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SUMMARY

Decision-making under uncertainty is common in various areas of study. Structural learning

is a decision problem that involves seeking the optimal structure typically from an exponential

number of structures. The task is usually performed on a finite set of samples observed from

uncertain environments, which may be subject to unexpected contamination thus unreliable.

The combinatorial nature and uncertainty pose challenges to relevant algorithms, particularly in

the large-scale setting. We suggest that a successful structural learning method should have

low time complexity, high sample efficiency, estimator consistency and robustness at the same

time. In this thesis, we propose a statistical learning framework that fulfills these requirements

to tackle several structural learning problems based on techniques in the emerging fields of

distributionally robust optimization (DRO). Our models hedge against a set of distributions

consistent with data in terms of certain a priori assumptions. The set constitutes our uncertainty

about the underlying data-generating mechanism and can be constructed in a flexible way.

We establish desirable theoretical guarantees and put forward practical algorithms for specific

learning problems with judiciously chosen uncertainty sets.

In the first two parts of the thesis, we study structure learning problems whose goal

is to recover the graphical structure of a probabilistic graphical model from samples. The

only assumptions we make are bounded model weights for undirected graphs and restricted

eigenvalue as well as mutual incoherence for directed graphs without faithfulness. Motivated by

neighborhood selection methods, we propose to optimize the worst-case expected regression loss

xii



SUMMARY (Continued)

over all distributions within boundedWasserstein distances or Kullback-Leibler divergences. First,

we present iterative algorithms that find the optimal estimator with per-iteration polynomial

time complexity. Second, we illustrate equivalence between our Wasserstein DRO method

and baseline regularization methods. Third, we derive near-optimal sample complexities for

the proposed methods that match the state-of-the-art results. Experiments are conducted on

simulated and real-world data.

In the last two parts of the thesis, we consider structured prediction problems which are

supervised learning problems whose goal is to learn a mapping from features to structures.

Optimizing typical performance metrics with training data is usually intractable and elicits a

surrogate loss for efficiency. Fisher consistency is highly desirable in this setting which requires

the surrogate to yield Bayes optimal prediction given population distribution. Inspired by

the success of existing DRO methods with moment-based ambiguity sets, we propose similar

formulations for tree structured prediction and discrete probabilistic supervised learning. We

generalize existing theoretical results. Specifically, we show that such DRO problems are exactly

equivalent to a regularized empirical risk minimization problem with strong duality. Fisher

consistency is established by relating them to Fenchel-Young losses. Novel excess true risk bounds

are derived based on uniform convergence. For such class of structured prediction methods, we

illustrate their practicability by showing how to incorporate deep learning techniques into the

framework for end-to-end representation learning.

xiii



CHAPTER 1

INTRODUCTION

1.1 Structural Learning

In the big data era, machine learning approaches are widely adopted to extract information

and patterns from a massive amount of data. These data-driven methods enable automatic

decision making and provide valuable insights into data. Out of many applications, an important

class of tasks aims at understanding structural relationships among objects with respect to data

distribution. Producing an interpretable and compact representation for complicated data is

desirable especially when there are a large number of variables of interest. The learning tasks

that involve complex structures empower a lot of applications in scientific areas and daily life

such as protein-protein interaction networks (Jaimovich et al., 2006), gene regulatory networks

(Werhli et al., 2006), medical decision making (Kyrimi et al., 2020), spam filtering (Manjusha and

Kumar, 2010), protein structure prediction (Kuhlman and Bradley, 2019), logic theorem proving

(Bansal et al., 2019), source code generation (Svyatkovskiy et al., 2020), machine translation

(Stahlberg, 2020), visual object localization (Yu et al., 2020), recommendation systems (He et

al., 2018), search engines (Grbovic and Cheng, 2018), to name a few.

The structural learning tasks discussed here refer to several different tasks in the literature.

We list those we study in the thesis for disambiguation but it is worth mentioning that there

are dubious meanings for the term structural learning in related work. The task of structure

1
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learning (Drton and Maathuis, 2017; Heinze-Deml et al., 2018) usually stands for the problem of

recovering the structure of a probabilistic graphical model (PGM). PGMs (Koller and Friedman,

2009) as well as deep probabilistic models (Poon and Domingos, 2011) are useful mathematical

frameworks for modeling a high-dimensional distribution equipped with a graphical structure.

A structure learning algorithm yields a structure possibly associated with parameters such that

the learned structure together with the parameters approximates the underlying data generating

process as well as possible. In contrast, a parameter learning (Jordan, 1999) task assumes that

the true structure is given. Structured prediction (Taskar et al., 2005), or structured (output)

learning, appears unambiguously as a supervised learning task (Hastie et al., 2009) where, unlike

structure learning, data comes with labels defined or designated by humans. Each label is a

possible structure encoding a relationship among a subset of random variables. A structured

prediction algorithm learns a hypothesis from a set of data called training data and the goal is

to make the learned hypothesis a good mapping from features to labels (structures). Another

supervised learning task seeks a single structure that constitutes the underlying structure of

the output space and reuses it for subsequent structured prediction tasks (Meshi et al., 2013).

In other words, the learned structure acts as a convenient tool for predicting the joint state of

output variables. Our focus in the manuscript is the tasks of structure learning and structured

prediction discussed above and we refer to both of them as structural learning.
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Data-driven structural learning problems can be typically formulated as a mathematical

optimization problem:

inf
fPF

´Scorepf ;Dq,

where D is a set of samples drawn from the underlying distribution P we are interested in. The

goal is to find a decision to maximize a given scoring function that measures the goodness of fit

of the decision with respect to the actual distribution or a set of observations. Combinatorial

algorithms normally pick one optimal structure/sub-structure out of the set of all possible

structures F . There are usually an exponential number of candidate structures. This includes

exact search (Parviainen and Koivisto, 2009; De Campos et al., 2009), greedy search (Jalali

et al., 2011a; Chickering, 2002), neighborhood selection (Bresler, 2015), integer programming

(Martins et al., 2009; Bartlett and Cussens, 2017) and dynamic programming (Silander and

Myllymäki, 2006). Note that algorithms such as PC (Spirtes and Glymour, 1991) could also

be viewed as an optimization problem that decides whether to remove one edge at a time

based on independence tests. Continuous optimization algorithms, alternatively, acquire an

optimal solution over continuous variables, which can be transformed to a discrete structure

afterwards. Note that the transformation, or a so-called inference method, is itself a combinatorial

algorithm. The optimal parameters learned with continuous optimization play a role in helping

determine a structure. For example, the learned weights of a Markov network are filtered by

a threshold value to get the final structure (Wu et al., 2019) while the learned parameters in
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structured prediction problems constitute a scoring function in parametric form that assigns

a score to each sub-structure for inference (Smith and Smith, 2007). Algorithms completely

or partially based on continuous optimization include score matching (Hyvärinen and Dayan,

2005; Zheng et al., 2018), neighborhood selection (Ravikumar et al., 2010; Wu et al., 2019), linear

regression (Park et al., 2021), graphical lasso (Friedman et al., 2008; Loh and Bühlmann, 2014),

maximum likelihood (McDonald and Satta, 2007), maximum margin (Martins et al., 2010), risk

minimization (Stoyanov and Eisner, 2012). On account of the generality and combinatorial

nature of such problems, numerous methods have been proposed for specific function classes F ,

scoring functions Scorep¨q and distributions P under various assumptions. Since there is a large

body of works on structure learning and structured prediction, we refer the interested readers

to survey papers (Drton and Maathuis, 2017; Heinze-Deml et al., 2018), books (Spirtes et al.,

2000; Pearl, 2009; Nowozin et al., 2014; Peters et al., 2017) and the follow-up thesis chapters

that study specific structural learning problems for a more detailed discussion on related work.

1.2 Challenges

The design of a structural learning method still poses several major challenges for researchers

and practitioners. We argue that a good structural learning algorithm should at least encapsulate

the following characteristics.

‚ Computational efficiency: The first and foremost property of a successful algorithm

for data-driven problems is that it should be tractable in a reasonable amount of time.

Scalability is especially crucial in the era of big data nowadays where the amount and

dimension of available data for processing could be overwhelming. Therefore the minimum
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requirement is for an algorithm to have polynomial time complexity or polynomial time

per-iteration cost for iterative methods.

‚ Sample efficiency: Sample complexity informs us of how many samples needed in

order to approximate the true optimal solution with a specified error tolerance. In the

context of structural learning, this is the magnitude of the amount of samples required

to exactly recover the correct structure. If the structural learning problem is cast as a

statistical learning problem, sample efficiency becomes closely related to the complexity of

the considered hypotheses space that could be measured by the Vapnik-Chervonenkis (VC)

dimension or Rademacher complexity. Since there are information-theoretic lower bounds

for the studied problems, we believe it is important for the sample complexity of a proposed

algorithm to draw near to the optimal bound or at least match the state-of-the-art results.

‚ Asymptotic consistency or Fisher consistency: Unlike non-asymptotic guarantees

given by a sample complexity bound, consistency refers to an asymptotic result that

the estimator converges to the true parameter as the number of samples goes to infinity.

Sometimes we are concerned about some statistics of the proposed estimators so that no

bias is introduced. For instance, given a performance metric such as the Hamming distance

or F-measure, we are interested in whether the expected metric of an estimator under the

true distribution is equal to that of a global optimal solution, which is a concept called

Fisher consistency in decision theory. It might be trivial for structure learning tasks but

non-trivial for structured prediction tasks because the target structures vary according to

input features and typical performance metrics for structures are intractable to optimize
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directly. As a result, another good characteristic is that an algorithm should yield an

asymptotically consistent estimator or a Fisher consistent estimator with respect to some

performance metric.

‚ Robustness: The uncertainty governing a data-driven structural learning problem arises

from the fact that we only have a limited knowledge of the unknown true distribution

through access to a finite set of observations. A commonly used traditional way of account-

ing for the uncertainty is to construct a nominal distribution from observable samples

by assuming that it is an estimate that faithfully represents the underlying distribution.

Nevertheless, the nominal distribution may not be reliable thus not representative of the

true distribution. For example, observed data may be acquired from noisy environments

and experiments where data contamination happens due to measurement error, sensor

failure, transmission error, missing value or a large number of unobserved uncertainties. A

realization with very low probability may be absent in data but critical for applications

such cost-sensitive classification. Moreover, an attacker would leverage carefully crafted

adversarial examples that totally deviate from the true distribution to fool a machine

learning model. Ideally, even if we have an unbiased estimator for the distribution, the

uncertainty will generally be amplified in the optimization process because of the opti-

mizer’s curse (Smith and Winkler, 2006). All of the above unexpected factors suggest that

an algorithm be robust to noises in data or possess guarantees for the worst-case model

performance with the input data.
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To the best of our knowledge, it is hard for existing methods to tick all four boxes at the same

time. For example, the exact learning approaches in (Silander and Myllymäki, 2006; Jaakkola et

al., 2010) find an optimal directed acyclic graph (DAG) in an exponential worst-case running

time, thus not applicable in large-scale settings. The greedy equivalence search (GES) algorithm

(Chickering, 2002) may be computationally efficient in practice, but without finite-sample

guarantees. In this case, we are ignorant of how well the algorithm can do with a certain set of

data. Structured prediction algorithms based on log-likelihood (Koller and Friedman, 2009) or

large margin learning (Tsochantaridis et al., 2005) are known to be inconsistent with respect

to a prescribed loss metric in general (Nowak-Vila et al., 2019). Losing consistency causes

discrepancy between learning and prediction objectives and is likely to deteriorate prediction

performance. Recent advanced methods (Wu et al., 2019; Bank and Honorio, 2020) are both

computationally and sample efficient but rely on instinctive regularization to combat overfitting.

It is also unclear what kind of data uncertainty a regularization method is able to handle.

This dissertation pursues the goal of developing structural learning methods that take into

account all the above design considerations simultaneously. We achieve this goal mainly by

taking advantage of techniques in the emerging field of distributionally robust optimization

(DRO). We show that the proposed methods are not only robust to different types of data

uncertainties, but also enjoying desirable computational and statistical properties.

To proceed with the rest of this introduction chapter, we provide an introduction of the

distributionally robust optimization framework in Section 1.3 and a brief discussion on how the

above design concerns are addressed with appropriate DRO formulations in Section 1.4. The
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contributions as well as an outline of the thesis are summarized in Section 1.5. We attach a

description of notation conventions at the end of this chapter.

1.3 Distributionally Robust Optimization

Machine learning usually deals with decision-making problems under uncertainty, which are

closely related to mathematical optimization. Mathematical optimization not only provides

solutions to many machine learning problems but also inspires design of some learning models. A

few modeling approaches have been proposed to tackle optimization under uncertainty including

stochastic optimization, robust optimization and distributionally robust optimization, etc.

In a classical machine learning problem, we are given a class PpΞq of probability measures

supported on a measurable instance space Ξ as well as a class F of measurable functions

f : Ξ Ñ R`, sometimes considered as a hypothesis space, where each f P F assigns a scalar cost

value to each instance ξ P Ξ. A stochastic optimization approach (Shapiro et al., 2021) infers a

hypothesis f˚ whose expectation under a known distribution P P PpΞq, is minimum or nearly

optimal with high confidence:

inf
fPF

ż

Ξ
fpξqPpdξq. (1.1)

In practical terms, the distribution governing uncertainty is often not accessible and comput-

ing a multivariate integral is not easy. Instead, only a finite set of in-sample data tξp1q, . . . , ξpmqu

drawn i.i.d. from the unknown P is given. On account of this, regularized empirical risk mini-
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mization (ERM) could be adopted to construct a nominal distribution to approximate P, which

is the learning framework adopted by a lot of machine learning problems:

inf
fPF

ż

Ξ
fpξqP̃mpdξq ` λ̃Ωpfq,

where P̃m “ 1
m

řm
i“1 δξpiq is the uniform distribution on data with δξpiq being the Dirac point

measure at ξpiq, Ωp¨q represents a function quantifying hypothesis complexities and λ̃ is a trade-off

coefficient. The regularization term λ̃Ωpfq is usually added to the vanilla ERM objective to

combat overfitting and outlier data, which has been shown to be an implicit way of restricting

the hypothesis space (Bartlett and Mendelson, 2002). A norm is a common choice while adopting

different norms leads to different regularization effects. For instance, the ℓ1 norm imposes a

strong prior assumption of sparsity and results in a non-smooth problem, while the ℓ2 norm

may not be effective in feature selection or high-dimensional settings (Ng, 2004). In addition,

the regularizer is instinctively added without sound probabilistic interpretation in most cases.

Another approach from modern robust optimization (Ben-Tal et al., 2009; Bertsimas et al.,

2011) proposes to optimize the following objective:

inf
fPF

sup
ξPΞ

fpξq,

which does not require distributional information but only an uncertainty region Ξ consisting

of possible realizations of ξ. A carefully chosen set Ξ would lead to computationally tractable

problems (Trafalis and Gilbert, 2006; Yang and Xu, 2013; Bertsimas and Copenhaver, 2018).
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However, the optimal decision could be very conservative because only a single cost value is

considered regardless of the statistics in the samples.

Distributionally robust optimization is an intermediate remedy that combines the advantages

of stochastic optimization and robust optimization. Because of the limited information about

the true data-generating distribution, the DRO framework explicitly models the uncertainty

by constructing an ambiguity set that possibly contains the unknown distribution based on a

nominal distribution in a probabilistic way. DRO seeks to minimize the worst-case risk instead

of the empirical risk:

inf
fPF

sup
QPA

ż

Ξ
fpξqQpdξq, (1.2)

where A Ď PpΞq is an ambiguity set. This formulation has its origin from John von Neumann’s

game theory (von Neumann and Morgenstern, 1944). DRO has attracted attention recently in

operations research and machine learning communities by virtue of its several advantages: (1) it

admits distributional uncertainty by explicitly modeling it; (2) as long as the true distribution

falls within the constructed ambiguity set, the out-of-sample performance is guaranteed to be

no worse than the worst-case performance; (3) equivalence or an alternative to regularization

with a theoretically sound interpretation; (4) an appropriate ambiguity set gives rise to an

efficiently solvable reformulation; (5) it yields desirable statistical properties with judiciously

chosen ambiguity sets; (6) possible realizations that are absent from in-sample data could be

taken into account.
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The ambiguity set A is typically defined by a radius ε and a nominal probability measure:

AεpPq :“ tQ P PpΞq : divpQ,Pq ď εu, where divp¨, ¨q measures the discrepancy between two

distributions. A desirable ambiguity set incorporates characteristics of specific applications and

ensures tractability. Throughout the thesis, we consider three popular choices of divp¨, ¨q, based

on feature moments, the relative entropy and the Wasserstein metric.

Definition 1. Let P,Q P PpΞq be two distributions. Given a mapping ϕ : Ξ Ñ Rd and a norm

∥¨∥, the moment difference between P and Q is defined as

DM pP,Qq :“ ∥
ż

Ξ
ϕpξqPpdξq ´

ż

Ξ
ϕpξqQpdξq∥.

This divergence is able to take advantage of application-specific features and sometimes

restricts the input marginal to be identical, e.g., PX “ QX for Ξ “ X ˆ Y. All moment-based

ambiguity sets are defined through certain moment conditions and support information. DRO

formulations based on moments have been shown to induce tractable reformulations (Scarf,

1958; Popescu, 2007; Delage and Ye, 2010; Goh and Sim, 2010; Zymler et al., 2013; Wiesemann

et al., 2014; Mehrotra and Zhang, 2014; Chen et al., 2019). Despite their tractability, this

type of ambiguity sets promotes conservative decisions and fails to converge to a singleton with

low-order moments (Shafieezadeh-Abadeh et al., 2019).
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Definition 2. Let Q P PpΞq be absolutely continuous with respect to P P PpΞq. Let Qpdξq

Ppdξq
be

the Radon-Nikodym derivative. The Kullback-Leibler (KL) divergence from P to Q is defined as

DKLpQ ∥ Pq :“

ż

Ξ
ln

Qpdξq

Ppdξq
Qpdξq.

The relative entropy, or KL divergence, arises in information theory and is a well-known

asymmetric measure of difference between distributions. Unlike moments, it is a statistical

distance and a special case of ϕ-divergences. Such ambiguity sets are sometimes called likelihood-

based ambiguity sets. DRO formulations based on these divergences have also been shown to be

tractable (Calafiore and El Ghaoui, 2006; Ben-Tal et al., 2013; Hu and Hong, 2013; Bayraksan

and Love, 2015; Jiang and Guan, 2016; Wang et al., 2016; Sun and Xu, 2016; Lam, 2019) and

first-order equivalent to variance regularization (Lam, 2016; Duchi and Namkoong, 2019). An

obvious drawback is that all distributions in such ambiguity sets are required to be absolutely

continuous with respect to the nominal distribution. In this way, the support is constrained by

empirical data, which is harmful to generalization ability of the learned model. Furthermore,

(Gao and Kleywegt, 2022) illustrate with an image retrieval example that divergence measures

result in pathological worst-case distributions that are excessively conservative.

Definition 3. Assume that Ξ is a Polish space equipped with a metric c : Ξ ˆ Ξ Ñ R`. Denote

by PpΞq the space of all Borel probability measures on Ξ, and by PppΞq the space of all P P PpΞq
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with finite p-th moments for p ě 1. Let MpΞ2q be the set of probability measures on the product

space Ξ ˆ Ξ. The p-Wasserstein distance between two distributions P,Q P PppΞq is defined as

WppP,Qq :“ inf
ΠPMpΞ2q

#

”

ż

Ξ2

cppξ, ξ1qΠpdξ,dξ1q

ı
1
p
: Πpdξ,Ξq “ Ppdξq,ΠpΞ,dξ1q “ Qpdξ1q

+

.

Wasserstein distances originate from the study of optimal transport theory (Villani and

others, 2009) and can be interpreted as the minimum cost of moving the probability measure

P to Q with the unit transport cost quantified by cpξ, ξ1q. In contrast to ϕ-divergences, a

Wasserstein ambiguity set includes both discrete and continuous distributions whose support

is outside samples. This leads to stronger generalizability, which is further strengthened by

the measure concentration results in (Bolley et al., 2007; Boissard and others, 2011; Fournier

and Guillin, 2015; Singh and Póczos, 2018; Weed et al., 2019; Lei and others, 2020). What’s

more, it allows us to make use of custom metrics to measure a notion of closeness between

points, which could be useful when paired with application-specific loss functions. Wasserstein

DRO has given rise to a number of learning frameworks (Wozabal and others, 2012; Wozabal,

2014; Esfahani and Kuhn, 2018; Zhao and Guan, 2018; Chen and Paschalidis, 2018; Sinha et

al., 2018; Luo and Mehrotra, 2019; Blanchet et al., 2019a; Blanchet et al., 2019b; Blanchet and

Murthy, 2019; Shafieezadeh-Abadeh et al., 2019; Gao and Kleywegt, 2022; Gao et al., 2022) and

has been shown to be equivalent to Lipschitz regularization (Cranko et al., 2021).

DRO has also been adopted to tackle structural learning problems or closely related problems

including sub-modular maximization (Staib and Jegelka, 2019), inverse covariance estimation
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(Nguyen et al., 2022), graphical lasso learning (Cisneros-Velarde et al., 2020), graph Laplacian

learning (Wang et al., 2021), causal inference (Bertsimas et al., 2022), contextual bandit (Si et

al., 2020) and structured prediction (Fathony et al., 2018; Fathony et al., 2018). A thorough

review can be found in (Rahimian and Mehrotra, 2019; Lin et al., 2022).

1.4 Overview of Distributionally Robust Structural Learning

We propose to solve structural learning problems with the DRO framework and judiciously

chosen ambiguity sets. We advocate continuous optimization methods that can be recast as a

DRO problem as in Equation 1.2 since most combinatorial optimization algorithms for structural

learning problems with complex structures easily become intractable in the large-scale setting.

Continuous optimization methods also allow us to establish finite-sample guarantees and leverage

advanced optimization techniques.

We consider the Wasserstein distances and KL divergences for structure learning problems.

Following a data-driven Wasserstein DRO framework, we find that the dual problem of a

structure learning problem can be written in the form of

inf
fPF ,γě0

γε`
1

m

m
ÿ

i“1

sup
ξPΞ

fpξq ´ γcpξ, ξpiqq,

which is valid and strong duality holds as long as cp¨, ¨q is non-negative and lower semi-continuous

(Kuhn et al., 2019). In practice, a twice differentiable function fθ parameterized by θ is usually

optimized instead. A key challenge lies in solving the inner supremum problem. In typical

structure learning problems, the uncertain random variable ξ has an exponential number of
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states, which makes Ξ non-convex. In contrast to a classical regression setting with Ξ “ Rd, a

Fenchel conjugate is not applicable here to simplify the supremum problem into a closed form.

Nevertheless, we show that it can be solved with greedy algorithms in polynomial time exactly

or approximately for undirected and directed graphical models with certain hypotheses classes.

Based on uniform convergence (Shalev-Shwartz et al., 2010), Rademacher complexities (Bartlett

and Mendelson, 2002), Lipschitz regularization (Cranko et al., 2021) and a primal-dual witness

construction method (Wainwright, 2009), we derive out-of-sample performance guarantees that

match the state-of-the-art sample complexities.

Structure learning problems can be tackled with a DRO method based on KL divergences as

well. Established results in (Hu and Hong, 2013) allow us to reformulate such problems as a

single minimization problem. Similar sample complexity bounds can be computed by noting that

the worst-case risk over a KL divergence ambiguity set is equivalent to variance regularization

(Lam, 2019). Although requiring absolute continuity and apparently losing modeling power

for generalization, as supported by our experimental results, KL DRO is able to account for

distributional uncertainty to some degree and comparable to classic regularized ERM problems

in terms of efficiency, which is an advantage over the Wasserstein DRO counterpart.

Now we turn to structured prediction problems. A highly desirable property in structured

prediction is Fisher consistency (Liu, 2007) of the loss function used for training. Motivated by

success of moment-based ambiguity sets in DRO formulations for structured prediction problems

(Fathony et al., 2018), we develop a framework with more general theoretical results. Specifically,

with the help of Fenchel duality, we prove that our moment-based DRO formulation leads to a
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ERM problem regularized by the dual norm associated with the norm that defines the ambiguity

set. Such problems are closely connected to the Fenchel-Young loss framework (Blondel et al.,

2020) that leads to Fisher consistency.

Robustness of the proposed methods is justified by the constructed ambiguity sets and

empirical study that explicitly considers several data contamination models.

1.5 Contribution and Outline

The follow-up of this thesis is divided into several self-contained chapters that consider two

structure learning problems and two structured prediction problems respectively.

In Chapter 2, we study the problem of learning the structure of a general discrete pairwise

undirected graphical model. Building on a constrained logistic regression method, we propose

two DRO approaches with tractable reformulations. The only assumptions we make are lower

and upper bounds on the model weights. The contributions in this work can be summarized as

follows:

‚ We propose the first computationally efficient and robust structure learning approach for

discrete pairwise Markov random fields.

‚ We prove that it subsumes constrained and regularized logistic regression methods as

special cases.

‚ We provide near-optimal sample complexities that induce robustness at little cost.

‚ We conduct extensive experiments on synthetic data, comparing our methods against the

state-of-the-art baseline.
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In Chapter 3, we revisit a structure learning problem for discrete directed graphical models.

We develop DRO methods based on a group norm regularized linear regression approach. The

proposed learning methods are valid under mild conditions without the faithfulness assumption.

Specifically, our contributions are

‚ We propose the first computationally efficient and distributionally robust method for

Bayesian network structure learning over purely categorical random variables.

‚ We illustrate the connection between the DRO formulation and group norm regularization.

‚ For skeleton learning, we derive its sample complexities that are polynomial for general

graphs and logarithmic for bounded-degree graphs.

‚ Empirical study on benchmark and real-world datasets verify the effectiveness of our

methods.

In Chapter 4, a structured prediction problem of tree-shaped objects is considered. We

present a fresh perspective to Fisher consistent structured prediction in terms of DRO with

general theoretical results. The main contributions in this work are listed below.

‚ We propose a distributionally robust tree structured prediction method and show its

equivalence to regularized surrogate loss minimization.

‚ We derive its generalization bounds and Fisher consistency.

‚ We propose efficient algorithms based on projection oracles for arborescence polytopes.

‚ We perform empirical study on real-world datasets.
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In Chapter 5, we tackle a probabilistic supervised learning problem that can be regarded as

structured prediction of objects in a simplex. This problem traces back to consistent probability

estimation in statistics. A Fisher consistent loss naturally acts as a proper scoring rule. Based

on a moment-based ambiguity set, the proposed DRO approach yields consistent conditional

probability distribution prediction and can be easily incorporated in an end-to-end representation

learning framework. A summary of the contributions is

‚ We propose a distributionally robust probabilistic supervised learning method, show its

Fisher consistency and derive its generalization bounds.

‚ We characterize the solutions to the proposed method and present an efficient algorithm

for specific losses.

‚ We incorporate our method into neural networks and perform extensive empirical study

on real-world data.

In Chapter 6, we make some discussions and conclude the thesis.

1.6 Notation

The following notation conventions are adopted throughout this thesis. We refer to rns as

the index set t1, 2, . . . , nu for a positive integer n. For a vector x P Rn, we use xi for its i-th

element, xī or x´i for all elements excluding the i-th element and xS for the subset of elements

indexed by S Ď rns. xi“c represents rx1, . . . , xi´1, c, xi`1, . . . , xns⊺ for some c P R. For a matrix

A P Rnˆm, we use Aij , Ai¨ (Ai˚) and A¨j (A˚j) to denote its pi, jq-th entry, i-th row and j-th

column respectively. AST represents the sub-matrix of A with rows restricted to S and columns
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restricted to T . We define a row-partitioned block matrix as A fi rA1A2 ¨ ¨ ¨Aks⊺ P R
ř

i niˆm

where Ai P Rniˆm. The ℓp-norm of a vector x is defined as ∥x∥p :“ p
ř

i |xi|
pq1{p with | ¨ | being

the absolute value function. The ℓp,q norm of a matrix A is defined as ∥A∥p,q :“ p
ř

j∥A¨j∥qpq1{q.

When p “ q “ 2, the ℓp,q norm becomes the Frobenius norm or the Hilbert–Schmidt norm

denoted by ∥¨∥F . We define the operator norm of a matrix as ~A~p,q :“ sup∥v∥p“1∥Av∥q. The

block matrix norm is defined similarly: ∥A∥B,p,q :“ p
řk

i“1∥Ai∥qpq1{q. The inner product of two

matrices is designated by xA,By fi TrrA⊺Bs where A⊺ is the transpose of A. The Hadamard

product is written as AdB for element-wise multiplication. Denote by b the tensor product

operation. With a slight abuse of notation, |S| or #S stands for the cardinality of a set S. We

denote by Tpxq P Rn a vector with non-decreasing components as a result of sorting pxi : i P rnsq.

We denote by 1 (0) a vector or matrix of all ones (zeros). Given a distribution P on Ξ, we denote

by Pm the m-fold product of P on the Cartesian product Ξm and by EP the expectation under P.

The least c-Lipschitz constant of a function f : Ξ Ñ R with a metric c : Ξ ˆ Ξ Ñ R` is written

as lipcpfq :“ inf Λcpfq where Λcpfq :“ tλ ą 0 : @ξ1, ξ2 P Ξ |fpξ1q ´ fpξ2q| ď λcpξ1, ξ2qu.

The i-th standard basis vector is written as bpiq with b
piq
i “ 1 and b

piq
j “ 0 for j ‰ i. Denote

B :“ tbpiq : i P rksu as the set of basis vectors in Rk and Bpnˆkq Ă t0, 1unˆk as the set of all

nˆ k matrices whose rows are k-dimensional standard basis vectors.



CHAPTER 2

DISTRIBUTIONALLY ROBUST STRUCTURE LEARNING OF

UNDIRECTED GRAPHICAL MODELS

(Parts of this chapter were previously published as “Distributionally Robust Structure

Learning for Discrete Pairwise Markov Networks” in Proceedings of the 25th International

Conference on Artificial Intelligence and Statistics (AISTATS) 2022 (Li et al., 2022b).)

In this chapter, we consider the problem of learning the underlying structure of a general

discrete pairwise Markov network. Existing approaches that rely on ERM may perform poorly in

settings with noisy or scarce data. To overcome these limitations, we propose a computationally

efficient and robust learning method for this problem with near-optimal sample complexities

based on DRO and maximum conditional log-likelihood. We describe the motivation and related

work in Section 2.1, followed by preliminaries with a baseline approach in Section 2.2. In

Section 2.3, we propose a minimax learning formulation and show that it can be efficiently

solved by leveraging sufficient statistics and greedy maximization in the ostensibly intractable

dual formulation. Based on DRO’s approximation to Lipschitz and variance regularization, we

derive near-optimal sample complexities matching existing results in Section 2.4. Extensive

empirical evidence in Section 2.5 with different corruption models corroborates the effectiveness

of the proposed methods. This chapter is concluded with a few discussions in Section 2.6.

20
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2.1 Introduction and Related Work

Undirected graphical models, also known as Markov random fields (MRFs) or Markov

networks, are an influential framework for modeling structured high-dimensional probability

distributions. The underlying graphical structure specifying the distribution encodes conditional

independencies among a set of random variables and provides valuable information about their

correlations. One of the core problems in graphical models is structure learning, whose goal

is to recover the dependency graph with high confidence given i.i.d. samples drawn from the

distribution. A flurry of work focuses on developing efficient algorithms for structure learning of

discrete pairwise and higher-order MRFs (Vuffray et al., 2016; Klivans and Meka, 2017; Hamilton

et al., 2017; Wu et al., 2019; Vuffray et al., 2020). These methods have almost exclusively

made the assumption that the samples are not contaminated. In practice, however, noisy data

is prevalent due to sensor failure, decentralized collection, or even adversarial perturbation

(Nikolakakis et al., 2019a).

Existing algorithms based on neighborhood selection typically optimize a convex objective

for each node to find its adjacent nodes. This essentially becomes a standard ERM problem in

statistical learning. Regularization is usually added to the vanilla ERM objective to combat

overfitting and outlier data, which has been shown to be an implicit way of restricting the

hypothesis space (Bartlett and Mendelson, 2002).

To alleviate the above issues, we put forward a distributionally robust optimization approach

for solving a node-wise maximum log-likelihood problem for structure learning of pairwise

MRFs over a general alphabet. The presence of data corruption and limited sample sizes are of
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particular interest for our approach. In contrast to regularized ERM that suppresses hypothesis

complexity, the DRO method makes no restriction on parameters to be optimized. To account

for uncertainty about the true distribution due to noisy finite samples, it explicitly constructs

an ambiguity set of distributions consistent with the true distribution pertaining to certain a

priori properties. The optimal decision rule is then found by minimizing the worst-case expected

cost over the ambiguity set so that it has the best performance evaluated by all adversarial

distributions in the set. If the true distribution is included in the uncertainty set, it has implicitly

optimized the estimator on it. The worst-case risk thus serves as an upper confidence bound on

the true expected loss. An exponential number of outcomes in the discrete probability space

of MRFs makes the näıve dual formulation based on the Wasserstein distance NP-hard thus

intractable. By exploiting the greedy property of finding the worst-case risk, we reformulate

the primal DRO problems based on the Wasserstein distance and KL divergence into efficiently

solvable convex optimization problems. Furthermore, the DRO approach has better probabilistic

elucidation than standard regularization. We show that it encompasses both the ℓ2,1-constrained

and ℓ2,1-regularized logistic regression as special cases. It is inherently robust due to explicitly

modeling distributional uncertainty. Based on Lipschitz and variance regularization, we derive

near-optimal sample complexities with an additional linear term with ambiguity radius as its

coefficient. Extensive experiments in different settings including three contamination models are

conducted to validate our method against the state-of-the-art baseline (Wu et al., 2019), which

is hardly done in related work.
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Contribution. Our contributions can be summarized as follows: (1) We propose the first

computationally efficient and robust structure learning approach for discrete pairwise MRFs

and prove that it subsumes existing methods as special cases. (2) We provide near-optimal

sample complexities that induce robustness at little cost. (3) We conduct extensive experiments

on synthetic data, comparing our methods against the state-of-the-art baseline.

2.1.1 Related Work

The MRF structure learning task plays an essential role in applications in a number of

areas such as statistical mechanics (Chayes et al., 1984), computer vision (Szeliski et al., 2006),

sociology (Eagle et al., 2009) and neuroscience (Schneidman et al., 2006).

There has been a rich body of work on structure learning of Ising models as well as non-binary

higher-order MRFs. The study of this problem was initiated by the seminal work of (Chow

and Liu, 1968) on the maximum likelihood estimator of a tree-structured MRF. Early attempts

include hypothesis testing (Spirtes et al., 2000), exhaustive neighborhood search (Bresler et al.,

2013) and regularized pseudo-likelihood (Ravikumar et al., 2010; Jalali et al., 2011b). (Bresler,

2015) put forward a simple greedy algorithm that learns the structure of any sparse bounded-

degree Ising models, which was improved to near-optimal sample complexity (Vuffray et al.,

2016; Lokhov et al., 2018) and generalized to arbitrary MRFs (Hamilton et al., 2017; Vuffray et

al., 2020). A multiplicative weight update approach called Sparsitron, achieving near-optimal

run-time and near-optimal sample efficiency, was introduced by (Klivans and Meka, 2017). (Wu

et al., 2019) revisited the classical regularized likelihood method (Ravikumar et al., 2010) and
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made a slight improvement over the sample complexity of Sparsitron with respect to dependence

on model width.

The Ising model structure learning problem under the missing data setting was raised as

an open problem by (Chen, 2010). Preliminary unidentifiability results on robust learning

of Ising models were derived by (Lindgren et al., 2019). Provably robust binary Ising model

structure learning algorithms were developed for independent failure corruption (Goel et al.,

2019), tree-structured Ising model (Nikolakakis et al., 2019a; Katiyar et al., 2020), Huber’s

contamination model (Prasad et al., 2020) and total variation contamination (Diakonikolas et

al., 2021). Robust structure learning methods for non-binary MRFs were studied in (Nikolakakis

et al., 2019b) and (Katiyar et al., 2021) by assuming a tree-shaped underlying graph. To the

best of our knowledge, there has been no robust structure learning algorithms for non-binary

MRFs without structural constraints on the true graph.

2.2 Preliminaries

To begin with, we consider the definition of a general discrete pairwise MRF.

Definition 4. Let k be the alphabet size. Let W “ tW pijq P Rkˆk : i ‰ j P rnsu be a

collection of symmetric weight matrices and Θ “ tθpiq P Rk : i P rnsu be a collection of

external field vectors. Let G “ pV, Eq be an undirected graph with nodes V “ rns and edges

E “ tti, ju Ď V : W pijq ‰ 0u. Then the n-variable pairwise undirected graphical model with

underlying dependency graph G is a distribution D ” DpW,Θq over rksn such that

P
Z„DpW,Θq

rZ “ zs9 exp

˜

ÿ

iăjPrns

W pijq
zizj `

ÿ

iPrns

θpiq
zi

¸

.
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Define the width of the model as λpDq :“ supiPrns,aPrks

`
ř

j‰iPrns supbPrks |W
pijq

ab | ` |θ
piq
a |

˘

and the

minimum edge weight as ηpDq :“ infti,juPE supa,bPrks |W
pijq

ab |.

We make the following assumptions on DpW,Θq.

Assumption 5. W pijq has centered rows and columns:
ř

aPrks W
pijq

ab “
ř

bPrks W
pijq

ab “ 0.

Assumption 6. The model width is upper bounded by a positive constant λ: λpDq ď λ. The

minimum edge weight is lower bounded by a positive constant η : ηpDq ě η.

According to Fact 8.2 in (Klivans and Meka, 2017), Assumption 5 is made without loss of

generality because centering pW,Θq leads to pW 1,Θ1q with the same distribution: DpW,Θq “

DpW 1,Θ1q. One of the useful properties induced by Assumption 6 is that the node-wise

conditional distributions are bounded away from 0 and 1. Although η is usually assumed to be

known, in practice it can be determined based on the tail of the learned weights distribution in

the vicinity of zero.

We note the following fact that the conditional distributions of a pairwise MRF can be

written as a logistic function σpxq :“ p1` e´xq´1 if the dependent variable is restricted to a pair

of values.

Fact 7. Let Z „ DpW,Θq be a discrete pairwise graphical model over rksn. For any i P rns and

α ‰ β P rks, we have

PrZi “ α|Zi P tα, βu,Z´i “ z´is “ σp
ÿ

j‰i

pW pijq
αzj ´W

pijq

βzj
q ` θpiq

α ´ θ
piq
β q fi σpxW̄ , Z̄yq,
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where W̄ P Rnˆk is defined as W̄i˚ :“ rθ
piq
α ´ θ

piq
β ,0⊺s, and W̄j˚ :“ W

pijq
α˚ ´W

pijq

β˚
for j ‰ i P rns.

Z̄ :“ OneHotpzi“1q P Bpnˆkq encodes zi“1 such that Z̄i˚ “ bp1q⊺ and Z̄j˚ “ bpzjq⊺ for j ‰ i.

The definition of W̄ implies ∥W̄ ⊺∥2,1 ď 2λ
?
k. Let tz̄p1q, . . . , z̄pmqu

iid
„ DpW,Θq be a set

of m samples and tzp1q, . . . ,zpm1qu be its subset with z
pjq

i P tα, βu. Define ypjq “ 1 if z
pjq

i “ α

and ypjq “ ´1 if z
pjq

i “ β. In order to estimate the graph parameters W, it is thus natural

to solve an ℓ2,1-constrained logistic regression problem by minimizing the negative conditional

log-likelihood for each i P rns and α ‰ β P rks as follows:

Ŵ piαβq P arg inf
W PRnˆk,

∥W ⊺∥2,1ď2λ
?
k

1

m1

m1
ÿ

j“1

ℓpypjqxW ,OneHotpz
pjq

i“1qyq, (2.1)

where ℓpxq :“ ln p1 ` e´xq fi ´ lnσpxq represents the logistic loss function. Centering Ŵ piαβq as

U
piαβq

i˚ :“ Ŵ
piαβq

i˚ `
1

k

ÿ

j‰iPrns,aPrks

Ŵ
piαβq

ja 1⊺ (2.2)

U
piαβq

j˚
:“ Ŵ

piαβq

j˚ ´
1

k

ÿ

aPrks

Ŵ
piαβq

ja 1⊺ @j ‰ i,

yields a minimizer of Equation 2.1 due to xŴ piαβq, Z̄y “ xU piαβq, Z̄y.

Finally, we can estimate the weight matrices W pijq via

Ŵ
pijq
α˚ :“

1

k

ÿ

βPrks

U
pαβq

j˚ @j ‰ i P rns, α P rks. (2.3)
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The edge set of the estimated dependency graph can be formed by thresholding (Ravikumar et

al., 2010; Wu et al., 2019):

Ê :“ tti, ju : ∥Ŵ pijq∥8 ě η{2, i ă j P rnsu. (2.4)

2.3 Distributionally Robust Structure Learning

We propose to reconstruct the structure of a discrete pairwise undirected graphical model

with a distributionally robust learning framework, inspired by the ℓ2,1-constrained logistic

regression approach and the DRO framework. In this section, we present our DRO formulation

and its dual formulations that give rise to tractable convex programs. We additionally show

connections of our method to regularized ERM as well as ℓ2,1-constrained logistic regression.

2.3.1 Distributionally Robust Discrete Pairwise Markov Network Learning

In the setting where the in-sample data is sparse or noisy, directly applying the sparse logistic

regression approach usually results in a problematic dependency graph with missing or spiky

edges due to overfitting. In consideration of uncertainty about the unknown true distribution,

based on the logistic objective, we propose to learn pairwise MRFs by minimizing the worst-case

risk taken over an ambiguity set centered at the empirical probability measure:

Definition 8. Let Ξ “ X ˆ Y “ Bppn´1qˆkq ˆ t´1, 1u. Given m samples tz̄p1q, . . . , z̄pmqu
iid
„

DpW,Θq, the goal of learning discrete pairwise MRFs with distributionally robust logistic
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regression is to find the optimal Ŵ piαβq for each i P rns and α ‰ β P rks via minimax statistical

learning, formally,

Ŵ piαβq P arg inf
W PRnˆk

sup
QPAεpP̂m1 q

ż

Ξ
ℓpyxW ,XyqQpdpx, yqq, (2.5)

where X :“ rx⊺
1...i´1,˚, b

p1q⊺,x⊺
i...n´1,˚s⊺ inserts the first standard basis vector into the i-th row

of x. P̂m1 is the empirical distribution for a set of transformed m1 samples tξp1q, . . . , ξpm1qu such

that, for any ξpj1q “ pxpj1q, ypj1qq P Ξ, j1 P rm1s and its corresponding original sample z̄j , j P rms,

we have z̄
pjq

i P tα, βu, ypj1q “ 1 if z̄
pjq

i “ α and ypj1q “ ´1 if z̄
pjq

i “ β, with xpj1q “ OneHotpz̄
pjq

´i q.

Note that if ε is set to zero, Equation 2.5 reduces to an unconstrained version of Equation 2.1.

More importantly, the DRO formulation in Equation 2.5 is an infinite-dimensional optimization

problem, which is generally impossible to solve directly.

2.3.2 Tractable Reformulations

We show that the DRO problem in Definition 8 can be solved efficiently via its dual

formulations. The following theorem presents a tractable convex reformulation for the primal

problem in Equation 2.5 if a Wasserstein ball is adopted as the ambiguity set.

Theorem 9. Let W1p¨, ¨q be the type-1 Wasserstein distance with p “ 1 and metric cpξ, ξ1q fi

cppx, yq, px1, y1qq :“ ∥x´ x1∥1,1 ` κ
2 |y ´ y1| for ξ, ξ1 P Ξ, κ P R`. Let AW1

ε pP̂m1q :“ tQ P PpΞq :
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W1pP̂m1 ,Qq ď ε “ ε0?
m1

u be the ambiguity set. Then the primal problem in Equation 2.5 is

equivalent to

inf
W PRnˆk,

γě0

γε`
1

m1

m1
ÿ

j“1

sup
0ďrďn´1PZ,
gPt´1,1u

r´
1

2
γκp1 ` gypjqq ´ 2rγ ` ln p1 ` exgW ,Xpjqy`xTpδq1...r,1yqs, (2.6)

whereXpjq :“ rx
pjq⊺
1...i´1,˚, b

p1q⊺,x
pjq⊺
i...n´1,˚s⊺, δ :“ rsuplPrkspgW qjl : j ‰ i P rnss⊺´pgW´i,˚dxpjqq1,

and Tpxq is defined as a vector with non-decreasing components as a result of sorting x, introduced

in Section 1.6.

Proof. Recall that Ξ “ Bppn´1qˆkq ˆ t´1, 1u where Bppn´1qˆkq is the set of matrices with rows

of basis vectors. To avoid clutter of notations, we define

ℓW pξq :“ ℓpyxW , rx⊺
1...i´1,˚, b

p1q⊺,x⊺
i...n´1,˚s⊺yq.

Similar to (Abadeh et al., 2015), we rewrite the worst-case risk in Equation 2.5 as

sup
QPAεpP̂m1 q

ż

Ξ
ℓW pξ1qQpdξ1q “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

sup
ΠPMpΞ2q

ż

Ξ
ℓW pξ1qΠpΞ,dξ1q

s.t.

ż

Ξ2

dpξ, ξ1qΠpdξ,dξ1q ď ε

Πpdξ,Ξq “ P̂m1pdξq.
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Plugging Πpdξ,dξ1q “ 1
m1

řm1

j“1 δξpjqpdξqQpjqpdξ1q into the above expression yields

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

sup
Qpjq

1

m1

m1
ÿ

j“1

ż

Ξ
ℓW pξ1qQpjqpdξ1q

s.t.
1

m1

m1
ÿ

j“1

ż

Ξ
dpξpjq, ξ1qQpjqpdξ1q ď ε

ż

Ξ
Qpjqpdξ1q “ 1,@j P rm1s.

(2.7)

By defining Qpjq

˘1pdxq :“ Qpjqpdpx,˘1qq, we are able to decompose Qpjqpdξq based on the value

of y as

Qpjqpdξq “ Qpjq

´1pdxq ` Qpjq

`1pdxq,

which can simplify Equation 2.7 to

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

sup
Qpjq

˘1

1

m1

m1
ÿ

j“1

ż

Bppn´1qˆkq

ℓW ppx1,´1qqQpjq

´1pdx1q ` ℓW ppx1,`1qqQpjq

`1pdx1q

s.t.
1

m1

m1
ÿ

j“1

ż

Bppn´1qˆkq

dpξpjq, px1,´1qqQpjq

´1pdx1q ` dpξpjq, px1,`1qqQpjq

`1pdx1q ď ε

ż

Bppn´1qˆkq

Qpjq

´1pdx1q ` Qpjq

`1pdx1q “ 1,@j P rm1s.
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By substituting the metric definition into the above expressions, we rewrite them as

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

sup
Qpjq

˘1

1

m1

m1
ÿ

j“1

ż

Bppn´1qˆkq

ℓW ppx1,´1qqQpjq

´1pdx1q ` ℓW ppx1,`1qqQpjq

`1pdx1q

s.t.
1

m1

ż

Bppn´1qˆkq

κ
ÿ

j:ypjq“´1

Qpjq

`1pdx1q ` κ
ÿ

j:ypjq“`1

Qpjq

´1pdx1q

`

m1
ÿ

j“1

∥xpjq ´ x1∥1pQpjq

´1pdx1q ` Qpjq

`1pdx1qq ď ε

ż

Bppn´1qˆkq

Qpjq

´1pdx1q ` Qpjq

`1pdx1q “ 1,@j P rm1s.

Its Lagrange dual problem is as follows:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

inf
γ,spjq

γε`
1

m1

m1
ÿ

j“1

spjq

s.t. sup
x1PBppn´1qˆkq

ℓW ppx1,´1qq ´ γ∥xpjq ´ x1∥1 ´
1

2
γκp1 ` ypjqq ď spjq @j P rm1s

sup
x1PBppn´1qˆkq

ℓW ppx1,`1qq ´ γ∥xpjq ´ x1∥1 ´
1

2
γκp1 ´ ypjqq ď spjq @j P rm1s

γ ě 0.

Strong duality holds according to Theorem 1 in (Gao and Kleywegt, 2022). By incorporating

the outer minimization of Equation 2.5, plugging in the expression of ℓW p¨q and rearranging the

terms in the above expressions, we have

inf
W PRnˆk,

γě0

γε`
1

m1

m1
ÿ

j“1

sup
xPBppn´1qˆkq,

gPt´1,1u

ln p1 ` egxW ,Xyq ´ γ∥xpjq ´ x∥1 ´
1

2
γκp1 ` gypjqq,
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where X “ rx⊺
1...i´1,˚, b

p1q⊺,x⊺
i...n´1,˚s⊺. The objective of the above convex program is the sum

of m1 point-wise maximum functions of 2kn´1 convex functions. We now consider the following

function of x:

hpxq “ ln p1 ` egxW ,Xyq ´ γ∥xpjq ´ x∥1 ´
1

2
γκp1 ` gypjqq.

Let Xpjq :“ rx
pjq⊺
1...i´1,˚, b

p1q⊺,x
pjq⊺
i...n´1,˚s⊺ and δ :“ rsuplPrkspgW qjl : j ‰ i P rnss⊺ ´ pgW´i,˚ d

xpjqq1. As a result, δ P Rn´1 is a vector of differences between the maximum and the selected

element according to xpjq for each row of W´i,˚. Denote by pb1, . . . , bn´1q a permutation of

rn ´ 1s satisfying δb1 ě δb2 ě ¨ ¨ ¨ ě δbn´1 . It is thus not hard to show that, for any integer

0 ď r ď n´ 1, and x P Bppn´1qˆkq that satisfies ∥xpjq ´ x∥1 “ 2r, we have

sup
xPBppn´1qˆkq,
∥xpjq´x∥1“2r

hpxq “ ln p1 ` exgW ,Xpjqy`
řr

u“1 δbu q ´ 2rγ ´
1

2
γκp1 ` gypjqq,

where
řr

u“1 δbu is simply the sum of the first r largest elements of δ. Note that if δbr ď 0 for

some r P rn´ 1s, we always have

ln p1 ` exgW ,Xpjqy`
řr

u“1 δbu q ´ 2rγ ě ln p1 ` exgW ,Xpjqy`
řr1

u“1 δbu q ´ 2r1γ,@r ď r1.
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So only the positive elements in δ is of interest to finding the supremum. As a consequence,

the objective of the dual problem can be rewritten as the point-wise maximum over 2n convex

functions as follows:

inf
W PRnˆk,

γě0

γε`
1

m1

m1
ÿ

j“1

sup
0ďrďn´1,
gPt´1,1u

´2rγ ´
1

2
γκp1 ` gypjqq ` ln p1 ` exgW ,Xpjqy`

řr
u“1 δbu q.

To characterize the sequence of the sorted indices more formally, we have defined Tpxq as a vector

of sorted components of x. The sorting operation required to evaluate Tp¨q can be accomplished

in Θpn log nq for sub-derivative evaluation. In such matter, we can reformulate the above convex

program as

inf
W PRnˆk,

γě0

γε`
1

m1

m1
ÿ

j“1

sup
0ďrďn´1,
gPt´1,1u

´2rγ ´
1

2
γκp1 ` gypjqq ` ln p1 ` exgW ,Xpjqy`xTpδq1...r,1yq.

One of the benefits brought by the Wasserstein DRO formulation is that it subsumes the

ℓ2,1-constrained (Wu et al., 2019) as well as regularized logistic regression approaches (Ravikumar

et al., 2010) as special cases, as shown by the following theorem, which implies that minimizing

the classic objectives is not enough to ensure distributional robustness:

Theorem 10. If κ “ 8, ∥W ⊺∥2,1 ď 2λ
?
k and γ ě pn ` 2qλ

?
k, the convex program in

Equation 2.6 subsumes the standard ℓ2,1-constrained logistic regression approach in Equation 2.1
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as a special case. If κ “ 8 and γ ě n`2
2 ∥W ⊺∥2,1, it subsumes the ℓ2,1-regularized logistic

regression approach as a special case.

Proof. To begin with, we rewrite Equation 2.6 based on the cases where g “ ypjq and g “ ´ypjq:

inf
W PRnˆk,

γě0

γε`
1

m1

m1
ÿ

j“1

sup
0ďrďn´1

t´2rγ ` ln p1 ` ex´ypjqW ,Xpjqy`xTpδq1...r,1yq,

´ 2rγ ´ γκ` ln p1 ` exypjqW ,Xpjqy`xTpδq1...r,1yqu.

Assume that γ ą 0. Since κ “ 8, the second expression in the supremum makes the entire

objective goes to ´8, thus dominated by the first expression. Hence it can be simplified as

inf
W PRnˆk,

γą0

γε`
1

m1

m1
ÿ

j“1

sup
0ďrďn´1

´2rγ ` ln p1 ` ex´ypjqW ,Xpjqy`xTpδq1...r,1yq. (2.8)
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If γ ě pn` 2qλ
?
k ą 0, ∥W ⊺∥2,1 ď 2λ

?
k and n, k P Z`, then for any X P V pnˆkq, we have

∥W ∥8 fi ∥W ∥8,8 ď ∥W ⊺∥2,8 ď ∥W ⊺∥2,1 ď 2λ
?
k ď 2γ{pn` 2q

ùñe∥W ∥8pn`2q ď e2γ

ùñe2∥W ∥8pn`2q ď e2γ`∥W ∥8pn`2q

ùñe2∥W ∥8pn`2q ´ pe2γ ´ 1qe∥W ∥8pn`2q ´ e2γ ď 0

ùñe∥W ∥8pn`2q ´ e2γ´∥W ∥8pn`2q ď e2γ ´ 1

ùñe∥W ∥8pn`2q ´ e2γ´∥W ∥8n ď e2γ ´ 1

ùñe∥W ∥8pn`2q ď e2γ ` e2γ´∥W ∥8n ´ 1

ùñ∥W ∥8 ď
1

2
rln pe2γ ` e2γ´∥W ∥8n ´ 1q ´ ∥W ∥8ns

ď
1

2
rln pe2γ ` e2γ`xW ,Xy ´ 1q ´ xW ,Xys

ùñexW ,Xy`2∥W ∥8 ď e2γ ` exW ,Xy`2γ ´ 1

ùñ
1 ` exW ,Xy`2∥W ∥8

1 ` exW ,Xy
ď e2γ

ùñ ln p1 ` exW ,Xy`2∥W ∥8q ´ ln p1 ` exW ,Xyq ď 2γ.

Therefore, the supremum in Equation 2.8 is achieved only when r “ 0. Finally, Equation 2.8

can be rewritten as the following convex program:

$

’

’

’

’

&

’

’

’

’

%

inf
W

1

m1

m1
ÿ

j“1

ln p1 ` e´ypjqxW ,Xpjqyq

s.t. ∥W ⊺∥2,1 ď 2λ
?
k,
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which coincides with the ℓ2,1-constrained logistic regression problem in Equation 2.1.

On the other hand, if γ ě n`2
2 ∥W ⊺∥2,1, by following the above same process, the supremum

in Equation 2.8 is achieved only when r “ 0. Note that only the first term in Equation 2.8 is

related to γ. After minimizing over γ, we can rewrite Equation 2.8 as

inf
W PRnˆk

pn` 2qε

2
∥W ⊺∥2,1 `

1

m1

m1
ÿ

j“1

ln p1 ` e´ypjqxW ,Xpjqyq,

which is a standard ℓ2,1-regularized logistic regression problem with λ̃ “
pn`2qε

2 .

Intuitively, when κ “ 8, flipping ypjq causes infinite transport cost. In this case, it is assumed

that the realization of each ypjq given xpjq is deterministic. Instead of taking into account the

ambiguity only in the covariate measure Qpdxq, the Wasserstein DRO structure learning

formulation grants flexibility to the joint measure Qpdξq. Modeling joint measure uncertainty

is non-trivial here because all the random variables are involved in the node-alphabet-wise

distributionally robust logistic regression problem in Equation 2.5.

If KL divergence is adopted to construct the ambiguity set, a tractable convex program can

be derived as a corollary from Theorem 4 in (Hu and Hong, 2013):

Corollary 11. Let AKL
ε pP̂m1q :“ tQ P PpΞq : DKLpQ, P̂m1q ď ε “ ε0

m1 u be a KL divergence ball.

The primal problem in Equation 2.5 with BεpP̂m1q “ BKL
ε pP̂m1q is equivalent to

inf
W PRnˆk,

γě0

γ ln r
1

m1

m1
ÿ

j“1

p1 ` e´ypjqxW ,Xpjqyq
1
γ s ` γε. (2.9)
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Proof. The problem we study satisfies Assumption 1 in (Hu and Hong, 2013) because ℓpξq has

finite support on Ξ. Substituting P0 “ P̂m1 and Hpx, ξq “ ℓpyxW ,Xyq into Theorem 4 in (Hu

and Hong, 2013) leads to our result.

In contrast to the convex program with inner maximization in Equation 2.6, the direct

minimization problem in Equation 2.9 based on KL divergence balls can be solved more efficiently.

This class of problems have been shown to recover adversarial reweighting (Li and Dunson, 2020)

and variance regularization (Duchi and Namkoong, 2019).

Algorithm 1 Structure Learning of Discrete Pairwise Graphical Models

Input: Alphabet size k; number of variables n; sample data tz̄p1q, . . . , z̄pmqu; model width λ;
minimum edge weight η
Output: Recovered edge set Ê
for all pi, α, βq P rns ˆ rks ˆ rks do
Form a subset tzp1q, . . . ,zpm1qu with zji P tα, βu@j P rm1s

Compute Ŵ piαβq by Equation 2.1 or Equation 2.6
Centering Ŵ piαβq by Equation 2.2
Estimate the weight matrices W pijq by Equation 2.3
Estimate the edge set Ê by Equation 2.4

end for

We illustrate the algorithmic details in Algorithm 1.

2.4 Theoretical Guarantees

In this section, we study statistical properties of the proposed estimators. More specifically,

we derive generalization bounds, excess true risk bounds and sample complexities of our methods.
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It is non-trivial to quantify the number of samples needed to recover the dependency graph

with high probability in a structure learning problem. An initial attempt we made is to leverage

a 0-concentration bound under 1-Wasserstein distance in the form of PmrW1pP, P̂mq ě εs ď

fpd, n, k,m, εq to get a uniform upper confidence bound on the generalization error. It turns out

that even the most advanced mean-concentration bounds Opm´ 1
n q (Lei and others, 2020; Weed

et al., 2019) with essentially optimal dependence on data dimensionality n lead to a sample

complexity OpC
nk
2 q with exponential dependence on n. The cause of the issue might be that

convergence of P̂m to P is much slower than convergence ofW1pP̂m,Pq to its mean EPmW1pP̂m,Pq

in high dimensional settings (p “ 1 with large n). Hence the generalization bounds obtained via

measure concentration are too conservative to be useful in our case.

Instead, we consider the following lemma about a uniform generalization bound based

on bounded Lipschitz loss functions (Shalev-Shwartz and Ben-David, 2014) and Rademacher

complexities (Bartlett and Mendelson, 2002).

Lemma 12 (Lemma 11 in (Wu et al., 2019)). Let D be a distribution on X ˆ Y, where

X :“ tx P Rnˆk : ∥x⊺∥2,8 ď X2,8u and Y :“ t´1, 1u. Let ℓ : R Ñ R be a loss function with

Lipschitz constant Lℓ. Define the expected loss as Lpwq :“ EDℓpyxw,xyq and the empirical

loss as L̂pwq :“ 1
m

řm
i“1 ℓpy

piqxw,xpiqyq, where txpiq, ypiqumi“1
iid
„ D. Define W :“ tw P Rnˆk :

∥w⊺∥2,1 ď W2,1u. Then with probability at least 1 ´ ρ over the draw of m samples, we have that

for all w P W, 0 ă ρ ď 1,

Lpwq ´ L̂pwq ď C

c

24 ln pnq

m
` C

c

2 ln p2{ρq

m
,



39

where C “ LℓX2,8W2,1.

Proof. Please refer to Lemma 11 in (Wu et al., 2019) for the proof.

In order to get a sample complexity bound, we derive an excess true risk bound for transport-

based DRO estimators, in terms of generalization errors, which may be of independent interest.

Proposition 13. Assume that pΞ, cq is a Banach space, PppΞq is the space of Borel probability

measures on Ξ with finite p-th moment for p ě 1, P̂m P PppΞq is the empirical measure for

some P P PppΞq, A “ AWp
ε pP̂mq is a type-p Wasserstein ball centered at P̂m with radius ε, F is

a space of closed convex functions f : Ξ Ñ R` with lipcpfq ă 8. Let f̂ be a minimizer of the

DRO problem in Equation 2.5 and f˚ be a minimizer of the stochastic optimization problem in

Equation 1.1, we have

ż

Ξ
f̂pξqPpdξq ´

ż

Ξ
f˚pξqPpdξq ď εlipcpf

˚q ` 2 sup
fPF

|

ż

Ξ
fpξqPpdξq ´

ż

Ξ
fpξqP̂mpdξq|.

Proof. To avoid clutter of notations, we define ApPq :“ AWp
ε pPq.

According to Theorem 1 in (Cranko et al., 2021), the following relation holds for any f P F

and a fixed P P PppΞq:

ż

Ξ
fpξqPpdξq ď sup

QPApPq

ż

Ξ
fpξqQpdξq ď

ż

Ξ
fpξqPpcξq ` εlipcpfq.
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Note that we are given a worst-case risk minimizer f̂ defined as

f̂ P arg inf
fPF

sup
QPApP̂mq

ż

Ξ
fpξqQpdξq,

and a true risk minimizer f˚ defined as

f˚ P arg inf
fPF

ż

Ξ
fpξqPpdξq.

As a result of uniform boundedness, we have

|

ż

Ξ
f̂pξqPpdξq ´

ż

Ξ
f˚pξqPpdξq|

“

ż

Ξ
f̂pξqPpdξq ´

ż

Ξ
f˚pξqPpdξq

“

ż

Ξ
f̂pξqPpdξq ´ sup

QPApP̂mq

ż

Ξ
f̂pξqQpdξq ` sup

QPApP̂mq

ż

Ξ
f̂pξqQpdξq

´ sup
QPApP̂mq

ż

Ξ
f˚pξqQpdξq ` sup

QPApP̂mq

ż

Ξ
f˚pξqQpdξq ´

ż

Ξ
f˚pξqPpdξq

ď

ż

Ξ
f̂pξqPpdξq ´ sup

QPApP̂mq

ż

Ξ
f̂pξqQpdξq ` sup

QPApP̂mq

ż

Ξ
f˚pξqQpdξq ´

ż

Ξ
f˚pξqPpdξq

ď

ż

Ξ
f̂pξqPpdξq ´

ż

Ξ
f̂pξqP̂mpdξq `

ż

Ξ
f˚pξqP̂mpdξq ` εlipcpf

˚q ´

ż

Ξ
f˚pξqPpdξq

ďεlipcpf
˚q ` 2 sup

fPF
|

ż

Ξ
fpξqPpcξq ´

ż

Ξ
fpξqP̂mpdξq|.
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Hereupon, following the proofs of Lemma 2 and Theorem 2 in (Wu et al., 2019), we derive

a sample complexity bound for our Wasserstein DRO structure learning method by upper

bounding ∥W pijq
α˚ ´W

pijq

β˚
´U

piαβq

j˚ ∥1 based on the excess risk bound in Proposition 13.

Theorem 14. Given that: DpW,Θq is an unknown pairwise Markov network with n variables,

alphabet size k, dependency graph G; that Assumption 5 and Assumption 6 hold; that ∥W ⊺∥2,1 ď

2λ
?
k in Equation 2.5; that W pijq P W is the true weight matrix; and that Ŵ pijq is the estimated

weight matrix from Equation 2.6 with the Wasserstein ambiguity set and properly centered, then,

for any ρ P p0, 1s, ω ą 0, n P Z` and i ‰ j P rns, if the number of i.i.d. samples satisfies

m “ Op
λ2k4e14λpε20`ln nk

ρ
q

ω4 q, with probability at least 1 ´ ρ, the following bound holds:

∥W pijq ´ Ŵ pijq∥8,8 ď ω.

Let ω ă
η
2 and Ĝ be reconstructed via thresholding in Equation 2.4. Now if

m “ Op
λ2k4e14λpε20 ` ln nk

ρ q

η4
q,

with probability 1 ´ ρ, we have G “ Ĝ.

Proof. We use P to denote the true distribution and P̂m1 to represent the empirical distribution.

Define ℓW pξq :“ ℓpyxW , rx⊺
1...i´1,˚, b

p1q⊺,x⊺
i...n´1,˚s⊺yq.

We follow the proof of Theorem 2 in (Wu et al., 2019) by starting with upper bounding the

excess true risk.
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By Assumption 6, we have ∥W̄ ⊺∥2,1 ď 2λ
?
k for all i P rns, α ‰ β P rks, where W̄ is defined

in Fact 7 based on the true weight matrices W. By the assumptions stated in this theorem,

Ŵ piαβq in Equation 2.5 should also satisfy ∥Ŵ piαβq⊺∥2,1 ď 2λ
?
k. The one-hot matrices Z̄ in

Fact 7 and X in Equation 2.5 satisfy ∥Z̄⊺∥2,8 ď 1, ∥X⊺∥2,8 ď 1 by definition. The logistic loss

function ℓp¨q has a Lipschitz constant of 1.

According to Lemma 12, for all W P Rnˆk that satisfy ∥W ⊺∥2,1 ď 2λ
?
k,

Pm1

#

EPrℓW pξqs ´ EP̂m1
rℓW pξqs ď 2λ

?
kp2

c

6 ln pnq

m1
`

c

2 ln p2{ρq

m1
q

+

ě 1 ´ ρ. (2.10)

Define W piαβq P Rnˆk as W
piαβq

i˚ :“ rθ
piq
α ´ θ

piq
β ,0⊺s, and W

piαβq

j˚
:“ W

pijq
α˚ ´ W

pijq

β˚
for

j ‰ i P rns. Recall that Ŵ piαβq is a minimizer of Equation 2.5 with a Wasserstein ball:

Ŵ piαβq P arg inf
W PRnˆk

sup
QPAW1

ε pP̂m1 q

EQrℓW pξqs.

By Proposition 13,

EPrℓŴ piαβqpξqs ´ EPrℓW piαβqpξqs ď 2λ
?
kε` 2 sup

W :∥W ⊺∥2,1ď2λ
?
k

|EPrℓW pξqs ´ EP̂m1
rℓW pξqs|,

which can be combined with Equation 2.10 and the definition ε “ ε0{
?
m1, yielding

Pm1

#

EPrℓŴ piαβqpξqs ´ EPrℓW piαβqpξqs ď 2λ
?
kp

ε0
?
m1

` 4

c

6 ln pnq

m1
` 2

c

2 ln p2{ρq

m1
q

+

ě1 ´ ρ.
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Therefore, there exists a global constant C ą 0 such that if m1 “
Cλ2kpε20`ln 2n

ρ
q

4ω2 , with

probability at least 1 ´ ρ,

EPrℓŴ piαβqpξqs ´ EPrℓW piαβqpξqs ď 2ω.

Using Lemma 9 and Lemma 10 in (Wu et al., 2019), if the number of samples satisfies

m1 “ Op
λ2kpε20`ln n

ρ
q

ω2 q, with probability at least 1 ´ ρ,

EPrσpxW piαβq,xyq ´ σpxŴ piαβq,xyqs2

ďEPDKLpσpxW piαβq,xyq ∥ σpxŴ piαβq,xyqq{2

ď
1

2
pEPrℓŴ piαβqpξqs ´ EPrℓW piαβqpξqsq

ďω.

Now fix some i P rns, α ‰ β P rks. Denote by mpiαβq the number of samples in which z̄ji P

tα, βu. Recall that U piαβq, the centered version of Ŵ piαβq, satisfies xŴ piαβq,xy “ xU piαβq,xy.

As a result, if mpiαβq “ Op
λ2kpε20`ln n

ρ
q

ω2 q, with probability at least 1 ´ ρ,

EPrσpxW piαβq,xyq ´ σpxU piαβq,xyqs2 ď ω.

By Definition 3 in (Wu et al., 2019), a distribution D is δ-unbiased if its conditional probability

of a variable given the others is bounded away from 0 by at least δ.
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By Lemma 4 and Lemma 7 in (Wu et al., 2019), we know that Z „ D is δ-unbiased with

δ “ e´2λpDq{k, and so is Z´i conditioned on Zi P tα, βu. Applying Lemma 6 in (Wu et al., 2019),

if mpiαβq “ Op
λ2k3e12λpε20`ln n

ρ1 q

ω4 q the following inequality holds with probability at least 1 ´ ρ1:

∥W piαβq ´U piαβq∥8,8 ď ω

ùñ |W
pijq

αb ´W
pijq

βb ´ U
piαβq

jb | ď ω,@j ‰ i P rns, b P rks.

Since Z „ D is δ-unbiased, we have PrZi P tα, βus ě 2δ. By the Chernoff bound, if the total

number of samples satisfies m “ Op1δ pmpiαβq ` logp 1
ρ2 qq, with probability at least 1´ ρ2, we have

mpiαβq samples for the fixed i P rns, α ‰ β P rks.

Now set ρ1 “ ρ2 “
ρ

2nk2
and take a union bound over all α ‰ β P rks, then with probability

at least 1 ´
ρ
n and m “ Op

λ2k4e14λpε20`ln nk
ρ

q

ω4 q, we have

|W
pijq

αb ´W
pijq

βb ´ U
piαβq

jb | ď ω,@j ‰ i P rns, b P rks, α ‰ β P rks.

Because W pijq are centered, summing the above equalities for all β P rks leads to

|W
pijq

αb ´
1

k

ÿ

βPrks

U
piαβq

jb | ď ω,@j ‰ i P rns, b, α P rks

ùñ |W
pijq

αb ´ Ŵ
pijq

αb | ď ω,@j ‰ i P rns, b, α P rks

ùñ ∥W pijq ´ Ŵ pijq∥8,8 ď ω,@j ‰ i P rns,

which holds with probability at least 1 ´
ρ
n and m “ Op

λ2k4e14λpε20`ln nk
ρ

q

ω4 q, for fixed i P rns.
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We conclude by taking a union bound for all i P rns, so that with probability at least 1 ´ ρ

and m “ Op
λ2k4e14λpε20`ln nk

ρ
q

ω4 q,

∥W pijq ´ Ŵ pijq∥8,8 ď ω,@i, j P rns, i ‰ j.

The sample complexity is in terms of an ℓ8,8 error bound to ensure that every true edge is

recovered. It shows that theoretically the number of samples needed to recover the true graph is

polynomial in 1
ω , k, ε0, ln

nk
ρ , but exponential in model width λ. Similarly, we derive a sample

complexity for the KL divergence-based DRO estimator via variance regularization (Lam, 2019)

instead of Lipschitz regularization (Cranko et al., 2021).

Theorem 15. Given assumptions in Theorem 14, except that Ŵ pijq is the estimated weight

matrix from Equation 2.9 with the KL ambiguity set. Let Ĝ be constructed via thresholding in

Equation 2.4. Then, for any ρ P p0, 1s, η ą 0, ε ă 1, n P Z` and i ‰ j P rns, if the number of

i.i.d. samples satisfies m “ Op
λ2k4e14λpε0`ln nk

ρ
q

η4
q, with probability at least 1 ´ ρ, the following

bound holds:

∥W pijq ´ Ŵ pijq∥8,8 ă
η

2
ùñ G “ Ĝ.
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Proof. According to Theorem 7 in (Lam, 2019), for any W ,

EP̂m
rℓW pξqs

ď sup
QPAKL

ε pP̂mq

EQrℓW pξqs

ďEP̂m
rℓW pξqs `

b

2εVarP̂m
pℓW pξqq ` 2εC

1

m1

ř

ipℓW pξiq ´ ℓW pξqq3

ř

ipℓW pξiq ´ ℓW pξqq2

ďEP̂m
rℓW pξqs `

b

2εVarP̂m
pℓW pξqq ` 2εC

1

m1

ÿ

i

|ℓW pξiq ´ ℓW pξq|,

where ℓW “ 1
m1

ř

i ℓW pξiq and C ą 0 is a constant independent of n.

Note that

VarP̂m
pℓW pξqq ď sup

W ,W 1,ξ,ξ1

|ℓW pξq ´ ℓW 1pξ1q|2 ď p4λ
?
kq2,

yielding

sup
QPAKL

ε pP̂mq

EQrℓW pξqs

ďEP̂m
rℓW pξqs ` 4λ

?
kp

?
2ε` 2εCq

ďEP̂m
rℓW pξqs ` 4λ

?
kp2

?
ε` 2C

?
εq

for ε ă 1.
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Therefore,

Pm1

#

EPrℓŴ piαβqpξqs ´ EPrℓW piαβqpξqs ď 2λ
?
kpp4C ` 4q

c

ε0
m1

` 4

c

6 ln pnq

m1
` 2

c

2 ln p2{ρq

m1
q

+

ě1 ´ ρ.

Following the same procedure in the proof in Theorem 14, we get the conclusion that with

probability at least 1 ´ ρ and m “ Op
λ2k4e14λpε0`ln nk

ρ
q

ω4 q,

∥W pijq ´ Ŵ pijq∥8,8 ď ω,@i, j P rns, i ‰ j.

The two sample complexity bounds differ by a factor of ε0 because the Wasserstein ball radius

is chosen in the square root order 1?
m1

while the KL ball radius decays in a non-asymptotic

1
m1 -rate. In practice, ε20 ! ln nk

ρ for Wasserstein DRO whereas ε0 for KL DRO is not too larger

than ln nk
ρ . Compared to the state-of-the-art result Op

λ2k4e14λ ln nk
ρ

η4
q (Wu et al., 2019), our

complexities have an additional term that scales as Opλ
2k4e14λ

η4
q, weighted by ε0 or ε20. The

result in (Wu et al., 2019) is slightly better than that in (Vuffray et al., 2020) in the pairwise

setting, even though the latter is applicable to higher-order models. If the radius is set to

zero, we recover the non-robust near-optimal bound (Wu et al., 2019) but the learned graphical

structure will be vulnerable to perturbation. On the contrary, a larger radius corresponds to

more robustness at the risk of underfitting. On that account, with a similar number of samples,
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the proposed estimators have the statistical property of distributional robustness at almost no

cost. In the noisy-data setting, the benefit with a little extra sample complexity is obvious since

non-robust methods may fail.

Remark 16. The derived sample complexities are with respect to clean data since we do not

assume any specific contamination models. Our approach can be considered as regularization

with better probabilistic and robust interpretation. Given recoverability and noisy data, a

contamination model usually has to be assumed in order to obtain a sample complexity for this

kind of noise.

The radius ε0 should be judiciously chosen with expectation that the ambiguity set encom-

passes true distribution with high confidence while excluding pathological distributions (Gao

and Kleywegt, 2022). There are two approaches to choosing the radius. One of them is to select

the best value based on empirical cross-validation errors. The other one is to determine the

radius defining an ambiguity set that encompasses the true distribution with a given confidence

(e.g., 1 ´ ρ “ 0.95) based on concentration bounds of the corresponding measures. The latter

approach is more theoretically sound but likely yielding a pessimistic radius.

2.5 Experiments

We conduct a simulated study of synthetic data perturbed by the following contamination

models:

Noiseless Model. The common setting with no contamination to samples drawn from

DpW,Θq.



49

Figure 1: The adopted underlying graphs. Two nodes are connected to the others in the diamond
graph. The grid graph has d2 nodes. Each edge weight matrix is centered with random values
˘θ.

Huber’s Contamination Model. Let De be an arbitrary probability measure on rksn.

Each sample is drawn i.i.d. from p1´ ζqD ` ζDe. We adopt the uniform distribution Uprksnq for

De.

Independent Failure Model. Each entry is independently randomly corrupted during

sampling. We consider a special case in our experiments where each component zi P rks of

z „ D is randomly replaced with a different value with probability ζ.

We adopt a diamond and a grid underlying graph, illustrated in Figure 1, where each edge has

a centered weight matrix of random values ˘θ. Since we compute the true distribution exactly,

it is impossible to generate samples for large graph without approximate methods such as Gibbs
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sampling. This due to the memory and precision limit of modern computers. Gibbs sampling

and other Markov chain Monte Carlo (MCMC) algorithms require very long mixing time for

good samples. Quantum computers yield good-quality real-world samples but are inaccessible for

the authors at the time of writing. We form different setups by varying graph size n P t6, 9, 12u,

alphabet size k P t2, 4, 6u, edge weight θ P t0.1, 0.2, 0.3u, noise rate ζ P t0, 0.1, 0.2, 0.3, 0.5u and

contamination models. In each setup, we record the probability of success among 100 runs, in

which success means the estimated graph is identical to the true graph. This corresponds to a

zero-one loss evaluating complete matching. However, there are feasible soft evaluation metrics

including the Hamming distance, measuring the fraction of correctly recovered edges, and a

statistical distance between distributions. At the beginning of each run, we draw m i.i.d. samples

from DpW,Θq with exact distribution, where m P r1000, 10000s. Afterwards, the samples are

corrupted accordingly and provided as input to each algorithm.

We compare our methods against sparse logistic regression with parameters suggested by

(Wu et al., 2019), where the number of mirror descent iterations is 50000. We tune our model

hyperparameters ε0, κ P r0.01, 100s using a logarithmic scale on random graphs of same size as

the target graph. We adopt L-BFGS-B (Byrd et al., 1995) in SciPy (Virtanen et al., 2020) as the

optimizer. Default values are adopted for unmentioned parameters. We conduct all experiments

on a laptop with an Intel Core i7 2.7 GHz processor.

The results for comparing probabilities of success are shown in Figure 2. Generally speaking,

the proposed two DRO approaches outperform ℓ2,1-constrained logistic regression (SLR) across

all the experimental settings by a large margin whereas the Wasserstein DRO approach (WDRSL)
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Figure 2: Plots of the probability of successfully estimating the structure versus the number of
samples for Wasserstein DRO structure learning (WDRSL), KL DRO (KLDRSL) and sparse
logistic regression (SLR). Top, from left to right: (a) diamond, 4 classes, noiseless, θ “ 0.2,
varying nodes; (b) diamond, 6 nodes, 4 classes, noiseless, varying θ; (c) diamond, 6 nodes,
noiseless, θ “ 0.2, varying classes. Bottom, from left to right: (d) grid, 9 nodes, 4 classes, θ “ 0.2,
varying noise models with ζ “ 0.2; (e) grid, 9 nodes, 4 classes, θ “ 0.2, independent failure
model, varying probability of noise; (f) grid, 9 nodes, 4 classes, θ “ 0.2, Huber’s contamination
model, varying noise level.
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Figure 3: Comparisons of the execution time of one run. θ “ 0.2 and noiseless model are adopted
in all settings. κ “ 1, ε0 “ 33 for KLDRSL and ε0 “ 1.5 for WDRSL. From left to right: (a)
grid, 9 nodes, 4 classes, varying samples; (b) diamond, 4 classes, varying nodes; (c) diamond, 3
nodes, varying classes.

further outperforms the KL DRO approach (KLDRSL) significantly. Our method has better

scalability according to the upper part of Figure 2, where we vary the number of nodes, the

model width and the number of classes on the diamond graph. For example, in the top right

plot, for 6 classes, given about 3000 samples, WDRSL is already able to recover the graph with

probability 90% while SLR cannot achieve that even with more samples. The advantage can

also be observed in the upper center plot when θ “ 0.3 with only 1000 samples. The results on

noiseless data are thus consistent with our analysis on the probabilistic interpretation of DRO

as a more general alternative to standard regularization. The results in the bottom left plot

of Figure 2 imply that, with a similar perturbation budget, the independent failure model is

more powerful at corrupting data in the structure learning setting. As we vary the probability

of contaminating each entry independently (bottom center plot), it becomes significantly more

difficult to learn the underlying graph. For example, even our DRO methods that are inherently
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robust can hardly succeed when ζ “ 0.3. That being said, we still expect there to be a large

margin of performance comparison between our method and SLR as more samples are accessed.

Under Huber’s contamination model with 50% data being noisy, we are still able to exactly

reconstruct the structure with about a 50% chance. It is noteworthy that in some cases such as

10% independent failure, SLR outperforms KLDRSL probably because of the equivalence of KL

DRO to adversarial reweighting and domination of pathological distributions. Despite not being

comparable to WDRSL in terms of success rate, KLDRSL is the most efficient one according to

Figure 3, whereas WDRSL provides a trade-off between computational efficiency and structure

learning ability.

2.6 Concluding Remarks

In this chapter, we develop distributionally robust approaches based on two ambiguity

sets for structure learning of pairwise MRFs with general alphabet from sample data. We

provide tractable dual reformulations for the primal problems and showed their connections to

regularization schemes. We derive near-optimal sample complexities and demonstrated consistent

benefits over sparse logistic regression. We conduct empirical study which is lacking in the

literature since most of the related work are purely theoretical.



CHAPTER 3

DISTRIBUTIONALLY ROBUST STRUCTURE LEARNING OF

DIRECTED GRAPHICAL MODELS

In this chapter, we consider the problem of learning the structure of general discrete Bayesian

networks from potentially corrupted data. Building on DRO and a linear regression approach,

we propose a method that optimizes the most adverse risk over a family of distributions. The

proposed approach applies for general categorical random variables without assuming faithfulness,

an ordinal relationship or a specific form of conditional distribution. We provide necessary

background in Section 3.1 and Section 3.2. Under mild assumptions, we present efficient

algorithms and non-asymptotic guarantees for successful structure learning with logarithmic

sample complexities for bounded-degree graphs for a Wasserstein DRO method Section 3.3.2 and

a KL DRO method Section 3.3.3. Numerical study on synthetic and real datasets is provided in

Section 3.4 with concluding remarks in Section 3.5.

3.1 Introduction

A Bayesian network is a prominent class of probabilistic graphical models that encodes the

conditional dependencies among variables with a directed acyclic graph (DAG). It provides a

mathematical framework for formally understanding the interaction among variables of interest,

together with computationally attractive factorization for modeling multivariate distributions.

If we impose causal relationships on the edges between variables, the model becomes a causal

54
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Bayesian network that encodes the more informative causation. Without such interpretation, a

Bayesian network serves as a dependency graph for factorization of a multivariate distribution.

We focus on discrete Bayesian networks with purely categorical random variables that are not

ordinal, but will discuss related work on both discrete and continuous Bayesian networks for

completeness.

The associated DAG structure of a Bayesian network is usually unknown. Structure learning

is therefore an important task that infers the structure from data. The score-based approach

defines a scoring function that measures the goodness-of-fit of each structure and aims to find an

optimal DAG that maximizes the score. Unfortunately, the resulting combinatorial optimization

problem is known to be NP-hard (Chickering et al., 2004) without distributional assumptions.

Representative approaches include those based on heuristic search (Chickering, 2002), dynamic

programming (Silander and Myllymäki, 2006), integer linear programming (Jaakkola et al.,

2010) or continuous optimization (Zheng et al., 2018), which either yields an approximate

solution or an exact solution in worst-case exponential time. The constraint-based approach

(Spirtes and Glymour, 1991; Spirtes et al., 1999; Colombo et al., 2014) performs conditional

independence tests to determine the existence and directionality of edges. The time complexity

is, however, exponential with the maximum in-degree. Furthermore, the independence test

results may be unreliable or inconsistent with the true distribution because of finite samples

or even corrupted samples. In general, without interventional data or assumptions on the

underlying distribution, we can only identify a Markov equivalence class (MEC) the true DAG
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belongs to from observational data where DAGs in the MEC are Markov equivalent, that is,

encoding the same set of conditional independencies.

A super-structure is an undirected graph that contains as sub-graphs the skeleton which

removes directionality from the true DAG. It has been shown that a given super-structure

possibly reduces the search space or the number of independence tests to be performed. For

example, exact structure learning of Bayesian networks may be (fixed-parameter) tractable if the

super-structure satisfies certain graph-theoretic properties such as bounded tree-width (Korhonen

and Parviainen, 2013; Loh and Bühlmann, 2014), bounded maximum degree (Ordyniak and

Szeider, 2013) and the feedback edge number (Ganian and Korchemna, 2021). An incomplete

super-structure with missing edges also helps improve the learned DAG with a post-processing

hill-climbing method (Tsamardinos et al., 2006; Perrier et al., 2008). Furthermore, a combination

of a skeleton and a variable ordering determines a unique DAG structure. Learning the exact

skeleton rather than a rough super-structure is desirable in Bayesian network structure learning.

(Spirtes and Glymour, 1991; Tsamardinos et al., 2006) make use of independence tests to

estimate the skeleton. (Loh and Bühlmann, 2014) learn a super-structure called moralized graph

via graphical lasso (Friedman et al., 2008). (Shojaie and Michailidis, 2010) learn the skeleton

assuming an ordering of variables. (Bank and Honorio, 2020) leverage linear regression for

skeleton recovery in polynomial time. These methods either rely on independence test results,

which are unstable, or a regularized ERM problem, where regularization is usually heuristically

chosen to combat overfitting. In practice, the observational data is commonly contaminated by

sensor failure, transmission error or adversarial perturbation. Sometimes only a small amount
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of data is available for learning. As a result, the existing algorithms are vulnerable to such

distributional uncertainty and may produce false edges in the estimated skeleton.

In this chapter, we propose a DRO method (Rahimian and Mehrotra, 2019) that solves a

node-wise multivariate regression problem (Bank and Honorio, 2020) for structure learning of

general discrete Bayesian networks to overcome the above limitations. We focus on skeleton

learning based on the above arguments. We do not assume any specific form of conditional

distributions. We take into account the settings with only a small amount of samples (high-

dimensional) and potential perturbations, which makes the true data generating distribution

highly uncertain. Our method explicitly models the uncertainty by constructing an ambiguity set

of distributions characterized by certain a priori properties of the true distribution. The optimal

parameter is learned by minimizing the worst-case expected loss over all the distributions within

the ambiguity set so that it performs uniformly well on all the considered distributions. The

ambiguity set is usually defined in such a way that it includes all the distributions close to the

empirical distribution in terms of some divergence. With an appropriately chosen divergence

measure, the set contains the true distribution with high probability. Hence the worst-case

risk can be interpreted as an upper confidence bound of the true risk. The fact that a discrete

Bayesian network encompasses an exponential number of states may pose a challenge to solve

the DRO problem. We develop efficient algorithms for problems with ambiguity sets defined by

Wasserstein distances and KL divergences. We show that a group regularized regression method

is a special case of our approach. We study statistical guarantees of the proposed estimators such
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as sample complexities. Experimental results on synthetic and real-world datasets contaminated

by various perturbations validate the superior performance of the proposed methods.

3.1.1 Related Work

In addition to the score-based structure learning methods and constraint-based methods

discussed in the introduction section, there are a third class of hybrid algorithms leveraging

constraint-based methods to restrict the search space of a score-based method (Tsamardinos

et al., 2006; Gasse et al., 2014; Nandy et al., 2018). Due to space limitation, it is quite likely

that the related work is not covered thoroughly, and we refer the interested readers to survey

papers (Drton and Maathuis, 2017; Heinze-Deml et al., 2018; Constantinou et al., 2021) for

more details.

Recently, there is a emerging line of work proposing polynomial-time algorithms for DAG

learning (Park and Raskutti, 2017; Ghoshal and Honorio, 2017; Ghoshal and Honorio, 2018; Chen

et al., 2019; Bank and Honorio, 2020; Gao et al., 2020; Rajendran et al., 2021), among which

(Bank and Honorio, 2020) particularly focuses on general discrete Bayesian networks without

resorting to independence tests. There is also a flurry of work on score-based methods based

on neural networks and continuous optimization (Zheng et al., 2018; Wei et al., 2020; Ng

et al., 2020; Yu et al., 2021b; Ng et al., 2022; Gao et al., 2022), motivated by differentiable

characterization of acyclicity without rigorous theoretical guarantees.

Learning a super-structure can be done by independence tests, graphical lasso or regression,

as discussed in introduction. Given a super-structure, how to determine the orientation has
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been studied by (Perrier et al., 2008; Ordyniak and Szeider, 2013; Korhonen and Parviainen,

2013; Loh and Bühlmann, 2014; Ng et al., 2021; Ganian and Korchemna, 2021).

3.2 Preliminaries

We introduce necessary background for Bayesian networks, a baseline method and a few

assumptions in this section.

Let P be a discrete joint probability distribution on n categorical random variables V :“

tX1, X2, . . . , Xnu. Let G :“ pV, Etrueq be a DAG with edge set Etrue. We use Xi to represent

the i-th random variable or node interchangeably. We call pG,Pq a Bayesian network if it

satisfies the Markov condition, i.e., each variable Xr is independent of any subset of its non-

descendants conditioned on its parents Par. We denote the children of Xr by Chr, its neighbors

by Ner :“ Par Y Chr and the complement by Cor :“ rns ´ Ner ´ tru. The joint probability

distribution can thus be factorized in terms of local conditional distributions:

PpXq “ PpX1, X2, . . . , Xnq fi

n
ź

i“1

PpXi|Paiq.

Let the skeleton Gskel :“ pV, Eskelq be the undirected graph that removes directionality from

G. Given a set of m samples txp1q,xp2q, . . . ,xpmqu drawn i.i.d. from P, the goal of skeleton

learning is to estimate Gskel from the samples.

We do not assume faithfulness (Spirtes et al., 2000) or any specific parametric form for the

conditional probability distributions. The unavailability of a true model entails a substitute
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model. (Bank and Honorio, 2020) propose such a model based on encoding schemes and surrogate

parameters as follows.

Assume that each variable Xr takes values from a finite set Cr with cardinality |Cr| ą 1.

For an indexing set S Ď rns, define ρS :“
ř

iPS |Ci| ´ 1 and ρ`
S :“

ř

iPS |Ci|. The maximum

cardinality minus one is defined as ρmax :“ maxiPrns |Ci|´1. Let Sr :“
Ť

iPNer
tρri´1s `1, . . . , ρrisu

be indices for Ner in ρrns and its complement by Sc
r :“ rρrnss ´ Sr ´ tρrr´1s ` 1, . . . , ρrrsu. Let

E : Cr Ñ Bρr be an encoding mapping for a bounded and countable set B Ă R. We adopt

encoding schemes with B “ t´1, 0, 1u such as dummy encoding and unweighted effects encoding

which satisfy a linear independence condition. With a little abuse of notation, we reuse E

for encoding any Xr and denote by EpXSq P BρS the concatenation of the encoded vectors

tEpXiquiPS . Consider a linear structural equation model for each Xr: EpXrq “ W ˚⊺EpXr̄q ` e,

whereW ˚ fi rW ˚
1 ¨ ¨ ¨W ˚

r´1W
˚
r`1 ¨ ¨ ¨W ˚

n s⊺ P Rρr̄ˆρr withW ˚
i P Rρiˆρr is a surrogate parameter

matrix and e P Rρr is a vector of errors not necessarily independent of other quantities. A natural

choice of a fixed W ˚ is the solution to the following least-square problem given knowledge of

the true distribution and the true DAG:

W ˚ P arg inf
W

1

2
EP∥EpXrq ´W ⊺EpXr̄q∥22 (3.1)

s.t. Wi “ 0 @i P Cor.
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Therefore

W ˚ “ pW ˚
Sr
;0q

W ˚
Sr¨ “ EPrEpXr̄qSrEpXr̄q

⊺
Sr

s´1EPrEpXr̄qSrEpXrq⊺s

is the optimal solution by the first-order optimality condition assuming that EPrEpXr̄qSrEpXr̄q
⊺
Sr

s

is invertible. The expression of W ˚
Sr¨ captures the intuitions that neighbor nodes should be

highly related to the current node r while the interaction among neighbor nodes should be weak

for them to be distinguishable. We further assume that the errors are bounded:

Assumption 17 (Bounded error). For the error vector, ∥e∥8 ď σ and ∥EPr|e|s∥8 ď µ.

Note that the true distribution does not have to follow a linear structural equation model.

Equation 3.1 only serves as a surrogate model to find technical conditions for successful skeleton

learning, which will be discussed in a moment.

The surrogate model under the true distribution indicates that ∥W ˚
i ∥2,2 ą 0 ùñ Xi P Ner.

This suggests a regularized empirical risk minimization problem to estimate W ˚:

W̃ P arg inf
W
L̃pW q :“

1

2
EP̃m

∥EpXrq ´W ⊺EpXr̄q∥22 ` λ̃∥W ∥B,2,1, (3.2)

where λ̃ ą 0 is a regularization coefficient, the block ℓ2,1 norm is adopted to induce sparsity

and P̃m :“ 1
m

řm
i“1 δxpiq stands for the empirical distribution with δxpiq being the Dirac point



62

measure at xpiq. This approach is expected to succeed as long as only neighbor nodes have a

non-trivial impact on the current node, namely, ∥W ˚
i ∥2,2 ą 0 ðñ Xi P Ner.

Define the risk of some W under a distribution P̃ as

RP̃pW q :“ EP̃ℓW pXq :“ EP̃
1

2
∥EpXrq ´W ⊺EpXr̄q∥22,

where ℓW p¨q is the squared loss function. The Hessian of the empirical risk RP̃mpW q is a block

diagonal matrix:

∇2RP̃mpW q fi H̃ b Iρr P Rρrρr̄ˆρrρr̄ ,

where H̃ :“ EP̃m
rEpXr̄qEpXr̄q⊺s P Rρr̄ˆρr̄ and Iρr P Rρrˆρr is the identity matrix of dimension

ρr. Similarly under the true distribution,H :“ EPrEpXr̄qEpXr̄q⊺s. As a result,H is independent

of the surrogate parameters W ˚ thus conditions on the Hessian translates to conditions on a

matrix of cross-moments of encodings, which only depend on the encoding function E and P.

In order for this baseline method to work, we make the following assumptions.

Assumption 18 (Minimum weight). For each node r, the minimum norm of the true weight

matrix W ˚ for neighbor nodes is lower bounded: miniPNer∥Wi∥F ě β ą 0.

Assumption 19 (Positive definiteness of the Hessian). For each node r, HSrSr ą 0, or

equivalently, ΛminpHSrSrq ě Λ ą 0 where Λminp¨q denotes the minimum eigenvalue.
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Assumption 20 (Mutual incoherence). For each node r, ∥HSc
rSrH

´1
SrSr

∥B,1,8 ď 1 ´ α for some

0 ă α ď 1.

Assumption 19 ensures that Equation 3.2 yields a unique solution. Assumption 20 is a

widely adopted assumption that controls the impact of non-neighbor nodes on r (Wainwright,

2009; Ravikumar et al., 2010; Daneshmand et al., 2014). One interpretation is that the rows

of HSc
rSr should be nearly orthogonal to the rows of HSrSr . (Bank and Honorio, 2020) show

that these assumptions hold for common encoding schemes and finite-sample settings with high

probability under mild conditions. They also show that incoherence is more commonly satisfied

for the neighbors than the Markov blanket, which justifies the significance of skeleton learning.

Finally, we take the union of all the learned neighbor nodes for each r P rns by solving

Equation 3.2 to get the estimated skeleton G̃ :“ pV, Ẽskelq. The directions can be inferred

based on the learned skeleton to obtain a DAG by applying existing methods introduced in

Section 3.1.1.

3.3 Method

As noted in (Bank and Honorio, 2020), due to model mis-specification, even in the infinite

sample setting, there is possible discrepancy between the ERM minimizer W̃ and the true

solution W ˚, resulting in false or missing edges. In the high-dimensional setting (m ă n) or

the adversarial setting, this issue becomes more serious due to a limited knowledge about the

data-generating mechanism P.

In this section, we attempt to leverage a DRO framework to incorporate distributional

uncertainty into the estimation process. We adopt two types of ambiguity sets and present
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efficient algorithms to solve the specific problems. We derive theoretical guarantees, together

with a connection between Equation 3.2 and our methods.

3.3.1 Basic Formulation

Let X be a measurable space of all states of the Bayesian network pG,Pq, i.e., X P X . Let

PpX q be the space of all Borel probability measures on X . Denote by X E :“ tEpXq : @X P X u

the space of all the allowed encodings.

Instead of minimizing the empirical risk and relying on regularization, we seek a distribution-

ally robust estimator that optimizes the worst-case risk over an ambiguity set of distributions:

Ŵ P arg inf
W

sup
QPA

1

2
EQ∥EpXrq ´W ⊺EpXr̄q∥22. (3.3)

This way of uncertainty quantification can be interpreted as an adversary that captures out-

of-sample effect by making perturbations on samples within some budget ε. Some common

statistical distances satisfy divpQ,Pq “ 0 ðñ Q “ P. In this case, if ε is set to zero,

Equation 3.3 reduces to Equation 3.2 without regularization. We will show that the DRO

estimator Ŵ can be found efficiently and encompasses attractive statistical properties with a

judicious choice of A.
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3.3.2 Wasserstein Formulation

We adopt the Wasserstein distance of order p “ 1 as the discrepancy measure, the empirical

distribution as the nominal distribution, and cost function cpx,x1q “ ∥Epxq ´ Epx1q∥ for some

norm ∥¨∥. The primal DRO formulation becomes

Ŵ P arg inf
W

sup
QPAWp

ε pP̃mq

1

2
EQ∥EpXrq ´W ⊺EpXr̄q∥22. (3.4)

The dual problem of Equation 3.4 can be written as

inf
W ,γě0

γε`
1

m

m
ÿ

i“1

sup
xPX

1

2
∥Epxrq ´W ⊺Epxr̄q∥22 ´ γ∥Epxq ´ Epxpiqq∥. (3.5)

Strong duality holds according to Theorem 1 in (Gao and Kleywegt, 2022). The inner supremum

problems can be solved independently for each data sample xpiq. Henceforth, we focus on solving

it for some i P rms:

sup
xPX

1

2
∥Epxrq ´W ⊺Epxr̄q∥22 ´ γ∥Epxq ´ Epxpiqq∥. (3.6)

Equation 3.6 is a supremum of |X | convex functions ofW , thus convex. Since X E is a discrete

set consisting of a factorial number of points (ΠiPrnsρi), unlike (Chen and Paschalidis, 2018),

we may not simplify Equation 3.6 into a regularization form by leveraging convex conjugate

functions because X E is non-convex and not equal to Rρrns . Moreover, since changing the value

of xj for some j P r̄ is equivalent to changing W ⊺Epxr̄q by a vector, unlike (Li et al., 2022b)
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where only a set of scalar values are dealt with, there may not be a greedy algorithm based on

sufficient statistics to find the optimal solution to Equation 3.6. In fact, let the norm be the ℓ1

norm, we can rewrite Equation 3.6 by fixing the values of ∥Epxq ´ Epxpiqq∥1:

sup
xPX ,0ďkďρ`

rns
,

∥Epxq´Epxpiqq∥1“k

1

2
∥Epxrq ´W ⊺Epxr̄q∥22 ´ γk. (3.7)

If we fix k, Equation 3.7 is a generalization of the 0-1 quadratic programming problem, which

can be transformed into a maximizing quadratic programming (MAXQP) problem. As a result,

Equation 3.6 is an NP-hard problem. (Charikar and Wirth, 2004) develop an algorithm to

find an Ωp1{ log nq solution based on semi-definite programming (SDP) and sampling for the

MAXQP problem. Instead of adopting a similar SDP algorithm with quadratic constraints,

we propose a greedy algorithm to approximate the optimal solution, which is illustrated in

Algorithm 2. It follows a simple idea that for a random node order π, we select a partial optimal

solution sequentially from π1 to πn. We enumerate the possible states of the first node to reduce

uncertainty. In practice, we find that this algorithm always finds the exact solution that is

NP-hard to find for random data with n ď 10 and ρmax ď 5.

Since X E is non-convex and not equal to Rρrns , using convex conjugate functions will not

yield exact equivalence between Equation 3.5 and a regularized ERM problem. However, we can

draw such a connection by imposing constraints on the dual variables as shown by the following

proposition:
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Algorithm 2 Greedy Algorithm for the Wasserstein Worst-case Risk

Input: W , γ, xpiq

Output: a solution x̂ to Equation 3.6
Initialize x̂ “ xpiq

for all pj, xtjq P rns ˆ Cj do
Get a random permutation π over rns with π1 “ j
for k :“ 2 to n do
xtπj

Ð arg supxt
πk
ℓW pxt

πrks
q ´ γ∥Epxt

πrks
q ´ Epx

piq
πrks

q∥
end for
if xt yields a greater objective than x̂ then
x̂ Ð xt

end if
end for

Proposition 21 (Regularization Equivalence). Let :W :“ rW ;´Iρr s⊺ P Rρrnsˆρr with Wr “

´Iρr . If γ ě ρrns∥ :W ∥2F , the Wasserstein distributionally robust regression problem in Equa-

tion 3.5 is equivalent to

inf
W

EP̃m

1

2
∥EpXrq ´W ⊺EpXr̄q∥22 ` ερrns∥ :W ∥2F ,

which subsumes a linear regression approach regularized by the Frobenius norm as a special case.

Proof. Recapitulating on Equation 3.6:

sup
xPX

1

2
∥Epxrq ´W ⊺Epxr̄q∥22 ´ γ∥Epxq ´ Epxpiqq∥1.



68

Observe that

∥Epxrq ´W ⊺Epxr̄q∥22 fi∥ :W ⊺Epxrnsq∥22

ď~ :W ⊺~2
8,2

ď∥ :W ∥21,2

ďρrns∥ :W ∥2F

ďγ

Therefore, for any x ‰ xpiq,

1

2
∥Epxrq ´W ⊺Epxr̄q∥22 ´ γ∥Epxq ´ Epxpiqq∥1

´ p
1

2
∥Epxpiq

r q ´W ⊺Epx
piq
r̄ q∥22 ´ γ∥Epxpiqq ´ Epxpiqq∥1q

ď
1

2
p∥Epxrq ´W ⊺Epxr̄q∥22 ´ ∥Epxpiq

r q ´W ⊺Epx
piq
r̄ q∥22q ´ γ∥Epxq ´ Epxpiqq∥1

ď
1

2
p2γq ´ γ∥Epxq ´ Epxpiqq∥1

ďγ ´ γ

“0,

which implies that the supremum can always be achieved at x “ xpiq. Minimizing over γ leads

to

inf
W

EP̃m

1

2
∥EpXrq ´W ⊺EpXr̄q∥22 ` ερrns∥ :W ∥2F .
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This suggests that minimizing a regularized empirical risk may not be enough to achieve

distributional robustness. Note that the exact equivalence result in (Chen and Paschalidis, 2018)

requires X E “ Rd for some d.

Now we perform non-asymptotic analysis on the proposed DRO estimator Ŵ . First, we

would like to show that the solution to the Wasserstein DRO estimator in Equation 3.4 is unique

so that we refer to an estimator unambiguously. Note that Equation 3.4 is a convex optimization

problem but not necessarily strictly convex, and actually never convex in the high-dimensional

setting. However, given a sufficient number of samples, the problem becomes strictly convex and

yields a unique solution with high probability. Second, we show that the correct skeleton Eskel

can be recovered with high probability given enough samples. This is achieved by showing that,

for each node Xr, the estimator has zero weights for non-neighbor nodes Cor and has non-zero

weights for its neighbors Ner with high confidence.

3.3.2.1 Lemmas for Non-asymptotic Analysis

Before presenting the main results, we note that they are based on several important lemmas.

Lemma 22. Suppose Ξ is separable Banach space and fix P0 P PpΞ1q for some Ξ1 Ď Ξ. Suppose

c : Ξ Ñ Rě0 is closed convex, k-positively homogeneous. Suppose f : Ξ Ñ Y is a mapping in the

Lebesgue space of functions with finite first-order moment under P0 and upper semi-continuous
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with finite Lipschitz constant lipcpfq. Then for all ε ě 0, the following inequality holds with

probability 1:

sup
QPAWp

ε pP0q,
QPPpΞ1q

ż

fpξ1qQpdξ1q ď εlipcpfq `

ż

fpξ1qP0pdξ1q.

Proof. The result follows directly from Theorem 1 in (Cranko et al., 2021):

sup
QPAWp

ε pP0q,QPPpΞq

ż

fpξqQpdξq ď εlipcpfq `

ż

fpξ1qP0pdξ1q.

Since Ξ1 Ď Ξ, observe

sup
QPAWp

ε pP0q,QPPpΞ1q

ż

fpξ1qQpdξ1q ď sup
QPAWp

ε pP0q,QPPpΞq

ż

fpξqQpdξq.

Lemma 22 follows directly from (Cranko et al., 2021) and allows us to obtain an upper

bound between the worst-case risk and empirical risk. It is crucial for the following finite-sample

guarantees.

Lemma 23. If Assumption 19 holds, for any Q P AWp
ε pP̃mq, with high probability, HQ

SrSr
is

positive definite.
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Proof. The minimum eigenvalue of the true covariance matrix HSrSr satisfies

ΛminpHSrSrq fi min
∥v∥2“1

v⊺HSrSrv

“ min
∥v∥2“1

v⊺HQ
SrSr

v ` v⊺pH̃SrSr ´HQ
SrSr

qv ` v⊺pHSrSr ´ H̃SrSrqv

ďΛminpHQ
SrSr

q ` u⊺pH̃SrSr ´HQ
SrSr

qu` u⊺pHSrSr ´ H̃SrSrqu,

where ∥u∥2 “ 1 is an eigenvector of HQ
SrSr

with minimum eigenvalue.

Therefore, ΛminpHQ
SrSr

q can be lower bounded as follows:

ΛminpHQ
SrSr

q ěΛminpHSrSrq ´ u⊺pH̃SrSr ´HQ
SrSr

qu´ u⊺pHSrSr ´ H̃SrSrqu

ěΛminpHSrSrq ´ |u⊺pH̃SrSr ´HQ
SrSr

qu| ´ ∥pHSrSr ´ H̃SrSrq∥F ,

due to the fact that

u⊺Hu ď ΛmaxpHq ď

d

ÿ

i

pΛipHqq2 ď ∥H∥2,2.

We can obtain an upper bound on |u⊺pH̃SrSr ´HQ
SrSr

qu| based on Lemma 22:

|u⊺pH̃SrSr ´HQ
SrSr

qu| ď 4|Sr|
1
2 ε,
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because for function gpEpxqq :“ u⊺HSrSru, it can be shown that for any ∥Epxq ´ Epx1q∥1 “ k

and some |S| “ k,

|gpEpxqq ´ gpEpx1qq| ď
ÿ

kPS

ÿ

iPSr

|Hik ´H 1
ik|uiuk ` |Hki ´H 1

ki|ukui ď 4k|Sr|
1
2 .

Recall that we assume that the encoding schemes take values in B “ t´1, 0, 1u. Therefore

lipcpgq “ 4|Sr|
1
2 .

We derive an upper bound of ∥pHSrSr ´ H̃SrSrq∥F as follows. Consider a random variable

Zij :“ pH̃SrSrqij “
1

m

m
ÿ

l“1

Epx
plq
r̄ qiEpx

plq
r̄ qj P r´1{m, 1{ms

EPZij “ pHSrSrqij .

By Hoeffding’s inequality, we observe

Probp|pH̃SrSrqij ´ pHSrSrqij | ě tq ď 2 exp p´
mt2

2
q,

for t ą 0. Setting t “ t
|Sr|

for all i, j P Sr and applying the union bound,

Probp∥pH̃SrSrq ´ pHSrSrq∥F ě tq ď 2|Sr|2 exp p´
mt2

2|Sr|2
q. (3.8)
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To conclude, with probability at least 1 ´ 2|Sr|2 exp p´ mt2

2|Sr|2
q, we have

ΛminpHQ
SrSr

q ě ΛminpHSrSrq ´ 4ε|Sr|
1
2 ´ t.

Lemma 24. If Assumption 19 and Assumption 20 hold, for any Q P AWp
ε pP̃mq and α P p0, 1s,

with high probability,

∥HQ
Sc
rSr

pHQ
SrSr

q´1∥B,1,8 ď 1 ´
α

2
.

Proof. We would like to obtain an upper bound for ∥HQ
Sc
rSr

pHQ
SrSr

q´1∥B,1,8. We may write

HQ
Sc
rSr

pHQ
SrSr

q´1 “HSc
rSr rpHQ

SrSr
q´1 ´ pHSrSrq´1s

` rHQ
Sc
rSr

´HSc
rSr spHSrSrq´1

` rHQ
Sc
rSr

´HSc
rSr srpHQ

SrSr
q´1 ´ pHSrSrq´1s

`HSc
rSrpHSrSrq´1

ùñ

∥HQ
Sc
rSr

pHQ
SrSr

q´1∥B,1,8 ď∥HSc
rSr rpHQ

SrSr
q´1 ´ pHSrSrq´1s∥B,1,8

` ∥rHQ
Sc
rSr

´HSc
rSr spHSrSrq´1∥B,1,8

` ∥rHQ
Sc
rSr

´HSc
rSr srpHQ

SrSr
q´1 ´ pHSrSrq´1s∥B,1,8

` ∥HSc
rSrpHSrSrq´1∥B,1,8.
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By Hoeffding’s inequality,

Probp|pH̃Sc
rSrqij ´ pHSc

rSrqij | ě tq ď 2 exp p´
mt2

2
q,

for t ą 0. Taking t “ t
ρi|Sr|

and applying the union bound over i P Cor, we observe that

Probp∥H̃Sc
rSr ´HSc

rSr∥B,1,8 ě tq ď
ÿ

iPCor

2ρi|Sr| exp p´
mt2

2ρ2i |Sr|2
q

ď2|Sc
r ||Sr| exp p´

mt2

2ρ2max|Sr|2
q.

Similarly, taking t “ t
|Sr|

,

Probp~H̃SrSr ´HSrSr~8,8 ě tq ď
ÿ

iPSr

ÿ

jPSr

2 exp p´
mt2

2|Sr|2
q

“2|Sr|2 exp p´
mt2

2|Sr|2
q.

In order to bound ∥HQ
Sc
rSr

´HSc
rSr∥B,1,8, for Q ‰ P̃, consider

∥HQ
Sc
rSr

´ H̃Sc
rSr∥B,1,8

ď∥HQ
Sc
rSr

∥B,1,8 ` ∥H̃Sc
rSr∥B,1,8

ďEQ∥EpXr̄qSc
r
EpXr̄q

⊺
Sr
∥B,1,8 ` EP̃m

∥EpXr̄qSc
r
EpXr̄q

⊺
Sr
∥B,1,8

“ sup
P̃1
m,Q1PAWp

ε pP̃1
mq

|EQ1ξ1∥EpXr̄qSc
r
EpXr̄q

⊺
Sr
∥B,1,8 ´ EP̃1

m
ξ2∥EpXr̄qSc

r
EpXr̄q

⊺
Sr
∥B,1,8|,
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where Q1 and P̃1
m are probability measures on X ˆ Ξ with Ξ “ t´1,`1u and identical marginals

as Q and P̃m respectively. We assume that Q ‰ P̃ because otherwise ∥HQ
Sc
rSr

´ H̃Sc
rSr∥B,1,8 “ 0

holds trivially. In this way, the equality is always achieved by some Q1, P̃1
m, i.e., setting

Q1pX , ξ “ 1q “ 1 and P̃1
mpX , ξ “ ´1q “ 1.

Define the transport cost function in the ambiguity setAWp
ε pP̃1

mq to be c1ppX1, ξ1q, pX2, ξ2qq :“

∥EpX1q ´ EpX2q∥1 with zero cost for ξ. Let gpX, ξq :“ ξ1∥EpXr̄qSc
r
EpXr̄q

⊺
Sr
∥B,1,8. Consider

the Lipschitz constants of g:

lipc1pgq ď sup
X,ξ,X 1,ξ1

|gpX, ξq ´ gpX 1, ξ1q|

c1ppX, ξq, pX 1, ξ1qq

ď sup
X,X 1

∥EpXr̄qSc
r
EpXr̄q

⊺
Sr
∥B,1,8 ` ∥EpX 1

r̄qSc
r
EpX 1

r̄q
⊺
Sr
∥B,1,8

∥EpXq ´ EpX 1q∥1

ď2ρmax|Sr|. (3.9)

Therefore, by the Kantorovich-Rubinstein theorem (Kantorovich and Rubinshtein, 1958),

∥HQ
Sc
rSr

´ H̃Sc
rSr∥B,1,8 ď sup

P̃1
m,Q1PAWp

ε pP̃1
mq

|EQ1gpX, ξq ´ EP̃1
m
gpX, ξq|

ď sup
P̃1
m,Q1PAWp

ε pP̃1
mq

lipc1pgq|EQ1gpX, ξq{lipc1pgq ´ EP̃1
m
gpX, ξq{lipc1pgq|

ď sup
P̃1
m,Q1PAWp

ε pP̃1
mq

lipc1pgqW1pQ1, P̃1
mq

ďlipc1pgqε

ď2ερmax|Sr|.
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Similarly,

~HQ
SrSr

´ H̃SrSr~8,8 ď 2ε|Sr|.

Based on the above two inequalities, we find that

∥HQ
Sc
rSr

´HSc
rSr∥B,1,8 ď∥HQ

Sc
rSr

´ H̃Sc
rSr∥B,1,8 ` ∥H̃Sc

rSr ´HSc
rSr∥B,1,8

ď2ερmax|Sr| ` t, (3.10)

with probability at least 1 ´ 2|Sc
r ||Sr| exp p´ mt2

2ρ2max|Sr|2
q, and

~HQ
SrSr

´HSrSr~8,8 ď 2ε|Sr| ` t, (3.11)

with probability at least 1 ´ 2|Sr|2 exp p´ mt2

2|Sr|2
q.

Based on Equation 3.8, we also have

∥rHSrSr ´HQ
SrSr

s∥F ď 2ε|Sr| ` t, (3.12)

with probability at least 1 ´ 2|Sr|2 exp p´ mt2

2|Sr|2
q.
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Next we look at the upper bound on the difference between the inverses of HQ
SrSr

and HSrSr .

Observe that

~pHQ
SrSr

q´1 ´ pHSrSrq´1~8,8 “~pHSrSrq´1rHSrSr ´HQ
SrSr

spHQ
SrSr

q´1~8,8

ď
a

|Sr|~pHSrSrq´1rHSrSr ´HQ
SrSr

spHQ
SrSr

q´1~2,2

ď
a

|Sr|~pHSrSrq´1~2,2~rHSrSr ´HQ
SrSr

s~2,2~pHQ
SrSr

q´1~2,2

ď

d

|Sr|

ΛminpHSrSrq
~rHSrSr ´HQ

SrSr
s~2,2~pHQ

SrSr
q´1~2,2.

According to Lemma 23, with probability at least 1 ´ 2|Sr|2 exp p´ mt2

2|Sr|2
q, we have

ΛminpHQ
SrSr

q ě ΛminpHSrSrq ´ 4ε|Sr|
1
2 ´ t.

Let t “ 1
2ΛminpHSrSrq and ε ď

ΛminpHSrSr q

16|Sr|
1
2

. We get that, with probability at least 1 ´

2|Sr|2 exp p´
mpΛminpHSrSr qq2

8|Sr|2
q,

ΛminpHQ
SrSr

q ě
1

4
ΛminpHSrSrq

ùñ ~pHQ
SrSr

q´1~2,2 ď

d

4

ΛminpHSrSrq
. (3.13)
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Set t “
tΛminpHSrSr q

4
?

|Sr|
and ε ď

tΛminpHSrSr q

8|Sr|
?

|Sr|
in Equation 3.12, we get that, with probability at

least 1 ´ 2|Sr|2 exp p´
mt2pΛminpHSrSr qq2

32|Sr|3
q,

~rHSrSr ´HQ
SrSr

s~2,2 ď ∥rHSrSr ´HQ
SrSr

s∥F ď
tΛminpHSrSrq

2
a

|Sr|
.

Therefore, with probability at least

1 ´ 2|Sr|2 exp p´
mt2pΛminpHSrSrqq2

32|Sr|3
q ´ 2|Sr|2 exp p´

mpΛminpHSrSrqq2

8|Sr|2
q

and ε ď min p
tΛminpHSrSr q

8|Sr|
?

|Sr|
,
ΛminpHSrSr q

16|Sr|
1
2

q,

~pHQ
SrSr

q´1 ´ pHSrSrq´1~8,8 ď t. (3.14)

Now we are ready to obtain upper bounds for the four terms recapitulated here:

∥HQ
Sc
rSr

pHQ
SrSr

q´1∥B,1,8 ď∥HSc
rSr rpHQ

SrSr
q´1 ´ pHSrSrq´1s∥B,1,8

` ∥rHQ
Sc
rSr

´HSc
rSr spHSrSrq´1∥B,1,8

` ∥rHQ
Sc
rSr

´HSc
rSr srpHQ

SrSr
q´1 ´ pHSrSrq´1s∥B,1,8

` ∥HSc
rSrpHSrSrq´1∥B,1,8.

We derive the bounds separately.
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For the first term, based on Assumption 20, consider

∥HSc
rSr rpHQ

SrSr
q´1 ´ pHSrSrq´1s∥B,1,8

“∥HSc
rSrpHSrSrq´1rHSrSr ´HQ

SrSr
spHQ

SrSr
q´1∥B,1,8

ď∥HSc
rSrpHSrSrq´1∥B,1,8~HSrSr ´HQ

SrSr
~8,8~pHQ

SrSr
q´1~8,8

ďp1 ´ αq~HSrSr ´HQ
SrSr

~8,8

a

|Sr|~pHQ
SrSr

q´1~2,2.

Taking t “ α
24p1´αq

b

ΛminpHSrSr q

|Sr|
and ε ď α

48p1´αq|Sr|

b

ΛminpHSrSr q

|Sr|
in Equation 3.11 and adopting

Equation 3.13, we conclude that, with probability at least 1 ´ 2|Sr|2 exp p´
mα2ΛminpHSrSr q

1152p1´αq2|Sr|3
q ´

2|Sr|2 exp p´
mpΛminpHSrSr qq2

8|Sr|2
q and ε ď min p α

48p1´αq|Sr|

b

ΛminpHSrSr q

|Sr|
,
ΛminpHSrSr q

16|Sr|
1
2

q,

∥HSc
rSr rpHQ

SrSr
q´1 ´ pHSrSrq´1s∥B,1,8 ď

α

6
.

For the second term, we rewrite it as

∥rHQ
Sc
rSr

´HSc
rSr spHSrSrq´1∥B,1,8

ď∥rHQ
Sc
rSr

´HSc
rSr s∥B,1,8~pHSrSrq´1~8,8

ď∥rHQ
Sc
rSr

´HSc
rSr s∥B,1,8

a

|Sr|~pHSrSrq´1~2,2

ď∥rHQ
Sc
rSr

´HSc
rSr s∥B,1,8

d

|Sr|

ΛminpHSrSrq
.
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Using Equation 3.10 by setting t “ α
12

b

ΛminpHSrSr q

|Sr|
and ε ď α

24ρmax|Sr|

b

ΛminpHSrSr q

|Sr|
, we have,

with probability at least 1 ´ 2|Sc
r ||Sr| exp p´

mα2ΛminpHSrSr q

288ρ2max|Sr|3
q and ε ď α

24ρmax|Sr|

b

ΛminpHSrSr q

|Sr|
,

∥rHQ
Sc
rSr

´HSc
rSr spHSrSrq´1∥B,1,8 ď

α

6
.

For the third term, we obtain the upper bound

∥rHQ
Sc
rSr

´HSc
rSr srpHQ

SrSr
q´1 ´ pHSrSrq´1s∥B,1,8

ď∥rHQ
Sc
rSr

´HSc
rSr s∥B,1,8~rpHQ

SrSr
q´1 ´ pHSrSrq´1s~8,8.

Taking t “
a

α
6 in Equation 3.14. Taking t “ 1

2

a

α
6 and 2ερmax|Sr| ď 1

2

a

α
6 in Equation 3.10.

We establish the upper bound that, with probability at least 1 ´ 2|Sc
r ||Sr| exp p´ mα

48ρ2max|Sr|2
q ´

2|Sr|2 exp p´
mαpΛminpHSrSr qq2

192|Sr|3
q ´ 2|Sr|2 exp p´

mpΛminpHSrSr qq2

8|Sr|2
q and

ε ď min p
1

4ρmax|Sr|

c

α

6
,
ΛminpHSrSrq

8|Sr|

c

α

6|Sr|
,
ΛminpHSrSrq

16|Sr|
1
2

q,

we have

∥rHQ
Sc
rSr

´HSc
rSr srpHQ

SrSr
q´1 ´ pHSrSrq´1s∥B,1,8 ď

α

6
.
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For the fourth term, in accordance with Assumption 20,

∥HSc
rSrpHSrSrq´1∥B,1,8 ď 1 ´ α.

In conclusion, we have shown that, with probability at least 1´2|Sr|2 exp p´
mα2ΛminpHSrSr q

1152p1´αq2|Sr|3
q´

2|Sr|2 exp p´
mpΛminpHSrSr qq2

8|Sr|2
q ´ 2|Sc

r ||Sr| exp p´
mα2ΛminpHSrSr q

288ρ2max|Sr|3
q ´ 2|Sc

r ||Sr| exp p´ mα
48ρ2max|Sr|2

q ´

2|Sr|2 exp p´
mαpΛminpHSrSr qq2

192|Sr|3
q ´ 2|Sr|2 exp p´

mpΛminpHSrSr qq2

8|Sr|2
q and

ε ď minp
α

48p1 ´ αq|Sr|

d

ΛminpHSrSrq

|Sr|
,
ΛminpHSrSrq

16|Sr|
1
2

,
α

24ρmax|Sr|

d

ΛminpHSrSrq

|Sr|
,

1

4ρmax|Sr|

c

α

6
,
ΛminpHSrSrq

8|Sr|

c

α

6|Sr|
,
ΛminpHSrSrq

16|Sr|
1
2

q,

the mutual incoherence condition holds for any worst-case distribution:

∥HQ
Sc
rSr

pHQ
SrSr

q´1∥B,1,8 ď 1 ´
α

2
.

Simplifying the above expressions, with probability at least

1 ´ Opexp p´
Cm

ρ2max|Sr|3
` log |Sc

r | ` log |Sr|qq

and ε ď C
ρmax|Sr|3{2 ,

∥HQ
Sc
rSr

pHQ
SrSr

q´1∥B,1,8 ď 1 ´
α

2
,
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where C only depends on α, ΛminpHSrSrq.

Lemma 25. If Assumption 17 holds, then for any Q P AWp
ε pP̃mq and α P p0, 1s, with probability

at least 1 ´ |Sr|ρr exp p´
mµ2

2σ2 q, ε ď
µ
σ and λ˚

B ą
32µ

?
ρrp1´α{2q

α , we have

~EQEpXr̄qSre
⊺~2,8 ď

λ˚
Bα

8p1 ´ α{2q
.

With probability at least 1 ´ |Cor|ρr exp p´
mµ2

2σ2 q, ε ď
µ
σ and λ˚

B ą
32µ

?
ρmaxρr
α , we have

∥EQEpXr̄qSc
r
e⊺∥B,2,8 ď

λ˚
Bα

8
.

Proof. We start with ~EQEpXr̄qSre
⊺~2,8. After some algebraic manipulation, we find that

~EQEpXr̄qSre
⊺~2,8 ďmax

iPSr

∥EQEpXr̄qie∥2

ďmax
iPSr

?
ρr max

jPρr
|EQEpXr̄qiej |

ďmax
iPSr

?
ρr max

jPρr
EQ|EpXr̄qiej |

ďmax
iPSr

?
ρr max

jPρr
EQ|ej |.

Since |ej | is a bounded random variable according to Assumption 17, we apply Hoeffding’s

inequality to get

ProbpEP̃m
|ej | ě µ` tq ď exp p´

mt2

2σ2
q.
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Base on a similar argument as Equation 3.9, we can derive

EQ|ej | ´ EP̃m
|ej | ď 2εσ,

which leads to

ProbpEQ|ej | ě 2εσ ` µ` tq ď exp p´
mt2

2σ2
q.

Taking the union bound over all i P Sr and j P ρr, we find that

Probp~EQEpXr̄qSre
⊺~2,8 ě

?
ρrp2εσ ` µ` tqq ď |Sr|ρr exp p´

mt2

2σ2
q.

Setting t “ µ and ε ď
µ
σ while requiring λ˚

B ą
32µ

?
ρrp1´α{2q

α . With probability at least

1 ´ |Sr|ρr exp p´
mµ2

2σ2 q, we have

~EQEpXr̄qSre
⊺~2,8 ď

λ˚
Bα

8p1 ´ α{2q
. (3.15)

Then we consider ∥EQEpXr̄qSc
r
e⊺∥B,2,8:

∥EQEpXr̄qSc
r
e⊺∥B,2,8 ď max

iPCor

∥EQEpXiqe
⊺∥2,2

ď max
iPCor

?
ρiρr max

jPρi,kPρr
|EQEpXiqjek|

ď max
iPCor

?
ρiρr max

kPρr
EQ|ek|.
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Similarly, applying Hoeffding’s inequality and the Kantorovich-Rubinstein theorem gives us

Probp∥EQEpXr̄qSc
r
e⊺∥B,2,8 ě

?
ρmaxρrp2εσ ` µ` tqq ď |Cor|ρr exp p´

mt2

2σ2
q.

Let t “ µ, ε ď
µ
σ and λ˚

B ą
32µ

?
ρmaxρr
α hold, we have, with probability at least 1 ´

|Cor|ρr exp p´
mµ2

2σ2 q,

∥EQEpXr̄qSc
r
e⊺∥B,2,8 ď

λ˚
Bα

8
.

3.3.2.2 Main Results

The above lemmas illustrate that Assumption 19 and Assumption 20 hold in the finite-sample

setting. Let the estimated skeleton, neighbor nodes and the complement be Ĝ :“ pV, Êskelq, N̂er

and Ĉor respectively. We derive the following guarantees for the proposed Wasserstein DRO

estimator.

Theorem 26. Given a Bayesian network pG,Pq of n categorical random variables and its

skeleton Gskel :“ pV, Eskelq. Assume that the condition ∥W ˚∥B,2,1 ď B̄ holds for some B̄ ą 0

associated with an optimal Lagrange multiplier λ˚
B ą 0 for W ˚ defined in Equation 3.1. Suppose

that Ŵ is a DRO risk minimizer of Equation 3.4 with a Wasserstein distance of order 1 and
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an ambiguity radius ε “ ε0{m where m is the number of samples drawn i.i.d. from P. Under

Assumptions 17, 18, 19, 20, if the number of samples satisfies

m “ Op
Cpε0 ` log pn{δq ` log ρrnsqσ

2ρ4maxρ
3
rns

minpµ2, 1q
q,

where C only depends on α, Λ, and if the Lagrange multiplier satisfies

32µρmax

α
ă λ˚

B ă
β

pα{p4 ´ 2αq ` 2qρmax
?
ρrns

c

Λ

4
,

then for any δ P p0, 1s, r P rns, with probability at least 1 ´ δ, the following properties hold:

(a) The optimal estimator Ŵ is unique.

(b) All the non-neighbor nodes are excluded: Cor Ď Ĉor.

(c) All the neighbor nodes are identified: Ner Ď N̂er.

(d) The true skeleton is successfully reconstructed: Gskel “ Ĝskel.

Proof. We prove the statements in this theorem in several steps. In order to prove (a) and

(b), we will show that the DRO problem is strictly convex if true non-neighbors are known so

that there is an optimal solution. Next we would like to demonstrate that this solution with a

non-neighbor constraint is indeed unique for all the solutions without constraints. The proof

for uniqueness comes with a conclusion that we do not accidentally include any edge between

the current node and its non-neighbors. Next, to prove (c), we present a generalization bound

for the DRO estimator in terms of its true risk, which leads to a ℓ8 bound of the difference
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between the estimator Ŵ and the true weight matrix W ˚. Combined with the assumption on

the minimum weight, it implies that we include all the neighbor nodes successfully. Finally, by

taking a union bound for all the nodes, we could conclude that the correct skeleton is recovered

with high probability, which proves (d).

(i) Given the true non-neighbors, there is a unique solution.

We start with the Wasserstein DRO problem, which we recapitulate here for convenience:

Ŵ P arg inf
W

sup
QPAWp

ε pP̃mq

1

2
EQ∥EpXrq ´W ⊺EpXr̄q∥22.

The objective is convex because it is a supremum of convex functions.

For now, we assume that the non-neighbor nodes Cor are given. We can then explicitly

restrict Wi “ 0 for all i P Cor. The Hessian of WSr¨ is a block diagonal matrix reads

∇2RQpWSr¨q “

»

—

—

—

—

—

—

—

—

—

—

–

HQ
SrSr

0 ¨ ¨ ¨ 0

0 HQ
SrSr

¨ ¨ ¨ 0

...
...

. . .
...

0 0 ¨ ¨ ¨ HQ
SrSr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P RρrρNerˆρrρNer ,

where

HQ :“ EQrEpXr̄qEpXr̄q⊺s P Rρr̄ˆρr̄

is the covariance matrix of encodings of Xr̄ under some distribution Q P AWp
ε pP̃mq.
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Since WSc
r ¨ is fixed to be zero and ∇2RQpWSr¨q is a block diagonal matrix, we focus on

showing that HQ
SrSr

ą 0.

We apply Lemma 23 to get the bound

ΛminpHQ
SrSr

q ě ΛminpHSrSrq ´ 4ε|Sr|
1
2 ´ t,

with probability at least 1 ´ 2|Sr|2 exp p´ mt2

2|Sr|2
q. ΛminpHSrSrq ´ 4ε|Sr|

1
2 ´ t ą 0 will guarantee

that the DRO problem in Equation 3.4 has a unique solution when the Wi “ 0 is satisfied for

non-neighbor nodes.

(ii) Given the true non-neighbors, the solution is optimal.

We would like to show that the solution to Equation 3.4 with true non-neighbor constraints

is optimal. In this way, we do not recover any non-neighbor nodes in the skeleton. We adopt the

primal-dual witness (PDW) (Wainwright, 2009) method to show optimality for the constrained

unique solution.

Recall that we assume ∥W ∥B,2,1 ď B̄. To begin with, we write the dual problem as

Ŵ P arg inf
W

sup
QPAWp

ε pP̃mq,∥Z∥B,2,8ď1,λBě0

1

2
EQ∥EpXrq ´W ⊺EpXr̄q∥22 ` λBpxZ,W y ´ B̄q

(3.16)

s.t. @i P Cor Wi “ 0,

where λB is the Lagrange multiplier for the norm constraint on W .
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Ŵ is optimal if and only if there exists pQ˚,Z˚, λ˚
Bq that satisfies the KKT condition:

EQ˚EpXr̄qEpXr̄q⊺Ŵ ´ EQ˚EpXr̄qEpXrq⊺ ` λ˚
BZ

˚ “ 0

Q˚ P AWp
ε pP̃mq, ∥Z˚∥B,2,8 ď 1, λ˚

B ě 0, ∥Ŵ ∥B,2,1 ď B̄

xZ˚, Ŵ y “ ∥Ŵ ∥B,2,1, λ
˚
Bp∥Ŵ ∥B,2,1 ´ B̄q “ 0.

Note that we assume that the constraint ∥W ∥B,2,1 ď B̄ is active such that λ˚
B ą 0. This

assumption is only for convenience of theoretical analysis and not restrictive. If it is not active,

we have ∥Ŵ ∥B,2,1 “ B̌ ă B̄ for some B̌ and λ˚
B “ 0, which leads to an unconstrained problem

similar to the ordinary least square problem, which is known to suffer from overfitting. Instead,

we are usually interested in solutions that have finite norms so we can always find B̄ “ B̌´ϵ ă B̌

for some small positive constant ϵ ą 0 to make the constraint active and thus λ˚
B ą 0.

Substituting EpXrq “ W ˚⊺EpXr̄q ` e into the first-order optimality condition yields

EQ˚EpXr̄qEpXr̄q⊺pŴ ´W ˚q ´ EQ˚EpXr̄qe⊺ ` λ˚
BZ

˚ “ 0

ðñ

»

—

—

–

HQ˚

SrSr
HQ˚

SrSc
r

HQ˚

Sc
rSr

HQ˚

Sc
rSc

r

fi

ffi

ffi

fl

»

—

—

–

ŴSr¨ ´W ˚
Sr¨

0

fi

ffi

ffi

fl

´

»

—

—

–

EQ˚EpXr̄qSre
⊺

EQ˚EpXr̄qSc
r
e⊺

fi

ffi

ffi

fl

` λ˚
B

»

—

—

–

Z˚
Sr¨

Z˚
Sc
r ¨

fi

ffi

ffi

fl

“

»

—

—

–

0

0

fi

ffi

ffi

fl

. (3.17)

Solving for Z˚
Sc
r ¨, we find that

λ˚
BZ

˚
Sc
r ¨ “ λ˚

BH
Q˚

Sc
rSr

pHQ˚

SrSr
q´1Z˚

Sr¨ ´HQ˚

Sc
rSr

pHQ˚

SrSr
q´1EQ˚EpXr̄qSre

⊺ ` EQ˚EpXr̄qSc
r
e⊺,
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which can be bounded such that

λ˚
B∥Z˚

Sc
r ¨∥B,2,8

“∥λ˚
BH

Q˚

Sc
rSr

pHQ˚

SrSr
q´1Z˚

Sr¨ ´HQ˚

Sc
rSr

pHQ˚

SrSr
q´1EQ˚EpXr̄qSre

⊺ ` EQ˚EpXr̄qSc
r
e⊺∥B,2,8

ďλ˚
B∥HQ˚

Sc
rSr

pHQ˚

SrSr
q´1Z˚

Sr¨∥B,2,8 ` ∥HQ˚

Sc
rSr

pHQ˚

SrSr
q´1EQ˚EpXr̄qSre

⊺∥B,2,8

` ∥EQ˚EpXr̄qSc
r
e⊺∥B,2,8

ďλ˚
B∥HQ˚

Sc
rSr

pHQ˚

SrSr
q´1∥B,1,8~Z˚

Sr¨~2,8 ` ∥HQ˚

Sc
rSr

pHQ˚

SrSr
q´1∥B,1,8~EQ˚EpXr̄qSre

⊺~2,8

` ∥EQ˚EpXr̄qSc
r
e⊺∥B,2,8.

Note that

~Z˚
Sr¨~2,8 ď ∥Z˚∥B,2,8 ď 1.

Recall that 0 ă α ď 1 in Assumption 20. Based on Lemma 24 and Lemma 25, we may write

λ˚
B∥Z˚

Sc
r ¨∥B,2,8

ďλ˚
B∥HQ˚

Sc
rSr

pHQ˚

SrSr
q´1∥B,1,8~Z˚

Sr¨~2,8 ` ∥HQ˚

Sc
rSr

pHQ˚

SrSr
q´1∥B,1,8~EQ˚EpXr̄qSre

⊺~2,8

` ∥EQ˚EpXr̄qSc
r
e⊺∥B,2,8

ďλ˚
Bp1 ´

α

2
q ` p1 ´

α

2
qp

λ˚
Bα

8p1 ´ α{2q
q `

λ˚
Bα

8

ďλ˚
Bp1 ´

α

4
q

ăλ˚
B,
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with high probability and certain conditions on λ˚
B and ε.

Henceforth, ∥Z˚
Sc
r ¨∥B,2,8 ă 1 satisfies strict dual feasibility and we must have ∥Ŵ ˚

Sc
r ¨∥B,2,1 “ 0

according to complementary slackness: xZ˚, Ŵ y “ ∥Ŵ ∥B,2,1. In other words, we have

@i P Cor Ŵi “ 0,

with high probability. This guarantees that we do not recover any node that is not a neighbor

of r with high probability.

(iii) Without information about the true skeleton, we have a unique and optimal

solution.

We follow the proof of Lemma 11.2 in (Hastie et al., 2015).

We have shown that Ŵ satisfying Ŵi “ 0 @i P Cor is an optimal solution with optimal

dual variables ∥Z˚
Sc
r ¨∥B,2,8 ă 1.

To avoid clutter of notations, we define

LDROpW q :“ sup
QPAWp

ε pP̃mq

1

2
EQ∥EpXrq ´W ⊺EpXr̄q∥22.

Let pW̌ , λ̌q be any other optimal solution to infW supλ L
DROpW q ` λp∥W ∥B,2,1 ´ B̄q. By

definition,

LDROpW̌ q ` λ̌p∥W̌ ∥B,2,1 ´ B̄q “ LDROpŴ q ` λ˚
BpxZ˚, Ŵ y ´ B̄q

ðñ LDROpW̌ q ` λ̌p∥W̌ ∥B,2,1 ´ B̄q ´ λ˚
BxZ˚, W̌ y “ LDROpŴ q ` λ˚

BpxZ˚, Ŵ ´ W̌ y ´ B̄q.
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The first-order optimality condition for Ŵ says

∇LDROpŴ q ` λ˚
BZ

˚ “ 0,

which implies

λ̌p∥W̌ ∥B,2,1 ´ B̄q ` λ˚
BpB̄ ´ xZ˚, W̌ yq “ LDROpŴ q ` x∇LDROpŴ q, W̌ ´ Ŵ y ´ LDROpW̌ q.

By definition, ∥W̌ ∥B,2,1 ´ B̄ “ 0 and λ˚
B ą 0. Since LDROp¨q is convex, the RHS of the above

equation should be non-positive, or equivalently,

∥W̌ ∥B,2,1 ď xZ˚, W̌ y.

On the other hand,

xZ˚, W̌ y ď ∥Z˚∥B,2,8∥W̌ ∥B,2,1 ď ∥W̌ ∥B,2,1.

Therefore, the equality holds for the above inequalities, which leads to

∥W̌ ∥B,2,1 “ xZ˚, W̌ y.
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Recall that ∥Z˚
Sc
r ¨∥B,2,8 ă 1. In order for ∥W̌ ∥B,2,1 “ xZ˚, W̌ y to hold, we must have

W̌Sc
r ¨ “ 0.

In that wise, all the optimal solutions W̌ have

W̌i “ 0 @i P Cor.

This implies that we have a unique solution that excludes all the non-neighbor nodes without

information about the true skeleton. Until now, we have proven properties (a) and (b).

(iv) The set of correct neighbors is recovered.

Consider again the first-order optimality condition in Equation 3.17,

ŴSr¨ ´W ˚
Sr¨ “pHQ˚

SrSr
q´1pEQ˚EpXr̄qSre

⊺ ´ λ˚
BZ

˚
Sr¨q

ùñ ∥ŴSr¨ ´W ˚
Sr¨∥B,2,8 “∥pHQ˚

SrSr
q´1pEQ˚EpXr̄qSre

⊺ ´ λ˚
BZ

˚
Sr¨q∥B,2,8

ď∥pHQ˚

SrSr
q´1∥B,1,8~EQ˚EpXr̄qSre

⊺ ´ λ˚
BZ

˚
Sr¨~2,8

ď∥pHQ˚

SrSr
q´1∥B,1,8p~EQ˚EpXr̄qSre

⊺~2,8 ` ~λ˚
BZ

˚
Sr¨~2,8q

ďρmax~pHQ˚

SrSr
q´1~8,8p~EQ˚EpXr̄qSre

⊺~2,8 ` λ˚
Bq

ďρmax

a

|Sr|~pHQ˚

SrSr
q´1~2,2p~EQ˚EpXr̄qSre

⊺~2,8 ` λ˚
Bq
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According to Equation 3.13, with probability at least 1 ´ 2|Sr|2 exp p´
mpΛminpHSrSr qq2

8|Sr|2
q and

ε ď
ΛminpHSrSr q

16|Sr|
1
2

,

~pHQ
SrSr

q´1~2,2 ď

d

4

ΛminpHSrSrq
.

According to Equation 3.15, with probability at least 1 ´ |Sr|ρr exp p´
mµ2

2σ2 q, ε ď
µ
σ and

λ˚
B ą

32µ
?
ρrp1´α{2q

α , we have

~EQEpXr̄qSre
⊺~2,8 ď

λ˚
Bα

8p1 ´ α{2q
.

On that account, with probability at least

1 ´ 2|Sr|2 exp p´
mpΛminpHSrSrqq2

8|Sr|2
q ´ |Sr|ρr exp p´

mµ2

2σ2
q

and ε ď min p
ΛminpHSrSr q

16|Sr|
1
2

, µσ q while requiring λ˚
B ą

32µ
?
ρrp1´α{2q

α ,

∥ŴSr¨ ´W ˚
Sr¨∥B,2,8 ď ρmax

a

|Sr|

d

4

ΛminpHSrSrq
λ˚
Bp

α

8p1 ´ α{2q
` 1q.

By Assumption 18, if the condition λ˚
B ă

β

2p α
8p1´α{2q

`1qρmax

?
|Sr|

b

ΛminpHSrSr q

4 is satisfied, the

following inequality holds:

∥ŴSr¨ ´W ˚
Sr¨∥B,2,8 ă β{2.
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In this way, we are able to recover all the neighbor nodes with a threshold β{2. This proves (c).

(v) The true skeleton is recovered with high probability.

The above arguments tell us that with high probability and certain conditions for ε and

λ˚
B satisfied, for each node r, we do not recover any non-neighbor and we do recover all the

neighbor nodes. The correct Ner and Cor are thus identified. Now we are ready to prove (d).

Putting everything together and taking the the union bound for all nodes r P rns, with

probability at least 1 ´ Opn exp p´
Cmµ2

σ2ρ4maxρ
3
rns

` 2 log ρrnsqq, ε ď
Cµ

σρmaxρ
3{2
rns

and 32µρmax

α ă λ˚
B ă

β
2p α

8p1´α{2q
`1qρmax

?
ρrns

b

Λ
4 , where C only depends on α, Λ, we have

Ĝskel “ Gskel.

Setting ε “ ε0
m and making the dependence on the sample size more explicit. We draw the

conclusion that, if the number of samples satisfies

m “ Op
Cpε0 ` log pn{δq ` log ρrnsqσ

2ρ4maxρ
3
rns

minpµ2, 1q
q,

where C only depends on α, Λ, and if λ˚
B satisfies

32µρmax

α
ă λ˚

B ă
β

pα{p4 ´ 2αq ` 2qρmax
?
ρrns

c

Λ

4
,
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then with probability at least 1 ´ δ for δ P p0, 1s:

Ĝskel “ Gskel.

Moreover, if we assume that the target graph has a bounded degree of d, the sample

complexity becomes logarithmic in n:

m “ Op
Cpε0 ` log pn{δq ` log n` log ρmaxqσ2ρ7maxd

3

minpµ2, 1q
q.

The results in Theorem 26 encompass some intuitive interpretations. Compared to Theorem

1 in (Bank and Honorio, 2020), we make more explicit the relationship among m, λ˚
B and δ. On

one hand, the lower bound of λ˚
B ensures that a sparse solution excluding non-neighbor nodes is

obtained. A large error magnitude expectation µ therefore elicits stronger regularization. On

the other hand, the upper bound λ˚
B is imposed to guarantee that all the neighbor nodes are

identified with less restriction on W . There is naturally a trade-off when choosing B̄ in order to

learn the exact skeleton. The sample complexity depends on cardinalities ρrns, confidence level

δ, the number of nodes n, the ambiguity level ε0 and assumptions on errors. The dependence

on σ indicates that higher uncertainty caused by larger error norms demands more samples

whereas the dependence on µ´2 results from the lower bound condition on λ˚
B with respect to

µ. The ambiguity level is set to ε0{m based on the observation that obtaining more samples

reduces ambiguity of the true distribution. In practice, we find that ε0 is usually small thus
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negligible. Note that the sample complexity is polynomial in n. Furthermore, if we assume that

the true graph has a bounded degree of d, we find that

m “ Op
Cpε0 ` log pn{δq ` log n` log ρmaxqσ2ρ7maxd

3

minpµ2, 1q
q

is logarithmic with respect to n, consistent with the results in (Wainwright, 2009).

We introduce constants B̄ and λ˚
B in order to find a condition for the statements in Theorem 26

to hold. If there exists a W incurring a finite loss, we can always find a solution Ŵ satisfying

∥Ŵ ∥B,2,1 ă `8 and let B̄ be the maximum norm. Imposing ∥W ∥B,2,1 ď B̄ is equivalent to the

original problem. By Lagrange duality and similar argument for the lasso estimator, there exists

a λ˚
B that finds all the solutions with ∥Ŵ ∥B,2,1 “ B̄. Therefore we have a mapping between ε

and λ˚
B.

3.3.3 Kullback-Leibler Formulation

In addition to optimal transport, ϕ-divergence is also widely used to construct an ambiguity

set for DRO problems. We consider the KL divergence in this sub-section. Note that any

other point outside the support of the nominal distribution remains to have zero probability

in an ambiguity set constructed by the KL divergence. However, we argue that adopting

the KL divergence may bring advantages over the Wasserstein distance since the Bayesian

network distribution we study is a discrete distribution over purely categorical random variables.

Moreover, as illustrated below, adopting the KL divergence leads to better computational

efficiency.
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Let A fi AD
ε pP̃mq be the ambiguity set, the dual formulation of Equation 3.3 follows directly

from Theorem 4 in (Hu and Hong, 2013):

inf
W ,γě0

γ ln r
1

m

ÿ

iPrms

e
1
2
∥Epx

piq
r q´W ⊺Epx

piq
r̄ q∥22{γs ` γε,

which directly minimizes a convex objective. In contrast to the approximate Wasserstein

estimator, this KL DRO estimator finds the exact solution to the primal problem by strong

duality.

The worst-case risk over a KL divergence ball can be bounded by variance (Lam, 2019),

similar to Lipschitz regularization in Lemma 22. Based on this observation, we derive the

following results:

Theorem 27. Suppose that Ŵ is a DRO risk minimizer of Equation 3.4 with the KL divergence

and an ambiguity radius ε “ ε0{m. Given the same definitions of pG,Pq, Gskel, B̄, λ˚
B, m in

Theorem 26. Under Assumptions 17, 18, 19, 20, if the number of samples satisfies

m “ Op
Cpε0 ` log pn{δq ` log ρrnsqσ

2ρ4maxρ
3
rns

minpµ2, 1q
q.

where C depends on α, Λ while independent of n, and if the Lagrange multiplier satisfies the

same condition as in Theorem 26, then for any δ P p0, 1s, r P rns, with probability at least 1 ´ δ,

the properties (a)-(d) in Theorem 26 hold.
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Proof. Define

ℓW pXq :“
1

2
∥EpXrq ´W ⊺EpXr̄q∥22.

According to Theorem 7 in (Lam, 2019), the worst-case risk with a KL divergence ambiguity

set can be bounded as follows:

sup
QPAD

ε pP̃mq

EQℓW pXq ďEP̃m
ℓW pXq `

?
ε

g

f

f

e

1

m

ÿ

iPrms

pℓW pxpiqq ´ ¯ℓW q2

` Cε

ř

iPrms |ℓW pxpiqq ´ ¯ℓW |3

ř

iPrmspℓW pxpiqq ´ ¯ℓW q2

ďEP̃m
ℓW pXq `

?
εmax
iPrms

|ℓW pxpiqq ´ ¯ℓW | ` Cεmax
iPrms

|ℓW pxpiqq ´ ¯ℓW |,

where ¯ℓW “ 1
m

ř

iPrms ℓW pxpiqq and C ą 0 is constant independent of n.
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Consider

max
iPrms

|ℓW pxpiqq ´ ¯ℓW | ď max
W ,W 1,x,x1

|ℓW pxq ´ ℓW 1px1q|

ďmax
W ,x

|ℓW pxq|

ď
1

2
max
W ,x

p∥EpXrq∥2 ` ∥W ⊺EpXr̄q∥2q2

ď
1

2
max
W ,x

p
?
ρmax ` ~W ⊺~8,2q2

ď
1

2
max
W ,x

p
?
ρmax ` ∥W ∥1,2q2

ď
1

2
max
W ,x

p
?
ρmax `

a

ρrns∥W ∥F q2

ď
1

2
max
W ,x

p
?
ρmax `

a

ρrns∥W ∥B,2,1q2

ď
1

2
p
?
ρmax `

a

ρrnsB̄q2

:“Bρ.

Define εmax :“ maxp
?
ε, εq. Therefore, we find that

sup
QPAD

ε pP̃mq

EQℓW pXq ď EP̃m
ℓW pXq ` CεmaxBρ.

Similar to the Wasserstein robust risk, we observe that the following results hold for any

Q P AD
ε pP̃mq.
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With probability at least 1 ´ 2|Sr|2 exp p´ mt2

2|Sr|2
q, we have

ΛminpHQ
SrSr

q ě ΛminpHSrSrq ´ Cεmax|Sr|
1
2 ´ t.

With probability at least 1 ´ 2|Sc
r ||Sr| exp p´ mt2

2ρ2max|Sr|2
q,

∥HQ
Sc
rSr

´HSc
rSr∥B,1,8 ď Cεmaxρmax|Sr| ` t.

With probability at least 1 ´ 2|Sr|2 exp p´ mt2

2|Sr|2
q,

~HQ
SrSr

´HSrSr~8,8 ď Cεmax|Sr| ` t.

With probability at least 1´ 2|Sr|2 exp p´
mt2pΛminpHSrSr qq2

32|Sr|3
q ´ 2|Sr|2 exp p´

mpΛminpHSrSr qq2

8|Sr|2
q and

εmax ď Cmin p
tΛminpHSrSr q

8|Sr|
?

|Sr|
,
ΛminpHSrSr q

16|Sr|
1
2

q,

~pHQ
SrSr

q´1 ´ pHSrSrq´1~8,8 ď t.

With probability at least 1 ´ Opexp p´ Cm
ρ2max|Sr|3

` log |Sc
r | ` log |Sr|qq and εmax ď C

ρmax|Sr|3{2 ,

∥HQ
Sc
rSr

pHQ
SrSr

q´1∥B,1,8 ď 1 ´
α

2
,

where C only depends on α, ΛminpHSrSrq.
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Thanks to the boundedness of the error term e, we have similar conclusions to Lemma 25 if

εmax ď
µ
σ holds.

In such wise, the properties in Theorem 26 hold with the same condition on λ˚
B and the

condition on εmax that εmax ď
Cµ

σρmaxρ
3{2
rns

. Since we set ε “ ε0
m and define εmax :“ maxp

?
ε, εq,

the condition on εmax implies that

m ě maxp
ε0C

2σ2ρ2maxρ
3
rns

µ2
,
ε0Cσρmaxρ

3{2
rns

µ
q.

The final sample complexity becomes

m “ Op
Cpε0 ` log pn{δq ` log ρrnsqσ

2ρ4maxρ
3
rns

minpµ2, 1q
q.

The sample complexities in Theorem 26 and Theorem 27 differ in the constant C due to

the difference between the two probability metrics. Note that C is independent of n in both

methods. The dependency on 1{pλ˚
Bq2 is absorbed in the denominator because we require that

λ˚
B ´ 16µρmax{α ą 0. The sample complexities provide a perspective of our confidence on

upper bounding the true risk in terms of the ambiguity radius. ε0 serves as our initial guess on

distributional uncertainty and increases the sample complexity only slightly because it is usually

dominated by other terms in practice: ε ! logpn{δq. Even though the samples are drawn from

an adversarial distribution with a proportion of noises, the proposed methods may still succeed

as long as the true distribution can be made close to an upper confidence bound.
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3.4 Experiments

We conduct experiments on benchmark datasets (Scutari, 2010) and real-world datasets

(Malone et al., 2015) perturbed by the following contamination models:

‚ Noisefree model. This is the baseline model without any noises.

‚ Huber’s contamination model. In this model, each sample has a fixed probability of ζ

to be replaced by a sample drawn from an arbitrary distribution. We adopt the uniform

distribution.

‚ Independent failure model. Each entry in each sample is independently corrupted

with probability ζ. We consider the model that replaces it with a different value uniformly

in the experimetns.

We conduct all experiments on a laptop with an Intel Core i7 2.7 GHz processor. We adopt

the proposed approaches based on Wasserstein DRO and KL DRO as well as the group norm

regularization method (Bank and Honorio, 2020) and the PC algorithm (Spirtes et al., 2000)

for skeleton learning. Based on the learned skeletons, we infer a DAG with the hill-climbing

(HC) algorithm (Tsamardinos et al., 2006). For the Wasserstein-based method, we leverage

Adam (Kingma and Ba, 2014) to optimize the overall objective with β1 “ 0.9, β2 “ 0.990, a

learning rate of 0.1, a batch size of 200, and a maximum of 100 iterations. For the KL-based

and standard regularization methods, we use the L-BFGS-B (Byrd et al., 1995) optimization

method with default parameters. We adopt the original version of the PC algorithm and set

the cardinality of the maximum conditional set to 2. The Bayesian information criterion (BIC)
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TABLE I: Comparisons of F1 scores for benchmark datasets and BIC for real-world datasets
(backache, voting).

Dataset asia asia asia asia asia child alarm hailfinder backache voting
n 8 8 8 8 8 20 37 56 32 17

Noise Noisefree Huber Indep Indep Indep Indep Indep Indep Indep Indep
ζ 0 0.5 0.1 0.3 0.5 0.5 0.5 0.5 0.5 0.5

Wass 0.6606 0.5965 0.6740 0.5237 0.2190 0.3261 0.2065 0.1773 N/A N/A
KL 0.6591 0.6655 0.6952 0.3285 0.4212 0.3679 0.1557 0.1629 N/A N/A
Reg 0.7374 0.6655 0.6857 0.3285 0.0000 0.3417 0.1525 0.1551 N/A N/A
PC 0.7062 0.5421 0.6292 0.1778 0.0000 0.1690 0.1132 0.1446 N/A N/A

Wass+HC 0.7318 0.3732 0.3436 0.0444 0.0444 0.0891 N/A N/A ´1793.2164 ´3106.1863
KL+HC 0.7153 0.2702 0.3846 0.0000 0.1164 0.0874 N/A N/A ´1793.2164 ´3106.1863
Reg+HC 0.6589 0.2702 0.3846 0.0000 0.0000 0.1241 N/A N/A ´1793.2164 ´3106.1863
PC+HC 0.4675 0.2368 0.4195 0.0444 0.0000 0.0385 N/A N/A ´1795.4472 ´3106.1863

(Neath and Cavanaugh, 2012) score is adopted in the HC algorithm. Each experimental result

is taken as an average over 5 independent runs where a random set of 1000 samples is obtained

at the beginning. When dealing with real-world datasets, we split the data into two halves for

training and testing.

We use the F1-score to evaluate performance on benchmark datasets and BIC for real-world

datasets. The results are reported in Table I. We can observe that the proposed DRO methods

either find the best skeleton or the best DAG with the help of HC across different datasets and

different data contamination settings. For the alarm and hailfinder datasets, HC could not find

a DAG in a reasonable amount of time. For the backache and voting datasets, BIC is only valid

for DAGs but not for skeletons thus some results are not applicable.

3.5 Concluding Remarks

In this chapter, we put forward a distributionally robust optimization method to recover the

skeleton of a general discrete Bayesian network. We discuss two specific probability metrics,
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developed tractable algorithms to compute the estimators. We establish the connection between

the proposed method and regularization. We derive non-asymptotic bounds polynomial in the

number of nodes for successful identification of the true skeleton. The sample complexities

become logarithmic for bounded-degree graphs. Empirical results showcase the effectiveness and

practicability of our methods.



CHAPTER 4

MOMENT DISTRIBUTIONALLY ROBUST TREE STRUCTURED

PREDICTION

(Parts of this chapter were previously published as “Moment Distributionally Robust Tree

Structured Prediction” in the 36th Conference on Neural Information Processing Systems

(NeurIPS 2022) (Li et al., 2022a).)

Structured prediction of tree-shaped objects is heavily studied under the name of syntactic

dependency parsing. Current practice based on maximum likelihood or margin is either agnostic

to or inconsistent with the evaluation loss. Risk minimization alleviates the discrepancy between

training and test objectives but typically induces a non-convex problem. These approaches

adopt explicit regularization to combat overfitting without probabilistic interpretation.

In this chapter, we propose a moment-based distributionally robust optimization approach

for tree structured prediction, where the worst-case expected loss over a set of distributions

within bounded moment divergence from the empirical distribution is minimized. We begin

with an introduction in Section 4.1 and problem setup together with related work in Section 4.2.

We develop efficient algorithms with theoretical analysis in Section 4.3, which includes Fisher

consistency, convergence rates and generalization bounds. Section 4.4 proposes efficient projection

oracles. Section 4.5 discusses extensions beyond first-order directed trees. Experimental results

of comparing our method with a competitive baseline on dependency parsing benchmarks are

given in Section 4.6. We conclude the chapter in Section 4.7.

105
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4.1 Introduction

Structured prediction is an important learning setting for joint prediction of interdependent

variables. The output space typically consists of an exponential number of structured objects

whose inherent relations can be exploited to develop efficient learning algorithms and capture

key properties of data (Ciliberto et al., 2019). Trees are widely used structures that offer

expressiveness and simplicity. We distinguish between two different tree structured prediction

tasks in the literature. The first task is a structure learning problem in graphical models (Bradley

and Guestrin, 2010), aimed at constructing trees underlying a predictive model from training

data. The optimal tree is found easily with greedy algorithms for generative models (Chow and

Liu, 1968), while it is NP-hard for the discriminative max-margin setting (Meshi et al., 2013).

The second task requires prediction itself to be a tree-shaped object (e.g., an incidence vector).

Dependency parsing is a crucial application of this problem that has inspired a flurry of work in

natural language processing. The first-order spanning tree prediction assuming factorization over

arcs can be done in Opn2q (Stanojević and Cohen, 2021), whereas exact inference is NP-hard

for certain (non-projective) higher-order trees (e.g., considering siblings) (McDonald and Satta,

2007). We study the latter in this chapter.

A common evaluation criterion in dependency parsing is the attachment score, namely, the

score we would like to maximize on test data. It is cost-sensitive to allow partially correct

prediction. Ideally, the training objective should be aligned with the test objective. An early

attempt to directly mimic test conditions leads to a non-convex piece-wise constant objective

(Och, 2003). Risk minimization in appropriate parametric form has a non-convex smooth
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objective, solvable with gradient descent, but still losing global convergence and generalization

guarantees. Maximum likelihood approaches formulate a convex smooth problem minimizing

a logistic loss, consistent with conditional probability estimates but oblivious to test losses.

Maximum margin methods have convex objectives able to implicitly incorporate custom losses

by scaling margins, but are known to be inconsistent with test losses generally (Nowak et al.,

2022). Unfortunately, none of these approaches yield a Bayes optimal estimator for test losses

with global convergence and finite-sample generalization guarantees.

Consistent structured prediction methods include (Ciliberto et al., 2016; Blondel, 2019; Nowak-

Vila et al., 2020), the latter two of which are based on Fenchel-Young losses (Blondel et al.,

2020). However, none of them have addressed the tree structured prediction problem explicitly.

For instance, (Blondel, 2019) calls for Euclidean or Kullback-Leibler projection oracles, which

do not exist in an efficient sense from what we know for arborescence (directed tree) polytopes.

In addition, the Frank-Wolfe type algorithm adopted by (Nowak-Vila et al., 2020) requires a

max-min oracle and converges in a rate of Op1ϵ q. Furthermore, all of the above methods belong

to empirical risk minimization that requires explicit regularization to combat overfitting, which

can be quite vulnerable in high-dimensional settings (e.g., scarce data).

To address the above issues, we propose an estimator from first principles in distributionally

robust optimization. It minimizes the worst-case risk over an ambiguity set of distributions within

bounded moment divergence from the empirical distribution. We seek probabilistic prediction

by assuming non-deterministic groundtruth labels, which, together with the ambiguity set,

models uncertainty about the unknown true distribution. We interpret the primal problem as
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a dual-norm-regularized surrogate loss minimization problem. Note that prior art applying

moment-based DRO to tree-structured graphical models (Fathony et al., 2018) and bipartite

matching (Fathony et al., 2018) adopts a special case of our ambiguity set in which the empirical

feature moments are matched exactly and regularization has to be imposed manually. This

moment-based DRO also allows us to derive generalization bounds regarding true worst-case

risks. When the ambiguity radius is zero, the DRO estimator is shown to be consistent. We

develop two practical algorithms, one based on game theory and the other based on marginal

probabilities of tree parts. We further propose efficient Euclidean projection oracles onto the

arborescence polytope with linearly convergent guarantees. We conduct experiments on three

common dependency parsing datasets, suggesting that our method is particularly effective with

little training data.

Contributions. Our contributions are summarized as follows. (1) We propose a distri-

butionally robust tree structured prediction method and show its equivalence to regularized

surrogate minimization. (2) We derive its generalization bounds and consistency. (3) We propose

efficient algorithms based on projection oracles for arborescence polytopes. (4) We perform

empirical study on real-world datasets.

4.2 Background and Related Work

4.2.1 Tree Structured Prediction

Consider a weighted directed multi-graph G “ pV, Eq where each arc pi, j, lq P E from

node i to j has a label l. By designating a root node r P V, we say that A Ď E is an r-

arborescence of G if pV,Aq is a directed spanning tree rooted at r. For any v P V, denote by
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δ´pvq :“ tpi, j, lq P E : j “ vu the set of its incoming arcs, and δ`pvq :“ tpi, j, lq P E : i “ vu the

set of its outgoing arcs.

Let X be the input space and Y fi
Ť

xPX Ypxq be the output space where Ypxq represents

the set of r-arborescences of a graph Gpxq formed by x. Dependence on x is suppressed when

context is clear. Let R Ď 2E be a set of parts with E Ď R. Each part s P R is a subset of

arcs. It is convenient to represent y P Y as a binary vector with ys “ 1 iff part s appears in

y. Let wθpx,yq fi
ř

sPRwθpx, ysq be a score function decomposing over parts, parameterized

by θ. Let tpxpiq,ypiqqumi“1 be a set of m training examples drawn i.i.d. from a distribution

P P PpX ˆ Yq, where each ypiq is an r-arborescence. The goal of tree structured prediction is to

learn a function h : X Ñ Y from training data. Assume that the evaluation criterion is a loss

function ℓ : Y ˆ Y Ñ Rě0.

We introduce existing methods in the setting of (graph-based, non-projective, syntactic)

dependency parsing where x is a sequence of tokens and Gpxq encodes dependencies among

tokens.

4.2.2 Maximum Likelihood

A probabilistic modeling approach based on exponential family distributions maximizes the

conditional log-likelihood of the training data:

min
θ

´

m
ÿ

i“1

log pθpypiq|xpiqq :“ ´

m
ÿ

i“1

log rexp pwθpxpiq,ypiqqq{Zpxpiqqs,
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where Zpxq fi
ř

yPYpxq exp pwθpx,yqq. This problem is convex for log-linear models, but

intractable for general R (Koller and Friedman, 2009). The first-order arc-factored model

(R “ E) is equivalent to a loop-free factor graph, rendering it tractable via the matrix-tree

theorem (Kirchhoff, 1847; William, 1984; Koo et al., 2007; McDonald and Satta, 2007; Smith and

Smith, 2007). Neural parsers either leverage the same theorem to compute the partition function

(Ma and Hovy, 2017) or consider the parent node distribution independently for each node by

local normalization (Dozat and Manning, 2017; Zhang et al., 2017). Higher-order models require

approximate algorithms such as loopy belief propagation (Murphy et al., 1999) and Markov

chain Monte Carlo (Brooks, 1998). This approach does not incorporate task-specific losses. In

fact, with maximum a posteriori (MAP) decoding, it is not consistent with any specific loss in

general (Nowak-Vila et al., 2019).

4.2.3 Maximum Margin

An alternative approach based on maximum margin Markov networks (Taskar et al., 2003)

or structured support vector machines (Tsochantaridis et al., 2005) optimizes a hinge-type

surrogate:

min
θ

m
ÿ

i“1

´wθpxpiq,ypiqq ` max
y

ℓpypiq,yq ` wθpxpiq,yq,

which inspires a rich line of work based on MAP inference with manual features (Taskar et al.,

2004; McDonald et al., 2005; McDonald and Pereira, 2006; Martins et al., 2009; Martins et al.,

2010; Martins et al., 2015; Zhang et al., 2014) or deep learning (Kiperwasser and Goldberg,
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2016; Wang and Chang, 2016). Approximate MAP inference is required for models beyond

first-order. A smooth variant called softmax-margin (Gimpel and Smith, 2010) incorporates the

task-specific loss ℓ but still implicitly minimizes it. Margin-based objectives are known to be

consistent only under very restrictive conditions (Liu, 2007; Nowak et al., 2022) (i.e., data with

majority label, loss being a distance).

4.2.4 Minimum Risk

Empirical risk minimization suggests directly optimizing the expected target loss on training

data:

min
θ

m
ÿ

i“1

ÿ

y

pθpy|xpiqqℓpypiq,yq,

which is commonly non-convex due to normalization of pθ. There are a few parsers optimizing this

objective via back-propagation (Stoyanov and Eisner, 2012), k-best lists (Smith and Eisner, 2006),

semirings (Li and Eisner, 2009; Zmigrod et al., 2021) and other differentiable approximations

(Gormley et al., 2015; Mensch and Blondel, 2018). Local optima found by these algorithms do

not satisfy the premise of Fisher consistency and make it difficult to quantify generalization

errors.

4.3 Method

We introduce the formulation, followed by practical algorithms for learning and inference.

Afterwards, we present the theoretical guarantees.
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4.3.1 Formulation

We assume that the evaluation criterion is the Hamming loss ℓpy,y1q :“
ř

i 1pyi ‰ y1
iq with

1p¨q being the 0-1 indicator function, but the results in this chapter generalize to losses with

affine decomposition (Ramaswamy et al., 2013) easily.

Let Ptrue be the true distribution and Pemp be the empirical distribution. Our approach

builds upon a probabilistic predictor that non-parametrically minimizes the expected loss with

regard to the most adverse distribution in an uncertainty set where the distributions are ε away

from the empirical distribution in terms of feature moment difference:

min
P

max
QPBpPempq

EQX,Y̌ ,PŶ |X
ℓpŶ , Y̌ q, (4.1)

where BpPempq :“ tQ : QX “ Pemp
X ^∥EPempϕp¨q´EQϕp¨q∥ ď εu with ε ě 0 and ϕ : X ˆY Ñ Rd

is a joint feature mapping decomposable over parts: ϕpx,yq fi
ř

sϕpx, ysq. In (Farnia and Tse,

2016), cross-moments are adopted: ϕpx,yq :“ ϕXpxq b ϕY pyq where b is the tensor product.

By Fenchel duality (Altun and Smola, 2006) and strong duality (von Neumann and Morgen-

stern, 1944), we show that Equation 4.1 is analogous to dual-norm-regularized surrogate loss

minimization:
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Proposition 28. The distributionally robust tree structured prediction problem based on moment

divergence in Equation 4.1 can be rewritten as

min
θ

EPemp
X,Y

min
P

max
Q

EPŶ |X ,QY̌ |X
ℓpŶ , Y̌ q ` θ⊺pϕpX, Y̌ q ´ ϕpX,Y qq ` ε∥θ∥˚

loooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooon

ℓadvpθ,pX,Y qq

, (4.2)

where θ P Rd is the vector of Lagrangian multipliers and ∥¨∥˚ is the dual norm of ∥¨∥.

Proof. Recall the primal problem

min
P

max
QPBpPempq

EQX,Y̌ PŶ |X
ℓpŶ , Y̌ q,

where BpPempq :“ tQ : QX “ Pemp
X ^ ∥EPempϕp¨q ´ EQϕp¨q∥ ď εu with ε ě 0.

Note the feature function ϕp¨q is fixed and given. Since PŶ |X P ∆ and QX,Y̌ P ∆ X BpPempq

where ∆ is the probability simplex with dimension omitted, the constraint sets are convex. The

objective function is convex in P and concave in Q because it is affine in both. Therefore strong

duality holds:

max
QPBpPempq

min
P

EQX,Y̌ PŶ |X
ℓpŶ , Y̌ q.
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Let C :“ tu : ∥u´ EPempϕp¨q∥ ď εu. Rewrite the problem with this constraint:

sup
Q,u

min
P

EPemp
X QY̌ |XPŶ |X

ℓpŶ , Y̌ q ´ ICpuq

s.t. u “ EPemp
X QY̌ |X

ϕpX, Y̌ q,

where ICp¨q is the indicator function with ICpxq “ 0 if x P C and `8 otherwise. The simplex

constraints are omitted.

The dual problem by relaxing the equality constraint is

sup
Q,u

min
θ

min
P

EPemp
X QY̌ |XPŶ |X

ℓpŶ , Y̌ q ´ ICpuq ` θ⊺EPemp
X QY̌ |X

ϕpX, Y̌ q ´ θ⊺u,

where θ is the vector of Lagrange multipliers.

Given X “ x, optimization of QY̌ |x and PŶ |x can be done independently. Again by strong

duality, we can rearrange the terms:

min
θ

EPemp
X

min
P

max
Q

EQY̌ |XPŶ |X
ℓpŶ , Y̌ q ` θ⊺ϕpX, Y̌ q ` sup

u
´ICpuq ´ θ⊺u.

The associated dual norm ∥¨∥˚ of the norm ∥¨∥ is defined as

∥z∥˚ :“ suptz⊺x : ∥x∥ ď 1u,
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based on which we are able to simplify the optimization over u as

sup
u

´ICpuq ´ θ⊺u “ sup
uPC

´θ⊺u “ sup
e:∥e∥ď1

´θ⊺pEPempϕp¨q ´ εeq “ ´θ⊺EPempϕp¨q ` ε∥θ∥˚.

Plugging it back to the dual problem, we have

min
θ

EPemp
X,Y

min
P

max
Q

EQY̌ |XPŶ |X
ℓpŶ , Y̌ q ` θ⊺pϕpX, Y̌ q ´ ϕpX,Y qq ` ε∥θ∥˚.

4.3.2 Constraint Generation Solution

From a game-theoretic rationale (Topsøe, 1979; Grünwald and Dawid, 2004), Equation 4.1

is considered as an adversary-constrained zero-sum game. A prediction player chooses a set

of stochastic strategies (conditional distributions over arborescences) in order to minimize the

expected payoff whereas an adversarial player chooses constrained strategies to maximize it.

The payoff for a pair of pure strategies is the incurred loss, ℓpŷ, y̌q. The constrained game is

transformed to a set of unconstrained ones in Equation 4.2 whose payoffs are parameterized

by θ: payoffpŷ, y̌q fi ℓpŷ, y̌q ` θ⊺ϕpx, y̌q. Note that the games in Equation 4.1 are jointly

constrained for all x’s in the support of Pemp
X while the ones in Equation 4.2 are conditionally

independent given x. The unconstrained game can be solved by a linear program (von Neumann

and Morgenstern, 1944). However, there are Opnnq spanning trees in a complete graph, thus

making explicit construction of the full payoff matrix impractical.
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Algorithm 3 Double Oracle Game Solver

Input: Lagrange multipliers θ; feature function ϕp¨, ¨q; initial set of trees tyinitialu
Output: A sparse Nash equilibrium pT̂ , Ť ,P,Qq

Initialize T̂ Ð Ť Ð tyinitialu
repeat

pP, v̂Nashq Ð SolveZeroSumGameT̂ pℓ,θ⊺ϕ, T̂ , Ť q

py̌BR, v̌BRq Ð FindBestResponsepℓ,θ⊺ϕ,P, T̂ q

if v̂Nash ‰ v̌BR then
Ť Ð Ť Y ty̌BRu

end if
pQ, v̌Nashq Ð SolveZeroSumGameŤ pℓ,θ⊺ϕ, T̂ , Ť q

pŷBR, v̂BRq Ð FindBestResponsepℓ,θ⊺ϕ,Q, Ť q

if v̌Nash ‰ v̂BR then
T̂ Ð T̂ Y tŷBRu

end if
until v̂Nash “ v̌BR “ v̌Nash “ v̂BR

return pT̂ , Ť ,P,Qq

We adopt a constraint generation algorithm named double oracle (McMahan et al., 2003),

with the pseudo-code illustrated in Algorithm 3. It builds a payoff sub-matrix starting from

small initial sets of strategies. In each iteration, each player takes their turn based on the game

payoff sub-matrix by finding the best response among all possible strategies to the opponent’s

optimal mixture strategies. The response is added to a player’s strategy set if it improves the

value of the game, with the sub-matrix updated. The algorithm terminates and converges to

a Nash equilibrium of the original game when the strategy sets no longer grow. The size of

the final sub-matrix is usually small in practice but there are no known theoretical guarantees,

thus no way to analyze the convergence behavior. Finding the best response requires an oracle,

equivalent to finding the minimum weight arborescence. The objective in Equation 4.2 is a
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convex function of θ, so we can optimize it with sub-gradients based on solutions of the inner

zero-sum games. Although lacking convergence guarantees, this algorithm is flexible with custom

losses and provides a game-theoretic perspective to a typical DRO problem.

4.3.3 Marginal Distribution Formulation

The r-arborescence polytope is defined as the convex hull of all vectors representing r-

arborescences: Aarbpxq :“ Convpty P R|R| : y P Ypxquq. Note that each p P Aarb is a convex

combination of all r-arborescences: p fi
ř

y Probpyqy, where ps denotes the marginal probability

of part s. Here we adopt the squared ℓ2 norm as the dual norm and an ambiguity radius of

ε “ λ{2. By substituting the marginal probability vectors and switching min-max optimization

orders, we simplify Equation 4.2 into

max
qpiqPAarb

min
θ

1

m

m
ÿ

i“1

min
pPAarb

pqpiq ´ ppiq
empq⊺Φpiqθ ´ xp, qpiqy `

µ

2
∥p∥22 ´

µ

2
∥qpiq∥22 `

λ

2
∥θ∥22, (4.3)

where Φpiq P R|R|ˆd denotes the feature matrix of the i-th training data, µ P Rě0 is a smoothing

parameter to induce strong convexity. We push the maximization over q to the outermost level

because of its large computational cost. If µ “ 0, the solution to Equation 4.3 is also optimal to

Equation 4.2 by strong duality but the problem becomes non-smooth. Therefore we expect θ˚

obtained with a very small positive µ to be a good approximation of θ˚ obtained with µ “ 0.

To optimize it, with fixed q, due to strong convexity, the unconstrained minimization over

θ yields θ˚ “ ´ 1
mλ

řm
i“1pΦpiqq⊺pqpiq ´ p

piq
empq. In contrast, the constrained minimization over

p admits no closed-form solution but can be cast as Euclidean projection onto Aarb instead,
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independently for each i P rms: p˚ “ minpPAarb
∥p ´ 1

µq
piq∥22 fi ProjAarb

p 1
µq

piqq. Given θ˚ and

p˚, the outermost maximization can be solved by a projected quasi-Newton algorithm (Schmidt

et al., 2009) that also requires the projection oracle ProjAarb
p¨q, elaborated in Section 4.4.

4.3.4 Inference

We propose two algorithms to make inference with given θ˚.

Weight construction. Construct the part weights as Φθ˚ P R|R| and find the maximum

weight arborescence: y˚ P argmaxy y
⊺Φθ˚ by the Gabow-Tarjan (GT) algorithm (Gabow et

al., 1986; Zmigrod et al., 2020) or approximate methods for higher-order trees.

Minimum Bayes risk decoding. The optimal probabilistic prediction P˚ or p˚ can

be obtained from Equation 4.2 or Equation 4.3. The marginal probabilities enable minimum

Bayes risk decoding: y˚ P argminy EP˚

Ŷ |x
ℓpy, Ŷ q fi argmaxy

ř

s:ys“1 p
˚
s , a maximum weight

arborescence problem.

4.3.5 Statistical Properties

Basic generalization bounds of DRO methods derived from measure concentration are

not appropriate for an ambiguity set defined by low-order moments since it fails to converge

(Shafieezadeh-Abadeh et al., 2019). We take an alternate approach following (Farnia and Tse,

2016) to obtain excess out-of-sample risk bounds by assuming boundedness on features and

losses.
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Theorem 29. Given m samples, a non-negative loss ℓp¨, ¨q such that |ℓp¨, ¨q| ď K, a feature

function ϕp¨, ¨q such that ∥ϕp¨, ¨q∥ ď B, a positive ambiguity level ε ą 0, then, for any ρ P p0, 1s,

with a probability at least 1 ´ ρ, the following excess true worst-case risk bound holds:

max
QPBpPtrueq

RL
Qpθ˚

empq ´ max
QPBpPtrueq

RL
Qpθ˚

trueq ď
4KB

ε
?
m

˜

1 `
3

2

c

lnp4{ρq

2

¸

,

where θ˚
emp and θ˚

true are the optimal parameters learned in Equation 4.2 under Pemp and

Ptrue respectively. The original risk of θ under Q is RL
Qpθq :“ EQX,Y ,Pθ

Ŷ |X
ℓpŶ ,Y q with Bayes

prediction Pθ
Y |x P argminPmaxQ EQY̌ |xPŶ |x

ℓpŶ , Y̌ q ` θ⊺ϕpx, Y̌ q.

Proof. Define the adversarial surrogate risk of θ with respect to P̃ as

RS
P̃ pθq :“EP̃X,Y

ℓadvpθ, pX,Y qq :“ EP̃X,Y
min
P

max
Q

EQY̌ |XPŶ |X
ℓpŶ , Y̌ q

` θ⊺pϕpX, Y̌ q ´ ϕpX,Y qq ` ε∥θ∥˚.

Let θ˚
true P argminθ R

S
Ptruepθq and θ˚

emp P argminθ R
S
Pemppθq be the optimal parameters

learned with Ptrue
X,Y and Pemp

X,Y respectively.

Given x, define the decoded prediction by θ as

Pθ
Y |x P argmin

P
max
Q

EQY̌ |xPŶ |x
ℓpŶ , Y̌ q ` θ⊺ϕpx, Y̌ q.
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Let the original risk of loss ℓ under some distribution Q be

RL
Qpθq :“ EQX,Y ,Pθ

Ŷ |X
ℓpŶ ,Y q.

According to Proposition 28, for any fixed P, we have similarly

max
QPBpPempq

EQX,Y̌ PŶ |X
ℓpŶ , Y̌ q

fimin
θ

EPemp
X,Y

max
Q

EQY̌ |XPŶ |X
ℓpŶ , Y̌ q ` θ⊺pϕpX, Y̌ q ´ ϕpX,Y qq ` ε∥θ∥˚.

We start by looking at the worst-case risk of θ˚
true and θ˚

emp.

max
QPBpPtrueq

RL
Qpθ˚

empq

“min
θ

EPtrue
X,Y

max
Q

E
QY̌ |XP

θ˚
emp

Ŷ |X

ℓpŶ , Y̌ q ` θ⊺pϕpX, Y̌ q ´ ϕpX,Y qq ` ε∥θ∥˚

ďEPtrue
X,Y

max
Q

E
QY̌ |XP

θ˚
emp

Ŷ |X

ℓpŶ , Y̌ q ` θ˚
emp ¨ pϕpX, Y̌ q ´ ϕpX,Y qq ` ε∥θ˚

emp∥˚,

where the last inequality holds because θ˚
emp is not necessarily a minimizer. Similarly for θ˚

true,

max
QPBpPtrueq

RL
Qpθ˚

trueq ďEPtrue
X,Y

max
Q

E
QY̌ |XP

θ˚
true

Ŷ |X

ℓpŶ , Y̌ q

` θ˚
true ¨ pϕpX, Y̌ q ´ ϕpX,Y qq ` ε∥θ˚

true∥˚.
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On the other hand,

EPtrue
X,Y

max
Q

E
QY̌ |XP

θ˚
true

Ŷ |X

ℓpŶ , Y̌ q ` θ˚
true ¨ pϕpX, Y̌ q ´ ϕpX,Y qq ` ε∥θ˚

true∥˚

“min
θ

EPtrue
X,Y

min
P

max
Q

EQY̌ |XPŶ |X
ℓpŶ , Y̌ q ` θ⊺pϕpX, Y̌ q ´ ϕpX,Y qq ` ε∥θ∥˚

“min
P

min
θ

EPtrue
X,Y

max
Q

EQY̌ |XPŶ |X
ℓpŶ , Y̌ q ` θ⊺pϕpX, Y̌ q ´ ϕpX,Y qq ` ε∥θ∥˚

ďmin
θ

EPtrue
X,Y

max
Q

E
QY̌ |XP

θ˚
true

Ŷ |X

ℓpŶ , Y̌ q ` θ⊺pϕpX, Y̌ q ´ ϕpX,Y qq ` ε∥θ∥˚

“ max
QPBpPtrueq

RL
Qpθ˚

trueq,

where the first equality holds according to the definition of θ˚
true. The above two inequalities

imply the equality:

max
QPBpPtrueq

RL
Qpθ˚

trueq “EPtrue
X,Y

max
Q

E
QY̌ |XP

θ˚
true

Ŷ |X

ℓpŶ , Y̌ q

` θ˚
true ¨ pϕpX, Y̌ q ´ ϕpX,Y qq ` ε∥θ˚

true∥˚.

Therefore,

max
QPBpPtrueq

RL
Qpθ˚

empq ´ max
QPBpPtrueq

RL
Qpθ˚

trueq

ďEPtrue
X,Y

max
Q

E
QY̌ |XP

θ˚
emp

Ŷ |X

ℓpŶ , Y̌ q ` θ˚
emp ¨ pϕpX, Y̌ q ´ ϕpX,Y qq ` ε∥θ˚

emp∥˚

´ pEPtrue
X,Y

max
Q

E
QY̌ |XP

θ˚
true

Ŷ |X

ℓpŶ , Y̌ q ` θ˚
true ¨ pϕpX, Y̌ q ´ ϕpX,Y qq ` ε∥θ˚

true∥˚q. (4.4)
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The main idea is thus to use uniform convergence bounds. Firstly, by substituting Q “ Ptrue,

note that

min
P

max
Q

EQY̌ |XPŶ |X
ℓpŶ , Y̌ q ` θ⊺pϕpX, Y̌ q ´ ϕpX,Y qq ě min

P
EPtrue

Y |X
PŶ |X

ℓpŶ ,Y q ě 0.

We can get an upper bound of the norm of any optimal solution θ˚
true or θ˚

emp as follows:

0 ` ε∥θ˚
true∥˚ ď RS

Ptruepθ˚
trueq ď RS

Ptruep0q ď EPtrue
X,Y

min
P

max
Q

EQY̌ |XPŶ |X
ℓpŶ , Y̌ q ď K

ùñ ∥θ˚
true∥˚ ď

K

ε
.

Let ψpX,Y q :“ θ⊺ϕpX,Y q and ψx :“ pψpx,yqqyPY . Define

fpθ, P̃q :“ EP̃X,Y
min
P

max
Q

EQY̌ |XPŶ |X
ℓpŶ , Y̌ q ` θ⊺pϕpX, Y̌ q ´ ϕpX,Y qq

fi EP̃X,Y
max
Q

EQY̌ |XPθ
Ŷ |X

ℓpŶ , Y̌ q ` θ⊺pϕpX, Y̌ q ´ ϕpX,Y qq

fi EP̃X,Y
max
Q

EQY̌ |XPθ
Ŷ |X

ℓpŶ , Y̌ q ` ψpX, Y̌ q ´ ψpX,Y q

fi gpψ, P̃q.

Let qx P ∆ be the probability vector of QY̌ |x and ey be the standard basis vector with y-th

entry equal to 1. We have that for any px,yq,

B

Bψx
gpψ, δpx,yqq Ď Convptqx ´ ey : qx P ∆uq ùñ ∥ B

Bψx
gpψ, δpx,yqq∥1 ď max

qxP∆
∥qx ´ ey∥1 ď 2,
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where δpx,yq is the Dirac point measure. gp¨, P̃q is therefore 2-Lipschitz with respect to the ℓ1

norm. As per the assumption, ∥ϕp¨, ¨q∥ ď B. This further implies that

fpθ1, δpx1,y1qq ´ fpθ2, δpx2,y2qq ď
4KB

ε
@θ1,θ2,x1,x2,y1,y2 s.t. ∥θi∥˚ ď

K

ε
@i “ 1, 2.

We then follow the proof of Theorem 3 in (Farnia and Tse, 2016). According to Theorem

26.12 in (Shalev-Shwartz and Ben-David, 2014), by uniform convergence, for any ρ P p0, 2s, with

a probability at least 1 ´
ρ
2 ,

fpθ˚
emp,Ptrueq ´ fpθ˚

emp,Pempq ď
4KB

ε
?
m

˜

1 `

c

lnp4{ρq

2

¸

.

According to the definition of θ˚
true, the following inequality holds:

fpθ˚
emp,Pempq ` ε∥θ˚

emp∥˚ ´ fpθ˚
true,Pempq ´ ε∥θ˚

true∥˚ ď 0.

Since θ˚
true do not depend on samples, according to the Hoeffding’s inequality, with a

probability 1 ´ ρ{2,

fpθ˚
true,Pempq ´ fpθ˚

true,Ptrueq ď
2KB

ε
?
m

c

lnp4{ρq

2
.
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Applying the union bound to the above three inequations, with a probability 1 ´ ρ, we have

fpθ˚
emp,Ptrueq ` ε∥θ˚

emp∥˚ ´ fpθ˚
true,Ptrueq ´ ε∥θ˚

true∥˚ ď
4KB

ε
?
m

˜

1 `
3

2

c

lnp4{ρq

2

¸

.

As stated by Equation 4.4, we conclude with the following excess risk bound:

max
QPBpPtrueq

RL
Qpθ˚

empq ´ max
QPBpPtrueq

RL
Qpθ˚

trueq ď
4KB

ε
?
m

˜

1 `
3

2

c

lnp4{ρq

2

¸

.

Theorem 29 presents a bound based on uniform convergence and Rademacher complexities

(Bartlett and Mendelson, 2002), which improves the results in (Asif et al., 2015), who merely

show that the worst-case risk upper bounds the risk under any distribution in the ambiguity set.

The dual problem in Equation 4.2 suggests an adversarial surrogate loss ℓadvpθ, px,yqq in a

ERM form. The special case of ε “ 0 in our DRO estimator has a similar form to the max-min

surrogate loss in (Nowak-Vila et al., 2020) except that we assume probabilistic prediction. A

conclusion of its Fisher consistency can thus be drawn based on (Fathony et al., 2018; Nowak-Vila

et al., 2020).

Corollary 30. When ε “ 0, ℓadv is Fisher consistent with respect to ℓ. Namely, Pθ˚
true

Ŷ |X
is

the probabilistic prediction made by the Bayes optimal decision rule, where θ˚
true is defined in

Theorem 29.
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Proof. Our formulation differs from (Nowak-Vila et al., 2020) in the fact that we allow probabilis-

tic prediction to be ground truth. By defining y˚pµq as the gold standard probabilistic prediction

and Y as the set of all possible probabilistic predictions in Proposition C.2 in (Nowak-Vila et

al., 2020), we have

Pθ˚
true

Ŷ |x
P Convparg min

PŶ |x

EPtrue
Y |x

,PŶ |x
ℓpŶ ,Y qq.

Therefore,

Pθ˚
true

Ŷ |x
P arg min

PŶ |x

EPtrue
Y |x

,PŶ |x
ℓpŶ ,Y q.

If ε ą 0, the decoded prediction for each x will not belong to the convex hull of true

conditional distributions, thus not a minimizer of ℓ. On the other hand, if ε is chosen as m´α

for 0 ă α ă 1{2, ℓadv will be universally consistent according to the comparison inequality in

(Nowak-Vila et al., 2020).

4.4 Projection onto Arborescence Polytopes

The Euclidean projection onto an r-arborescence polytope is a quadratic programming

problem. This is a well-defined convex optimization problem, different from that in differentiable
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structured prediction methods (Peng et al., 2018; Mihaylova et al., 2020) which elicit gradients

with respect to inputs.

min
xPAarb

fpxq :“ ∥x´w∥22.

We focus on first-order models and discuss the extensions to other classes of trees in Section 4.5.

4.4.1 Frank-Wolfe Algorithm

The Frank-Wolfe (FW) method (Frank et al., 1956) is an iterative first-order algorithm that

enforces constraints by optimizing a linear objective over the feasible set at each iteration t:

st P arg min
sPAarb

s⊺∇fpxtq, (4.5)

which is a minimum weight arborescence problem with weights ∇fpxtq in our case. The solution

is updated and stays feasible: xt`1 Ð xt ` γtps
t ´ xtq, where γt is a step size typically set to

2
t`2 . FW style algorithms are known to have a convergence rate of Op1ϵ q (Jaggi, 2013).

4.4.2 Martin’s Polytope

A compact representation of Aarb with a polynomial number of linear constraints is attractive

to lead to efficient algorithms. To the best of our knowledge, there is no existing projection method

exploiting special structures of this polytope. An extended formulation of the arborescence

polytope (Friesen, 2019; Martin, 1991) follows a lift-and-project approach. It relates each element
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to existence of k-arboresences of the underlying undirected graph for all k P V . We extend it to

multi-graphs:

Amarb :“ tzr : Dzk ě 0
ÿ

aPδ´pjq

zka “ 1pj ‰ kq @k, j P V ^
ÿ

aPE 1
ij

zka “
ÿ

aPEij

zra @k ‰ r, i, j P V ^ zr ě 0u,

where zr P R|E| is associated with the original arcs E , zk P R|E 1| for k ‰ r is associated with

a simple directed graph pV, E 1q formed by removing directions and splitting each edge ti, ju

into two directed ones, Eij :“ ta P E : ā “ ti, juu is the set of arcs connecting i and j with

ā fi pi, j, lq :“ ti, ju denoting the underlying undirected edge. We show exact correspondence

between Amarb and Aarb based on a similar argument for simple graphs (Friesen, 2019):

Proposition 31. Let G be a multi-graph. Amarb fi Aarb.

Proof. We follow the proof of (Friesen, 2019) for simple graphs. Recall the definition of Amarb:

Amarb :“ tzr : Dz ě 0

ÿ

aPδ´pjq

zka “ 1pj ‰ kq @k, j P V^ (4.6)

ÿ

aPE 1
ij

zka “
ÿ

aPEij

zra @k ‰ r, i, j P Vu. (4.7)

On one hand, given a legal r-arborescence with characteristic vector zr, Equation 4.6 and

Equation 4.7 hold by the definition of arborescences. The equality also holds for a convex

combination of the characteristic vectors of r-arborescences.
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On the other hand, given z P Amarb. Consider Edmond’s definition of r-arborescence

polytope based on rank constraints:

ÿ

aPS

xa ď |S| ´ 1 @S Ă V with S ‰ H (4.8)

ÿ

aPδ´pjq

xa “ 1pj ‰ rq @j P V (4.9)

x ě 0.

We have Equation 4.6 directly implies Equation 4.9. According to Equation 4.7,

ÿ

aPS

zra “
ÿ

aPS

zua @S Ď V ^ u P V.

Therefore,

ÿ

aPS

zra “
ÿ

aPS

zua ď
ÿ

jPS

ÿ

aPδ´pjq

zua “ |S| ´ 1 @S Ď V ^ u P S,

which is exactly Equation 4.8.
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To solve minxPAmarb
∥x ´ w∥22, we propose to adopt the alternating direction method of

multipliers (ADMM) and rewrite it into the following separable form:

min
u
gpuq :“

ÿ

kPV

1

|V|
}uk ´w}22 ` IUk

pukq

s.t. Uk :“ tx P R|E| : Dz P R|E 1|

ě0

ÿ

aPδ´pjq

za “ 1pj ‰ kq ^
ÿ

aPE 1
ij

za “
ÿ

aPEij

xa @i, j P Vu

ur “ uk @k P Vzr, Ur :“ tx P R|E|

ě0 :
ÿ

aPδ´pjq

xa “ 1pj ‰ rq @j P Vu,

where IU p¨q is the characteristic function with IU pxq “ 0 if x P U and 8 otherwise.

Let λ1
k be the dual variables and λk :“ 1

ρk
λ1
k. The scaled augmented Lagrangian function is

Lρpu,λq“gpuq `
ř

k‰r
ρk
2 }ur ´ uk ` λk}22 ´

ρk
2 }λk}22.

The ADMM algorithm updates the parameters as follows:

ut`1
k :“ arg min

ukPUk

Lρpput
r,u

t
kq,λtq fi ProjUk

p
2w ` ρk|V|put

r ` λt
kq

2 ` ρk|V|
q @k ‰ r

ut`1
r :“ arg min

urPUr

Lρpput
r,u

t`1
k q,λtq fi ProjUr

p
2w ` |V|

ř

k‰r ρkput`1
k ´ λt

kq

2 ` |V|
ř

k‰r ρk
q

λt`1
k :“ λt

k ` put`1
r ´ ut`1

k q @k ‰ r.

This decomposes the original projection problem into simpler projection problems. Projection

onto Uk for k “ r decomposes over j P V into |V| projections onto simplex, solvable as fast as
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Opnq in the worst case (Condat, 2016). For k ‰ r, computation of ut`1
k can be done in parallel.

The Lagrange dual problem of ProjUk
p¨q can be written as

max
αPR|V|

ÿ

ti,juPĒ

hijpαq ´
ÿ

j‰k

αj s.t. hijpαq “

$

’

’

&

’

’

%

w2
ij{nij if αij ą 2wij{nij ,

´nijα
2
ij{4 ` αijwij if αij ď 2wij{nij ,

where wij :“
ř

aPEij wa, nij :“ |Eij |, αij :“ minpαi, αjq and αk :“ `8. Strong duality holds by

linear constraint qualification. Primal solutions are recovered by x˚
a “ wa ´ minpα˚

ā{2, wā{nāq.

Convergence. The dual objective of ProjUk
p¨q is strongly concave on tα P R|V| : @iDj ti, ju P

E ^ αi ď αj ^ αi ď 2wij{niju, with a unique global maximizer. This implies fast convergence in

practice given good initialization. The negative Lagrange dual function has restricted strong

convexity with ν “ minijpnij{2q, near the optimum, suggesting linear convergence (Zhang

and Cheng, 2015). Alternatively, exact solutions can be found by enumerating rankings (with

duplicates) of α in Op|V||V|q. In this manner, the ADMM algorithm with a strongly convex

objective has a linear convergence rate Oplog 1
ϵ q with either exact (Deng and Yin, 2016) or

linearly convergent approximate solution (Hager and Zhang, 2020) of ProjUk
p¨q. Using Nesterov’s

accelerated gradient algorithm (Nesterov, 2003) to optimize Equation 4.3 leads to iteration

complexity OpC log 1
ϵ q with constant C dependent on Lipschitz constants of gradients and µ.

4.5 Extensions

4.5.1 Undirected Spanning Trees

A straight-forward way of extending to undirected spanning trees is to split ti, ju into two

arcs pi, jq, pj, iq and make the feature mapping direction-invariant, i.e., ϕpx, ysq “ ϕpx, ys1q
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for s and s1 having the same underlying undirected graph. We post-process the prediction by

removing directions.

Alternatively, we seek projection oracles for undirected graphs. Projection via FW is done

by using any minimum spanning tree algorithm in Equation 4.5. For ADMM, the formulation

in (Martin, 1991) is originally for undirected trees: Amund :“ tx : Dz ě 0
ř

aPδ´pjq z
k
a “ 1pj ‰

kq ^ zkij ` zkji “ xti,ju@k, i, j P Vu. ADMM is easily adapted to this case with
ř

aPEij xa replaced

by xti,ju.

4.5.2 Dependency Trees

The spanning tree structure in dependency parsing is a special one where the outdegree of root

is restricted to be one. We can use the GT algorithm for inference with either the same training

objective or an aligned objective where a dependency tree polytope is considered: Adeppxq :“

Convpty P Ypxq : |δ`prq| “ 1uq. A straightforward extension of Amarb to characterizing

dependency trees is Amdep :“ tzr : zr P Amarb ^
ř

aPδ`prq z
r
a “ 1u, equivalent to Adep by the

following proposition:

Proposition 32. Let G be a multi-graph. Amdep fi Adep.

Proof. Recall the definition of Amdep:

Amdep :“ tzr : zr P Amarb^

ÿ

aPδ`prq

zra “ 1u. (4.10)
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On one hand, given a legal dependency tree zr P Adep, it satisfies Equation 4.6 and

Equation 4.7 by Proposition 31. It also satisfies Equation 4.10 by the definition of Adep.

On the other hand, given zr P Amdep, firstly, zr must be in Aarb by Proposition 31,

which implies that we can write it as a convex combination of k r-arborescences vectors:

zr fi α1t
1 ` α2t

2 ` ¨ ¨ ¨ ` αkt
k. All of them are legal r-arborescences, so

ř

aPδ`prq t
i
a ě 1 for all

i P rks. Now if
ř

aPδ`prq t
i
a ą 1 for some i, we would have a contradiction,

ř

aPδ`prq z
r
a ą 1.

FW methods leverage the GT algorithm in Equation 4.5. As for ADMM, the dual problem

of projection onto U 1
r :“ tx : x P Ur ^

ř

aPδ`prq xa “ 1u becomes

max
α,β

ÿ

aPE
hapα, βq ´

ÿ

j‰r

αj ´ β s.t. hapα, βq “

$

’

’

&

’

’

%

w2
a γa ą 2wa,

waγa ´ γ2a{4 γa ď 2wa,

where γpi,j,lq :“ αj ` 1pi “ rqβ. This can be solved in Op|E | log |E |q (Zhang et al., 2010). Recall

that the dual problem of projection onto U 1
r :“ tx : x P Ur ^

ř

aPδ`prq xa “ 1u is

max
α,β

ÿ

aPE
hapα, βq ´

ÿ

j‰r

αj ´ β s.t. hapα, βq “

$

’

’

&

’

’

%

w2
a γa ą 2wa,

waγa ´ γ2a{4 γa ď 2wa,

where γpi,j,lq :“ αj ` 1pi “ rqβ. Following (Zhang et al., 2010) similarly, we sort 2wpi,j,lq

for each j and compute the optimal α˚
j with β “ 0. Let the sorted w’s be pw

pjq

1 , . . . , w
pjq
n q

for each j. We blend create a set tw
pjq
x ´ α˚

j u for all j and x. Let the sorted sequence be

´8 “ t1 ă t2 ă ¨ ¨ ¨ ă tnt “ 8. The derivative with respect to β is piecewise-linear in each
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interval rtk, tk`1s. Since the objective is concave in β, we can iterate over all the intervals or

find the optimal β˚ with binary search.

4.5.3 Higher-order Polytope

Compact higher-order polytope descriptions exist for undirected spanning trees but are still

unknown for arborescences with even one monomial (Friesen, 2019). FW requires a linear oracle

that is NP-hard to solve exactly in higher-order settings (McDonald and Pereira, 2006).

Instead, we can approximate it with a local polytope where the marginal probabilities of each

part s is required to be locally consistent with that of each arc a. For simplicity, we consider

only features for the all-true assignments, i.e., all arcs exist in part s. The resulting polytope can

be written as Amloc :“ tx : xE P Amarb ^ @s P R, a P s ps ď pau, which suggests an ADMM

algorithm with additional constraint sets for each part: Us :“ tx P R|R|

ě0 : xs ď xa @a P su, the

projection onto which can be done in Op|s| log |s|q. The central problem is the projection onto

Us :“ tx P R|R|

ě0 : xs ď xa @a P su.

The only variables of interest are xa and xs, given xs, the optimal xa is simply x˚
a “ maxpwa, xsq.

We can sort pwa, wsqaPs and enumerate the range xs takes over this set.

4.6 Experiments

We evaluate our proposed method on dependency parsing tasks and compare its ability to

BiAF (Dozat and Manning, 2017), arguably the state-of-the-art neural dependency parser. We

implement our methods in Python and C. Our code is publicly available (https://github.com/

https://github.com/DanielLeee/drtreesp
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DanielLeee/drtreesp). We leverage the implementations in SuPar (https://github.com/

yzhangcs/parser) (Zhang et al., 2020) for the baseline. All experiments are conducted on a

computer with an Intel Core i7 CPU (2.7 GHz) and an NVIDIA Tesla P100 GPU (16 GB).

We adopt three public datasets, the English Penn Treebank (PTB v3.0) (Marcus et al., 1993),

the Penn Chinese Treebank (CTB v5.1) (Xue et al., 2002), the Dutch Lassy Small Treebank

and the Turkish Treebank in Universal Dependencies (UD v2.3) (Nivre et al., 2016). We follow

conventions in (Chen and Manning, 2014; Dyer et al., 2015) to prepare our data. We make

standard train/validation/test splits. We use Stanford Dependencies (SD v3.3.0) (De Marneffe

and Manning, 2008) to convert dependencies in PTB and CTB. The predicted POS tags with

Stanford POS tagger (Toutanova et al., 2003) are adopted for PTB whereas gold POS tags are

adopted for CTB and UD. Punctuation is excluded during evaluation. A token is a punctuation

if its gold POS tag is space, semi-colon, comma or period for English and PU for Chinese.

Representation learning is not the focus of this work. We follow (Levy et al., 2020) and

compare our method with the last biaffine classification layer in BiAF on top of pretrained

features preceding this layer (backbone’s output). The pretrained embeddings produced by

complicated non-linear models make Fisher consistency’s assumption of optimizing over all

measurable functions less violated. To featurize the data, for each dataset, we train a BiAF

network with the whole training set to obtain a pretrained model. Note that this may create

unfair advantages for the baseline because the last layer was optimized together with the backbone

network in an end-to-end manner during pretraining. Moreover, pretraining uses a standard

ERM objective with the cross-entropy loss and local normalization over head nodes. The

https://github.com/DanielLeee/drtreesp
https://github.com/DanielLeee/drtreesp
https://github.com/yzhangcs/parser
https://github.com/yzhangcs/parser
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pretrained features are thus more adequate for the ERM objective than for our DRO objective.

The pretrained models are trained with the suggested hyperparameters in SuPar. The pretrained

models achieve 97.25%, 91.91% and 94.78% UAS on PTB, CTB and UD Dutch respectively,

where RoBERTa (Liu et al., 2019), ELECTRA (Cui et al., 2020) and XLM-RoBERTa (Conneau

et al., 2020) are adopted as encoders. No BERT embeddings are adopted for the UD Turkish

dataset. To make use of the features as inputs in our method, we take the outer product of the

embedding vectors for two nodes as the arc feature vector. Our method and the biaffine layer

therefore share the same number of parameters (501 ˆ 501, including bias terms). We focus on

predicting the unlabeled dependency tree while relying on pretrained models for relation label

prediction. The evaluation criteria are the labeled/unlabeled attachment scores (LAS/UAS) and

labeled/unlabeled complete matches (LCM/UCM). The attachment score can be transformed

to the Hamming loss with linear mapping: ASpy,y1q fi |V| ´ 1 ´ ℓpy,y1q{2.

Full batch learning is adopted for Marginal (Equation 4.3). Mini-batch training is adopted

for Game, the game-theoretic algorithm, and Stochastic, which solves the inner min-max problem

in Equation 4.2 using Equation 4.3 with fixed θ. All models are trained with the training

set only. The optimal hyperparameters and parameters are chosen based on the validation

set. For our ADMM algorithm, we adopt the adaptive scheme of varying penalty parameters

(τincr “ τdecr “ 1.1, µ “ 1) in (Boyd et al., 2011) and the stopping criterion (ϵtol “ 10´2) for

consensus ADMM in (Xu et al., 2017). In FW, the learning rate is set to 2
t`2 . The smoothness

weight µ and ambiguity radius λ “ 2ε are tuned using a logarithmic scale on r10´7, 1s. The

batch size for the game-theoretic algorithm is 10. The batch size for Stochastic is 200. The error
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TABLE II: Comparison of mean UAS and execution time under different training set sizes.
Time refers to the CPU time taken to finish one gradient descent step. Statistically significant
differences compared to BiAF are marked with : (paired t-test, p ă 0.05). The best UAS are
highlighted in bold.

PTB CTB UD Dutch UD Turkish (low resource)

Method Time (s) m = 10 50 100 1000 m = 10 50 100 1000 m = 10 50 100 1000 m = 10 50 100 1000

BiAF 0.34 93.48 96.87 96.95 97.16 88.45 90.89 91.15 91.70 90.86 93.80 94.15 94.98 17.64 26.59 30.75 42.82
Marginal 0.28 94.51: 96.81: 96.92 97.12 89.19: 91.03: 91.27 91.67 92.41: 94.22: 94.50: 95.15: 24.85: 32.83: 33.75: 43.18
Stochastic 2.72 94.62: 96.81 96.93 97.14 89.27: 91.03: 91.27 91.66 92.40: 94.23: 94.47 95.14: 25.06: 31.35: 33.62: 41.20:

Game 7.25 94.51: 96.86 96.92 97.08: 89.22: 91.06: 91.22 91.57: 92.32: 94.34: 94.59: 95.01 19.85 23.18: 27.12: 36.30:

tolerance in Game is set to 10´2. In stochastic gradient training, we use Adam with lr “ 10´2,

β1 “ 0.9, β2 “ 0.999, ϵ “ 10´8. In our experiments, for efficiency, we again adopt the FW

algorithm for the outer maximization in Marginal.

To showcase the ability of DRO methods tackling scarce data, in each run, we randomly

draw m P t10, 50, 100, 1000u samples without replacement from the training set and keep the

original validation and test sets. All the models are trained on the same set of sampled data.

The process is repeated 5 times for each m. The main UAS results on the PTB, CTB and UD

Dutch Lassy Small datasets are reported in Table II with complete results provided in Table III.

Our methods consistently deliver higher UAS than BiAF especially with a small amount of

data (The UAS is high with 10 training samples possibly because (1) the backbone sub-network

and linear layer were trained together with the whole training set; (2) BERT embeddings

yield data representation that is easily linearly separable; (3) 10 samples result in as many

as 10 ˆ 20 ˆ 20 balanced head-selection instances for BiAF ). With little training data, DRO

approaches minimize the worst-case risk to avoid overfitting. With more training data available,

our method is still comparable to BiAF which is not significantly better than our methods by
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TABLE III: Comparison of mean UAS, LAS, UCM and LCM under different training set sizes.
Statistically significant differences compared to BiAF are marked with : (paired t-test, p ă 0.05).
We highlight in bold the best results among the four methods.

Dataset # train Metric BiAF Marginal Stochastic Game

PTB

10

UAS 93.48 ˘ 2.30 94.51 ˘ 1.71: 94.62 ˘ 1.60: 94.51 ˘ 1.75:

LAS 92.02 ˘ 2.26 93.04 ˘ 1.69: 93.14 ˘ 1.58: 93.04 ˘ 1.73:

UCM 47.17 ˘ 10.28 52.30 ˘ 8.71: 52.62 ˘ 8.18: 52.50 ˘ 8.60:

LCM 39.73 ˘ 7.96 43.63 ˘ 6.71: 43.97 ˘ 6.39: 43.86 ˘ 6.58:

50

UAS 96.87 ˘ 0.06 96.81 ˘ 0.05: 96.81 ˘ 0.05 96.86 ˘ 0.05
LAS 95.34 ˘ 0.06 95.28 ˘ 0.05: 95.28 ˘ 0.05 95.33 ˘ 0.05
UCM 67.65 ˘ 0.81 67.38 ˘ 0.62 67.18 ˘ 0.79 67.73 ˘ 0.64
LCM 55.46 ˘ 0.59 54.93 ˘ 0.56: 54.79 ˘ 0.59: 55.17 ˘ 0.49

100

UAS 96.95 ˘ 0.05 96.92 ˘ 0.06 96.93 ˘ 0.05 96.92 ˘ 0.03
LAS 95.42 ˘ 0.05 95.39 ˘ 0.06 95.40 ˘ 0.04 95.39 ˘ 0.02
UCM 68.79 ˘ 0.42 68.27 ˘ 0.72 68.36 ˘ 0.41 68.29 ˘ 0.34
LCM 56.21 ˘ 0.14 55.68 ˘ 0.56 55.67 ˘ 0.45 55.66 ˘ 0.33

1000

UAS 97.16 ˘ 0.02 97.12 ˘ 0.03 97.14 ˘ 0.02 97.08 ˘ 0.03:

LAS 95.63 ˘ 0.03 95.59 ˘ 0.02 95.60 ˘ 0.02 95.55 ˘ 0.03:

UCM 70.99 ˘ 0.23 70.59 ˘ 0.49 70.61 ˘ 0.32 69.94 ˘ 0.34:

LCM 57.57 ˘ 0.09 57.18 ˘ 0.28: 57.24 ˘ 0.28: 56.80 ˘ 0.23:

CTB

10

UAS 88.45 ˘ 0.67 89.19 ˘ 0.38: 89.27 ˘ 0.33: 89.22 ˘ 0.39:

LAS 84.79 ˘ 0.62 85.50 ˘ 0.35: 85.58 ˘ 0.30: 85.53 ˘ 0.36:

UCM 35.21 ˘ 1.67 36.83 ˘ 1.20 37.14 ˘ 0.94: 36.95 ˘ 1.23:

LCM 25.86 ˘ 0.87 26.82 ˘ 0.62 26.95 ˘ 0.59: 26.95 ˘ 0.63:

50

UAS 90.89 ˘ 0.10 91.03 ˘ 0.05: 91.03 ˘ 0.05: 91.06 ˘ 0.05:

LAS 87.08 ˘ 0.10 87.20 ˘ 0.05: 87.20 ˘ 0.05: 87.23 ˘ 0.06:

UCM 42.54 ˘ 0.24 42.92 ˘ 0.24: 42.86 ˘ 0.12: 42.99 ˘ 0.30
LCM 29.70 ˘ 0.23 29.69 ˘ 0.36 29.72 ˘ 0.38 29.79 ˘ 0.23

100

UAS 91.15 ˘ 0.16 91.27 ˘ 0.08 91.27 ˘ 0.10 91.22 ˘ 0.05
LAS 87.32 ˘ 0.14 87.42 ˘ 0.06 87.42 ˘ 0.08 87.37 ˘ 0.05
UCM 43.41 ˘ 0.35 43.91 ˘ 0.27: 43.86 ˘ 0.43: 43.81 ˘ 0.22
LCM 30.02 ˘ 0.22 30.27 ˘ 0.25 30.23 ˘ 0.28 30.26 ˘ 0.26

1000

UAS 91.70 ˘ 0.04 91.67 ˘ 0.03 91.66 ˘ 0.03 91.57 ˘ 0.03:

LAS 87.84 ˘ 0.04 87.80 ˘ 0.03 87.79 ˘ 0.03 87.70 ˘ 0.03:

UCM 45.80 ˘ 0.27 45.43 ˘ 0.11: 45.41 ˘ 0.12: 45.36 ˘ 0.27:

LCM 31.14 ˘ 0.19 31.11 ˘ 0.18 31.08 ˘ 0.17 31.20 ˘ 0.11

UD Dutch

10

UAS 90.86 ˘ 1.23 92.41 ˘ 0.94: 92.40 ˘ 0.91: 92.32 ˘ 1.03:

LAS 86.54 ˘ 1.26 88.10 ˘ 0.95: 88.08 ˘ 0.91: 87.99 ˘ 1.00:

UCM 64.11 ˘ 2.18 67.26 ˘ 2.16: 67.21 ˘ 1.91: 67.26 ˘ 1.97:

LCM 48.33 ˘ 1.88 50.32 ˘ 1.75: 50.48 ˘ 1.45: 50.46 ˘ 1.30:

50

UAS 93.80 ˘ 0.43 94.22 ˘ 0.26: 94.23 ˘ 0.18: 94.34 ˘ 0.24:

LAS 89.36 ˘ 0.33 89.79 ˘ 0.21: 89.79 ˘ 0.12: 89.89 ˘ 0.18:

UCM 70.57 ˘ 1.52 72.42 ˘ 0.90: 72.05 ˘ 0.99 72.60 ˘ 1.39
LCM 52.40 ˘ 0.61 53.47 ˘ 0.62: 53.40 ˘ 0.59 53.58 ˘ 0.76

100

UAS 94.15 ˘ 0.18 94.50 ˘ 0.18: 94.47 ˘ 0.13 94.59 ˘ 0.12:

LAS 89.69 ˘ 0.18 90.04 ˘ 0.15: 90.01 ˘ 0.12 90.12 ˘ 0.10:

UCM 71.71 ˘ 0.92 73.24 ˘ 0.88: 73.01 ˘ 0.99 73.63 ˘ 0.75:

LCM 53.01 ˘ 0.81 53.79 ˘ 0.40 53.70 ˘ 0.55 54.13 ˘ 0.44:

1000

UAS 94.98 ˘ 0.07 95.15 ˘ 0.10: 95.14 ˘ 0.11: 95.01 ˘ 0.05
LAS 90.44 ˘ 0.06 90.59 ˘ 0.08: 90.59 ˘ 0.08: 90.44 ˘ 0.06
UCM 74.73 ˘ 0.33 75.87 ˘ 0.63: 75.64 ˘ 0.57: 75.41 ˘ 0.56
LCM 54.59 ˘ 0.13 55.21 ˘ 0.17: 55.16 ˘ 0.21: 54.70 ˘ 0.22

UD Turkish

10

UAS 17.64 ˘ 2.45 24.85 ˘ 2.35: 25.06 ˘ 0.58: 19.85 ˘ 0.46
LAS 4.86 ˘ 2.74 5.33 ˘ 2.97 5.40 ˘ 2.85 5.02 ˘ 3.04
UCM 7.69 ˘ 1.72 9.03 ˘ 1.33 7.88 ˘ 2.27 10.03 ˘ 0.54
LCM 1.46 ˘ 1.03 1.50 ˘ 1.07 1.50 ˘ 1.07 1.74 ˘ 1.38

50

UAS 26.59 ˘ 2.37 32.83 ˘ 1.50: 31.35 ˘ 1.10: 23.18 ˘ 2.03:

LAS 10.14 ˘ 0.57 10.73 ˘ 0.86 10.74 ˘ 0.54 10.10 ˘ 0.69
UCM 10.03 ˘ 1.31 10.63 ˘ 0.50 10.81 ˘ 0.50 10.34 ˘ 0.36
LCM 3.24 ˘ 0.31 3.26 ˘ 0.24 3.38 ˘ 0.27 3.43 ˘ 0.27

100

UAS 30.75 ˘ 1.13 33.75 ˘ 0.86: 33.62 ˘ 1.49: 27.12 ˘ 1.25:

LAS 10.84 ˘ 0.80 11.48 ˘ 0.75 11.69 ˘ 0.67: 10.48 ˘ 0.70:

UCM 11.61 ˘ 1.22 11.30 ˘ 0.29 11.34 ˘ 0.26 11.08 ˘ 0.44
LCM 3.53 ˘ 0.60 3.61 ˘ 0.31 3.57 ˘ 0.23 3.55 ˘ 0.23

1000

UAS 42.82 ˘ 1.82 43.18 ˘ 1.73 41.20 ˘ 2.17: 36.30 ˘ 2.79:

LAS 18.44 ˘ 1.00 18.24 ˘ 1.62 18.13 ˘ 1.13 16.38 ˘ 1.20:

UCM 15.86 ˘ 0.40 15.18 ˘ 0.81 13.78 ˘ 0.30: 13.52 ˘ 0.43:

LCM 4.49 ˘ 0.47 4.37 ˘ 0.46 4.31 ˘ 0.41: 4.29 ˘ 0.38:
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Figure 4: Convergence of ADMM and FW for random points with 95% confidence intervals.

statistical tests. This illustrates the advantages of replacing conditional log-likelihood with our

Fisher consistent surrogate loss without changing the number of model parameters. Moreover, we

study a low-resource setting with the UD Turkish dataset in which only the sampled data is used

for pretraining without BERT embeddings. The binary cross-entropy loss (single normalization)

is adopted during pretraining in this setting to avoid pretrained features biased towards the

multi-class cross-entropy loss (local normalization) adopted by BiAF. We observe consistently

competitive performance of our methods in the low-resource setting in Table II as well.

We report computational time of one gradient descent step in the second column of Table II,

averaged across 10 runs. For fair comparisons, all the models are run with CPU only, with a
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Figure 5: The best UAS with the Marginal algorithm as µ and λ vary in logarithmic scales.

batch size of 200. All the methods achieve their optimal validation set performance in 150-300

steps. BiAF and Marginal are the fastest because the most time-consuming step of computing

dot products of features and parameters is only performed once whereas the other two methods

perform it multiple times. However, since Marginal is unable to leverage stochastic gradients,

its execution time grows linearly in the full batch size. Henceforth, there is a trade-off between

Marginal and Stochastic/Game for computational efficiency. The extra cost compared to BiAF

with cross entropy is expected because distributional robustness against a set of adversarial

distributions is guaranteed.
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We compare ADMM and FW by performing for 100 times projection of random points

in r´5, 5s75 on a graph with 5 nodes and 3 parallel arcs between each pi, jq. We subtract the

integral part of the observed minimum values in each run for better illustration. As shown

in Figure 4, ADMM usually finds a better solution in the arborescence polytope than FW

does within 1000 iterations (One explanation is that FW relies on first-order approximations

while there are exponential number of facets in the arborescence polytope). That being said,

the per-iteration cost of ADMM is about 8n times higher than that of FW due to consensus

optimization of n subproblems. In practice, the solution computed with FW usually leads to an

approximately good sub-derivative to optimize the DRO objective. We have verified that the

solutions suggested by ADMM satisfy the polytope constraints for graphs of up to 10 nodes.

We conduct sensitivity analysis by varying µ and λ on UD Dutch with 100 training samples.

Figure 5 implies that moderate smoothing is beneficial to generalization. The ambiguity radius

should be judiciously chosen because a small λ causes overfitting while a large λ leads to

conservative models.

4.7 Concluding Remarks

We propose a distributionally robust and consistent tree structured prediction method. We

show its equivalence to regularized surrogate loss minimization. We put forward a provably con-

vergent algorithm based on efficient projection oracles for arborescence polytopes. Our proposed

method enjoys Fisher consistency and robustness against noise in conditional distributions in

terms of feature moments. Theoretical and empirical results validate its effectiveness.
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Representation learning. Our method can be easily adapted to a representation learning

framework with automatic differentiation. Although this may lead to a non-convex problem

without the theoretical guarantees derived in this chapter, it is highly desired in practice if

feature mappings are optimized as well. We discuss a possible approach as follows. Modern

neural networks for supervised learning typically have a linear layer in the end without activation.

Assume the penultimate layer outputs Φpxq for input x, the last layer with parameters θ will

typically output ψpxq :“ Φpxqθ P Rk, sometimes called logits, with k “ n2 labels for all arcs

when parsing a sentence of n tokens. Note that θ in our formulation naturally serves as the

parameters of this linear layer. Moreover, knowing ψpxq is sufficient for us to solve the inner

minimax problem in Equation 4.2 to get P˚

Ŷ |x
and Q˚

Y̌ |x
. In this way, our DRO method can be

considered a loss layer without learnable parameters, which backpropagates the sub-derivative

of the objective with respect to ψpxq:

B

Bψpxq
ℓadv P

1

B

B
ÿ

i“1

pqpiq˚ ´ ppiq˚
empq,

where B is the batch size. The sub-derivative of the regularization term with respect to

θ should be added to the linear layer. Now we are able to take advantage of automatic

differentiation and focus on solving the inner adversarial problem given ψpxq and y. Since

the computational bottleneck lies in computing ψpxq and backward passes, the overhead of

computing the adversarial loss may be dominated and not significant compared to the cross-

entropy loss.



CHAPTER 5

MOMENT DISTRIBUTIONALLY ROBUST PROBABILISTIC

SUPERVISED LEARNING

(Parts of this chapter were previously public online as “Moment Distributionally Robust

Probabilistic Supervised Learning” in the OpenReview preprint (Li and Ziebart, 2023).)

Probabilistic supervised learning assumes the groundtruth itself is a distribution instead of a

single label, as in classic settings. It is equivalent to predicting a structured object from the

simplex such that the object represents a label distribution. Common approaches learn with a

proper composite loss and obtain probability estimates via an invertible link function. Typical

links such as the softmax yield restrictive and problematic uncertainty certificates.

In this chapter, we propose to make direct prediction of conditional label distributions from

first principles in DRO based on an ambiguity set defined by moments. A brief introduction with

related work is given in Section 5.1. We equip the readers with problem setup in Section 5.2.

The formulation is presented in Section 5.3.1. We derive its generalization bounds and Fisher

consistency under mild assumptions in Section 5.3.2. We illustrate how to manipulate penalties

for underestimation and overestimation with specific losses and algorithms in Section 5.3.3. As

shown in Section 5.3.4, our method can be easily incorporated into neural networks for end-to-end

representation learning. Experimental results in Section 5.4 on datasets with probabilistic labels

illustrate the flexibility, effectiveness, and efficiency of this learning paradigm. We conclude this

chapter in Section 5.5.

142
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5.1 Introduction

The goal of classical supervised learning is point estimation—predicting a single target

from the label domain given features—usually without justifying the confidence. The outcome

distribution of an event can be inherently uncertain and more desirable than point predictions

in some scenarios. For example, weather predictions that express the uncertainty of events such

as rain occurring are more sensible than binary-valued predictions, while a uniform distribution

prediction for the outcome of a fair dice roll is more sensible than speculating an integral value

randomly. On one hand, the predicted distribution quantifies label uncertainty and is thus

more informative than a point prediction, which is widely studied in weakly supervised learning

(Yoshida et al., 2021), boosting (Friedman et al., 2000) and optimal treatment (Leibovici et al.,

2000). On the other hand, the ground truth naturally comes with multiple targets, possibly

with different importances. For instance, there can be multiple emotions in a human face image,

there are different gene expression levels over a period of time in biological experiments, and

many annotators might disagree over a highly ambiguous instance. In the above settings, each

predefined label is part of the ground truth as long as it has a positive probability in the true

distribution. Hence, it is natural to use probabilistic labels in both training and inference when

the ground truth is no longer a point. In the literature, the task of predicting full distributions

from features is called probabilistic supervised learning (Gressmann et al., 2018).

A probabilistic supervised learning task comes with a probabilistic loss functional quan-

titatively measuring the utility of the prediction (Bickel, 2007). (Williamson et al., 2016)

propose a composite multiclass loss that separates properness and convexity. They illuminate
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the connection between classification calibration (Tewari and Bartlett, 2007) and properness

(Gneiting and Raftery, 2007; Dawid, 2007), representing Fisher consistency for classification

and probability estimation respectively. A proper loss is minimized when predictions match

the true underlying probability, which implies classification calibration, but not vice versa.

Among proper losses, the logarithmic loss (Good, 1952) severely penalizes underestimation of

rare outcomes and assessing the “surprise” of the predictor in an information-theoretic sense,

the Brier score—originally proposed for evaluating weather forecasts (Brier, 1950)—is useful

for assessing prediction calibration, and the spherical scoring rule (Bickel, 2007) is used when

a distribution with lower entropy is desired. A single proper loss is sometimes not sufficient

for scenarios that elicit optimistic or pessimistic predictions for decision making with practical

concerns (Elsberry, 2002; Chapman, 2012). For example, underestimating disastrous events

may provide very low utility, motivating more pessimistic predictions. Therefore it is desirable

for a proper loss to be flexible in its penalties for deviated predictions that combine statistical

properties of multiple losses.

Deep neural networks typically adopt the softmax function to predict a legal distribution.

However, softmax intentionally renormalizes the logits and therefore assumes that it follows

a logistic distribution (Bendale and Boult, 2016). It is poor at calibration, uncertainty quan-

tification and robustness against overfitting (Joo et al., 2020). The inverse of the canonical

link function in (Williamson et al., 2016) can be used to recover probabilities but commonly

resembles softmax (Zou et al., 2008).
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We propose a probabilistic supervised learning method from first principles in distributionally

robust optimization for general proper losses that realize desired prediction properties. Instead

of specifying a parametric distribution, it starts with a minimax learning problem in which

the predictor non-parametrically minimizes the the most adverse risk among all distributions

in an ambiguity set defined by empirical feature moments. The ambiguity set represents our

uncertainty about the underlying distribution. By strong duality, we show that the primal DRO

problem is equivalent to a regularized empirical risk minimization problem. The regularization

results naturally from the ambiguity set instead of being explicitly imposed. The ERM form also

allows us to derive generalization bounds and make inferences from unseen data. We illustrate

a set of solutions for general proper losses satisfying certain mild conditions and an efficient

algorithm for a weighted sum of two common strictly proper losses. We conduct experiments on

real-world datasets by adapting our method to end-to-end differentiable learning.

Contributions. Our contributions are summarized as follows. (1) We propose a distribu-

tionally robust probabilistic supervised learning method. (2) We characterize the solutions to

the proposed method and present an efficient algorithm for specific losses. (3) We incorporate

our method into neural networks and perform extensive empirical study on real-world data.

5.1.1 Related Work

Model assessment of probabilistic models via predictive likelihood has been studied in

Bayesian models (Gelman et al., 2014), probabilistic forecasting (Gneiting and Raftery, 2007),

machine learning (Masnadi-Shirazi and Vasconcelos, 2009), conditional density estimation

(Sugiyama et al., 2010), information theory (Reid and Williamson, 2011) and representation
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learning (Dubois et al., 2020). A comprehensive framework for probabilistic supervised learning

can be found in (Gressmann et al., 2018).

Techniques developed to explicitly tackle multiclass probabilistic classification include multi-

class logistic regression (Collins et al., 2002), support vector machines (Lyu et al., 2019; Wang et

al., 2019), learning from noisy labels (Zhang et al., 2021), weakly supervised learning (Yoshida

et al., 2021), and neural networks (Papadopoulos, 2013; Gast and Roth, 2018). Multi-label

classification, aimed at predicting multiple classes with equal importance, has been analyzed by

(Cheng et al., 2010) and (Geng, 2016) in a general probabilistic setting. Note that confidence

calibration (Guo et al., 2017) has a different objective from probabilistic supervised learning.

Fisher consistency results have been established for classification losses (Tewari and Bartlett,

2007), structured losses (Ciliberto et al., 2016; Nowak-Vila et al., 2020), proper losses (Williamson

et al., 2016) and Fenchel-Young losses (Blondel et al., 2020).

The moment-based ambiguity set adopted in this chapter originates from maximum entropy

(Cortes et al., 2015; Mazuelas et al., 2022).

5.2 Preliminaries

5.2.1 Probabilistic Loss Functionals

A loss function measures the quality of a prediction associated with an event. Scoring rules

are widely adopted to assess probabilistic predictions, but can be naturally translated to loss

functions by appropriate negation and normalization. To illustrate some examples, we consider

a decision problem in which y P Y is an outcome and PY P PpYq is a predicted distribution over
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Y where we denote by PpYq the set of all probability distributions on a set Y. We denote by

pY fi pPY pyqqTyPY a vector of probabilities.

The zero-one loss is defined for deterministic prediction so that a penalty of 1 is incurred

whenever y1 and y differ: ℓ01py1, yq fi Ipy1 ‰ yq where Ip¨q is the indicator function. It extends

to probabilistic predictions as ℓ01pPY , yq fi 1 ´ PY pyq. In the literature, the zero-one loss is

sometimes defined as ℓ01pPY , yq :“ Ipy R argmaxy1 PY py1qq, which is proper, but discontinuous

and not strictly proper. The cost-sensitive loss for multiclass classification is similarly defined

with a confusion cost matrix C P R|Y|ˆ|Y|

` : ℓcspPY , yq fi
ř

iPY PY piqCiy.

The multiclass Brier loss, based on the Brier score or quadratic scoring rule, measures the

mean squared difference between PY and y: ℓbrpPY , yq fi
ř

y1pPY py1q ´ Ipy1 “ yqq2.

The logarithmic loss, also called log-likelihood loss, incurs a rapidly increasing penalty as

the predicted probability of the target event approaches zero: LlogpPY , yq fi ´ lnPY pyq.

The spherical scoring rule can be interpreted as the spherical projection of the true belief

onto the prediction vector. To use it as a loss function, we define ℓsppPY , yq fi 1 ´ PY pyq{∥pY ∥2.

For ease of exposition, we define LpP,Qq :“
ř

y QY pyqℓpPY , yq where ℓp¨, ¨q : PpYq ˆY Ñ R`

is a probabilistic loss function as illustrated above. A loss L is called proper if LpQ,Qq ď LpP,Qq

for all P,Q, and called strictly proper if Q is the unique minimizer of Lp¨,Qq. Figure 6 provides

a graphical comparison of the above losses for prediction with three classes. We can infer that

the zero-one loss is an improper loss.
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Figure 6: The expected value of four loss functions for three classes with QY p1q “ 0.6 and
QY p2q “ QY p3q “ 0.2. PY p2q “ PY p3q as PY p1q varies. Each loss is normalized to cross p1, 0q

and p0.5, 0.5q according to the binary case with a hard label. Best viewed in color.

5.2.2 Probabilistic Supervised Learning

We study the probabilistic supervised learning task where we are given n training samples

tpxp1q, yp1qq, pxp2q, yp2qq, . . . , pxpnq, ypnqqu drawn i.i.d. from a distribution P on the joint space

X ˆ Y, in which X is a feature space and Y is a univariate finite discrete label space. A

probabilistic multiclass loss function L : PpYq ˆ PpYq Ñ R` is given. The goal of ERM is to

learn from the samples a mapping h : X Ñ PpYq to minimize the empirical L-risk of h:

h˚ P argmin
hPH

RL
Pempphq :“ EPemp

X

”

LphpXq,Pemp
Y |Xq

ı

, (5.1)

where Pemp
X,Y represents the empirical distribution and H is a hypothesis space. Here we assume

x may be accompanied with a probabilistic label by aggregating instances with the same xpiq. In
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this way, both learning and inference are accomplished in the general setting subsuming classical

supervised learning.

5.3 Method

We now present our formulation for learning with general multiclass probabilistic losses. We

provide theoretical results of consistency and generalization. We study the solution for general

proper losses in our formulation and develop an efficient algorithm for two typical proper losses.

5.3.1 Formulation

We consider a continuous proper loss L to be optimized under the unknown distribution

Ptrue. We assume that a class-sensitive feature function ϕ : X ˆY Ñ Rd that maps a data point

to a d-dimensional feature vector is given. Examples include the multi-vector representation

and class-dependent TF-IDF scores. Choosing a good ϕ is a representation learning problem,

but as we will discuss in Section 5.3.4, it is not a concern once our method is incorporated into

neural networks as a layer. Intuitively, the elements of the vector ϕpx, yq can be regarded as

scores indicating how well the label y matches with the feature x. For example, with a linear

hypothesis hwpx, yq “ xw,ϕpx, yqy, a good parameter vector w˚ should yield

xw˚,ϕpx, yqy ą xw˚,ϕpx, y1qy ùñ Ppx, yq ą Ppx, y1q.
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Instead of specifying a parametric form of predictions, we adopt a minimax statistical

learning formulation:

min
PY |XPPpYq

max
QPAM

ε pPempq
EQX

“

L
`

PY |X,QY |X

˘‰

, (5.2)

where AM
ε pPempq :“ tQ : Q P PpX ˆYq ^Pemp

X “ QX ^ ∥EPemp rϕp¨, ¨qs ´EQ rϕp¨, ¨qs∥ ď εu. The

ambiguity set is different from that in (Wiesemann et al., 2014) and (Farnia and Tse, 2016) due

to the inequality and feature mapping respectively. The minimization over the function space

H is replaced by directly minimizing over PpYq for each x P X . The probabilistic predictions

are chosen to minimize the worst-case risk evaluated on a set of distributions in an ambiguity

set defined by the empirical distribution Pemp and feature mapping ϕ. The ambiguity set

AM
ε pPempq includes distributions that share the same marginal on X and are no more than ε

away from Pemp in terms of feature moment divergence. Note that given any feature function

ϕ, the ambiguity set is a compact convex set. Conceptually, we restrict the support of Q on

X to be the same as the empirical distribution for convenience in both algorithm design and

theoretical analysis.

Minimizing the worst-case risk by allowing a certain amount of label uncertainty makes this

method inherently robust. It can also be shown to be equivalent to a dual-norm regularized

ERM problem:
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Proposition 33. The distributionally robust probabilistic supervised learning problem based on

moment divergence in Equation 5.2 can be rewritten as

min
θ

EPemp
X

min
P

max
Q

L
`

PY |X,QY |X

˘

` θ⊺pEQY̌ |X
ϕpX, Y̌ q ´ EPemp

Ỹ |X
ϕpX, Ỹ qq ` ε∥θ∥˚

looooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooon

Ladvpθ,Pemp

Ỹ |X
q

, (5.3)

where θ P RD is the vector of Lagrangian multipliers and ∥¨∥˚ is the dual norm of ∥¨∥.

Proof. The proof follows similarly Proposition 28. Both PpYq and AM
ε pP̃q are non-empty closed

convex sets. Since we assume L is continuous and proper, we know that Lp¨,Qq is quasi-convex

for every Q and LpP, ¨q is concave for every P by definition. Equation 5.2 is therefore a quasi-

convex-concave problem and strong duality holds (Sion, 1958). The regularization is obtained

via Lagrangian and Fenchel conjugate.

It is well-known that continuous proper losses are quasi-convex, such as the Brier score, the

logarithmic score, the spherical score, the Winkler’s score, the ranked probability score, etc.

However, some improper (possibly discrete and non-convex) losses can be quasi-convex in the

predicted distribution (e.g., the zero-one loss). In contrast, surrogate classification losses are

usually convex in a parameter space that is easy to work with, for example, the multiclass hinge

loss (Weston and Watkins, 1998), ℓwwpψ, yq “
ř

y1‰y maxt0, 1 ` ψy1 ´ ψyu, and the multiclass

logistic loss (Nelder and Wedderburn, 1972), ℓlogpψ, yq “ ln p
ř

y1 exp pψy1qq ´ψy, where ψ P R|Y|

is a vector of class scores.
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From a game theoretic point of view, our formulation in Equation 5.2 is equivalent to a

two-player zero-sum game in which the predictor player chooses a distribution to minimize

the expected game payoff while the adversary player chooses one to maximize the game value

while constrained to satisfy certain statistical properties of training data (Grünwald and Dawid,

2004). In the dual problem (Equation 5.3), the Lagrange multipliers parameterize the payoff

function for an augmented game and provide a new payoff function for unseen data to construct

predictors.

5.3.2 Statistical Properties

It well known that minimizing strictly proper losses leads to Fisher consistent probability

estimation (Williamson et al., 2016). However, minimization of the surrogate risk in Equation 5.3

may induce a sub-optimal classifier because of misalignment between the surrogate loss Ladv and

the original loss L. Fisher consistency provides desirable statistical implications for a surrogate

loss such that minimizing it yields an estimator that also minimizes the original loss.

The adversarial surrogate loss Ladv is endowed with an additional regularization term. It

reduces to a Fenchel-Young loss (Blondel et al., 2020) when the ambiguity radius ε is zero. A

conclusion of consistency can drawn based on (Nowak-Vila et al., 2020; Blondel et al., 2020)

and our assumption that the groundtruth is probabilistic:

Corollary 34. When ε “ 0, Ladv is Fisher consistent with respect to L. Namely, for any x,

Pθ˚
true

Y |x P argmin
PY |x

LpPY |x,Ptrue
Y |xq
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is the Bayes optimal probabilistic prediction made by θ˚
true, the solution in Equation 5.3 under

Ptrue. The prediction made by θ is Pθ
Y |X P argminPmaxQ L

`

PY |X,QY |X

˘

` EQY̌ |X
θ⊺ϕpX, Y̌ q.

Proof. The proof follows similarly Corollary 30.

The consistency result guarantees that the learned probabilistic prediction rules yield Bayes

optimal risk as ERM with proper losses in the ideal setting with true distributions and all

measurable functions. Also note that the conclusion holds for all quasi-convex losses.

Basic generalization bounds related to true risk for DRO methods can be derived from

measure concentration. This approach depends on the choice of ambiguity sets and may have a

dimensionality issue. It is also not appropriate for ambiguity sets defined by low-order moments.

Thus, we take an alternate approach following (Farnia and Tse, 2016) to prove excess out-of-

sample risk bounds. We assume ε ą 0 to ensure boundedness of ∥θ∥˚. We establish the following

theorem by making mild assumptions on boundedness on features and losses:

Theorem 35. Given n samples, a non-negative multiclass probabilistic loss Lp¨, ¨q such that

|Lp¨, ¨q| ď K, a feature function ϕp¨, ¨q such that ∥ϕp¨, ¨q∥ ď B and a positive ambiguity level

ε ą 0, then, for any 0 ă δ ď 1, with a probability at least 1 ´ δ, the following excess true

worst-case risk bound holds:

max
QPAM

ε pPtrueq
RL

Qpθ˚
empq ´ max

QPAM
ε pPtrueq

RL
Qpθ˚

trueq ď
4KB

ε
?
n

˜

1 `
3

2

c

lnp4{δq

2

¸

, (5.4)
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where θ˚
emp and θ˚

true are the optimal parameters learned in Equation 5.3 under the empirical

distribution Pemp and true distribution Ptrue, respectively. The original risk of θ under Q is

RL
Qpθq :“ EQX,Y ,Pθ

Y |X
LpPY |X,QY |Xq.

Proof. The proof follows Theorem 29.

Theorem 35 improves the results of (Asif et al., 2015) and (Fathony et al., 2016) that only

show qualitative bounds. Under positive regularization, this bound explains the rate of uniform

convergence of the true worst-case risk of the estimator θ˚
emp learned through the empirical

distribution Pemp to the true worst-case risk of the ideal estimator θ˚
true learned under Ptrue.

Although the empirical estimator is obtained based on a finite set of samples, Theorem 35

justifies the roles which the ambiguity set AM
ε p¨q, the feature function ϕp¨, ¨q, the loss function

Lp¨, ¨q and the ambiguity parameter ε play in upper bounding the excess out-of-sample worst-case

risk. Intuitively, a larger ε will reject more hypotheses that are sensitive with larger dual norms,

whereas the worst-case risk scales with the range of loss and feature functions.

5.3.3 Algorithm

Since Lp¨, ¨q is a continuous quasiconvex-concave function, a saddle point in Equation 5.3

given θ must have a zero derivative with respect to P and Q:

ÿ

y

QY |xpyqBℓpPY |x, yq{BPY |xpy1q ` ZPY |x
“ 0 (5.5)

ℓpPY |x, yq ` θ⊺ϕpx, yq ` ZQY |x
“ 0, (5.6)
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where ZPY |x
is the Lagrange multipliers for the simplex constraint

ř

y PY |xpyq “ 1, similarly for

ZQY |x
. Note that ZQY |x

is constant for all y given x. If ℓ is local, e.g., ℓpPY |x, yq is independent

of PY |xpy1q for y1 ‰ y and if ℓp¨, yq is monotone in PY |xpyq ą 0 (without simplex constraints)

with range R, which is the case for the logarithmic loss, Equation 5.6 always has a solution and

the system of equations for all y along with the simplex constraint
ř

y PY |xpyq has a unique

solution. With few assumptions on the boundedness of ℓ and θ⊺ϕ, Equation 5.6 is ill-posed.

Given P˚
Y |x from Equation 5.6, the solution Q˚

Y |x to Equation 5.5 exists iff

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

BℓpPY |x, 1q{BPY |xp1q . . . BℓpPY |x, |Y|q{BPY |xp1q 1

. . .

BℓpPY |x, 1q{BPY |xp|Y|q . . . BℓpPY |x, |Y|q{BPY |xp|Y|q 1

1 . . . 1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

is singular. By assuming locality and positiveness, there exists a unique solution Q˚
Y |x. One

benefit of the proposed method is that users only need to focus on solve Equation 5.6 and

Equation 5.5 for proper losses while (Williamson et al., 2016) additionally require a canonical

link function for convexity.

Next we show how the system of equations can always be solved with specific losses. We

consider an additive combination of the multiclass Brier loss and the logarithmic loss, both

of which are continuous strictly proper losses. As indicated by Figure 6, these losses differ

primarily in how they penalize the ground truth label’s prediction probability as it goes to zero

and one. The Brier loss exhibits quadratic growth. The logarithmic loss has a vertical asymptote
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for labels considered increasingly unlikely to the point of impossibility by the predictor. They

have different penalties for underestimation and overestimation of the desired prediction. A

trade-off between the log loss and the Brier loss thus provides flexibility to control the cost for

misalignment between the prediction and the observation.

We employ this kind of loss in our DRO method and present an efficient algorithm that

can be implemented in practice. With only slight loss of generality and for computational

consideration, we assume a fixed positive weight on the log loss. To begin with, the mixture loss

is

ℓmixpPY |x, yq “ ´ lnPY |xpyq ` βp1 ´ 2PY |xpyq `
ÿ

y1

P2
Y |xpy1qq,

with derivative

BℓmixpPY |x, yq{BPY |xpyq “ ´1{PY |xpyq ´ 2β ` 2βPY |xpyq.

Scalar β weights the contribution of the Brier loss, to this additive combination, controlling

the sensitivity of the predictor to underestimation. The adversarial surrogate of this mixture loss

is Fisher consistent as a direct corollary. Methods that solely mix the predictions of classifiers

designed for logarithmic loss minimization and Brier loss optimization, may be appealing for

their simplicity, but are demonstrably sub-optimal. For example, with the logistic loss, logistic

regression provides a natural parametric form for the predictor, that equates loss minimization

with data likelihood maximization.
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Although the Brier loss is not local, the additional sum of quadratic terms
ř

y1 P2
Y |xpy1q

is constant across all y. Therefore Equation 5.6 has a closed form expression in terms of the

Lambert W function. Furthermore, the sum over y for all QY |xpyq will cancel out, leaving terms

only dependent on the same y. So Equation 5.5 is simplified into an expression of Q in terms of

P. Normalizing Q solves ZP, yielding the following proposition:

Proposition 36. The DRO method for a probabilistic loss based on logarithmic loss, and β

Brier loss has a solution P˚
Y |X for the predictor parameterized by θ defined by the following

systems of equations:

@x P X , DC P R,@y P Y P˚
Y |xpyq “ exppC ` θTϕpx, yq ´W0p2βeC`θTϕpx,yqqq, (5.7)

where C is a constant dependent on θ and x but independent of y, W p¨q is the principal branch

of the Lambert W function. The corresponding adversary Q˚
Y |X is defined as

Q˚
Y |xpyq “

2βP˚2
Y |xpyq ` ZPY |x

P˚
Y |xpyq

1 ` 2βP˚
Y |xpyq

and ZPY |x
“

1 ´
ř

y 2βP˚2
Y |xpyq{p1 ` 2βP̂˚

Y |xpyqq
ř

y P˚
Y |xpyq{p1 ` 2βP̂˚

Y |xpyqq
. (5.8)

Proof. Recall the saddle-point optimality condition:

ÿ

y

QY pyqBℓpPY , yq{BPY py1q ` ZPY
“ 0

ℓpPY , yq ` θ⊺ϕpx, yq ` ZQY
“ 0.
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Dependence on x is omitted when context is clear. Substituting ℓmix yields:

QY pyqp´
1

PY pyq
´ 2βq ` 2βPY pyq ` ZPY

“ 0

´ lnPY pyq ` βp1 ´ 2PY pyq `
ÿ

y1

P2
Y py1qq ` θ⊺ϕpx, yq ` ZQY

“ 0.

Note that C :“ β ` β
ř

y1 P2
Y py1q ` ZQY

is constant across all y’s given θ, x. Thus for fixed θ,

x, we have for some C˚
θ,x,

C˚
θ,x ` θ ¨ ϕpx, yq “ lnPY pyq ` 2βPY pyq @y P Y,

which is equivalent to

2βPY pyqe2βPY pyq “ 2βeθ¨ϕpx,yq`C˚
θ,x .

By the definition of the Lambert W function,

2βPY pyq “ W p2βeθ¨ϕpx,yq`C˚
θ,xq.

Since 2βeθ¨ϕpx,yq`C˚
θ,x ě 0, the principal branch W0 of the Lamber W function is always

applicable. Also by the formula e´W pxq “
W pxq

x , we have

PY pyq “ exppC˚
θ,x ` θTϕpx, yq ´W0p2βeC

˚
θ,x`θTϕpx,yq

qq @y.
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Let P˚
Y (for a given θ) be a solution to this set of equations that also satisfies

ř

y P˚
Y pyq “ 1. By

Equation 5.5, the optimal Q satisfies

Q˚
Y pyq “

2βP˚
Y pyq ` ZPY

1
P˚
Y pyq

` 2β
“

2βP˚2
Y pyq ` ZPY

P˚
Y pyq

1 ` 2βP˚
Y pyq

.

ZPY
must be chosen to properly normalize Q˚

Y pyq:

ÿ

y

Q˚
Y pyq “ ZPY

ÿ

y

1
1

P˚
Y pyq

` α ` 2β
`

ÿ

y

2βP˚
Y pyq

1
P˚
Y pyq

` α ` 2β
“ 1

ùñ Z˚
PY

“

1 ´
ř

y
2βP˚

Y pyq
1

P˚
Y

pyq
`α`2β

ř

y
1

1

P˚
Y

pyq
`α`2β

“

1 ´
ř

y
2βP˚2

Y pyq

1`pα`2βqP˚
Y pyq

ř

y
P˚
Y pyq

1`pα`2βqP˚
Y pyq

.

Both Z˚
PY

and Q˚
Y pyq are positive because P˚

Y P PpYq is a solution.
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Algorithm 4 Distributionally robust learning for probabilistic supervised learning with a

mixture of logistic and Brier losses

Input: ϕ, Pemp
X,Y , β, learning rate γ

Output: θ˚

Initialize θ to be a random vector

repeat

for all x P X do

C,P˚
Y |Xp¨|xq Ð Bisectionpx,ϕ,θ, βq by Equation 5.7

Compute Q˚
Y |Xp¨|xq by Equation 5.8

end for

Compute BLadv{Bθ by Equation 5.9

θ Ð θ ´ γBLadv{Bθ

until convergence

Now we show how to solve Equation 5.7 with simplex constraints to obtain P˚
Y |x given

θ for any x P X . Let C “ fyptq “ θTϕpx, yq ´ ln t ´ 2βt be a function of t “ P˚
Y |xpyq. By

definition, fp¨q is a monotonically decreasing function with domain R`` and range R. Its inverse

mapping f´1p¨q is monotonically decreasing with domain R and range R``. Therefore, let

gpCq “
ř

y f
´1
y pCq “

ř

y P˚
Y |xpyq, according to the intermediate value theorem, there exists

C˚ P R such that gpC˚q “
ř

y P˚
Y |xpyq “ 1. Because of their monotonicity, we can find C˚ and
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P˚
Y |xp¨q as a solution to Equation 5.7 via bisection method. Once P˚

Y |X is obtained, we can find

Q˚
Y |X simply by substitution. After that, the sub-gradient,

BLadv{Bθ fi EPemp
X

pEQ˚
Y |X

rϕpX, Y qs ´ EPemp
Y |X

rϕpX, Y qsq ` Bε∥θ∥˚{Bθ, (5.9)

can be leveraged to optimize θ. The above steps are summarized in Algorithm 4.

5.3.4 Differentiable Learning

By taking advantage of deep neural networks, our method will be able to jointly optimize

data representation and the Lagrange multipliers:

min
θ,ϕ

EPemp
X

Ladvpθ,Pemp

Ỹ |X
q,

enjoying the benefits of end-to-end representation learning without manually looking for a good

feature mapping ϕ. More off-the-shelf mini-batch training tools could be leveraged as well.

We show how to make use of our DRO method as a loss layer in neural network training.

A network for supervised learning typically has a linear classification layer in the end without

activation. Assume the penultimate layer outputs ϕpxq, the last layer will output a |Y|-

dimensional vector ψpxq “ rpθp1qq⊺ϕpxq, . . . , pθp|Y|qq⊺ϕpxqs. This is essentially equivalent to

adopting a multi-vector representation to construct ϕ. Specifically, given x P Rd and y P r|Y|s,

the resulting feature vector v “ ϕpx, yq P Rd|Y| satisfies vyd´d`i “ xi for i P rds and vj “ 0

otherwise. Therefore taking ψpxq as the input is sufficient for us to compute P˚
Y |x and Q˚

Y |x. In
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this way, our method is the loss layer without learnable parameters, which backpropagates the

sub-derivative of loss with respect to ψpxq to the linear classification layer:

EPemp
X

pqY |X ´ pemp
Y |Xq P BLadv{Bψpxq.

Recall q and pemp are the probability vectors for Q and Pemp. The sub-gradient with respect to

θ is added to the classification layer.

5.4 Experiments

In the experiments, we consider as the performance measure the L-risk RL
P phq, also called the

expected generalization loss. The mixture loss ℓmix of the log loss and Brier loss is adopted. The

normalized generalization loss 1
p1`α`βq

RL
Ptestphq is estimated based on the test set distribution

Ptest
X,Y .

We compare our adversarial learning approach against an uninformed baseline (UNINF)

(Gressmann et al., 2018), multi-layer perceptron (MLP) (Hinton, 1990) and k-nearest neighbor

(KNN) (Beygelzimer et al., 2006). All the baseline methods are able to make use of probabilistic

labels in both training and testing. The uninformed baseline simply outputs the marginal label

distribution P̃Y based on training data as inference. We adopt a three-layer neural network

for MLP and our method, who share the same number of parameters. To make a more fair

comparison, we set ε “ 0 such that the final classification layer is unregularized. MLP computes

the target loss Lmix with an additional softmax layer applied to the logits.
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We implement MLP and our method using PyTorch (Paszke et al., 2019). We adopt the

KNN implementation from the scikit-learn library (Pedregosa et al., 2011). The uninformed

baseline is implemented in Python. For optimization, we use Adam (Kingma and Ba, 2014) for

MLP and our method. The number of hidden units is set to 100. The number of training steps

is set to 500 with a batch size of 64. The number of neighbors is 11 for KNN. We set β “ 1.

Default values are used for unmentioned hyperparameters.

We conduct experiments on several real-world datasets, including corel5k (Duygulu et al.,

2002), Emotion6 (Peng et al., 2015), flags (Gonçalves et al., 2013), Stackex chess (Charte

et al., 2015), GpositivePseAAC, PlantPseAAC, GnegativePseAAC and VirusPseAAC (Xu et al.,

2016), having statistics reported in Table IV. The ground truth labels in these dataset are

either originally probabilistic or converted to a uniform distribution for multi-label classification

datasets. At the beginning of each run, we randomly choose 80% of the dataset as the training

set and the remaining 20% for evaluation. We further take 20% of the training set as the

validation set to determine the best parameter for final testing.

We repeat the above process 100 times for each dataset on a laptop with a 2.7 GHz Quad-Core

Intel Core i7 CPU. All the methods take less than 1 minute per run in wall time. The results

in Table IV show that our proposed method outperforms the baselines in most of the adopted

datasets or achieves similar performance to the best method with no statistical significance.

For sensitivity analysis, we fix a random split of the Stackex chess dataset and vary β with

other settings unchanged. The experiments are repeated 10 times. As shown in Figure 7, the

expected loss of our method on the test set is slightly better than MLP when β is small but
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TABLE IV: Dataset statistics and normalized generalization losses with 95% confidence intervals
on each dataset. The best results are indicated in bold. : indicates statistical significance with
paired t-test (p ă 0.05).

Dataset corel5k GnegativePseAAC Emotion6 flags

n 5000 1392 1980 194
|Y| 374 8 7 7

Features 499 440 300 19

UNINF 2.912 ˘ 0.002: 0.367 ˘ 0.003: 1.347 ˘ 0.001: 1.315 ˘ 0.004:

MLP 2.700 ˘ 0.004: 0.308 ˘ 0.003 1.343 ˘ 0.001 1.306 ˘ 0.007
KNN 3.783 ˘ 0.013: 0.324 ˘ 0.004: 1.374 ˘ 0.002: 1.353 ˘ 0.012:

Ours 2.696 ˘ 0.004 0.308 ˘ 0.003 1.344 ˘ 0.001: 1.306 ˘ 0.007

Dataset GpositivePseAAC PlantPseAAC Stackex chess VirusPseAAC

n 519 978 1672 207
|Y| 4 12 227 6

Features 440 440 585 440

UNINF 0.385 ˘ 0.004: 0.724 ˘ 0.003: 2.720 ˘ 0.005: 0.707 ˘ 0.007:

MLP 0.336 ˘ 0.005 0.668 ˘ 0.003 2.522 ˘ 0.009: 0.684 ˘ 0.008
KNN 0.344 ˘ 0.005: 0.730 ˘ 0.005: 3.448 ˘ 0.014: 0.733 ˘ 0.011:

Ours 0.336 ˘ 0.005 0.668 ˘ 0.003 2.504 ˘ 0.008 0.686 ˘ 0.008

has large variance as β increases. In contrast, baselines including UNINF and KNN are trained

obliviously to the final metric, thus not comparable to our method and MLP that minimize the

target loss directly.

Additionally, we study the robustness of our approach by introducing noise to the training

set of the Stackex chess dataset, repeated 10 times. To this end, for each instance x, with a

probability pnoise, we replace the ground truth by a random distribution from PpYq. We vary

pnoise from 0 to 0.5. As seen in Figure 7, our method is slightly better when pnoise ă 0.3 and

becomes vulnerable for large pnoise possibly because of the backbone neural network model.
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Figure 7: Normalized generalization losses with different coefficients or noise levels. Left: varying
β in r0.001, 0.1s. Right: varying probability of contamination in r0, 0.5s. The X axes of the left
subfigure is in logarithmic scale. Best viewed in color.

5.5 Concluding Remarks

We propose a moment-based distributionally robust learning framework for probabilistic

supervised learning under mild assumptions, show its equivalence to dual-norm regularization

for a surrogate loss, present its out-of-sample guarantees, develop efficient algorithms for typical

continuous proper losses, incorporate the proposed method into differentiable learning and

conduct experiments on several real-world datasets.



CHAPTER 6

CONCLUSION AND DISCUSSION

In this thesis, we study several structural learning problems from the perspective of distri-

butionally robust optimization. Specifically, we propose a statistical learning framework for

learning the structure of a discrete pairwise Markov network and a Bayesian network, as well as

learning a structure mapping for tree-shaped objects and objects in a simplex. Based on the

Wasserstein distances, KL divergences and feature moments, we show that the proposed methods

are computationally efficient, sample efficient, Fisher consistent and robust at the same time.

Extensive experimental results showcase their generalization ability and robustness under varying

data contamination. This thesis illustrates a powerful framework for data-driven structural

problems under high uncertainty. We expect our work to inspire similar or complementary

structural learning paradigms and practical machine learning algorithms in the era of big data.

In the following sections, we point out limitations, future work and potential societal impacts

of our methods.

6.1 Structure Learning

Formulating the complete DAG learning problem as one optimization problem may lead to

a non-convex problem. A crucial challenge that leads to such non-convexity is the acyclicity

constraint on the output graph. Existing methods either characterize the acyclicity constraint

by matrix exponentials (Zheng et al., 2018) or simply optimize over the space of permutations

166
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of nodes (Park and Klabjan, 2017), both of which lead to a highly non-convex problem whose

global optima are difficult to find exactly. In Chapter 3, we focus on skeleton learning with

provable guarantees and rely on existing orientation determination methods to produce the

final DAG. We argue that recovering the exact skeleton with polynomial time complexities

and sample complexities is perhaps the best we can expect. Figuring out the directionalities is

closely related to the graph theoretic nature of the problem, which is dependent on fundamental

results in computer science. Nonetheless, leveraging a principled adversarial training approach

(Sinha et al., 2018) with advanced representation learning models is a promising future direction

to pursue for practical use. For example, we may seek the following DRO estimator:

inf
EPF ,W PRnˆn,trpeW ˝W q´n“0

sup
QPA

EQ∥EpXq ´W EpXq∥,

where the minimization is taken over a highly non-convex set, thus in fundamental contrast to

the convex optimization problems considered in this dissertation. Since continuous optimization

approaches with neural networks may lead to a trivial solution (Wei et al., 2020), a natural

question is to what extent can a representation learning model Ep¨q take advantage of DRO to

alleviate these issues given the fact that a globally optimal solution cannot be found in usual.

It is also questionable whether distributional robustness is harmful to DAG learning when the

performance metric is on structures rather than statistical distances.

Despite absolute continuity, KL divergence usually allows a DRO problem to have a simple

dual problem and good statistical guarantees, as shown in this thesis. These formulations have
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been shown to recover adversarial reweighting (Li and Dunson, 2020), which is intuitive given

that likelihood ratios are explicitly used. KL DRO is known to lead to pathological distributions

compared to Wasserstein DRO that incorporates a notion of closeness and encompasses sound

measure concentration guarantees. However, the empirical results illustrated in the thesis cast

doubt on why a pathological distribution absolutely continuous with respect to the empirical

distribution whose support is much sparse in the space of all possible states is in any way

beneficial to successful learning. What kind of graphical models are they capable of dealing

with? For example, a distribution in structure learning that makes KL DRO fail but Wasserstein

DRO succeed. Be that as it may, a method would be highly desirable if it combines the efficiency

of KL DRO and the stronger generalization ability of Wasserstein DRO.

We observe superior performance of Wasserstein DRO methods in structure learning problems.

A noteworthy drawback is the more expensive computational cost. For undirected graphical

models, the per-iteration costs rOpnk ` n log nq and rOpnkq in terms of n and k to optimize our

objectives may not be improved further unless approximate gradient computation is acceptable.

However, faster overall convergence rates (e.g., better than rOpn2k2q) are possible if we replace

L-BFGS-B with advanced optimization methods designed for DRO (Yu et al., 2021a; Namkoong

and Duchi, 2016). Similar approaches based on stochastic gradient descents and more efficient

approximate algorithms would work for Bayesian networks as well. In practice, especially in

large-scale settings, it is often desirable to sacrifice optimality for a much more efficient algorithm

that yields a sub-optimal but reasonably feasible solution.
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Although robust to a set of adversarial distributions, our structure learning estimators may

not be superior to robust estimators tailored to a certain class of contamination models or

parametric distributions, for instance, (Goel et al., 2019; Prasad et al., 2020; Diakonikolas et al.,

2021). In order to match these approaches in this case, one may consider incorporating prior

distributional information to reshape ambiguity sets. For example, one can construct the set by

adding all possible noises to the nominal distribution or by including all parametric distributions

with the assumption on a parametric form of noises.

Furthermore, we are also curious about a general characterization of the conditions under

which a structural learning problem has a tractable exact reformulation for Wasserstein DRO.

Namely, what are the sufficient conditions in terms of functional analysis for tractability with

general transport-based ambiguity sets? The metric that defines a Wasserstein ambiguity set is

also crucial for a tractable reformulation (Nguyen et al., 2020). Formulating such conditions is

beneficial to understanding both distributionally robust structure learning problems and DRO

problems that study discrete distributions.

6.1.1 Structured Prediction

We address structured prediction problems with moment-based ambiguity sets. It is unclear

if other types of ambiguity sets lead to Fisher consistency as well. Intuitively, a Wasserstein

ambiguity set is expected to induce consistency due to its measure concentration results.

However, the computational difficulty may be similar to a ERM approach with an identical loss

function. Moreover, the Fenchel-Young loss framework (Blondel et al., 2020) is very similar to a
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moment DRO framework. Specifically, the dual problem of moment-based DRO is equivalent to

minimizing a Fenchel-Young loss with zero regularization and shared feature parameters.

In addition to consistency, the finite-sample guarantees and algorithms derived in the

thesis should be easily generalizable to other structured prediction problems. An important

challenge lies in developing efficient projection oracles for a polytope of specific structures of

interest. We introduce a few quadratic terms to induce strong convexity, which, however, elicits

such projection oracles. In tasks with more complicated structures and high-order structured

prediction, computing a Euclidean projection may not be tractable. The max-min oracle

proposed in (Nowak-Vila et al., 2020) is a Frank-Wolfe algorithm with an Op1ϵ q convergence rate.

The next step to improve on this is to propose a unified DRO framework for general structured

prediction possibly without projection or with better projection oracles whose convergence rate

is better than Op1ϵ q.

We assume that an expressive feature mapping is given such that a sufficiently good linear

discriminant rule can be learned. This is aligned with the assumption of Fisher consistency

that all the measurable functions are available. The class-sensitive form ϕpx,yq is general but

consumes more memory than the decomposable form ϕXpxq b ϕY pyq. A deep learning model

typically transforms the original feature ϕXpxq and maps the transformed features to logits

ϕY pϕXpxqq that encode its belief on conditional labels. What effect is this subtle difference in

computational and statistical perspectives?

In the probabilistic supervised learning problem, a drawback of our method is that solving

the saddle-point problem can be difficult for complicated losses. Neural networks equipped with
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a soft-max layer makes use of automatic differentiation to avoid facing this issue though local

optima are returned. Harnessing powerful representation learning tools to jointly learn data

representation and parameters in our methods is worth further exploring. We are wondering

how well can the learning framework enhance the performance of a deep learning model on

consistent uncertainty estimation regardless of its lacking theoretical guarantees. What data

corruption is the learned representation robust to? Are they strong against adversarial attacks

on the feature space?

For some other future work, it would be interesting to extend the proposed DRO approaches

to continuous higher-order graphical models and conditional density estimation. Reducing

computational costs is expected to benefit all of the proposed methods. Another direction to

consider is to adopt ambiguity sets based on higher-order moments (de Klerk et al., 2020).

6.2 Potential Societal Impacts

Potential negative societal impacts of our work depend on applications. For example,

the structure of a private network could be revealed if the underlying graph satisfies certain

assumptions. For voting network analysis, our method can help understand relation between

voters. However, without appropriate tuning, the recovered structure could mislead specific

decisions. Its robustness could also filter out outlier data that are possibly representative of

minority groups. Moreover, using the prediction for decision-making in crucial clinical scenarios

without verification may be harmful to subjects. Therefore, users should be careful to apply our

methods to guide human-centered design.
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on the quality of bayesian networks: An empirical evaluation. In UAI, pages 562–571.
Citeseer, 2015.

[Manjusha and Kumar, 2010]Manjusha, K. and Kumar, R.: Spam mail classification using com-
bined approach of bayesian and neural network. In 2010 International Conference on
Computational Intelligence and Communication Networks, pages 145–149. IEEE, 2010.

[Marcus et al. , 1993]Marcus, M., Santorini, B., and Marcinkiewicz, M. A.: Building a large annotated
corpus of english: The penn treebank. Computational Linguistics, 19(2):313–330, 1993.

[Martin, 1991]Martin, R. K.: Using separation algorithms to generate mixed integer model reformu-
lations. Operations Research Letters, 10(3):119–128, 1991.

[Martins et al. , 2015]Martins, A. F., Figueiredo, M. A., Aguiar, P. M., Smith, N. A., and Xing,
E. P.: Ad3: Alternating directions dual decomposition for map inference in graphical
models. The Journal of Machine Learning Research, 16(1):495–545, 2015.

[Martins et al. , 2009]Martins, A. F., Smith, N. A., and Xing, E.: Concise integer linear programming
formulations for dependency parsing. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 342–350, 2009.

[Martins et al. , 2010]Martins, A. F., Smith, N. A., Xing, E., Aguiar, P., and Figueiredo, M.: Turbo
parsers: Dependency parsing by approximate variational inference. In Proceedings of
the 2010 Conference on Empirical Methods in Natural Language Processing, pages 34–44,
2010.

[Masnadi-Shirazi and Vasconcelos, 2009]Masnadi-Shirazi, H. and Vasconcelos, N.: On the design
of loss functions for classification: theory, robustness to outliers, and savageboost. In
Advances in neural information processing systems, pages 1049–1056, 2009.

[Mazuelas et al. , 2022]Mazuelas, S., Shen, Y., and Pérez, A.: Generalized maximum entropy for
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