-Deml et al., 2018) usually stands for the problem of
recovering the structure of a probabilistic graphical model (PGM). PGMs (Koller and Friedman!
2009) as well as deep probabilistic models (Poon and Domingos, 2011)) are useful mathematical
frameworks for modeling a high-dimensional distribution equipped with a graphical structure.
A structure learning algorithm yields a structure possibly associated with parameters such that
the learned structure together with the parameters approximates the underlying data generating
process as well as possible. In contrast, a parameter learning (Jordan, 1999) task assumes that
the true structure is given. Structured prediction (Taskar et al., 2005)), or structured (output)
learning, appears unambiguously as a supervised learning task (Hastie et al., 2009) where, unlike
structure learning, data comes with labels defined or designated by humans. Each label is a
possible structure encoding a relationship among a subset of random variables. A structured
prediction algorithm learns a hypothesis from a set of data called training data and the goal is
to make the learned hypothesis a good mapping from features to labels (structures). Another
supervised learning task seeks a single structure that constitutes the underlying structure of
the output space and reuses it for subsequent structured prediction tasks (Meshi et al., 2013).
In other words, the learned structure acts as a convenient tool for predicting the joint state of
output variables. Our focus in the manuscript is the tasks of structure learning and structured

prediction discussed above and we refer to both of them as structural learning.



Data-driven structural learning problems can be typically formulated as a mathematical

optimization problem:
inf —Score(f; D),
feF ( )

where D is a set of samples drawn from the underlying distribution P we are interested in. The
goal is to find a decision to maximize a given scoring function that measures the goodness of fit
of the decision with respect to the actual distribution or a set of observations. Combinatorial
algorithms normally pick one optimal structure/sub-structure out of the set of all possible
structures F. There are usually an exponential number of candidate structures. This includes
exact search (Parviainen and Koivisto, 2009; [De Campos et al., 2009), greedy search (Jalali
et al., 2011a; Chickering, 2002)), neighborhood selection (Bresler, 2015), integer programming
(Martins et al., 2009} Bartlett and Cussens, 2017)) and dynamic programming (Silander and
Myllymaki, 2006). Note that algorithms such as PC (Spirtes and Glymour, 1991)) could also
be viewed as an optimization problem that decides whether to remove one edge at a time
based on independence tests. Continuous optimization algorithms, alternatively, acquire an
optimal solution over continuous variables, which can be transformed to a discrete structure
afterwards. Note that the transformation, or a so-called inference method, is itself a combinatorial
algorithm. The optimal parameters learned with continuous optimization play a role in helping
determine a structure. For example, the learned weights of a Markov network are filtered by

a threshold value to get the final structure (Wu et al., 2019) while the learned parameters in



structured prediction problems constitute a scoring function in parametric form that assigns

a score to each sub-structure for inference (Smith and Smith, 2007). Algorithms completely

or partially based on continuous optimization include score matching (Hyvarinen and Dayan!

2005; Zheng et al., 2018)), neighborhood selection (Ravikumar et al., 2010; Wu et al., 2019), linear

regression (Park et al., 2021)), graphical lasso (Friedman et al., 2008; Loh and Biithlmann, 2014),

maximum likelihood (McDonald and Satta, 2007), maximum margin (Martins et al., 2010), risk

minimization (Stoyanov and Eisner, 2012). On account of the generality and combinatorial

nature of such problems, numerous methods have been proposed for specific function classes F,
scoring functions Score(-) and distributions P under various assumptions. Since there is a large

body of works on structure learning and structured prediction, we refer the interested readers

to survey papers (Drton and Maathuis, 2017; Heinze-Deml et al., 2018), books (Spirtes et al.

2000; [Pearl, 2009; Nowozin et al., 2014} Peters et al., 2017) and the follow-up thesis chapters

that study specific structural learning problems for a more detailed discussion on related work.

1.2 Challenges

The design of a structural learning method still poses several major challenges for researchers
and practitioners. We argue that a good structural learning algorithm should at least encapsulate

the following characteristics.

e Computational efficiency: The first and foremost property of a successful algorithm
for data-driven problems is that it should be tractable in a reasonable amount of time.
Scalability is especially crucial in the era of big data nowadays where the amount and

dimension of available data for processing could be overwhelming. Therefore the minimum



requirement is for an algorithm to have polynomial time complexity or polynomial time

per-iteration cost for iterative methods.

Sample efficiency: Sample complexity informs us of how many samples needed in
order to approximate the true optimal solution with a specified error tolerance. In the
context of structural learning, this is the magnitude of the amount of samples required
to exactly recover the correct structure. If the structural learning problem is cast as a
statistical learning problem, sample efficiency becomes closely related to the complexity of
the considered hypotheses space that could be measured by the Vapnik-Chervonenkis (VC)
dimension or Rademacher complexity. Since there are information-theoretic lower bounds
for the studied problems, we believe it is important for the sample complexity of a proposed

algorithm to draw near to the optimal bound or at least match the state-of-the-art results.

Asymptotic consistency or Fisher consistency: Unlike non-asymptotic guarantees
given by a sample complexity bound, consistency refers to an asymptotic result that
the estimator converges to the true parameter as the number of samples goes to infinity.
Sometimes we are concerned about some statistics of the proposed estimators so that no
bias is introduced. For instance, given a performance metric such as the Hamming distance
or F-measure, we are interested in whether the expected metric of an estimator under the
true distribution is equal to that of a global optimal solution, which is a concept called
Fisher consistency in decision theory. It might be trivial for structure learning tasks but
non-trivial for structured prediction tasks because the target structures vary according to

input features and typical performance metrics for structures are intractable to optimize



directly. As a result, another good characteristic is that an algorithm should yield an
asymptotically consistent estimator or a Fisher consistent estimator with respect to some

performance metric.

Robustness: The uncertainty governing a data-driven structural learning problem arises
from the fact that we only have a limited knowledge of the unknown true distribution
through access to a finite set of observations. A commonly used traditional way of account-
ing for the uncertainty is to construct a nominal distribution from observable samples
by assuming that it is an estimate that faithfully represents the underlying distribution.
Nevertheless, the nominal distribution may not be reliable thus not representative of the
true distribution. For example, observed data may be acquired from noisy environments
and experiments where data contamination happens due to measurement error, sensor
failure, transmission error, missing value or a large number of unobserved uncertainties. A
realization with very low probability may be absent in data but critical for applications
such cost-sensitive classification. Moreover, an attacker would leverage carefully crafted
adversarial examples that totally deviate from the true distribution to fool a machine
learning model. Ideally, even if we have an unbiased estimator for the distribution, the
uncertainty will generally be amplified in the optimization process because of the opti-
mizer’s curse (Smith and Winkler, 2006). All of the above unexpected factors suggest that
an algorithm be robust to noises in data or possess guarantees for the worst-case model

performance with the input data.



To the best of our knowledge, it is hard for existing methods to tick all four boxes at the same
time. For example, the exact learning approaches in (Silander and Myllymaéki, 2006; |Jaakkola et
al., 2010) find an optimal directed acyclic graph (DAG) in an exponential worst-case running
time, thus not applicable in large-scale settings. The greedy equivalence search (GES) algorithm
(Chickering, 2002) may be computationally efficient in practice, but without finite-sample
guarantees. In this case, we are ignorant of how well the algorithm can do with a certain set of
data. Structured prediction algorithms based on log-likelihood (Koller and Friedman, 2009) or
large margin learning (Tsochantaridis et al., 2005|) are known to be inconsistent with respect
to a prescribed loss metric in general (Nowak-Vila et al., 2019). Losing consistency causes
discrepancy between learning and prediction objectives and is likely to deteriorate prediction
performance. Recent advanced methods (Wu et al., 2019; Bank and Honorio, 2020)) are both
computationally and sample efficient but rely on instinctive regularization to combat overfitting.
It is also unclear what kind of data uncertainty a regularization method is able to handle.

This dissertation pursues the goal of developing structural learning methods that take into
account all the above design considerations simultaneously. We achieve this goal mainly by
taking advantage of techniques in the emerging field of distributionally robust optimization
(DRO). We show that the proposed methods are not only robust to different types of data
uncertainties, but also enjoying desirable computational and statistical properties.

To proceed with the rest of this introduction chapter, we provide an introduction of the
distributionally robust optimization framework in Section and a brief discussion on how the

above design concerns are addressed with appropriate DRO formulations in Section The



contributions as well as an outline of the thesis are summarized in Section [[LBl We attach a

description of notation conventions at the end of this chapter.

1.3 Distributionally Robust Optimization

Machine learning usually deals with decision-making problems under uncertainty, which are
closely related to mathematical optimization. Mathematical optimization not only provides
solutions to many machine learning problems but also inspires design of some learning models. A
few modeling approaches have been proposed to tackle optimization under uncertainty including
stochastic optimization, robust optimization and distributionally robust optimization, etc.

In a classical machine learning problem, we are given a class P(Z) of probability measures
supported on a measurable instance space = as well as a class F of measurable functions
f:Z —> R, sometimes considered as a hypothesis space, where each f € F assigns a scalar cost
value to each instance £ € Z. A stochastic optimization approach (Shapiro et al., 2021)) infers a
hypothesis f* whose expectation under a known distribution P € P(Z), is minimum or nearly
optimal with high confidence:

in Lf(f)ﬂ”(dﬁ)- (1.1)

feF

In practical terms, the distribution governing uncertainty is often not accessible and comput-
ing a multivariate integral is not easy. Instead, only a finite set of in-sample data {£ W, ...¢ (m)}

drawn i.i.d. from the unknown PP is given. On account of this, regularized empirical risk mini-



mization (ERM) could be adopted to construct a nominal distribution to approximate P, which

is the learning framework adopted by a lot of machine learning problems:

feF

inf L FEP,(dE) + (),

where P,, = % >y d¢( is the uniform distribution on data with d.i) being the Dirac point
measure at &), Q(+) represents a function quantifying hypothesis complexities and \ is a trade-off
coefficient. The regularization term S\Q( f) is usually added to the vanilla ERM objective to
combat overfitting and outlier data, which has been shown to be an implicit way of restricting
the hypothesis space (Bartlett and Mendelson, 2002). A norm is a common choice while adopting
different norms leads to different regularization effects. For instance, the 1 norm imposes a
strong prior assumption of sparsity and results in a non-smooth problem, while the ¢5 norm
may not be effective in feature selection or high-dimensional settings (Ng, 2004). In addition,
the regularizer is instinctively added without sound probabilistic interpretation in most cases.

Another approach from modern robust optimization (Ben-Tal et al., 2009; Bertsimas et al.,

2011) proposes to optimize the following objective:

inf sup f(¢),

JeF ¢e=

which does not require distributional information but only an uncertainty region = consisting
of possible realizations of £. A carefully chosen set = would lead to computationally tractable

problems (Trafalis and Gilbert, 2006; Yang and Xu, 2013; Bertsimas and Copenhaver, 2018)).
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However, the optimal decision could be very conservative because only a single cost value is
considered regardless of the statistics in the samples.

Distributionally robust optimization is an intermediate remedy that combines the advantages
of stochastic optimization and robust optimization. Because of the limited information about
the true data-generating distribution, the DRO framework explicitly models the uncertainty
by constructing an ambiguity set that possibly contains the unknown distribution based on a
nominal distribution in a probabilistic way. DRO seeks to minimize the worst-case risk instead

of the empirical risk:

inf sup | (€)0(d6). (12)

F€F QeA

where A < P(E) is an ambiguity set. This formulation has its origin from John von Neumann’s
game theory (von Neumann and Morgenstern, 1944). DRO has attracted attention recently in
operations research and machine learning communities by virtue of its several advantages: (1) it
admits distributional uncertainty by explicitly modeling it; (2) as long as the true distribution
falls within the constructed ambiguity set, the out-of-sample performance is guaranteed to be
no worse than the worst-case performance; (3) equivalence or an alternative to regularization
with a theoretically sound interpretation; (4) an appropriate ambiguity set gives rise to an
efficiently solvable reformulation; (5) it yields desirable statistical properties with judiciously
chosen ambiguity sets; (6) possible realizations that are absent from in-sample data could be

taken into account.
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The ambiguity set A is typically defined by a radius € and a nominal probability measure:
A:(P) = {Q € P(E) : div(Q,P) < ¢}, where div(-,-) measures the discrepancy between two
distributions. A desirable ambiguity set incorporates characteristics of specific applications and
ensures tractability. Throughout the thesis, we consider three popular choices of div(-,-), based

on feature moments, the relative entropy and the Wasserstein metric.

Definition 1. Let P, Q € P(E) be two distributions. Given a mapping ¢ : £ — R? and a norm

|I|l, the moment difference between P and Q is defined as

Du(P.Q) = | [ 9(©)P(e) - [ #(©Q(a)].

This divergence is able to take advantage of application-specific features and sometimes
restricts the input marginal to be identical, e.g., Px = Qx for Z = X x ). All moment-based
ambiguity sets are defined through certain moment conditions and support information. DRO

formulations based on moments have been shown to induce tractable reformulations (Scarf.

1958} [Popescu, 2007, Delage and Ye, 2010} |Goh and Sim, 2010; [Zymler et al., 2013; [Wiesemann|

et al., 2014; Mehrotra and Zhang, 2014; |Chen et al., 2019). Despite their tractability, this

type of ambiguity sets promotes conservative decisions and fails to converge to a singleton with

low-order moments (Shafieezadeh-Abadeh et al., 2019).
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Definition 2. Let Q € P(Z) be absolutely continuous with respect to P € P(=Z). Let %dg)) be

the Radon-Nikodym derivative. The Kullback-Leibler (KL) divergence from P to Q is defined as

Dx1(Q | B) - f In Qﬂ@( ac).

The relative entropy, or KL divergence, arises in information theory and is a well-known
asymmetric measure of difference between distributions. Unlike moments, it is a statistical
distance and a special case of ¢-divergences. Such ambiguity sets are sometimes called likelihood-
based ambiguity sets. DRO formulations based on these divergences have also been shown to be
tractable (Calafiore and El Ghaoui, 2006} Ben-Tal et al., 2013; [Hu and Hong, 2013; |Bayraksan
and Love, 2015; |Jiang and Guan, 2016; Wang et al., 2016; |Sun and Xu, 2016; Lam, 2019) and
first-order equivalent to variance regularization (Lam, 2016; |[Duchi and Namkoong, 2019). An
obvious drawback is that all distributions in such ambiguity sets are required to be absolutely
continuous with respect to the nominal distribution. In this way, the support is constrained by
empirical data, which is harmful to generalization ability of the learned model. Furthermore,
(Gao and Kleywegt, 2022)) illustrate with an image retrieval example that divergence measures

result in pathological worst-case distributions that are excessively conservative.

Definition 3. Assume that = is a Polish space equipped with a metric ¢: = x = — R,. Denote

by P(Z) the space of all Borel probability measures on Z, and by P, (=) the space of all P € P(E)
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with finite p-th moments for p > 1. Let M (Z?) be the set of probability measures on the product

space Z x Z. The p-Wasserstein distance between two distributions P, Q € Py (ZE) is defined as

e M(22)

W,(P,Q) = inf {[ Lﬁ(g,s’m(dadg’)]p:H<d£,E)=P<df>,H<E,d£')=@<dg’)}.

Wasserstein distances originate from the study of optimal transport theory
and can be interpreted as the minimum cost of moving the probability measure
P to Q with the unit transport cost quantified by ¢(&,¢'). In contrast to ¢-divergences, a
Wasserstein ambiguity set includes both discrete and continuous distributions whose support

is outside samples. This leads to stronger generalizability, which is further strengthened by

the measure concentration results in (Bolley et al., 2007; Boissard and others, 2011} [Fournier

land Guillin, 2015; [Singh and Péczos, 2018; Weed et al., 2019; Lei and others, 2020)). What’s

more, it allows us to make use of custom metrics to measure a notion of closeness between

points, which could be useful when paired with application-specific loss functions. Wasserstein

DRO has given rise to a number of learning frameworks (Wozabal and others, 2012; [Wozabal!

[2014; [Esfahani and Kuhn, 2018} [Zhao and Guan, 2018; |(Chen and Paschalidis, 2018; [Sinha et]

[al., 2018; |Luo and Mehrotra, 2019; [Blanchet et al., 2019a; [Blanchet et al., 2019b; | Blanchet and|

Murthy, 2019; Shafieezadeh-Abadeh et al., 2019; (Gao and Kleywegt, 2022; \Gao et al., 2022 and

has been shown to be equivalent to Lipschitz regularization (Cranko et al., 2021]).

DRO has also been adopted to tackle structural learning problems or closely related problems

including sub-modular maximization (Staib and Jegelka, 2019)), inverse covariance estimation
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(Nguyen et al., 2022)), graphical lasso learning (Cisneros-Velarde et al., 2020), graph Laplacian
learning (Wang et al., 2021)), causal inference (Bertsimas et al., 2022), contextual bandit (Si et
al., 2020)) and structured prediction (Fathony et al., 2018; |Fathony et al., 2018). A thorough

review can be found in (Rahimian and Mehrotra, 2019; |Lin et al., 2022]).

1.4 Overview of Distributionally Robust Structural Learning

We propose to solve structural learning problems with the DRO framework and judiciously
chosen ambiguity sets. We advocate continuous optimization methods that can be recast as a
DRO problem as in since most combinatorial optimization algorithms for structural
learning problems with complex structures easily become intractable in the large-scale setting.
Continuous optimization methods also allow us to establish finite-sample guarantees and leverage
advanced optimization techniques.

We consider the Wasserstein distances and KL divergences for structure learning problems.

Following a data-driven Wasserstein DRO framework, we find that the dual problem of a

structure learning problem can be written in the form of

m

inf_ye ) sup £(€) — el €0,

feF =0 - te=

which is valid and strong duality holds as long as ¢(-, -) is non-negative and lower semi-continuous
(Kuhn et al., 2019). In practice, a twice differentiable function fy parameterized by 6 is usually
optimized instead. A key challenge lies in solving the inner supremum problem. In typical

structure learning problems, the uncertain random variable £ has an exponential number of
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states, which makes = non-convex. In contrast to a classical regression setting with = = R?, a
Fenchel conjugate is not applicable here to simplify the supremum problem into a closed form.
Nevertheless, we show that it can be solved with greedy algorithms in polynomial time exactly
or approximately for undirected and directed graphical models with certain hypotheses classes.
Based on uniform convergence (Shalev-Shwartz et al., 2010]), Rademacher complexities (Bartlett
and Mendelson, 2002)), Lipschitz regularization (Cranko et al., 2021) and a primal-dual witness
construction method (Wainwright, 2009), we derive out-of-sample performance guarantees that
match the state-of-the-art sample complexities.

Structure learning problems can be tackled with a DRO method based on KL divergences as
well. Established results in (Hu and Hong, 2013) allow us to reformulate such problems as a
single minimization problem. Similar sample complexity bounds can be computed by noting that
the worst-case risk over a KL divergence ambiguity set is equivalent to variance regularization
(Lam, 2019). Although requiring absolute continuity and apparently losing modeling power
for generalization, as supported by our experimental results, KL. DRO is able to account for
distributional uncertainty to some degree and comparable to classic regularized ERM problems
in terms of efficiency, which is an advantage over the Wasserstein DRO counterpart.

Now we turn to structured prediction problems. A highly desirable property in structured
prediction is Fisher consistency (Liu, 2007) of the loss function used for training. Motivated by
success of moment-based ambiguity sets in DRO formulations for structured prediction problems
(Fathony et al., 2018), we develop a framework with more general theoretical results. Specifically,

with the help of Fenchel duality, we prove that our moment-based DRO formulation leads to a
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ERM problem regularized by the dual norm associated with the norm that defines the ambiguity
set. Such problems are closely connected to the Fenchel-Young loss framework (Blondel et al.
2020) that leads to Fisher consistency.

Robustness of the proposed methods is justified by the constructed ambiguity sets and

empirical study that explicitly considers several data contamination models.

1.5 Contribution and Outline

The follow-up of this thesis is divided into several self-contained chapters that consider two
structure learning problems and two structured prediction problems respectively.

In Chapter |2 we study the problem of learning the structure of a general discrete pairwise
undirected graphical model. Building on a constrained logistic regression method, we propose
two DRO approaches with tractable reformulations. The only assumptions we make are lower
and upper bounds on the model weights. The contributions in this work can be summarized as

follows:

e We propose the first computationally efficient and robust structure learning approach for

discrete pairwise Markov random fields.

We prove that it subsumes constrained and regularized logistic regression methods as

special cases.

We provide near-optimal sample complexities that induce robustness at little cost.

We conduct extensive experiments on synthetic data, comparing our methods against the

state-of-the-art baseline.



17

In Chapter |3, we revisit a structure learning problem for discrete directed graphical models.
We develop DRO methods based on a group norm regularized linear regression approach. The
proposed learning methods are valid under mild conditions without the faithfulness assumption.

Specifically, our contributions are

We propose the first computationally efficient and distributionally robust method for

Bayesian network structure learning over purely categorical random variables.

We illustrate the connection between the DRO formulation and group norm regularization.

For skeleton learning, we derive its sample complexities that are polynomial for general

graphs and logarithmic for bounded-degree graphs.

Empirical study on benchmark and real-world datasets verify the effectiveness of our

methods.

In Chapter [4] a structured prediction problem of tree-shaped objects is considered. We
present a fresh perspective to Fisher consistent structured prediction in terms of DRO with

general theoretical results. The main contributions in this work are listed below.

We propose a distributionally robust tree structured prediction method and show its

equivalence to regularized surrogate loss minimization.

o We derive its generalization bounds and Fisher consistency.

e We propose efficient algorithms based on projection oracles for arborescence polytopes.

We perform empirical study on real-world datasets.
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In Chapter [5] we tackle a probabilistic supervised learning problem that can be regarded as
structured prediction of objects in a simplex. This problem traces back to consistent probability
estimation in statistics. A Fisher consistent loss naturally acts as a proper scoring rule. Based
on a moment-based ambiguity set, the proposed DRO approach yields consistent conditional
probability distribution prediction and can be easily incorporated in an end-to-end representation

learning framework. A summary of the contributions is

e We propose a distributionally robust probabilistic supervised learning method, show its

Fisher consistency and derive its generalization bounds.

e We characterize the solutions to the proposed method and present an efficient algorithm

for specific losses.

e We incorporate our method into neural networks and perform extensive empirical study

on real-world data.

In Chapter [6] we make some discussions and conclude the thesis.

1.6 Notation

The following notation conventions are adopted throughout this thesis. We refer to [n] as
the index set {1,2,...,n} for a positive integer n. For a vector & € R", we use z; for its i-th
element, x; or _; for all elements excluding the i-th element and xs for the subset of elements
indexed by § € [n]. ®;—. represents [z1,...,%i—1,C, Tit1,...,2y]|T for some ¢ € R. For a matrix
A e R™™ we use A;j, A;. (Aix) and A.j (Ay;) to denote its (4, j)-th entry, i-th row and j-th

column respectively. Agsy represents the sub-matrix of A with rows restricted to S and columns
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restricted to 7. We define a row-partitioned block matrix as A = [A; Ay --- Ay]T € RXimxm
where A; € R"*™. The £,-norm of a vector x is defined as ||z||, := (3, |2i|P)/? with |- | being
the absolute value function. The ¢, , norm of a matrix A is defined as ||A]|,4 := (ZjHA.ng)l/q.
When p = q¢ = 2, the £, , norm becomes the Frobenius norm or the Hilbert-Schmidt norm
denoted by |[|-||r. We define the operator norm of a matrix as [|Al|p,q := supj,|, —1/[Av|lg. The
block matrix norm is defined similarly: ||A||ppq 1= (Zf:1|]Ang)1/ 4. The inner product of two
matrices is designated by (A, B) = Tr[ATB] where AT is the transpose of A. The Hadamard
product is written as A ® B for element-wise multiplication. Denote by &® the tensor product
operation. With a slight abuse of notation, |S| or #S stands for the cardinality of a set S. We
denote by T(x) € R™ a vector with non-decreasing components as a result of sorting (x; : i € [n]).
We denote by 1 (0) a vector or matrix of all ones (zeros). Given a distribution P on =, we denote
by P™ the m-fold product of P on the Cartesian product =" and by Ep the expectation under P.
The least c-Lipschitz constant of a function f:Z — R with a metric ¢: Z x = — R, is written
as Tip,(f) i= inf A.(f) where Ao(f) i= (A > 05 Ve, &€ 2 [f(€1) - F(&)] < Ae(ér, &)},

The i-th standard basis vector is written as b(") with bz(»i) =1 and bg»i) = 0 for 57 # 7. Denote
B := {b" : i e [k]} as the set of basis vectors in R and B("*%) < {0,1}"*F as the set of all

n X k matrices whose rows are k-dimensional standard basis vectors.



CHAPTER 2

DISTRIBUTIONALLY ROBUST STRUCTURE LEARNING OF

UNDIRECTED GRAPHICAL MODELS

(Parts of this chapter were previously published as “Distributionally Robust Structure
Learning for Discrete Pairwise Markov Networks” in Proceedings of the 25th International
Conference on Artificial Intelligence and Statistics (AISTATS) 2022 (Li et al., 2022b).)

In this chapter, we consider the problem of learning the underlying structure of a general
discrete pairwise Markov network. Existing approaches that rely on ERM may perform poorly in
settings with noisy or scarce data. To overcome these limitations, we propose a computationally
efficient and robust learning method for this problem with near-optimal sample complexities
based on DRO and maximum conditional log-likelihood. We describe the motivation and related
work in Section followed by preliminaries with a baseline approach in Section In
Section [2.3] we propose a minimax learning formulation and show that it can be efficiently
solved by leveraging sufficient statistics and greedy maximization in the ostensibly intractable
dual formulation. Based on DRO’s approximation to Lipschitz and variance regularization, we
derive near-optimal sample complexities matching existing results in Section Extensive
empirical evidence in Section with different corruption models corroborates the effectiveness

of the proposed methods. This chapter is concluded with a few discussions in Section

20
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2.1 Introduction and Related Work

Undirected graphical models, also known as Markov random fields (MRFs) or Markov
networks, are an influential framework for modeling structured high-dimensional probability
distributions. The underlying graphical structure specifying the distribution encodes conditional
independencies among a set of random variables and provides valuable information about their
correlations. One of the core problems in graphical models is structure learning, whose goal
is to recover the dependency graph with high confidence given i.i.d. samples drawn from the
distribution. A flurry of work focuses on developing efficient algorithms for structure learning of
discrete pairwise and higher-order MRFs (Vuffray et al., 2016} |Klivans and Meka, 2017; Hamilton
et al., 2017; [Wu et al., 2019; |Vuffray et al., 2020|). These methods have almost exclusively
made the assumption that the samples are not contaminated. In practice, however, noisy data
is prevalent due to sensor failure, decentralized collection, or even adversarial perturbation
(Nikolakakis et al., 2019a).

Existing algorithms based on neighborhood selection typically optimize a convex objective
for each node to find its adjacent nodes. This essentially becomes a standard ERM problem in
statistical learning. Regularization is usually added to the vanilla ERM objective to combat
overfitting and outlier data, which has been shown to be an implicit way of restricting the
hypothesis space (Bartlett and Mendelson, 2002).

To alleviate the above issues, we put forward a distributionally robust optimization approach
for solving a node-wise maximum log-likelihood problem for structure learning of pairwise

MRF's over a general alphabet. The presence of data corruption and limited sample sizes are of
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particular interest for our approach. In contrast to regularized ERM that suppresses hypothesis
complexity, the DRO method makes no restriction on parameters to be optimized. To account
for uncertainty about the true distribution due to noisy finite samples, it explicitly constructs
an ambiguity set of distributions consistent with the true distribution pertaining to certain a
priori properties. The optimal decision rule is then found by minimizing the worst-case expected
cost over the ambiguity set so that it has the best performance evaluated by all adversarial
distributions in the set. If the true distribution is included in the uncertainty set, it has implicitly
optimized the estimator on it. The worst-case risk thus serves as an upper confidence bound on
the true expected loss. An exponential number of outcomes in the discrete probability space
of MRFs makes the naive dual formulation based on the Wasserstein distance NP-hard thus
intractable. By exploiting the greedy property of finding the worst-case risk, we reformulate
the primal DRO problems based on the Wasserstein distance and KL divergence into efficiently
solvable convex optimization problems. Furthermore, the DRO approach has better probabilistic
elucidation than standard regularization. We show that it encompasses both the ¢ 1-constrained
and /9 j-regularized logistic regression as special cases. It is inherently robust due to explicitly
modeling distributional uncertainty. Based on Lipschitz and variance regularization, we derive
near-optimal sample complexities with an additional linear term with ambiguity radius as its
coefficient. Extensive experiments in different settings including three contamination models are
conducted to validate our method against the state-of-the-art baseline (Wu et al., 2019), which

is hardly done in related work.
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Contribution. Our contributions can be summarized as follows: (1) We propose the first
computationally efficient and robust structure learning approach for discrete pairwise MRF's
and prove that it subsumes existing methods as special cases. (2) We provide near-optimal
sample complexities that induce robustness at little cost. (3) We conduct extensive experiments

on synthetic data, comparing our methods against the state-of-the-art baseline.

2.1.1 Related Work

The MRF structure learning task plays an essential role in applications in a number of

areas such as statistical mechanics (Chayes et al., 1984), computer vision (Szeliski et al., 2006)),

sociology (Eagle et al., 2009) and neuroscience (Schneidman et al., 2006)).

There has been a rich body of work on structure learning of Ising models as well as non-binary
higher-order MRFs. The study of this problem was initiated by the seminal work of (Chow

and Liu, 1968)) on the maximum likelihood estimator of a tree-structured MRF. Early attempts

include hypothesis testing (Spirtes et al., 2000)), exhaustive neighborhood search (Bresler et al..

2013) and regularized pseudo-likelihood (Ravikumar et al., 2010; Jalali et al., 2011b). (Bresler!

2015)) put forward a simple greedy algorithm that learns the structure of any sparse bounded-

degree Ising models, which was improved to near-optimal sample complexity (Vufiray et al.

2016; |[Lokhov et al., 2018) and generalized to arbitrary MRFs (Hamilton et al., 2017; Vuffray et|

al., 2020). A multiplicative weight update approach called Sparsitron, achieving near-optimal

run-time and near-optimal sample efficiency, was introduced by (Klivans and Meka, 2017)).

et al., 2019) revisited the classical regularized likelihood method (Ravikumar et al., 2010) and
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made a slight improvement over the sample complexity of Sparsitron with respect to dependence
on model width.

The Ising model structure learning problem under the missing data setting was raised as
an open problem by (Chen, 2010). Preliminary unidentifiability results on robust learning
of Ising models were derived by (Lindgren et al., 2019). Provably robust binary Ising model
structure learning algorithms were developed for independent failure corruption (Goel et al..
2019), tree-structured Ising model (Nikolakakis et al., 2019a; [Katiyar et al., 2020), Huber’s
contamination model (Prasad et al., 2020)) and total variation contamination (Diakonikolas et
al., 2021). Robust structure learning methods for non-binary MRFs were studied in (Nikolakakis
et al., 2019b)) and (Katiyar et al., 2021) by assuming a tree-shaped underlying graph. To the
best of our knowledge, there has been no robust structure learning algorithms for non-binary

MRF's without structural constraints on the true graph.

2.2  Preliminaries

To begin with, we consider the definition of a general discrete pairwise MRF.

Definition 4. Let k be the alphabet size. Let W = {W#) e RF¥k . j = j e [n]} be a
collection of symmetric weight matrices and © = {8®) € R¥ : i € [n]} be a collection of
external field vectors. Let G = (V,€) be an undirected graph with nodes V = [n] and edges
E={{i,j} € V: W) £ 0}. Then the n-variable pairwise undirected graphical model with

underlying dependency graph G is a distribution D = D(W, ©) over [k]™ such that

P [Z= W i) 9\ |
Z~D(W,6)[ z]ocexp( 2 ziZj +Z§ﬂ 24

i<je[n]
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Define the width of the model as A(D) = sup;c[n] ac[] (> SUPpelk] ]WUEZ])\ + |9¢(f) ) and the

jicn]

minimum edge weight as n(D) = infy; s SUDy, pefk] \Wﬁj)!-

We make the following assumptions on D(W, O).
Assumption 5. W) has centered rows and columns: >, ac[k] Wézj ) - Zbe[k] Wa(zj )~ 0.

Assumption 6. The model width is upper bounded by a positive constant A\: A(D) < A. The

minimum edge weight is lower bounded by a positive constant 7 : n(D) = 7.

According to Fact 8.2 in (Klivans and Meka, 2017)), Assumption [5|is made without loss of
generality because centering (W, ©) leads to (W', ©’) with the same distribution: D(W, 0) =
D(W',0"). One of the useful properties induced by Assumption |§| is that the node-wise
conditional distributions are bounded away from 0 and 1. Although 7 is usually assumed to be
known, in practice it can be determined based on the tail of the learned weights distribution in
the vicinity of zero.

We note the following fact that the conditional distributions of a pairwise MRF can be
written as a logistic function o (x) := (1 +e~%)~! if the dependent variable is restricted to a pair

of values.

Fact 7. Let Z ~ D(W, ©) be a discrete pairwise graphical model over [k]™. For any i € [n] and

a # B € [k], we have

P[Z; = 0|Z; € {0, B}, Zi = 2] = o (W) — W) +60) — 0)) = o (W, 2)),

CVZ]'
J#i
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where W e R™¥F is defined as Wiy = [efj) - Gg), 07], and Wj, = Wo(f*j) — Wﬁ(f) forj # 1€ [n].

Z := OneHot(z;-1) € B™>k) encodes z;—q such that Z;, = bWT and ZJ* = b1 for j # 1.

The definition of W implies |[W 7|21 < 2\Wk. Let {201, z(m)} X i D(W,©) be a set
of m samples and {z(M), ..., 20"} be its subset with z ) e {a, B}. Define ) = 1 if z§j) =«
and y(j) = —1if zfj ) = B. In order to estimate the graph parameters W, it is thus natural
to solve an /3 j-constrained logistic regression problem by minimizing the negative conditional

log-likelihood for each i € [n] and o # 8 € [k] as follows:

WD carg  inf LZ yO(W, OneHot (29)))), (2.1)
WERnXk, m 1
[WT|l2,1<20Vk !

where £(2) := In (1 + e™%) = —Ino(z) represents the logistic loss function. Centering W (1@f) ag

[2e x-(ta 1 x-(ta
UL =Wt e Y wiet (2.2)
j#i€[n],aglk]
Ui = wied Z W1 g 4,

yields a minimizer of due to (Wieh) 7z — (Uioh) 7).

Finally, we can estimate the weight matrices W) via

=-(29 1 «@ . .
W) — ) U Vjien],aclk]. (2.3)
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The edge set of the estimated dependency graph can be formed by thresholding (Ravikumar et

al., 2010; [Wu et al., 2019):

&= {{i,5} : WD = n/2,i < j € [n]}. (2.4)

2.3 Distributionally Robust Structure Learning

We propose to reconstruct the structure of a discrete pairwise undirected graphical model
with a distributionally robust learning framework, inspired by the /3 ;-constrained logistic
regression approach and the DRO framework. In this section, we present our DRO formulation
and its dual formulations that give rise to tractable convex programs. We additionally show

connections of our method to regularized ERM as well as {5 1-constrained logistic regression.

2.3.1 Distributionally Robust Discrete Pairwise Markov Network Learning

In the setting where the in-sample data is sparse or noisy, directly applying the sparse logistic
regression approach usually results in a problematic dependency graph with missing or spiky
edges due to overfitting. In consideration of uncertainty about the unknown true distribution,
based on the logistic objective, we propose to learn pairwise MRFs by minimizing the worst-case

risk taken over an ambiguity set centered at the empirical probability measure:

Definition 8. Let = = X x Y = B((»=Dxk) 5 (1 1}. Given m samples {z(1), ... z(™)} Zid

D(W,0), the goal of learning discrete pairwise MRFs with distributionally robust logistic
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regression is to find the optimal W) for each i € [n] and o # 8 € [k] via minimax statistical

learning, formally,

W ieh) ¢ arg inf sup f Ly(W, X))Q(d(=, y)), (2.5)
WEeR™E ge . (B,.,) J=

where X = [ac{_”i_l,*,b(l)T x]

,x, . _1,]7 inserts the first standard basis vector into the i-th row

of . P, is the empirical distribution for a set of transformed m’ samples (&M .. €M)} such
that, for any £U0") = (20", yU")) e 2,5’ € [m'] and its corresponding original sample 27, j € [m],

we have ZZ-(j) € {a, B}, yU) =1 if El-m =qaand yU) = —1if ZZ-(j) = 3, with 2U") = OneHot(z(j)).

—1

Note that if € is set to zero, reduces to an unconstrained version of

More importantly, the DRO formulation in is an infinite-dimensional optimization

problem, which is generally impossible to solve directly.

2.3.2 Tractable Reformulations

We show that the DRO problem in Definition |8 can be solved efficiently via its dual
formulations. The following theorem presents a tractable convex reformulation for the primal

problem in if a Wasserstein ball is adopted as the ambiguity set.

Theorem 9. Let Wi(-,-) be the type-1 Wasserstein distance with p =1 and metric c¢(€,€’) =

c((z,y), (') = ||lx — 2|11 + Ely — o] for €, € 2, ke Ry. Let AV(P,y) == {Qe P(Z):
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Wl(ﬁ”m/,@) <e= \/5137} be the ambiguity set. Then the primal problem in |Equation 2.5 is

equivalent to

ml

1 1 ; j
inf et — Z sup  [—=vr(1 4+ gyY)) — 2ry +In (1 + 6<9W7X(J)>+<T(5)1.4.r,1>)]7 (2.6)
WeRn*k, m' = o<r<n—1ez, 2
70 T= gef—11}

where X0 i= [, 6WT, 2T 7, 8 = [supicpy (9W )i : j # i € [n]]T—(gWosn 0201,

P i.n—1%

and T(x) is defined as a vector with non-decreasing components as a result of sorting x, introduced

in Section [1.6.

Proof. Recall that Z = B((®=1Dxk) 5 {1 1} where B(("=1)*k) is the set of matrices with rows

of basis vectors. To avoid clutter of notations, we define

tw (&) = LyW, [2] bl D).
Similar to (Abadeh et al., 2015), we rewrite the worst-case risk in as

sup J lw (EHTI(Z, de)

e M(22)

sup [ ew(€)000€) = {
) =

QeA(P,,

[

[1 4

d(€,€)TI(dg.d€) < =

I1(d¢, E) = P, (d€).
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Plugging I1(d¢,d¢) = L Z;”z/l Oe(i) (d¢)QY) (d¢’) into the above expression yields

1™ A
Y N (qe’
sup m; _tw(€)Q7(d¢)
st i f_ gV, ¢V (de) < e (2.7)
j=1v=
QU)(d¢') = 1,Vj e [m']

By defining Q(ﬁ (dz) = QU)(d(z, +1)), we are able to decompose QU)(d€) based on the value

of y as

QYW (d¢) = @(ji (dz) + Q(ﬂ(dw),

which can simplify to

-

1 m . .
sup — Y f tw (@', —1))QY) (dz') + tw (o, +1))QY) (da)
7) m’ = JB((n—1)xk)
Qil Jj=1
st — j d(eD, (', -1))QY) (dz) + d(€Y, (2, +1)QY) (da') < &
m/ ot B((n—1)xk)

Q(_j}(da:') + Qﬁ (dz') = 1,Vj e [m’].

B((n=1)xk)
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By substituting the metric definition into the above expressions, we rewrite them as

1 ; ;
wp Y f wl(@, ~1)Q%) de') + (', +1))QY) (da’)
Qgi m : B((n 1)><k)
1
s.t. 2 Q) (da’) + Z QY) (da)
) m’ Jp(n-1xk) (=1 y(D=t1

+ 3 e — w’nl(@(f%(dm') + @iﬂ'i(dw')) <e

7=1

fB((n—1)Xk) Q(—J% (da’) + Qg%(dwl) =1,Vj e [m].

Its Lagrange dual problem is as follows:

. 1 &
inf E;

ry,s(ﬂ)

. 1 . .
s.t. sup —Lw (2, —1) =9z — 2|y = Syl +y7) < 59 v [m]
< mIGB((n—l)xk)

. 1 . .
sup A (@, +1)) —y[|2P) —a'|s - 3Rl = y) < sV vje [m']
wleB((nfl)xk)

v = 0.

Strong duality holds according to Theorem 1 in (Gao and Kleywegt, 2022). By incorporating

the outer minimization of [Equation 2.5 plugging in the expression of fy(-) and rearranging the

terms in the above expressions, we have

m/

. 1 . 1 4
widl je+ 5D, sup o Ut M) =2l —alh — gyl + ay?),
¥20 =t
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— [T DT T
where X = [ml...i—l,*’b( v i -

1+]T- The objective of the above convex program is the sum
of m/ point-wise maximum functions of 2k"~! convex functions. We now consider the following
function of x:

h@) =T 1+ W X0) —al) — gl — Z3n(1 + gy,

Let X0 = [2?T | oW, aT | J7 and 6 i= [supieqy(gW)ji 1 j # i € []]T — (gW_is O

1L n—1,%
x))1. As a result, e R" ! is a vector of differences between the maximum and the selected
element according to ) for each row of W_; .. Denote by (by,...,b,—1) a permutation of
[n — 1] satisfying 05, = 0, = -+ = &

It is thus not hard to show that, for any integer

n—1"

0<r<n—1,and & € B{""Dxk) that satisfies ||27) — z||; = 2r, we have

j is 1 .
sup h(z) =In(1+ W XO+E %) — 2ry — k(1 + gy,
zeB((n=1)xk), 2
llax?) —a ]| =2r

where Y _, dp, is simply the sum of the first r largest elements of §. Note that if ,, < 0 for

some 1 € [n — 1], we always have

In (1 + e<gW,X(j)>+ZZ:1 6bu) o 27,,,_}/ >1In (1 + e<gW7X(j>>+Z£:1 6bu> _ 27’/")/,V7“ < ’I"/.
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So only the positive elements in § is of interest to finding the supremum. As a consequence,
the objective of the dual problem can be rewritten as the point-wise maximum over 2n convex

functions as follows:

m/

1 1 ; j r
inf ye+ — Z sup  —2ry — =yr(1 4+ gy?) + In (1 + aW XD+ 3y %bu ).,
WeRn*k, m' = o<r<n—1, 2
=0 T=5 ge(-1,1}

To characterize the sequence of the sorted indices more formally, we have defined T(x) as a vector
of sorted components of . The sorting operation required to evaluate T(-) can be accomplished
in ©(nlogn) for sub-derivative evaluation. In such matter, we can reformulate the above convex

program as

m/

1 1 , j
inf ye+ — Z sup  —2ry — =yk(1 + gy¥) +In (1 + e<gW’X(])>+<T(5)1"'T’1>).
WeRn¥k, m ~ o<r<n—1, 2
=0 T=0 gef-1,1}

O]

One of the benefits brought by the Wasserstein DRO formulation is that it subsumes the
05 1-constrained (Wu et al., 2019)) as well as regularized logistic regression approaches (Ravikumar
et al., 2010) as special cases, as shown by the following theorem, which implies that minimizing

the classic objectives is not enough to ensure distributional robustness:

Theorem 10. If k = o, |[WT|a1 < 2\Wk and v = (n + 2)\Wk, the convex program in

subsumes the standard ls1-constrained logistic regression approach in
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as a special case. If Kk = o0 and v = nTHHWTHQJ, it subsumes the {3 1-reqularized logistic

regression approach as a special case.

Proof. To begin with, we rewrite [Equation 2.6 based on the cases where g = y) and g = —y):

m/

1 . .
inf ye+— Z sup {—2ry+1In(1+ e<_y<])W’X<])>+<T(‘s)1“-’“’1>),
WeRm*k, m =1 0<r<n—1
>0 =

—2ry—yk+1In(l+ e<y(j)W’X(j)>+<T(5)1”"1>)}.

Assume that v > 0. Since k = o, the second expression in the supremum makes the entire

objective goes to —oo, thus dominated by the first expression. Hence it can be simplified as

m/

1 . .
inf ye+ — 2 sup —2ry+In(1+ e<—y(3)W,X<J>>+<T(5)1'..r’1>)_ (2.8)

WeRm*k, m i=1 0<r<n—1
>0
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Ify = (n+2)MWk >0, [WT|21 < 2\Wk and n, k € Z,, then for any X € V("*k) we have

W oo 2 W oo < W20 < W Iz < 2AVE < 29/(n +2)
I Wile(nt2) < 27
—— 2Wlo(nt+2) £ o 27+[Wlleo(n+2)
s 2IWllo(n42) _ (27 _ )l Wlo(n42) _ 2r <
e Wlao(n42) _ 27— [Wlw(n+2) ¢ 2y g
e Wln(+2) _ 2v=Willeon < o2y _q

Wl (+2) < 27 o 2 IWilen _

[In (€27 4 2~ 1Wlem _ 1) — |W|| 0]

DO | =

=Wl <

< %[m (e + 2+ WX0 1) (W, X)]

:>e<W7X>+2”W||OC < 62’Y + 6<W7X>+27 —1

L4 oW X0+2[ Wi
1+ W X0

<e

—1n (1 4+ W X02Wle) _ 1 (1 4+ W X0) < 24.

Therefore, the supremum in [Equation 2.8is achieved only when r = 0. Finally, [Equation 2.8
can be rewritten as the following convex program:

1 m ) .
inf p Z In(1+ efy(])<W’X(J>>)
j=1

st [WT21 < 2\VE,
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which coincides with the /3 j-constrained logistic regression problem in [Equation 2.1

On the other hand, if v > nTHHWTHQ,]_, by following the above same process, the supremum

in is achieved only when r = 0. Note that only the first term in is

related to . After minimizing over v, we can rewrite [Equation 2.§8| as

/

inf 7(7% +2)e IWTl21 + i i In(1+ e_y(j)<W’X(j)>)
WeRnxk 2 ’ m/’ o ’
which is a standard /5 j-regularized logistic regression problem with A= ("22)8. ]

Intuitively, when x = oo, flipping y9) causes infinite transport cost. In this case, it is assumed
that the realization of each y@) given =) is deterministic. Instead of taking into account the
ambiguity only in the covariate measure Q(dx), the Wasserstein DRO structure learning
formulation grants flexibility to the joint measure Q(d&). Modeling joint measure uncertainty
is non-trivial here because all the random variables are involved in the node-alphabet-wise
distributionally robust logistic regression problem in

If KL divergence is adopted to construct the ambiguity set, a tractable convex program can

be derived as a corollary from Theorem 4 in (Hu and Hong, 2013):

Corollary 11. Let AKXV (P,,) = {Q e P(E) : DkL(Q,Pyy) < e = =0} be a KL divergence ball.

The primal problem in|Equation 2.5 with B.(P,,) = BKY(P,,) is equivalent to

ml

. 1 —yD(W, X )y 2
yD(W, X))
Elﬁyfl’xk"yln [m’ E (1+e )7 ]+ e (2.9)

7>0 j=1
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Proof. The problem we study satisfies Assumption 1 in (Hu and Hong, 2013) because ¢(§) has
finite support on Z. Substituting Py = P, and H(x,&) = £(y{W, X)) into Theorem 4 in (Hu

and Hong, 2013) leads to our result. O

In contrast to the convex program with inner maximization in the direct
minimization problem in based on KL divergence balls can be solved more efficiently.
This class of problems have been shown to recover adversarial reweighting (Li and Dunson, 2020)

and variance regularization (Duchi and Namkoong, 2019)).

Algorithm 1 Structure Learning of Discrete Pairwise Graphical Models

Input: Alphabet size k; number of variables n; sample data {2(1), - Z(m)}; model width X;
minimum edge weight n
Output: Recovered edge set £
for all (i,«, ) € [n] x [k] x [k] do ‘
Form a subset {z(1), ... 2(™)} with 2/ € {a, B}Vj € [m/]
Compute W (if) by [Equation 2.1| or [Equation 2.6|
Centering W (ieh) by |Equation 2.2|
Estimate the weight matrices W (W) by [Equation 2.3|
Estimate the edge set & by [Equation 2.4

end for

We illustrate the algorithmic details in Algorithm

2.4 Theoretical Guarantees

In this section, we study statistical properties of the proposed estimators. More specifically,

we derive generalization bounds, excess true risk bounds and sample complexities of our methods.
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It is non-trivial to quantify the number of samples needed to recover the dependency graph
with high probability in a structure learning problem. An initial attempt we made is to leverage
a O-concentration bound under 1-Wasserstein distance in the form of P™[W}(P,B,,) > €] <
f(d,n,k,m,e) to get a uniform upper confidence bound on the generalization error. It turns out
that even the most advanced mean-concentration bounds O(m_%) (Lei and others, 2020; Weed
et al., 2019)) with essentially optimal dependence on data dimensionality n lead to a sample
complexity O(C nTk) with exponential dependence on n. The cause of the issue might be that
convergence of P,,, to P is much slower than convergence of W, (If”m, P) to its mean Epm W} (ﬂ”m, P)
in high dimensional settings (p = 1 with large n). Hence the generalization bounds obtained via
measure concentration are too conservative to be useful in our case.

Instead, we consider the following lemma about a uniform generalization bound based
on bounded Lipschitz loss functions (Shalev-Shwartz and Ben-David, 2014)) and Rademacher

complexities (Bartlett and Mendelson, 2002).

Lemma 12 (Lemma 11 in (Wu et al., 2019)). Let D be a distribution on X x ), where
X = {xe R 27|20 < Xow} and Y := {—1,1}. Let £: R — R be a loss function with
Lipschitz constant Ly. Define the expected loss as L(w) = Epl(y{w,x)) and the empirical
loss as L(w) = %Zﬁlf(y(ikw,m(i)», where {x® y@ym “op, Define W = {w e R™F .

|lwT||2,1 < Wa1}. Then with probability at least 1 — p over the draw of m samples, we have that

forallweW, 0 <p<1,
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where C' = Ly X2 s Wa 1.
Proof. Please refer to Lemma 11 in (Wu et al., 2019) for the proof. O

In order to get a sample complexity bound, we derive an excess true risk bound for transport-

based DRO estimators, in terms of generalization errors, which may be of independent interest.

Proposition 13. Assume that (Z,c) is a Banach space, P,(Z) is the space of Borel probability
measures on = with finite p-th moment for p = 1, B, € P »(2) is the empirical measure for
some P e Py(2), A= .Ang (I@’m) is a type-p Wasserstein ball centered at By, with radius £, F is
a space of closed convex functions f: = — Ry with lip,(f) < co. Let f be a minimizer of the
DRO problem in[Equation 2.5 and f* be a minimizer of the stochastic optimization problem in
we have

| fer@e) - [ 1 ©pg) < clinr) + 2sup| [_©P@9) - | &)l

feFr J=

Proof. To avoid clutter of notations, we define A(P) := W (P).
According to Theorem 1 in (Cranko et al., 2021)), the following relation holds for any f e F

and a fixed P € P,(2):

L FEP(dE) < _sup f Q(d¢) < J F(P(c) + elip.(f).

QeA(P
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Note that we are given a worst-case risk minimizer f defined as

fearginf sup f £(6)Q(de),
@eA( m)

and a true risk minimizer f* defined as

freangint | FQP(e).

As a result of uniform boundedness, we have

IRG P
_ Lf P(d¢) f 7
= Lf(S)IP’(dS)—QEjJP ff 4 f (¢
- [ o @fﬁm Lf d&)—Lf*(&)P(dﬁ)
< Lﬂf)P(dg)_QﬁﬁmJ fe me [RAGLESE Lf*(ﬁ)ﬂ”(df)

< Lf(é)P(dé)—Lf n(d€) + f F¥(E) B (d€) + elip, (£ f 74

<elip.(f*) + 2sup| | f(§P(c) — ff

feF JE
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Hereupon, following the proofs of Lemma 2 and Theorem 2 in (Wu et al., 2019), we derive
a sample complexity bound for our Wasserstein DRO structure learning method by upper

bounding HWOE’*]) - WB(Z*J) - U}i‘)‘ﬁ)lll based on the excess risk bound in Proposition

Theorem 14. Given that: DWW, ©) is an unknown pairwise Markov network with n variables,
alphabet size k, dependency graph G; that Assumption@ and Assumption@ hold; that |WT||21 <
22k in ' that W) € W is the true weight matriz; and that W) s the estimated
weight matriz from [Equation 2.6 with the Wasserstein ambiguity set and properly centered, then,

for any p € (0,1], w > 0, n € Zy and i # j € [n], if the number of i.i.d. samples satisfies

A2fteldr (6(2)+ln "—pk)

wt

m = ), with probability at least 1 — p, the following bound holds:

W @) — W(ij)\loo,oo < w.

Let w < 3 and G be reconstructed via thresholding in |Equation 2.4 Now if

A2telA(ed + In k)
m = O( —),
n

with probability 1 — p, we have G = G.

Proof. We use P to denote the true distribution and P, to represent the empirical distribution.

Define lyw (€) == L(y(W, [] ;1. bWT 2T ™).

G..m—1,%

We follow the proof of Theorem 2 in (Wu et al., 2019) by starting with upper bounding the

excess true risk.
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By Assumption @ we have |[WT|j21 < 2\Wk for all i € [n], a # 8 € [k], where W is defined

in Fact [7] based on the true weight matrices W. By the assumptions stated in this theorem,

W i) in [Equation 2.5[should also satisfy ||W (io# )T||2.1 < 2M\Vk. The one-hot matrices Z in

Fact [ and X in [Equation 2.5[satisfy || ZT[|2,0 < 1, [ XT||2,0 < 1 by definition. The logistic loss

function £(-) has a Lipschitz constant of 1.

According to Lemma [12} for all W € R™** that satisfy |[W 7|21 < 2\/F,

Pm’{Ep[eW@)]—Ep (€] < 21vh2y P | 21“(2,/”)} S1op (210

m/ m

Define W8 e R*k a5 Wi(,:a’g) = [9,(;) - Hg),OT], and Wj(iaﬁ) = w9 - ﬁ(,:f) for

j # i€ [n]. Recall that WP is a minimizer of [Equation 2.5 with a Wasserstein ball:

wheDearg inf - sup  Egllw (€]
WeR?X QeAZVl(]fDm/)

By Proposition [T3]

B (g3 ias) (€)] — B [lyyriias (€)] < 2MWke +2 sup [Ep[tw (&)] — Ep ,[tw(8)]];
W[ WT|21<20Vk "

which can be combined with [Equation 2.10{ and the definition € = gg/+/m/, yielding

Pm,{EPVW(iaﬂ) (&)] — Ep[lyyian (§)] < 2)\\@(\/8% +4 612;,”) +2 21117722,/@)}

=1 —p.
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2102 2n
CA2k(e] +1n 21)
4w?

Therefore, there exists a global constant C' > 0 such that if m' = , with

probability at least 1 — p,

EP[EW(W,B) (5)] - E]P’[KW(Z‘aB) (E)] < 2w.

Using Lemma 9 and Lemma 10 in (Wu et al., 2019), if the number of samples satisfies

2 2 n
A k(eg+In " )
w2

m' = O( ), with probability at least 1 — p,

Ep[o (W), 2)) — (WD, 2)))?
<EpDir(o(WH) 2)) | o((W (D), 2))) /2

<%(EP [EW(W@) (E)] - EP[gw(iaﬁ) (5)])

<w.

Now fix some i € [n], a # 3 € [k]. Denote by m(©@? the number of samples in which Ef €

{a, B}. Recall that U the centered version of W9 satisfies (W (@9 ) = (UF) ),

Nk(eg+In 2)

w2

As a result, if m(@f) = O( ), with probability at least 1 — p,

Ep[o(W(D, 2)) — (U, @) < w.

By Definition 3 in (Wu et al., 2019), a distribution D is J-unbiased if its conditional probability

of a variable given the others is bounded away from 0 by at least 4.
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By Lemma 4 and Lemma 7 in (Wu et al., 2019)), we know that Z ~ D is d-unbiased with

6 = e 22Dk and so is Z_; conditioned on Z; € {a, }. Applying Lemma 6 in (Wu et al., 2019),

)\2]63 12)\(Eo+l n)
1 ) the following inequality holds with probability at least 1 —

if m(ief) = O(

w

W B g < w

:\Wé?)—WéZJ w‘ﬂ)\ <w,Vj #ie€[n],be [k]

Since Z ~ D is d-unbiased, we have P[Z; € {«, 8}] = 20. By the Chernoff bound, if the total
number of samples satisfies m = O(%(m(mﬁ) + log(ﬁ)), with probability at least 1 — p”, we have
m@#) samples for the fixed i € [n], a # 3 € [k].

Now set p’ = p” = 557 and take a union bound over all « # 3 € [k], then with probability

N2Ae! A (3 +1n ™)

wi

at least 1 — 2 and m = O(

), we have
(ig) _ (i) wéﬁ)
W — WD — US| < V) # i n]be [kl.a # B e [K].
Because W) are centered, summing the above equalities for all 5 € [k] leads to

W)~ ZU“ﬁ <w,¥j #ie[n]bac k]

— WD W) < v i€ n],bae k]

— W@ W, <w,Vj#ie[n]

274 14X (22 1,y nk
Ak*el* (ef+1n ;

wd

which holds with probability at least 1 — £ and m = O( ), for fixed i € [n].
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We conclude by taking a union bound for all i € [n], so that with probability at least 1 — p

A2jheld (e24+1n k)
and m = O( ),

W) — W, o <w,Vi,je[n],i+ ]

O]

The sample complexity is in terms of an £y o error bound to ensure that every true edge is
recovered. It shows that theoretically the number of samples needed to recover the true graph is
polynomial in %, k, €9, In ”T]‘:, but exponential in model width A. Similarly, we derive a sample

complexity for the KL divergence-based DRO estimator via variance regularization (Lam, 2019)

instead of Lipschitz regularization (Cranko et al., 2021)).

Theorem 15. Given assumptions in Theorem except that W) is the estimated weight

matrix from with the KL ambiguity set. Let G be constructed via thresholding in

Fquation 2.4 Then, for any pe (0,1], n>0,e <1, n€ Z4 and i # j € [n], if the number of

A2ktel A (g9+1n 28

i.i.d. samples satisfies m = O( pe £2), with probability at least 1 — p, the following

bound holds:

|W i) — W, . < g — G=0.



Proof. According to Theorem 7 in (Lam, 2019), for any W,

Es [tw(£)]

< sup  Eg[tw(§)]
QeAKL(P,,)

2iltw (&) — tw (§))°

<Ey, [tw (€)] + /2 Varg, (fw (€)) + 2:C S (tw (&) — tw (€))?

<Bs 1w ()] + /2 Var, (w (€)) +2:C— Y|t (&) ~ Tw (@),

where ly = # > tw (&) and C > 0 is a constant independent of n.

Note that

Varg (bw(€) < sup [l (&) — tw(&)* < (4Mk)?,
W W' ¢gg!

yielding

sup  Eq[lw (€)]
QeAKL (Bm)

<Ep [fw(8)] +4Mk(V2e +2:C)

<Ej, [tw(§)] + 4MWk(2VE +2CVe)

for e < 1.

46
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Therefore,
Pm,{EPwW(iaﬁ) (&)] — Ep[lyy s (€)] < 22VE((4C + 4)\/5 + 4W + 2W)}
=1 —p.

Following the same procedure in the proof in Theorem [I4] we get the conclusion that with

A2k2el4X (gg+1n "Tﬁ)

probability at least 1 — p and m = O( — ),

(WD — W)| o < w, Vi, j € [n],i # j.

O]

The two sample complexity bounds differ by a factor of €y because the Wasserstein ball radius

1

is chosen in the square root order T while the KL ball radius decays in a non-asymptotic

%—rate. In practice, €3 « In ”Tf for Wasserstein DRO whereas ¢p for KL, DRO is not too larger

A2kteldN In nk

———=2) (Wu et al., 2019), our

than In %“. Compared to the state-of-the-art result O( 7

complexities have an additional term that scales as O()‘Qk;;iflu), weighted by ¢ or 5(2). The
result in (Wu et al., 2019)) is slightly better than that in (Vuffray et al., 2020) in the pairwise
setting, even though the latter is applicable to higher-order models. If the radius is set to
zero, we recover the non-robust near-optimal bound (Wu et al., 2019) but the learned graphical

structure will be vulnerable to perturbation. On the contrary, a larger radius corresponds to

more robustness at the risk of underfitting. On that account, with a similar number of samples,
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the proposed estimators have the statistical property of distributional robustness at almost no
cost. In the noisy-data setting, the benefit with a little extra sample complexity is obvious since

non-robust methods may fail.

Remark 16. The derived sample complexities are with respect to clean data since we do not
assume any specific contamination models. Our approach can be considered as regularization
with better probabilistic and robust interpretation. Given recoverability and noisy data, a
contamination model usually has to be assumed in order to obtain a sample complexity for this

kind of noise.

The radius g¢ should be judiciously chosen with expectation that the ambiguity set encom-
passes true distribution with high confidence while excluding pathological distributions (Gao
and Kleywegt, 2022)). There are two approaches to choosing the radius. One of them is to select
the best value based on empirical cross-validation errors. The other one is to determine the
radius defining an ambiguity set that encompasses the true distribution with a given confidence
(e.g., 1 — p = 0.95) based on concentration bounds of the corresponding measures. The latter

approach is more theoretically sound but likely yielding a pessimistic radius.

2.5 Experiments

We conduct a simulated study of synthetic data perturbed by the following contamination
models:
Noiseless Model. The common setting with no contamination to samples drawn from

DOV, 0).
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O—O—0O

Figure 1: The adopted underlying graphs. Two nodes are connected to the others in the diamond
graph. The grid graph has d? nodes. Each edge weight matrix is centered with random values
+0.

Huber’s Contamination Model. Let D, be an arbitrary probability measure on [k]".

Each sample is drawn i.i.d. from (1 —{)D + (D.. We adopt the uniform distribution U([k]™) for
D..

Independent Failure Model. Each entry is independently randomly corrupted during
sampling. We consider a special case in our experiments where each component z; € [k] of
z ~ D is randomly replaced with a different value with probability .

We adopt a diamond and a grid underlying graph, illustrated in [Figure 1] where each edge has
a centered weight matrix of random values +6. Since we compute the true distribution exactly,

it is impossible to generate samples for large graph without approximate methods such as Gibbs
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sampling. This due to the memory and precision limit of modern computers. Gibbs sampling
and other Markov chain Monte Carlo (MCMC) algorithms require very long mixing time for
good samples. Quantum computers yield good-quality real-world samples but are inaccessible for
the authors at the time of writing. We form different setups by varying graph size n € {6,9,12},
alphabet size k € {2,4,6}, edge weight 6 € {0.1,0.2,0.3}, noise rate ¢ € {0,0.1,0.2,0.3,0.5} and
contamination models. In each setup, we record the probability of success among 100 runs, in
which success means the estimated graph is identical to the true graph. This corresponds to a
zero-one loss evaluating complete matching. However, there are feasible soft evaluation metrics
including the Hamming distance, measuring the fraction of correctly recovered edges, and a
statistical distance between distributions. At the beginning of each run, we draw m i.i.d. samples
from D(W, ©) with exact distribution, where m € [1000, 10000]. Afterwards, the samples are
corrupted accordingly and provided as input to each algorithm.

We compare our methods against sparse logistic regression with parameters suggested by
(Wu et al., 2019), where the number of mirror descent iterations is 50000. We tune our model
hyperparameters eg, k € [0.01, 100] using a logarithmic scale on random graphs of same size as
the target graph. We adopt L-BFGS-B (Byrd et al., 1995)) in SciPy (Virtanen et al., 2020) as the
optimizer. Default values are adopted for unmentioned parameters. We conduct all experiments
on a laptop with an Intel Core i7 2.7 GHz processor.

The results for comparing probabilities of success are shown in Generally speaking,
the proposed two DRO approaches outperform /5 j-constrained logistic regression (SLR) across

all the experimental settings by a large margin whereas the Wasserstein DRO approach (WDRSL)
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Figure 2: Plots of the probability of successfully estimating the structure versus the number of
samples for Wasserstein DRO structure learning (WDRSL), KL DRO (KLDRSL) and sparse
logistic regression (SLR). Top, from left to right: (a) diamond, 4 classes, noiseless, § = 0.2,
varying nodes; (b) diamond, 6 nodes, 4 classes, noiseless, varying 6; (c¢) diamond, 6 nodes,
noiseless, 0 = 0.2, varying classes. Bottom, from left to right: (d) grid, 9 nodes, 4 classes, § = 0.2,
varying noise models with { = 0.2; (e) grid, 9 nodes, 4 classes, § = 0.2, independent failure
model, varying probability of noise; (f) grid, 9 nodes, 4 classes, § = 0.2, Huber’s contamination
model, varying noise level.
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Figure 3: Comparisons of the execution time of one run. § = 0.2 and noiseless model are adopted
in all settings. k = 1, g9 = 33 for KLDRSL and gy = 1.5 for WDRSL. From left to right: (a)
grid, 9 nodes, 4 classes, varying samples; (b) diamond, 4 classes, varying nodes; (c) diamond, 3
nodes, varying classes.

further outperforms the KL. DRO approach (KLDRSL) significantly. Our method has better
scalability according to the upper part of where we vary the number of nodes, the
model width and the number of classes on the diamond graph. For example, in the top right
plot, for 6 classes, given about 3000 samples, WDRSL is already able to recover the graph with
probability 90% while SLR cannot achieve that even with more samples. The advantage can
also be observed in the upper center plot when 6 = 0.3 with only 1000 samples. The results on
noiseless data are thus consistent with our analysis on the probabilistic interpretation of DRO
as a more general alternative to standard regularization. The results in the bottom left plot
of imply that, with a similar perturbation budget, the independent failure model is
more powerful at corrupting data in the structure learning setting. As we vary the probability
of contaminating each entry independently (bottom center plot), it becomes significantly more

difficult to learn the underlying graph. For example, even our DRO methods that are inherently
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robust can hardly succeed when ¢ = 0.3. That being said, we still expect there to be a large
margin of performance comparison between our method and SLR as more samples are accessed.
Under Huber’s contamination model with 50% data being noisy, we are still able to exactly
reconstruct the structure with about a 50% chance. It is noteworthy that in some cases such as
10% independent failure, SLR outperforms KLDRSL probably because of the equivalence of KL
DRO to adversarial reweighting and domination of pathological distributions. Despite not being
comparable to WDRSL in terms of success rate, KLDRSL is the most efficient one according to
whereas WDRSL provides a trade-off between computational efficiency and structure
learning ability.

2.6 Concluding Remarks

In this chapter, we develop distributionally robust approaches based on two ambiguity
sets for structure learning of pairwise MRFs with general alphabet from sample data. We
provide tractable dual reformulations for the primal problems and showed their connections to
regularization schemes. We derive near-optimal sample complexities and demonstrated consistent
benefits over sparse logistic regression. We conduct empirical study which is lacking in the

literature since most of the related work are purely theoretical.



CHAPTER 3

DISTRIBUTIONALLY ROBUST STRUCTURE LEARNING OF

DIRECTED GRAPHICAL MODELS

In this chapter, we consider the problem of learning the structure of general discrete Bayesian
networks from potentially corrupted data. Building on DRO and a linear regression approach,
we propose a method that optimizes the most adverse risk over a family of distributions. The
proposed approach applies for general categorical random variables without assuming faithfulness,
an ordinal relationship or a specific form of conditional distribution. We provide necessary
background in Section and Section Under mild assumptions, we present efficient
algorithms and non-asymptotic guarantees for successful structure learning with logarithmic
sample complexities for bounded-degree graphs for a Wasserstein DRO method Section [3.3.2] and
a KL DRO method Section Numerical study on synthetic and real datasets is provided in

Section [3.4] with concluding remarks in Section [3.5

3.1 Introduction

A Bayesian network is a prominent class of probabilistic graphical models that encodes the
conditional dependencies among variables with a directed acyclic graph (DAG). It provides a
mathematical framework for formally understanding the interaction among variables of interest,
together with computationally attractive factorization for modeling multivariate distributions.

If we impose causal relationships on the edges between variables, the model becomes a causal

54
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Bayesian network that encodes the more informative causation. Without such interpretation, a
Bayesian network serves as a dependency graph for factorization of a multivariate distribution.
We focus on discrete Bayesian networks with purely categorical random variables that are not
ordinal, but will discuss related work on both discrete and continuous Bayesian networks for
completeness.

The associated DAG structure of a Bayesian network is usually unknown. Structure learning
is therefore an important task that infers the structure from data. The score-based approach
defines a scoring function that measures the goodness-of-fit of each structure and aims to find an
optimal DAG that maximizes the score. Unfortunately, the resulting combinatorial optimization
problem is known to be NP-hard (Chickering et al., 2004) without distributional assumptions.
Representative approaches include those based on heuristic search (Chickering, 2002)), dynamic
programming (Silander and Myllymaki, 2006), integer linear programming (Jaakkola et al.|
2010) or continuous optimization (Zheng et al., 2018), which either yields an approximate
solution or an exact solution in worst-case exponential time. The constraint-based approach
(Spirtes and Glymour, 1991} Spirtes et al., 1999; |Colombo et al., 2014) performs conditional
independence tests to determine the existence and directionality of edges. The time complexity
is, however, exponential with the maximum in-degree. Furthermore, the independence test
results may be unreliable or inconsistent with the true distribution because of finite samples
or even corrupted samples. In general, without interventional data or assumptions on the

underlying distribution, we can only identify a Markov equivalence class (MEC) the true DAG
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belongs to from observational data where DAGs in the MEC are Markov equivalent, that is,
encoding the same set of conditional independencies.

A super-structure is an undirected graph that contains as sub-graphs the skeleton which
removes directionality from the true DAG. It has been shown that a given super-structure
possibly reduces the search space or the number of independence tests to be performed. For
example, exact structure learning of Bayesian networks may be (fixed-parameter) tractable if the

super-structure satisfies certain graph-theoretic properties such as bounded tree-width (Korhonen|

land Parviainen, 2013} Loh and Biihlmann, 2014), bounded maximum degree (Ordyniak and

Szeider, 2013) and the feedback edge number (Ganian and Korchemna, 2021)). An incomplete

super-structure with missing edges also helps improve the learned DAG with a post-processing

hill-climbing method (Tsamardinos et al., 2006} Perrier et al., 2008). Furthermore, a combination

of a skeleton and a variable ordering determines a unique DAG structure. Learning the exact

skeleton rather than a rough super-structure is desirable in Bayesian network structure learning.

(Spirtes and Glymour, 1991} Tsamardinos et al., 2006) make use of independence tests to

estimate the skeleton. (Loh and Bihlmann, 2014) learn a super-structure called moralized graph

via graphical lasso (Friedman et al., 2008). (Shojaie and Michailidis, 2010]) learn the skeleton

assuming an ordering of variables. (Bank and Honorio, 2020|) leverage linear regression for

skeleton recovery in polynomial time. These methods either rely on independence test results,
which are unstable, or a regularized ERM problem, where regularization is usually heuristically
chosen to combat overfitting. In practice, the observational data is commonly contaminated by

sensor failure, transmission error or adversarial perturbation. Sometimes only a small amount
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of data is available for learning. As a result, the existing algorithms are vulnerable to such
distributional uncertainty and may produce false edges in the estimated skeleton.

In this chapter, we propose a DRO method (Rahimian and Mehrotra, 2019)) that solves a
node-wise multivariate regression problem (Bank and Honorio, 2020) for structure learning of
general discrete Bayesian networks to overcome the above limitations. We focus on skeleton
learning based on the above arguments. We do not assume any specific form of conditional
distributions. We take into account the settings with only a small amount of samples (high-
dimensional) and potential perturbations, which makes the true data generating distribution
highly uncertain. Our method explicitly models the uncertainty by constructing an ambiguity set
of distributions characterized by certain a priori properties of the true distribution. The optimal
parameter is learned by minimizing the worst-case expected loss over all the distributions within
the ambiguity set so that it performs uniformly well on all the considered distributions. The
ambiguity set is usually defined in such a way that it includes all the distributions close to the
empirical distribution in terms of some divergence. With an appropriately chosen divergence
measure, the set contains the true distribution with high probability. Hence the worst-case
risk can be interpreted as an upper confidence bound of the true risk. The fact that a discrete
Bayesian network encompasses an exponential number of states may pose a challenge to solve
the DRO problem. We develop efficient algorithms for problems with ambiguity sets defined by
Wasserstein distances and KL divergences. We show that a group regularized regression method

is a special case of our approach. We study statistical guarantees of the proposed estimators such
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as sample complexities. Experimental results on synthetic and real-world datasets contaminated

by various perturbations validate the superior performance of the proposed methods.

3.1.1 Related Work

In addition to the score-based structure learning methods and constraint-based methods
discussed in the introduction section, there are a third class of hybrid algorithms leveraging

constraint-based methods to restrict the search space of a score-based method (Tsamardinos

ket al., 2006; Gasse et al., 2014; Nandy et al., 2018). Due to space limitation, it is quite likely

that the related work is not covered thoroughly, and we refer the interested readers to survey

papers (Drton and Maathuis, 2017; Heinze-Deml et al., 2018} |Constantinou et al., 2021) for

more details.

Recently, there is a emerging line of work proposing polynomial-time algorithms for DAG

learning (Park and Raskutti, 2017; |(Ghoshal and Honorio, 2017; (Ghoshal and Honorio, 2018} |Chen|

et al., 2019; Bank and Honorio, 2020; (Gao et al., 2020; Rajendran et al., 2021), among which

(Bank and Honorio, 2020) particularly focuses on general discrete Bayesian networks without

resorting to independence tests. There is also a flurry of work on score-based methods based

on neural networks and continuous optimization (Zheng et al., 2018; [Wei et al., 2020;

et al., 2020; [Yu et al., 2021b; Ng et al., 2022 |Gao et al., 2022), motivated by differentiable

characterization of acyclicity without rigorous theoretical guarantees.
Learning a super-structure can be done by independence tests, graphical lasso or regression,

as discussed in introduction. Given a super-structure, how to determine the orientation has
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been studied by (Perrier et al., 2008; |(Ordyniak and Szeider, 2013; [Korhonen and Parviainen,

2013; Loh and Buhlmann, 2014; |[Ng et al., 2021; |Ganian and Korchemna, 2021)).

3.2 Preliminaries

We introduce necessary background for Bayesian networks, a baseline method and a few
assumptions in this section.

Let P be a discrete joint probability distribution on n categorical random variables V :=
{X1,Xo,...,Xn}. Let G = (V,Erue) be a DAG with edge set Eipye. We use X; to represent
the i-th random variable or node interchangeably. We call (G,]P) a Bayesian network if it
satisfies the Markov condition, i.e., each variable X, is independent of any subset of its non-
descendants conditioned on its parents Pa,. We denote the children of X, by Ch,., its neighbors
by Ne, := Pa, u Ch, and the complement by Co, := [n] — Ne, — {r}. The joint probability

distribution can thus be factorized in terms of local conditional distributions:

Let the skeleton Ggkel := (V, Ekel) be the undirected graph that removes directionality from
G. Given a set of m samples {&(), x® ... (™} drawn ii.d. from P, the goal of skeleton
learning is to estimate Gge from the samples.

We do not assume faithfulness (Spirtes et al., 2000) or any specific parametric form for the

conditional probability distributions. The unavailability of a true model entails a substitute
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model. (Bank and Honorio, 2020) propose such a model based on encoding schemes and surrogate
parameters as follows.

Assume that each variable X, takes values from a finite set C, with cardinality |C,| > 1.
For an indexing set S < [n], define ps = Y, 5|Ci| — 1 and p& = ¥, .5|Ci|. The maximum
cardinality minus one is defined as pmax = maxe[, [Ci| — 1. Let S == Ujene 12[i—11 + 15+ - -5 p[i] }
be indices for Ne, in py,,) and its complement by S; := [p[n)] — Sr — {ppr—1] + 1,- .., ppq}- Let
€ : C. — BP" be an encoding mapping for a bounded and countable set B < R. We adopt
encoding schemes with B = {—1,0, 1} such as dummy encoding and unweighted effects encoding
which satisfy a linear independence condition. With a little abuse of notation, we reuse &
for encoding any X, and denote by £(Xs) € BPS the concatenation of the encoded vectors
{€(X)}ies. Consider a linear structural equation model for each X,: £(X,) = W*TE(X7) + e,
where W* = Wi ... W (W) | - - WZ|T e R with W* € RPi*Pr is a surrogate parameter
matrix and e € RPr is a vector of errors not necessarily independent of other quantities. A natural
choice of a fixed W* is the solution to the following least-square problem given knowledge of

the true distribution and the true DAG:

1
W* € arginf SEp[[£(X,) - WTE(X7)[; (3.1)

st. W; =0 VieCo,.
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Therefore

W* = (Ws ;0)

W3, = Ez[€(X7)s, £(X7)5 |7 Ep[€(X7)s, £(X0)T]

is the optimal solution by the first-order optimality condition assuming that Ep[£(X7)s,&(X7)§ |
is invertible. The expression of W§ = captures the intuitions that neighbor nodes should be
highly related to the current node r while the interaction among neighbor nodes should be weak

for them to be distinguishable. We further assume that the errors are bounded:
Assumption 17 (Bounded error). For the error vector, ||ello < o and [|[Ep[|e|]||o < -

Note that the true distribution does not have to follow a linear structural equation model.
only serves as a surrogate model to find technical conditions for successful skeleton
learning, which will be discussed in a moment.

The surrogate model under the true distribution indicates that |[W*||22 > 0 = X, € Ne,..

This suggests a regularized empirical risk minimization problem to estimate W*:

~ L 1 ~
W e argl‘I/%/f L(W) = QE@mHE(XT) ~WTEXH)|3 + MNMW| 521, (3.2)

where A > 0 is a regularization coefficient, the block ¢2 1 norm is adopted to induce sparsity

and P, := % >, 04 stands for the empirical distribution with . being the Dirac point

x(
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measure at (9. This approach is expected to succeed as long as only neighbor nodes have a
non-trivial impact on the current node, namely, [|[W*|[22 >0 < X; € Ne,.

Define the risk of some W under a distribution P as

R (W) i= Bylow (X) = By €(X,) - WTE(X0)3

where fyy (-) is the squared loss function. The Hessian of the empirical risk R@W(W) is a block

diagonal matrix:

VZRF" (W) = H®I,, € RPPm=ror,

where H = Ep [E(X7)E(X7)T] € R7*P7 and I, € R/ is the identity matrix of dimension
pr. Similarly under the true distribution, H := Ep[E(X7)E(XF)T]. As aresult, H is independent
of the surrogate parameters W* thus conditions on the Hessian translates to conditions on a
matrix of cross-moments of encodings, which only depend on the encoding function £ and P.

In order for this baseline method to work, we make the following assumptions.

Assumption 18 (Minimum weight). For each node r, the minimum norm of the true weight

matrix W* for neighbor nodes is lower bounded: min;eNe, ||[W;||r = 8 > 0.

Assumption 19 (Positive definiteness of the Hessian). For each node r, Hs,s. > 0, or

equivalently, Amin(Hs,s,) = A > 0 where Apin(-) denotes the minimum eigenvalue.
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Assumption 20 (Mutual incoherence). For each node 7, ||HS$$TH§:5T||B,1,OO < 1 — « for some

O<a<l.

Assumption ensures that yields a unique solution. Assumption is a

widely adopted assumption that controls the impact of non-neighbor nodes on r (Wainwright.
2009; Ravikumar et al., 2010; Daneshmand et al., 2014). One interpretation is that the rows
of Hges, should be nearly orthogonal to the rows of Hs,s,. (Bank and Honorio, 2020) show
that these assumptions hold for common encoding schemes and finite-sample settings with high
probability under mild conditions. They also show that incoherence is more commonly satisfied
for the neighbors than the Markov blanket, which justifies the significance of skeleton learning.

Finally, we take the union of all the learned neighbor nodes for each r € [n] by solving
to get the estimated skeleton G = (V,&ue1). The directions can be inferred
based on the learned skeleton to obtain a DAG by applying existing methods introduced in
Section B.1.11

3.3 Method

As noted in (Bank and Honorio, 2020), due to model mis-specification, even in the infinite
sample setting, there is possible discrepancy between the ERM minimizer W and the true
solution W*| resulting in false or missing edges. In the high-dimensional setting (m < n) or
the adversarial setting, this issue becomes more serious due to a limited knowledge about the
data-generating mechanism P.

In this section, we attempt to leverage a DRO framework to incorporate distributional

uncertainty into the estimation process. We adopt two types of ambiguity sets and present
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efficient algorithms to solve the specific problems. We derive theoretical guarantees, together

with a connection between and our methods.

3.3.1 Basic Formulation

Let X be a measurable space of all states of the Bayesian network (G,P), i.e., X € X. Let
P(X) be the space of all Borel probability measures on X'. Denote by ¢ := {£(X) : VX € &}
the space of all the allowed encodings.

Instead of minimizing the empirical risk and relying on regularization, we seek a distribution-

ally robust estimator that optimizes the worst-case risk over an ambiguity set of distributions:
A 1

W e arginf sup ~Eg|£(X,) — WTE(X7)]3. (3.3)
w QeA 2

This way of uncertainty quantification can be interpreted as an adversary that captures out-
of-sample effect by making perturbations on samples within some budget €. Some common
statistical distances satisfy div(Q,P) = 0 <= Q = P. In this case, if ¢ is set to zero,
Equation 3.3| reduces to without regularization. We will show that the DRO
estimator W can be found efficiently and encompasses attractive statistical properties with a

judicious choice of A.
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3.3.2 Wasserstein Formulation

We adopt the Wasserstein distance of order p = 1 as the discrepancy measure, the empirical

distribution as the nominal distribution, and cost function c¢(z,z’) = [|E(x) — £(2’)|| for some
norm ||-||. The primal DRO formulation becomes
N 1
W earginf sup -Egll£(X,) — WTE(XH)|3. (3.4)
QeA” (Bm)

The dual problem of can be written as

m

1 1 .
: = - _WT 12 _ (4)
W, 15+ 1 s SlE(n) — WTE(n) I} =2 E(a) — () (35)

Strong duality holds according to Theorem 1 in (Gao and Kleywegt, 2022). The inner supremum
problems can be solved independently for each data sample (. Henceforth, we focus on solving

it for some i € [m]:

sup L Ee) — W@ — 1) — E(a)]. @6)

xreX

Equation 3.6|is a supremum of |X’| convex functions of W, thus convex. Since X € is a discrete

set consisting of a factorial number of points (Ile[,)pi), unlike (Chen and Paschalidis, 2018),

we may not simplify into a regularization form by leveraging convex conjugate

functions because X¢ is non-convex and not equal to R”"]. Moreover, since changing the value

of z; for some j € 7 is equivalent to changing WTE(x7) by a vector, unlike (Li et al., 2022b)
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where only a set of scalar values are dealt with, there may not be a greedy algorithm based on

sufficient statistics to find the optimal solution to In fact, let the norm be the /4

norm, we can rewrite by fixing the values of ||€(x) — £(x)]|;:

1
sup EHE(%«) — WTS(:I:;)H% — k. (3.7)
meX,ngépE;],
1€ (@)—E (@)1 =k

If we fix k, is a generalization of the 0-1 quadratic programming problem, which
can be transformed into a maximizing quadratic programming (MAXQP) problem. As a result,
is an NP-hard problem. (Charikar and Wirth, 2004)) develop an algorithm to
find an Q(1/logn) solution based on semi-definite programming (SDP) and sampling for the
MAXQP problem. Instead of adopting a similar SDP algorithm with quadratic constraints,
we propose a greedy algorithm to approximate the optimal solution, which is illustrated in
Algorithm [2l It follows a simple idea that for a random node order 7, we select a partial optimal
solution sequentially from 7 to m,. We enumerate the possible states of the first node to reduce
uncertainty. In practice, we find that this algorithm always finds the exact solution that is
NP-hard to find for random data with n < 10 and ppax < 5.

Since X¢ is non-convex and not equal to R[], using convex conjugate functions will not
yield exact equivalence between |[Equation 3.5( and a regularized ERM problem. However, we can
draw such a connection by imposing constraints on the dual variables as shown by the following

proposition:
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Algorithm 2 Greedy Algorithm for the Wasserstein Worst-case Risk

Input: W, ~, x(®
Output: a solution & to [Equation 3.6
Initialize & = x(®
for all (j,xé-) € [n] xC; do
Get a random permutation 7 over [n] with m = j
for k:=2ton do '
2t argsupy Lw (@, ) —Y[E@Y, ) — E@Rl)]
end for
if ! yields a greater objective than & then
T «— xt
end if
end for

Proposition 21 (Regularization Equivalence). Let W = [W; —1,.]7 € RPI™>*Pr with W, =
—I,. Ify > p[n]||V.VH%, the Wasserstein distributionally robust regression problem in

is equivalent to
' 1 .
s, L£(X,) - WTEX) 5 + gl WIE.

which subsumes a linear regression approach regqularized by the Frobenius norm as a special case.

Proof. Recapitulating on

1 i
Sup (@) = WTE(ar)|5 — YlIE(@) — E@@D)]x.
xre
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Observe that

1€ (2r) = WTE ()13 (| WTE ()13
<[[WT||3

<[Wi

<P WIIE

<y
Therefore, for any & # (9,

éllf(%«) — WTE(@y)|l3 — [ @) - E@)|h

1 i i i i
- GlE@) ~ wTE@) 3~ vlIE@) — @)

<5 (1) ~ WTE@) 3 - |E@D) - WTE@)IB) - AlE(@) — @),
<5(2) ~1lE@) ~ £

Y

=0,

which implies that the supremum can always be achieved at @ = (). Minimizing over ~ leads

to

) 1 .
inf By ~E(X,) — WIEX)3 + epp [ W3-
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O

This suggests that minimizing a regularized empirical risk may not be enough to achieve
distributional robustness. Note that the exact equivalence result in (Chen and Paschalidis, 2018)
requires X¢ = R for some d.

Now we perform non-asymptotic analysis on the proposed DRO estimator W. First, we
would like to show that the solution to the Wasserstein DRO estimator in is unique
so that we refer to an estimator unambiguously. Note that is a convex optimization
problem but not necessarily strictly convex, and actually never convex in the high-dimensional
setting. However, given a sufficient number of samples, the problem becomes strictly convex and
yields a unique solution with high probability. Second, we show that the correct skeleton Ege
can be recovered with high probability given enough samples. This is achieved by showing that,
for each node X, the estimator has zero weights for non-neighbor nodes Co, and has non-zero

weights for its neighbors Ne, with high confidence.

3.3.2.1 Lemmas for Non-asymptotic Analysis

Before presenting the main results, we note that they are based on several important lemmas.

Lemma 22. Suppose = is separable Banach space and fix Py € P(Z') for some Z' € =. Suppose
c: 2 — Ryq is closed converx, k-positively homogeneous. Suppose f:Z — Y is a mapping in the

Lebesgue space of functions with finite first-order moment under Py and upper semi-continuous
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with finite Lipschitz constant lip.(f). Then for all € = 0, the following inequality holds with

probability 1:

sup [ F()QE) < elin (1) + [ FE)Po(e).
et

Proof. The result follows directly from Theorem 1 in (Cranko et al., 2021):

sup J F(€)Q(AE) < elip,(f) + ff(&’)l?o(dg’)-

QeAL'? (Py),QeP(E)

Since Z' € =, observe

sup Jf(f’)@(dé) < sw f F6)Q().

QeAL? (Po),QeP (=) QeAY? (Po),QeP(2)
]

Lemma follows directly from (Cranko et al., 2021)) and allows us to obtain an upper
bound between the worst-case risk and empirical risk. It is crucial for the following finite-sample

guarantees.

Lemma 23. If Assumption |19 holds, for any Q € AZV” (P,), with high probability, Hgsr 18

positive definite.
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Proof. The minimum eigenvalue of the true covariance matrix Hg, s, satisfies

Amin(nggr) = HHHlinlUTHSTSTU
v|l2=

= min vTHS g v +v"(Hs,s, — He g )v +v'(Hs,s, — Hs,s,)v

[[v]l2=1 "

Amin(HS 5) +uT(Hs,s, — HS g Ju +uT(Hs,s, — Hs,s,)u,

where ||ul|2 = 1 is an eigenvector of Hg s, With minimum eigenvalue.

Therefore, Amin(Hg Sr) can be lower bounded as follows:

Amln(HgST> ZAmIH(HST‘Sr) - ,U’T(ﬁsrsr - Hgsr>u - uT(HSrSr - ﬂ—srsr)u

>Amln(HS7‘87‘) - |’u’T(’HS'rST - HgTST)u| - ”(HS’I‘ST - ﬁ8r5r>”F7
due to the fact that
T Hu < Apax (H) < [ Y (Mi(H))? < [ H|2,2-

We can obtain an upper bound on |[uT(Hs, s, — H‘g s,)ul based on Lemma

~ 1
[uT(Hs,s, — Hy g Ju| < 4[S,|2¢,
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because for function g(€(x)) := uTHg, s, u, it can be shown that for any ||E(x) — E(2)||; = k

and some |S| = k,

9(E(@) — gE€@)) < D) N [Hix — Hiylusug + | Hy — Hpglugui < 4k|S, 3.

keS €S,

Recall that we assume that the encoding schemes take values in B = {—1,0,1}. Therefore

lip.(g) = 4/S,|2.

We derive an upper bound of ||(Hs,s. — Hs,s,)||r as follows. Consider a random variable

- 1 & ! !
Zij = (Hs.s.)ij = — 3, €@y )€ (@) € [=1/m, 1/m]
=1
EpZij = (Hs,s, )ij-
By Hoeffding’s inequality, we observe
~ mt?
Prob(|(Hs,s,)ij — (Hs,s,)ijl = 1) < Zexp (——-),

for ¢t > 0. Setting t = \str| for all 7, j € S, and applying the union bound,

mt?

Prob(||(Hs,s,) — (Hs,s,)|F = t) < 2|S[* exp (—

252
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To conclude, with probability at least 1 — 2|S,|? exp (—%), we have

1
Amin(Hgg ) = Amin(HSTSr) - 45’8r‘§ —t.

rOTr

O]

Lemma 24. If Assumption |19 and Assumption |20 hold, for any Q € AZV" (]li’m) and a € (0,1],

with high probability,
- o
HHE%ST(HS%ST) YNBiew <1-— 3

Proof. We would like to obtain an upper bound for ||chsr(Hg57.)_l”B,I,OO- We may write

Hg.s (Hgs) ' =Hses, [(Hgs) ™ — (Hs,s,) ']
+ [Hggsr — Hses,|(Hs,s,) ™"
HQ _ H . HQ e H —1
+ [Hges, — Hses, |[(Hg g,) (Hs,s,) ']

+ Hses, (Hs,s,) ™"

|HS.s, (HS 5) 310 <|Hses [(He s) ™" — (Hs,s,) 5100
+ \\[H%sr — Hses,|(Hs,s,) ' lB,1.w

+ [Hg.s, — Hszs J[(He.s) ™" — (Hs,s,)"1llB10

+ |Hses, (Hs,s,) ' 1B.1,00-



By Hoeffding’s inequality,

- mit2
Prob(|(Hsgs, )ij — (Hses, )ij| = t) < 2exp (—7)7

for t > 0. Taking t = ﬁ and applying the union bound over i € Co,, we observe that

~ mt?
Prob(||Hses, — Hsgs, 310 = 1) < ) 20i|Si exp (—551615)
: 2p;|Sr|
€Cor 7
2

mt

<2|S7||Sy| exp (—W)-

t
K

Similarly, taking t = |

mt?

2|52

2

Prob(||Hs,s, — Hs,s, |00 = 1) < Z Z 2exp (—
€Sy JES

)

mit

=248.[" exp (~55 ).

In order to bound ||chsr — Hses, || B,1,00, for Q # P, consider

1Hg:s, — Hses, || B1c
<||Hg.s 810 + | Hses, || 51,0
<Egll€(X7)s:€(X7)5, 1 B,1,00 + Ep, €(Xr)se€(XF)§, |1,1,00

= sup  [Eg&llE(Xr)se&(X7)§, 18,10 — B &E€(Xr)seE(X7)§, B0l
B QeAl? ()

74
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where Q' and ]?’;n are probability measures on X’ x = with Z = {—1, +1} and identical marginals
as Q and P, respectively. We assume that Q # P because otherwise HHgC s~ I:I37937,” Blw =0
holds trivially. In this way, the equality is always achieved by some Q' ,]?”m, i.e., setting
QX,6=1)=1and P, (X, =—1) = 1.

Define the transport cost function in the ambiguity set AL ” (P.) to be ¢ ((X1,&1), (Xo,&)) =
|€(X1) — E(X2)|l1 with zero cost for €. Let g(X,§) = &[|€(X7)s:€(X7)§ |1B,1,00- Consider

the Lipschitz constants of g:

. l9(X, &) —g(X', &)
lip,(g9) < sup
(9) xexe (X, 8),(X,¢))
W 1€(X7)s5:€(X7)§ 13,100 + [|E(XF)5:E(XT)§ N1B,1,00
X, X’ ||5(X)—5(X/)||1

)

~

<2Pmax|Sr|- (3.9)
Therefore, by the Kantorovich-Rubinstein theorem (Kantorovich and Rubinshtein, 1958)),

HH%ST — Hses, |Bw < sup [Eqg(X, &) —Eg 9(X, &)
Bl QeAl?(Br,)

< sup i (9)[Egg(X,€§)/lipg(9) — B g(X,€)/lipe(9)|
P QeAV? (P))

< sup hpC/ (g)W1 (Q,’ Ip;n)
B, Qe Al? (B,)

<hpc’ (g) €

gz@pmax|8r|-
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Similarly,

I HS s, — Hs,s, |l < 2¢|S/].

Based on the above two inequalities, we find that

B + |Hses, — Hses, || B,1,0

HHi%sT — Hsgs, [|B.1.o <HchsT — Hgys, |

<2 pma|Sr| + ¢, (3.10)
with probability at least 1 — 2|S¢||S,| exp (—%), and

IIHS s — Hs,s, |00 < 2¢|S:| + 1, (3.11)

with probability at least 1 — 2|S,|? exp (—27|’§t2|2 )

Based on we also have

I[Hs,s. — Hg. s ]llr <228, +1, (3.12)

2

with probability at least 1 — 2|S,|? exp (—ﬁ)
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Next we look at the upper bound on the difference between the inverses of Hf% s, and Hs,s, .

Observe that

I(HS s )" = (Hs,s,) oo =II(Hs,s,) ' [Hs,s, — Hg s J(HS s ) o0

<V|S||(Hs,s,) ' [Hs,s, — Hg 5, 1(Hg.5) [l22

VIS (Hs,s,) 22 ll[Hs,s, — HS g 122/l (HS s )22

|Sr

<4 —" W Hs.s — HY H2 )Yy,
Amm(HsT&)|||[ 5,8r s.sll22ll(Hg s ) 2,2

mt2

According to Lemma [23] with probability at least 1 — 2|S,|? exp (—2‘ SHE ), we have

1
Amin(HS g ) = Amin(Hs, s,) — 4¢[Sr[2 — t.

Let t = 1Anin(Hs,s,) and € < %. We get that, with probability at least 1 —

Amin H 2
2|Sr|2 exp (_m( 8|SST|§TST)) ),

N

Amin(nggT) = Amin(HSrSr)

_ 4
- H\(Hg&) Y22 < Ao (Hs5) (3.13)
min Sy
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— tAmin(HSrSr) < tAmin(HSTSr) : : s 13
Set t WA and € < EONGE in [Equation 3.12| we get that, with probability at
12 (Amin(Hs,.s,.))?
least 1 — 2|S, |2 exp (=™ ( 32|£(97“59 = ),

ZL/*Amin (HSTST )

2/18r|

I[Hs,s, — HS s ]|

22 < |[Hs,s, — H2 g 1lIF <

Therefore, with probability at least

mtz(Amin(HS S ))2 m(Amin(Hs,s ))2
1 . 2 S 2 . T . 2 S 2 . rer
’ 'f'| exp( 32|ST|3 ) ‘ 'f'| exp( 8|Sr|2 )
: tAmin(HS S ) Amin(HS S, )
< ror o
and € < min ( NIRRT )
H? . )'—(Hs,s, )" <t 3.14
I(Hg s,)"" — (Hs,s.)" o0 <. (3.14)

Now we are ready to obtain upper bounds for the four terms recapitulated here:

IHS. s, (Hg s.) " |51.00 <||Hses, [(Hg.5) ™" = (Hs,s,) " 115,10
+ [Hg.s, — Hsgs,)(Hs,s,) " [|,1,
HY . _H (HQ )_1—(H -1
+ [[Hges, — Hses, J[(Hg s, s:8) " 1B,

+ |Hses, (Hs,s,) " 1B.1,00-

We derive the bounds separately.
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For the first term, based on Assumption consider

|Hses, [(Hg 5,) ™" — (Hs,s,) "]

B,1,00

=|Hses, (Hs,s,) '[Hs,s, — Hg s (Hg 5 ) |10

<|Hses. (Hs.s.) ™ Hs s — HY HY !
<||Hses, (Hs,s,) 1wl Hs,s, — Hg s, ool (Hg s)™ lloo,0

<(1—a)l|Hs,s, = Hg s, llcooV/IS I (Hg.s,) " 2.

. Amin (Hs,.5, Amin(Hs,5,) - : .
Taking t = 24({)‘7&) |(5T|S s2) and e < 48(170‘0[)‘&”/ \(Srf st) ip Equation 3.11|and adopting

mQQAmin(HSrSr) ) _
1152(1—a)2[S, |3

Equation 3.13| we conclude that, with probability at least 1 — 2|S,|? exp (—

2’87"‘2 exp (— M(Amin(Hs,.s,))>

o Amin(HSTST‘) Amin(HS'rSr) )
8[S, |2

and € < min
) < min (=G5, ST o)

_ _ (6%
|Hses, [(HS g )" = (Hs,s,) "l B1w < r

For the second term, we rewrite it as

I[HS,s, — Hs:s,](Hs,s,) " 5,10
<|[Hg.s, — Hss, |10/l (Hs,s,) " l|oo.0

<||[H29Q}sr — Hses, || 3.1,0VISH I (Hs,s,) " l2,2

S
<IHs:s, — Hseslpae | 3o oy
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o [Amin(Hs,s,) a Amin(Hs,s,)

Using [Equation 3.10| by setting ¢ = 5 S N and € < o o lST] 1S)] , we have,
. o1s 2AminH7«T AminHrr
with probability at least 1 — 2|S¢||S,| exp (—%TW) and € < 55— \(STIS sr)
_ o
I[Hg.s, — Hszs,)(Hs,s,) 510 < e

For the third term, we obtain the upper bound

I[Hg.s, — Hses |[(Hg.5,) ™" — (Hs,s,) "' 15,1,

<|[Hgs, — Hses pawll[(Hss) ™" = (Hs.s,) " oo,

Taking t = /% in [Equation 3.14] Taking t = 3./% and 2epmax|Sy| < 54/% in |[Equation 3.10

We establish the upper bound that, with probability at least 1 — 2|S¢||S,|exp (— W) -

Amin H 2 Arnin H 2
2|S’r|2 exp (_ma( 192|(S7ls|53r3r)) ) — 2|Sr|2 exp (_m( SIESTIgTST)) ) and

\/7 min HSTST a Amin(HSTST)
mln ) 1 )7
4pmax|S | 8|S | 6|S?"| 16’S7~’§

we have

_ _ (6%
I[HS.s, — Hs;s [(HS.s) ™" — (Hs,s.) Nz < 5
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For the fourth term, in accordance with Assumption

|Hses, (Hs,s,) 1o <1—a.

27
In conclusion, we have shown that, with probability at least 1—2|S,|? exp (— %m)—

Amm H, rSr 2Amin H. rSr
2[5, 2 exp (- Mhnines )y 9)5e(|S, | exp (— Mgpmintss) — 9| Sel1S, | exp (— %) —

ma(Amin(Hs,«sr))Q) _ 2|Sr|2 exp (_M) and

2|S7~|2€Xp (_ 192]S, PP 8|Sr|?
£ < min( @ Anin(Hs,s,) Awin(Hs,s,) o Amin(Hs,s,)
48(1 — ) |S; | |Sr| ’ 16|S, |% " 24pmax|S| |Sr |

\/7 min HSTST (64 Amin(HS,«Sr))
4pmaX|S | 8|Sy 6[S, |’ 16\8}\% ’
the mutual incoherence condition holds for any worst-case distribution:
HE  (H3 )™ <1-2
| s,?sr( Srsr) 1B,1,00 < 9
Simplifying the above expressions, with probability at least

1—O(exp (- +log |S7| + log |S:[))

m
pr2nax|87“|3

— (6%
||H?:ST(H35T) YBpiw<1- 5
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where C only depends on a, Apmin(Hs,s, )- O

Lemma 25. If Assumption holds, then for any Q € Ang (P,,) and « € (0, 1], with probability

32 /pr (1-0/2)

at least 1 —|S,|pr exp (—"217“22), e< L oand N > -

, we have

*
Apa

Eoé (X5 T S o ——— .

With probability at least 1 — | Coy|p, exp (—TQLT“;), <k and \; > 32 Pmaspr VEnePr we have

Ao
IEQ€(Xr)sce||B2,m < %-

Proof. We start with [|[Eqf(Xr)s,eT||2,0. After some algebraic manipulation, we find that

IEE(Xr)s, €T llze < max|Eqé(Xr)iell

< max/p, max [EQ€(X7)ie;|
€Sy JEPr

<max +/p, max Eg|&(XF);ej|
€Sy JEPr

<max +/p, max Egle;]|.
1€S, Jepr

Since |e;| is a bounded random variable according to Assumption we apply Hoeffding’s

inequality to get

mt?

Prob(Eg |[ej| = p+1t) < exp (_ﬁ

).



83

Base on a similar argument as [Equation 3.9, we can derive
EQ|€]~| — ]Eﬁpm|€j| < 2¢e0,

which leads to

mt?

Prob(Eqle;| = 2e0 + p +t) < exp (_ﬁ
g

).

Taking the union bound over all i € S, and j € p,, we find that

2

mt
Prob(|[Eqe (Xr)s, e'll2c0 = vpr(2e0 + p+ 1)) < [Splorexp (=5 5

).

Setting t = p and ¢ < £ while requiring A\ > B2uor1=02) - gy probability at least

«

_my?

1 — |S;|prexp (— 555 ), we have

*
Apa

Eof(X7)s,eT < ——F

(3.15)
Then we consider |Eq€(Xr)sceT||B,2,x:

[EQ€(X7)s:eTllp200 < max|[Eqf(X)eT|2.

S G VPP i, Bt XD

< max +/pipr maxEqgleg|.
kepr

€Co,
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Similarly, applying Hoeffding’s inequality and the Kantorovich-Rubinstein theorem gives us

mt?

Prob([Eq€ (Xr)seeTl| B0 = Vpmaxpr(260 + p+ 1)) < |Corlprexp (=5~

).

Let t = p, ¢ < % and \j > 324/ brmaxpr W hold, we have, with probability at least 1 —

2
|Co,|p, exp (— 5k ),

Mo
|EQE(Xr)sceT||B2,mw < %.

3.3.2.2 Main Results

The above lemmas illustrate that Assumption[I9]and Assumption [20]hold in the finite-sample
setting. Let the estimated skeleton, neighbor nodes and the complement be G = v, E:'Skel), Ner
and Co, respectively. We derive the following guarantees for the proposed Wasserstein DRO

estimator.

Theorem 26. Given a Bayesian network (G,IP) of n categorical random variables and its
skeleton Ger = (V, Esker). Assume that the condition ||W*||g21 < B holds for some B > 0

associated with an optimal Lagrange multiplier Nj > 0 for W* defined in|Equation 3.1, Suppose

that W is a DRO risk minimizer of with a Wasserstein distance of order 1 and
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an ambiguity radius € = £9/m where m is the number of samples drawn i.i.d. from P. Under

Assumptions (20, if the number of samples satisfies

-0 C(EO + log (n/é) + log p[n])a—zp;lnaxp%n]
m = O(

min(p2,1) )

where C' only depends on o, A, and if the Lagrange multiplier satisfies

32upmaz * B \/K
SSHPmar e 2
«Q B (a/(4 - 2&) + 2)pma:r Pln] 4

then for any 6 € (0,1], r € [n], with probability at least 1 — 6, the following properties hold:

(a) The optimal estimator W is unique.
(b) All the non-neighbor nodes are excluded: Co, = Co,.
(¢) All the neighbor nodes are identified: Ne, < Ne,.

(d) The true skeleton is successfully reconstructed: Ggye; = éskel.

Proof. We prove the statements in this theorem in several steps. In order to prove (a) and
(b), we will show that the DRO problem is strictly convex if true non-neighbors are known so
that there is an optimal solution. Next we would like to demonstrate that this solution with a
non-neighbor constraint is indeed unique for all the solutions without constraints. The proof
for uniqueness comes with a conclusion that we do not accidentally include any edge between
the current node and its non-neighbors. Next, to prove (c), we present a generalization bound

for the DRO estimator in terms of its true risk, which leads to a £, bound of the difference
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between the estimator W and the true weight matrix W*. Combined with the assumption on
the minimum weight, it implies that we include all the neighbor nodes successfully. Finally, by
taking a union bound for all the nodes, we could conclude that the correct skeleton is recovered
with high probability, which proves (d).

(i) Given the true non-neighbors, there is a unique solution.

We start with the Wasserstein DRO problem, which we recapitulate here for convenience:

N 1
Wearginf  sup -Egl€(X,) — WTE(X;)|3.
w QEAZVP(I@m)

The objective is convex because it is a supremum of convex functions.
For now, we assume that the non-neighbor nodes Co, are given. We can then explicitly

restrict W; = 0 for all ¢ € Co,. The Hessian of W, . is a block diagonal matrix reads

S 0
0 Q 0
V2RQ (WST ) = ST‘ST‘ c va-ﬂNeT X PrpPNe, ,
Q
L 0 0 HST‘S’I‘ i

where

H? = Eg[£(X;)E(XF)T] € RP*P7

is the covariance matrix of encodings of X under some distribution Q € .AZV P (I@m)
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Since We. is fixed to be zero and V2R?(Wj,.) is a block diagonal matrix, we focus on
showing that Hgsr > 0.

We apply Lemma [23] to get the bound
1
Amin(nggr) = Amin(HSrSr) - 4€|S7“|2 —t,

with probability at least 1 — 2|S,|? exp (—%) Amin(Hs s,) — 4¢|Sy|2 — ¢ > 0 will guarantee
that the DRO problem in has a unique solution when the W; = 0 is satisfied for
non-neighbor nodes.

(ii) Given the true non-neighbors, the solution is optimal.

We would like to show that the solution to with true non-neighbor constraints
is optimal. In this way, we do not recover any non-neighbor nodes in the skeleton. We adopt the
primal-dual witness (PDW) (Wainwright, 2009) method to show optimality for the constrained

unique solution.

Recall that we assume |[W||g21 < B. To begin with, we write the dual problem as

A 1 _
W e arginf sup SEallé(Xy) - WTE(X) |3+ \p({(Z,W) — B)
QeAY? (B1n) |1 2| 3,2, <1,A5>0

(3.16)

st. Vie COT WZ' = 0,

where Ap is the Lagrange multiplier for the norm constraint on W.
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W is optimal if and only if there exists (Q*, Z*, \};) that satisfies the KKT condition:

Eg+&(X7)E(X7)TW — Egu&(Xr)E(X,)T + N5Z* =0
Q* € A" (), |2 | B2ce < 1, X5 2 0,||W g1 < B

(Z* W) = |W|p21, \g(|W|p21— B) =0.

Note that we assume that the constraint |[W||p21 < B is active such that A% > 0. This
assumption is only for convenience of theoretical analysis and not restrictive. If it is not active,
we have HWH B2,1 = B < B for some B and A% = 0, which leads to an unconstrained problem
similar to the ordinary least square problem, which is known to suffer from overfitting. Instead,
we are usually interested in solutions that have finite norms so we can always find B = B—e < B
for some small positive constant € > 0 to make the constraint active and thus A\j; > 0.

Substituting £(X,) = W*TE(XF) + e into the first-order optimality condition yields

Eg+&(XA)E(Xr)T(W — W) — Ege&(Xr)eT + A\52Z* =0

HY, HZ | |Ws.— Wi Eg+&(X7)s, €T Z 0
= " — + AB = . (3.17)

*

*
H%ST H%Sg 0 EQ*E(X,:)STceT Z:;f-' 0
Solving for Z%. , we find that

*

* * _ * —
NpZi. = NpHgs (He s ) 25, — Hoog (Hg 5 ) 'Eqeé(Xr)s, €T + Ege€(Xr)seeT,
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which can be bounded such that

Ngl| Z5e |3 2.0
=N HE (HS s )71 2% — He g (H s ) "Egr(Xi)s, e + Ege&(Xr)sceT | 52,0
OB HSs (HS 5 2% 2w + |Hers, (HS s )" Egr(Xy)s,€7|| 5.2

+ [|Egx&(Xr)sseT||5.2.0
NBIHS S, (HEs) 1wl Z5, M2 + 1HEs, (Hes,)  5.1.0/Egx€(Xr)s, e[|

+ |[Eg+&(X7)sc€T||B,2,c0-
Note that
125, 200 < 1 2% 2,00 < 1.
Recall that 0 < a < 1 in Assumption Based on Lemma [24] and Lemma we may write

MBIl Z5e. | B2,
* * _ * * _
<N Hes (Hg 5) M |1,0l| Z5, 20 + | Hes, (Hg 5,) 181,00 [ BgxE(Xr)s, €7 [|2.0

+ [|Eq+&(X7)sc€T||B,2,0

« Apo

)+ - 5)(8(1 — /2)

Apo
8

) +
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with high probability and certain conditions on A}; and e.
Henceforth, || Z%. ||B2,0 < 1 satisfies strict dual feasibility and we must have ||VV§‘C lB21 =0

according to complementary slackness: (Z*, W) = ||[W||p2,1. In other words, we have
Vie Co, W; =0,

with high probability. This guarantees that we do not recover any node that is not a neighbor
of r with high probability.

(iii) Without information about the true skeleton, we have a unique and optimal
solution.

We follow the proof of Lemma 11.2 in (Hastie et al., 2015)).

We have shown that W satisfying W; =0 Vie Co, is an optimal solution with optimal
dual variables || Z3. [|B2,.0 < 1.

To avoid clutter of notations, we define

1
LPROW) = sup  —Egl&(X,) — WTE(X7)]3.
QeAL? (B,)

Let (W, ) be any other optimal solution to infy sup, LPRO(W) + \(||W |

21— B). By

definition,

LPROW) + MW ||p21 — B) = LPRO(W) + X3((Z*, W) — B)

— LPRO(W) + A(|W | B21 — B) — Ni(Z*, W) = LPRO(W) + \5((Z*, W — W) — B).
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The first-order optimality condition for W says

VIPRO(W) + \52* = 0,

which implies

MW a1 — B) + AN5(B —(Z*,W)) = LPRO(W) + (VLPRO(W), W — W) — LPRO(W).

By definition, |W||p21 — B =0 and A% > 0. Since LPRO(.) is convex, the RHS of the above

equation should be non-positive, or equivalently,

HW||B,2,1 <(Z", W>

On the other hand,

(2" W) <127 B2cc W21 < [W]

B2,1-

Therefore, the equality holds for the above inequalities, which leads to

W p21 =(Z*, W).
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B21 = {Z*, W) to hold, we must have

Recall that || Z%. |2, < 1. In order for |W|

Wi, =

In that wise, all the optimal solutions W have

Wi =0 ViECOT.

This implies that we have a unique solution that excludes all the non-neighbor nodes without
information about the true skeleton. Until now, we have proven properties (a) and (b).
(iv) The set of correct neighbors is recovered.

Consider again the first-order optimality condition in [Equation 3.17

Ws,. — Wi =(HS 5 )7 (Eg+E(Xr)s, €T — Np 2%,

— |Ws,. — WE p2w =I(HTS ) (Bgs£(Xr)s, " — N5 Z5, )| oo
<IHT5) " 51wlEgrE(Xr)s, €T — X5 ZE, 200
<IHZS ) 510 (g E(X)s, € la.00 + N5 25, l2.00)
<[ (HEs,) ™ oo o (B E(Xi)s, € 2.0 + Nfp)

* _
gpmax\/@m (Hgsr) ! ‘

22([[Eg+E(X7)s, €T|l2,00 + AR)



According to [Equation 3.13} with probability at least 1 — 2|S,|? exp (—

< Amin (HSEST )
16/5,| 2

I(HSs) 7"

| 4
Sp /.
22 Amin(HSrSr)

According to [Equation 3.15, with probability at least 1 — |S,|p, exp (—T;T“;), e <

, we have

N > S2/pri-of2)

*
Apa

_ T < —2
|”EQ5(XT)Sre ” 2,00 8(1 _ Oé/2)

On that account, with probability at least

m(Amln (HST‘S’I ) )2
8|Sy 2

2
mpy
1 _2‘8r|2€Xp (— ) — |Sr|prexp (_W)

Amin(HSrSr)
1
16/5,|2

A * < max T A* 1 ’
[Ws,. = W3, ll5.200 < pmac V1] Amin(Hs,s, ) 3(8(1 ~af2) " :

ﬁ Amin(HSTST)
2(m+1)pmax\/|5“r| 4

320 /pr(1-0/2)

and & < min ( , &) while requiring \j; >

By Assumption if the condition \j; <

following inequality holds:

|Ws,. — Wi 2.0 < B/2.

m(Amin (HS»,—ST ))2
8|S

~

S
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) and

is satisfied, the
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In this way, we are able to recover all the neighbor nodes with a threshold /2. This proves (c).
(v) The true skeleton is recovered with high probability.
The above arguments tell us that with high probability and certain conditions for € and
A% satisfied, for each node r, we do not recover any non-neighbor and we do recover all the
neighbor nodes. The correct Ne, and Co, are thus identified. Now we are ready to prove (d).

Putting everything together and taking the the union bound for all nodes r € [n], with

probability at least 1 — O(n exp(—% +2log ppy)), € < % and % < Ap <
max#n] Upmaxp[ ]

n

B A
2ga=ary tDpmaxy/Pn] V 4

, where C only depends on «, A, we have

gskel = gskel .

Setting € = £ and making the dependence on the sample size more explicit. We draw the

conclusion that, if the number of samples satisfies

2 4 3
O<C(€O + log (n/5> + log p[n])a pmaxp[n]
min(p?, 1)

),

m =

where C only depends on a, A, and if A} satisfies

321Pmax B
/T < 2\h <
«Q b (a/(4 - 205) + 2)pmax Pn]

s
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then with probability at least 1 — ¢ for § € (0,1]:

gskel = gskel .

Moreover, if we assume that the target graph has a bounded degree of d, the sample

complexity becomes logarithmic in n:

C(E,‘O + log (n/5) + logn + log Pmax)o'QpZnade
min(p2,1)

m = O ).

O

The results in Theorem [26] encompass some intuitive interpretations. Compared to Theorem
1 in (Bank and Honorio, 2020), we make more explicit the relationship among m, A% and 6. On
one hand, the lower bound of A} ensures that a sparse solution excluding non-neighbor nodes is
obtained. A large error magnitude expectation p therefore elicits stronger regularization. On
the other hand, the upper bound A% is imposed to guarantee that all the neighbor nodes are
identified with less restriction on W. There is naturally a trade-off when choosing B in order to
learn the exact skeleton. The sample complexity depends on cardinalities py,), confidence level
0, the number of nodes n, the ambiguity level 5 and assumptions on errors. The dependence
on ¢ indicates that higher uncertainty caused by larger error norms demands more samples

whereas the dependence on j =2

results from the lower bound condition on A} with respect to
i. The ambiguity level is set to £9/m based on the observation that obtaining more samples

reduces ambiguity of the true distribution. In practice, we find that £y is usually small thus
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negligible. Note that the sample complexity is polynomial in n. Furthermore, if we assume that

the true graph has a bounded degree of d, we find that

C(0 + 10g (1/8) + 108 1 + 108 Pinas) 02Ty &”
min (42, 1)

m = O( )

is logarithmic with respect to n, consistent with the results in (Wainwright, 2009)).

We introduce constants B and A% in order to find a condition for the statements in Theorem
to hold. If there exists a W incurring a finite loss, we can always find a solution W satisfying
|W |21 <+ and let B be the maximum norm. Imposing |W||p21 < B is equivalent to the
original problem. By Lagrange duality and similar argument for the lasso estimator, there exists
a A% that finds all the solutions with |W| g2 = B. Therefore we have a mapping between &
and \%.

3.3.3 Kullback-Leibler Formulation

In addition to optimal transport, ¢-divergence is also widely used to construct an ambiguity
set for DRO problems. We consider the KL divergence in this sub-section. Note that any
other point outside the support of the nominal distribution remains to have zero probability
in an ambiguity set constructed by the KL divergence. However, we argue that adopting
the KL divergence may bring advantages over the Wasserstein distance since the Bayesian
network distribution we study is a discrete distribution over purely categorical random variables.
Moreover, as illustrated below, adopting the KL divergence leads to better computational

efficiency.
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Let A = AP(P,,) be the ambiguity set, the dual formulation of [Equation 3.3|follows directly
from Theorem 4 in (Hu and Hong, 2013):

inf o[~ > e IE@)-WTE@DIBA] 4 e,

W ~=0 m .
i€[m]

which directly minimizes a convex objective. In contrast to the approximate Wasserstein
estimator, this KL DRO estimator finds the exact solution to the primal problem by strong
duality.

The worst-case risk over a KL divergence ball can be bounded by variance (Lam, 2019),
similar to Lipschitz regularization in Lemma Based on this observation, we derive the

following results:

Theorem 27. Suppose that W is a DRO risk minimizer of with the KL divergence

and an ambiguity radius € = eo/m. Given the same definitions of (G,P), Gsker, B, A%, m in

Theorem [26, Under Assumptions if the number of samples satisfies

S (€0 + log (/) + log p[n])cr?p%mpf’n])
- . 2 .
min(a2, 1)

where C' depends on o, A while independent of n, and if the Lagrange multiplier satisfies the
same condition as in Theorem then for any d € (0,1], r € [n], with probability at least 1 — 9,

the properties (a)-(d) in Theorem [26 hold.
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Proof. Define
1
lw(X) = S [€(X) = WTE(X5)|5.

According to Theorem 7 in (Lam, 2019), the worst-case risk with a KL divergence ambiguity

set can be bounded as follows:

sup EQﬁw(X) <E[@mfw<X) + \/EJ % Z (EW(:(:(Z')) — E;,V)Q

Qe AP (Prn) ie[m]

i 1w (@) — tw [?
Zie[m] (bw (z)) — Lw)?

+ Ce

<E; lw(X)+ Emax |ow (@) — by | + Ce max 10w (@) — by |,

i€[m]

where fy = L Die[m] tw () and C > 0 is constant independent of n.
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Consider

2 = | < — b (!
g[awa( ) ﬁwl\wﬁrvr‘l,a}f;’m,lfw(w) bw ()]

<
lglvaglfw( x)|

1
<5 max(|E£(X,) |12 + [WTE(X7)|2)?
T

1

in‘/%/ (\/pmax+|||WTm002)
1
i%i(vpmax_‘_HWHlQ)

1

<5 jax (VPmax + /Pl W | F)?
1

5 ax(y/pmax + VW B.2,1)
1
5 \/pmax"‘q/ B

=B,.
Define epax := max(4/e, ). Therefore, we find that

sup  Eqlw (X) < Ep {w(X) + CemaxB).
QEA?(Pm)

Similar to the Wasserstein robust risk, we observe that the following results hold for any

Qe AE(INP’m).
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With probability at least 1 — 2|S,|? exp (—%), we have

1
Amin(HgS ) = Amin(HSrST) - Cfgmax‘sr‘E —t.

TOT

mt? )
2p?nax|8”"‘2 ’

With probability at least 1 — 2|S¢||S,|exp (—
||H£%ST - HSTCST”B,LOO < Cgmaxpmax|8r| + 1.
With probability at least 1 — 2|S,|? exp (—%),

|||Hg5T — Hs, s, ||oo,0 < Cemax|Sr| + t.

With probability at least 1 —2|S,|? exp (—mt2(AI§i2r\l‘(SﬁgTsr))2) — 2|8, |2 exp (—%W) and

tAmin(Hs,s,) Amin(HSrSr))
M

1
81SrIV/ISrl 7 16)S,|2

Emax < C'min (

I(HS s) ™" = (Hs,s,) oo < t.

With probability at least 1 — O(exp (—pgni% + log |S¢| + log |S;|)) and emax < m,

- «
|HE.s,(HS s ) pae <1- 3,

where C' only depends on a, Apin(Hs,s, )-
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Thanks to the boundedness of the error term e, we have similar conclusions to Lemma, 25| if
€max < & holds.

In such wise, the properties in Theorem [26[ hold with the same condition on A} and the

Cu . € .
—+55. Since we set ¢ = 22 and define epax 1= max(y/g, €),

O'Pmaxp[n]

condition on epax that epax <

the condition on ey, implies that

3/2
50020'2/)?11%9?”] €0 CUPmaxP[T/L]

T ’ T

m = max(

The final sample complexity becomes

_ o Cleotlos (n/8) + 108 p[)) 0 PinaxPay
min(p?, 1)

O]

The sample complexities in Theorem [26] and Theorem [27] differ in the constant C' due to
the difference between the two probability metrics. Note that C' is independent of n in both
methods. The dependency on 1/(A\%)? is absorbed in the denominator because we require that
A — 16ppmax/a > 0. The sample complexities provide a perspective of our confidence on
upper bounding the true risk in terms of the ambiguity radius. g serves as our initial guess on
distributional uncertainty and increases the sample complexity only slightly because it is usually
dominated by other terms in practice: ¢ « log(n/d). Even though the samples are drawn from
an adversarial distribution with a proportion of noises, the proposed methods may still succeed

as long as the true distribution can be made close to an upper confidence bound.
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3.4 Experiments

We conduct experiments on benchmark datasets (Scutari, 2010) and real-world datasets

(Malone et al., 2015) perturbed by the following contamination models:

e Noisefree model. This is the baseline model without any noises.

e Huber’s contamination model. In this model, each sample has a fixed probability of
to be replaced by a sample drawn from an arbitrary distribution. We adopt the uniform

distribution.

e Independent failure model. Each entry in each sample is independently corrupted
with probability (. We consider the model that replaces it with a different value uniformly

in the experimetns.

We conduct all experiments on a laptop with an Intel Core i7 2.7 GHz processor. We adopt
the proposed approaches based on Wasserstein DRO and KL DRO as well as the group norm
regularization method (Bank and Honorio, 2020) and the PC algorithm (Spirtes et al., 2000)
for skeleton learning. Based on the learned skeletons, we infer a DAG with the hill-climbing
(HC) algorithm (Tsamardinos et al., 2006]). For the Wasserstein-based method, we leverage
Adam (Kingma and Ba, 2014)) to optimize the overall objective with 51 = 0.9, S = 0.990, a
learning rate of 0.1, a batch size of 200, and a maximum of 100 iterations. For the KL-based
and standard regularization methods, we use the L-BFGS-B (Byrd et al., 1995)) optimization
method with default parameters. We adopt the original version of the PC algorithm and set

the cardinality of the maximum conditional set to 2. The Bayesian information criterion (BIC)



103

TABLE I: Comparisons of F1 scores for benchmark datasets and BIC for real-world datasets
(backache, voting).

Dataset asia asia asia asia asia child alarm  hailfinder  backache voting
n 8 8 8 8 8 20 37 56 32 17
Noise Noisefree Huber  Indep Indep Indep Indep Indep Indep Indep Indep
¢ 0 0.5 0.1 0.3 0.5 0.5 0.5 0.5 0.5 0.5
Wass 0.6606 0.5965  0.6740 0.5237 0.2190 0.3261 0.2065 0.1773 N/A N/A
KL 0.6591 0.6655 0.6952 0.3285 0.4212 0.3679 0.1557 0.1629 N/A N/A
Reg 0.7374 0.6655  0.6857  0.3285  0.0000  0.3417  0.1525 0.1551 N/A N/A
PC 0.7062 0.5421  0.6292 0.1778 0.0000 0.1690 0.1132 0.1446 N/A N/A
Wass+HC  0.7318 0.3732 0.3436  0.0444 0.0444 0.0891 N/A N/A —1793.2164 —3106.1863
KL+HC 0.7153 0.2702  0.3846  0.0000 0.1164 0.0874 N/A N/A —1793.2164 —3106.1863
Reg+HC 0.6589 0.2702  0.3846  0.0000  0.0000  0.1241 N/A N/A —1793.2164 —3106.1863
PC+HC 0.4675 0.2368  0.4195 0.0444 0.0000 0.0385 N/A N/A —1795.4472  —3106.1863

(Neath and Cavanaugh, 2012)) score is adopted in the HC algorithm. Each experimental result
is taken as an average over 5 independent runs where a random set of 1000 samples is obtained
at the beginning. When dealing with real-world datasets, we split the data into two halves for
training and testing.

We use the Fl-score to evaluate performance on benchmark datasets and BIC for real-world
datasets. The results are reported in We can observe that the proposed DRO methods
either find the best skeleton or the best DAG with the help of HC across different datasets and
different data contamination settings. For the alarm and hailfinder datasets, HC could not find
a DAG in a reasonable amount of time. For the backache and voting datasets, BIC is only valid

for DAGs but not for skeletons thus some results are not applicable.

3.5 Concluding Remarks

In this chapter, we put forward a distributionally robust optimization method to recover the

skeleton of a general discrete Bayesian network. We discuss two specific probability metrics,
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developed tractable algorithms to compute the estimators. We establish the connection between
the proposed method and regularization. We derive non-asymptotic bounds polynomial in the
number of nodes for successful identification of the true skeleton. The sample complexities
become logarithmic for bounded-degree graphs. Empirical results showcase the effectiveness and

practicability of our methods.



CHAPTER 4

MOMENT DISTRIBUTIONALLY ROBUST TREE STRUCTURED

PREDICTION

(Parts of this chapter were previously published as “Moment Distributionally Robust Tree
Structured Prediction” in the 36th Conference on Neural Information Processing Systems
(NeurIPS 2022) (Li et al., 2022a)).)

Structured prediction of tree-shaped objects is heavily studied under the name of syntactic
dependency parsing. Current practice based on maximum likelihood or margin is either agnostic
to or inconsistent with the evaluation loss. Risk minimization alleviates the discrepancy between
training and test objectives but typically induces a non-convex problem. These approaches
adopt explicit regularization to combat overfitting without probabilistic interpretation.

In this chapter, we propose a moment-based distributionally robust optimization approach
for tree structured prediction, where the worst-case expected loss over a set of distributions
within bounded moment divergence from the empirical distribution is minimized. We begin
with an introduction in Section and problem setup together with related work in Section
We develop efficient algorithms with theoretical analysis in Section which includes Fisher
consistency, convergence rates and generalization bounds. Section[f.4] proposes efficient projection
oracles. Section discusses extensions beyond first-order directed trees. Experimental results
of comparing our method with a competitive baseline on dependency parsing benchmarks are

given in Section We conclude the chapter in Section
105
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4.1 Introduction

Structured prediction is an important learning setting for joint prediction of interdependent
variables. The output space typically consists of an exponential number of structured objects
whose inherent relations can be exploited to develop efficient learning algorithms and capture
key properties of data (Ciliberto et al., 2019). Trees are widely used structures that offer
expressiveness and simplicity. We distinguish between two different tree structured prediction
tasks in the literature. The first task is a structure learning problem in graphical models (Bradley
and Guestrin, 2010)), aimed at constructing trees underlying a predictive model from training
data. The optimal tree is found easily with greedy algorithms for generative models (Chow and
Liu, 1968), while it is NP-hard for the discriminative max-margin setting (Meshi et al., 2013).
The second task requires prediction itself to be a tree-shaped object (e.g., an incidence vector).
Dependency parsing is a crucial application of this problem that has inspired a flurry of work in
natural language processing. The first-order spanning tree prediction assuming factorization over
arcs can be done in O(n?) (Stanojevi¢ and Cohen, 2021)), whereas exact inference is NP-hard
for certain (non-projective) higher-order trees (e.g., considering siblings) (McDonald and Satta!
2007). We study the latter in this chapter.

A common evaluation criterion in dependency parsing is the attachment score, namely, the
score we would like to maximize on test data. It is cost-sensitive to allow partially correct
prediction. Ideally, the training objective should be aligned with the test objective. An early
attempt to directly mimic test conditions leads to a non-convex piece-wise constant objective

(Och, 2003). Risk minimization in appropriate parametric form has a non-convex smooth
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objective, solvable with gradient descent, but still losing global convergence and generalization
guarantees. Maximum likelihood approaches formulate a convex smooth problem minimizing
a logistic loss, consistent with conditional probability estimates but oblivious to test losses.
Maximum margin methods have convex objectives able to implicitly incorporate custom losses
by scaling margins, but are known to be inconsistent with test losses generally (Nowak et al.
2022). Unfortunately, none of these approaches yield a Bayes optimal estimator for test losses
with global convergence and finite-sample generalization guarantees.

Consistent structured prediction methods include (Ciliberto et al., 2016; |Blondel, 2019; |Nowak+
Vila et al., 2020), the latter two of which are based on Fenchel-Young losses (Blondel et al..
2020). However, none of them have addressed the tree structured prediction problem explicitly.
For instance, (Blondel, 2019) calls for Euclidean or Kullback-Leibler projection oracles, which
do not exist in an efficient sense from what we know for arborescence (directed tree) polytopes.
In addition, the Frank-Wolfe type algorithm adopted by (Nowak-Vila et al., 2020)) requires a
max-min oracle and converges in a rate of O(%) Furthermore, all of the above methods belong
to empirical risk minimization that requires explicit regularization to combat overfitting, which
can be quite vulnerable in high-dimensional settings (e.g., scarce data).

To address the above issues, we propose an estimator from first principles in distributionally
robust optimization. It minimizes the worst-case risk over an ambiguity set of distributions within
bounded moment divergence from the empirical distribution. We seek probabilistic prediction
by assuming non-deterministic groundtruth labels, which, together with the ambiguity set,

models uncertainty about the unknown true distribution. We interpret the primal problem as
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a dual-norm-regularized surrogate loss minimization problem. Note that prior art applying
moment-based DRO to tree-structured graphical models (Fathony et al., 2018) and bipartite
matching (Fathony et al., 2018) adopts a special case of our ambiguity set in which the empirical
feature moments are matched exactly and regularization has to be imposed manually. This
moment-based DRO also allows us to derive generalization bounds regarding true worst-case
risks. When the ambiguity radius is zero, the DRO estimator is shown to be consistent. We
develop two practical algorithms, one based on game theory and the other based on marginal
probabilities of tree parts. We further propose efficient Euclidean projection oracles onto the
arborescence polytope with linearly convergent guarantees. We conduct experiments on three
common dependency parsing datasets, suggesting that our method is particularly effective with
little training data.

Contributions. Our contributions are summarized as follows. (1) We propose a distri-
butionally robust tree structured prediction method and show its equivalence to regularized
surrogate minimization. (2) We derive its generalization bounds and consistency. (3) We propose
efficient algorithms based on projection oracles for arborescence polytopes. (4) We perform

empirical study on real-world datasets.

4.2 Background and Related Work

4.2.1 Tree Structured Prediction

Consider a weighted directed multi-graph G = (V,€) where each arc (i,7,1) € £ from
node ¢ to j has a label [. By designating a root node r € V, we say that A € £ is an r-

arborescence of G if (V, A) is a directed spanning tree rooted at r. For any v € V, denote by
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6~ (v) :=={(i,4,1) € £ : j = v} the set of its incoming arcs, and 6 (v) := {(i,7,1) € £ : i = v} the
set of its outgoing arcs.

Let X be the input space and Y = [ ...y V(x) be the output space where )(x) represents
the set of r-arborescences of a graph G(x) formed by . Dependence on « is suppressed when
context is clear. Let R < 2¢ be a set of parts with £ € R. Each part s € R is a subset of
arcs. It is convenient to represent y € ) as a binary vector with y; = 1 iff part s appears in
y. Let wg(x,y) = > ,.r wo(x,ys) be a score function decomposing over parts, parameterized
by 6. Let {(a:(i),y(i))};ll be a set of m training examples drawn i.i.d. from a distribution
Pe P(X x)), where each y® is an r-arborescence. The goal of tree structured prediction is to
learn a function h : X — Y from training data. Assume that the evaluation criterion is a loss
function £: Y x Y — Rxg.

We introduce existing methods in the setting of (graph-based, non-projective, syntactic)
dependency parsing where x is a sequence of tokens and G(x) encodes dependencies among

tokens.

4.2.2 Maximum Likelihood

A probabilistic modeling approach based on exponential family distributions maximizes the

conditional log-likelihood of the training data:

min — > logpe(y"|a”) == — ) log[exp (wa(2", y))/Z ()],
=1 i=1
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where Z(x) = > cy(z) exp (wo(@,y)). This problem is convex for log-linear models, but

intractable for general R (Koller and Friedman, 2009). The first-order arc-factored model

(R = &) is equivalent to a loop-free factor graph, rendering it tractable via the matrix-tree

theorem (Kirchhoff, 1847; William, 1984} Koo et al., 2007; McDonald and Satta, 2007; Smith and|

Smith, 2007)). Neural parsers either leverage the same theorem to compute the partition function

(Ma and Hovy, 2017)) or consider the parent node distribution independently for each node by

local normalization (Dozat and Manning, 2017; |Zhang et al., 2017)). Higher-order models require

approximate algorithms such as loopy belief propagation (Murphy et al., 1999) and Markov

chain Monte Carlo (Brooks, 1998). This approach does not incorporate task-specific losses. In

fact, with maximum a posteriori (MAP) decoding, it is not consistent with any specific loss in

general (Nowak-Vila et al., 2019).

4.2.3 Maximum Margin

An alternative approach based on maximum margin Markov networks (Taskar et al., 2003)

or structured support vector machines (Tsochantaridis et al., 2005) optimizes a hinge-type

surrogate:

min ) —wp(z?, y') + max £(y @, y) + we(z?), y),
o 0 Y

which inspires a rich line of work based on MAP inference with manual features (Taskar et al.

2004; McDonald et al., 2005; [McDonald and Pereira, 2006; Martins et al., 2009; Martins et al.]

2010; Martins et al., 2015; [Zhang et al., 2014) or deep learning (Kiperwasser and Goldberg|
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2016; Wang and Chang, 2016|). Approximate MAP inference is required for models beyond

first-order. A smooth variant called softmax-margin (Gimpel and Smith, 2010) incorporates the

task-specific loss ¢ but still implicitly minimizes it. Margin-based objectives are known to be

consistent only under very restrictive conditions (Liu, 2007; Nowak et al., 2022) (i.e., data with

majority label, loss being a distance).

4.2.4 Minimum Risk

Empirical risk minimization suggests directly optimizing the expected target loss on training

data:

min » > po(yle) ey y),

=1y

which is commonly non-convex due to normalization of pg. There are a few parsers optimizing this

objective via back-propagation (Stoyanov and Eisner, 2012), k-best lists (Smith and Eisner, 2006),

semirings (Li and Eisner, 2009; |Zmigrod et al., 2021)) and other differentiable approximations

(Gormley et al., 2015; Mensch and Blondel, 2018)). Local optima found by these algorithms do

not satisfy the premise of Fisher consistency and make it difficult to quantify generalization

errors.

4.3 Method

We introduce the formulation, followed by practical algorithms for learning and inference.

Afterwards, we present the theoretical guarantees.
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4.3.1 Formulation

We assume that the evaluation criterion is the Hamming loss ((y,y’) := >, 1(y; # v;) with
1(-) being the 0-1 indicator function, but the results in this chapter generalize to losses with
affine decomposition (Ramaswamy et al., 2013) easily.

Let P be the true distribution and PP be the empirical distribution. Our approach
builds upon a probabilistic predictor that non-parametrically minimizes the expected loss with
regard to the most adverse distribution in an uncertainty set where the distributions are ¢ away
from the empirical distribution in terms of feature moment difference:

min max

R L 4.1
P QeB(Pemp) QX,YPY\X( ) )7 ( )

where B(PP) := {Q: Qx = PGP A |Epemnd(-) —Eqp(*)|| < &} withe > 0and ¢p: X x Y — R4
is a joint feature mapping decomposable over parts: ¢(x,y) = >,  ¢d(x,ys). In (Farnia and Tse.
2016), cross-moments are adopted: ¢(x,y) = ¢x(x) ® ¢y (y) where ® is the tensor product.

By Fenchel duality (Altun and Smola, 2006) and strong duality (von Neumann and Morgen{
stern, 1944), we show that is analogous to dual-norm-regularized surrogate loss

minimization:
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Proposition 28. The distributionally robust tree structured prediction problem based on moment

divergence in |[Equation 4.1 can be rewritten as

min Epemp min max Ep
(2] Xy P Q

ey YY) +0T(o(X,Y) — (X, Y)) + |0, (42)

Zadv(07 (va))

where @ € RY is the vector of Lagrangian multipliers and ||-||+ is the dual norm of |-||.

Proof. Recall the primal problem

0 o e, BT ),

where B(P™P) := {Q: Qx =P%™ A [|[Epemprp(-) — Eqop(-)|| < €} with e > 0.

Note the feature function ¢(-) is fixed and given. Since Py x € A and Qx y € A n B(P™P)
where A is the probability simplex with dimension omitted, the constraint sets are convex. The
objective function is convex in P and concave in Q because it is affine in both. Therefore strong

duality holds:

max minlE

QeB(PemP) P QX,YPY‘XK(Yu Y)
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Let C := {u: ||u — Epemp(-)|| < €}. Rewrite the problem with this constraint:

A~ -

Y.Y) - Ic(u)

sup min Epemp

Qu P X QY|XP?\X£(

s.t. u= E]P;I(HPQY\X¢(X,Y)7

where I¢(+) is the indicator function with I¢(x) = 0 if © € C and +o0 otherwise. The simplex
constraints are omitted.

The dual problem by relaxing the equality constraint is

sup mein rr%n EPQ;I(DPQYMP‘ (YY) — Ic(u) + OTEP?pQle H(X,Y) - 0Tu,

u Y|x

where 0 is the vector of Lagrange multipliers.
Given X = x, optimization of QY\ L and IP’ch can be done independently. Again by strong

duality, we can rearrange the terms:
HgnEP;mp n%n m&xEQY‘Xﬂ»Y‘Xﬁ(Y, Y)+0"p(X,Y) + Sup —Ic(u) — 0Tu.

The associated dual norm |||, of the norm ||-|| is defined as

[12[|« := sup{zTa : || <1},
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based on which we are able to simplify the optimization over u as

sup—Ic(u) — 0Tu = sup —0Tu = sup —OT(Epempp(-) — ce) = —OTEpempp(-) + €(|0]| 4.
u

ueC elle|l<1

Plugging it back to the dual problem, we have

min Epene_ min mng@?lpr WY, Y)+0T(p(X,Y) — d(X,Y)) + 6]+

Y|x

4.3.2 Constraint Generation Solution

From a game-theoretic rationale (Topsge, 1979; |Grinwald and Dawid, 2004),
is considered as an adversary-constrained zero-sum game. A prediction player chooses a set
of stochastic strategies (conditional distributions over arborescences) in order to minimize the
expected payoff whereas an adversarial player chooses constrained strategies to maximize it.
The payoff for a pair of pure strategies is the incurred loss, ¢(y,¥). The constrained game is
transformed to a set of unconstrained ones in whose payoffs are parameterized
by 0: payoff(y,y) = ((y,y) + 0T¢(x,y). Note that the games in are jointly
constrained for all «’s in the support of ]P’gr{np while the ones in are conditionally
independent given @. The unconstrained game can be solved by a linear program (von Neumann
and Morgenstern, 1944). However, there are O(n™) spanning trees in a complete graph, thus

making explicit construction of the full payoff matrix impractical.
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Algorithm 3 Double Oracle Game Solver

Input: Lagrange multipliers 8; feature function ¢(-,-); initial set of trees {Yinitial}
Output: A sparse Nash equilibrium (7', T,P,Q)
Initialize T < T < {Yinitial}
repeat
(P, ONash) < SolveZeroSumGame (¢, 87 ¢, T, 7)
(9BR, BR) — FindBestResponse((, 8T, P, T)
if Onash # UBR then
T — T o {gpr}
end if
(Q, ONash) < SolveZeroSumGame (¢, 7, T.7)
(YBR, UBr) < FindBestResponse(¢,07¢,Q, T)
if ?Nash A# vr then
T < T v {ysr}
end if
until ¢ UNash = UB BR =
return (7,7,P,Q)

We adopt a constraint generation algorithm named double oracle (McMahan et al., 2003),
with the pseudo-code illustrated in Algorithm [3| It builds a payoff sub-matrix starting from
small initial sets of strategies. In each iteration, each player takes their turn based on the game
payoff sub-matrix by finding the best response among all possible strategies to the opponent’s
optimal mixture strategies. The response is added to a player’s strategy set if it improves the
value of the game, with the sub-matrix updated. The algorithm terminates and converges to
a Nash equilibrium of the original game when the strategy sets no longer grow. The size of
the final sub-matrix is usually small in practice but there are no known theoretical guarantees,
thus no way to analyze the convergence behavior. Finding the best response requires an oracle,

equivalent to finding the minimum weight arborescence. The objective in [Equation 4.2]is a
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convex function of 8, so we can optimize it with sub-gradients based on solutions of the inner
zero-sum games. Although lacking convergence guarantees, this algorithm is flexible with custom

losses and provides a game-theoretic perspective to a typical DRO problem.

4.3.3 Marginal Distribution Formulation

The r-arborescence polytope is defined as the convex hull of all vectors representing r-
arborescences: A (x) = Conv({y € RI®l : y € Y(x)}). Note that each p € Ay, is a convex
combination of all r-arborescences: p = Zy Prob(y)y, where ps denotes the marginal probability
of part s. Here we adopt the squared ¢5 norm as the dual norm and an ambiguity radius of

€ = A\/2. By substituting the marginal probability vectors and switching min-max optimization

orders, we simplify into
‘ o | o By A
max min -3 min (g%~ p(0,) @00 — (p.g) + Lpl - Lla3 + J103. (13

where ®() e RIRI*d denotes the feature matrix of the 4-th training data, u € R> is a smoothing
parameter to induce strong convexity. We push the maximization over q to the outermost level
because of its large computational cost. If u = 0, the solution to is also optimal to
by strong duality but the problem becomes non-smooth. Therefore we expect 6*
obtained with a very small positive u to be a good approximation of 8* obtained with u = 0.
To optimize it, with fixed g, due to strong convexity, the unconstrained minimization over
6 yields 6* = —L; "L @)T(gl) — péle). In contrast, the constrained minimization over

p admits no closed-form solution but can be cast as Euclidean projection onto A, instead,
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*

independently for each i € [m]: p* = minpea, , ||p — iq(i) 12 = ProjAarb(%q(i)). Given 6* and
p*, the outermost maximization can be solved by a projected quasi-Newton algorithm (Schmidt

et al., 2009) that also requires the projection oracle Proj4_, (), elaborated in Section

4.3.4 Inference

We propose two algorithms to make inference with given 6*.

Weight construction. Construct the part weights as ®6* € R®l and find the maximum
weight arborescence: y* € arg max, yT®0* by the Gabow-Tarjan (GT) algorithm (Gabow et
al., 1986; Zmigrod et al., 2020) or approximate methods for higher-order trees.

Minimum Bayes risk decoding. The optimal probabilistic prediction P* or p* can

be obtained from [FEquation 4.2| or [Equation 4.3 The marginal probabilities enable minimum

A~
A

Bayes risk decoding: y* € argming Epx f(y,Y) = arg max, ZS:y _1P%, a maximum weight
Y S

|

arborescence problem.

4.3.5 Statistical Properties

Basic generalization bounds of DRO methods derived from measure concentration are
not appropriate for an ambiguity set defined by low-order moments since it fails to converge
(Shafieezadeh-Abadeh et al., 2019). We take an alternate approach following (Farnia and T'se.
2016) to obtain excess out-of-sample risk bounds by assuming boundedness on features and

losses.



119

Theorem 29. Given m samples, a non-negative loss £(-,-) such that |¢(-, )] < K, a feature
function ¢(-,-) such that ||¢p(-,-)|| < B, a positive ambiguity level € > 0, then, for any p € (0,1],

with a probability at least 1 — p, the following excess true worst-case risk bound holds:

4K B 3 |In(4/p)

RL * - RL 0* < 1 —

L 0(0cmp) LT Qrue) < 2 W( +3 5 ,

where 0F,., and 6}, are the optimal parameters learned in |Equation 4.2 under PP and

PUrue respectively. The original risk of @ under Q is Ré(@) =Egp, ,po (YY) with Bayes
Ty x

prediction ]P’g,m € arg minp maxg EQY\;.:P?@E(Y’ Y)+60Tp(x,Y).

Proof. Define the adversarial surrogate risk of @ with respect to P as
Rﬁg(e) ::Eﬁpxyﬁadv(e, (X,Y)) = Esy mlgn m@xEQlePleﬁ(Y, Y)

+0T(H(X,Y) — $(X,Y)) + |65

Let 6., € argming R3,..(60) and 0%, € argming R3mp(0) be the optimal parameters
learned with Py, and PY'y respectively.

Given x, define the decoded prediction by 8 as

P?ﬂm € arg mIPi)n mSXEQY\umJ(Y’ Y)+0T¢(z,Y).
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Let the original risk of loss £ under some distribution Q be

A~

R§(6) =Eq, , w0 UY,Y).

YiXx
According to Proposition 28] for any fixed P, we have similarly

°y,y)

max Eg_ _p.
@GB(Pemp) QX,YIPY‘X

= min Epony max Egy yr, WY, Y)+0T(p(X,Y) —d(X,Y)) + 0]+

) Y|X

We start by looking at the worst-case risk of 8., and 6

true emp*

L
e . g (Beump)

ot LY, Y) +0T($(X,Y) = 4(X,Y)) + |6

=min Eptiue maxE
XY Qg x P
Y|X"y|x

6

<Epirue E (Y, Y)+05 (X, Y)— (X, Y )
lP’g(’Y mgx Q?|XP§H;:( )+ emp (¢( ) ¢( ))+5|| emp”*

*

where the last inequality holds because g, is not necessarily a minimizer. Similarly for 0.,

max R5(67.,.) <Eptue maxE « Y)Y
QeB(Pirue) Q( tue) PX'y Q @Y‘szf‘r;; ( )

+ O:rue : (¢(X’ Y) - ¢)(X7 Y)) + €||0:rue‘|*‘
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On the other hand,

Epiye, max E « LY, Y) 40 (d(X,Y) = ¢(X,Y)) + ]| 0«

0 true true
Q Q ~ P }true
YIX"y|x

= min Epgue min mngQ?‘XPY‘Xz(Y, Y)+0T(p(X,Y) —p(X,Y)) +¢0]«

= min min Epgue mngQY‘XPY‘Xe(Y, Y)+0T(p(X,Y) —p(X,Y)) +¢0]«

< min Epgue maxE ox LY, Y)+0T(¢(X,Y) - ¢(X,Y)) +¢]6].
o Y0 QX Py

= L
B Qeg%[?;t)gue) RQ(GEkrue)7

*

ue- LThe above two inequalities

where the first equality holds according to the definition of @

imply the equality:

max Ré(@:‘rue) =EP3?:§, max E 0Y,Y)

rue - szrue
QeB(Ptrue) Q  QuxPyy

+ 05, '<¢(X7Y)_¢(X>Y))+5H0* H*

true true

Therefore,

L * L %
@eg@gﬂe) R@( emp) - Qeg%%ggue) RQ(otme)

<Epgy maxEgx (YY) + 0, ($(X,Y) = (X, ) + [0,

P emp emp
YIX"y|x

- (E]P’t)?l; max [ Gfrucg(Y7 Y) + e‘zkrue ’ (Q’)(X? Y) - ¢(X7 Y)) + EHOEkrue”*)‘ (44)
e Qv xPyix
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The main idea is thus to use uniform convergence bounds. Firstly, by substituting Q = P%ue,

note that
mﬁ}nmgxxa@mpwxz(?,?) +0T(Pp(X,Y) - p(X,Y)) > > minBege UY,Y)>0.

or 0% as follows:

We can get an upper bound of the norm of any optimal solution 6}, mp

S S ¥
O + €H0EkrueH* < RPtrue (ezkrue) < R]P;true( ) E]Ptrue m[E}n m&x EQY\X]PY\XE(Y7 Y) K
K
= ||0trueH* = ?

Let (X,Y) == 07¢(X,Y) and 95 == (¢(x,y))yey. Define

f(6,P) = Epy v mIPi>n m&XE@lep?le(?, Y)+0T(¢(X,Y) - p(X,Y))
. m@xEQmpgle(?, Y)+60T(p(X,Y) - p(X,Y))
“ B, maxEqy _po WY, Y)+9¢(X,Y)—¢(X,Y)

Y|X

= g(,P).

Let g € A be the probability vector of QY| » and ey be the standard basis vector with y-th

entry equal to 1. We have that for any (x,y),

0
Oy’

(¥, 0(z,y) S Conv({ga — €y : gz € A}) — Hw 9 0@yl < max(lgz — eyl <
x
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where d(4 4 is the Dirac point measure. g(+,P) is therefore 2-Lipschitz with respect to the ¢,

norm. As per the assumption, ||¢(-,-)|| < B. This further implies that

4KB K
f(0175(m1,y1)) - f(0276(m2,y2)) < T V917027m17m27y17y2 s.t. ||01H* < ;

Vi=1,2.

We then follow the proof of Theorem 3 in (Farnia and Tse, 2016). According to Theorem
26.12 in (Shalev-Shwartz and Ben-David, 2014)), by uniform convergence, for any p € (0, 2], with

a probability at least 1 — &,

emp’ emp? == Em

f(H* ]P)true) o f(0* Pemp) < 4K B (1 + 1H(4/,0)> .

According to the definition of 6} ., the following inequality holds:

true»

F(Ocnp, PTP) + el|0cp |« — £ (65

emp’ emp true»

PP) — e]|05 0]l + < O.

true

Since 6f,,. do not depend on samples, according to the Hoeffding’s inequality, with a

probability 1 — p/2,

- 2KB [In(4/p)

oF pempy _ 0F Ptrue < '
f( true» ) f( true» ) gm 2
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Applying the union bound to the above three inequations, with a probability 1 — p, we have

F (08, P) + €08, 15 — £(6F

emp true»

4K B 3 [In(4/p)
Ptrue _ 0* < = 1 e )
) 5” true”* 6\/% ( + 9 2

As stated by we conclude with the following excess risk bound:

RL * . RL 0* <
Qelé%%gfue) Q( emp) Qeg%%t}s‘le) Q( true) 5\/m

4K B 3 [In(4/p)
)

O

Theorem [29| presents a bound based on uniform convergence and Rademacher complexities
(Bartlett and Mendelson, 2002), which improves the results in (Asif et al., 2015)), who merely
show that the worst-case risk upper bounds the risk under any distribution in the ambiguity set.

The dual problem in suggests an adversarial surrogate loss £,qv(0, (z,y)) in a
ERM form. The special case of € = 0 in our DRO estimator has a similar form to the max-min
surrogate loss in (Nowak-Vila et al., 2020) except that we assume probabilistic prediction. A
conclusion of its Fisher consistency can thus be drawn based on (Fathony et al., 2018; [Nowak-Vila

et al., 2020).
Corollary 30. When ¢ = 0, £,4, is Fisher consistent with respect to £. Namely, ]P’zf’l"”;“( 18

the probabilistic prediction made by the Bayes optimal decision rule, where 6}, is defined in

Theorem [29
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Proof. Our formulation differs from (Nowak-Vila et al., 2020)) in the fact that we allow probabilis-
tic prediction to be ground truth. By defining y*(u) as the gold standard probabilistic prediction
and ) as the set of all possible probabilistic predictions in Proposition C.2 in (Nowak-Vila et

al., 2020)), we have

eékrue o Y
PY\:,: € Conv/(arg Inin EP?TJPY\J(Y’ Y)).

Y|z

Therefore,

. .
pirue ¢ arg min Eptrue Py (Y,Y).

Y|z -, Y |x’ T
| Py o = Y|

O]

If € > 0, the decoded prediction for each x will not belong to the convex hull of true
conditional distributions, thus not a minimizer of /. On the other hand, if £ is chosen as m™¢
for 0 < a < 1/2, ,qy will be universally consistent according to the comparison inequality in

(Nowak-Vila et al., 2020).

4.4 Projection onto Arborescence Polytopes

The Euclidean projection onto an r-arborescence polytope is a quadratic programming

problem. This is a well-defined convex optimization problem, different from that in differentiable
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structured prediction methods (Peng et al., 2018; Mihaylova et al., 2020|) which elicit gradients

with respect to inputs.

min f(@) = |}z - wl}
we-Aarb

We focus on first-order models and discuss the extensions to other classes of trees in Section .5

4.4.1 Frank-Wolfe Algorithm

The Frank-Wolfe (FW) method (Frank et al., 1956) is an iterative first-order algorithm that

enforces constraints by optimizing a linear objective over the feasible set at each iteration ¢:

s' € arg min sTVf(z), (4.5)

SE.Aarb

which is a minimum weight arborescence problem with weights V f(z!) in our case. The solution

+1

is updated and stays feasible: '™ « ! + v, (s — x!), where 7, is a step size typically set to

2

7+3- FW style algorithms are known to have a convergence rate of (’)(%) (Jaggi, 2013).

4.4.2 Martin’s Polytope

A compact representation of Ay, with a polynomial number of linear constraints is attractive
to lead to efficient algorithms. To the best of our knowledge, there is no existing projection method
exploiting special structures of this polytope. An extended formulation of the arborescence

polytope (Friesen, 2019; |Martin, 1991)) follows a lift-and-project approach. It relates each element
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to existence of k-arboresences of the underlying undirected graph for all kK € V. We extend it to

multi-graphs:

Amarp = {z":32F >0 Z =1 #£k)VE,jEV A Zz§:Zngk¢r,i,jeVAzr>0},
)

aed—(j aey; a€&;;

where z" € RI€l is associated with the original arcs &, z¥ € RIE'l for k # r is associated with
a simple directed graph (V,&’) formed by removing directions and splitting each edge {i,j}
into two directed ones, &; = {a € £ : a = {i,j}} is the set of arcs connecting ¢ and j with

2 (4,7,1) == {i,j} denoting the underlying undirected edge. We show exact correspondence

QI

between A, and A, based on a similar argument for simple graphs (Friesen, 2019):

Proposition 31. Let G be a multi-graph. Apep = Agrp.

Proof. We follow the proof of (Friesen, 2019) for simple graphs. Recall the definition of A a:

Aparb ={2":32 >0

Dzl =1(j #k) Vk,jeVa (4.6)
agd(j)
Dok =N Vk#£rijeV). (4.7)
ae&‘;j acl;;

On one hand, given a legal r-arborescence with characteristic vector 2", and
hold by the definition of arborescences. The equality also holds for a convex

combination of the characteristic vectors of r-arborescences.



128

On the other hand, given z € Ap.p. Consider Edmond’s definition of r-arborescence

polytope based on rank constraints:

Yz <|S| -1 VSV with S # & (4.8)
aesS

Y, =1 #r)VieV (4.9)
acd(j)
x = 0.

We have directly implies [Equation 4.9, According to

Zzgzz,zg VScVAauel.

aesS aesS

Therefore,

Zz2=223<2 Z zg=1S—1 VS<SVAueb,

aeS aesS JES aed—(5)

which is exactly O
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To solve minge4__ ., ||z — wl||3, we propose to adopt the alternating direction method of

multipliers (ADMM) and rewrite it into the following separable form:

ming(u) = 3 Muuk wlf -+ T ()
key

st Uy = {xeRIE: 3zeR|S| Z 2q = 1(j # k) A Zza— Zxawajev}

agéd—(5) ag;; a€gj

wp=wp YkeWr, U={zeRE: Y z,=1(#r) ¥jeV},
acs—(j)

where I4(-) is the characteristic function with () = 0 if € U and o otherwise.

Let A}, be the dual variables and Ay = pik)\;g. The scaled augmented Lagrangian function is

Lp(u, X) = g(w) + D B lur — wn + M5 — B[ Akl3.

The ADMM algorithm updates the parameters as follows:

2w + pi VI (ul + X))

ultt = L i); A) = Proj Vk
uy argurilelgk p((ul, ug), A') = Projy, ( >+ V] ) #r
it 2w + |V| Xy, pr(uf — AL)

= argumel]{} L (( t t+1> At) = PrOjL{( 2+ ‘V’Z Ok
= k#r

At+1 —At ( t+1 uzjrl) Vk:;ér

This decomposes the original projection problem into simpler projection problems. Projection

onto Uy, for k = r decomposes over j € V into |V| projections onto simplex, solvable as fast as
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t+1

O(n) in the worst case (Condat, 2016)). For k # r, computation of u,"~ can be done in parallel.

The Lagrange dual problem of Proj, (-) can be written as

w?j/nij if Qyj > Qwij/nij,
max hij(o) — Z a; st hijj(a) =
aceR = :
. . k .
{ijle€ 7% —nz-joz?j/ﬁl + ajjwij i oy < 2wi5/ngg,
where w;; == Zae&j Wa, Nij = |&ijl, aij = min(ay, ;) and oy, := +00. Strong duality holds by

linear constraint qualification. Primal solutions are recovered by =7 = w, — min(a /2, wz/ngz).

Convergence. The dual objective of Projy,, (-) is strongly concave on {a € RV : vi3j {i,j} €
Enaq; < aj A a; < 2w;j/ngj}, with a unique global maximizer. This implies fast convergence in
practice given good initialization. The negative Lagrange dual function has restricted strong
convexity with v = min;;(n;;/2), near the optimum, suggesting linear convergence (Zhang
and Cheng, 2015). Alternatively, exact solutions can be found by enumerating rankings (with
duplicates) of a in O(|V|Y). In this manner, the ADMM algorithm with a strongly convex
objective has a linear convergence rate O(log1) with either exact (Deng and Yin, 2016) or
linearly convergent approximate solution (Hager and Zhang, 2020) of Projy,, (). Using Nesterov’s
accelerated gradient algorithm (Nesterov, 2003) to optimize leads to iteration

complexity O(C'log %) with constant C' dependent on Lipschitz constants of gradients and pu.

4.5 Extensions

4.5.1 Undirected Spanning Trees

A straight-forward way of extending to undirected spanning trees is to split {7, j} into two

arcs (4,7), (j,i) and make the feature mapping direction-invariant, i.e., ¢(x,ys) = @d(x,yy)
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for s and s’ having the same underlying undirected graph. We post-process the prediction by
removing directions.

Alternatively, we seek projection oracles for undirected graphs. Projection via FW is done
by using any minimum spanning tree algorithm in [Equation 4.5 For ADMM, the formulation
in (Martin, 1991) is originally for undirected trees: Amuna = {& : 32 > 0}, c5- ;) 2k =1( #
k) A szJ + zfz = 1(; VK, 4,5 € V}. ADMM is easily adapted to this case with Zaegij x, replaced
by x; jy-

4.5.2 Dependency Trees

The spanning tree structure in dependency parsing is a special one where the outdegree of root
is restricted to be one. We can use the GT algorithm for inference with either the same training
objective or an aligned objective where a dependency tree polytope is considered: Agep(x) =
Conv({y € Y(x) : |6%(r)] = 1}). A straightforward extension of Ay, to characterizing
dependency trees is Amdep = {2" : 2" € Amarb A Zae&+(r) zy, = 1}, equivalent to Aqep by the

following proposition:
Proposition 32. Let G be a multi-graph. Amgep = Adep-

Proof. Recall the definition of Aydep:

. r. T
Amdep = {Z 2 € Amarb/\

>z =1} (4.10)

acdt(r)
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On one hand, given a legal dependency tree 2" € Agep, it satisfies and
by Proposition It also satisfies by the definition of Agep.

On the other hand, given 2" € Apgep, firstly, 2" must be in A, by Proposition
which implies that we can write it as a convex combination of k& r-arborescences vectors:
2" & aqtt + aot? + - - + agth. All of them are legal r-arborescences, so Zae5+(r) tZ > 1 for all

i € [k]. Now if 3 et () ti > 1 for some i, we would have a contradiction, 2aest(ry e > 1. O

FW methods leverage the GT algorithm in As for ADMM, the dual problem

of projection onto Uy = {x : @ € Up A Xpes+ () Ta = 1} becomes

2
wa r}/a > 2wa7

Igaﬁxz ha(a, B) — 2 aj—fB st h(a, B) =

= j# 2
¢ o WaYa = Va/4  Va < 2Wa,

where 7(; ;1) == a; + 1(i = 7)B. This can be solved in O(|€|log|€|) (Zhang et al., 2010). Recall

that the dual problem of projection onto Uy 1= {x : T € Up A X5+ (r) Ta = 1} I8

2
wy, Yo > 2Wq,

rgaﬁXZ ho(a, B) — Z a;j — B st he(a, ) =
ace e WaYVa — 72/4 Ya < 2w,

where v(; ;) = a; + 1(i = r)B. Following (Zhang et al., 2010) similarly, we sort 2wy ;)
for each j and compute the optimal a;‘ with 8 = 0. Let the sorted w’s be (w(j), e ,w,gj))

for each j. We blend create a set {wéj ) a;‘} for all j and z. Let the sorted sequence be

—0 =1 <ty <--- <ty = 0. The derivative with respect to 3 is piecewise-linear in each
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interval [tg,tr+1]. Since the objective is concave in 3, we can iterate over all the intervals or

find the optimal 8* with binary search.

4.5.3 Higher-order Polytope

Compact higher-order polytope descriptions exist for undirected spanning trees but are still
unknown for arborescences with even one monomial (Friesen, 2019). FW requires a linear oracle
that is NP-hard to solve exactly in higher-order settings (McDonald and Pereira, 2006)).

Instead, we can approximate it with a local polytope where the marginal probabilities of each
part s is required to be locally consistent with that of each arc a. For simplicity, we consider
only features for the all-true assignments, i.e., all arcs exist in part s. The resulting polytope can
be written as Apoc = {@ : g € Aparb A VS E R,a € s ps < pa}, which suggests an ADMM

[R]

algorithm with additional constraint sets for each part: Us = {x € Rig:zs<my Vae s}, the

projection onto which can be done in O(|s|log|s|). The central problem is the projection onto

U := {a:eR;%‘ txs < xg Vac€sh.
The only variables of interest are x, and xg, given xg, the optimal x, is simply } = max(wq, ;).

We can sort (wg, ws)ees and enumerate the range x5 takes over this set.
4.6 Experiments
We evaluate our proposed method on dependency parsing tasks and compare its ability to

BiAF (Dozat and Manning, 2017)), arguably the state-of-the-art neural dependency parser. We

implement our methods in Python and C. Our code is publicly available (https://github.com/


https://github.com/DanielLeee/drtreesp
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Danielleee/drtreesp). We leverage the implementations in SuPar (https://github.com/
yzhangcs/parser) (Zhang et al., 2020)) for the baseline. All experiments are conducted on a
computer with an Intel Core i7 CPU (2.7 GHz) and an NVIDIA Tesla P100 GPU (16 GB).
We adopt three public datasets, the English Penn Treebank (PTB v3.0) (Marcus et al., 1993)),
the Penn Chinese Treebank (CTB v5.1) (Xue et al., 2002), the Dutch Lassy Small Treebank
and the Turkish Treebank in Universal Dependencies (UD v2.3) (Nivre et al., 2016). We follow
conventions in (Chen and Manning, 2014; Dyer et al., 2015) to prepare our data. We make
standard train/validation/test splits. We use Stanford Dependencies (SD v3.3.0) (De Marneffe
and Manning, 2008|) to convert dependencies in PTB and CTB. The predicted POS tags with
Stanford POS tagger (Toutanova et al., 2003) are adopted for PTB whereas gold POS tags are
adopted for CTB and UD. Punctuation is excluded during evaluation. A token is a punctuation
if its gold POS tag is space, semi-colon, comma or period for English and PU for Chinese.
Representation learning is not the focus of this work. We follow (Levy et al., 2020|) and
compare our method with the last biaffine classification layer in BiAF on top of pretrained
features preceding this layer (backbone’s output). The pretrained embeddings produced by
complicated non-linear models make Fisher consistency’s assumption of optimizing over all
measurable functions less violated. To featurize the data, for each dataset, we train a BiAF
network with the whole training set to obtain a pretrained model. Note that this may create
unfair advantages for the baseline because the last layer was optimized together with the backbone
network in an end-to-end manner during pretraining. Moreover, pretraining uses a standard

ERM objective with the cross-entropy loss and local normalization over head nodes. The


https://github.com/DanielLeee/drtreesp
https://github.com/DanielLeee/drtreesp
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pretrained features are thus more adequate for the ERM objective than for our DRO objective.
The pretrained models are trained with the suggested hyperparameters in SuPar. The pretrained
models achieve 97.25%, 91.91% and 94.78% UAS on PTB, CTB and UD Dutch respectively,
where RoBERTa (Liu et al., 2019), ELECTRA (Cui et al., 2020) and XLM-RoBERTa (Conneau
et al., 2020) are adopted as encoders. No BERT embeddings are adopted for the UD Turkish
dataset. To make use of the features as inputs in our method, we take the outer product of the
embedding vectors for two nodes as the arc feature vector. Our method and the biaffine layer
therefore share the same number of parameters (501 x 501, including bias terms). We focus on
predicting the unlabeled dependency tree while relying on pretrained models for relation label
prediction. The evaluation criteria are the labeled /unlabeled attachment scores (LAS/UAS) and
labeled /unlabeled complete matches (LCM/UCM). The attachment score can be transformed
to the Hamming loss with linear mapping: AS(y,y’) = [V| -1 —{(y,y’)/2.

Full batch learning is adopted for Marginal . Mini-batch training is adopted
for Game, the game-theoretic algorithm, and Stochastic, which solves the inner min-max problem
in [Equation 4.2] using [Equation 4.3] with fixed 6. All models are trained with the training
set only. The optimal hyperparameters and parameters are chosen based on the validation
set. For our ADMM algorithm, we adopt the adaptive scheme of varying penalty parameters
(Tiner = Tdeer = 1.1, o = 1) in (Boyd et al., 2011)) and the stopping criterion (e = 1072) for
consensus ADMM in (Xu et al., 2017). In FW, the learning rate is set to t% The smoothness
weight y and ambiguity radius A\ = 2¢ are tuned using a logarithmic scale on [1077,1]. The

batch size for the game-theoretic algorithm is 10. The batch size for Stochastic is 200. The error
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TABLE II: Comparison of mean UAS and execution time under different training set sizes.
Time refers to the CPU time taken to finish one gradient descent step. Statistically significant
differences compared to BiAF' are marked with T (paired t-test, p < 0.05). The best UAS are
highlighted in bold.

PTB CTB UD Dutch UD Turkish (low resource)
Method — Time (s) m = 10 50 100 10000 m =10 50 100 10000 m =10 50 100 1000 m =10 50 100 1000
BiAF 0.34 9348  96.87 96.95 97.16 88.45 90.89 9115 91.70  90.86 93.80 9415 94.98 17.64 26.59  30.75  42.82
Marginal 0.28 94.51f  96.811 96.92 97.12  89.19f 91.03f 91.27 91.67 92.41f 94.22f 94.50f 95.15f 24.85f 32.83F 33.75f 43.18

Stochastic 2.72 94.62f 96.81 96.93 97.14 89.27f 91.03f 91.27 91.66 92.40f 94.23f  94.47  95.14f 25.06f 31.35f 33.62f 41.20f
Game 7.25 94.51f  96.86 96.92 97.08f 89.22f 91.06Ff 91.22 91.57f 92.32f 94.347 94.59f 95.01 19.85  23.18f  27.12f  36.30f

tolerance in Game is set to 1072, In stochastic gradient training, we use Adam with lr = 1072,
B1 = 0.9, B = 0.999, ¢ = 1078, In our experiments, for efficiency, we again adopt the FW
algorithm for the outer maximization in Marginal.

To showcase the ability of DRO methods tackling scarce data, in each run, we randomly
draw m € {10, 50, 100, 1000} samples without replacement from the training set and keep the
original validation and test sets. All the models are trained on the same set of sampled data.
The process is repeated 5 times for each m. The main UAS results on the PTB, CTB and UD
Dutch Lassy Small datasets are reported in with complete results provided in
Our methods consistently deliver higher UAS than BiAF especially with a small amount of
data (The UAS is high with 10 training samples possibly because (1) the backbone sub-network
and linear layer were trained together with the whole training set; (2) BERT embeddings
yield data representation that is easily linearly separable; (3) 10 samples result in as many
as 10 x 20 x 20 balanced head-selection instances for BiAF). With little training data, DRO
approaches minimize the worst-case risk to avoid overfitting. With more training data available,

our method is still comparable to BiAF which is not significantly better than our methods by
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TABLE III: Comparison of mean UAS, LAS, UCM and LCM under different training set sizes.
Statistically significant differences compared to BiAF are marked with { (paired t-test, p < 0.05).
We highlight in bold the best results among the four methods.

Dataset # train  Metric BIiAF Marginal Stochastic Game

UAS 93.48 +2.30 9451+ 1.71f 94.62 + 1.60f  94.51 + 1.75
LAS 92.02+226  93.04 £1.697 93.14 +1.58f 93.04 £ 1.73}

10 UCM  47.17+10.28 5230 +8.71f  52.62 + 8.187  52.50 + 8.60F
LCM  39.73+£7.96 43.63+6.71f 43.97 +6.39F 43.86 + 6.581
UAS  96.87 +£0.06 96.81 + 0.05f 96.81 £ 0.05 96.86 + 0.05
50 LAS 95.34+0.06 95.28 + 0.05f 95.28 + 0.05 95.33 + 0.05

UCM  67.65 +0.81 67.38 + 0.62 67.18 £ 0.79 67.73 + 0.64
PTB LCM  55.46 £0.59 54.93+0.56f  54.79 + 0.59F 55.17 £ 0.49
UAS  96.95+0.05 96.92 + 0.06 96.93 £ 0.05 96.92 £ 0.03
LAS 95.42+0.05 95.39 +0.06 95.40 + 0.04 95.39 £+ 0.02

100 UCM 68.79 +0.42  68.27 +0.72 68.36 + 0.41 68.29 +0.34
LCM  56.21 +£0.14  55.68 + 0.56 55.67 £ 0.45 55.66 + 0.33

UAS 97.16 +0.02 97.12+0.03 97.14 £ 0.02 97.08 £ 0.031

1000 LAS 95.63+0.03 9559 +0.02 95.60 + 0.02 95.55 + 0.03F
UCM  70.99+£0.23  70.59 +0.49 70.61 £ 0.32 69.94 + 0.341

LCM  57.574+0.09 57.18 +0.28f  57.24 +0.28f  56.80 + 0.23}

UAS 88.45+0.67  89.19+0.38f  89.27 +0.331  89.22 + 0.39F

10 LAS 84.79+0.62  85.50 £ 0.35f 85.58 £ 0.30f  85.53 £ 0.36}

UCM  35.21 +1.67 36.83+1.20 37.14+0.94f  36.95 + 1.23f
LCM  25.86 £0.87 26.82+0.62  26.95+0.59F  26.95 + 0.63f

UAS  90.89£0.10 91.03 +0.05f 91.03 £0.05f 91.06 % 0.05
LAS  87.08+£0.10 87.20+£0.05f 87.20+0.05] 87.23 + 0.061
UCM 42544024 4292 +0.24f  42.86 +0.12f  42.99 + 0.30
CTB LCM  2070£0.23 2069 £0.36 2072038  29.79+0.23

UAS 91.15 +0.16 91.27 £ 0.08 91.27 + 0.10 91.22 £ 0.05
LAS 87.32+0.14 87.42 +0.06 87.42 + 0.08 87.37 £ 0.05

100 UCM 4341 +0.35 43.91+0.27f 43.86 + 0.43f 43.81 £0.22
LCM  30.02+0.22 30.27 +0.25 30.23 £0.28 30.26 £+ 0.26
UAS 91.70+0.04 91.67 +0.03 91.66 + 0.03 91.57 + 0.03f
1000 LAS 87.84+0.04 87.80+0.03 87.79 £ 0.03 87.70 + 0.03F
UCM 45.80+0.27 4543+ 0.11f  45.41 +£0.12f  45.36 £ 0.27f
LCM  31.14+0.19 31.11+0.18 31.08 £0.17 31.20 £ 0.11
UAS 90.86 +1.23  92.41 +0.947 9240+ 0.91f  92.32 £ 1.03}
10 LAS 86.54 +1.26 88.10 £ 0.957 88.08+0.91f  87.99 + 1.00f
UCM 64114218 67.26 +£2.16Ff 67.21+1.91f 67.26 + 1.97f
LCM 4833 +£1.88  50.32+ 1.75f 50.48 +£1.45f 50.46 + 1.30f
UAS 93.80 +0.43 9422 +£0.26f  94.23 +£0.18f 94.34 £+ 0.24}
50 LAS 89.36 +£0.33  89.79+£0.21f  89.79+0.12f  89.89 + 0.18F

UCM  70.57 +1.52 7242+ 0.90f 72.05 £ 0.99 72.60 + 1.39
UD Dutch LCM  5240+0.61  53.47 £+ 0.62f 53.40 £ 0.59 53.58 £ 0.76

UAS 94.15+0.18  94.50 £ 0.18} 94.47+0.13  94.59 + 0.12}
LAS 89.69 +0.18  90.04 + 0.15F 90.01 £0.12  90.12 + 0.107
UCM  T7L.71+£0.92  73.24 £0.88F 73.01+0.99  73.63 +0.75}
LCM  53.01+0.81 53.79 + 0.40 53.70 £ 0.55  54.13 + 0.44F

UAS 94.98 +0.07 95.15+ 0.10f  95.14 + 0.11} 95.01 +0.05
LAS 90.44 £ 0.06  90.59 + 0.087  90.59 + 0.08 90.44 £ 0.06

100

1000 UCM  74.73+0.33 75.87+0.63f 75.64 +0.57F 75.41 £ 0.56
LCM 5459 +0.13 55.21+0.17f 55.16 + 0.21F 54.70 £ 0.22
UAS 17.64 £2.45  24.85+2.35f 25.06 £ 0.58f  19.85+0.46
10 LAS 4.86 +2.74 5.33 +£2.97 5.40 + 2.85 5.02 £ 3.04
UCM 7.69 +1.72 9.03 +1.33 7.88 +2.27 10.03 £ 0.54
LCM 1.46 +1.03 1.50 £ 1.07 1.50 £ 1.07 1.74 £1.38
UAS 26.59 +2.37  32.83 £ 1.50f 31.35+1.10f  23.18 +2.03f
50 LAS 10.14 £ 0.57 10.73 £ 0.86 10.74 + 0.54 10.10 £ 0.69

UCM  10.03 £1.31 10.63 £ 0.50 10.81 £ 0.50 10.34 £ 0.36
UD Turkish LCM 3.24+£0.31 3.26 +0.24 3.38 £0.27 3.43 £0.27
UAS 30.75+1.13 33.75+0.86f 33.62+ 1.49f  27.12 + 1.25}
LAS 10.84 £+ 0.80 1148 £0.75  11.69 £ 0.67f 10.48 £ 0.70f

100 UCM 11.61+1.22 11.30+0.29 11.34 £ 0.26 11.08 £ 0.44
LCM 3.53 £ 0.60 3.61 +0.31 3.57+0.23 3.55+£0.23
UAS 42.82+1.82 43.18+1.73 41.20+2.17f  36.30 £ 2.79f

1000 LAS 18.44+1.00 1824+1.62 1813 £1.13 16.38 + 1.201

UCM 15.86+0.40 15.18 £0.81 13.78 £ 0.30f  13.52 + 0.43f
LCM  4.49 +0.47 4.37 + 0.46 4.31 +£ 0411 4.29 + 0.38f
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Figure 4: Convergence of ADMM and FW for random points with 95% confidence intervals.

statistical tests. This illustrates the advantages of replacing conditional log-likelihood with our
Fisher consistent surrogate loss without changing the number of model parameters. Moreover, we
study a low-resource setting with the UD Turkish dataset in which only the sampled data is used
for pretraining without BERT embeddings. The binary cross-entropy loss (single normalization)
is adopted during pretraining in this setting to avoid pretrained features biased towards the
multi-class cross-entropy loss (local normalization) adopted by BiAF. We observe consistently
competitive performance of our methods in the low-resource setting in as well.

We report computational time of one gradient descent step in the second column of

averaged across 10 runs. For fair comparisons, all the models are run with CPU only, with a
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Figure 5: The best UAS with the Marginal algorithm as 4 and A vary in logarithmic scales.

batch size of 200. All the methods achieve their optimal validation set performance in 150-300
steps. BiAF and Marginal are the fastest because the most time-consuming step of computing
dot products of features and parameters is only performed once whereas the other two methods
perform it multiple times. However, since Marginal is unable to leverage stochastic gradients,
its execution time grows linearly in the full batch size. Henceforth, there is a trade-off between
Marginal and Stochastic/ Game for computational efficiency. The extra cost compared to BiAF
with cross entropy is expected because distributional robustness against a set of adversarial

distributions is guaranteed.
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We compare ADMM and FW by performing for 100 times projection of random points
in [-5,5]™ on a graph with 5 nodes and 3 parallel arcs between each (i,j). We subtract the
integral part of the observed minimum values in each run for better illustration. As shown
in ADMM usually finds a better solution in the arborescence polytope than FW
does within 1000 iterations (One explanation is that FW relies on first-order approximations
while there are exponential number of facets in the arborescence polytope). That being said,
the per-iteration cost of ADMM is about 8n times higher than that of FW due to consensus
optimization of n subproblems. In practice, the solution computed with FW usually leads to an
approximately good sub-derivative to optimize the DRO objective. We have verified that the
solutions suggested by ADMM satisfy the polytope constraints for graphs of up to 10 nodes.

We conduct sensitivity analysis by varying u and A on UD Dutch with 100 training samples.
implies that moderate smoothing is beneficial to generalization. The ambiguity radius
should be judiciously chosen because a small A causes overfitting while a large A leads to

conservative models.

4.7 Concluding Remarks

We propose a distributionally robust and consistent tree structured prediction method. We
show its equivalence to regularized surrogate loss minimization. We put forward a provably con-
vergent algorithm based on efficient projection oracles for arborescence polytopes. Our proposed
method enjoys Fisher consistency and robustness against noise in conditional distributions in

terms of feature moments. Theoretical and empirical results validate its effectiveness.
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Representation learning. Our method can be easily adapted to a representation learning
framework with automatic differentiation. Although this may lead to a non-convex problem
without the theoretical guarantees derived in this chapter, it is highly desired in practice if
feature mappings are optimized as well. We discuss a possible approach as follows. Modern
neural networks for supervised learning typically have a linear layer in the end without activation.
Assume the penultimate layer outputs ®(x) for input x, the last layer with parameters 6 will
typically output v (x) := ®(x)0 € R¥, sometimes called logits, with k& = n? labels for all arcs
when parsing a sentence of n tokens. Note that 6 in our formulation naturally serves as the
parameters of this linear layer. Moreover, knowing 1(x) is sufficient for us to solve the inner
minimax problem in to get P;’kn and Q;‘m. In this way, our DRO method can be
considered a loss layer without learnable parameters, which backpropagates the sub-derivative

of the objective with respect to ¥ (x):

0 1< )
v - (@)% _ o (3)%
a¢(w)£adv €3 Zél(q Pernp)>

where B is the batch size. The sub-derivative of the regularization term with respect to
0 should be added to the linear layer. Now we are able to take advantage of automatic
differentiation and focus on solving the inner adversarial problem given 1 (x) and y. Since
the computational bottleneck lies in computing ¥ (x) and backward passes, the overhead of
computing the adversarial loss may be dominated and not significant compared to the cross-

entropy loss.



CHAPTER 5

MOMENT DISTRIBUTIONALLY ROBUST PROBABILISTIC

SUPERVISED LEARNING

(Parts of this chapter were previously public online as “Moment Distributionally Robust
Probabilistic Supervised Learning” in the OpenReview preprint (Li and Ziebart, 2023).)

Probabilistic supervised learning assumes the groundtruth itself is a distribution instead of a
single label, as in classic settings. It is equivalent to predicting a structured object from the
simplex such that the object represents a label distribution. Common approaches learn with a
proper composite loss and obtain probability estimates via an invertible link function. Typical
links such as the softmax yield restrictive and problematic uncertainty certificates.

In this chapter, we propose to make direct prediction of conditional label distributions from
first principles in DRO based on an ambiguity set defined by moments. A brief introduction with
related work is given in Section We equip the readers with problem setup in Section
The formulation is presented in Section We derive its generalization bounds and Fisher
consistency under mild assumptions in Section We illustrate how to manipulate penalties
for underestimation and overestimation with specific losses and algorithms in Section As
shown in Section [5.3.4] our method can be easily incorporated into neural networks for end-to-end
representation learning. Experimental results in Section [5.4] on datasets with probabilistic labels
illustrate the flexibility, effectiveness, and efficiency of this learning paradigm. We conclude this

chapter in Section [5.5

142



143

5.1 Introduction

The goal of classical supervised learning is point estimation—predicting a single target
from the label domain given features—usually without justifying the confidence. The outcome
distribution of an event can be inherently uncertain and more desirable than point predictions
in some scenarios. For example, weather predictions that express the uncertainty of events such
as rain occurring are more sensible than binary-valued predictions, while a uniform distribution
prediction for the outcome of a fair dice roll is more sensible than speculating an integral value
randomly. On one hand, the predicted distribution quantifies label uncertainty and is thus
more informative than a point prediction, which is widely studied in weakly supervised learning
(Yoshida et al., 2021)), boosting (Friedman et al., 2000) and optimal treatment (Leibovici et al.!
2000). On the other hand, the ground truth naturally comes with multiple targets, possibly
with different importances. For instance, there can be multiple emotions in a human face image,
there are different gene expression levels over a period of time in biological experiments, and
many annotators might disagree over a highly ambiguous instance. In the above settings, each
predefined label is part of the ground truth as long as it has a positive probability in the true
distribution. Hence, it is natural to use probabilistic labels in both training and inference when
the ground truth is no longer a point. In the literature, the task of predicting full distributions
from features is called probabilistic supervised learning (Gressmann et al., 2018).

A probabilistic supervised learning task comes with a probabilistic loss functional quan-
titatively measuring the utility of the prediction (Bickel, 2007). (Williamson et al., 2016)

propose a composite multiclass loss that separates properness and convexity. They illuminate
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the connection between classification calibration (Tewari and Bartlett, 2007) and properness
(Gneiting and Raftery, 2007; Dawid, 2007)), representing Fisher consistency for classification
and probability estimation respectively. A proper loss is minimized when predictions match
the true underlying probability, which implies classification calibration, but not vice versa.
Among proper losses, the logarithmic loss (Good, 1952) severely penalizes underestimation of
rare outcomes and assessing the “surprise” of the predictor in an information-theoretic sense,
the Brier score—originally proposed for evaluating weather forecasts (Brier, 1950)—is useful
for assessing prediction calibration, and the spherical scoring rule (Bickel, 2007) is used when
a distribution with lower entropy is desired. A single proper loss is sometimes not sufficient
for scenarios that elicit optimistic or pessimistic predictions for decision making with practical
concerns (Elsberry, 2002; |Chapman, 2012)). For example, underestimating disastrous events
may provide very low utility, motivating more pessimistic predictions. Therefore it is desirable
for a proper loss to be flexible in its penalties for deviated predictions that combine statistical
properties of multiple losses.

Deep neural networks typically adopt the softmax function to predict a legal distribution.
However, softmax intentionally renormalizes the logits and therefore assumes that it follows
a logistic distribution (Bendale and Boult, 2016). It is poor at calibration, uncertainty quan-
tification and robustness against overfitting (Joo et al., 2020)). The inverse of the canonical
link function in (Williamson et al., 2016) can be used to recover probabilities but commonly

resembles softmax (Zou et al., 2008]).
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We propose a probabilistic supervised learning method from first principles in distributionally
robust optimization for general proper losses that realize desired prediction properties. Instead
of specifying a parametric distribution, it starts with a minimax learning problem in which
the predictor non-parametrically minimizes the the most adverse risk among all distributions
in an ambiguity set defined by empirical feature moments. The ambiguity set represents our
uncertainty about the underlying distribution. By strong duality, we show that the primal DRO
problem is equivalent to a regularized empirical risk minimization problem. The regularization
results naturally from the ambiguity set instead of being explicitly imposed. The ERM form also
allows us to derive generalization bounds and make inferences from unseen data. We illustrate
a set of solutions for general proper losses satisfying certain mild conditions and an efficient
algorithm for a weighted sum of two common strictly proper losses. We conduct experiments on
real-world datasets by adapting our method to end-to-end differentiable learning.

Contributions. Our contributions are summarized as follows. (1) We propose a distribu-
tionally robust probabilistic supervised learning method. (2) We characterize the solutions to
the proposed method and present an efficient algorithm for specific losses. (3) We incorporate

our method into neural networks and perform extensive empirical study on real-world data.

5.1.1 Related Work

Model assessment of probabilistic models via predictive likelihood has been studied in
Bayesian models (Gelman et al., 2014)), probabilistic forecasting (Gneiting and Raftery, 2007)),
machine learning (Masnadi-Shirazi and Vasconcelos, 2009)), conditional density estimation

(Sugiyama et al., 2010)), information theory (Reid and Williamson, 2011)) and representation
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learning (Dubois et al., 2020). A comprehensive framework for probabilistic supervised learning

can be found in (Gressmann et al., 2018).

Techniques developed to explicitly tackle multiclass probabilistic classification include multi-

class logistic regression (Collins et al., 2002), support vector machines (Lyu et al., 2019; [Wang et|

al., 2019), learning from noisy labels (Zhang et al., 2021), weakly supervised learning (Yoshida

et al., 2021), and neural networks (Papadopoulos, 2013; (Gast and Roth, 2018). Multi-label

classification, aimed at predicting multiple classes with equal importance, has been analyzed by

(Cheng et al., 2010) and (Geng, 2016|) in a general probabilistic setting. Note that confidence

calibration (Guo et al., 2017)) has a different objective from probabilistic supervised learning.

Fisher consistency results have been established for classification losses (Tewari and Bartlett!

2007)), structured losses (Ciliberto et al., 2016; Nowak-Vila et al., 2020)), proper losses (Williamson|

et al., 2016) and Fenchel-Young losses (Blondel et al., 2020).

The moment-based ambiguity set adopted in this chapter originates from maximum entropy

(Cortes et al., 2015; Mazuelas et al., 2022).

5.2 Preliminaries

5.2.1 Probabilistic Loss Functionals

A loss function measures the quality of a prediction associated with an event. Scoring rules
are widely adopted to assess probabilistic predictions, but can be naturally translated to loss
functions by appropriate negation and normalization. To illustrate some examples, we consider

a decision problem in which y € ) is an outcome and Py € P()) is a predicted distribution over
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Y where we denote by P()) the set of all probability distributions on a set . We denote by
py = (Py (?/))Zey a vector of probabilities.

The zero-one loss is defined for deterministic prediction so that a penalty of 1 is incurred
whenever ¢’ and y differ: £o;(v',y) = I(y’ # y) where I(-) is the indicator function. It extends
to probabilistic predictions as fo1(Py,y) = 1 — Py (y). In the literature, the zero-one loss is
sometimes defined as £o1(Py,y) := I(y ¢ arg max,s Py (y’)), which is proper, but discontinuous
and not strictly proper. The cost-sensitive loss for multiclass classification is similarly defined
with a confusion cost matrix C € RB}My': les(Py,y) = Ziey Py (i) Ciy.

The multiclass Brier loss, based on the Brier score or quadratic scoring rule, measures the
mean squared difference between Py and y: £y (Py,y) = X, (Py (y) — I(y' = y))2.

The logarithmic loss, also called log-likelihood loss, incurs a rapidly increasing penalty as
the predicted probability of the target event approaches zero: Liog(Py,y) = —InPy (y).

The spherical scoring rule can be interpreted as the spherical projection of the true belief
onto the prediction vector. To use it as a loss function, we define fs,(Py,y) = 1 — Py (y)/||py ||2-

For ease of exposition, we define L(P, Q) := 3, Qy (y)¢(Py,y) where £(-,-) : P(Y) x Y — Ry
is a probabilistic loss function as illustrated above. A loss L is called proper if L(Q, Q) < L(P, Q)
for all P, Q, and called strictly proper if Q is the unique minimizer of L(-, Q). [Figure 6| provides
a graphical comparison of the above losses for prediction with three classes. We can infer that

the zero-one loss is an improper loss.
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Figure 6: The expected value of four loss functions for three classes with Qy (1) = 0.6 and
Qy(2) = Qy(3) = 0.2. Py(2) = Py(3) as Py(1) varies. Each loss is normalized to cross (1,0)
and (0.5,0.5) according to the binary case with a hard label. Best viewed in color.

5.2.2 Probabilistic Supervised Learning

We study the probabilistic supervised learning task where we are given n training samples
{(xM), M), (x@,y@), ... (x4} drawn i.i.d. from a distribution P on the joint space
X x Y, in which X is a feature space and ) is a univariate finite discrete label space. A
probabilistic multiclass loss function L : P(Y) x P(Y) — Ry is given. The goal of ERM is to

learn from the samples a mapping h : X — P()) to minimize the empirical L-risk of h:
h* € arg min Rfony (h) = Epgoe [L(h(X),IP";T)‘;)] : (5.1)

where P;m{} represents the empirical distribution and H is a hypothesis space. Here we assume

x may be accompanied with a probabilistic label by aggregating instances with the same (. In
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this way, both learning and inference are accomplished in the general setting subsuming classical

supervised learning.

5.3 Method

We now present our formulation for learning with general multiclass probabilistic losses. We
provide theoretical results of consistency and generalization. We study the solution for general

proper losses in our formulation and develop an efficient algorithm for two typical proper losses.

5.3.1 Formulation

We consider a continuous proper loss L to be optimized under the unknown distribution
Ptrue We assume that a class-sensitive feature function ¢ : X x ) — R? that maps a data point
to a d-dimensional feature vector is given. Examples include the multi-vector representation
and class-dependent TF-IDF scores. Choosing a good ¢ is a representation learning problem,
but as we will discuss in Section it is not a concern once our method is incorporated into
neural networks as a layer. Intuitively, the elements of the vector ¢(x,y) can be regarded as
scores indicating how well the label ¥ matches with the feature x. For example, with a linear

hypothesis hyw(x,y) = (W, ¢(x,y)), a good parameter vector w* should yield

W, @(x,9)) > (W, d(x,y)) = P(x,y) > P(x,y).
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Instead of specifying a parametric form of predictions, we adopt a minimax statistical

learning formulation:

min max [E L (Pyx, , 5.2
Py x€P(¥) QeA (Bor) o L1 (Prix Q)] (52)

where AY (P9) := {Q : Q & P(X x ) A PSP = Qx A ||Epens [@(, )] ~Eg [$(-, )] < e}. The
ambiguity set is different from that in (Wiesemann et al., 2014) and (Farnia and Tse, 2016)) due
to the inequality and feature mapping respectively. The minimization over the function space
H is replaced by directly minimizing over P()) for each x € X'. The probabilistic predictions
are chosen to minimize the worst-case risk evaluated on a set of distributions in an ambiguity
set defined by the empirical distribution PP and feature mapping ¢. The ambiguity set
AM (PemP) includes distributions that share the same marginal on X' and are no more than e
away from PP in terms of feature moment divergence. Note that given any feature function
¢, the ambiguity set is a compact convex set. Conceptually, we restrict the support of Q on
X to be the same as the empirical distribution for convenience in both algorithm design and
theoretical analysis.

Minimizing the worst-case risk by allowing a certain amount of label uncertainty makes this
method inherently robust. It can also be shown to be equivalent to a dual-norm regularized

ERM problem:
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Proposition 33. The distributionally robust probabilistic supervised learning problem based on

moment divergence in [Equation 5.2 can be rewritten as

min Ezerw min mng (Pyix; Qyix) + 07 (Eqy (X, Y) — EP%{MX, Y)) +¢0]+, (5.3)

<

~
Ladv(evpgrg; )

where @ € RP is the vector of Lagrangian multipliers and ||-||« is the dual norm of ||-||.

Proof. The proof follows similarly Proposition 28] Both P()) and AM (P) are non-empty closed
convex sets. Since we assume L is continuous and proper, we know that L(-, Q) is quasi-convex
for every Q and L(P,-) is concave for every P by definition. is therefore a quasi-
convex-concave problem and strong duality holds (Sion, 1958). The regularization is obtained

via Lagrangian and Fenchel conjugate. O

It is well-known that continuous proper losses are quasi-convex, such as the Brier score, the
logarithmic score, the spherical score, the Winkler’s score, the ranked probability score, etc.
However, some improper (possibly discrete and non-convex) losses can be quasi-convex in the
predicted distribution (e.g., the zero-one loss). In contrast, surrogate classification losses are
usually convex in a parameter space that is easy to work with, for example, the multiclass hinge

loss (Weston and Watkins, 1998)), lyw (¥, y) = 3.,/ max{0,1 + v, — 1, }, and the multiclass

y'#y
logistic loss (Nelder and Wedderburn, 1972), £io¢(t),y) = In (3., exp (y)) — by, where 1 € RV

is a vector of class scores.
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From a game theoretic point of view, our formulation in is equivalent to a
two-player zero-sum game in which the predictor player chooses a distribution to minimize
the expected game payoff while the adversary player chooses one to maximize the game value
while constrained to satisfy certain statistical properties of training data (Grinwald and Dawid.
2004). In the dual problem , the Lagrange multipliers parameterize the payoff
function for an augmented game and provide a new payoff function for unseen data to construct

predictors.

5.3.2 Statistical Properties

It well known that minimizing strictly proper losses leads to Fisher consistent probability
estimation (Williamson et al., 2016). However, minimization of the surrogate risk in
may induce a sub-optimal classifier because of misalignment between the surrogate loss L,q4, and
the original loss L. Fisher consistency provides desirable statistical implications for a surrogate
loss such that minimizing it yields an estimator that also minimizes the original loss.

The adversarial surrogate loss L,qy is endowed with an additional regularization term. It
reduces to a Fenchel-Young loss (Blondel et al., 2020) when the ambiguity radius ¢ is zero. A
conclusion of consistency can drawn based on (Nowak-Vila et al., 2020; Blondel et al., 2020)

and our assumption that the groundtruth is probabilistic:

Corollary 34. When € = 0, Lgqg, is Fisher consistent with respect to L. Namely, for any x,

oF .
IP’Yt'T;" € argmin L(Py|g, ]P’gff‘we)
Y|x
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is the Bayes optimal probabilistic prediction made by 65,,,., the solution in|Equation 5.5 under

Pirue. The prediction made by 0 is IF’%X € arg minp maxq L (PY\Xa Qy|x) + IEQYIXOTqb(X, Y).
Proof. The proof follows similarly Corollary O

The consistency result guarantees that the learned probabilistic prediction rules yield Bayes
optimal risk as ERM with proper losses in the ideal setting with true distributions and all
measurable functions. Also note that the conclusion holds for all quasi-convex losses.

Basic generalization bounds related to true risk for DRO methods can be derived from
measure concentration. This approach depends on the choice of ambiguity sets and may have a
dimensionality issue. It is also not appropriate for ambiguity sets defined by low-order moments.
Thus, we take an alternate approach following (Farnia and Tse, 2016) to prove excess out-of-
sample risk bounds. We assume € > 0 to ensure boundedness of ||@||.. We establish the following

theorem by making mild assumptions on boundedness on features and losses:

Theorem 35. Given n samples, a non-negative multiclass probabilistic loss L(-,-) such that
|L(-,-)| < K, a feature function ¢(-,-) such that ||@p(-,-)|| < B and a positive ambiguity level
e > 0, then, for any 0 < § < 1, with a probability at least 1 — J, the following excess true

worst-case risk bound holds:

4K B 3 /In(4/6)
L(p* Ch
. or (< AEB (3 , 4
QGA?%}P%M@) RQ( emp) QE.AIE‘}I%}P%W@) RQ( t'rue) 5\/ﬁ ( + 2 2 ) (5 )



154

where 0%, and 03, are the optimal parameters learned in |Equation 5.5 under the empirical

distribution P and true distribution P, respectively. The original risk of @ under Q is

R§(0) = EQX’y,IP?,lXL(PY|X7QY\X)'
Proof. The proof follows Theorem O

Theorem [35| improves the results of (Asif et al., 2015) and (Fathony et al., 2016) that only

show qualitative bounds. Under positive regularization, this bound explains the rate of uniform

*

emp learned through the empirical

convergence of the true worst-case risk of the estimator 6
distribution P to the true worst-case risk of the ideal estimator 6}, learned under P""e.
Although the empirical estimator is obtained based on a finite set of samples, Theorem
justifies the roles which the ambiguity set A (-), the feature function ¢(, ), the loss function
L(-,-) and the ambiguity parameter ¢ play in upper bounding the excess out-of-sample worst-case

risk. Intuitively, a larger € will reject more hypotheses that are sensitive with larger dual norms,

whereas the worst-case risk scales with the range of loss and feature functions.

5.3.3 Algorithm

Since L(-,-) is a continuous quasiconvex-concave function, a saddle point in [Equation 5.3

given @ must have a zero derivative with respect to P and Q:

Z QY|w(y)a£(]P)Y|wa y)/aPY|w(y/) + ZIPy|m =0 (55)

E(PY|w7 y) + 0T¢($7 y) + Z@y‘m = 07 (56)
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where Zp, , is the Lagrange multipliers for the simplex constraint Zy Py (y) = 1, similarly for
Zqy,- Note that Zg,,, is constant for all y given @. If £ is local, e.g., {(Py|z,y) is independent
of Py 4(y') for ¥ # y and if £(-,y) is monotone in Py,(y) > 0 (without simplex constraints)
with range R, which is the case for the logarithmic loss, [Equation 5.6| always has a solution and
the system of equations for all y along with the simplex constraint Zy IPy|m(y) has a unique

solution. With few assumptions on the boundedness of £ and 07¢, is ill-posed.

Given IP”{,‘m from [Equation 5.6, the solution @’1“,‘93 to [Equation 5.5|exists iff

1 .. 1 0

is singular. By assuming locality and positiveness, there exists a unique solution Q’{,lm. One
benefit of the proposed method is that users only need to focus on solve and
for proper losses while (Williamson et al., 2016)) additionally require a canonical
link function for convexity.

Next we show how the system of equations can always be solved with specific losses. We
consider an additive combination of the multiclass Brier loss and the logarithmic loss, both
of which are continuous strictly proper losses. As indicated by these losses differ
primarily in how they penalize the ground truth label’s prediction probability as it goes to zero

and one. The Brier loss exhibits quadratic growth. The logarithmic loss has a vertical asymptote
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for labels considered increasingly unlikely to the point of impossibility by the predictor. They
have different penalties for underestimation and overestimation of the desired prediction. A
trade-off between the log loss and the Brier loss thus provides flexibility to control the cost for
misalignment between the prediction and the observation.

We employ this kind of loss in our DRO method and present an efficient algorithm that
can be implemented in practice. With only slight loss of generality and for computational
consideration, we assume a fixed positive weight on the log loss. To begin with, the mixture loss

is
Ui (Py e, y) = —InPy o (y) + B(1 = 2Py 1o (y) + D P31, (1)),
yl

with derivative

aemix(Pﬂm,y)/aPY\m(y) = _1/PY|zc(y) —20+ 25PY|m(y)-

Scalar 8 weights the contribution of the Brier loss, to this additive combination, controlling
the sensitivity of the predictor to underestimation. The adversarial surrogate of this mixture loss
is Fisher consistent as a direct corollary. Methods that solely mix the predictions of classifiers
designed for logarithmic loss minimization and Brier loss optimization, may be appealing for
their simplicity, but are demonstrably sub-optimal. For example, with the logistic loss, logistic
regression provides a natural parametric form for the predictor, that equates loss minimization

with data likelihood maximization.
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Although the Brier loss is not local, the additional sum of quadratic terms Zy, Pg/'w(y/ )
is constant across all y. Therefore has a closed form expression in terms of the
Lambert W function. Furthermore, the sum over y for all Qy |, (y) will cancel out, leaving terms
only dependent on the same y. So is simplified into an expression of Q in terms of

P. Normalizing Q solves Zp, yielding the following proposition:

Proposition 36. The DRO method for a probabilistic loss based on logarithmic loss, and (8
Brier loss has a solution IP’;‘,‘X for the predictor parameterized by @ defined by the following

systems of equations:
PxeX,3C Ry Ph(y) = exp(C + 87 d(x,y) — Wo(28e°+0" ¢x0))), (5.7)

where C' is a constant dependent on 6 and x but independent of y, W (-) is the principal branch

of the Lambert W function. The corresponding adversary Q;“,lx 1s defined as

26PA, (1) + Zpy P () 1- 3, 2832 (y)/(1 + 26P%, (1)

* _ and Z, = 5 ’
Qyx(¥) 1+ 26P%, (y) Fri 3 P ()/(1+ 2685 (v) >

Proof. Recall the saddle-point optimality condition:

2 Qv (y)ol(Py,y) /Py (y) + Zp, =0
Yy

E(PYa y) + er)(mv y) + Z@Y = 0.
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Dependence on « is omitted when context is clear. Substituting ¢y« yields:

Qv (y)(— —28) + 28Py (y) + Zp, =0

_1
Py (y)

—InPy (y) + B(1 — 2Py (y +EIP>Y )+ 0Td(x,y) + Zg, = 0.

Note that C := g8 + 5Zy, ]P’%,(y’) + Zg, is constant across all y’s given 6, . Thus for fixed 0,

x, we have for some Cg .,
Coat0-d(m,y) =InPy(y) +26Py(y) Vyel,
which is equivalent to
93Py (y)e20Py ) — 930 9(@4)+C
By the definition of the Lambert W function,
26Py () = W (266> #@W) 0,

Since Qﬁee"ﬁ(m’y”C;E > 0, the principal branch Wy of the Lamber W function is always

applicable. Also by the formula e W) = Wim), we have

Py (y) = exp(Cy 5 + 0T d(x, y) — Wo(28e 02707 ¢0<0))) vy,
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Let IP§- (for a given ) be a solution to this set of equations that also satisfies }; P§.(y) = 1. By

the optimal QQ satisfies

Q) 2ﬁP*()+ZM,:2m%%y%+ZwP§@)
Y p*( + 28 1+ 28P%(y)

Zp, must be chosen to properly normalize Q3 (y):

28P}
- (v)

+a+28

?@2‘/( = Zpy ), — +a+26+

yP* ylP’*()

1=, M -y 2P (y)

e _ e TP Y TH(at26)PE (y)
SE SR U 3 P (y)
v n»;“,( PRy TaT28 Y 1+(a+28)P3 (y)

Both Zg = and Q¥ (y) are positive because P§. € P(Y) is a solution.

=1
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Algorithm 4 Distributionally robust learning for probabilistic supervised learning with a

mixture of logistic and Brier losses

Input: ¢, IP";(I?}B, , learning rate ~y
Output: 6*

Initialize 8 to be a random vector
repeat

for all xe X do
C, IP’;’}|x('|x) « Bisection(x, ¢, 0, ) byw
Compate @5 () b

end for

Compute 0Laqy/00 by
0 — 0 — y0Laqy/00

until convergence

Now we show how to solve [Equation 5.7| with simplex constraints to obtain IP)’;,|X given

0 for any x € X. Let C = f,(t) = 0T¢(x,y) — Int — 253t be a function of ¢t = IP’;“/|x(y). By
definition, f(-) is a monotonically decreasing function with domain R ; and range R. Its inverse
mapping f~!(-) is monotonically decreasing with domain R and range R, ,. Therefore, let
9(C) =2, ) = h3 P;",|X(y), according to the intermediate value theorem, there exists

C* € R such that g(C*) = >, ]P’;",‘X(y) = 1. Because of their monotonicity, we can find C* and
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P;‘,lx(-) as a solution to [Equation 5.7| via bisection method. Once IF’;‘,|X is obtained, we can find

(@;"/‘X simply by substitution. After that, the sub-gradient,

OLaav/06 = Epgre (Eqy  [#(X,Y)] — Epemy [¢(X,Y)]) + 02[16]./ 06, (5.9)

can be leveraged to optimize 6. The above steps are summarized in Algorithm [4}

5.3.4 Differentiable Learning

By taking advantage of deep neural networks, our method will be able to jointly optimize
data representation and the Lagrange multipliers:

),

min E]P,;np L.qv (6, PY|X

07¢

enjoying the benefits of end-to-end representation learning without manually looking for a good
feature mapping ¢. More off-the-shelf mini-batch training tools could be leveraged as well.
We show how to make use of our DRO method as a loss layer in neural network training.
A network for supervised learning typically has a linear classification layer in the end without
activation. Assume the penultimate layer outputs ¢(x), the last layer will output a |Y|-
dimensional vector ¥ (z) = [(01)Tp(x),...,(00Y))Té(x)]. This is essentially equivalent to
adopting a multi-vector representation to construct ¢. Specifically, given x € R? and y € [|V|],
the resulting feature vector v = ¢(x,y) € R4V satisfies Uyd—d+i = x; for i € [d] and v; = 0

otherwise. Therefore taking () as the input is sufficient for us to compute IP’;‘/| . and Q;"/‘ L In
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this way, our method is the loss layer without learnable parameters, which backpropagates the

sub-derivative of loss with respect to 1 (x) to the linear classification layer:

E]p;mp (qy|X — p;nr;) € aLadv/a'l»b(m)'

Recall g and p®™P are the probability vectors for Q and P™P. The sub-gradient with respect to

0 is added to the classification layer.

5.4 Experiments

In the experiments, we consider as the performance measure the L-risk RE(h), also called the
expected generalization loss. The mixture loss £,ix of the log loss and Brier loss is adopted. The
normalized generalization loss mRﬁmest(h) is estimated based on the test set distribution
Pt

We compare our adversarial learning approach against an uninformed baseline (UNINF)
(Gressmann et al., 2018), multi-layer perceptron (MLP) (Hinton, 1990) and k-nearest neighbor
(KNN) (Beygelzimer et al., 2006). All the baseline methods are able to make use of probabilistic
labels in both training and testing. The uninformed baseline simply outputs the marginal label
distribution Py based on training data as inference. We adopt a three-layer neural network
for MLP and our method, who share the same number of parameters. To make a more fair
comparison, we set € = 0 such that the final classification layer is unregularized. MLP computes

the target loss Lpyix with an additional softmax layer applied to the logits.
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We implement MLP and our method using PyTorch (Paszke et al., 2019). We adopt the
KNN implementation from the scikit-learn library (Pedregosa et al., 2011). The uninformed
baseline is implemented in Python. For optimization, we use Adam (Kingma and Ba, 2014) for
MLP and our method. The number of hidden units is set to 100. The number of training steps
is set to 500 with a batch size of 64. The number of neighbors is 11 for KNN. We set § = 1.
Default values are used for unmentioned hyperparameters.

We conduct experiments on several real-world datasets, including corel5k (Duygulu et al.,
2002), Emotion6 (Peng et al., 2015)), flags (Gongalves et al., 2013), Stackex_chess (Charte
et al., 2015)), GpositivePseAAC, PlantPseAAC, GnegativePseAAC and VirusPseAAC (Xu et al.]
2016), having statistics reported in The ground truth labels in these dataset are
either originally probabilistic or converted to a uniform distribution for multi-label classification
datasets. At the beginning of each run, we randomly choose 80% of the dataset as the training
set and the remaining 20% for evaluation. We further take 20% of the training set as the
validation set to determine the best parameter for final testing.

We repeat the above process 100 times for each dataset on a laptop with a 2.7 GHz Quad-Core
Intel Core i7 CPU. All the methods take less than 1 minute per run in wall time. The results
in show that our proposed method outperforms the baselines in most of the adopted
datasets or achieves similar performance to the best method with no statistical significance.

For sensitivity analysis, we fix a random split of the Stackex_chess dataset and vary /5 with
other settings unchanged. The experiments are repeated 10 times. As shown in the

expected loss of our method on the test set is slightly better than MLP when 3 is small but
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TABLE IV: Dataset statistics and normalized generalization losses with 95% confidence intervals
on each dataset. The best results are indicated in bold. { indicates statistical significance with

paired t-test (p < 0.05).

Dataset corelbk GnegativePseAAC Emotion6 flags
n 5000 1392 1980 194
|V] 374 8 7 7
Features 499 440 300 19
UNINF  2.912 £+ 0.002f 0.367 £ 0.0037 1.347 £ 0.0011  1.315 £ 0.004f
MLP 2.700 £+ 0.004F 0.308 + 0.003 1.343 + 0.001 1.306 £ 0.007
KNN 3.783 £ 0.013f 0.324 £ 0.0047 1.374 £ 0.002f  1.353 + 0.012f
Ours 2.696 + 0.004 0.308 + 0.003 1.344 £ 0.001f  1.306 + 0.007
Dataset GpositivePseAAC PlantPseAAC Stackex chess VirusPseAAC
n 519 978 1672 207
|V 4 12 227 6
Features 440 440 585 440
UNINF 0.385 £+ 0.0047 0.724 £ 0.003f  2.720 £ 0.005f  0.707 £ 0.007f
MLP 0.336 + 0.005 0.668 + 0.003 2.522 £ 0.0097 0.684 + 0.008
KNN 0.344 £+ 0.0057 0.730 £ 0.005f  3.448 £0.014f 0.733 £ 0.0117
Ours 0.336 = 0.005 0.668 + 0.003 2.504 + 0.008  0.686 + 0.008

has large variance as (8 increases. In contrast, baselines including UNINF and KNN are trained
obliviously to the final metric, thus not comparable to our method and MLP that minimize the
target loss directly.

Additionally, we study the robustness of our approach by introducing noise to the training
set of the Stackex_chess dataset, repeated 10 times. To this end, for each instance x, with a
probability ppoise, we replace the ground truth by a random distribution from P()). We vary
Pnoise from 0 to 0.5. As seen in [Figure 7] our method is slightly better when ppeice < 0.3 and

becomes vulnerable for large ppoise possibly because of the backbone neural network model.
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Figure 7: Normalized generalization losses with different coefficients or noise levels. Left: varying
B in [0.001,0.1]. Right: varying probability of contamination in [0,0.5]. The X axes of the left
subfigure is in logarithmic scale. Best viewed in color.

5.5 Concluding Remarks

We propose a moment-based distributionally robust learning framework for probabilistic
supervised learning under mild assumptions, show its equivalence to dual-norm regularization
for a surrogate loss, present its out-of-sample guarantees, develop efficient algorithms for typical
continuous proper losses, incorporate the proposed method into differentiable learning and

conduct experiments on several real-world datasets.



CHAPTER 6

CONCLUSION AND DISCUSSION

In this thesis, we study several structural learning problems from the perspective of distri-
butionally robust optimization. Specifically, we propose a statistical learning framework for
learning the structure of a discrete pairwise Markov network and a Bayesian network, as well as
learning a structure mapping for tree-shaped objects and objects in a simplex. Based on the
Wasserstein distances, KL divergences and feature moments, we show that the proposed methods
are computationally efficient, sample efficient, Fisher consistent and robust at the same time.
Extensive experimental results showcase their generalization ability and robustness under varying
data contamination. This thesis illustrates a powerful framework for data-driven structural
problems under high uncertainty. We expect our work to inspire similar or complementary
structural learning paradigms and practical machine learning algorithms in the era of big data.

In the following sections, we point out limitations, future work and potential societal impacts

of our methods.

6.1 Structure Learning

Formulating the complete DAG learning problem as one optimization problem may lead to
a non-convex problem. A crucial challenge that leads to such non-convexity is the acyclicity
constraint on the output graph. Existing methods either characterize the acyclicity constraint

by matrix exponentials (Zheng et al., 2018]) or simply optimize over the space of permutations
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of nodes (Park and Klabjan, 2017), both of which lead to a highly non-convex problem whose
global optima are difficult to find exactly. In Chapter [3| we focus on skeleton learning with
provable guarantees and rely on existing orientation determination methods to produce the
final DAG. We argue that recovering the exact skeleton with polynomial time complexities
and sample complexities is perhaps the best we can expect. Figuring out the directionalities is
closely related to the graph theoretic nature of the problem, which is dependent on fundamental
results in computer science. Nonetheless, leveraging a principled adversarial training approach
(Sinha et al., 2018) with advanced representation learning models is a promising future direction
to pursue for practical use. For example, we may seek the following DRO estimator:

inf sup Eg||€(X) — WE(X)],
€€F7W€]R"X”,tr(eW°W)—n:0QEB\ Q” ( ) ( )H

where the minimization is taken over a highly non-convex set, thus in fundamental contrast to
the convex optimization problems considered in this dissertation. Since continuous optimization
approaches with neural networks may lead to a trivial solution (Wei et al., 2020), a natural
question is to what extent can a representation learning model £(-) take advantage of DRO to
alleviate these issues given the fact that a globally optimal solution cannot be found in usual.
It is also questionable whether distributional robustness is harmful to DAG learning when the
performance metric is on structures rather than statistical distances.

Despite absolute continuity, KL divergence usually allows a DRO problem to have a simple

dual problem and good statistical guarantees, as shown in this thesis. These formulations have
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been shown to recover adversarial reweighting (Li and Dunson, 2020), which is intuitive given
that likelihood ratios are explicitly used. KL DRO is known to lead to pathological distributions
compared to Wasserstein DRO that incorporates a notion of closeness and encompasses sound
measure concentration guarantees. However, the empirical results illustrated in the thesis cast
doubt on why a pathological distribution absolutely continuous with respect to the empirical
distribution whose support is much sparse in the space of all possible states is in any way
beneficial to successful learning. What kind of graphical models are they capable of dealing
with? For example, a distribution in structure learning that makes KL DRO fail but Wasserstein
DRO succeed. Be that as it may, a method would be highly desirable if it combines the efficiency
of KL DRO and the stronger generalization ability of Wasserstein DRO.

We observe superior performance of Wasserstein DRO methods in structure learning problems.
A noteworthy drawback is the more expensive computational cost. For undirected graphical
models, the per-iteration costs O(nk + nlogn) and O(nk) in terms of n and k to optimize our
objectives may not be improved further unless approximate gradient computation is acceptable.
However, faster overall convergence rates (e.g., better than O(n2k?)) are possible if we replace
L-BFGS-B with advanced optimization methods designed for DRO (Yu et al., 2021a; Namkoong
and Duchi, 2016|). Similar approaches based on stochastic gradient descents and more efficient
approximate algorithms would work for Bayesian networks as well. In practice, especially in
large-scale settings, it is often desirable to sacrifice optimality for a much more efficient algorithm

that yields a sub-optimal but reasonably feasible solution.
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Although robust to a set of adversarial distributions, our structure learning estimators may
not be superior to robust estimators tailored to a certain class of contamination models or
parametric distributions, for instance, (Goel et al., 2019; Prasad et al., 2020; Diakonikolas et al..
2021). In order to match these approaches in this case, one may consider incorporating prior
distributional information to reshape ambiguity sets. For example, one can construct the set by
adding all possible noises to the nominal distribution or by including all parametric distributions
with the assumption on a parametric form of noises.

Furthermore, we are also curious about a general characterization of the conditions under
which a structural learning problem has a tractable exact reformulation for Wasserstein DRO.
Namely, what are the sufficient conditions in terms of functional analysis for tractability with
general transport-based ambiguity sets? The metric that defines a Wasserstein ambiguity set is
also crucial for a tractable reformulation (Nguyen et al., 2020). Formulating such conditions is
beneficial to understanding both distributionally robust structure learning problems and DRO

problems that study discrete distributions.

6.1.1 Structured Prediction

We address structured prediction problems with moment-based ambiguity sets. It is unclear
if other types of ambiguity sets lead to Fisher consistency as well. Intuitively, a Wasserstein
ambiguity set is expected to induce consistency due to its measure concentration results.
However, the computational difficulty may be similar to a ERM approach with an identical loss

function. Moreover, the Fenchel-Young loss framework (Blondel et al., 2020) is very similar to a
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moment DRO framework. Specifically, the dual problem of moment-based DRO is equivalent to
minimizing a Fenchel-Young loss with zero regularization and shared feature parameters.

In addition to consistency, the finite-sample guarantees and algorithms derived in the
thesis should be easily generalizable to other structured prediction problems. An important
challenge lies in developing efficient projection oracles for a polytope of specific structures of
interest. We introduce a few quadratic terms to induce strong convexity, which, however, elicits
such projection oracles. In tasks with more complicated structures and high-order structured
prediction, computing a Fuclidean projection may not be tractable. The max-min oracle
proposed in (Nowak-Vila et al., 2020) is a Frank-Wolfe algorithm with an (’)(%) convergence rate.
The next step to improve on this is to propose a unified DRO framework for general structured
prediction possibly without projection or with better projection oracles whose convergence rate
is better than O(2).

We assume that an expressive feature mapping is given such that a sufficiently good linear
discriminant rule can be learned. This is aligned with the assumption of Fisher consistency
that all the measurable functions are available. The class-sensitive form ¢(x,y) is general but
consumes more memory than the decomposable form ¢x(x) ® ¢y (y). A deep learning model
typically transforms the original feature ¢ x () and maps the transformed features to logits
¢y (¢px(x)) that encode its belief on conditional labels. What effect is this subtle difference in
computational and statistical perspectives?

In the probabilistic supervised learning problem, a drawback of our method is that solving

the saddle-point problem can be difficult for complicated losses. Neural networks equipped with
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a soft-max layer makes use of automatic differentiation to avoid facing this issue though local
optima are returned. Harnessing powerful representation learning tools to jointly learn data
representation and parameters in our methods is worth further exploring. We are wondering
how well can the learning framework enhance the performance of a deep learning model on
consistent uncertainty estimation regardless of its lacking theoretical guarantees. What data
corruption is the learned representation robust to? Are they strong against adversarial attacks
on the feature space?

For some other future work, it would be interesting to extend the proposed DRO approaches
to continuous higher-order graphical models and conditional density estimation. Reducing
computational costs is expected to benefit all of the proposed methods. Another direction to

consider is to adopt ambiguity sets based on higher-order moments (de Klerk et al., 2020)).

6.2 Potential Societal Impacts

Potential negative societal impacts of our work depend on applications. For example,
the structure of a private network could be revealed if the underlying graph satisfies certain
assumptions. For voting network analysis, our method can help understand relation between
voters. However, without appropriate tuning, the recovered structure could mislead specific
decisions. Its robustness could also filter out outlier data that are possibly representative of
minority groups. Moreover, using the prediction for decision-making in crucial clinical scenarios
without verification may be harmful to subjects. Therefore, users should be careful to apply our

methods to guide human-centered design.



CITED LITERATURE

[Abadeh et al. , 2015]Abadeh, S. S., Esfahani, P. M. M., and Kuhn, D.: Distributionally robust
logistic regression. In Advances in Neural Information Processing Systems, pages 1576—
1584, 2015.

[Altun and Smola, 2006]Altun, Y. and Smola, A.: Unifying divergence minimization and statisti-
cal inference via convex duality. In International Conference on Computational Learning
Theory, pages 139-153. Springer, 2006.

[Asif et al. , 2015]Asif, K., Xing, W., Behpour, S., and Ziebart, B. D.: Adversarial cost-sensitive clas-
sification. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, pages
92-101, 2015.

[Bank and Honorio, 2020|Bank, A. and Honorio, J.: Provable efficient skeleton learning of encodable
discrete bayes nets in poly-time and sample complexity. In 2020 IEEE International
Symposium on Information Theory (ISIT), pages 2486-2491. IEEE, 2020.

[Bansal et al. , 2019]Bansal, K., Loos, S., Rabe, M., Szegedy, C., and Wilcox, S.: Holist: An
environment for machine learning of higher order logic theorem proving. In International
Conference on Machine Learning, pages 454-463. PMLR, 2019.

[Bartlett and Cussens, 2017]Bartlett, M. and Cussens, J.: Integer linear programming for the
bayesian network structure learning problem. Artificial Intelligence, 244:258-271, 2017.

[Bartlett and Mendelson, 2002|Bartlett, P. L. and Mendelson, S.: Rademacher and gaussian com-
plexities: Risk bounds and structural results. Journal of Machine Learning Research,
3(Nov):463-482, 2002.

[Bayraksan and Love, 2015|Bayraksan, G. and Love, D. K.: Data-driven stochastic programming
using phi-divergences. In The operations research revolution, pages 1-19. INFORMS, 2015.

[Ben-Tal et al. , 2013|Ben-Tal, A., Den Hertog, D., De Waegenaere, A., Melenberg, B., and Ren-
nen, G.: Robust solutions of optimization problems affected by uncertain probabilities.
Management Science, 59(2):341-357, 2013.

172



173

[Ben-Tal et al. , 2009]Ben-Tal, A., El Ghaoui, L., and Nemirovski, A.: Robust optimization. Prince-
ton university press, 2009.

[Bendale and Boult, 2016)|Bendale, A. and Boult, T. E.: Towards open set deep networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1563-1572, 2016.

[Bertsimas et al. , 2011|Bertsimas, D., Brown, D. B., and Caramanis, C.: Theory and applications
of robust optimization. STAM review, 53(3):464-501, 2011.

[Bertsimas and Copenhaver, 2018|Bertsimas, D. and Copenhaver, M. S.: Characterization of the
equivalence of robustification and regularization in linear and matrix regression. European
Journal of Operational Research, 270(3):931-942, 2018.

[Bertsimas et al. , 2022|Bertsimas, D., Imai, K., and Li, M. L.: Distributionally robust causal
inference with observational data. arXiv preprint arXiv:2210.08326, 2022.

[Beygelzimer et al. , 2006]Beygelzimer, A., Kakade, S., and Langford, J.: Cover trees for nearest
neighbor. In Proceedings of the 23rd international conference on Machine learning, pages
97-104, 2006.

[Bickel, 2007]|Bickel, J. E.: Some comparisons among quadratic, spherical, and logarithmic scoring
rules. Decision Analysis, 4(2):49-65, 2007.

[Blanchet et al. , 2019a|Blanchet, J., Glynn, P. W., Yan, J., and Zhou, Z.: Multivariate distribution-
ally robust convex regression under absolute error loss. In Advances in Neural Information
Processing Systems, pages 11794-11803, 2019.

[Blanchet et al. , 2019b]|Blanchet, J., Kang, Y., and Murthy, K.: Robust wasserstein profile inference
and applications to machine learning. Journal of Applied Probability, 56(3):830-857, 2019.

[Blanchet and Murthy, 2019]Blanchet, J. and Murthy, K.: Quantifying distributional model risk via
optimal transport. Mathematics of Operations Research, 44(2):565-600, 2019.

[Blondel, 2019]Blondel, M.: Structured prediction with projection oracles. Advances in Neural
Information Processing Systems, 32:12145-12156, 2019.

[Blondel et al. , 2020|Blondel, M., Martins, A. F., and Niculae, V.: Learning with Fenchel-Young
losses. J. Mach. Learn. Res., 21(35):1-69, 2020.




174

[Boissard and others, 2011|Boissard, E. et al.: Simple bounds for the convergence of empirical and
occupation measures in 1-wasserstein distance. Electronic Journal of Probability, 16:2296—
2333, 2011.

[Bolley et al. , 2007]Bolley, F., Guillin, A., and Villani, C.: Quantitative concentration inequalities
for empirical measures on non-compact spaces. Probability Theory and Related Fields,
137:541-593, 2007.

[Boyd et al. , 2011]Boyd, S., Parikh, N., and Chu, E.: Distributed optimization and statistical
learning via the alternating direction method of multipliers. Now Publishers Inc, 2011.

[Bradley and Guestrin, 2010]|Bradley, J. K. and Guestrin, C.: Learning tree conditional random
fields. In Proceedings of the 27th International Conference on International Conference
on Machine Learning, pages 127-134, 2010.

[Bresler, 2015|Bresler, G.: Efficiently learning ising models on arbitrary graphs. In Proceedings of
the forty-seventh annual ACM symposium on Theory of computing, pages 771-782, 2015.

[Bresler et al. , 2013|Bresler, G., Mossel, E., and Sly, A.: Reconstruction of Markov random fields
from samples: Some observations and algorithms. STAM Journal on Computing, 42(2):563—
578, 2013.

[Brier, 1950|Brier, G. W.: Verification of forecasts expressed in terms of probability. Monthly
weather review, 78(1):1-3, 1950.

[Brooks, 1998|Brooks, S.: Markov chain Monte Carlo method and its application. Journal of the
Royal Statistical Society: Series D (the Statistician), 47(1):69-100, 1998.

[Byrd et al. , 1995|Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A limited memory algorithm for
bound constrained optimization. STAM Journal on scientific computing, 16(5):1190-1208,
1995.

[Calafiore and El Ghaoui, 2006]Calafiore, G. C. and El Ghaoui, L.: On distributionally robust chance-
constrained linear programs. Journal of Optimization Theory and Applications, 130(1):1—
22, 2006.

[Chapman, 2012]Chapman, L.: Probabilistic road weather forecasting. In Proceedings of the 16th
SIRWEC Conference, Helsinki, Finland, May 2012, 2012.




175

arikar an irth, arikar, M. an irth, A.: Maximizing quadratic programs: Extending

Charik: d Wirth, 2004|Charikar, M. and Wirth, A.: Maximizi drati E di
grothendieck’s inequality. In 45th Annual IEEE Symposium on Foundations of Computer
Science, pages 54-60. IEEE, 2004.

[Charte et al. , 2015]Charte, F., Rivera, A. J., del Jesus, M. J., and Herrera, F.: Quinta: A question
tagging assistant to improve the answering ratio in electronic forums. In leee eurocon
2015-international conference on computer as a tool (eurocon), pages 1-6. IEEE, 2015.

[Chayes et al. , 1984]Chayes, J., Chayes, L., and Lieb, E. H.: The inverse problem in classical
statistical mechanics. Communications in Mathematical Physics, 93(1):57-121, 1984.

[Chen and Manning, 2014]Chen, D. and Manning, C. D.: A fast and accurate dependency parser
using neural networks. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 740-750, 2014.

[Chen and Paschalidis, 2018]Chen, R. and Paschalidis, I. C.: A robust learning approach for regres-
sion models based on distributionally robust optimization. Journal of Machine Learning
Research, 19(13), 2018.

[Chen et al. , 2019]Chen, W., Drton, M., and Wang, Y. S.: On causal discovery with an equal-
variance assumption. Biometrika, 106(4):973-980, 2019.

[Chen, 2010]Chen, Y.: Learning sparse Ising models with missing data. Stanford University, 2010.

[Chen et al. , 2019]Chen, Z., Sim, M., and Xu, H.: Distributionally robust optimization with infinitely
constrained ambiguity sets. Operations Research, 67(5):1328-1344, 2019.

[Cheng et al. , 2010]Cheng, W., Hiillermeier, E., and Dembczynski, K. J.: Bayes optimal multilabel
classification via probabilistic classifier chains. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages 279-286, 2010.

[Chickering, 2002]Chickering, D. M.: Optimal structure identification with greedy search. Journal
of machine learning research, 3(Nov):507-554, 2002.

[Chickering et al. , 2004]Chickering, M., Heckerman, D., and Meek, C.: Large-sample learning of
bayesian networks is np-hard. Journal of Machine Learning Research, 5:1287-1330, 2004.

[Chow and Liu, 1968]Chow, C. and Liu, C.: Approximating discrete probability distributions with
dependence trees. IEEE transactions on Information Theory, 14(3):462-467, 1968.




176

[Ciliberto et al. , 2019]Ciliberto, C., Bach, F., and Rudi, A.: Localized structured prediction.
Advances in Neural Information Processing Systems, 32, 2019.

[Ciliberto et al. , 2016]Ciliberto, C., Rosasco, L., and Rudi, A.: A consistent regularization approach
for structured prediction. Advances in neural information processing systems, 29:4412—
4420, 2016.

[Cisneros-Velarde et al. , 2020]Cisneros-Velarde, P., Petersen, A., and Oh, S.-Y.: Distributionally
robust formulation and model selection for the graphical lasso. In International Conference
on Artificial Intelligence and Statistics, pages 756-765. PMLR, 2020.

[Collins et al. , 2002]Collins, M., Schapire, R. E., and Singer, Y.: Logistic regression, adaboost and
bregman distances. Machine Learning, 48(1-3):253-285, 2002.

[Colombo et al. , 2014]Colombo, D., Maathuis, M. H., et al.: Order-independent constraint-based
causal structure learning. J. Mach. Learn. Res., 15(1):3741-3782, 2014.

[Condat, 2016]Condat, L.: Fast projection onto the simplex and the 1.1 ball. Mathematical
Programming, 158(1-2):575, 2016.

[Conneau et al. , 2020]Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmén,
F., Grave, E., Ott, M., Zettlemoyer, L., and Stoyanov, V.: Unsupervised cross-lingual repre-
sentation learning at scale. In Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics, pages 8440-8451, 2020.

[Constantinou et al. , 2021]Constantinou, A. C., Liu, Y., Chobtham, K., Guo, Z., and Kitson, N. K.:
Large-scale empirical validation of bayesian network structure learning algorithms with
noisy data. International Journal of Approximate Reasoning, 131:151-188, 2021.

[Cortes et al. , 2015]Cortes, C., Kuznetsov, V., Mohri, M., and Syed, U.: Structural maxent models.
In International Conference on Machine Learning, pages 391-399. PMLR, 2015.

[Cranko et al. , 2021|Cranko, Z., Shi, Z., Zhang, X., Nock, R., and Kornblith, S.: Generalised
lipschitz regularisation equals distributional robustness. In International Conference on
Machine Learning, pages 2178-2188. PMLR, 2021.

[Cui et al. , 2020]Cui, Y., Che, W., Liu, T., Qin, B., Wang, S., and Hu, G.: Revisiting pre-
trained models for chinese natural language processing. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 657-668, 2020.




177

[Daneshmand et al. , 2014]Daneshmand, H., Gomez-Rodriguez, M., Song, L., and Schoelkopf, B.:
Estimating diffusion network structures: Recovery conditions, sample complexity & soft-
thresholding algorithm. In International conference on machine learning, pages 793-801.
PMLR, 2014.

[Dawid, 2007]Dawid, A. P.: The geometry of proper scoring rules. Annals of the Institute of
Statistical Mathematics, 59(1):77-93, 2007.

[De Campos et al. , 2009]De Campos, C. P., Zeng, Z., and Ji, Q.: Structure learning of bayesian
networks using constraints. In Proceedings of the 26th Annual International Conference
on Machine Learning, pages 113-120, 2009.

[de Klerk et al. , 2020]de Klerk, E., Kuhn, D., and Postek, K.: Distributionally robust optimization
with polynomial densities: theory, models and algorithms. Mathematical Programming,
181:265-296, 2020.

[De Marneffe and Manning, 2008]De Marneffe, M.-C. and Manning, C. D.: The Stanford typed depen-
dencies representation. In Coling 2008: proceedings of the workshop on cross-framework
and cross-domain parser evaluation, pages 1-8, 2008.

[Delage and Ye, 2010]Delage, E. and Ye, Y.: Distributionally robust optimization under moment
uncertainty with application to data-driven problems. Operations research, 58(3):595-612,
2010.

[Deng and Yin, 2016]Deng, W. and Yin, W.: On the global and linear convergence of the generalized
alternating direction method of multipliers. Journal of Scientific Computing, 66(3):889-916,
2016.

[Diakonikolas et al. , 2021]Diakonikolas, I., Kane, D. M., Stewart, A., and Sun, Y.: Outlier-robust
learning of ising models under dobrushin’s condition. In Proceedings of Thirty Fourth
Conference on Learning Theory, eds. M. Belkin and S. Kpotufe, volume 134 of Proceedings
of Machine Learning Research, pages 1645-1682. PMLR, 15-19 Aug 2021.

[Dozat and Manning, 2017]Dozat, T. and Manning, C. D.: Deep biaffine attention for neural
dependency parsing. In 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017.

[Drton and Maathuis, 2017]Drton, M. and Maathuis, M. H.: Structure learning in graphical modeling.
Annual Review of Statistics and Its Application, 4:365-393, 2017.




178

[Dubois et al. , 2020]Dubois, Y., Kiela, D., Schwab, D. J., and Vedantam, R.: Learning optimal
representations with the decodable information bottleneck. Advances in Neural Information
Processing Systems, 33:18674-18690, 2020.

[Duchi and Namkoong, 2019]Duchi, J. and Namkoong, H.: Variance-based regularization with convex
objectives. The Journal of Machine Learning Research, 20(1):2450-2504, 2019.

[Duygulu et al. , 2002]Duygulu, P., Barnard, K., de Freitas, J. F., and Forsyth, D. A.: Object
recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In
Furopean conference on computer vision, pages 97-112. Springer, 2002.

[Dyer et al. , 2015|Dyer, C., Ballesteros, M., Ling, W., Matthews, A., and Smith, N. A.
Transition-based dependency parsing with stack long short-term memory. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 334-343, 2015.

[Eagle et al. , 2009]Eagle, N., Pentland, A. S., and Lazer, D.: Inferring friendship network
structure by using mobile phone data. Proceedings of the national academy of sciences,
106(36):15274-15278, 2009.

[Elsberry, 2002]Elsberry, R. L.: Predicting hurricane landfall precipitation: Optimistic and pes-
simistic views from the symposium on precipitation extremes. Bulletin of the American

Meteorological Society, 83(9):1333-1339, 2002.

[Esfahani and Kuhn, 2018]Esfahani, P. M. and Kuhn, D.: Data-driven distributionally robust opti-
mization using the Wasserstein metric: Performance guarantees and tractable reformulations.
Mathematical Programming, 171(1-2):115-166, 2018.

[Farnia and Tse, 2016]Farnia, F. and Tse, D.: A minimax approach to supervised learning. In
Advances in Neural Information Processing Systems, pages 4240-4248, 2016.

[Fathony et al. , 2018]Fathony, R., Behpour, S., Zhang, X., and Ziebart, B.: Efficient and consistent
adversarial bipartite matching. In International Conference on Machine Learning, pages
1457-1466, 2018.

[Fathony et al. , 2016]Fathony, R., Liu, A., Asif, K., and Ziebart, B.: Adversarial multiclass clas-
sification: A risk minimization perspective. Advances in Neural Information Processing
Systems, 29:559-567, 2016.




179

[Fathony et al. , 2018]Fathony, R., Rezaei, A., Bashiri, M. A., Zhang, X., and Ziebart, B.: Distribu-
tionally robust graphical models. Advances in Neural Information Processing Systems, 31,
2018.

[Fournier and Guillin, 2015|Fournier, N. and Guillin, A.: On the rate of convergence in wasserstein
distance of the empirical measure. Probability theory and related fields, 162(3-4):707-738,
2015.

[Frank et al. , 1956]Frank, M., Wolfe, P., et al.: An algorithm for quadratic programming. Naval
research logistics quarterly, 3(1-2):95-110, 1956.

[Friedman et al. , 2000]Friedman, J., Hastie, T., and Tibshirani, R.: Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors). The annals of
statistics, 28(2):337-407, 2000.

[Friedman et al. , 2008]Friedman, J., Hastie, T., and Tibshirani, R.: Sparse inverse covariance
estimation with the graphical lasso. Biostatistics, 9(3):432-441, 2008.

[Friesen, 2019]Friesen, M.: Extended formulations for higher order polytopes in combinatorial
optimization. Doctoral dissertation, Otto von Guericke University Magdeburg, 2019.

[Gabow et al. , 1986]Gabow, H. N., Galil, Z., Spencer, T., and Tarjan, R. E.: Efficient algorithms
for finding minimum spanning trees in undirected and directed graphs. Combinatorica,
6(2):109-122, 1986.

[Ganian and Korchemna, 2021]Ganian, R. and Korchemna, V.: The complexity of bayesian net-
work learning: Revisiting the superstructure. Advances in Neural Information Processing
Systems, 34:430—442, 2021.

[Gao et al. , 2020]Gao, M., Ding, Y., and Aragam, B.: A polynomial-time algorithm for learning non-
parametric causal graphs. Advances in Neural Information Processing Systems, 33:11599—
11611, 2020.

[Gao et al. , 2022]Gao, R., Chen, X., and Kleywegt, A. J.: Wasserstein distributionally robust
optimization and variation regularization. Operations Research, 2022.

[Gao and Kleywegt, 2022]Gao, R. and Kleywegt, A.: Distributionally robust stochastic optimization
with wasserstein distance. Mathematics of Operations Research, 2022.




180

[Gao et al. , 2022]Gao, T., Bhattacharjya, D., Nelson, E., Liu, M., and Yu, Y.: Idyno: Learning
nonparametric dags from interventional dynamic data. In International Conference on
Machine Learning, pages 6988-7001. PMLR, 2022.

[Gasse et al. , 2014]Gasse, M., Aussem, A., and Elghazel, H.: A hybrid algorithm for bayesian
network structure learning with application to multi-label learning. Expert Systems with
Applications, 41(15):6755-6772, 2014.

[Gast and Roth, 2018]Gast, J. and Roth, S.: Lightweight probabilistic deep networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3369-3378,
2018.

[Gelman et al. , 2014]Gelman, A., Hwang, J., and Vehtari, A.: Understanding predictive information
criteria for bayesian models. Statistics and computing, 24(6):997-1016, 2014.

[Geng, 2016]Geng, X.: Label distribution learning. IEEE Transactions on Knowledge and Data
Engineering, 28(7):1734-1748, 2016.

[Ghoshal and Honorio, 2017]Ghoshal, A. and Honorio, J.: Learning identifiable gaussian bayesian
networks in polynomial time and sample complexity. Advances in Neural Information
Processing Systems, 30, 2017.

[Ghoshal and Honorio, 2018]Ghoshal, A. and Honorio, J.: Learning linear structural equation
models in polynomial time and sample complexity. In International Conference on Artificial
Intelligence and Statistics, pages 1466-1475. PMLR, 2018.

[Gimpel and Smith, 2010]Gimpel, K. and Smith, N. A.: Softmax-margin crfs: Training
log-linear models with cost functions. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association for Computational
Linguistics, pages 733-736, 2010.

[Gneiting and Raftery, 2007]Gneiting, T. and Raftery, A. E.: Strictly proper scoring rules, prediction,
and estimation. Journal of the American statistical Association, 102(477):359-378, 2007.

[Goel et al. , 2019]Goel, S., Kane, D. M., and Klivans, A. R.: Learning Ising models with independent
failures. In Conference on Learning Theory, pages 1449-1469, 2019.

[Goh and Sim, 2010]Goh, J. and Sim, M.: Distributionally robust optimization and its tractable
approximations. Operations research, 58(4-part-1):902-917, 2010.




181

[Gongalves et al. , 2013]Gongalves, E. C., Plastino, A., and Freitas, A. A.: A genetic algorithm
for optimizing the label ordering in multi-label classifier chains. In 2013 IEEE 25th
International Conference on Tools with Artificial Intelligence, pages 469-476. IEEE, 2013.

[Good, 1952]Good, I..  Rational decisions. Journal of the Royal Statistical Society. Series B
(Methodological), 14(1):107-114, 1952.

[Gormley et al. , 2015]Gormley, M. R., Dredze, M., and Eisner, J.: Approximation-aware depen-
dency parsing by belief propagation. Transactions of the Association for Computational
Linguistics, 3:489-501, 2015.

[Grbovic and Cheng, 2018]Grbovic, M. and Cheng, H.: Real-time personalization using embeddings
for search ranking at airbnb. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 311-320, 2018.

[Gressmann et al. , 2018]Gressmann, F., Kirdly, F. J., Mateen, B., and Oberhauser, H.: Probabilistic
supervised learning. arXiv preprint arXiv:1801.00753, 2018.

[Grinwald and Dawid, 2004]Griinwald, P. D. and Dawid, A. P.: Game theory, maximum en-
tropy, minimum discrepancy and robust Bayesian decision theory. the Annals of Statistics,
32(4):1367-1433, 2004.

[Guo et al. , 2017]Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q.: On calibration of mod-
ern neural networks. In International Conference on Machine Learning, pages 1321-1330.
PMLR, 2017.

[Hager and Zhang, 2020]Hager, W. W. and Zhang, H.: Convergence rates for an inexact admm
applied to separable convex optimization. Computational Optimization and Applications,
77(3):729-754, 2020.

[Hamilton et al. , 2017]Hamilton, L., Koehler, F., and Moitra, A.: Information theoretic properties
of Markov random fields, and their algorithmic applications. In Advances in Neural
Information Processing Systems, pages 24632472, 2017.

[Hastie et al. , 2009]Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Tibshirani, R., and Friedman,
J.: Overview of supervised learning. The elements of statistical learning: Data mining,
inference, and prediction, pages 9—41, 2009.

[Hastie et al. , 2015]|Hastie, T., Tibshirani, R., and Wainwright, M.: Statistical learning with sparsity.
Monographs on statistics and applied probability, 143:143, 2015.




182

[He et al. , 2018]He, X., He, Z., Du, X., and Chua, T.-S.: Adversarial personalized ranking for recom-
mendation. In The 41st International ACM SIGIR conference on research & development
in information retrieval, pages 355-364, 2018.

[Heinze-Deml et al. , 2018]Heinze-Deml, C., Maathuis, M. H., and Meinshausen, N.: Causal structure
learning. Annual Review of Statistics and Its Application, 5:371-391, 2018.

[Hinton, 1990]Hinton, G. E.: Connectionist learning procedures. In Machine learning, pages 555-610.
Elsevier, 1990.

[Hu and Hong, 2013]Hu, Z. and Hong, L. J.: Kullback-leibler divergence constrained distributionally
robust optimization. Available at Optimization Online, 2013.

[Hyvarinen and Dayan, 2005]Hyvérinen, A. and Dayan, P.: Estimation of non-normalized statistical
models by score matching. Journal of Machine Learning Research, 6(4), 2005.

[Jaakkola et al. , 2010]Jaakkola, T., Sontag, D., Globerson, A., and Meila, M.: Learning bayesian
network structure using Ip relaxations. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, pages 358-365. JMLR Workshop and
Conference Proceedings, 2010.

[Jaggi, 2013]Jaggi, M.: Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In
International Conference on Machine Learning, pages 427-435. PMLR, 2013.

[Jaimovich et al. , 2006]Jaimovich, A., Elidan, G., Margalit, H., and Friedman, N.: Towards an
integrated protein—protein interaction network: A relational markov network approach.
Journal of Computational Biology, 13(2):145-164, 2006.

[Jalali et al. , 2011a]Jalali, A., Johnson, C., and Ravikumar, P.: On learning discrete graphical
models using greedy methods. Advances in Neural Information Processing Systems, 24,
2011.

[Jalali et al. , 2011b]Jalali, A., Ravikumar, P., Vasuki, V., and Sanghavi, S.: On learning
discrete graphical models using group-sparse regularization. In Proceedings of the
fourteenth international conference on artificial intelligence and statistics, pages 378-387.
JMLR Workshop and Conference Proceedings, 2011.

[Jiang and Guan, 2016]Jiang, R. and Guan, Y.: Data-driven chance constrained stochastic program.
Mathematical Programming, 158(1-2):291-327, 2016.




183

[Joo et al. , 2020]Joo, T., Chung, U., and Seo, M.-G.: Being bayesian about categorical probability.
In International Conference on Machine Learning, pages 4950-4961. PMLR, 2020.

[Jordan, 1999]Jordan, M. I.: Learning in graphical models. MIT press, 1999.

[Kantorovich and Rubinshtein, 1958]Kantorovich, L. V. and Rubinshtein, S.: On a space of totally
additive functions. Vestnik of the St. Petersburg University: Mathematics, 13(7):52-59,
1958.

[Katiyar et al. , 2021]Katiyar, A., Basu, S., Shah, V., and Caramanis, C.: Robust estimation of tree
structured markov random fields. arXiv preprint arXiv:2102.08554, 2021.

[Katiyar et al. , 2020]Katiyar, A., Shah, V., and Caramanis, C.: Robust estimation of tree structured
ising models. arXiv preprint arXiv:2006.05601, 2020.

[Kingma and Ba, 2014]Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[Kiperwasser and Goldberg, 2016]Kiperwasser, E. and Goldberg, Y.: Simple and accurate de-
pendency parsing using bidirectional Istm feature representations. Transactions of the
Association for Computational Linguistics, 4:313-327, 2016.

[Kirchhoff, 1847]Kirchhoff, G.: Ueber die auflosung der gleichungen, auf welche man bei der
untersuchung der linearen vertheilung galvanischer strome gefithrt wird. Annalen der
Physik, 148(12):497-508, 1847.

[Klivans and Meka, 2017]Klivans, A. and Meka, R.: Learning graphical models using multiplica-
tive weights. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science,
pages 343-354. IEEE, 2017.

[Koller and Friedman, 2009]Koller, D. and Friedman, N.: Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[Koo et al. , 2007]Koo, T., Globerson, A., Carreras Pérez, X., and Collins, M.: Structured prediction
models via the matrix-tree theorem. In Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural Language Learning (EMNLP-CoNLL),
pages 141-150, 2007.




184

[Korhonen and Parviainen, 2013]Korhonen, J. and Parviainen, P.: Exact learning of bounded tree-
width bayesian networks. In Artificial Intelligence and Statistics, pages 370-378. PMLR,
2013.

[Kuhlman and Bradley, 2019]Kuhlman, B. and Bradley, P.: Advances in protein structure prediction
and design. Nature Reviews Molecular Cell Biology, 20(11):681-697, 2019.

[Kuhn et al. , 2019]Kuhn, D., Esfahani, P. M., Nguyen, V. A., and Shafieezadeh-Abadeh, S.: Wasser-
stein distributionally robust optimization: Theory and applications in machine learning.

In Operations research & management science in the age of analytics, pages 130-166. In-
forms, 2019.

[Kyrimi et al. , 2020]Kyrimi, E., Neves, M. R., McLachlan, S., Neil, M., Marsh, W., and Fenton,
N.: Medical idioms for clinical bayesian network development. Journal of Biomedical
Informatics, 108:103495, 2020.

[Lam, 2016]Lam, H.: Robust sensitivity analysis for stochastic systems. Mathematics of Operations
Research, 41(4):1248-1275, 2016.

[Lam, 2019]Lam, H.: Recovering best statistical guarantees via the empirical divergence-based
distributionally robust optimization. Operations Research, 67(4):1090-1105, 2019.

[Lei and others, 2020]Lei, J. et al.: Convergence and concentration of empirical measures under
wasserstein distance in unbounded functional spaces. Bernoulli, 26(1):767-798, 2020.

[Leibovici et al. , 2000]Leibovici, L., Fishman, M., Schonheyder, H. C., Riekehr, C., Kristensen,
B., Shraga, 1., and Andreassen, S.: A causal probabilistic network for optimal treatment

of bacterial infections. IEEE Transactions on Knowledge and Data Engineering, 12(4):517—
528, 2000.

[Levy et al. , 2020]Levy, D., Carmon, Y., Duchi, J. C., and Sidford, A.: Large-scale methods for
distributionally robust optimization. Advances in Neural Information Processing Systems,
33:8847-8860, 2020.

[Li and Dunson, 2020]Li, M. and Dunson, D. B.: Comparing and weighting imperfect models using
d-probabilities. Journal of the American Statistical Association, 115(531):1349-1360, 2020.

[Li et al. , 2022a|Li, Y., Saeed, D., Zhang, X., Ziebart, B. D., and Gimpel, K.: Moment distribution-
ally robust tree structured prediction. Advances in Neural Information Processing Systems,
35, 2022.




185

[Li et al. , 2022b]Li, Y., Shi, Z., Zhang, X., and Ziebart, B.: Distributionally robust structure
learning for discrete pairwise markov networks. In International Conference on Artificial
Intelligence and Statistics, pages 8997-9016. PMLR, 2022.

[Li and Ziebart, 2023]Li, Y. and Ziebart, B. D.: Moment distributionally robust probabilistic
supervised learning, 2023.

[Li and Eisner, 2009]Li, Z. and Eisner, J.: First-and second-order expectation semirings with
applications to minimum-risk training on translation forests. In Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing, pages 40-51, 2009.

[Lin et al. , 2022]Lin, F., Fang, X., and Gao, Z.: Distributionally robust optimization: A review
on theory and applications. Numerical Algebra, Control and Optimization, 12(1):159-212,
2022.

[Lindgren et al. , 2019]Lindgren, E. M., Shah, V., Shen, Y., Dimakis, A. G., and Klivans, A.:
On robust learning of ising models. In NeurIPS Workshop on Relational Representation
Learning, 2019.

[Liu et al. , 2019]Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., and Stoyanov, V.: Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019.

[Liu, 2007]Liu, Y.: Fisher consistency of multicategory support vector machines. In Artificial
Intelligence and Statistics, pages 291-298. PMLR, 2007.

[Loh and Biithlmann, 2014|Loh, P.-L. and Biithlmann, P.: High-dimensional learning of linear causal
networks via inverse covariance estimation. The Journal of Machine Learning Research,
15(1):3065-3105, 2014.

[Lokhov et al. , 2018]Lokhov, A. Y., Vuffray, M., Misra, S., and Chertkov, M.: Optimal structure
and parameter learning of ising models. Science advances, 4(3):e1700791, 2018.

[Luo and Mehrotra, 2019]Luo, F. and Mehrotra, S.: Decomposition algorithm for distributionally
robust optimization using wasserstein metric with an application to a class of regression
models. European Journal of Operational Research, 278(1):20-35, 2019.

[Lyu et al. , 2019|Lyu, S., Tian, X., Li, Y., Jiang, B., and Chen, H.: Multiclass probabilistic clas-
sification vector machine. IEEE Transactions on Neural Networks and Learning Systems,
2019.




186

[Ma and Hovy, 2017]Ma, X. and Hovy, E.: Neural probabilistic model for non-projective MST pars-
ing. In Proceedings of the Eighth International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 59-69, 2017.

[Malone et al. , 2015]Malone, B. M., Jarvisalo, M., and Myllyméki, P.: Impact of learning strategies
on the quality of bayesian networks: An empirical evaluation. In UAI, pages 562-571.
Citeseer, 2015.

[Manjusha and Kumar, 2010]Manjusha, K. and Kumar, R.: Spam mail classification using com-
bined approach of bayesian and neural network. In 2010 International Conference on
Computational Intelligence and Communication Networks, pages 145-149. IEEE, 2010.

[Marcus et al. , 1993]Marcus, M., Santorini, B., and Marcinkiewicz, M. A.: Building a large annotated
corpus of english: The penn treebank. Computational Linguistics, 19(2):313-330, 1993.

[Martin, 1991]Martin, R. K.: Using separation algorithms to generate mixed integer model reformu-
lations. Operations Research Letters, 10(3):119-128, 1991.

[Martins et al. , 2015]Martins, A. F., Figueiredo, M. A., Aguiar, P. M., Smith, N. A.; and Xing,
E. P.: Ad3: Alternating directions dual decomposition for map inference in graphical
models. The Journal of Machine Learning Research, 16(1):495-545, 2015.

[Martins et al. , 2009]Martins, A. F., Smith, N. A., and Xing, E.: Concise integer linear programming
formulations for dependency parsing. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 342-350, 2009.

[Martins et al. , 2010]Martins, A. F., Smith, N. A., Xing, E., Aguiar, P., and Figueiredo, M.: Turbo
parsers: Dependency parsing by approximate variational inference. In Proceedings of
the 2010 Conference on Empirical Methods in Natural Language Processing, pages 34—44,
2010.

[Masnadi-Shirazi and Vasconcelos, 2009]Masnadi-Shirazi, H. and Vasconcelos, N.: On the design
of loss functions for classification: theory, robustness to outliers, and savageboost. In
Advances in neural information processing systems, pages 1049-1056, 2009.

[Mazuelas et al. , 2022]Mazuelas, S., Shen, Y., and Pérez, A.: Generalized maximum entropy for
supervised classification. IEEE Transactions on Information Theory, 2022.




187

[McDonald and Pereira, 2006]McDonald, R. and Pereira, F.: Online learning of approximate depen-
dency parsing algorithms. In 11th Conference of the European Chapter of the Association
for Computational Linguistics, 2006.

[McDonald et al. , 2005]McDonald, R., Pereira, F., Ribarov, K., and Hajic, J.: Non-projective
dependency parsing using spanning tree algorithms. In Proceedings of Human Language
Technology Conference and Conference on Empirical Methods in Natural Language
Processing, pages 523-530, 2005.

[McDonald and Satta, 2007]McDonald, R. and Satta, G.: On the complexity of non-projective
data-driven dependency parsing. In Proceedings of the Tenth International Conference on
Parsing Technologies, pages 121-132, 2007.

[McMahan et al. , 2003]McMahan, H. B., Gordon, G. J., and Blum, A.: Planning in the presence
of cost functions controlled by an adversary. In Proceedings of the 20th International
Conference on Machine Learning (ICML-03), pages 536-543, 2003.

[Mehrotra and Zhang, 2014]Mehrotra, S. and Zhang, H.: Models and algorithms for distributionally
robust least squares problems. Mathematical Programming, 146(1-2):123-141, 2014.

[Mensch and Blondel, 2018] Mensch, A. and Blondel, M.: Differentiable dynamic programming for
structured prediction and attention. In International Conference on Machine Learning,
pages 3462-3471. PMLR, 2018.

[Meshi et al. , 2013]Meshi, O., Eban, E., Elidan, G., and Globerson, A.: Learning max-margin tree
predictors. In Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial
Intelligence, pages 411-420, 2013.

ithaylova et al. | thaylova, T'.; Niculae, V., an artins, A. F.: Understanding the mechanics

Mihayl 1., 2020]Mihayl T., Niculae, V d Martins, A. F.: Und ding th hani
of spigot: Surrogate gradients for latent structure learning. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 2186—
2202, 2020.

[Murphy et al. , 1999]Murphy, K. P., Weiss, Y., and Jordan, M. I.: Loopy belief propagation for
approximate inference: an empirical study. In Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence, pages 467-475, 1999.

[Namkoong and Duchi, 2016]Namkoong, H. and Duchi, J. C.: Stochastic gradient methods for
distributionally robust optimization with f-divergences. In NIPS, volume 29, pages 2208—
2216, 2016.



188

[Nandy et al. , 2018 Nandy, P., Hauser, A., and Maathuis, M. H.: High-dimensional consistency
in score-based and hybrid structure learning. The Annals of Statistics, 46(6A):3151-3183,
2018.

[Neath and Cavanaugh, 2012]Neath, A. A. and Cavanaugh, J. E.: The bayesian information criterion:
background, derivation, and applications. Wiley Interdisciplinary Reviews: Computational
Statistics, 4(2):199-203, 2012.

[Nelder and Wedderburn, 1972]Nelder, J. A. and Wedderburn, R. W.: Generalized linear models.
Journal of the Royal Statistical Society: Series A (General), 135(3):370-384, 1972.

[Nesterov, 2003|Nesterov, Y.: Introductory lectures on convex optimization: A basic course, vol-
ume 87. Springer Science & Business Media, 2003.

[Ng, 2004]Ng, A. Y.: Feature selection, 1 1 vs. 1 2 regularization, and rotational invariance.
In Proceedings of the twenty-first international conference on Machine learning, page 78,
2004.

[Ng et al. , 2020]Ng, I., Ghassami, A., and Zhang, K.: On the role of sparsity and dag constraints for
learning linear dags. Advances in Neural Information Processing Systems, 33:17943-17954,
2020.

[Ng et al. , 2021]Ng, L., Zheng, Y., Zhang, J., and Zhang, K.: Reliable causal discovery with improved
exact search and weaker assumptions. Advances in Neural Information Processing Systems,
34:20308-20320, 2021.

[Ng et al. , 2022]Ng, 1., Zhu, S., Fang, Z., Li, H., Chen, Z., and Wang, J.: Masked gradient-based
causal structure learning. In Proceedings of the 2022 SIAM International Conference on
Data Mining (SDM), pages 424-432. STAM, 2022.

[Nguyen et al. , 2022]Nguyen, V. A., Kuhn, D., and Mohajerin Esfahani, P.: Distributionally robust
inverse covariance estimation: The wasserstein shrinkage estimator. Operations Research,
70(1):490-515, 2022.

[Nguyen et al. , 2020|Nguyen, V. A., Zhang, F., Blanchet, J., Delage, E., and Ye, Y.: Distributionally
robust local non-parametric conditional estimation. In Advances in Neural Information
Processing Systems, eds. H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
volume 33, pages 15232-15242. Curran Associates, Inc., 2020.




189

[Nikolakakis et al. , 2019a]Nikolakakis, K. E., Kalogerias, D. S., and Sarwate, A. D.: Learning tree
structures from noisy data. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 1771-1782, 2019.

[Nikolakakis et al. , 2019b]Nikolakakis, K. E., Kalogerias, D. S., and Sarwate, A. D.: Non-parametric
structure learning on hidden tree-shaped distributions. arXiv preprint arXiv:1909.09596,
2019.

[Nivre et al. , 2016]Nivre, J., De Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajic, J., Manning,
C. D., McDonald, R., Petrov, S., Pyysalo, S., Silveira, N., et al.: Universal dependencies v1:
A multilingual treebank collection. In Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16), pages 16591666, 2016.

[Nowak et al. , 2022]Nowak, A., Rudi, A., and Bach, F.: On the consistency of max-margin losses. In
International Conference on Artificial Intelligence and Statistics, pages 4612-4633. PMLR,
2022.

[Nowak-Vila et al. , 2019]Nowak-Vila, A., Bach, F., and Rudi, A.: A general theory for structured
prediction with smooth convex surrogates. arXiv preprint arXiv:1902.01958, 2019.

[Nowak-Vila et al. , 2020]Nowak-Vila, A., Bach, F., and Rudi, A.: Consistent structured prediction
with max-min margin Markov networks. In Proceedings of the International Conference
on Machine Learning (ICML), 2020.

[Nowozin et al. , 2014]Nowozin, S., Gehler, P. V., Jancsary, J., and Lampert, C. H.: Advanced
structured prediction. MIT Press, 2014.

[Och, 2003]Och, F. J.: Minimum error rate training in statistical machine translation. In Proceedings
of the 41st annual meeting of the Association for Computational Linguistics, pages 160—
167, 2003.

[Ordyniak and Szeider, 2013]Ordyniak, S. and Szeider, S.: Parameterized complexity results for exact
bayesian network structure learning. Journal of Artificial Intelligence Research, 46:263-302,
2013.

[Papadopoulos, 2013]Papadopoulos, H.: Reliable probabilistic classification with neural networks.
Neurocomputing, 107:59-68, 2013.




190

[Park et al. , 2021]Park, G., Moon, S. J., Park, S., and Jeon, J.-J.: Learning a high-dimensional
linear structural equation model via ¢;-regularized regression. The Journal of Machine
Learning Research, 22(1):4607-4647, 2021.

[Park and Raskutti, 2017]Park, G. and Raskutti, G.: Learning quadratic variance function (qvf)
dag models via overdispersion scoring (ods). J. Mach. Learn. Res., 18:224-1, 2017.

[Park and Klabjan, 2017]Park, Y. W. and Klabjan, D.: Bayesian network learning via topological
order. The Journal of Machine Learning Research, 18(1):3451-3482, 2017.

[Parviainen and Koivisto, 2009]Parviainen, P. and Koivisto, M.: Exact structure discovery in
bayesian networks with less space. In Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, pages 436—443, 2009.

[Paszke et al. , 2019]Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing systems, 32:8026-8037,
2019.

[Pearl, 2009]Pearl, J.: Causality. Cambridge university press, 2009.

[Pedregosa et al. , 2011]Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in python. the Journal of machine Learning research, 12:2825-2830, 2011.

[Peng et al. , 2018]Peng, H., Thomson, S., and Smith, N. A.: Backpropagating through structured
argmax using a spigot. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1863-1873, 2018.

[Peng et al. , 2015]Peng, K.-C., Chen, T., Sadovnik, A., and Gallagher, A. C.: A mixed bag of
emotions: Model, predict, and transfer emotion distributions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 860-868, 2015.

[Perrier et al. , 2008]Perrier, E., Imoto, S., and Miyano, S.: Finding optimal bayesian network given
a super-structure. Journal of Machine Learning Research, 9(10), 2008.

[Peters et al. , 2017]|Peters, J., Janzing, D., and Scholkopf, B.:  Elements of causal inference:
foundations and learning algorithms. The MIT Press, 2017.




191

[Poon and Domingos, 2011]Poon, H. and Domingos, P.: Sum-product networks: A new deep archi-
tecture. In 2011 IEEE International Conference on Computer Vision Workshops (ICCV
Workshops), pages 689-690. IEEE, 2011.

[Popescu, 2007]Popescu, I.: Robust mean-covariance solutions for stochastic optimization. Operations
Research, 55(1):98-112, 2007.

[Prasad et al. , 2020]Prasad, A., Srinivasan, V., Balakrishnan, S., and Ravikumar, P.: On learn-
ing ising models under huber’s contamination model. Advances in Neural Information
Processing Systems, 33, 2020.

[Rahimian and Mehrotra, 2019]Rahimian, H. and Mehrotra, S.: Distributionally robust optimization:
A review. arXiv preprint arXiv:1908.05659, 2019.

[Rajendran et al. , 2021]Rajendran, G., Kivva, B., Gao, M., and Aragam, B.: Structure learning
in polynomial time: Greedy algorithms, bregman information, and exponential families.
Advances in Neural Information Processing Systems, 34:18660-18672, 2021.

[Ramaswamy et al. , 2013]Ramaswamy, H. G., Agarwal, S., and Tewari, A.: Convex calibrated
surrogates for low-rank loss matrices with applications to subset ranking losses. In Advances
in Neural Information Processing Systems, pages 1475-1483, 2013.

[Ravikumar et al. , 2010]Ravikumar, P., Wainwright, M. J., and Lafferty, J. D.: High-dimensional
ising model selection using ¢;-regularized logistic regression. The Annals of Statistics,
38(3):1287-1319, 2010.

[Reid and Williamson, 2011]Reid, M. D. and Williamson, R. C.: Information, divergence and risk
for binary experiments. The Journal of Machine Learning Research, 12:731-817, 2011.

[Scarf, 1958]Scarf, H.: A min max solution of an inventory problem. Studies in the mathematical
theory of inventory and production, 1958.

[Schmidt et al. , 2009]Schmidt, M., Berg, E., Friedlander, M., and Murphy, K.: Optimizing costly
functions with simple constraints: A limited-memory projected quasi-newton algorithm. In
Artificial Intelligence and Statistics, pages 456—463. PMLR, 2009.

[Schneidman et al. , 2006]Schneidman, E., Berry, M. J., Segev, R., and Bialek, W.: Weak pairwise
correlations imply strongly correlated network states in a neural population. Nature,
440(7087):1007-1012, 2006.



192

[Scutari, 2010]Scutari, M.: Learning bayesian networks with the bnlearn r package. Journal of
Statistical Software, 35:1-22, 2010.

[Shafieezadeh-Abadeh et al. , 2019]Shafieezadeh-Abadeh, S., Kuhn, D., and Esfahani, P. M.: Regu-
larization via mass transportation. Journal of Machine Learning Research, 20(103):1-68,
2019.

[Shalev-Shwartz and Ben-David, 2014]Shalev-Shwartz, S. and Ben-David, S.:  Understanding
machine learning: From theory to algorithms. Cambridge University Press, 2014.

[Shalev-Shwartz et al. , 2010]Shalev-Shwartz, S., Shamir, O., Srebro, N., and Sridharan, K.: Learn-
ability, stability and uniform convergence. The Journal of Machine Learning Research,
11:2635-2670, 2010.

[Shapiro et al. , 2021]Shapiro, A., Dentcheva, D., and Ruszczynski, A.: Lectures on stochastic
programming: modeling and theory. STAM, 2021.

[Shojaie and Michailidis, 2010]Shojaie, A. and Michailidis, G.: Penalized likelihood methods for
estimation of sparse high-dimensional directed acyclic graphs. Biometrika, 97(3):519-538,
2010.

[Si et al. , 2020]Si, N., Zhang, F., Zhou, Z., and Blanchet, J.: Distributionally robust policy evaluation
and learning in offline contextual bandits. In International Conference on Machine Learning
(ICML’20), 2020.

[Silander and Myllymaéki, 2006]Silander, T. and Myllymaéki, P.: A simple approach for finding
the globally optimal bayesian network structure. In Proceedings of the Twenty-Second
Conference on Uncertainty in Artificial Intelligence, pages 445-452, 2006.

[Singh and Péczos, 2018]Singh, S. and Pdéczos, B.: Minimax distribution estimation in wasserstein
distance. arXiv preprint arXiv:1802.08855, 2018.

[Sinha et al. , 2018]Sinha, A., Namkoong, H., and Duchi, J.: Certifiable distributional robustness with
principled adversarial training. In International Conference on Learning Representations,
2018.

[Sion, 1958]Sion, M.: On general minimax theorems. Pacific Journal of mathematics, 8(1):171-176,
1958.




193

[Smith and Eisner, 2006]Smith, D. A. and Eisner, J.: Minimum risk annealing for training
log-linear models. In Proceedings of the COLING/ACL 2006 Main Conference Poster
Sessions, pages 787-794, 2006.

[Smith and Smith, 2007]Smith, D. A. and Smith, N. A.: Probabilistic models of nonprojective de-
pendency trees. In Proceedings of the 2007 Joint Conference on Empirical Methods

in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 132-140, 2007.

[Smith and Winkler, 2006)]Smith, J. E. and Winkler, R. L.: The optimizer’s curse: Skepticism and
postdecision surprise in decision analysis. Management Science, 52(3):311-322, 2006.

[Spirtes and Glymour, 1991]Spirtes, P. and Glymour, C.: An algorithm for fast recovery of sparse
causal graphs. Social science computer review, 9(1):62-72, 1991.

[Spirtes et al. , 2000]Spirtes, P., Glymour, C. N., Scheines, R., and Heckerman, D.: Causation,
prediction, and search. MIT press, 2000.

[Spirtes et al. , 1999]Spirtes, P., Meek, C., and Richardson, T.: An algorithm for causal inference in
the presence of latent variables and selection bias. Computation, causation, and discovery,
21:211-252, 1999.

[Stahlberg, 2020]Stahlberg, F.: Neural machine translation: A review. Journal of Artificial
Intelligence Research, 69:343-418, 2020.

[Staib and Jegelka, 2019]Staib, M. and Jegelka, S.: Distributionally robust optimization and gener-
alization in kernel methods. Advances in Neural Information Processing Systems, 32:9134—
9144, 2019.

[Stanojevi¢ and Cohen, 2021]Stanojevi¢, M. and Cohen, S. B.: A root of a problem: Optimiz-
ing single-root dependency parsing. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 10540-10557, 2021.

[Stoyanov and Eisner, 2012|Stoyanov, V. and Eisner, J.: Minimum-risk training of approxi-
mate CRF-based NLP systems. In Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 120-130, 2012.

[Sugiyama et al. , 2010]Sugiyama, M., Takeuchi, I., Suzuki, T., Kanamori, T., Hachiya, H., and
Okanohara, D.: Conditional density estimation via least-squares density ratio estima-



194

tion. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, pages 781-788, 2010.

[Sun and Xu, 2016]Sun, H. and Xu, H.: Convergence analysis for distributionally robust optimization
and equilibrium problems. Mathematics of Operations Research, 41(2):377-401, 2016.

[Svyatkovskiy et al. , 2020]Svyatkovskiy, A., Deng, S. K., Fu, S., and Sundaresan, N.: Intelli-
code compose: Code generation using transformer. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 1433-1443, 2020.

[Szeliski et al. , 2006]Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala,
A., Tappen, M., and Rother, C.: A comparative study of energy minimization methods for
Markov random fields. In European conference on computer vision, pages 16-29. Springer,
2006.

[Taskar et al. , 2005]Taskar, B., Chatalbashev, V., Koller, D., and Guestrin, C.: Learning structured
prediction models: A large margin approach. In Proceedings of the 22nd international
conference on Machine learning, pages 896-903, 2005.

[Taskar et al. , 2003] Taskar, B., Guestrin, C., and Koller, D.: Max-margin Markov networks.
Advances in Neural Information Processing Systems, 16, 2003.

[Taskar et al. , 2004] Taskar, B., Klein, D., Collins, M., Koller, D., and Manning, C. D.: Max-
margin parsing. In Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing, pages 1-8, 2004.

[Tewari and Bartlett, 2007] Tewari, A. and Bartlett, P. L.: On the consistency of multiclass classifi-
cation methods. Journal of Machine Learning Research, 8(5), 2007.

[Topsge, 1979]Topsge, F.: Information-theoretical optimization techniques. Kybernetika, 15(1):8-27,
1979.

[Toutanova et al. , 2003] Toutanova, K., Klein, D., Manning, C. D., and Singer, Y.: Feature-rich part-
of-speech tagging with a cyclic dependency network. In Proceedings of the 2003 Human
Language Technology Conference of the North American Chapter of the Association for
Computational Linguistics, pages 252-259, 2003.




195

[Trafalis and Gilbert, 2006]Trafalis, T. B. and Gilbert, R. C.: Robust classification and regression
using support vector machines. European Journal of Operational Research, 173(3):893-909,
2006.

[Tsamardinos et al. , 2006] Tsamardinos, 1., Brown, L. E., and Aliferis, C. F.: The max-min hill-
climbing bayesian network structure learning algorithm. Machine learning, 65(1):31-78,
2006.

[Tsochantaridis et al. , 2005] Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y., and Singer,
Y.: Large margin methods for structured and interdependent output variables. Journal of
Machine Learning Research, 6(9), 2005.

[Villani and others, 2009]Villani, C. et al.: Optimal transport: old and new, volume 338. Springer,
20009.

[Virtanen et al. , 2020]Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al.: Scipy 1.0:
fundamental algorithms for scientific computing in python. Nature methods, 17(3):261-272,
2020.

[von Neumann and Morgenstern, 1944]von Neumann, J. and Morgenstern, O.: Theory of games and
economic behavior. Science and Society, 9(4), 1944.

[Vuffray et al. , 2020]Vuffray, M., Misra, S., and Lokhov, A.: Efficient learning of discrete graphical
models. In Advances in Neural Information Processing Systems, eds. H. Larochelle, M.
Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, volume 33, pages 13575-13585. Curran
Associates, Inc., 2020.

[Vuffray et al. , 2016]Vuffray, M., Misra, S., Lokhov, A., and Chertkov, M.: Interaction screening:
Efficient and sample-optimal learning of Ising models. In Advances in Neural Information
Processing Systems, pages 25952603, 2016.

[Wainwright, 2009]Wainwright, M. J.: Sharp thresholds for high-dimensional and noisy sparsity recov-
ery using ¢1-constrained quadratic programming (lasso). IEEE transactions on information
theory, 55(5):2183-2202, 2009.

[Wang and Chang, 2016]Wang, W. and Chang, B.: Graph-based dependency parsing with
bidirectional LSTM. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 2306-2315, 2016.




196

[Wang et al. , 2021]Wang, X., Pun, Y.-M., and Man-Cho So, A.: Distributionally robust graph
learning from smooth signals under moment uncertainty. arXiv e-prints, pages arXiv—2105,
2021.

[Wang et al. , 2019]Wang, X., Zhang, H. H., and Wu, Y.: Multiclass probability estimation with
support vector machines. Journal of Computational and Graphical Statistics, 28(3):586—
595, 2019.

[Wang et al. , 2016]Wang, Z., Glynn, P. W., and Ye, Y.: Likelihood robust optimization for data-
driven problems. Computational Management Science, 13:241-261, 2016.

[Weed et al. , 2019]Weed, J., Bach, F., et al.: Sharp asymptotic and finite-sample rates of convergence
of empirical measures in wasserstein distance. Bernoulli, 25(4A):2620-2648, 2019.

[Wei et al. , 2020]Wei, D., Gao, T., and Yu, Y.: Dags with no fears: A closer look at continuous
optimization for learning bayesian networks. Advances in Neural Information Processing
Systems, 33:3895-3906, 2020.

[Werhli et al. , 2006]Werhli, A. V., Grzegorczyk, M., and Husmeier, D.: Comparative evaluation of
reverse engineering gene regulatory networks with relevance networks, graphical gaussian
models and bayesian networks. Bioinformatics, 22(20):2523-2531, 2006.

[Weston and Watkins, 1998 Weston, J. and Watkins, C.: Multi-class support vector machines.
Technical report, Citeseer, 1998.

[Wiesemann et al. , 2014]Wiesemann, W., Kuhn, D., and Sim, M.: Distributionally robust convex
optimization. Operations Research, 62(6):1358-1376, 2014.

[William, 1984]William, T.: Tutte. graph theory. Encyclopedia of Mathematics and its Applications,
21, 1984.

[Williamson et al. , 2016]Williamson, R. C., Vernet, E., and Reid, M. D.: Composite multiclass
losses. Journal of Machine Learning Research, 17:1-52, 2016.

[Wozabal, 2014|Wozabal, D.: Robustifying convex risk measures for linear portfolios: A nonpara-
metric approach. Operations Research, 62(6):1302-1315, 2014.

[Wozabal and others, 2012]Wozabal, D. et al.: A framework for optimization under ambiguity.
Annals of Operations Research, 193(1):21-47, 2012.




197

[Wu et al. , 2019]Wu, S., Sanghavi, S., and Dimakis, A. G.: Sparse logistic regression learns all
discrete pairwise graphical models. Advances in Neural Information Processing Systems,
32, 2019.

[Xu et al. , 2016)Xu, J., Liu, J., Yin, J., and Sun, C.: A multi-label feature extraction algorithm via
maximizing feature variance and feature-label dependence simultaneously. Knowledge-Based
Systems, 98:172-184, 2016.

[Xu et al. , 2017]Xu, Z., Taylor, G., Li, H., Figueiredo, M. A., Yuan, X., and Goldstein, T.: Adaptive
consensus ADMM for distributed optimization. In International Conference on Machine
Learning, pages 3841-3850. PMLR, 2017.

[Xue et al. , 2002]Xue, N., Chiou, F.-D., and Palmer, M.: Building a large-scale annotated
Chinese corpus. In COLING 2002: The 19th International Conference on Computational
Linguistics, 2002.

[Yang and Xu, 2013]Yang, W. and Xu, H.: A unified robust regression model for lasso-like algorithms.
In International Conference on Machine Learning, pages 585-593. PMLR, 2013.

[Yoshida et al. , 2021]Yoshida, S. M., Takenouchi, T., and Sugiyama, M.:  Lower-bounded
proper losses for weakly supervised classification. In International Conference on Machine
Learning, pages 12110-12120. PMLR, 2021.

[Yu et al. , 2020]Yu, H., Ye, W., Feng, Y., Bao, H., and Zhang, G.: Learning bipartite graph
matching for robust visual localization. In 2020 IEEE International Symposium on Mixed
and Augmented Reality (ISMAR), pages 146-155. IEEE, 2020.

[Yu et al. , 2021a]Yu, Y., Lin, T., Mazumdar, E., and Jordan, M. I.: Fast distributionally robust
learning with variance reduced min-max optimization. arXiv preprint arXiv:2104.13326,
2021.

[Yu et al. , 2021b]Yu, Y., Gao, T., Yin, N., and Ji, Q.: Dags with no curl: An efficient dag structure
learning approach. In International Conference on Machine Learning, pages 12156-12166.
PMLR, 2021.

[Zhang and Cheng, 2015]Zhang, H. and Cheng, L.: Restricted strong convexity and its applications
to convergence analysis of gradient-type methods in convex optimization. Optimization
Letters, 9(5):961-979, 2015.



198

[Zhang et al. , 2021]Zhang, M., Lee, J., and Agarwal, S.: Learning from noisy labels with no
change to the training process. In International Conference on Machine Learning, pages
12468-12478. PMLR, 2021.

[Zhang et al. , 2017]Zhang, X., Cheng, J., and Lapata, M.: Dependency parsing as head selec-
tion. In Proceedings of the 15th Conference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Papers, pages 665-676, 2017.

[Zhang et al. , 2010]Zhang, X., Saha, A., and Vishwanathan, S.: Regularized risk minimization by
Nesterov’s accelerated gradient methods: Algorithmic extensions and empirical studies.
arXiv preprint arXiv:1011.0472, 2010.

[Zhang et al. , 2020]Zhang, Y., Li, Z., and Zhang, M.: Efficient second-order TreeCRF for neural
dependency parsing. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 3295-3305, 2020.

[Zhang et al. , 2014]Zhang, Y., Lei, T., Barzilay, R., and Jaakkola, T.: Greed is good if randomized:
New inference for dependency parsing. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1013-1024, 2014.

[Zhao and Guan, 2018]Zhao, C. and Guan, Y.: Data-driven risk-averse stochastic optimization with
wasserstein metric. Operations Research Letters, 46(2):262-267, 2018.

[Zheng et al. , 2018]Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P.: Dags with no
tears: Continuous optimization for structure learning. Advances in Neural Information
Processing Systems, 31, 2018.

[Zmigrod et al. , 2020]Zmigrod, R., Vieira, T., and Cotterell, R.: Please mind the root: Decoding
arborescences for dependency parsing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 4809-4819, 2020.

[Zmigrod et al. , 2021]Zmigrod, R., Vieira, T., and Cotterell, R.: Efficient computation of expecta-
tions under spanning tree distributions. Transactions of the Association for Computational
Linguistics, 9:675-690, 2021.

[Zou et al. , 2008]Zou, H., Zhu, J., and Hastie, T.: New multicategory boosting algorithms based on
multicategory fisher-consistent losses. The Annals of Applied Statistics, 2(4):1290, 2008.

[Zymler et al. , 2013]Zymler, S., Kuhn, D., and Rustem, B.: Distributionally robust joint chance
constraints with second-order moment information. Mathematical Programming, 137, 2013.




APPENDIX

COPYRIGHT POLICIES

A.1 Copyright Policy of Neural Information Processing Systems

According to U.S. Copyright Office’s page What is a Copyrightﬂ When you create an
original work you are the author and the owner and hold the copyright, unless you have an
agreement to transfered the copyright to a third party such as the company or school you work
for.

Authors do not tranfer the copyright of their paper to NeurIPS, instead they grant NeurIPS
a non-exclusive, perpetual, royalty-free, fully-paid, fully-assignable license to copy, distribute

and publicly display all or part of the paper.

A.2  Copyright Policy of Artificial Intelligence and Statistics

The International Conference on Artificial Intelligence and Statistics’ (AISTATS) proceeding
is published by the Proceedings of Machine Learning Research (PMLR).

The Proceedings of Machine Learning Research (formerly JMLR Workshop and Conference
Proceedings) is a series aimed specifically at publishing machine learning research presented at
workshops and conferences. Each volume is separately titled and associated with a particular

workshop or conference and will be published online on the PMLR website. Authors retain

Thttps://www.copyright.gov/what-is-copyright /

199



200
APPENDIX (Continued)

ownership of all rights under copyright in all versions of the article, and all rights not expressly

granted in this agreement.

A.3 Copyright Policy of International Conference on Learning Representations

Our paper (Li and Ziebart, 2023) was rejected and made public by the International
Conference on Learning Representations (ICLR) on OpenReview.

According to U.S. Copyright Office’s page What is a Copyrightﬂ When you create an
original work you are the author and the owner and hold the copyright, unless you have an
agreement to transfered the copyright to a third party such as the company or school you work
for.

Authors do not tranfer the copyright of their paper to ICLR, instead they grant ICLR a
non-exclusive, perpetual, royalty-free, fully-paid, fully-assignable license to copy, distribute and

publicly display all or part of the paper.

Thttps:/ /www.copyright.gov/what-is-copyright /



NAME

EDUCATION

CAREER

PUBLICATIONS

VITA

Yeshu Li

Ph.D., Computer Science, University of Illinois at Chicago, 2023 (ex-
pected)

M.S., Computer Science, University of Illinois at Chicago, 2022

B.E., Computer Science and Engineering, Beihang University

Research Assistant, University of Illinois at Chicago, 2019-2022

Research Intern, Microsoft Research Asia, 2019

Yeshu Li, Brian D. Ziebart. “Distributionally Robust Skeleton Learn-
ing of Discrete Bayesian Networks”. Work in progress

Yeshu Li, Brian D. Ziebart. “Moment Distributionally Robust Proba-
bilistic Supervised Learning”. In OpenReview preprint

Yeshu Li, Danyal Saeed, Xinhua Zhang, Brian D. Ziebart, Kevin
Gimpel. “Moment Distributionally Robust Tree Structured Prediction”.

In Proceedings of Neural Information Processing Systems (NeurIPS),
2022

Yeshu Li, Zhan Shi, Xinhua Zhang, Brian D. Ziebart. “Distribution-
ally Robust Structure Learning for Discrete Pairwise Markov Networks”.

In Proceedings of International Conference on Artificial Intelligence
and Statistics (AISTATS), 2022

Yeshu Li, Ziming Qiu, Xingyu Fan, Xianglong Liu, Eric I-Chao Chang,
Yan Xu. “Integrated 3D Flow-based Multi-atlas Brain Structure Seg-
mentation”. In PloS one, 2022

Yeshu Li, Jonathan Cui, Yilun Sheng, Xiao Liang, Jingdong Wang,
Eric I-Chao Chang, Yan Xu. “Whole Brain Segmentation with Full
Volume Neural Network”. In Computerized Medical Imaging and
Graphics (CMIG), 2021

201



202

Yan Xu, Yeshu Li, Zhengyang Shen, Ziwei Wu, Teng Gao, Yubo
Fan, Maode Lai, Eric I-Chao Chang. “Parallel Multiple Instance

Learning for Extremely Large Histopathology Image Analysis”. In
BMC Bioinformatics, 2017



	to1 Introduction
	 Structural Learning
	 Challenges
	 Distributionally Robust Optimization
	 Overview of Distributionally Robust Structural Learning
	 Contribution and Outline
	 Notation

	to2 Distributionally Robust Structure Learning of Undirected Graphical Models
	 Introduction and Related Work
	 Related Work

	 Preliminaries
	 Distributionally Robust Structure Learning
	 Distributionally Robust Discrete Pairwise Markov Network Learning
	 Tractable Reformulations

	 Theoretical Guarantees
	 Experiments
	 Concluding Remarks

	to3 Distributionally Robust Structure Learning of Directed Graphical Models
	 Introduction
	 Related Work

	 Preliminaries
	 Method
	 Basic Formulation
	 Wasserstein Formulation
	 Lemmas for Non-asymptotic Analysis
	 Main Results

	 Kullback-Leibler Formulation

	 Experiments
	 Concluding Remarks

	to4 Moment Distributionally Robust Tree Structured Prediction
	 Introduction
	 Background and Related Work
	 Tree Structured Prediction
	 Maximum Likelihood
	 Maximum Margin
	 Minimum Risk

	 Method
	 Formulation
	 Constraint Generation Solution
	 Marginal Distribution Formulation
	 Inference
	 Statistical Properties

	 Projection onto Arborescence Polytopes
	 Frank-Wolfe Algorithm
	 Martin's Polytope

	 Extensions
	 Undirected Spanning Trees
	 Dependency Trees
	 Higher-order Polytope

	 Experiments
	 Concluding Remarks

	to5 Moment Distributionally Robust Probabilistic Supervised Learning
	 Introduction
	 Related Work

	 Preliminaries
	 Probabilistic Loss Functionals
	 Probabilistic Supervised Learning

	 Method
	 Formulation
	 Statistical Properties
	 Algorithm
	 Differentiable Learning

	 Experiments
	 Concluding Remarks

	to6 Conclusion and Discussion
	 Structure Learning
	 Structured Prediction

	 Potential Societal Impacts

	to CITED LITERATURE
	to APPENDIX 
	to VITA

