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SUMMARY

Tissue injury leads to extensive extracellular matrix (ECM) changes throughout the
wound healing process. MFAPS is a 25 kD serine and threonine rich small microfibril-associated
protein, involved in the regulation of major ECM pathways and microfibril function.
Interestingly, the role MFAPS plays in the wound healing process is currently unknown. This
study was undertaken to identify the genes that are most differentially expressed between skin
and oral mucosa as related to wound healing and fibrosis. Previously available human gene array
data from scar-forming skin wounds and minimally scarring oral wounds was utilized to
investigate the differential expression of genes that are closely related to wound healing and
fibrosis in these alternate healing phenotypes. This analysis led to the identification of MFAPS as
a factor that was highly expressed in skin but not oral mucosal wounds, and thus a candidate
profibrotic mediator in healing wounds. To directly examine the role of MFAPS5 in wound
healing, a murine model of full-thickness excisional skin wounds was employed, and the effect
of MFAPS neutralization on healing was assessed. Mice were randomly assigned to three wound
treatment groups: phosphate-buffered saline (PBS), immunoglobulin G (IgG), and anti-MFAPS
antibodies. Histologic wound samples were stained with Masson’s Trichrome and Picrosirius
stains, and AxioVision software was used to quantify collagen deposition and the ratio of
mature/immature collagen, respectively. Data was analyzed by 2-way ANOVA and multiple t-
test. It was found that in humans, MFAPS expression was significantly higher in skin versus oral
wounds at baseline and throughout the course of wound healing. Furthermore, in the murine
model, antibody neutralization of MFAPS in vivo led to decreased collagen deposition with

lower mature collagen and significantly higher immature collagen when compared to the control



groups. These results suggest that MFAPS promotes collagen deposition during wound healing
in skin in vivo. Therefore, the production of MFAPS5 may have significant implications for scar

formation in skin and other fibrotic conditions.

X1



I. INTRODUCTION

A. Introduction:

Wound healing refers to the body's natural process of repairing damaged tissue following
an injury. It involves a complex series of coordinated physiological processes working to close
and restore the wounded area. This typically involves four overlapping stages: hemostasis (the
cessation of bleeding), inflammation, proliferation (the growth and movement of new cells and
tissue), and remodeling (the maturation and strengthening of the new tissue). The specific course
and duration of wound healing can differ depending on various factors such as the nature and
severity of the injury, as well as individual variables like age and general health. Healing is a
multifaceted process that involves coordinated interactions between multiple biological and
immunological systems like blood vessels, platelets, white blood cells, growth factors,
extracellular matrix proteins, and different types of cells, such as fibroblasts, keratinocytes, and
endothelial cells. In the first phase, hemostasis, a blood clot is formed and platelets aggregate to
stop the bleeding. In the second phase, inflammation, immune cells and white blood cells clear
the wound of debris and pathogens. The third phase, proliferation, involves the formation of new
blood vessels and cells to replace the damaged tissue. Finally, in the remodeling phase, the new
tissue is strengthened and restructured to restore normal function. This is the typical process that

occurs when all the components function properly and carry out their respective roles effectively.

The extracellular matrix (ECM) plays a crucial role in the wound healing process by
providing structure, organization, and signals to cells and tissues. It serves as a guide for cell

migration, proliferation, apoptosis, differentiation, and adhesion to direct morphogenesis and



cellular metabolism. The ECM is composed of complex compounds, with collagen comprising a
large part of it. Collagen is a key factor in the wound healing process, providing strength and
structure to the wound. However, aberrant wound healing may result in numerous pathological

outcomes, one of which is fibrosis.

Fibrosis is a pathological outcome of wound healing that results in excess connective
tissue depositing in organs or tissue, eventually replacing normal tissue parenchyma and forming
a thickened scar tissue. Many studies have tried to identify the key factors in the occurrence of
fibrosis. Prior studies have suggested that some components contribute to an inadequate healing
process, such as fibroblasts, MMPs, CTGF, MFAPS5. Additionally, studies have suggested that
mechanical forces could contribute to fibrosis, as more tension can lead cells to produce aberrant
ECM, making the tissue as a whole more rigid. Some components are more expressed in the skin
than in the oral mucosa resulting in slower wound healing in skin with increased scar formation
as compared to oral mucosa. Researchers have used this fact to compare both types of tissues
when it comes to fibrosis formation. It has been shown that MMP7 and MMP9 are overexpressed
in skin, which is linked to delayed wound healing. The overexpression of MMP2 and MMP3 as
seen in oral wounds play an important role in keratinocyte migration, which may explain the
overall accelerated and scarless oral wound healing in oral mucosa compared to skin. In skin
wounds, as well as internal wounds, the tendency to heal through fibrosis/scarring instead of
regeneration, places a significant strain on public health. Studies have investigated the role of
different components in the formation of fibrosis. Our study focuses on the function of MFAPS5

and its role in scar formation.



B. Objectives

The objectives of this study are to 1) investigate which are the most differentially
expressed genes between skin and mucosa, 2) identify the genes that are closely related to wound
healing and fibrosis, 3) determine if the modulation of the identified genes alters wound collagen

deposition.

C. Hypotheses
We hypothesize that certain genes that are differentially expressed in skin versus mucosa
are more related to fibrosis, and that MFAPS may be a candidate factor that contributes to more

fibrotic outcomes in skin wound healing.



II. BACKGROUND

A. Wound healing and the factors affecting its process

Following tissue injury, the wound goes through a complex multifactorial process
influenced by the interaction of different cells and signaling molecules resulting in healing. This
intricate process is critical to the survival of the organism. Numerous studies have described
dermal wound healing and focus on the biological aspects of this process, which involves
coagulation, inflammation, angiogenesis, collagen synthesis, epithelialization, wound
contraction, and remodeling (Diegelmann and Evans, 2004). Despite the continuous nature of the
healing process, the division into distinct phases helps provide a better comprehension of the
process.

The phases of wound healing have similar characteristics in various tissues throughout
the body (Richardson et al., 2004), but have been best studied in skin. There are four classic
phases that harmoniously develop after injury; these include hemostasis, inflammation,
proliferation, and remodeling (Figure 1) (Gosain and DiPietro, 2004). The wound healing
process has been described by the activation of leukocytes, dendritic cells, lymphocytes and the
associated production of growth factors and inflammatory cytokines that sequentially stimulates

stem cell proliferation (Karin et al., 2016; Zheng et al., 2020).



Stages
H tasi Fibrin Clot,
emostasis Platelets
Inflammation Neutrophils, Macrophages, Lymphocytes
. . Re-epithelialization,
Proliferation Fibroblast, Endothelial Cells
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Remodeling Vessel Regression

1 3 5 7 10 14 21 28

Days Post-Wound Healing

Figure 1: Stages of wound healing. Immediately after injury, hemostasis occurs with an initial
fibrin clot forming due to platelet activation. After hemostasis, there is the inflammatory phase,
which is when immune cells migrate to the site of tissue injury. Overlapping the inflammatory
phase, the proliferation phase occurs, during which the epithelium is reformed, and granulation
tissue is deposited to fill the wound gap. Tissue forming cells like fibroblasts, keratinocytes, and
endothelial cells characterize this phase. As the proliferation phase resolves, the remodeling
phase begins. Remodeling is the longest phase and is marked by capillary regression, wound

contracture and collagen maturation.

Hemostasis begins directly after the skin is damaged and is marked by vasoconstriction

and blood clot formation. The exposure of collagen triggers both the intrinsic and extrinsic blood



clotting pathways signaling platelet recruitment to the site of injury. The fibrin clot is formed as
a result of platelet aggregation and the release of different mediators and adhesive proteins
(DiPietro, 2016). The release of these mediators enhances cells’ function and facilitates their
communication in the healing process. Additionally, these mediators initiate chemotactic signals

to recruit inflammatory cells to the injured site.

Polymorphonuclear leukocytes (neutrophils, PMN) are among the first immune
responders to the wounded site. Their presence within the blood clot magnifies the leukocyte
response through their release of chemotactic mediators which attract other cells involved in the
inflammatory phase. The infiltration of leukocytes into the wound site as a response to the
chemotactic function of these mediators is the main characteristic of the inflammatory phase.
Therefore, the role of inflammatory mediators in controlling the healing process is critical to the
inflammation stage of wound healing. Several pro-inflammatory cytokines are released to
coordinate the immune response and promote tissue repair. Some of the key pro-inflammatory
cytokines involved in this phase include IL-1, IL-6, IL-8, and IFN-y. These cytokines typically
regulate the growth, activation, differentiation, and migration of immune cells to areas of
infection to control and eliminate pathogens (Turner et al., 2014). In tandem, the level of cellular
adhesion molecules (CAMs) increases and facilitates inflammatory cell migration (Singer and
Clark, 1999). Among the immune cells in wounds, macrophages play a critical role both in
inflammation and in stimulating the later proliferative phase. During the inflammatory phase,
macrophages release proinflammatory mediators to attract leukocytes and activate endothelium.
During the proliferation phase, macrophages produce growth factors that can attract fibroblasts,

stimulate ECM formation, and promote angiogenesis (Koh and DiPietro, 2011). Mast cells also



play an important role in dermal wound healing, as they release an array of proinflammatory
cytokines leading to progressive inflammatory and vascular changes. Their numbers surge as

tissue repair proceeds (Wilgus and Wulff, 2014).

During the proliferation phase, the temporary fibrin scaffold created during the
hemostasis phase gets replaced by granulation tissue, which has an elevated number of
fibroblasts, granulocytes, macrophages, blood vessels, and collagen. This tissue provides a
provisional structure to support the restoration and return of function to the damaged skin
(Schultz and Wysocki, 2009). Fibroblasts actively synthesize collagen in this phase as a response
to the cytokines and growth factors such as PDGF, TGF-B, KGF, VEGF, and FGF2 that are
released by platelets and actively produced by fibroblasts, epithelial cells, and inflammatory
cells, particularly macrophages (Hinz et al., 2007; Schultz and Wysocki, 2009). The recruitment
and proliferation of keratinocytes allows for re-epithelialization and eventual reformation of the
epithelial barrier (DiPietro, 2016). Integrins are involved in re-epithelialization and granulation
tissue formation during wound healing through their function in cell adhesion and signaling.
Integrins are cell surface-associated dimeric glycoproteins that function as cell-to-ECM adhesion
receptors. Hence, the synergy between integrin and growth factor receptors is probably a key

factor in the regulation of cell proliferation (Koivisto et al., 2014).

Following granulation tissue formation and re-epithelialization, a lengthy remodeling
phase begins. Mechanical stress and cytokines such as TGF-f encourage fibroblasts to
differentiate into myofibroblasts, which produce a-smooth muscle actin (a-SMA) resulting in

wound contraction (Hinz et al., 2007). During this phase, the quickly formed collagen III in the



ECM is replaced by stronger but more slowly-deposited collagen 1. In the meantime, overgrown
blood vessels begin to regress by apoptosis, resulting in a final vascular density similar to that of
normal skin (DiPietro, 2016). Matrix metalloproteinases (MMPs) have a significant impact on
the wound healing process in the proliferation and remodeling phases, with the continuous
changes in the expression and activity of MMPs (Cui et al., 2017). MMPs also play a role in
reducing scarring and fibrosis by either directly breaking down the ECM or indirectly
influencing the cellular behavior involved in proteolysis (Giannandrea and Parks, 2014). Each
stage of wound healing is crucial for a successful outcome, and adequate progress through each

stage is vital.

B. The role of ECM and its importance in wound healing

The ECM is an acellular scaffold that is made up of structural proteins such as collagens,
laminins, elastins, and fibronectins that offer flexibility and strength to the dermis.
Proteoglycans, and hyaluronan in the ECM can sequester growth factors and water in the
surrounding space through their high ability to bind water. Glycoproteins like integrins function
to control cell attachment and communication between cells and the ECM. The ECM provides
structure, organization, and direction to cells and tissues. In addition, ECM serves as a guide for
cell migration, proliferation, apoptosis, differentiation, and adhesion directing morphogenesis
and cellular metabolism, regulating cell behavior and performance through direct binding with
integrins and other cell surface receptors (Dominguez-Bendala et al., 2012). The ECM also
serves as a storage area for growth factors and controls their availability (Schultz and Wysocki,
2009). Studies have shown that imbalances in the ECM can lead to the development of fibrosis, a

condition in which excessive ECM accumulation leads to tissue dysfunction.



Collagen is a distinct, three-stranded protein molecule that makes up the majority of the
ECM in the skin. The ECM in skin is composed of collagen along with other substances such as
fibronectin, elastin, glycosaminoglycans, proteoglycans, laminin, and cellular components
(Hopkinson, 1992 a, b; Berry et al., 1998; Enoch and Leaper, 2005). Collagen is primarily
produced by fibroblasts and there are currently 21 identified variations of this protein. Of these, 6
are found in the skin, with type I being the most prevalent, accounting for 70% of the collagen in
the skin, while type III makes up 10%. There are also small amounts of collagen types IV, V, VI,
and VII in the skin (Uitto et al., 1989; Hay, 1991). Collagen is a key factor in increasing the
strength of a wound. As the wound healing process progresses, collagen is deposited and
remodeled which leads to an increase in the tensile strength of the wound. This strength increases
to 20% of normal skin strength by three weeks after injury and continues to increase until it
reaches 70% (Desmouliere et al., 1995). The process of healing in tissues is different depending
on the type of tissue involved. While epithelial structures can heal through regrowth, connective
tissues cannot and instead relies primarily on repair through the formation of scar tissue made of
collagen (Berry et al., 1998). The scar tissue is primarily made of type I collagen. Although the
collagen architecture in scars is not completely normal, the ECM nevertheless functions to

restore tissue integrity, strength, and generally normal function.

C. Skin wound healing and fibrosis
The typical wound healing process in adult mammals, including humans, involves repair
rather than the regeneration of the injured tissue, and thus results in the formation of a scar,

which is an abnormal tissue with altered ECM structure. In skin, the fibrotic scar is mainly



composed of fibroblasts and disordered collagen fibers in the ECM (Xue and Jackson, 2015).
These scars occur partly due to inflammation, which has been shown to foster less than ideal
wound healing (Jeschke et al., 2011). Amongst the inflammatory cytokines, TGF-3 promotes the
transformation of fibroblasts into myofibroblasts to aid in wound healing. Myofibroblasts, the
cells responsible for the contractile activity leading to fibrosis, are contractive fibroblasts that
contain a-SMA. a-SMA containing myofibroblasts are considered a marker of fibrotic diseases
such as liver and renal fibrosis. Prolonged activation of TGF-f signaling sends a signal to
myofibroblasts to keep producing ECM, leading to the formation of pathological scarring
(Sarrazy et al., 2011). MMPs can have either a suppressing or promoting effect on fibrosis.
Some MMPs can decrease fibrosis, while others can enhance it (Giannandrea and Parks, 2014).
Initially, one might think that proteins that can break down the matrix, such as MMPs, would be
under-expressed in fibrosis or, if present, could help clear the excessive matrix. This is true for
some MMPs, which have anti-fibrotic properties (MMP1, MMP2, MMP3, and MMP10), while
others can actually contribute to fibrosis (MMP7, MMP9, MMP11) (Giannandrea and Parks,
2014). The development of fibrosis has also been shown to be influenced by many other factors,
such as connective tissue growth factor (CTGF), and microfibrillar-associated protein 5
(MFAPS). CTGF contributes to fibrosis by regulating the proliferation of fibroblasts and
production of the extracellular matrix. Elevated levels of CTGF are present in many fibrotic
diseases, including liver and pulmonary fibrosis (Kalluri et al., 2016). Another component of the
ECM is MFAPS; it is a protein that helps keep the fibers of the extracellular matrix organized
and stable. It has been observed to increase in fibrotic diseases such as liver and lung fibrosis and
may play a role in the development and spread of fibrosis by controlling the formation of fibrotic

ECM (Zhu et al., 2021; Broekelmann et al., 2020; Chen et al., 2020; Tabib et al., 2021).
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D. The role of wound tension in fibrosis and scar formation

Cutaneous scarring, which is a common skin disorder, is increased in areas of tissue
tension, as fibroblasts have a mechanobiologic response to strain. Numerous studies in recent
years have indicated that mechanical forces may play a significant role in the development of
pathological scarring (Ogawa et al., 2011; Ogawa et al., 2016). The level of tension in our skin
varies depending on the part of the body and is influenced by factors such as movement and age
(Rosinczuk et al., 2016). When there is more tension, the ECM that is produced is abnormal and
increased in stiffness. This increased stiffness can be caused by various factors, including
increased forces from cell contraction, the deposition of ECM, or the presence of specific cell
types that contribute to the skin's mechanical environment (Rosinczuk et al., 2016; Pawlaczyk et
al., 2013). Tension was found to act as a mechanical stimulation inducing inflammatory immune
response, which if prolonged and of a chronic nature, may result in more scarring compared to
less scarring with less tension. These findings were based on a comparison between stretched

and non-stretched wounds in a murine model (Harn et al., 2019).

Compared to adults, fetal wound healing is characterized by faster healing of the outer
layer of skin, quicker migration of cells that produce connective tissue, and faster deposition of
the matrix that supports cell growth. Moreover, fetal wounds created within the first two
trimesters heal scarlessly with a complete restoration of normal tissue structure. It has been
suggested that the physical characteristics of the ECM in fetal skin may play a role in the
absence of scarring during the healing process (Lorenz et al., 1993; Satish et al., 2010). When

examined, the skin of fetal mice was found to have low levels of natural tension and it did not

11



develop significant scarring during healing. However, when the same level of tension found in
human skin was applied to the fetal mouse skin, it developed fibrosis similar to hypertrophic scar
formation (Aarabi et al., 2007). The non-scarring outcome of fetal skin has also been shown to
be related to the difference in the level of inflammatory cells in fetus skin versus human skin
wounds. Whereas the fetal wounds contain few or no inflammatory cells, adult skin wounds have
a significant presence of inflammatory cells and expression of proinflammatory cytokines
(Coolen et al., 2010; Krummel et al., 1987). In addition, the fetal skin has high levels of
hyaluronic acid, (Longaker et al., 1991; Mast et al., 1993), higher ratio of type III to type I
collagen (Larson et al., 2010), fewer and less mature mast cells (Larson et al., 2010), and lower

expression of TGF-B1 and TGF-B2 (Lo et al., 2012; Hantash et al., 2008).

E. Comparison between oral and skin wound healing

Despite the similarity that skin and oral mucosa share in morphology and function, the
comparison of the differences in the healing process are critical to understand the superiority of
mucosal healing over skin. Both tissues proceed through the classic stages of wound healing.
However, the timeline and duration of these phases varies from mucosa to skin. Mucosa heals
faster with minimal scar formation with rare occurrence of scars in the oral cavity. There are
different factors that positively impact mucosal wound healing, including thicker epithelium with
more cell layers and higher proliferation rate in the basal lamina resulting in higher proliferation
rate, less inflammatory infiltrate with lower levels of inflammatory cytokines (e.g. IL-1a, IL-18,
TNF-a), more highly regulated angiogenic response, presence of moist environment leading to
faster re-epithelialization, angiogenesis, and maturation of the wound bed, the existence of saliva

which contains an abundance of peptides, proteins, and histatins, including growth factors

12



stimulating wound healing (Gibbs et al., 2000; Szpaderska et al., 2003; Schrementi et al., 2008;
Mak et al., 2009). The presence of a wet environment with salivary flow promotes re-
epithelization, angiogenesis, and maturation of the wound bed (Dyson et al., 1992; Junker et al.,
2013; Svensjo et al., 2000; Vogt et al., 1995). Studies on de-salivated mice showed a decrease in
healing compared to sham-operated ones (Bodner et al., 1991; Bodner et al., 1993 a, b). Another
factor that promotes healing without scarring is the decreased ratio of TGF-81/TGB-83 that is
suggested to predict scar formation in mucosal wounds (Schrementi et al., 2008). The presence
of TGF-B, which is mainly secreted by immune cells such as T-cells and macrophages has some
effect on the process of healing through its effect on fibroblast proliferation. TGF-B1 is
associated with scar formation while TGF-B3 is more associated with scarless fetal wound
healing (Penn et al., 2012). Studies in murine models have demonstrated that higher levels of
TGF-B1, but lower or similar levels of TGF-B3 are found in skin compared to mucosal wounds
(Schrementi, 2008; Pastar et al., 2014). As mentioned earlier, MMP production has also been
linked to fibrosis, and differences in MMP levels have been described in oral mucosal versus
skin wounds. More specifically, the expression of MMP1, MMP2, MMP3, and MMP10 was
higher in oral compared to skin fibroblast whereas, MMP7, MMP9, and MMP11 were more
highly expressed by skin fibroblasts (Mah et al., 2014; Stephens et al., 2001; Chinnathambi et al.,
2005). Studies have shown that the overexpression of MMP7 and MMP?9 is linked with delayed
wound healing, while MMP2 and MMP3 play an important role in keratinocyte migration which
may therefore explicate the overall accelerated and scarless oral wound healing in oral mucosa
compared to skin (Caley et al., 2015; Krishnaswamy et al., 2017; Letra et al., 2013; Reiss et al.,
2010). Although pathogenic microbes colonizing wounds can significantly slow down the

healing process, both in mucosal and skin wounds, research has shown that a healthy oral biofilm

13



can lead to a higher production of antimicrobial peptides and improved protective properties in

lab-grown human gingival tissue (Shang et al., 2018; Laheji et al., 2013).

Recent studies that have investigated the genomic response to injury in skin and mucosa
have demonstrated dramatic differences in the gene expression patterns of oral and skin wounds.
(Chen et al., 2010; Leonardo et al., 2022; Iglesias-Bartolome et al., 2018). These studies have
shown that compared to skin wounds, the genomic response of oral wounds is reduced in
intensity. They have also identified multiple differentially expressed genes that are present both
at baseline and in wounded tissues. For example, the transcriptionally regulators SOX2 (sex-
determining region Y-box 2) and PITX1 (paired-like homeodomain have been shown to be
upregulated in oral mucosa versus skin, a feature that likely partially explains the differential

healing in the two tissues.

F. The effect of pathological scar formation in wound healing on public health

The healing process through fibrosis/scaring, instead of regeneration, places a significant
strain on public health. Pathological scars in humans include hypertrophic scars, keloids, and
contracture scars (Figure 2). The exact cost of illnesses caused by pathological scars in terms of
economic expenses is challenging to determine, but it is estimated to be in the tens of billions of
dollars (Mathieu et al., 2006; Menke et al., 2007). Therefore, the transformation of fibrotic
healing into a regenerative one where original tissues are restored is paramount to relieve the

burden and improve human health and quality of life (Jeschke et al., 2011).

14



Normal scar Hypertrophic scar Keloid scar Contracture scar

Figure 2. Different types of scars. In adult skin, the repair of the dermis nearly always results in
a scar with abnormal ECM architecture and less tensile strength than normal skin. Fibrous

skin scars are a major clinical problem with outcomes ranging from mild to hypertrophic scars,
keloids, and painful contractures. Pathologic skin scarring or fibrosis often leads to aesthetic

consequences, functional deficits, and adverse psychological effects.

F. Identification of the most differentially expressed genes related to wound healing and
collagen deposition when comparing skin to oral mucosa wounds

A large number of genes become differentially regulated in response to wound injury, with
an estimated 1/3 of the genome exhibiting significantly differential expression levels in skin

wounds (Chen et al., 2010). Therefore, identification of the genes, across the genome, that are
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closely related to the wound healing process, and those that might be important mediators of scar

formation, is of importance to human healing outcomes.

In this study we utilized existing micro-array gene expression data from of skin and oral
wounds. Our strategy was to compare broad gene expression profiles in skin and oral wounds,
with an aim to identify pro-fibrotic genes that were highly expressed in skin, but not oral mucosal
wounds. This analysis resulted in the identification of MFAPS as a candidate pro-scar forming

gene for further study.
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III. MATERIALS AND METHODS

A. Human oral and skin wound microarray
The genomic dataset for human oral and skin wounds was previously obtained
under IRB approval as described in Leonardo et al. 2022 article (Leonardo et al., 2022).

Using a microarray gene expression data of tissue samples from humans, we compared
the expression levels of each microarray dataset of the 30 genes that were identified to be most
closely related to essential roles in wound healing in the skin and oral to identify possible
profibrotic genes mucosa. These two tissue types have distinct regenerative and scarring
phenotypes. The candidate genes included These genes were grouped into families according to
their structure and functions: MMPs (MMP1, MMP2, MMP3, MMP8&, MMP9, MMP10,
MMP12, MMP13, MMP19), TIMPs (TIMP1, TIMP2, TIMP3), collagens (COL1A1, COL3A1,
COL4A4, COL5A1, COL6A1, COL7A1, COL11A1, COL14A1, COL16A1, COL17Al), growth
factors (TGFB1, TGFB3, CTGF, FGF2), MFAPs (MFAP2 and MFAPS), other relevant genes
(ACTA2 and LOX). Through the analysis of these gene expression data, MFAPS was identified
as the most highly differentially expressed gene among those we examined in skin wounds as

compared to oral wounds.

B. Animal study

To investigate if neutralizing MFAPS in skin wounds would affect collagen deposition or
scar formation, a mouse excisional wound model was used. Eight- to 10-week-old female
C57/BL/6j mice were purchased from Jackson Laboratory (Bar Harbor, ME). The mice were

housed in groups of five in a temperature-controlled vivarium (22 to 24°C) on a 14-h:12-h light-
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dark cycle and had free access to food and water. Mice were anesthetized by intraperitoneal
injection of ketamine (100 mg/kg) and xylazine (5 mg/kg). The shaved dorsal skin was cleaned
with 70% isopropyl alcohol. Four 5mm full-thickness excisional skin wounds were made using a
punch-biopsy instrument (Acu Punch, Acuderm Inc, Fort Lauderdale, FL). Mice were randomly
assigned to one of three treatment groups: phosphate buffered saline (PBS), normal mouse I1gG
isotype control (ThermoFisher Scientific), or an anti-MFAPS monoclonal antibody (clone 130A)
(Yeung et al., 2019). Each wound was topically treated with 40 ul of PBS, 1.5 pg of mouse IgG
control or 1.5 pg of anti-MFAP5 monoclonal antibody in 40 uL. PBS immediately after injury.
The wounds were treated through subcutaneous injections under each wound with the same
amount of antibodies administered topically on days 3, 6, 9, 12, and 15 post-wounding. On days
7, 14, and 21 post-wounding, the wound tissues were harvested. The excised skin removed
during wounding was used as the uninjured or normal skin (NS) sample (day 0). Samples were
fixed in 10% neutral buffered formalin solution for 24 hours. Eight um paraffin-embedded
sections were used for Masson’s trichrome and Picrosirius red staining as described below. All
animal procedures performed were approved by the Institutional Animal Care and Use

Committee (IACUC) of the University of Illinois Chicago.
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— @ —— | Paraffin-Embedding Picrosirius Red staining

Figure 3: Schematic diagram depicting workflow following mouse wound tissue collection in an
excisional dorsal skin wound healing model. Mice were wounded with a 5-mm punch biopsy and
treated with either PBS, IgG, or anti-MFAP5 antibodies. Mouse wounds were collected
throughout wound healing and then stored in 10% neutral buffered formalin solution, paraffin
embedded and sectioned. Histological slides were stained with Masson’s Trichrome and

Picrosirius Red staining to assess collagen deposition and maturity.

a. Masson’s trichrome staining and image analysis

After fixation of samples in formalin and embedding them in paraffin, Sum sample
sections were stained using Masson’s trichrome staining as previously described (Zhao et al.,
2016) to visualize the blue collagen content. Slides were evaluated under a microscope (Carl
Zeiss Microscopy); photomicrographs were taken at 20 magnification and analyzed in imageJ
software using standardized color thresholds to identify and quantify collagen deposition.
Collagen content in the wound bed was calculated as follows: (blue area)/(total area of wound

bed) X 100. One image per sample was taken and analyzed.
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b. Picrosirius red staining and image analysis

After fixation of samples in formalin and embedding them in paraffin, Sum sample
sections were stained using picrosirius red staining as previously described (Zhao et al., 2016) to
visualize the immature (collagen III) and mature (collagen I) collagen content. Slides were
evaluated under a polarized microscope (Carl Zeiss Microscopy); photomicrographs were taken
at 20 magnification and analyzed in imageJ software using standardized color thresholds to
identify and quantify areas of mature (red-orange) and immature (green-yellow) collagen. The
percentage of the pixel area of green immature collagen/total pixel area and the percentage of the
pixel area of red-orange mature collagen/total pixel area in the wound bed were calculated. The
percentage of immature collagen or mature collagen in relation to total collagen was calculated
as follows: green pixel area or red-orange pixel area/total pixels of red-orange area+green area

x100. one to three images per sample were taken and analyzed.

C. Statistical analyses

Data from the human gene array picrosirius red staining data from the animal study were
analyzed by two-way ANOVA followed by post-hoc Benferonni test. Trichrome staining data
from the animal study was analyzed by multiple t-test (GraphPad Software, San Diego, CA). N
numbers for the human gene array and the animal studies are listed in Table 1 below. Statistical

significance marked when p values were less than 0.05.
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Table 1: N numbers for human gene array and animal studies

Human

Hours post-wounding 0 6 24 72 168
Oral samples (n) 17 6 12 10 6
Skin samples (n) 13 7 10 9 6
Mouse

Days post-wounding 7 14 21

Samples (n) per group 5 5 5
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IV. RESULTS

A. Gene array analysis

Previous work in our lab investigated the changes in gene regulation in the human skin
and hard palate and its response to injury (Leonardo et al, 2022). Since genes that are regulated
during the wound healing process in response to skin injury are likely to be functionally
important for the wound repair process, gene array studies were conducted to identify the
expressed genes across the genome. Gene expression analysis was performed for 30 genes that
are closely related to the ECM and scar formation in wound healing. This was undertaken to
compare the expression of these genes between human oral and skin wounds. These genes were
grouped into families according to their structure and function, and include MMPs (MMP1,
MMP2, MMP3, MMP8, MMP9, MMP10, MMP12, MMP13, MMP19), TIMPs (TIMP1, TIMP2,
TIMP3), collagens (COL1A1, COL3A1, COL4A4, COL5A1, COL6A1, COL7A1, COL11Al,
COL14A1, COL16A1, COL17A1), growth factors (TGFB1, TGFB3, CTGF, FGF2), MFAPs
(MFAP2, MFAPS), and other relevant genes (ACTA2 and LOX). Figures 4-9 show the
comparisons of the relative expression of these genes in skin and oral wounds, which are

discussed below.

MMPs

The gene expression of MMP8 and MMP13 had no significant difference between skin
and oral wounds (p >0.05). All other MMPs that were examined showed significant difference in
their expression in skin when compared to the oral wounds at one or more time points (Figure 4).

MMP1 was found to have significantly higher expression in skin over oral wounds at the 72-hour
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mark (p **<0.01). MMP2 showed significantly higher expression in skin over oral wounds at
baseline only (p *<0.05). MMP3 significant expression was limited to the 72-hour mark with
significantly higher expression in skin over oral wounds at the 72-hour mark (p *<0.01).
Interestingly, MMP9 showed significantly lower expression in skin versus oral wounds at the 24-
hour mark (p *<0.05), which reversed to significantly higher expression at the two following
time points 72- and 168-hours post-wounding (p**<0.01, *** <0.001). Similarly, MMP10 was
found to have significantly lower expression in skin versus oral wounds at the 6- and 24-hour
marks (p *<0.05 and **<0.01), which reversed to significantly higher expression at 72 hours
post-wounding (p *<0.05). MMP12 showed significantly higher expression in skin versus oral
wounds at two time points, the 6- and 168-hour marks (p **<0.01). Lastly, MMP19 showed
significant expression differences with significantly lower expression in skin at the 6-hour mark

(p *<0.05) but significantly higher expression at the 72-hour mark (P ****<0.0001).

23



Relative expression

MMP8

Relative expression

0 6 24 72 168
Skin

0 6 24 72 168
Oral

MMP12

Relative expression

0 6 24 72 168

Skin

0 6 24 72 168
Oral

0 6 24 72 168
Skin

0 6 24 72 168
Oral

Relative expression

MMP9

Relative expression

Relative expression

0 6 24 72 168
Skin

0 6 24 72 168
Skin

0 6 24 72 168
Skin

24

0 6 24 72
Oral

168

0 6 24 72 168
Oral

0 6 24 72 168
Oral

Relative expression

Relative expression

Relative expression

15+ ’—I
104 ° bo] % 3 " -
510

0 6 24 72 168
Oral

0 6 24 72 168
Skin

* Kk

0 6 24 72 168
Oral

0 6 24 72 168
Skin

* kK K

0 6 24 72 168
Skin

0 6 24 72 168
Oral



Figure 4: MMPs (MMP1, MMP2, MMP3, MMP§, MMP9, MMP10, MMP12, MMP13,
MMP19) genes expression in human skin and oral wounds. The X axis is representative of hours

post-wounding and the Y axis is representative of the relative expression of genes at investigated

time points. P *<0.05, **<0.01, *** <0.001, ****<0.0001.

TIMPs

Relatively consistent findings were seen among the three studied TIMPs. Both TIMP1
and TIMP2 were found to show significantly higher expression in skin wounds at 72-hour time
point as compared to oral wounds (Figure 5) (****, p<0.0001). On the contrary, TIMP3 showed

significantly lower expression in skin versus oral wounds (***, p<0.001).
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Figure 5: TIMPs (TIMP1, TIMP2, TIMP3) genes expression in human skin and oral wounds.
The X axis is representative of hours post-wounding and the Y axis is representative of the

relative expression of genes at investigated time points. *** p<0.001, **** p<0.0001.

Collagens

Several collagen genes were found to have no significant difference between skin and
oral wounds including COL3A1, COL5A1, COL6A1, and COL16A1 (Figure 6) (p >0.05).
COLI1AT1 showed significantly lower expression in skin over oral wounds at the 6-hour time
point but this reversed showing higher expression of COL1AT1 at 168 hours (****, p<0.0001).
COL4A4 only showed lower expression in skin compared to oral wounds at baseline (***,
p<0.001). COL7A1 was found to have significantly lower expression in skin over oral wounds at
the 6- and 24-hour time points (* p<0.05 and *** p<0.0001). Overall, COL11A1 had the highest
expression with lower expression in skin versus oral mucosa at 6-, 24-, 72-, and 168 time points
(*p<0.05, **p<0.01, *** p<0.001, ****p<0.0001). COL14A1 showed significantly lower
expression at two time-points the 72- and 168-hour marks (**** p <0.0001). Lastly, COL17A1
showed significantly lower expression in skin versus oral wounds at two time-points the 0- and

16-hour marks (** p<0.01).
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Figure 6: Collagens (COL1A1, COL3A1, COL4A4, COL5A1, COL6A1, COL7A1, COL11Al,
COL14A1, COL16A1, COL17AT1) genes expression in human skin and oral wounds. The X axis
is representative of hours post-wounding and the Y axis is representative of the relative

expression of genes at investigated time points. P *<0.05, **<0.01, *** <0.001, ****<0.0001.

Growth Factors

Interestingly, no significant difference was found between skin and oral wounds for
TGFB1 gene at any of the time points (Figure 7) (p >0.05). TGFB3 gene showed significantly
lower expression in skin when compared to oral wounds only at the 24-hour (*** p<0.001).
CTGF showed significantly higher expression in skin over oral wounds at baseline, 72- and 168-
hour time points (* p<0.05, ** [<0.01, **** p<(0.0001). Lastly, FGF2 showed significantly
lower expression in skin versus oral wounds at two time-points 6- and 24- hour marks (****

p<0.0001).
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Figure 7: GFs (TGFBI1, TGFB3, CTGF, FGF2) genes expression in human skin and oral wounds.
The X axis is representative of hours post-wounding and the Y axis is representative of the

relative expression of genes at investigated time points. P *<0.05, **<0.01, *** <0.001,

*xA%<0.0001.
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ACTA2 and LOX
The gene expression of ACTA2 had no significant difference between skin and oral
wounds (Figure 8) (p>0.05). However, LOX expression was lower in the skin as compared to

oral wounds at all time points except the (** p<0.01 and **** p< 0.0001).

ACTA2 LOX | il

15+ 81 [

104 o o 0

o
o

Relative expression
(]
O
08
Relative expression

0 T T
0 6 24 72 168 0 6 24 72 168 0 6 24 72 168 0 6 24 72 168

Skin Oral Skin Oral

30



Figure 8: ACTA2 and LOX genes expression in human skin and oral wounds. The X axis is
representative of hours post-wounding and the Y axis is representative of the relative expression

of genes at investigated time points. P **<0.01 and ****<0.0001.

MFAPs

The gene expression of MFAP2 had no significant difference between skin and oral
wounds (Figure 9) (p>0.05). However, MFAPS expression was significantly higher in the skin
wounds at all time points as compared to the oral wounds (Figure 9, **** p<0.0001). Among the
genes that were analyzed, MFAPS was identified as the most differentially expressed gene

exceeding all other genes analyzed, creating high plausibility of its connection to fibrosis.

31



* % % %

MFAP2 MFAP5 ...
| * ¥ %k %k
154 104
c c o
i} QS 84 l
[7] (] 8 ofo
n n B oo
2 2 64 o
a S of o
X X
() () o
2 S Y011y A
5 5
[} [} -
14 14 2
0 T T
0 6 24 72 168 0 6 24 72 168 0 6 24 72 168 0 6 24 72 168
Skin Oral Skin Oral

Figure 9: MFAP2 and MFAPS genes expression in human skin and oral wounds. The X axis is
representative of hours post-wounding and the Y axis is representative of the relative expression

of genes at investigated time points. P ****<(0.0001.

B. MFAPS and scar formation

In order to elucidate the roles of MAFPS in collagen deposition and composition in skin
wounds, we treated skin wounds with an MFAPS neutralizing antibody and then performed
Masson’s Trichrome and Picrosirius red staining to assess collagen content and structure in

treated and control wounds.
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Total collagen deposition

Findings from the Masson’s Trichrome staining indicated higher total collagen deposition
(blue stained structures) in PBS and IgG groups compared to anti-MFAPS group in Day 7, 14,
and 21 wounds, this difference reached statistical significance between IgG and anti-MFAPS5 at

day 21 (Figure 10 A&B and Table 2).
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Figure 10. A) Microscopic images representing collagen histological slides stained with
Masson’s Trichrome staining at days 7, 14, and 21 post- wounding along with normal
(unwounded) skin. Blue: stained collagen. Varying degrees of blue color density can be
interpreted as a representative of collagen quantity. B) MFAPS blockade decreases total
collagen deposition. Quantification of blue-stained collagen comparing the three studied groups.

P **<0.01.

Mature and Immature Collagen Composition
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Picrosirius red staining was used to determine the ratio of mature (collagen I-red/orange
color) and immature collagen (collagen IlI-green color) in wounds of anti-MFAPS antibody
treated mice as compared to PBS and IgG treated groups. Findings from the Picrosirius red
staining indicate significantly higher collagen III in anti-MFAPS5 compared to IgG and PBS at
day 7 post-wounding but leveled down to no significant difference at both day 14 and day 21
post-wounding (Figure 11 A&B, Table 3-7). Therefore, it is apparent that the blockade of
MFAPS affects the early stage of wound healing with effects mainly seen at day 7. This blockade

resulted in higher expression of collagen III and lower expression of collagen I.
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Figure 11. A) Microscopic images representing histological slides of mature (collagen I,
red/orange) and immature collagen (collagen III, green) stained with Picrosirius red staining at
days 7, 14, and 21 post-wounding along with normal (unwounded) skin. Red/orange: stained
collagen I, green: stained collagen III. Varying degrees of red and green color density can be
interpreted as a representative collagen quantity I and II1, respectively. B) MFAPS blockade
increases collagen III and decreases collagen I deposition. Percent of mature (collagen I,
red/orange), immature collagen (collagen III, green), and total collagen based on Picrosirius red

staining comparing the three studied groups. * p<0.05, ** p<0.01, *** p<0.001.
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V. DISCUSSION

A. Discussion

This study investigated the role of MFAPS in skin wound healing, and provides new
information about the function of this protein in the context of healing wounds. Prior research
has revealed a functional role for MFAPS in other systems, particular in cancer. MFAPS is
highly expressed in stromal fibroblasts in several different human cancers with higher expression
linked to poorer outcomes (Chen et al., 2020; Leung et al., 2014; Leung et al., 2018; Li et al.,
2018; Mok et al., 2009; Wu et al., 2019; Yeung et al., 2019; Zhou et al., 2020). In these cancers,
MFAPS has been found to influence various cell phenotypes in the tumor microenvironment and
promote cancer fibrosis, angiogenesis, and chemoresistance. Despite the relatively extensive
investigation of MFAPS in diverse cancer types and human diseases, its involvement in wound

healing was not previously examined (Craft et al., 2018; Vaittinen et al., 2011; Zhu et al., 2021).

The complexity and intricate nature of wound healing led us to investigate the expression
of 30 genes that are closely related to collagen deposition and fibrosis during wound healing.
This allowed us to identify several candidate genes that are closely related to wound healing and
fibrosis. Using a microarray gene expression analysis of tissue samples from humans, we
compared the expression of these genes in the skin and oral mucosa as these two tissue types
have distinct regenerative and scarring phenotypes. The candidate genes included the MMP
family, TIMP family, collagen family, GF family, MFAP family, and other fibrosis related genes

like LOX. Through the analysis of these gene expression data, MFAPS was identified as the
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most highly differentially expressed gene among those we examined in skin wounds as

compared to oral wounds.

In the mouse skin wound model, we further found that the inhibition of MFAPS had a
significant impact on collagen deposition compared to control wounds treated with PBS and
mouse IgG. This was evidenced by the increased expression of collagen Il (immature collagen)
and decreased expression of collagen I (mature collagen) in the early stages of wound healing
(day 7) in the anti-MFAPS treated group. Also, the anti-MFAPS antibody treated group had
decreased collagen deposition during the later stage of wound healing (day 21). These findings
suggest that MFAPS plays a pro-fibrotic role in the wound healing process through increasing
collagen deposition. This study, therefore, contributed to the current understanding of wound
healing by exploring the potential relationship between MFAPS and fibrosis through its effect on
collagen deposition. In addition, our findings suggest that MFAPS5 may be a key factor that

determines the differential outcomes in skin and oral mucosal healing.

We did not yet study the mechanism by which MFAPS regulates collagen synthesis and
deposition. According to previous investigations (Mecham and Gibson, 2015), MFAPS has the
ability to bind to fibroblast avB33 integrin via the RGD motif. This binding can activate the av33
integrin, which has been shown to stimulate collagen gene expression and drive fibroblast
contraction and extracellular matrix (ECM) stiffening, contributing to the progression of fibrosis
(Asano et al., 2005; Fiore et al., 2018; Leung et al., 2014; Mecham and Gibson, 2015). It is
possible that MFAPS binds to fibroblast av33 integrin during wound healing to promote ECM

deposition and remodeling, which may explain why MFAPS expression increases significantly
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during the later stages of wound healing when fibroblasts produce a fibrous scar and differentiate
into myofibroblasts to exert contractile force. In line with this theory, observations in our lab
have demonstrated that treatment of dermal fibroblasts with rMFAPS leads to significantly
increased expression of ACTA2 and collagen genes (COL1A1, COL6A3, and COL11A1),a
marker of myofibroblast differentiation, and facilitates fibroblast collagen gel contraction (Chen

et al., submitted).

B. Limitations of this Study

One limitation of this study involves the analysis of collagen content using Picrosirius red
staining. We used a conventional polarized microscope for this study. However, others have
reported that using the four-axis Universal Stage to analyze collagen deposition and structure in
picrosirius red stained tissue sections is more accurate than our use of a conventional polarized
microscope (Canham et al., 1991). The Universal Stage has four axes of rotation, which allow
the microscopist to align the tissue sample on the slide with the microscope's optical axis either
parallel or perpendicular to it. By doing so, any birefringent element in the tissue can be centered
and rotated on the stage, allowing for the recording of its three-dimensional alignment. This
enables the user to view and study the tissue from different angles. Additionally, the use of
thinner tissue sections has been shown to improve the resolution and accuracy of the staining
results. Furthermore, it is important to note that while previous research (Lattouf et al., 2014) has
taken into account the orientation of collagen fibers, fiber orientation was not considered in our
study. Together, our use of conventional polarized microscopy limits the data that was derived in

the current study.
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A second limitation of this study is the use of antibody neutralization to block MFAPS5
function. While the antibody that was employed has been shown to be an effective blocking
antibody, we cannot be sure that the treatment blocked all MFAPS molecules. Further studies
that employ genetic deletion of MFAPS might circumvent this limitation by creating an absolute

absence of MFAPS5 in wounds.

C. Future Directions

The results of our study provide evidence for the role of MFAPS contributing to fibrosis.
The findings of this study have the potential to serve as a starting point for further research and
discovery in the role of different molecules in fibrosis of the healing wound, with the potential to
significantly impact national health. Our findings suggest that MFAPS could serve as a target for
the development of novel therapeutic strategies aimed at preventing scarring, which has been
linked to numerous medical complications and places a significant burden on national health
systems. Furthermore, it may be of significance to explore the role of other microfibril associated
proteins and ECM molecules, along with examining other factors that contribute to fibrosis, such

as insufficient cell migration, phagocytosis of fibroblasts, and impaired angiogenesis.
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VI. CONCLUSION

The gene expression analysis conducted in our lab indicated that the expression of
MFAPS was considerably higher in skin as compared to oral mucosal wounds at every time
point. Therefore, MFAPS was identified as the most differentially expressed gene when
compared to all other genes analyzed, with a high probability of its involvement in fibrosis.

Hence, MFAPS was considered the candidate gene for further investigation.

Currently, there is limited research examining the impact of MFAPS on fibrosis in wound
healing. The research conducted in our lab is therefore novel in its effort to elucidate the function
of MFAPS in wound healing and the role it plays in scarring. Our investigations have revealed
that MFAPS expression increases in the later stages of wound healing, implying that MFAPS
likely participates in the proliferative and tissue remodeling phases characterized by greater
collagen deposition and angiogenesis. The modulatory effect of MFAP5 on collagen and blood

vessels formation contributes to a more fibrotic phenotype.

With the identification and acknowledgment of the role of MFAPS and potentially other

ECM proteins in fibrosis and scarring, this study offered novel insights into the involvement of

microfibril-associated proteins in skin wound healing and fibrosis.
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APPENDIX

Table 2: Analysis of the percentage of total collagen deposition in wound bed. The table is
illustrating the difference between the three studied groups regarding the total collagen
deposition stained with Trichrome at days 7, 14, and 21 post-wounding. A significant difference
seen between IgG compared to anti-MFAPS5 compared to anti-MFAPS at day 21 (ns = not

significant, P #<0.05).

Trichrome — %Collagen pixel area

Day Test PBS vs. IgG PBS vs. anti-MFAPS  IgG vs. anti-MFAPS
7 multiple t-test ns ns ns

14 multiple t-test ns ns ns

21 multiple t-test ns ns *
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Table 3: Analysis of the percentage of mature collagen stained with PS. The table is
illustrating the difference between the three studied groups regarding the percentage of mature
(red/orange) collagen stained with Picrosirius at days 7, 14, and 21 post-wounding. No

significant difference between the three groups at all times (ns = not significant).

PS — %R Pixel Area

Day Test PBS vs. IgG PBS vs. anti-MFAPS IgG vs. anti-MFAPS
7 2-way ANOVA ns ns ns
14 2-way ANOVA ns ns ns
21  2-way ANOVA ns ns ns
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Table 4: Analysis of the percentage of immature collagen stained with PS. The table is
illustrating the difference between the three studied groups regarding the percentage of immature
(green) collagen stained with Picrosirius at days 7, 14, and 21 post-wounding. A significant
difference seen between PBS compared to anti-MFAPS and IgG compared to anti-MFAPS at day

7 (ns = not significant, P *** <0.001).

PS — %G Pixel Area

Day Test PBS vs. IgG PBS vs. anti-MFAPS IgG vs. anti-MFAPS
7 2-way ANOVA ns ok ok

14 2-way ANOVA ns ns ns

21  2-way ANOVA ns ns ns
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Table 5: Analysis of the percentage of total collagen stained with PS. The table is illustrating
the difference between the three studied groups regarding the percentage of total (red/orange and
green) collagen stained with Picrosirius at days 7, 14, and 21 post-wounding. A significant
difference seen between PBS compared to anti-MFAPS and IgG compared to anti-MFAPS at day

7 (ns = not significant, P *<0.05 and ** <0.01).

PS — %Total Collagen Pixel Area

Day Test PBS vs. IgG PBS vs. anti-MFAPS IgG vs. anti-MFAPS
7 2-way ANOVA ns & ok
14 2-way ANOVA ns ns ns
21  2-way ANOVA ns ns ns
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Table 6: Analysis of the percentage of mature collagen over the percentage of total collagen
stained with PS. The table is illustrating the difference between the three studied groups
regarding the percentage of mature (red) collagen stained with Picrosirius over the percentage of
total collagen (red/orange and green) at days 7, 14, and 21 post-wounding. A significant

difference seen between PBS compared to anti-MFAPS at day 7 (ns = not significant, P **

<0.01).
PS — %R/%Total
Day Test PBS vs. IgG PBS vs. anti-MFAPS IgG vs. anti-MFAPS
7 2-way ANOVA ns *x ns
14 2-way ANOVA ns ns ns
21  2-way ANOVA ns ns ns
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Table 7: Analysis of the percentage of immature collagen over the percentage of total
collagen stained with PS. The table is illustrating the difference between the three studied
groups regarding the percentage of immature (green) collagen stained with Picrosirius over the
percentage of total collagen (red/orange and green) at days 7, 14, and 21 post-wounding. A
significant difference seen between PBS compared to anti-MFAPS compared to anti-MFAPS at

day 7 (P ** <0.01). (ns = not significant, P ** <0.01).

PS — %G/%Total

Day Test PBS vs. IgG PBS vs. anti-MFAPS IgG vs. anti-MFAPS
7 2-way ANOVA ns ok ns
14 2-way ANOVA ns ns ns
21  2-way ANOVA ns ns ns
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