
Self-guided Approximate Linear Programs:

Randomized Multi-shot Approximation of Markov Decision Processes

by

PARSHAN PAKIMAN
B.S., University of Tehran, 2016

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Business Administration

in the Graduate College of the
University of Illinois Chicago, 2023

Chicago, Illinois

Defense Committee:
Selvaprabu Nadarajah, Chair and Advisor
Boxiao Chen,
Negar Soheili,
Daniel Adelman, University of Chicago
Itai Gurvich, Northwestern University

Copyright by

PARSHAN PAKIMAN

2023

To my lovely wife and my wonderful parents.

iii

ACKNOWLEDGMENT

The best way to begin my doctoral thesis is to express my deepest and most sincere gratitude

to Selva Nadarajah, my advisor, mentor, co-author, and close friend. His generosity with his

time and patience has been priceless to me, and his unwavering support and encouragement

were indispensable, without which this research would not have been possible. I am profoundly

grateful for the opportunity to be trained and mentored by Selva. Words cannot adequately

convey my appreciation for all he has done for me. Additionally, I am grateful to Negar Soheili for

her valuable guidance and insights that shaped my Ph.D. journey. Negar and Selva always cared

about my academic growth and personal well-being, which has been remarkably meaningful to

me. I am thankful to both of them for their support and mentorship.

During my doctoral studies, I had the privilege of collaborating with incredible scholars.

Qihang Lin provided valuable guidance, particularly in strengthening proofs and streamlining

their understanding. I am privileged to work with Beryl Chen and Stefanus Jasin. They en-

couraged me to work on a research project beyond my doctoral thesis, greatly enhancing my

overall research experience. I was fortunate to also collaborate with Abhilash Chenreddy and

Ranga Chandrasekaran on an industry-based research project resulting in my first conference

paper. Last but certainly not least, I had the pleasure of collaborating with Yun Fong Lim,

whose research insights and encouragement have been valuable in my academic growth.

iv

ACKNOWLEDGMENT (Continued)

I express my deep gratitude to all my doctoral defense committee members, Dan Adelman,

Beryl Chen, Itai Gurvich, Selva Nadarajah, and Negar Soheili, for their valuable feedback and

insightful comments that significantly enhanced the quality of this thesis. I consider myself

fortunate to have been guided by such a supportive and knowledgeable group of faculty members.

Thank you for your time and thoughtful suggestions.

I am thankful to the Information and Decision Sciences family at the University of Illinois

Chicago for their support and kindness. Your welcoming presence facilitated my academic

growth. Thank you for creating such a warm and supportive research environment.

To Homai, my sweet wife, most supportive partner, and soulmate, I am at a loss for words

to express my gratitude for everything you have done for me. I cannot imagine where I would

be today without you by my side. Your patience and emotional support have been my rock

throughout my Ph.D. journey. In addition, your insights and thought-provoking questions

helped me immensely with refining this research. I am endlessly thankful for your presence

in my life and for everything you have given me, my love.

I am deeply grateful to my parents (Ahmad Pakiman and Maryam Lak), who supported me

from thousands of miles away. My brother (Koushan Pakiman) brought immense happiness,

fun, and joy into my life, and I am truly grateful for his presence. My wonderful friends and

family members, I thank you for your patience with me during times of heavy workload. I will

forever hold the memories of those family members (Fariba, Mamani, and Baba-Bozorg) I lost

during my Ph.D. and was unable to reunite with.

Parshan Pakiman

v

CONTRIBUTIONS OF AUTHORS

Chapter 1 outlines the overarching goal of my thesis and summarizes its contributions. Chap-

ter 2 contains the content of a manuscript titled “Self-Guided Approximate Linear Programs:

Randomized Multi-Shot Approximation of Discounted Cost Markov Decision Processes,” which

is currently under minor review at Management Science. The co-authors of this work are Selva

Nadarajah, Negar Soheili, and Qihang Lin, with me serving as the lead author who has done the

majority of the work. My advisor, Dr. Nadarajah, defined the research question as part of my

first-year summer research paper and subsequently helped with ideation, technical development,

and writing. Drs. Soheili and Lin have helped refine the theory and provided feedback to improve

the paper. Chapter 3 describes a working paper titled “Randomized Multi-Shot Approximation

of Average Cost Markov Decision Processes.” Dr. Nadarajah and I co-authored this paper. I

am the lead author and have done the majority of the work. Dr. Nadarajah helped with the

ideation and technical development aspects and also provided valuable feedback on the exposi-

tion. Each chapter required the development of code to solve large-scale optimization models,

which was done solely by me. All code has been open-sourced and can be accessed through the

following repository: https://github.com/Multi-Shot-Approximation-of-MDPs.

vi

https://github.com/Multi-Shot-Approximation-of-MDPs

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1

2 SELF-GUIDED APPROXIMATE LINEAR PROGRAMS:
RANDOMIZED MULTI-SHOT APPROXIMATION OF
DISCOUNTED COST MARKOV DECISION PROCESSES

. 11
2.1 Introduction . 12
2.2 Exact Mathematical Programs . 19
2.2.1 Background . 19
2.2.2 Feature-based Exact Program . 22
2.3 Randomized One-Shot Approximation 25
2.3.1 Model and Theory . 26
2.3.2 Implementation Guidelines . 31
2.4 Randomized Multi-Shot Approximation 36
2.4.1 Model and Algorithm . 37
2.4.2 Understanding the Self-guiding Mechanism 40
2.4.3 Theoretical Guarantees . 44
2.4.4 Implementation Guidelines . 48
2.5 Extensions . 49
2.6 Perishable Inventory Control . 52
2.6.1 MDP Formulation and Instances . 52
2.6.2 Computational Setup . 55
2.6.3 Results . 56
2.7 Bermudan Options Pricing . 61
2.7.1 MDP Formulation . 62
2.7.2 Computational Setup and Benchmarks 63
2.7.3 Results . 64
2.8 Conclusions . 66
2.9 Proofs . 69
2.9.1 Additional Details of Assumption 1 69
2.9.2 Proofs of Statements in §2.2 . 70
2.9.3 Proofs of Statements in §2.3 . 70
2.9.4 Proofs of Statements in §2.4 . 82
2.9.5 Proofs of Statements in §2.5 . 89
2.10 Relaxing Assumptions . 91
2.10.1 Relaxing Assumption of V∗ ∈ R . 91
2.10.2 Relaxing Assumption 3 . 92

vii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

2.11 Constraint Sampling Bound for Self-guided FALP 95
2.12 Optimistic Bound Estimation . 97
2.12.1 Constraint Violation Learning . 97
2.12.2 Information Relaxation and Duality 101
2.13 Addendum to Numerical Study . 103
2.13.1 Visualization of Self-guiding Mechanism 104
2.13.2 Analyzing the Impact of Constraint Sampling on Policy-

guided FALP . 107
2.13.3 Analyzing ReLU Basis Functions . 109
2.13.4 Upper and Lower Bound Values . 113

3 RANDOMIZED MULTI-SHOT APPROXIMATION OF
AVERAGE COST MARKOV DECISION PROCESSES 119
3.1 Introduction . 120
3.1.1 Contributions . 124
3.1.2 Related work . 126
3.2 Markov Decision Processes . 128
3.3 Bound-Focused Programs . 132
3.3.1 Bound-Focused Exact Linear Program 133
3.3.2 Bound-Focused Feature-based Exact Program 134
3.3.3 Bound-Focused Approximate Linear Program 138
3.4 Policy-Focused Programs . 145
3.4.1 Policy Performance Bound . 145
3.4.2 Discounted-cost Approach to Average-Cost MDPs 147
3.4.3 Policy-Focused Exact Programs . 151
3.4.4 Policy-Focused Approximate Linear Program 155
3.5 Algorithm . 160
3.6 Generalized Joint Replenishment . 165
3.6.1 Constraint Generation for Stump Basis Functions 168
3.6.2 Instances and Computational Setup 171
3.6.3 Results . 172
3.7 Perishable Inventory Control Problem 174
3.7.1 Instances and Benchmarks . 174
3.7.2 Results . 176
3.8 Conclusion . 178
3.9 Addendum to Assumption 7 . 180
3.10 Proofs . 182

CITED LITERATURE . 196

VITA . 202

viii

LIST OF TABLES

TABLE PAGE

I Examples of universal random basis functions. 24
II Comparison of ALPLNS and FALP on the three-dimensional perish-

able inventory control instances (σ = 2 and cl = 100). 57
III Comparison of ALPLNS, FALP, policy-guided FALP, and self-guided

FALP on the five-dimensional perishable inventory control instances
(γ = 0.95 and cl = 1000). 58

IV Comparison of ALPLNS, FALP, and self-guided FALP on the ten-
dimensional perishable inventory control instances (γ = 0.95 and
cl = 1000). 59

V Comparison of optimality gaps on the Bermudan options pricing
application. 65

VI Comparison of the effect of different constraint sampling strategies
on policy-guided FALP (extended version of Table III). 109

VII Comparison of ReLU FALP and Fourier FALP on the three-dimensional
perishable inventory control instances (σ = 2 and cl = 100). 110

VIII Comparison of ReLU FALP and ReLU self-guided FALP with Fourier
FALP and Fourier self-guided FALP on the Bermudan options pric-
ing instances. 112

IX Lower bound and upper bounds used to compute optimality and
lower-bound gaps in Table II. 115

X Lower bound and upper bounds used to compute optimality and
lower-bound gaps in Table III. 115

XI Lower bound and upper bounds used to compute optimality and
lower-bound gaps in Table IV. 116

XII Lower bound and upper bounds used to compute optimality and
lower-bound gaps in Table V. 116

XIII Lower bound and upper bounds used to compute optimality and
lower-bound gaps in Table VI. 117

XIV Lower bound and upper bounds used to compute optimality and
lower-bound gaps in Table VII. 117

XV Lower bound and upper bounds used to compute optimality and
lower-bound gaps in Table VIII. 118

XVI Comparison of BALP and AK-ALP lower and upper bounds in
generalized joint replenishment problem instances. 173

XVII Parameters of five-dimensional perishable inventory control instances. . 174
XVIII Comparison of methods on perishable inventory control problem

instances. 177

ix

LIST OF FIGURES

FIGURE PAGE

1 Illustration of self-guiding mechanism with ν equal to a uniform
distribution. 40

2 FALPSG

600,7 upper and lower bounds on two representative ten-dimensional
perishable inventory control instances with (ch, cd, cb, σ) equal to
(1, 8, 2, 5) and (1, 8, 2, 2) in the left and right panels, respectively. 60

3 Comparison of FALP VFA V(β
FA

50) (left panel) and self-guided
FALP VFA V(β

SG

50) (right panel) on a two-dimensional perishable
inventory control instance. 105

4 Illustrating the impact of guiding constraints on greedy policy
performance. 106

5 Self-guided FALP state-relevance distributions ν ′(β
SG

40) (left panel),
ν ′(β

SG

45) (middle panel), and ν ′(β
SG

50) (right panel) on a two-dimensional
perishable inventory control instance. 108

6 Illustrating the connection between lower bound quality and BFA
quality on a toy MDP. 141

x

LIST OF ABBREVIATIONS

AC Average Cost

ALP Approximate Linear Program

BALP Bound-focused Approximate Linear Program

BELP Bound-focused Exact Linear Program

BFEP Bound-focused Feature-based Exact Program

BFA Bias Function Approximation

BOP Bermudan Options Pricing

DC Discounted Cost

FALP Feature-based Approximate Linear Program

FEP Feature-based Exact Program

GJR Generalized Joint Replenishment

IMP Idealized Math Program

LB Lower Bound

LSM Least Squares Monte Carlo

MCMC Markov Chain Monte Carlo

MDP Markov Decision Process

PALP Policy-focused Approximate Linear Program

xi

LIST OF ABBREVIATIONS (Continued)

PELP Policy-focused Exact Linear Program

PFEP Policy-focused Feature-based Exact Program

PIC Perishable Inventory Control

RL Reinforcement Learning

SP Separation Problem

Semi-MDP Semi-Markov Decision Process

UB Upper Bound

VFA Value Function Approximation

xii

SUMMARY

We revisit the well-established approximate linear programming approach to Markov deci-

sion processes (MDPs). This model-based reinforcement learning (RL) algorithm has strong

theoretical properties and has been successfully applied to many Operations Management and

Operations Research applications. However, guaranteeing this approach results in near-optimal

control policies for new applications and problem instances poses known practical challenges.

These challenges include (i) the design of approximation architectures and (ii) the formulation

of approximate linear programs (ALPs) along with the fine-tuning of their parameters. Specifi-

cally, designing approximation architectures that ensure near-optimal MDP bias/value function

approximations (B/VFAs) often involves tedious trial-and-error and exploiting problem struc-

tures. Additionally, formulating an ALP that ensures its B/VFA corresponds to high-quality

control policies requires refining previously suggested ALP formulations and developing methods

to tune ALP parameters. Although prior research has proposed solutions to these challenges for

specific applications and problem instances, bridging the gap to design an application-agnostic

ALP method that is both

This doctoral thesis research presents novel ALP methodologies for discounted-cost and

average-cost MDPs that mitigate the aforementioned practical challenges. Our methods lever-

age random basis functions commonly used in Machine Learning and extend them to the ALP

framework. Random basis functions allow us to replace the hand-engineering of B/VFAs with

computationally low-cost sampling of random basis function parameters from known distribu-

xiii

SUMMARY (Continued)

tions. Our methods also involve generating multiple randomized approximations to the MDP

bias/value function instead of constructing a single deterministic B/VFA, as predominantly

done in the literature. Therefore, our randomized multiple-shot approximation approaches in-

volve iteratively solving a sequence of ALPs, where two consecutive models in this sequence

are connected using “guiding” constraints that utilize the ALP B/VFA obtained in the previous

iteration to guide the computation of the B/VFAs in the current iteration. Thus, our methods

iteratively refine their own ALP formulations and parameters, so we refer to them as “self-guided

ALPs.” We establish several theoretical properties of our methods, including probabilistic con-

vergence rates and policy performance bounds, that are new to the ALP and RL literature.

We also apply our application-agnostic algorithms to challenging inventory control and options

pricing problems. We show that they deliver excellent control policies and performance bounds

and improve upon or compete with existing problem-specific benchmarks. More broadly, our

research takes a meaningful step toward easy-to-implement model-based RL methods that are

guaranteed to compute near-optimal policies and performance bounds in both discounted-cost

and average-cost MDP settings.

Chapter 1 provides an introduction to this thesis and a summary of its contributions. In

chapters 2 and 3, our randomized multiple-shot approximation approaches for discounted-cost

and average-cost MDPs are outlined, respectively.

xiv

CHAPTER 1

INTRODUCTION

After a few months into my Ph.D., I asked the following question from my thesis advisor:

Despite the success of reinforcement learning algorithms for operations management and op-

erations research applications, why has the implementation of such methods not gained much

attention? This question has influenced my doctoral thesis research.

Reinforcement learning (RL) is a subfield of Artificial Intelligence that focuses on solving

large-scale Markov decision processes (MDPs). MDPs model a wide range of operations manage-

ment and operations research problems for which model-based RL (i.e., approximate dynamic

programming) provides tractable solutions for computing control policies. Several families of

RL algorithms, such as Approximate Value Iteration, Approximate Policy Iteration, and Ap-

proximate Linear Programming, are developed for approximately solving these MDPs with

high-dimensional state and/or action spaces. Nonetheless, deploying these algorithms relies on

exploiting problem structure, engaging in tedious trial and error, and human intervention is

necessary to ensure the quality of their solutions. While the literature documents how to tailor

these RL methods for specific problems, it is unclear how to adapt them to new problem in-

stances and applications. These deployment challenges are rooted in the formulations and the

theory behind these algorithms, and they severely limit the potential of RL to be conveniently

applied to business applications. These reasons answer the question above.

1

2

This thesis leverages the well-established approximate linear programming approach to

MDPs because it has several strong theoretical properties and is shown to perform well across

multiple application domains. This approach for discounted-cost (DC) and average-cost (AC)

MDPs relies on solving a so-called approximate linear program (ALP). We present two novel

approximate linear programming frameworks, one for DC MDPs and one for AC MDPs. Both

frameworks (i) are application-agnostic such that they can be applied directly to different prob-

lem instances and applications, (ii) deliver theoretical support for the performance of models

solved during their implementation, and (iii) exhibit “near-optimal” numerical performance.

DC ALP relies on approximating the MDP value function, and its formulation necessitates

making two choices: basis functions and state-relevance distribution, which are both defined

over the MDP state space. The linear combination of basis functions provides a value function

approximation (VFA), and the state-relevance distribution assigns weights to different regions of

the MDP state space. DC ALP minimizes a VFA error weighted by the state-relevance distribu-

tion, i.e., it reduces VFA error at states where state-relevance distribution assigns high weights.

The ALP VFA enables computing a “greedy policy,” along with upper and lower bounds on the

optimal policy cost. In particular, plugging this VFA into a so-called greedy optimization prob-

lem results in the greedy policy, whose cost is an upper bound. The VFA can also be plugged

into other methods (e.g., information relaxation and duality, constraint violation learning) to

obtain a lower bound. Combining these upper and lower bounds on the optimal policy cost, we

can calculate an optimality gap that reflects how close the greedy policy cost is relative to the

optimal policy cost without directly knowing the optimal policy.

3

AC ALP relies on approximating the MDP bias function. It leverages a linear combination

of chosen basis functions to perform bias function approximation (BFA). AC ALP treats as a

variable a lower bound on the optimal policy cost, and it maximizes this lower bound without

having an explicit term in its objective to minimize a BFA error. AC ALP objective is thus

different from the DC ALP objective that minimizes a VFA error weighted by a state-relevance

distribution. This difference resulted in fundamentally different formulations, theoretical results,

and algorithm development for AC ALP compared to DC ALP. The literature suggests using

the AC ALP formulation for computing the lower bound. However, to compute BFAs, greedy

policies, and upper bounds, it is standard to solve AC ALP modifications that include some

notion of BFA error in their objective function.

Below we describe the main contributions of this research.

Quality of lower bound. The quality of lower bounds from DC ALP and AC ALP

relies on the choice of basis functions used to define VFA and BFA, respectively. However,

selecting appropriate basis functions to ensure these ALPs deliver near-optimal lower bounds

is challenging without prior domain knowledge. Most existing theory for ALP assumes basis

functions are provided as input. Only a few studies have investigated the selection of basis

functions and developed innovative methods to generate basis functions. These studies either

focus on a specific application or rely on the structure of MDP optimal policy, which is idealized

information not available during the deployment of ALP.

This thesis is the first to extend random basis functions, also referred to as random features,

widely used in machine learning tasks such as classification and regression, to RL approaches

4

based on mathematical programming, specifically DC ALP and AC ALP. We show that this

extension addresses the issue with the suboptimal ALP lower bounds resulting from poorly

selected basis functions. Consider two gaps: one between the DC ALP lower bound and the

optimal policy DC, and the other between the AC ALP lower bound and the optimal policy

AC. We develop probabilistic error bounds on these gaps and demonstrate that they converge

to zero with a high probability and at a dimension-free rate of one divided by the square root

of the number of random bases used to formulate VFA in DC ALP and BFA in AC ALP. These

rates can be viewed as the convergence rate of a Markov chain Monte Carlo (MCMC) method

extended to Hilbert spaces for function approximation instead of estimating a single value. Our

rates are the first finite convergence rates in the ALP literature with respect to the number of

basis functions. Although our error bounds converge to zero at the same rate for both DC and

AC settings, the constants in these bounds differ. Specifically, in the case of AC ALP, we are

able to show that approximating the MDP bias function at a possibly small region of the state

space suffices to obtain tight lower bounds. Thus, the constant in our AC ALP error bound

relies on how “hard” it is to approximate the MDP bias function in this region. For these results,

which are our first main contribution, please see §2.3 and §3.3 that correspond to DC MDPs

and AC MDPs, respectively.

Different basis functions are used to define V/BFA and formulate ALP. We illustrate two

choices below while a broader discussion on basis functions studied in the literature can be found

in §2.1. Trick and Zin (1997) use spline basis functions to perform VFA in ALP. While this paper

successfully applies such VFA to a low-dimensional MDP, using this VFA on large-scale prob-

5

lems has not been investigated. The challenge lies in generating splines with low computational

cost while ensuring the resulting VFA maintains near-optimality. Alternatively, one can define

a VFA using neural networks that are known to provide near-optimal approximations of MDP

value function under mild conditions, but they depend non-linearly on their weights, necessitat-

ing solving non-linear programs. Random basis functions are generated by low-cost sampling

from known distributions, and universal random basis functions, such as random Fourier bases,

provide an arbitrarily close approximation of the MDP value function. In addition, a VFA con-

structed with random basis functions is linear in its weights, requiring the solution of a linear

program. We leverage these low-cost sampling, universality, and linearity properties of VFAs

based on random bases to develop our methods that are computationally appealing and provide

convergence rates. Similar results may not carry over when using splines or neural networks in

an ALP.

Quality of policy. In DC ALP, it is known that the state-relevance distribution used to

define its objective function highly impacts the quality of greedy policy. Approaches for choos-

ing this parameter are limited. For example, one can set the state-relevance distribution to the

state-visit frequency of a baseline policy, but this approach lacks theoretical and computational

justification (De Farias and Van Roy 2003, Farias and Van Roy 2006). In AC ALP, the state-

relevance distribution does not appear in the ALP formulation. While it might be intriguing

that there is no need to tune this ALP parameter in the AC setting, the absence of the state-

relevance distribution can result in poor BFAs and greedy policies. Two lines of research studied

this issue. The first line modifies the original ALP formulation by assuming a fixed set of basis

6

functions is given (De Farias and Van Roy 2002, 2006, Veatch 2013). Theoretical results for

these modified models typically rely on idealized information, and there is no numerical evidence

on how such ALP models perform. Klabjan and Adelman (2007) and Adelman and Klabjan

(2012) proposed the second line that dynamically refines basis functions using dual ALP infor-

mation and optimization. Their approach addresses this issue with AC ALP formulation via

basis function generation. For a general MDP, their basis function generation requires solving

a nonlinear math program, a practically challenging task. For a generalized joint replenishment

(GJR) problem, they showed that this nonlinear program simplifies to a mixed-integer program.

While extensions of their simplified model to other applications are, in principle, possible, no

research has yet explored such extensions.

The second main contribution of this research involves taking multiple shots at randomly ap-

proximating the MDP value/bias function rather than performing a single-shot approximation,

which is predominantly done in the literature, to mitigate the issues related to the state-relevance

distribution in DC ALP and AC ALP. We propose two randomized multi-shot approximation

mechanisms: one for DC MDPs and another for AC MDPs. Both these mechanisms involve an

iterative process of sampling random basis functions in batches and constructing multiple ALP

models with nested V/BFAs that are increasing in the number of random bases. Specifically, in

the current iteration, we formulate an ALP using basis functions sampled thus far and include

in its formulation additional “guiding constraints” that are defined based on V/BFA obtained

from the previous iteration’s ALP with fewer random bases. We thus label an ALP constructed

in this manner as “self-guided ALP” because it uses its own past V/BFA information to direct

7

the computation of the next V/BFA by incorporating guiding constraints. While the main idea

behind both mechanisms is the same, they are fundamentally different, as explained next.

In the DC setting, our guiding constraints are added directly to the original DC ALP formu-

lation to obtain self-guided ALP. We show that these constraints dynamically update the state-

relevance distribution and thus avoid the need for hand-tuning this ALP parameter. Therefore,

our self-guided ALP models do not rely on idealized information or problem structure to define

state-relevance distribution. We develop an error rate for the quality of our self-guided ALP

VFAs and demonstrate that a worst-case measure of their greedy policy performance is weakly

improving as more random bases are sampled. To our knowledge, our approach is the only

method in the literature that dynamically updates state-relevance distribution and has asso-

ciated theoretical guarantees. These results, which serve as the third main contribution, are

presented in §2.4.

In the AC setting, there is no hope of obtaining high-quality BFAs for a general MDP from

the original AC ALP formulation with a fixed set of bases because it does not have any BFA

error term in its objective function. Accordingly, there is no value in adding guiding constraints

to this model. Therefore, we use an alternative ALP formulation proposed by De Farias and

Van Roy (2002) that includes (an artificially added) state-relevance distribution to control BFA

error in different regions of the MDP state space. Our self-guided ALP in the AC setting is

thus based on the formulation in De Farias and Van Roy (2002), random basis functions, and

guiding constraints. Note that the self-guided ALP model is solved only for computing good

BFAs, not lower bounds, because we already discussed that the original AC ALP model with

8

universal random bases provides near-optimal lower bounds (please see our first contribution).

We develop a weakly improving upper bound on the worst-case performance of policy obtained

from our self-guided ALP for AC MDPs. The self-guided ALP formulation for AC MDPs and

its theoretical properties are our fourth main contribution in this thesis. Please see §3.4 for

details.

Numerical studies. We have numerically tested both DC and AC versions of our self-

guided ALP method. In the DC setting, we applied it to high-dimensional instances of perish-

able inventory control (PIC) and Bermudan options pricing (BOP) problems. Self-guided ALP

achieves excellent policies and bounds, leading to the best-known policies and lower bounds on

the PIC instances and competing with a state-of-the-art benchmark for BOP. It is encouraging

that our application-agnostic policies and lower bounds outperform benchmarks that use domain

knowledge for basis function selection and/or heuristically updating state-relevance distribution.

In the AC setting, we considered two applications: GJR, which gives rise to an AC semi-MDP,

and an AC version of PIC. We benchmarked our method on GJR instances against the algo-

rithm in Adelman and Klabjan (2012) that adaptively generates basis functions, as we do, but

exploits the structure of GJR. On GJR instances without holding cost, the challenge is to find

tight lower bounds, as shown in Adelman and Klabjan (2012). Therefore, we only perform the

part of the self-guided ALP method that pertains to computing the lower bound (i.e., single

shot). We observe that our application-agnostic lower bounds are comparable with the ones from

this application-specific benchmark on these GJR instances, which is encouraging. To evaluate

the effectiveness of our self-guiding mechanism in the AC setting, we applied our method to

9

PIC instances with AC criteria. We observed that our approach leads to near-optimal policies.

It also outperforms several heuristics and benchmarks based on our DC self-guided ALP model.

These extensive numerical studies serve as the fifth main contribution of this thesis. The results

for DC and AC self-guided ALP models are reported in §2.6–§2.7 and §3.6–§3.7, respectively.

Solving ALPs. Our self-guided ALP models are semi-infinite linear programs if MDP state

and/or state spaces are continuous. For PIC and BOP applications, we solve these programs

via the widely-used constraint sampling approach (please see §2.6–§2.7). We observed that this

method delivers high-quality approximations on the instances we considered. Nevertheless, for

the GJR application, we use a more sophisticated approach called constraint generation (please

see §3.6.1) for two reasons. First, the state and action spaces of GJR are both high-dimensional,

so we expect constraint sampling to fail in providing a good approximation of semi-infinite linear

programs. Second, solving the greedy policy optimization problem in GJR is challenging and

cannot be done via discretization, given the high dimensionality of its MDP action space. Note

that discretization of the action space is possible in PIC and BOP applications since they have

one-dimensional action spaces. For GJR, we thus showcase how two families of random bases,

namely random Stump and random ReLU, can be used to reformulate the constraint generation

and greedy policy optimization problems as mixed-integer programs (please see §3.6). These

solution approaches for (approximately) solving semi-infinite linear programs formulated with

random bases are our last main contribution.

Circling back to the question I posed at the beginning of this chapter, this dissertation

takes a significant step toward application-agnostic policies and bounds for MDPs, making the

10

deployment of ALPs much easier. To make our approach accessible to a wider range of appli-

cations beyond those studied in this thesis, we have made publicly available Python codes that

include the implementation of our methods, benchmarks, and the three applications considered

(https://github.com/Multi-Shot-Approximation-of-MDPs).

More broadly, this thesis opened new research directions in RL to develop easy-to-implement

methodologies that provide theoretical guarantees and are computationally efficient. While

several model-based RL algorithms exist in the literature, such as approximate value iteration

and least-square Monte Carlo, these methods, similar to ALP, often require significant hand-

tuning to perform well on a specific problem. In addition, because they lack the same theoretical

properties as the ALP approach when a fixed set of basis functions is used, it remains unclear

what should be the correct notion of “self-guiding” or “randomized multi-shot approximation” in

these methods. Therefore, it would be valuable to investigate model-based RL algorithms other

than ALP within the multi-shot approximation framework of this thesis. Moreover, this research

raises the broader question of extending randomized multi-shot approximation to model-free RL

and offline RL.

https://github.com/Multi-Shot-Approximation-of-MDPs

CHAPTER 2

SELF-GUIDED APPROXIMATE LINEAR PROGRAMS:

RANDOMIZED MULTI-SHOT APPROXIMATION OF

DISCOUNTED COST MARKOV DECISION PROCESSES

(Co-authors: Parshan Pakiman, Selvaprabu Nadarajah, Negar Soheili, Qihang Lin)

Abstract

Approximate linear programs (ALPs) are well-known models based on value function approx-

imations (VFAs) to obtain policies and lower bounds on the optimal policy cost of discounted-

cost Markov decision processes (MDPs). Formulating an ALP requires (i) basis functions, the

linear combination of which defines the VFA, and (ii) a state-relevance distribution, which de-

termines the relative importance of different states in the ALP objective for the purpose of min-

imizing VFA error. Both these choices are typically heuristic: basis function selection relies on

domain knowledge while the state-relevance distribution is specified using the frequency of states

visited by a baseline policy. We propose a self-guided sequence of ALPs that embeds random

basis functions obtained via inexpensive sampling and uses the known VFA from the previous

iteration to guide VFA computation in the current iteration. In other words, this sequence takes

multiple shots at randomly approximating the MDP value function with VFA-based guidance

between consecutive approximation attempts. Self-guided ALPs mitigate domain knowledge

during basis function selection and the impact of the state-relevance-distribution choice, thus

11

12

reducing the ALP implementation burden. We establish high probability error bounds on the

VFAs from this sequence and show that a worst-case measure of policy performance is improved.

We find that these favorable implementation and theoretical properties translate to encouraging

numerical results on perishable inventory control and options pricing applications, where self-

guided ALP policies improve upon policies from problem-specific methods. More broadly, our

research takes a meaningful step toward application-agnostic policies and bounds for MDPs.

2.1 Introduction

Computing high-quality control policies in sequential decision making problems is an im-

portant task across several application domains. Markov decision processes (MDPs; Puterman

1994) provide a powerful framework to find optimal policies in such problems but are often

intractable to solve exactly due to their large state and action spaces or the presence of high-

dimensional expectations (see §1.2 and §4.1 of Powell 2007). Therefore, a class of approximate

dynamic programming (ADP) approaches instead approximate the value functions of MDPs and

use the resulting approximations to obtain control policies in simulations (Bertsekas and Tsit-

siklis 1996). Approximate linear programming (Schweitzer and Seidmann 1985, De Farias and

Van Roy 2003) is a math-programming-based ADP approach for computing value function ap-

proximations (VFAs) that has been applied to a wide variety of domains, including operations re-

search and artificial intelligence (Adelman 2003, Guestrin et al. 2003, Forsell and Sabbadin 2006,

Desai et al. 2012a, Adelman and Mersereau 2013, Tong and Topaloglu 2013, Nadarajah et al.

2015, Mladenov et al. 2017, Balseiro et al. 2019, Blado and Toriello 2019). It solves a so-called ap-

proximate linear program (ALP) to obtain a VFA, from which a control policy can be computed.

13

This VFA can also be used to obtain a lower bound on the optimal policy cost, which enables

the computation of an optimality gap for the ALP policy as well as other heuristic policies.

Formulating an ALP requires (i) basis functions, the linear combination of which defines the

VFA over the MDP state space, and (ii) a state-relevance distribution, which determines the

relative importance of different states in the ALP objective for the purpose of minimizing VFA

error. It is well known that the choices of basis functions and the state-relevance distribution

are challenging to make and impact the VFA quality significantly. These choices are typically

handled heuristically, the former using domain knowledge and the latter by considering the

states visited by a baseline policy (see §5 in Farias and Van Roy 2006 and §3.2.2 in Sun et al.

2014). The goal of this paper is to broaden the applicability of ALP by reducing the burden of

making these choices.

Our contributions are the following.

1. Our starting point is to provide a new reformulation of a discounted-cost MDP as a large-

scale mathematical program. This program has infinitely many variables corresponding

to a weighted integral of a continuum of basis functions, referred to as random basis

functions (or random features in machine learning), and a large number of constraints

(possibly infinite), one for each MDP state and action pair. The class of random Fourier

basis functions defined using cosines is a popular example (Rahimi and Recht 2008). A

functional analogue of Monte Carlo sampling can be used to approximate the integral over

random basis functions. The resulting model, dubbed feature-based approximate linear

program (FALP), has variables corresponding to the VFA weights in a linear combination

14

of randomly sampled basis functions. This model can be viewed as a randomized one-shot

approximation of the MDP value function. We establish high probability bounds on the

worst-case error between the FALP VFA and the MDP value function. In particular, this

error bound converges at the dimension-free rate of one divided by the square root of the

number of sampled random basis functions, analogous to the convergence rate of standard

Monte Carlo sampling with respect to the number of samples.

2. While FALP does not rely on defining basis functions using domain knowledge, its formu-

lation still requires choosing a state-relevance distribution. Misspecifying this distribution

can lead to poor ALP policies (De Farias and Van Roy 2003, Sun et al. 2014). To address

this issue, we propose a multi-shot randomized approximation approach that leverages the

ability to sample additional random basis functions inexpensively. This approach solves

a sequence of FALP models with increasing numbers of random basis functions and guid-

ing constraints that ensure successive VFAs weakly improve their distances to the MDP

value function at each state. These constraints can be interpreted as adaptively updat-

ing the state-relevance distribution. We label our multi-shot approximation approach as

self-guided FALP because the guiding constraints only require VFA information from a

preceding approximation attempt. The sequence of self-guided FALP VFAs is guaranteed

to provide monotonically increasing lower bounds and a monotonically non-increasing

worst-case measure of policy performance. We establish an error bound for self-guided

FALP that reflects the effect of the guiding constraints on this bound.

15

3. We validate the performance of the proposed models on perishable inventory control and

options pricing applications. We find that FALP outperforms ALP models with tai-

lored application-specific basis functions and leads to near-optimal policies and bounds on

low-dimensional instances for both applications, also closing the optimality gaps of prior

ALP-based policies on known perishable inventory control instances. In other words, ap-

proximations based on one-shot randomization suffice in these low-dimensional instances.

This is, however, not the case on higher dimensional instances, where FALP policies

and/or bounds are suboptimal and randomized multi-shot approximations deliver value.

Specifically, self-guided FALP provides excellent policies and bounds that significantly

improve upon FALP as well as benchmarks. The benchmarks for the first and second

applications are, respectively, FALP with state-relevance distribution updates based on

the states visited by past FALP policies (see De Farias and Van Roy 2003) and the

least-squares Monte Carlo algorithm, which is popular for options pricing (Longstaff

and Schwartz 2001). Beyond these specific applications, the application-agnostic poli-

cies from self-guided FALP can serve as a useful benchmark to assess the value of proce-

dures that exploit application structures. To facilitate such benchmarking, we have made

Python code implementing the approaches developed in this paper publicly available at

https://github.com/multi-shot-approximation-of-mdps.

Our contributions add to the research on ALPs, which predominantly assumes a fixed set of

basis functions and a heuristic choice of the state-relevance distribution. Work relaxing these

assumptions, as we do, is limited.

https://github.com/multi-shot-approximation-of-mdps

16

Klabjan and Adelman (2007) is a seminal paper that develops a convergent algorithm to

generate basis functions for semi-Markov decision processes. It requires the solution of a chal-

lenging nonlinear program. Building on this work, Adelman and Klabjan (2012) considers an

innovative algorithm for basis function generation in a generalized joint replenishment problem.

Their algorithm leverages structure and numerical experience for this application. Our approach

differs from this work because it uses low-cost sampling to generate basis functions, focuses on

discounted-cost MDPs, and is application-agnostic.

Bhat et al. (2012) side-step basis function selection when computing VFAs by applying the

kernel trick (see, e.g., chapter 5 of Mohri et al. 2012), which replaces the inner products of such

functions in the dual of a regularized ALP relaxation by kernels. Guarantees on the approxi-

mation quality of their VFAs depend on the kernel and an idealized sampling distribution that

assumes knowledge of an optimal policy. Our approach instead works directly on the primal ALP

formulation and samples parameters that define a class of random basis functions as opposed

to state-action pairs. Moreover, the sampling distribution is readily available in our framework

and the error bounds that we develop are for models that do not rely on the knowledge of an

optimal policy for their formulation and solution.

The papers above do not address the choice of the state-relevance distribution. Parametric

forms for the state-relevance distribution that are close to the steady-state distribution of an

optimal policy can be obtained for some queuing applications but not in general (De Farias

and Van Roy 2003). De Farias and Van Roy (2003, page 854) and Farias and Van Roy (2006)

propose dynamically updating this distribution using the state-visit frequency from simulating

17

a policy, versions of which are employed in Sun et al. (2014) and in conjunction with FALP in

our numerical experiments. This strategy lacks theoretical backing and it can also be computa-

tionally expensive to simulate a policy each time an update of the state-relevance distribution

is made. Self-guided FALP, while iterative, is fundamentally different as it leverages the ability

to cheaply sample new random basis functions and uses only past VFA information available

from solving an ALP model to guide the state-relevance distribution. Along with the theo-

retical guarantees mentioned earlier, one can view self-guided FALP as a conceptually sound

mechanism for updating the state-relevance distribution.

To solve ALP models, which are large-scale, potentially semi-infinite, linear programs, we

rely on the constraint sampling approach to obtain a linear program with a manageable number

of variables and constraints that can be sent to a commercial solver such as Gurobi (De Farias

and Van Roy 2004, Calafiore and Campi 2005). To generate a lower bound on the optimal

policy cost using a given VFA, we explore two approaches from the literature in our numerical

study, neither of which deal with basis function selection or state-relevance distribution choice.

For the perishable inventory control application, where the controllable part of state space

is high dimensional, we embed VFAs within the primal-dual ALP approach from Lin et al.

(2020), which is based on learning regions of high constraint violation and is thus referred to

as constraint-violation learning. For the options pricing application, where there is essentially

no controllable part of the state, we use VFAs within the information relaxation and duality

approach studied by Haugh and Kogan (2004) and Brown et al. (2010), which solves penalized

18

hindsight optimization models and is known to be effective for this class of applications (see

Brown et al. 2022 for a tutorial).

Our work builds on the seminal research on random bases by Rahimi and Recht (2008),

Rahimi and Recht (2008) and Rahimi and Recht (2009). There is extant literature applying

this idea to data mining and machine learning applications (Lu et al. 2013, McWilliams et al.

2013, Beevi et al. 2016, Wu et al. 2018) and to a value iteration algorithm by Haskell et al. (2020).

These papers embed random bases in what amounts to a regression setting, whereas we show that

such bases can be effectively used in ALPs that have complicated constraints. We also add to

this literature in terms of theory. Our approximation guarantees for FALP adapt the arguments

in Rahimi and Recht (2008) to an ALP setting and also strengthen the error bounds. A similar

analysis of self-guided FALP, unfortunately, does not lead to insightful bounds. Therefore, we

develop an error bound for self-guided FALP based on functional projections and a geometric

notion of feasibility, which are new to this literature, and potentially of independent interest.

More broadly, our work adds to the rich literature on reinforcement learning that attempts

to reduce the burden of feature engineering (Mnih et al. 2015, Silver et al. 2017). Here, neural

networks and deep learning have received significant research attention as they facilitate the

approximation of complex functions with limited domain knowledge (Fujimoto et al. 2018, Os-

band et al. 2019, Franke et al. 2021). They give rise to VFAs that depend nonlinearly on the

parameters but involve the solution of non-convex optimization problems (Wang et al. 2020).

Our use of random basis functions in ALP mitigates domain knowledge while retaining linear

programming structure; it can thus be viewed as a complementary strategy.

19

In §2.2, we present the standard linear programming formulation to solve MDPs and then

introduce an alternative formulation in a randomized feature space. Randomized single-shot and

multi-shot approximations of the MDP value function are discussed in §2.3 and §2.4, respectively.

In §2.5, we present extensions to finite-state and finite-horizon MDPs. The numerical studies

on perishable inventory control and options pricing are covered in §2.6 and §2.7, respectively.

We conclude in §2.8. All proofs and supporting materials are available in §§2.9-2.13.

2.2 Exact Mathematical Programs

In §2.2.1, we provide background on infinite-horizon discounted-cost MDPs and their known

linear programming MDP reformulation. In §2.2.2, we propose an alternative mathematical

programming reformulation for MDPs based on randomized feature spaces, which plays a central

role in the approximations we develop in later sections.

2.2.1 Background

Consider a decision maker controlling a system over an infinite horizon. A policy π : S 7→ As

assigns an action a ∈ As to each state s ∈ S, where S denotes the MDP state space and As

represents the feasible action space at state s. An action a ∈ As taken at state s ∈ S results in

an immediate cost of c(s, a) and the transition of the system to the next state according to the

probability distribution P(·|s, a).

20

The decision maker’s objective is to find a stationary and deterministic optimal policy π that

minimizes discounted expected costs. Starting from an initial state s0 = s ∈ S, the discounted

expected cost of a policy π is

PC(s, π) := E
[∞∑
t=0

γtc(sπt , π(s
π
t))

∣∣∣ s0 = s],
where γ ∈ [0, 1) denotes the discount factor, expectation E is with respect to the state-action

probability distribution induced by the transition probability distribution P(·|s, a) and the policy

π, and sπt is the state reached at stage t when following this policy. The quality of a given policy

is evaluated with respect to a distribution χ(s) for the initial state. Specifically, we define the

cost of policy π as PC(π) := Eχ[PC(s, π)].

The policy-cost minimization problem is

inf
π:S7→As

PC(π). (2.1)

The MDP value function V∗ : S 7→ R is defined as V∗(s) = inf
π:S7→As

PC(s, π) for all s ∈ S.

Assumption 1 An optimal policy π∗ that solves (2.1) exists and the MDP value function sat-

isfies V∗(s) = PC(s, π∗) for all s ∈ S. The state space S is a continuous, compact real-valued

set and the action spaces As for all s ∈ S either share this property or are finite. Moreover, the

MDP value function V∗(·) is continuous.

21

The existence of π∗ in the literature is guaranteed under different requirements, mainly over

the cost function c(·, ·) and state transition kernel P(·|s, a). Informally, one such set of con-

ditions requires the lower semi-continuity of the immediate cost and the strong continuity of

state transitions. We present them formally in §2.9.1 and refer to Theorem 4.2.3 in Hernández-

Lerma and Lasserre (1996) for a more elaborate discussion. Continuous state spaces and value

functions arise in applications such as lost-sales inventory control (Zipkin 2008), healthcare

screening (Steimle and Denton 2017), dual sourcing (Hua et al. 2015), robotics (Peters et al.

2003, Haarnoja et al. 2019), and flight simulators (McGrew et al. 2010, Yang et al. 2019). Our

models and analysis in the remainder of this section and §§2.3–2.4 focus on MDPs satisfying

Assumption 1. We discuss in §2.5 how they apply to a broader class of MDPs, for instance,

where the state space can have discrete components.

The computation of the MDP value function can be conceptually approached without know-

ing π∗ via the exact linear program (ELP; see, e.g., pages 131-143 in Hernández-Lerma and

Lasserre 1996)

max
V ′:S7→R

Eν
[
V ′(s)

]
s.t. V ′(s) − γE[V ′(s′) | s, a] ≤ c(s, a), ∀(s, a) ∈ S ×As, (2.2)

where ν is a state-relevance distribution that specifies the relative importance of each state in

the state space. ELP is well defined because Assumption 1 ensures that the MDP value function

V∗ solves the optimality equations V∗(s) = mina∈As{c(s, a) + γE[V ′(s′)|s, a]} for every s ∈ S.

22

Thus, V∗ is an optimal solution to ELP, which follows from its constraints holding as equali-

ties at V∗. Since V∗ is continuous over a compact domain (Assumption 1), it is bounded and

the objective function of ELP, which is an expectation of V∗, is also bounded. However, ELP

is intractable to solve since it is a doubly infinite linear program. It has continua of decision

variables and constraints, one for each state and state-action pair, respectively.

2.2.2 Feature-based Exact Program

ELP directly computes the MDP value function. We present an alternative formulation

that represents the MDP value function in a transformed feature space. This feature space is

defined by a vector θ := (θ0, θ1, . . . , θd) ∈ Θ ⊆ Rd+1, a scalar mapping φ(·) : R 7→ R, and

an associated sampling density ρ(θ), where integer d denotes the dimension of the state space

S. These elements can be used to represent a feature φ
(
θ⊤(1, s)

)
using the inner product

θ⊤(1, s) := θ0+
∑d
i=1 θisi. In other words, for each θ sampled from ρ, we can define a “random”

feature φ(s; θ) ≡ φ
(
θ⊤(1, s)

)
. We define a representation of the MDP value function in this

randomized feature space using the pair β := (β0,B) containing an intercept β0 ∈ R and an

integrable weighting function B : Θ 7→ R:

V(s;β) := β0 +

∫
Θ

B(θ)φ(s; θ) d θ. (2.3)

The class of functions that can be covered by this construction is

R :=
{
V : S 7→ R

∣∣∣ ∃β = (β0,B) s.t. V(s) = V(s;β), ∀s ∈ S, and ∥B/ρ∥2,ρ <∞} ,

23

where the (2, ρ)-norm of B(·)
/
ρ(·) : Θ 7→ R is defined as

∥B/ρ∥2,ρ :=
∫
Θ

(
B(θ)

ρ(θ)

)2
ρ(d θ) =

∫
Θ

(B(θ))2

ρ(θ)
d θ.

Replacing the MDP value function with the integral form (2.3) and requiring the weighting

function to have a finite (2, ρ)-norm as in the definition of R gives the feature-based exact

program (FEP):

sup
β0,B

β0 +

∫
Θ

B(θ)Eν[φ(s; θ)] d θ

s.t. (1− γ)β0 +

∫
Θ

B(θ)
(
φ(s) − γE[φ(s′) | s, a]

)
d θ ≤ c(s, a), ∀(s, a) ∈ S ×As

∥B/ρ∥2,ρ <∞.
Unlike ELP, which directly optimizes a value function, the above program optimizes the weights

associated with the feature-based representation of the value function in the set R. It is a

reformulation of ELP when V∗ ∈ R as shown in Proposition 1.

Proposition 1 If V∗ ∈ R, there is an optimal FEP solution β
∗
= (β

∗
0,B

∗) such that V∗(s) =

β
∗
0 +
∫
ΘB∗(θ)φ(s; θ) d θ for all s ∈ S.

The assumption V∗ belonging to R can be restrictive if R is not rich enough to contain an arbi-

trarily close approximation of V∗. When random features satisfy a “universality” property, this

assumption is mild because R contains a function that is arbitrarily close to any continuous func-

tion, and in particular V∗, as we formally show in §2.10.1. Thus, FEP should not result in any

24

Table I: Examples of universal random basis functions.
φ(·) ρ(θ) Parameter

Fourier cos(·) θ0 ∼ uniform([−π, π]); θi ∼ normal(0, cρ), for i ≥ 1 cρ

ReLU max(·, 0) θ ∼ uniform(d-dimensional unit sphere) None

Stump sign(·) θ0 ∼ uniform([−cρ, cρ]); (θ1, . . . , θd) ∼ uniform({e1, . . . , ed}) cρ

significant error when using universal random features defined below. For function V : S 7→ R,

define the ∞-norm as ∥V∥∞ := maxs∈S |V(s)|, and consider shorthand V(β) ≡ V(· ;β) for each

function V ∈ R.

Definition 1 A class of random features φ with sampling density ρ is called universal if for

any continuous function V : S 7→ R and ε > 0, there exists βε := (β0,ε,Bε) such that V(βε) ∈ R

and ∥V − V(βε)∥∞ < ε.

Each random feature φ(s; θ) in the definition of FEP is a mapping from the state space to the

real line. As a result, we refer to it as a random basis function because this terminology is more

common in the ALP literature. Table I lists the components of three universal random basis

functions that satisfy Definition 1: the mapping φ(·), the sampling density ρ(·) for the vector

θ, and the parameters defining this density. Fourier basis functions are defined using a cosine

mapping with θ0 sampled from a uniform distribution with support involving the Archimedes

constant π and the remaining elements of θ sampled from a normal distribution with mean zero

and standard deviation cρ, which is a tunable scalar parameter. ReLU basis functions employ

25

a mapping that is a maximum with respect to zero. It samples θ from a uniform distribution

over a unit sphere with no tunable parameters. Stump basis functions use a signum mapping

that evaluates to a −1, 0, or 1, depending on whether the input is negative, zero, or positive,

respectively. The element θ0 is sampled from a uniform distribution with support over an interval

that depends on a tunable scalar parameter cρ. The remaining elements of θ are sampled from

a uniform distribution defined on the discrete set {e1, . . . , ed}, where ei, i ∈ {1, 2, . . . , d} is a

d-dimensional unit vector with 1 in the i-th coordinate and zero elsewhere.

Assumption 2, which holds for the rest of this chapter, includes V∗ ∈ R and additional

conditions needed for our theoretical analysis, all of which are standard in the random basis

functions literature (see, e.g., Rahimi and Recht 2008, Theorem 3.2).

Assumption 2 The MDP value function V∗ belongs to R. Random basis function φ is uni-

versal, and its sampling distribution ρ has a finite second moment. Moreover, φ has a Lipschitz

constant L > 0 and satisfies ∥φ∥∞ ≤ 1 and φ(0) = 0.

This assumption is satisfied by Fourier and ReLU basis functions in Table I but not by Stump

basis functions as they are not continuous. While Assumption 2 is needed for analysis, the

algorithms we present in §§2.3–2.4 can be applied even when this assumption fails to hold.

2.3 Randomized One-Shot Approximation

In §2.3.1, we introduce and analyze FALP, which uses a single set of sampled random basis

functions to approximate FEP. That is, FALP is a randomized single-shot approximation of

FEP. In §2.3.2, we provide implementation guidelines for FALP.

26

2.3.1 Model and Theory

In the literature, an ALP is derived from ELP by substituting its decision variable V ′(s)

with a linear combination of pre-specified basis functions. Our starting point is instead FEP.

We replace the integral form (2.3) with a sampled VFA

V(s;β) := β0 +

N∑
i=1

βiφ(s; θ
i),

where θ1, θ2, . . . , θN are iid samples of the basis function vector from ρ and β is the finite

weight vector (β0, β1, . . . , βN) ∈ RN+1. The weight β0 represents an intercept as in FEP and

the remaining elements of β are weights associated with the random basis functions. In other

words, β1, β2, . . . , βN is the finite analogue of the weighting function B in FEP and V(s;β)

can be viewed as an approximation constructed using a functional extension of Monte Carlo

sampling applied to V(s;β). The resulting ALP with N random basis functions, denoted by

FALPN, is

sup
β

β0 +

N∑
i=1

βiEν
[
φ(s; θi)

]
s.t. (1− γ)β0 +

N∑
i=1

βi

(
φ(s; θi) − γE

[
φ(s ′; θi) | s, a

])
≤ c(s, a), (s, a) ∈ S ×As.

This model is a semi-infinite linear program with N + 1 variables and an infinite number of

constraints. We assume the existence of a solution to FALPN. This is mild because we can

always bound the absolute value of the elements of β by a large constant to ensure the existence

of a finite optimal solution without affecting our results. We show this formally in §2.10.2.

27

Assumption 3 A finite optimal solution to FALPN exists.

Theorem 1 establishes key properties of FALPN and relies on the constant

Ω := 5(Ds + 1)L

√
Eρ
[
∥θ∥22

]
,

where ∥·∥2 denotes the 2-norm, Ds := maxs∈S ||s||2, L is the Lipschitz constant of random

basis φ(·) defined in Assumption 2, and Eρ is the expectation under the distribution ρ. Let

β
FA

N := (β
FA

N,0, . . . , β
FA

N,N) represent an optimal solution to FALPN.

Theorem 1 The following hold:

(i) For a given N, we have V(s;βFA

N) ≤ V∗(s) for all s ∈ S.

(ii) Suppose there exists a ρ > 0 such that ρ(θ) ≥ ρ for all θ ∈ Θ. Given δ ∈ (0, 1], we have

that any finite optimal FALPN solution βFA

N satisfies

∥∥V∗ − V(β
FA

N)
∥∥
1,ν ≤

2
∥∥B∗/ρ

∥∥
2,ρ

(1− γ)ρ
√
N

(
Ω+

√
2 ln

(
1

δ

))
,

with a probability of at least 1− δ.

Part (i) of this theorem shows that FALPN is well-defined and provides a lower bound on the

MDP value function V∗ at all states. The latter is a known result in approximate linear pro-

gramming (see, e.g., §2 in De Farias and Van Roy 2003). Part (ii) establishes a high probability

(1, ν)-norm error bound for this VFA. This bound holds for every choice of ν and decreases

at the dimension-independent rate of 1/
√
N akin to Monte Carlo sampling, which are both

28

encouraging properties. The magnitude of the error increases only logarithmically to obtain a

more stringent probability guarantee, that is, as δ is decreased. Its growth also depends on the

dimension of the state space as is the case with Monte Carlo sampling. The exact nature of this

dependence is captured through Ω and ρ. In the definition of Ω, both the diameter of the state

space Ds and the term Eρ
[
∥θ∥22

]
may change as we move to higher dimensions. For example, it

can be verified that Ds increases at the rate of
√
d when the state space is a d-dimensional unit

hypercube and Eρ
[
∥θ∥22

]
= 1 for ReLU bases, that is, it does not change with the state space

dimension. The analogous change for the parameter ρ depends on the choice of the basis func-

tion φ. It can be verified that for Fourier bases and a given probability level, there is a constant

c > 0 depending on this probability level such that ρ−1 = (c/cρ)
d. This suggests that ρ−1 can

be super- or sub- linear in d depending on whether c is larger or smaller than cρ, respectively.

Indeed, the nature of the MDP value function V∗ also affects the error and this factor is

signaled by the presence of the term
∥∥B∗

∥∥
2,ρ in the error bound. When the representation of

V∗(·) = β
∗
0 +
∫
ΘB∗(θ)φ(· ; θ) is not unique, one can select (β

∗
0,B

∗) such that norm
∥∥B∗

∥∥
2,ρ is

minimized and this minimum can be viewed as the approximation difficulty associated with V∗

when using a class of random basis functions. The condition in Theorem 1(ii) of ρ(·) ≥ ρ is

needed to avoid a situation where random basis functions with a certain set of θ values are

needed to approximate the value function well but are not sampled because ρ(·) is zero in this

set. This requirement is fairly mild. Sampling distributions with bounded support (e.g., uni-

form) clearly satisfy it. Since N is finite, distributions with support over an unbounded set,

29

such as the normal distribution, satisfy it with high probability because the sampled θ vectors

highly likely come from a truncated version of the distribution, which has bounded support.‌

The error bound in Theorem 1 extends to ALP the random basis function sampling results

in Rahimi and Recht (2008), which proposes a functional form of Monte Carlo sampling in the

regression setting and assumes knowledge of the function being approximated. If V∗ is known,

we can regress N random basis functions against V∗ to compute a VFA defined by the weight

vector βreg

N := argminβ∈RN+1 ∥V(β)−V∗∥1,ν. It follows from Proposition 7 that this VFA satisfies

the following error bound with a probability of 1− δ:

∥∥V∗ − V(β
reg

N)
∥∥
1,ν ≤

∥∥B∗/ρ
∥∥
2,ρ

ρ
√
N

(
Ω+

√
2 ln

(
1

δ

))
. (2.4)

The (2, ρ)-norm term in (2.4) involving B∗ improves on an ∞-norm variant of this term in the

original bound of Rahimi and Recht (2008) because we employ in the proofs a solution con-

struction that differs from the one used in that paper. The error bound in (2.4) is unattainable

because V∗ is unknown. FALPN provides a mechanism to compute a VFA without the knowledge

of V∗ at the cost of incurring the higher approximation error shown in Theorem 1 compared

to (2.4). This increase in error occurs because FALPN is equivalent to the following constrained

regression, a result derived from Lemma 1 in De Farias and Van Roy (2003):

min
β

∥V(β) − V∗∥1,ν

s.t. V(s;β) − γE
[
V(s′;β) | s, a

]
≤ c(s, a), ∀(s, a) ∈ S ×As.

(2.5)

30

Proposition 2 establishes that satisfying the constraints in FALPN worsens the error bound in

(2.4) by a factor of 2/(1−γ), which is precisely what we observe in Theorem 1. In other words,

to avoid the need for knowing V∗, which is assumed in the definition of βreg

N , FALPN incurs a cost

of feasibility captured by the factor of 2/(1− γ).

Proposition 2 If ∥V∗ − V(β
reg

N)∥1,ν ≤ ε, then ∥V∗ − V(β
FA

N)∥1,ν ≤ (2/(1− γ))ε.

We note that the universal random basis functions that underpin the convergence result in

Theorem 1 are closely related to universal kernels (Micchelli et al. 2006). For random basis

function φ with sampling density ρ, the associated kernel k : S × S 7→ R at centroid ŝ ∈ S

is defined as k(s, ŝ) :=
∫
Θ ρ(θ)φ(s; θ)φ(ŝ; θ)d θ for all s ∈ S. From this integral relationship,

random basis functions can be viewed as a way of using samples from the known distribution ρ

to approximate kernels. Rahimi and Recht (2008) show that the class of functions R spanned

by random basis functions coincides with the space of all finite linear combinations of their

associated kernels, {α0 +
∑
i αik(·; ŝi) : αi ∈ R, ŝi ∈ S}. Nevertheless, unlike kernels, random

basis functions do not require the specification of centroids ŝi. Optimizing the centroid locations

of a collection of N kernels is, in general, non-convex. Sampling centroids requires a sampling

distribution over the state space. Such a distribution that ensures convergence rate guarantees

is not readily available, and thus sampling is often done heuristically (see, e.g., Bhat et al. 2012).

31

2.3.2 Implementation Guidelines

We outline an implementation strategy that utilizes constraint sampling to approximate

FALPN and calculate VFA weights β. These weights can be used to define the greedy policy

πg(β) (see, e.g., Powell 2007). The action πg(s;β) taken by this policy at state s ∈ S solves

min
a∈As

{
c(s, a) + γE

[
V(s′;β) | s, a

]}
. (2.6)

Given VFA weights β, the cost of the greedy (feasible) policy πg(β), which we denote by

PC(β) ≡ PC(πg(β)) (where PC(·) was defined in §2.2.1), is an upper bound on the optimal

policy cost. In addition, these weights can be incorporated into other methods in the literature

to obtain a lower bound on the optimal cost, which can be used for benchmarking purposes.

Please see §2.12.1 and §2.12.2 for a discussion of two such methodologies.

The key step in constraint sampling to solve FALPN is to replace its set of constraints with a

subset obtained by sampling K iid state-action pairs {(sk, ak) ∈ S ×As : k = 1, 2, . . . , K} from a

probability distribution ψ over the state-action space S ×As (Calafiore and Campi 2005). The

result is the following linear program with N random basis functions and K constraint samples:

max
β
β0 +

N∑
i=1

βiEν
[
φ(s; θi)

]
s.t. (1− γ)β0 +

N∑
i=1

βi

(
φ(sk; θi) − γE

[
φ(s ′; θi)|sk, ak

])
≤ c(sk, ak), k = 1, 2, . . . , K.

(2.7)

Proposition 3 is an application of a key result in Calafiore and Campi (2006) and shows that the

linear program (2.7) for large enough K provides a good randomized approximation of FALPN.

32

Proposition 3 (Theorem 1 in Calafiore and Campi 2006) Given δ ∈ (0, 1], if ψ is sup-

ported over S ×As, linear program (2.7) is bounded, and

K ≥
⌈
2

δ
ln(
1

δ
) + 2(N+ 1) +

2(N+ 1)

δ
ln(
2

δ
)

⌉
,

then for every optimal solution β̂ to this program, the following inequality holds

ψ

({
(s, a) ∈ S ×As

∣∣∣∣(1− γ)β̂0 + N∑
i=1

β̂i

(
φ(s; θi) − γE

[
φ(s ′; θi)|s, a

])
≤ c(s, a)

})
≥ 1− δ,

with a probability of at least 1− δ.

In particular, this proposition shows that as more samples are added, the set of states where the

FALP constraints are violated when measured using ψ is at most δ and this holds with a prob-

ability of at least 1−δ. Therefore, if one solves the constraint-sampled version of FALP in (2.7)

with a large number of samples K, we expect the results in Theorem 1 to hold approximately.

A sharper constraint sampling result specific to ALP can be found in De Farias and Van Roy

(2004, Theorem 3.1) when ψ is chosen using information from the optimal policy, which is un-

known. During implementation, ψ can be a uniform distribution or based on states visited by a

baseline policy. A candidate baseline policy is greedy policy πg(β) computed based on an ALP

VFA weights β. Expectations in (2.7) are typically replaced by sample average approximations.

The number of constraint samples K can be chosen so that the optimal objective function of

(2.7) does not decrease significantly as more samples are added. Once these parameters are set,

the optimal solution β̂ to (2.7) defines VFA V(β̂).

33

The quality of the VFA obtained using the above procedure depends on how FALP is formu-

lated, in particular, the number of basis function samples N, the choice of random basis func-

tions, and the state relevance distribution ν. We provide some guidance on these choices next.

Similar to standard Monte Carlo sampling, the value of N depends on the computational

budget. That is, one determines the largest N for which the sampled version (2.7) of FALPN can

be tackled within a reasonable time limit (and possibly memory limit) using an off-the-shelf com-

mercial solver. The ability to get good VFAs with a small number of basis functions N is thus an

important consideration in choosing random basis functions. While multiple universal random

basis functions guarantee the same theoretical convergence rate, their empirical rates may differ.

A good starting point is to consider random Fourier basis functions (see Table I), as they are

known to provide better approximations as the continuous function V∗ becomes smoother (please

see §2.1.1 of Canuto et al. 2012 and Nersessian 2019 for recent examples). The non-smoothness

of the MDP value function in several applications is localized, that is, even these value func-

tions are smooth in most neighborhoods. Given a choice of random basis functions, the tunable

parameters are few and do not depend on the application. The random bases examples in Table

I have at most one such parameter (i.e., cρ). We recommend tuning this parameter according

to the following steps: (i) choose multiple candidate values for cρ, (ii) sample N random basis

functions for each candidate, (iii) solve the constraint-sampled version (2.7) of FALPN based on

each candidate, and (iv) choose the candidate with the highest optimal objective value. Fourier

basis functions, which depend on a single bandwidth parameter, tuned using the aforementioned

simple tuning strategy, worked well in both applications in our numerical experiments.

34

The state-relevance distribution ν plays an important role in linking the quality of the VFA

with weights β to the performance of its associated greedy policy πg(β) (De Farias and Van Roy

2003, Desai et al. 2012a, Sun et al. 2014). Proposition 4 formalizes this link using the state-visit

frequency µχ(β) of this greedy policy, which defines the following probability of visiting a subset

of states S1 ⊆ S (see, e.g., pages 132–133 in Hernández-Lerma and Lasserre 1996):

µ
χ(S1;β) := χ(S1) +

∞∑
t=0

γt+1E
[
P
(
s
πg(β)
t+1 ∈ S1 | st, πg(st;β)

)]
, (2.8)

where state sπg(β)t+1 and transition probability distribution P retain their definitions from §2.2,

and χ(S1) is the probability of the initial state belonging to S1. The expectation E is taken with

respect to control policy πg(β) and the distribution χ over initial the state s0.

Proposition 4 (Theorem 1 in De Farias and Van Roy 2003) For a VFA V(β) such that

V(β) ≤ V∗, we have

PC(β) − PC(π∗) ≤ 1

1− γ
∥V(β) − V∗∥1,µχ(β).

Proposition 4 shows that for a VFA V(β) that lower bounds V∗ (e.g., the FALP VFA), the

additional cost incurred by using the greedy policy πg(β) instead of the optimal policy π∗ is

bounded above by the (1, µχ(β))-norm difference between the VFA V(β) and the MDP value

function V∗. This result motivates the search for good VFAs.

If ν and µχ(β
FA

N) are identical, Proposition 4 and the reformulation (2.5) imply that FALP

VFA V(β
FA

N) with a small (1, ν)-norm error also guarantees good performance for greedy policy

35

πg(β
FA

N). However, one does not know µχ(β
FA

N) before solving FALP, which makes this choice

challenging (De Farias and Van Roy 2003). Heuristics in the literature can be interpreted as

approximating the expression (2.8) for µχ(β
FA

N). They either consider a static choice of ν or dy-

namically update it. Popular examples of static choices of ν are (i) the initial state distribution

χ, which ignores the second term in (2.8) capturing the effect of states visited by the policy

in the future; (ii) a uniform distribution, which can be interpreted as acknowledging that we

do not have any information about ν; and (iii) the state-visit frequency of a baseline policy π,

which can be estimated by simulating this policy.

De Farias and Van Roy (2003) and Farias and Van Roy (2006) describe a dynamic approach

to update the state-relevance distribution by iteratively applying the third static choice for ν

mentioned above. Algorithm 1 summarizes this approach used in conjunction with FALP to

guide the choice of the state-relevance distribution. To ease exposition, we make the dependence

of FALPN on ν explicit by writing FALPN[ν] and assume this refers to the constraint-sampled

version (2.7). The initial iteration q = 0 starts by solving FALPN[ν0] based on an initial state-

relevance distribution choice ν0 to obtain the VFA weights β0. Then, it simulates the greedy

policy πg(β0) to obtain the state-visit distribution µχ(β0). This distribution is chosen as the new

state-relevance distribution ν1. Iteration q = 1 starts by solving FALPN[ν1] and so on. A total of

Q iterations are performed, after which the VFA weights βQ−1 is returned. The algorithm thus

updates the state state-relevance distribution Q − 1 times, while retaining the same random

basis functions, that is, the same randomized one-shot approximation. We refer to Algorithm 1

as policy-guided FALP. As Algorithm 1 iterates, one hopes that the state-relevance distribution

36

Algorithm 1: Policy-guided FALP

Receive: number of random basis functions N, random basis function φ with sampling density
ρ, initial state-relevance distribution ν0, and maximum number of iterations Q.

Initialize: formulate FALPN[ν0] using ν0 and random basis function φ withN iid θ samples from ρ.

for q = 0, 1, . . . , Q− 1 do

(i) Solve FALPN[νq] to obtain VFA weights βq.

(ii) Simulate greedy policy πg(βq) to estimate µχ(β
q), and then set νq+1 ← µ

χ(β
q).

Return: VFA weights βQ−1.

µ
χ(β

q) overlaps more with states visited under greedy policy πg(βq), but there is no guarantee

that this will happen. In addition, this dynamic approach is more costly than a static choice of

ν. As N becomes larger, the time for a single iteration of Algorithm 1 increases, which includes

solving FALPN[ν
q] to compute VFA weights βq and simulating the greedy policy πg(βq). This

is because FALPN[ν
q] will have more variables, so we need to evaluate expectations of a larger

number of random basis functions during policy simulation. A sequential strategy is to first

select N such that the per iteration cost allows for choosing Q such that a few iterations can be

performed within an acceptable time limit.

2.4 Randomized Multi-Shot Approximation

In this section, we introduce a randomized multi-shot approximation approach for dynami-

cally updating the state-relevance distribution that leverages our ability to inexpensively sample

37

new random basis functions. We present the model and algorithm in §2.4.1, interpret it in §2.4.2,

provide supporting theory in §2.4.3, and discuss implementation guidelines in §2.4.4.

2.4.1 Model and Algorithm

Our randomized multi-shot approximation scheme gradually increases the number of basis

functions in FALP by sampling new batches of random basis functions of size B and adds guiding

constraints to FALP that link the VFAs across consecutive iterations. For a given N, we refer

to this modification of FALPN as FALPSG

N (SG stands for self-guiding).

Consider sampling random basis functions in batches of size B iteratively. At iteration

q ∈ {0, 1, . . . ,Q}, model FALPSG

N with N = qB random basis functions is

max
β

β0 +

N∑
i=1

βiEν
[
φ(s; θi)

]
s.t. (1− γ)β0 +

N∑
i=1

βi

(
φ(s; θi) − γE

[
φ(s ′; θi)| s, a

])
≤ c(s, a), ∀(s, a) ∈ S ×As, (2.9)

β0 +

N∑
i=1

βiφ(s; θ
i) ≥ V

(
s;β

SG

N−B

)
, ∀s ∈ S. (2.10)

The only difference between FALPSG

N and FALPN is that the former linear program includes addi-

tional constraints (2.10) that require its VFA to be a state-wise upper bound on the past VFA

V
(
β

SG

N−B

)
, which is computed in the previous iteration q − 1 by solving FALPSG

N−B
. Note that the

N-dimensional vector (β
SG

N−B
, 0, . . . , 0) obtained by appending B zeros to the VFA weights βSG

N−B

is feasible to FALPSG

N . At the first iteration (i.e., q = 0), the FALPSG

0 VFA becomes a constant

function that only includes an intercept term. We assume V
(
s;β

SG

−B

)
≡ −∞ for all s ∈ S, which

implies that the guiding constraints (2.10) are redundant in the first iteration. We refer to the

38

Algorithm 2: Self-guided FALP

Receive: sampling batch size B, random basis function φ with sampling density ρ,
state-relevance distribution ν, and maximum number of iterations Q.

Initialize: the set ϑ of sampled θ vectors to {}.

for q = 0, 1, . . . , Q− 1 do

(i) Set N← qB.

(ii) Compute coefficients βSG

N by solving FALPSG

N formulated using N random basis functions
with parameters in set ϑ, the state-relevance distribution ν, and the past VFA V(β

SG

N−B).

(iii) Draw B iid samples {θ1, . . . , θB} from ρ and update ϑ← ϑ ∪ {θ1, . . . , θB}.

Return: VFA weights βSG

N .

resulting iterative scheme summarized in Algorithm 2 as self-guided FALP because the new

constraints (2.10) use its own past VFA (hence the label “self”) to shape the current VFA (hence

the label “guided”).

The inputs to Algorithm 2 are similar to Algorithm 1, except for the batch size B, which

replaces the apriori fixed number of basis functions N across iterations. At each iteration q ≥ 0,

Algorithm 2 (i) sets the number of random basis function N to qB, (ii) solves a revised FALPSG

N

model formulated with B additional random basis functions compared to FALPSG

N−B
, and (iii)

samples a batch of θ vectors of size B and includes them in the current set ϑ of such vectors.

After Q iterations, it returns the VFA weights βSG

N , where N = (Q− 1)B.

Proposition 5 establishes a key property of the VFAs generated by Algorithm 2.

39

Proposition 5 At any iteration q ≥ 1 of Algorithm 2 with N = qB, it holds that

V(s;β
FA

0) = V(s;β
SG

0) ≤ V(s;β
SG

B) ≤ · · · ≤ V(s;β
SG

N) ≤ V∗(s), ∀s ∈ S. (2.11)

The equality in (2.11) follows from our assumption that V
(
· ;βSG

−B

)
= −∞. For every iteration

q ≥ 0 with N = qB, the relationship V(s;βSG

N) ≤ V∗(s) holds for all s ∈ S. This follows from

Part (i) of Theorem 1 because βSG

N is feasible to FALPSG

N , and thus, it is also feasible to FALPN.

The inequalities of the type V(s;βSG

N−B
) ≤ V(s;βSG

N) are directly implied by the guiding constraints

(2.10).

An important consequence of Proposition 5 is that Algorithm 2 generates a sequence of

VFAs that draws (weakly) closer to V∗ at all states. Therefore, two consecutive VFAs with

N− B and N random basis functions satisfy

∥V(βSG

N) − V∗∥1,µ ≤ ∥V(βSG

N−B
) − V∗∥1,µ,

for any proper distribution µ defined over the state space and, in particular, when µ is the

state-visit frequency µν(β
SG

N) associated with the greedy policy πg(β
SG

N). As a result, for any

fixed iteration index q̄ ≥ 1 and its corresponding state-visit frequency µχ(β
SG

q̄B), it follows that

the sequence of VFAs {V(β
SG

qB
) : q = 0, 1, . . . , q̄} generated by Algorithm 2 improves the worst-

case performance bound of greedy policies in Proposition 4, that is ∥V(βSG

qB) − V
∗∥
1,µχ(β

SG

q̄B)
is

non-increasing in q.

40

Figure 1: Illustration of self-guiding mechanism with ν equal to a uniform distribution.

2.4.2 Understanding the Self-guiding Mechanism

We begin by shedding light on a connection between the guiding constraints and the greedy

policy performance using the illustrative example in Figure 1. Consider the left panel in this

figure, where the MDP value function V∗ is represented by a (black) solid line. The lowest-cost

state of V∗ corresponds to the global minimum of this function. The (blue) dotted line represents

an intercept-only VFA V(β
FA

0) obtained from FALPN with N = 0 random basis functions and a

uniform state-relevance distribution. Leveraging the constrained regression equivalence of FALP

in (2.5), it follows that the intercept-only VFA (i) must be below V∗ (i.e., gray region) because of

the constraints and (ii) must equal the value of V∗ at the lowest-cost state because the objective

minimizes the (1, ν)-norm distance to V∗. This results in our first observation:

41

(O1) The intercept-only VFA V(β
FA

0) provides a constant approximation across all states that

equals V∗ at the lowest-cost state.

However, since all states receive an identical value under the intercept-only VFA, its greedy

policy is driven by the immediate cost (i.e., myopic). This is undesirable and motivates adding

random basis functions to obtain richer VFAs that direct their greedy policies towards the

low-cost state.

The middle panel of Figure 1 shows in (red) dotted-and-dashed line the richer VFA V(β
FA

B)

that is computed by FALPN with N = B basis functions and a uniform state-relevance distribu-

tion. This VFA assigns low values to states having high cost under V∗, thus incorrectly directing

its greedy policy. To elaborate, vector βFA

B defining this VFA is optimal to FALPB because we

assume that the chosen B basis functions only represent specific shapes within the gray region

and cannot entirely span it. Particularly, these basis functions do not represent functions in

the gray region that are both above the intercept-only VFA at all states (i.e., visually above),

and have a lower (1, ν)-norm than the VFA V(β
FA

B) (i.e., better objective value). Our second

observation is the following:

(O2) The FALPB VFA V(β
FA

B) provides a better (1, ν)-norm approximation than V(βFA

0) but can

result in assigning its lowest value to states that have high cost under V∗.

The right panel illustrates the VFA V(β
SG

B) by a (pink) dashed line. This VFA is obtained

from FALPSG

N with N = B random basis functions and a uniform state relevance distribution. It

does not suffer from the issue outlined in (O2) because the guiding constraints require V(βSG

B)

to be above the intercept-only VFA V(β
FA

0) at all states. This restriction results in V(βSG

B) not

42

only having an improved (1, ν)-norm distance to V∗ compared to V(βFA

0) but also continuing to

assign the lowest value to the lowest-cost state under V∗. Our third observation follows.

(O3) The FALPB VFA V(β
SG

B) provides a better (1, ν)-norm approximation than V(βFA

0) and, in

addition, assigns its lowest value to the lowest-cost state under V∗.

Overall, the key takeaway is that good policies are more likely to visit states where V∗ is

small rather than large. As noted in (O1), the FALP0 VFA V(β
FA

0) is exact at the lowest-cost

state. The FALPSG

B VFA V(β
SG

B) improves this approximation such that the lowest-cost state

under V∗ remains the lowest-cost state under V(βSG

B), which is (O3). Hence, its greedy policy

moves the system toward “real” low-cost states under V∗. In contrast, as mentioned in (O2),

the FALPB VFA V(β
FA

B) may worsen the approximation quality at the lowest-cost state under

V∗, which certainly occurs in Figure 1. Hence, its greedy policy moves the system towards the

lowest-cost state under V(βFA

B) whose actual cost is higher under V∗. While this illustration

considers a single iteration of Algorithm 2, analogous behavior continues in future iterations,

with the approximation quality at low-cost states under V∗ not being compromised to improve

the approximation quality at high-cost states with respect to V∗. We also verified this behavior

on a small instance of the inventory control problem tested in our numerical study and provide

details in §2.13.1.

43

Next, to provide insight into the self-guiding mechanism in FALPSG

N , we dualize constraints

(2.10). Specifically, let y∗(s) ≥ 0 denote the optimal dual value associated with the constraint

(2.10) at state s ∈ S and define a state-relevance distribution ν ′ that evaluates at this state to

ν ′(s) :=
ν(s) + y∗(s)

1+
∫
S y

∗(s)d s
. (2.12)

If strong duality holds, it can be easily verified that an optimal solution of FALPSG

N solves

max
β
β0 +

N∑
i=1

βiEν ′
[
φ(s; θi)

]
s.t. (2.9).

For brevity, we do not discuss the technical conditions for strong duality here (see, e.g., Shapiro

2009, Theorem 2.3, and Basu et al. 2017, Theorem 4.1) because the constraints will be sampled

during implementation, in which case standard strong duality for finite linear programs will

apply. The above reformulation shows that FALPSG

N can be viewed as a modification of the FALPN

static state-relevance distribution using its own past VFA information, that is, the FALPSG

N−B
VFA.

We revisit the example in Figure 1 to illustrate the states where guiding constraints will be

binding and the impact of these states on the updated state-relevance distribution ν ′ used by

self-guided FALP (i.e., (2.12)). The guiding constraints must be binding at some of the states

colored in orange in the middle panel because V(βFA

B) is below V(β
FA

0), hence βFA

B violates the

guiding constraints of FALPSG

B . By virtue of complementary slackness, the dual variables y∗ in

(2.12) take positive values at the subset of orange states where the guiding constraints (2.10)

are binding. That is, the updated state-relevance distribution ν ′ assigns higher values at these

44

states such that the new VFA V(β
SG

B) (i) provides a better approximation of V∗ at the orange

states, and (ii) is above the previous VFA V(β
SG

0) ≡ V(β
FA

0) at all states. This can be seen in

the right panel of Figure 1.

2.4.3 Theoretical Guarantees

Studying the quality of the VFAs generated by Algorithm 2 is challenging because consec-

utive VFAs in this sequence are linked by the guiding constraints (2.10). We propose a new

approach to establish an error bound for self-guided FALP VFAs. Specifically, we use the FALPSG

N

VFA composed of N ≥ 1 random basis functions as a baseline and analyze the rate at which

the (1, ν)-norm distance between the FALPSG

N+H
VFA V(β

SG

N+H
) and V∗ decreases as H new random

basis functions are added. We proceed in two steps.

Step 1: Effect of FALPSG

N VFA. Consider the set of functions spanned by an intercept plus

a linear combination of N random basis functions in set {φ(·; θ1), φ(·; θ2), . . . , φ(·; θN)}:

WN :=

{
V ∈ R

∣∣∣∃ (β0, β1, . . . , βN) ∈ RN+1 s.t. V(·) = β0 +
N∑
i=1

βiφ(·; θi)
}
.

A strategy to account for the impact of V(βSG

N) on the number of additional basis functions H is

to ask if V∗ is a part of the functional space WN containing V(βSG

N). If V∗ ∈ WN, then it would

not be possible to improve the incumbent VFA V(β
SG

N) via additional sampling. If V∗ ̸∈ WN,

then V∗ intuitively has a (projected) component in the functional space WN, as well as a nonzero

(projected) component in the orthogonal complement of this space. We approximate this or-

thogonal component using the H additional random basis functions.

45

Formally, we decompose V∗ as V∗ = V(β
∗,o
N)+V(β

∗,⊥
N), where functions V(β∗,o

N) and V(β∗,⊥
N)

are the projections of V∗ onto WN and its orthogonal complement, respectively (to be precise,

these projections are performed onto the closures of these sets). We design an idealized VFA

V(β̂N+H) ∈ WN+H with associated vector β̂N+H ∈ RN+H+1 that retains the approximation quality

of V(β∗,o
N) and uses the H additional random basis functions to approximate V(β∗,⊥

N). As H

increases, this VFA V(β̂N+H) becomes increasingly close to V∗ with high probability (specifically,

probability 1− δ) as shown by the error bound ∥V(β̂N+H) − V
∗∥1,ν ≤ E(N,H), where

E(N,H) :=

∥∥B∗,⊥
N /ρ

∥∥
2,ρ

ρ
√
H

(
Ω+ 2

√
2 ln

(
1

δ

))
.

This bound is unattainable since constructing V(β̂N+H) involves a direct regression on V(β∗,⊥
N),

the knowledge of which is unavailable (see Theorem 7 for details). It is thus similar to the

unattainable bound (2.4) that regresses on V∗ but with an important difference. The term

E(N,H) contains the norm
∥∥B∗,⊥

N /ρ
∥∥
2,ρ in lieu of

∥∥B∗/ρ
∥∥
2,ρ in (2.4). It is easy to verify that∥∥B∗,⊥

N /ρ
∥∥
2,ρ <

∥∥B∗/ρ
∥∥
2,ρ if the projection of V∗ onto WN is nonzero. The difference between

these norms signals the quality of the most recently computed VFA V(β
SG

N). This suggests that

the number of additional samples H needed to obtain a good approximation of V∗ decreases

with
∥∥B∗,⊥

N /ρ
∥∥
2,ρ, that is, when V(βSG

N) is itself closer to V∗.

Step 2: Cost of Feasibility. We now turn to update the unattainable error bound

from Step 1 to one that relates to the FALPSG

N+H
VFA. The key challenge in doing so is that

the idealized VFA V(β̂N+H) may not belong to the set of feasible solutions FN+H defined by

46

constraints (2.9) and (2.10) of FALPSG

N+H
– we can show that β̂N+H violates these constraints by

at most (1 + γ)E(N,H). Indeed, the projection of β̂N+H onto FN+H, denoted by proj
N+H

(β̂N+H), has

zero violation. It also satisfies ∥V∗ − V(β
SG

N+H
)∥1,ν ≤ ∥V∗ − V(proj

N+H
(β̂N+H))∥1,ν for any optimal

solution βSG

N+H
to FALPSG

N+H
. We thus need to upper bound ∥V∗ − V(proj

N+H
(β̂N+H))∥1,ν, which we

do via the following triangle inequality:

∥V∗ − V(proj
N+H

(β̂N+H))∥1,ν ≤ ∥V∗ − V(β̂N+H)∥1,ν + ∥V(β̂N+H) − V(projN+H
(β̂N+H))∥1,ν.

The first term is bounded above by E(N,H) from Step 1. For the second term, we show that

the inequality ∥V(β̂N+H) − V(projN+H
(β̂N+H))∥1,ν ≤ ∥β̂N+H − proj

N+H
(β̂N+H)∥1 holds because random

basis function evaluations are no more than 1 (Assumption 8). The 1-norm difference ∥β̂N+H −

proj
N+H

(β̂N+H)∥1 can itself be upper bounded directly from the error bound condition (EBC) used

in the optimization literature (Lewis and Pang 1998, Drusvyatskiy and Lewis 2018, Van Ngai

et al. 2010, Lin et al. 2022), which is stated as Assumption 4. Define function ω : RN+H+1 7→
[0,∞) at β ∈ RN+H+1 as follows:

ω(β) := max
{
0,max

s∈S

{
V(s;β

SG

N−B
) − V(s;β)

}
, max
(s,a)∈S×As

{V(s;β) − γE[V(s′;β)|s, a] − c(s, a)}
}
.

Given VFA V(β
SG

N−B
), the value of ω(β) measures the maximum violation in FALPSG

N+H
constraints

by a vector β, where ω(β) = 0 if β is feasible to FALPSG

N+H
and ω(β) > 0 otherwise.

47

Assumption 4 (EBC) Fix N ≥ 1 and H ≥ 1. There exists a constant G > 0 and an exponent

m ≥ 1 such that for every vector β ∈ RN+H+1, it holds that ω(β) ≥ 1
G∥projN+H

(β) − β∥m1 .

EBC ensures that ω(β) is lower bounded by a degree m polynomial of the 1-norm distance

between the vectors proj
N+H

(β) and β, which is mild. For instance, it is known that m equals

1 for finite linear programs, which applies to FALPSG

N+H
with constraint sampling. For a general

semi-infinite linear system, both cases of m = 1 and m > 1 can occur, with Van Ngai et al.

(2010) providing technical conditions under which m = 1 holds.

The consequence of steps 1 and 2 described above is the high probability (1, ν)-norm error

bound for the self-guided FALP VFA stated in Theorem 2. Indeed the difference between E(N,H)

and the error bound in this theorem can be interpreted as (i) the cost of feasibility to overcome

the lack of knowledge of V∗ by satisfying (2.9) and (ii) an additional cost of feasibility to ensure

improvement in the worst-case greedy policy performance by satisfying the guiding constraints

(2.10).

Theorem 2 Suppose Assumption 4 holds and ρ(θ) ≥ ρ for all θ ∈ Θ and let βSG

N+H
be any FALPSG

N+H

optimal solution. Given δ ∈ (0, 1] and N ≥ 1, for any H ≥ 1, it holds that

∥∥V∗ − V(β
SG

N+H
)
∥∥
1,ν ≤ E(N,H)

[
1 + G

(
(1+ γ)E(N,H)

)(1−m)/m
]
,

with a probability of at least 1− δ.

This bound consists of two terms: the first term is the idealized rate from Step 1, and the

second term is the worsening of this rate as a result of ensuring feasibility. The convergence

48

rates with respect to N of the first and second terms are 1/
√
N and 1/ 2m

√
N, respectively. If

ensuring feasibility is difficult for an instance (i.e., m > 1), then the dominant rate is 1/ 2m
√
N.

However, if ensuring feasibility is easy (i.e., m = 1), then the FALPSG

N+H
VFA error rate is 1/

√
N,

which is similar to the error rate associated with FALP in Theorem 1. It is also worth noting

that m equals 1 and G equals 1/(1− γ) for FALPN+H, which is easy to verify based on the proof

of Theorem 1 and prior results in ALP. The rate in Theorem 2 essentially reduces to the rate of

Theorem 1 under these choices for m and G. Our convergence rate can thus be seen as a way of

generalizing the feasibility analysis in the ALP literature when additional constraints are added

to its formulation.

2.4.4 Implementation Guidelines

We discuss the implementation guidelines for Algorithm 2, focusing on parameter choices

and solution issues that were not already discussed in §2.3.2. Specifically, we need to choose

the batch size B and the number of iterations Q. These choices become easier if we fix a target

number of basis functions N = (Q− 1)B following the logic discussed for FALP in §2.3.2. Then,

smaller values of B entail solving linear programs with fewer decision variables and doing so

more often. In other words, the per iteration cost is lower with smaller B, but more iterations

are needed and the improvement between iterations will likely be smaller. Therefore, the value

of B can be selected to balance improvement in the self-guided FALP objective function value

and the per-iteration cost. Solving self-guided FALP requires handling both constraints (2.9)

and (2.10). We suggest replacing these constraints with a sampled subset, as done for FALP in

49

§2.3.2. Under such replacement, analogues of Proposition 5 and the discussion following it hold

over the sampled states (please see §2.11 for details).

Although we consider an iteration limit as the stopping criterion in Algorithm 1, several

alternatives are possible. For instance, the iteration limit can be replaced by a time limit, or

both types of limits can be imposed together. Another strategy is to look at the improvement

of consecutive policies and stop when these improvements are smaller than a certain threshold.

If a lower bound on the optimal policy cost is available, these improvements can be converted

to optimality gaps, and a termination gap can be set.

2.5 Extensions

Although we have assumed continuous state spaces and value functions thus far, the random

basis function sampling approach underpinning our models can be readily extended to handle

discounted-cost MDPs with finite state spaces. A special structure that arises in important

applications is a state space with a low dimensional discrete component and a high dimensional

continuous component (e.g., financial and real options pricing). In this case, it is common to

define a separate continuous VFA for each discrete state value, and our results directly apply.

Next, we handle the more general case when such a strategy may not be computationally feasible.

Consider the analogue of the MDP in §2.2.1 with a discrete state space S := {sm ∈ Rd : m ∈

M}, where M is a finite index set and each state sm is a bounded real-valued vector. We denote

by V∗ the MDP value function. Proposition 6 provides a bound on the ∞-norm error between

the FALPN VFA and V∗, which decreases at a rate of 1/
√
N as more random basis functions are

sampled. Such a bound is possible because we can construct a continuous extension of V∗, as

50

discussed next. Let SC be the smallest continuous and compact set containing S. It is easy to

verify that the following continuous function defined for each s ∈ SC coincides with V∗ at all

the discrete states:

VC(s) :=
∑
m∈M

V∗(sm)max

{
0, 1−

∥s− sm∥2
s

}
,

where s := min
{
∥sm − sm

′∥2 : sm, sm
′ ∈ S, sm ̸= sm

′} is a positive constant. We assume

VC ∈ R, in which case, we have VC(·) = β
C

0 +
∫
ΘBC(θ)φ(· ; θ) d θ for some β

C := (β
C

0,B
C) (the

results extend to the case when VC ̸∈ R, as explained in §2.2 and in §2.10.1). Compared with

Theorem 1 in the continuous state space case, the weighting function B∗ is replaced by BC, and

the constant Ω is instead ΩC := 5(DC
s + 1)L

√
Eρ[∥θ∥22], where DC

s := maxs∈SC ∥s∥2. Here,

we will continue to use the notation related to FALPN from §2.3.1 and define ∥V∗ − V(β
FA

N)∥1,ν

to denote the (1, ν)-norm distance over the discrete state space, which is
∥∥V∗ − V(β

FA

N)
∥∥
1,ν =∑

m∈M ν(sm)|V∗(sm) − V(sm;β
FA

N)|.

Proposition 6 Suppose Assumption 2 with V∗ replaced by VC and Assumption 3 hold, and in

addition, ρ(θ) ≥ ρ > 0 for all θ ∈ Θ. Given δ ∈ (0, 1], we have that any finite FALPN optimal

solution βFA

N satisfies

∥∥V∗ − V(β
FA

N)
∥∥
1,ν ≤

2
∥∥BC/ρ

∥∥
2,ρ

(1− γ)ρ
√
N

(
ΩC +

√
2 ln

(
1

δ

))
,

with a probability of at least 1− δ.

51

When the action space is finite for all states, we can drop Assumption 3 and establish the

existence of a finite optimal solution, although as discussed in §2.3.1, this assumption is already

mild. We highlight that the construction of FALPN does not change based on the structure of the

state space since the sampling distribution ρ(·) does not depend on this structure. Therefore,

the same procedures for generating basis functions apply in the discrete state space case. Using

the arguments here, we can also handle state spaces with a mixture of discrete and continuous

elements.

Our results also extend to handle MDPs with a finite horizon T <∞ by considering time to

be in the state; that is, we can define the state as (t, s). Because the options pricing application

in §2.7 gives rise to a finite-horizon MDP, we formulate FALPN next in the more familiar notation

of such MDPs. Let the index set of stages in the horizon be T := {0, 1, . . . , T }. The MDP value

function at stage t ∈ T \ {T } is V∗
t , and we assume without a loss of generality that V∗

T ≡ 0. At

stage t ∈ T , the state space is St, and the action space at this stage and state s ∈ St is At(s).

Then, the finite horizon analogue of FALPN computes VFAs that approximate V∗
t at each stage

by sampling {θ1, θ2, . . . , θN}:

V∗
t ≈ V(βt) = βt,0 +

N∑
i=1

βt,iφ(·; θi),

where βt := (βt,0, βt,1, . . . , βt,N) are the stage t VFA weights. Because the sampling distribution

ρ(·) does not depend on the stages or state space, the set of random basis functions can be the

same across stages, which also provides the flexibility to use the same basis function weights

52

across stages if needed. Assuming that the state-relevance distribution ν is defined over the

stage 0 state space S0 (it could easily be defined over the state spaces at all stages), FALPN in

the finite horizon setting is

max
β

β0,0 +

N∑
i=1

β0,iEν
[
φ(s; θi)

]
s.t. (βt,0 − γβt+1,0) +

N∑
i=1

(
βt,iφ(s; θ

i) − γβt+1,iEt
[
φ(s ′; θi) | s, a

])
≤ ct(s, a),

∀(t, s, a) ∈ T \ {T }× St ×At(s),

where ct(s, a) and Et are the stage t cost function and expectation under the state transition

function from stage t to t+1, respectively. We omit the terminal condition for brevity. Theoret-

ical guarantees that are analogous to the infinite horizon case for FALP and self-guided FALP

can be derived in the finite horizon setting as well.

2.6 Perishable Inventory Control

We perform a numerical study on the perishable inventory control problem considered in

Lin et al. (2020, henceforth abbreviated LNS). We discuss the infinite-horizon discounted-cost

MDP formulation of the problem and instances in §2.6.1, the experimental setup in §2.6.2, and

numerical findings in §2.6.3.

2.6.1 MDP Formulation and Instances

Managing the inventory of a perishable commodity is a fundamental and challenging problem

in Operations Management (Karaesmen et al. 2011, Chen et al. 2014, Sun et al. 2014, and LNS).

We study a variant of this problem with partial backlogging and lead time from §7.3 in LNS.

53

Consider a perishable commodity with l ≥ 0 and J ≥ 0 periods of lifetime and ordering

lead time, respectively. Ordering decisions are made over an infinite planning horizon. At each

decision epoch, the state vector is s = (s0, s1, . . . , sl−1, u1, u2, . . . , uJ−1) of size l + J − 1. The

state element ui for i = 1, 2, . . . , J− 1 is the previously ordered quantity that will be received i

periods from now. If s0 ≥ 0, si for i = 0, 1, . . . , l−1 is the amount of available commodity with i

periods of life remaining. If s0 < 0, the values of these state elements are notional quantities to

compute the total on-hand inventory, which is s0 +
∑l−1
i=1 si. Inventories si and uj take values in

the interval [0, ā] for all i = 1, . . . , l− 1 and j = 1, 2, . . . , J− 1, respectively, where ā ≥ 0 denotes

the maximum ordering level. If s0 ∈ [−
∑l−1
i=1 si, ā], then the on-hand inventory is non-negative.

Instead, if s0 < −
∑l−1
i=1 si, then the on-hand inventory s0 +

∑l−1
i=1 si is negative and represents

the amount of backlogged orders.

The demand for the commodity is governed by a random variable. In each period, we as-

sume that the demand is realized before the arrival of order and is satisfied in a first-in-first-out

manner. Given a demand realization D, taking an ordering decision (i.e., action) a from a state

s results in the system transitioning to a new state

s′ :=
(
max

{
s1 − (D− s0)+, s−

l−1∑
i=2

si

}
, s2, . . . , sl−1, u1u2, . . . , uJ−1, a

)
,

where (·)+ := max{·, 0} and s ≤ 0 is a maximum limit on the amount of backlogged orders,

beyond which we treat unsatisfied orders as lost sales. The updating logic in the first element

of s′ ensures that the backlogging limit is enforced. This can be understood as follows: If there

was no backlogging limit, then the on-hand inventory after demand realization and before order

54

arrival would be s1−(D− s0)++
∑l−1
i=2 si; instead, in the presence of the maximum backlog limit

s, this total on-hand inventory of s1 − (D − s0)+ +
∑l−1
i=2 si is greater than or equal to s if and

only if s1−(D− s0)+ ≥ s−
∑l−1
i=2 si. The remaining elements of s′ are shifted elements of s, with

the last element accounting for the latest order a.

The immediate cost associated with a transition from a state-action pair (s, a) is

c(s, a) := γJcoa+ ED

[
ch

[
l−1∑
i=1

si − (D− s0)+

]
+

+ cd(s0 −D)+ + cb

[
D−

l−1∑
i=0

si

]
+

+ cl

[
s+D−

l−1∑
i=0

si

]
+

]
,

where expectation ED is given with respect to the demand distribution. The per-unit ordering

cost co ≥ 0 is discounted by γJ because we assume payments for orders are made only upon

receipt. The holding cost ch ≥ 0 penalizes leftover inventory
(∑l−1

i=1 si − (D − s0)+
)
+
, while

the per-unit disposal and backlogging costs cd ≥ 0 and cb ≥ 0 factor in, respectively, the costs

associated with disposing (s0 −D)+ units and backlogging
(
D −

∑l−1
i=0 si

)
+

units. Finally, each

unit of lost sales
(
s+D−

∑l−1
i=0 si

)
+

is charged cl ≥ 0.

We consider 24 perishable inventory control instances – twelve from LNS with l = J = 2

(three-dimensional state space) and twelve new higher-dimensional instances. Six of the new

instances have l = 2 and J = 4 (five-dimensional state space), and the remaining six instances

have l = 5 and J = 6 (ten-dimensional state space). Similar to LNS, across all instances, we fix

the demand distribution to a truncated normal distribution with a mean of 5 and support in the

range [0, 10]. We require the maximum limit on the amount of backlogged orders to equal the

maximum ordering level, that is, s = −ā. We vary the cost function parameters, the discount

55

factor γ, the maximum ordering level ā, and the demand standard deviation σ. Their specific

values are shown in tables II–IV.

2.6.2 Computational Setup

We formulate FALPN using the guidelines in §2.3.2. We considered both ReLU and Fourier

bases and found the latter to perform better as described in §2.13.3. We thus focus on dis-

cussing results for Fourier bases. The bandwidth parameter cρ is tuned over the candidate set

{105, 104, . . . , 10−5}. For ν, we consider both the initial MDP state of s0 = (5, 5, . . . , 5) ∈ Rd

(i.e., a degenerate initial distribution χ) and a uniform distribution over the hyper-cube S =

[s, ā]× [0, ā]d−1. The latter choice leads to substantially better policies, so we report the results

only for this choice. We use constraint sampling to solve FALPN and choose K = 200, 000 state-

action pairs sampled from a uniform distribution over the hyper-cube S × As = [s, ā]× [0, ā]d.

The number of basis functions N was set to 150, 300, and 600 for the three-, five-, and ten-

dimensional instances, respectively. We approximate expectations in FALPN using sample average

approximations constructed using 2, 000 iid samples.

We formulate policy-guided FALP (Algorithm 1) and self-guided FALP (Algorithm 2) using

the guidelines in §2.3.2 and §2.4.4, respectively. We denote these methods by FALPPG

N,Q and FALPSG

N,Q,

respectively, to make the number of iterations Q and the number of basis functions N explicit.

In both these models, we choose N and the sampled parameters of the basis functions to be

the same as FALPN. We also set Q equal to 7 so that the number of state-relevance distribution

updates in both models is Q − 1 = 6. At iteration q of FALPPG

N,Q, we solve model FALPN[νq]

using constraint sampling strategies that create a set of state-action pairs: (i) uniformly as in

56

FALPN, (ii) using the greedy policy πg(βq−1) at iteration q − 1, and (iii) by taking the union

of the samples from (i) and (ii). We present the results for the best-performing strategy for

each instance. For FALPSG

N,Q, we enforce ALP constraints (2.9) at the state-action samples used

in FALPN and the guiding constraints (2.10) at the states in these state-action samples. We

also consider the ALP model in LNS as a benchmark, denoted by ALPLNS, with a fixed set of

(7d−2) application-specific basis functions that include hinges (i.e., (·)+) to mirror the MDP cost

function structure shown in §2.6. We sample the constraints of this model uniformly as in FALPN.

We use the Gurobi commercial solver to solve linear programs. We simulate the cost of a

greedy policy using 500 sample paths. Similar to LNS, we replace the action space [0, ā] by ā

equally spaced points and find the best action using enumeration. We estimate a lower bound

on the optimal cost via a heuristic based on the constraint violation learning approach discussed

in §2.12.1. In addition, for each instance and method, we repeat solving linear programs and

the simulations of bounds ten times and report averages.

2.6.3 Results

Table II contains results for FALP150 and ALPLNS on three-dimensional instances. Columns 1-5

report the parameters of problem instances. Columns 6-7 and 8-9 display the optimality gaps

and lower bound gaps, respectively, computed with respect to the best lower bound among these

two methods. Both the FALP150 and ALPLNS policies are near-optimal with only small differences

in their respective optimality gaps. The FALP150 lower-bound dominates the one from ALPLNS,

which has a lower bound gap between 2.2% and 10.5%. The FALP150 results show that random

basis functions, which are not designed based on application structure, deliver near-optimal

57

Table II: Comparison of ALPLNS and FALP on the three-dimensional perishable inventory control
instances (σ = 2 and cl = 100).

γ ch cd cb ā
% (UB - best LB)/(best LB) % (Best LB - LB)/(best LB)

ALPLNS FALP150 ALPLNS FALP150

0.95

2 5 10 10 0.2 0.1 3.4 0.0
2 5 10 50 6.3 5.9 2.2 0.0
5 10 8 10 0.3 0.2 4.0 0.0
5 10 8 50 0.1 0.2 10.5 0.0
2 10 10 10 0.3 0.2 3.5 0.0
2 10 10 30 0.8 1.7 3.1 0.0

0.99

2 5 10 10 0.6 0.2 2.9 0.0
2 5 10 50 6.2 5.6 2.7 0.0
5 10 8 10 0.3 0.3 4.1 0.0
5 10 8 50 1.1 1.5 10.3 0.0
2 10 10 10 0.6 0.3 3.1 0.0
2 10 10 30 1.1 1.5 2.9 0.0

Average 1.5 1.5 4.4 0.0

policies and lower bounds. In addition, methods that dynamically update the state-relevance

distribution (i.e., policy-guided FALP and self-guided FALP) are not needed for these instances.

Table III displays results for ALPLNS, FALP300, FALPPG

300,7, and FALPSG

300,7 on five-dimensional

instances. The policy performance of ALPLNS varies greatly across instances, with a maximum

optimality gap of 139.4%. FALP300’s policy performance exhibits less variation to instance prim-

itives but still has a sizeable maximum optimality gap of 21.0%. Unlike the three-dimensional

instances, ALPLNS and FALP300 policies based on a static state relevance distribution are quite

suboptimal on the five-dimensional instances. Among the two methods that update the state

relevance distribution, FALPPG

300,7 is highly sensitive to the three constraint sampling strategies

described in §2.6.2. In particular, the best sampling strategy changes by instance (see §2.13.2 for

more details). The policy-guided FALP performance can deteriorate substantially if the best-

58

Table III: Comparison of ALPLNS, FALP, policy-guided FALP, and self-guided FALP on the five-
dimensional perishable inventory control instances (γ = 0.95 and cl = 1000).

ch cd cb σ
% (UB - best LB)/(best LB) % (Best LB - LB)/(best LB)

ALPLNS FALP300 FALPPG300,7 FALPSG300,7 ALPLNS FALP300 FALPPG300,7 FALPSG300,7

1 8 2 5 139.4 19.6 12.9 13.9 15.0 0.0 0.1 0.4
1 8 2 2 18.0 21.0 11.7 11.5 6.2 0.0 0.2 0.2
1 2 8 5 13.6 15.6 10.6 7.9 7.8 0.0 1.9 0.8
1 2 8 2 6.8 12.1 4.3 4.3 6.2 0.0 0.9 0.7
2 8 5 5 59.4 15.9 7.1 8.4 12.1 0.2 0.0 0.5
2 8 5 2 8.2 16.1 7.0 7.7 7.6 0.0 0.1 0.5

Average 40.9 16.7 8.9 9.0 9.1 0.0 0.5 0.5

performing strategy is not used, with optimality gaps and lower bound gaps reaching 82.3% and

17.1%, respectively. Moreover, constraint sampling strategy (ii) in §2.6.2 leads to unbounded lin-

ear programs, rendering Algorithm 1 unable to be fully executed when employing this strategy.

The FALPSG

300,7 instead exhibits stable performance and competitive optimality gaps to FALPPG

300,7.

These findings underscore the value of the self-guiding mechanism underpinning self-guided

FALP in computing near-optimal policies. In contrast, all the methods, except ALPLNS with pre-

selected application-specific basis functions, deliver excellent lower bounds, which is consistent

with the discussions in §2.4 that FALPs providing good lower bounds may not provide good

policies due to a poor state relevance distribution choice.

Table IV reports results for ALPLNS, FALP600, FALP1000, and FALPSG

600,7 on ten-dimensional in-

stances. The methods with the worst policies are ALPLNS, followed by FALP1000, and then FALP600.

The poor performance of the ALPLNS policies with fixed basis functions is consistent with results

59

Table IV: Comparison of ALPLNS, FALP, and self-guided FALP on the ten-dimensional perishable
inventory control instances (γ = 0.95 and cl = 1000).

ch cd cb σ
% (UB - best LB)/(best LB) % (Best LB - LB)/(best LB)

ALPLNS FALP600 FALP1000 FALPSG600,7 ALPLNS FALP600 FALP1000 FALPSG600,7

1 8 2 5 45.6 13.0 33.0 7.4 26.7 0.9 1.3 0.0
1 8 2 2 43.6 6.1 14.6 4.8 19.2 2.2 1.4 0.0
1 2 8 5 110.0 11.4 31.9 7.1 24.1 1.5 1.1 0.0
1 2 8 2 48.3 7.0 10.6 5.1 17.9 1.5 1.4 0.0
2 8 5 5 43.4 14.5 38.4 8.1 31.3 1.5 1.1 0.0
2 8 5 2 8.9 9.1 13.9 6.5 25.1 2.6 2.1 0.0

Average 50.0 10.2 23.7 6.5 24.1 1.7 1.4 0.0

on the five-dimensional instances. A new observation emerges in the ten-dimensional instances

when comparing FALP600 and FALP1000: ALPs with random basis functions, despite increasing

the number of basis functions, can lead to poor policies. This behavior is reasonable because

near-optimal policies cover smaller portions of the state space in higher dimensions and this

makes it more important to align ALP VFA error minimization and policy performance via

the update of the state relevance distribution. Self-guided FALP helps achieve this alignment,

as witnessed by its low optimality gaps, while policy-guided FALP exhibits more erratic be-

havior than on the five-dimensional instances. Specifically, we encountered unbounded linear

programs for constraint sampling strategy strategy (ii), which led to unboundedness on the five-

dimensional instances, as well as other strategies. We were thus unable to obtain meaningful

results for FALPPG

600,7 on ten-dimensional instances. This finding is consistent with the behavior

reported by Farias and Van Roy (2006) on a Tetris application: improved policy performance in

60

Figure 2: FALPSG

600,7 upper and lower bounds on two representative ten-dimensional perishable
inventory control instances with (ch, cd, cb, σ) equal to (1, 8, 2, 5) and (1, 8, 2, 2) in the left and
right panels, respectively.

0 1 2 3 4 5

Iteration q

874

56777

24252

1938
1431

8458

3134

U
p

p
er

an
d

lo
w

er
b

ou
n

d
va

lu
es

1837%

372%
218%

18%
10% 7%

Upper bound

Lower bound

Mean optimality gap %

0 1 2 3 4 5

Iteration q

822

55325

21294

11245

1383

8628

2892

1797

1921%

364%

165%

10% 7% 5%

Upper bound

Lower bound

Mean optimality gap %

the first few iterations followed by an unexplainable drop-off. With regards to the lower bound

gaps reported in Table IV, FALPSG

600,7 delivers the best lower bounds, suggesting that the self-

guiding mechanism can help tighten lower bounds when used in conjunction with our heuristic

based on constraint violation learning on the ten-dimensional instances.

To understand the self-guiding mechanism in FALPSG

600,7, we display in Figure 2 the violin plot

of upper and lower bound distributions computed from FALPSG

600,7 over ten trials on two repre-

sentative ten-dimensional instances, as iteration q increases in Algorithm 2. We also show the

optimality gap percentages based on the average of the upper and lower bounds for each q. This

figure shows how the upper and lower bounds converge as FALPSG

600,7 iterates. The lower bounds

are increasing as the algorithm iterates and they exhibit a relatively small variation across trials.

The upper bounds exhibit a decrease in their mean but have high initial variability (q equals 1

61

to 3) with a subsequent rapid decrease in variation (q equals 4 onwards). The converged policies

are near optimal.

As expected, the average run times increase as we employ more basis functions and move

to higher dimensional instances. Here, run time refers to the total time in minutes required to

solve linear programs, simulate policies, and estimate lower bounds. On the three-dimensional

instances, the average run times (over instances and trials) of ALPLNS and FALP150 were 1 and

7 minutes, respectively. For instances with a five-dimensional state space, ALPLNS, FALP300,

FALPPG

300,7, and FALPSG

300,7 take on average 3, 15, 118, and 42 minutes, respectively. The average

run times of ALPLNS, FALP600, FALP1000, and FALPSG

600,7 were 5, 33, 106, and 74 minutes, respectively,

on the ten-dimensional instances. Thus, the computational times of self-guided FALP to obtain

the policy improvements discussed earlier are encouraging.

2.7 Bermudan Options Pricing

We consider the pricing of a Bermudan call option that provides the holder the option (right

but not the obligation) to sell the underlying once over a pre-specified set of future dates. The

option-exercise payoff is based on the maximum of the prices of multiple assets, where each price

evolves stochastically over time. Specifically, the payoff occurs if the holder exercises the options

and the maximum price does not exceed a threshold known as the barrier price or knock-out

price; otherwise, the option is worthless. This version is referred to as a knock-out Bermudan

option and arises in practice because the knock-out feature limits the risk exposure of the seller

and also makes the price of the option lower than its counterpart without this feature. Our

numerical study of this problem is based on Desai et al. (2012b, henceforth abbreviated DFM).

62

In §2.7.1, we present the finite-horizon discounted MDP formulation. In §2.7.2, we describe our

computational setup. In §2.7.3, we discuss results and findings.

2.7.1 MDP Formulation

We model the Bermudan call option in DFM which depends on the prices of J assets and

formulate it as a finite-horizon MDP based on the notation in §2.5, except for using a reward

function rt(st, at) instead of a cost function ct(st, at). The option has T exercise opportunities

over Y years; that is, exercise is possible at times {τ, 2τ, . . . , Tτ}, where τ := Y/T . The asset prices

at stage t ∈ T = {0, 1, . . . , T } are pt := (pt,1, pt,2, . . . , pt,J), where pt,j is the price of the j-th asset

at this time. Prices evolve according to a multi-asset geometric Brownian motion. The option

is knocked out and becomes worthless any time the maximum of the J asset prices exceeds a

pre-specified barrier price pB. We use the binary variable yt ∈ {0, 1} to indicate if the option is

knocked out at time t. It takes the value of one in this case and is zero otherwise. The transition

equations governing yt are y0 = δ{maxj p0,j ≥ pB} and yt = max
{
yt−1, δ{maxj pt,j ≥ pB}

}
for

t > 0, where δ{a} equals one if a is true and zero otherwise. At time t, the MDP state is given by

the vector st = (pt,1, pt,2, . . . , pt,J, yt) that belongs to the state space S = [0, pB]J × {0, 1}. The

MDP action at is binary, with values of one and zero corresponding to “stop” and “continue,”

respectively. Stopping at stage t yields the reward rt(st, 0) = γtg(st), where the discount factor

γ = exp(−rτ), r is the risk-free interest rate, and the payoff function g(·) : RJ+1 7→ R with

respect to a pre-specified strike price pS is g(st) := max
{
maxj{pt,j−p

S}, 0
}
(1−yt). A continue

decision at state st has zero reward, that is, rt(st, 1) = 0. The objective is to find an exercise

policy that maximizes the discounted expected reward.

63

Our experiments use nine instances from DFM, for which Y, T , pS, pB, and r are 3, 54,

100, 170, and 5%, respectively. The geometric Brownian motion driving the prices has zero

correlation and volatilities equal to 20%. All assets share the same initial price pI > 0, that is,

p0,1 = p0,2 = · · · = p0,J = pI. This price takes values from 90, 100, and 110, and the number of

assets J takes on the values 4, 8, and 16. Although the asset prices can take values greater than

the barrier price pB, they need not be included in the state space because the option becomes

worthless at all such prices. Thus, the range of each price relevant to the MDP belongs to the

interval [0, pB].

2.7.2 Computational Setup and Benchmarks

We formulate the finite-horizon version of FALPN given in §2.5 using N = 500 random Fourier

basis functions, with its bandwidth parameter cρ tuned over the candidate set {105, 104, . . . , 10−5}.

(The focus on random Fourier basis functions is based on this choice outperforming random

ReLU basis functions in experiments discussed in §2.13.3.) The strategy of using a policy to

obtain a state-relevance distribution in §2.3.2 is simplified because the exercise decisions do not

affect prices. Therefore, the price-portion of the state evolves according to the geometric Brown-

ian motion model, regardless of the policy used. Motivated by this property, we use a lognormal

state-relevance distribution of prices. We find that FALP500 performs much better with this

choice than a uniform distribution. We do not consider policy-guided FALP given its unstable

behavior. For self-guided FALP, we set Q = 6. We sample the constraints of both FALP500 and

FALPSG

500,6 by generating 3, 000 trajectories of prices from the geometric Brownian motion model.

We approximate the expected values by sampling 500 transitions from this model.

64

We consider two application-specific benchmarks. The first is least squares Monte Carlo

(LSM), which is popular for financial and real option valuation (Carriere 1996, Longstaff and

Schwartz 2001, Glasserman and Yu 2004, and see Nadarajah and Secomandi 2022 for a recent

review) and provides very good policies on the instances we consider. This method approximates

the optimal continuation function Ct(st) := E[V∗
t+1(pt+1)yt+1|pt] with the boundary condition

CT (sT) ≡ 0 using a backward recursive scheme that uses a regression. To construct the con-

tinuation function approximation, we use the same application-specific J + 2 basis functions

considered in DFM, which are ϕ1(st) = 1 − yt, ϕ2(st) = g(st), and ϕj(st) = (1 − yt)pt,j for

j = 1, 2, . . . , J. We use 100,000 sample paths to estimate the weights of these basis functions at

each time t. Our second benchmark is an ALP with the same J+ 2 basis functions as LSM. We

denote this model by ALPDFM. We construct the constraints of this model using the same price

trajectories and transitions used in the construction of FALP500.

We simulate 20,000 price trajectories to evaluate the reward of each greedy policy, which

provides a lower bound on the optimal policy value (because we are maximizing reward). The

maximum standard error of these estimates is 0.4%. We embed the value/continuation func-

tion approximation from each method within the information relaxation and duality framework

(Brown et al. 2010) to estimate an upper bound on the optimal reward (see §2.12.2 for details).

2.7.3 Results

Table V reports the performance of LSM, ALPDFM, FALP500, and FALPSG

500,6 on nine Bermudan

option pricing instances in DFM. This table follows the same structure as the tables in §2.6.3.

The performance of the FALPN policy is within 1% of the one from FALPSG

500,6 on six of the nine

65

Table V: Comparison of optimality gaps on the Bermudan options pricing application.

J pinit
% (Best UB - LB)/(best UB) % (UB - best UB)/(best UB)

LSM ALPDFM FALP500 FALPSG500,6 LSM ALPDFM FALP500 FALPSG500,6

4 90 6.6 4.8 0.9 0.8 0.0 13.3 1.5 1.3
4 100 6.4 6.4 1.9 1.9 0.7 7.5 0.0 0.0
4 110 6.6 8.0 8.4 5.3 0.0 2.6 992.0 3.6

8 90 6.2 6.1 4.1 4.0 0.0 4.1 5.8 5.4
8 100 5.5 7.0 7.8 4.2 0.0 0.7 6.0 0.6
8 110 3.9 6.4 9.5 3.1 0.6 0.1 172.5 0.0

16 90 4.9 6.3 3.3 3.3 0.0 0.0 0.5 0.4
16 100 3.4 5.5 2.4 2.3 0.6 0.0 0.3 0.0
16 110 2.8 5.2 2.4 2.1 0.6 1054.4 0.2 4.0

Average 5.2 6.2 4.5 3.0 0.3 9.1 130.8 1.6

instances but 3.1%, 3.6%, and 6.4% worse on the remaining instances. Once again, we see

significant value in updating the state-relevance distribution using the logic in FALPSG

500,6. There

is no clear ordering between the policies of ALPDFM and LSM – the average optimality gap of

the LSM method across all the instances is 1% smaller than ALPDFM. The FALPSG

500,6 policy is

significantly better than the LSM policy, with improvements of less than 2% on six instances and

greater than 2% on the remaining three. The largest such improvement is 5.8%.

The upper-bound gaps show that LSM and FALPSG

500,6 lead to the tightest upper bounds on

five and four instances, respectively. The upper bounds from ALPDFM and FALP500 vary from

being near-optimal to highly sub-optimal. ALPDFM and FALP500 provide substantially weak upper

bounds on one and two instances, respectively, where they also deliver their worst policies rel-

ative to other methods. This observation suggests that the ALPDFM and FALP500 VFAs on these

66

instances are far from V∗ not only at states visited by good policies but more broadly at other

states as well.

The superior self-guided FALP policies come at a computational cost. The average runtime

of LSM, ALPDFM, FALP500 and FALPSG

500,6 across trials and instances are, respectively, 2.42, 5.1, 99.5,

and 117.9 minutes. There is thus an additional, albeit manageable, computational overhead to

obtain the improved FALPSG

500,6 policies.

A broader takeaway from these experiments is that an application-agnostic ALP model with

random basis functions and a guided state-relevance distribution can provide near-optimal poli-

cies and bounds for a challenging option pricing problem, also improving on application-specific

benchmarks.

2.8 Conclusions

We revisit the approximate linear programming approach for computing value function ap-

proximations (VFAs) of discounted-cost Markov decision processes (MDPs). We focus on the

key elements needed to formulate an approximate linear program (ALP). The first is the selec-

tion of the basis functions defining the ALP VFA, which we address by cheaply sampled random

basis functions. We call the resulting randomized one-shot approximation as feature-based ALP

(FALP). The second element is the choice of a state-relevance distribution in the ALP objective.

We propose a randomized multi-shot approximation scheme, which we dub self-guided FALP,

to guide the state-relevance distribution in FALP using its past VFA information. We develop

error bounds showing that self-guided FALP has desirable theoretical properties not shared by

existing ALP-based models. We test FALP and self-guided FALP on challenging perishable

67

inventory control and options pricing applications. Self-guided FALP outperforms FALP and

application-specific benchmarks. Our findings showcase the potential for our procedure to (i)

reduce the implementation burden of using ALP and (ii) provide an application-agnostic policy

and lower bound for MDPs that can be used to benchmark other methods.

Our research suggests several interesting directions for future work, of which we state two.

The first is to study the possibility and value of a guided sampling mechanism for ALP where

the new samples of random basis functions leverage information from past VFAs. Approaches

for the data-dependent sampling of random basis functions in machine learning (see, e.g., Sinha

and Duchi 2016, Shahrampour et al. 2018) can query the function being approximated, which

is the unknown MDP value function in our setting. It is unclear how to develop inexpensive

and approximate queries of the MDP value function that still provide useful information, which

would be needed to obtain an effective and efficient sampling approach. The second is to inves-

tigate the value of random basis functions and multi-shot approximations in other approximate

dynamic programming methods, also comparing against neural networks and deep learning that

attempt to mitigate tuning but lead to nonlinearly parametrized VFAs, which are typically

harder to train.

68

APPENDICES

69

In §2.9, we provide the proofs of all statements in Chapter 2. In §2.10, we discuss how

the assumptions used in §2.2.2 and §2.3.1 can be relaxed. In §2.11, we introduce a constraint

sampling bound for self-guided FALP. In §2.12, we discuss two methods for computing optimistic

bounds on the optimal policy cost. In §2.13, we provide additional numerical results that

supplement the numerical experiments discussed in Chapter 2.

2.9 Proofs

We define a constant Γ := (1 + γ)/(1 − γ) which we will use in various proofs. We also use

the notation δ{a} to show the indicator function that is 1 when a is true and 0 otherwise.

2.9.1 Additional Details of Assumption 1

Assumptions 1 and 2 will hold for all proofs in the electronic companions. In particular,

Assumption 1 ensures the existence of an optimal policy solving program (2.1). There are

known conditions in the literature that guarantee such existence. We provide an example of

these conditions in Assumption 5.

Assumption 5 It holds that (i) the MDP cost function is bounded over S × As and function

c(s, ·) : As 7→ R is lower semicontinuous for all s ∈ S. (ii) For every bounded and measurable

function V : S 7→ R, the mapping (s, a) 7→ ∫S V(s′)P(ds′|s, a) is bounded and continuous over

S ×As. (iii) There exists a finite-cost policy π such that PC(s, π) <∞ for all s ∈ S.

Assumption 5 is adopted from assumptions 4.2.1 and 4.2.2 in Hernández-Lerma and Lasserre

1996, henceforth abbreviated as HL. Specifically, in Part (a) of Assumption 4.2.1 in HL, the cost

function c(s, ·) is assumed to be lower semi-continuous, non-negative, and inf-compact (defined

70

in Condition 3.3.3 in HL) whereas, in our setting, non-negativity is replaced by boundedness and

the inf-compactness is guaranteed by virtue of c(s, ·) being lower semi-continuous and its domain

As being either a continuous compact real-valued set or a finite set (please see Assumption 1).

Part (b) of Assumption 4.2.1 and Assumption 4.2.2 in HL are equivalent to parts (ii) and (iii) of

Assumption 5, respectively. Note that the condition specified in part (iii) of Assumption 5 is the

definition of the strong continuity of the MDP stochastic kernel P (see Condition 3.3.3 in HL).

Under the aforementioned technical conditions, Part (b) of Theorem 4.2.3 in HL guarantees the

existence of a deterministic and stationary policy that is “γ-discount optimal". In other words,

π∗ ∈ Π solves (2.1) in our setting.

2.9.2 Proofs of Statements in §2.2

Proof of Proposition 1.

Since V∗ ∈ R, there exists (β
∗
0,B

∗) such that V∗(s) = β
∗
0 +
∫
ΘB∗(θ)φ(s; θ) d θ for all

s ∈ S. We show that (β
∗
0,B

∗) is our desirable solution. This solution is feasible to FEP since

V∗ satisfies constraints (2.2). It is also optimal because V∗ satisfies the optimality equations

V∗(s) = mina∈As{c(s, a)+γE[V ′(s′)|s, a]} for every s ∈ S which indicates that all the constraints

of (2.2) hold as equality. ■

2.9.3 Proofs of Statements in §2.3

To prove Theorem 1, we require the following lemmas and propositions.

Lemma 1 Any continuous function V : S 7→ R that is feasible to constraints (2.2) satisfies

V(s) ≤ V∗(s) for all s ∈ S.

71

Proof. The proof follows from Part (b) of Lemma 4.2.7 in HL, which requires four assumptions

to hold. We now show that these assumptions are true in our setting. (i) Since V is continuous,

it is measurable; (ii) the Bellman operator TV(s) := mina∈As{c(s, a) + γE[V(s′)|s, a]} is well

defined for every continuous function V , i.e. the minimum over As is attained since As is either

a real-valued continuous compact set or a finite set from Assumption 1, c(·, ·) is bounded, and

the expectation E[V(s′)|s, a] =
∫
S V(s

′)P(d s′|s, a) is finite by Assumption 5; (iii) since V is

feasible to constraints (2.2), we have

V(s) ≤ min
a∈As

{
c(s, a) + γE[V(s′)|s, a]

}
= TV(s), ∀s ∈ S ;

(iv) finally, the continuity of V and the compactness of S imply maxs∈S |V(s)| <∞ and thus

lim
n→∞γnE

[
n∑
t=0

V(sπt)
∣∣∣s0 = s

]
≤ max

s∈S
|V(s)| lim

n→∞(n+ 1)γn = 0, ∀(s, π) ∈ S × Π,

where expectation E and the notation sπt retain their definitions from §2.2. These indicate

that the function V fulfills the four assumptions of Part (b) of Lemma 4.2.7 in HL and hence

V(s) ≤ V∗(s) for all s ∈ S. ■

Proposition 7 Suppose ρ(θ) ≥ ρ, for all θ ∈ Θ and Assumption 2 holds. Consider δ ∈ (0, 1]

and a function V(s;β) = β0 +
∫
ΘB(θ)φ(s; θ) d θ with ∥B/ρ∥2,ρ < ∞. Given N iid samples

{θi : i = 1, 2, . . . ,N} from ρ, there exist finite coefficients β̄i, i = 0, 1, 2, . . . , N, such that

72

∥∥∥∥∥V(β) −

(
β̄0 +

N∑
i=1

β̄iφ(·; θi)

)∥∥∥∥∥∞ ≤

∥∥B/ρ∥∥2,ρ
ρ
√
N

(
Ω+

√
2 ln

(
1

δ

))
(2.13)

with a probability of at least 1− δ.

Proof. The proof of this proposition follows similar steps to the proof of Theorem 3.2 in

Rahimi and Recht (2008). In particular, given a constant r > 0 and N iid samples ϑ :=

(θ1, θ2, . . . , θN), we first define random variable V̄ϑ(s) := β0 +
1
N

∑N
i=1 Vi,ϑ(s) where Vi,ϑ(s) :=

βriφ(s; θ
i) and βri :=

1
ρ(θi)

∫
ΘB(θ)δ

{
θ : ∥θ− θi∥2 ≤ r

}
d θ. Let

g(ϑ) :=
∥∥V(β) − V̄ϑ∥∥∞ .

We provide an upper bound on g(ϑ) that is decreasing in N and holds with high probability.

To do so, we take the following steps:

Step (i): We first prove

E [g(ϑ)] ≤ L (1+Ds)
∥∥B/ρ∥∥2,ρ

r+ 4

ρ

√√√√Eρ
[
∥θ∥22

]
N

 . (2.14)

Step (ii): We then use McDiarmid’s inequality to show the inequality

g(ϑ) ≤ E [g(ϑ)] +

∥∥B/ρ∥∥2,ρ
ρ

√
2

N
ln

(
1

δ

)
, (2.15)

holds with a probability of at least 1− δ.

73

The inequality (2.13) then follows from combining (2.14) and (2.15), using the definitions of

g(·) and Ω, and setting β̄0 = β0 and β̄i = 1
Nβ

r
i , i for r :=

√
Eρ
[
∥θ∥22

]
/(ρ

√
N).

Proof of Step (i): The inequality (2.14) can be easily derived from the following two inequal-

ities:

E
[∥∥V(β) − Eρ

[
V̄ϑ
]∥∥∞] ≤ Lr(1+Ds)

∥∥B/ρ∥∥2,ρ. (2.16)

and

E
[∥∥V̄ϑ − Eρ

[
V̄ϑ
]∥∥∞] ≤ 4L

ρ
√
N

∥∥B/ρ∥∥2,ρ(1+Ds)√Eρ
[
∥θ∥22

]
(2.17)

In particular, using these two inequalities we get

E [g(ϑ)] = E
[∥∥V(β) − V̄ϑ∥∥∞]

= E
[∥∥V(β) − Eρ

[
V̄ϑ
]
+ Eρ

[
V̄ϑ
]
− V̄ϑ

∥∥∞]
≤ E

[∥∥V(β) − Eρ
[
V̄ϑ
]∥∥∞]+ E

[∥∥V̄ϑ − Eρ
[
V̄ϑ
]∥∥∞]

≤ Lr(1+Ds)
∥∥B/ρ∥∥2,ρ + 4L

ρ
√
N

∥∥B/ρ∥∥2,ρ(1+Ds)√Eρ
[
∥θ∥22

]

= L (1+Ds)
∥∥B/ρ∥∥2,ρ

r+ 4

ρ

√√√√Eρ
[
∥θ∥22

]
N

 (2.18)

We next prove (2.16) and (2.17).

To prove (2.16), we first note that Eρ
[
V̄ϑ
]
= β0+Eρ [V1,ϑ] holds because θi, i = 1, . . . ,N, are

iid samples. In addition, since B : Θ 7→ R is (2, ρ)-integrable function and thus measurable, it

can be written by its positive and negative parts as follows: B = B+−B− where B+ := max(0,B)

74

and B− := max(0,−B). It is also known that both positive and negative parts of a measurable

function are measurable. Hence, for every s ∈ S we can write

Eρ
[
V̄ϑ(s)

]
= β0 + Eρ [V1,ϑ(s)]

= β0 +

∫
Θ

ρ(θ1)

[
φ(s; θ1)

ρ(θ1)

∫
Θ

B(θ)δ{θ : ∥θ− θ1∥2 ≤ r}dθ
]
dθ1

= β0 +

∫
Θ

(B+(θ) − B−(θ))

[∫
Θ

φ(s; θ1)δ{θ :
∥∥∥θ− θ1∥∥∥

2
≤ r}dθ1

]
dθ

≤ β0 +
∫
Θ

B+(θ)

[∫
Θ

(
φ(s; θ) + L∥(1, s)∥2∥θ1 − θ∥2

)
δ{θ : ∥θ− θ1∥2 ≤ r}dθ1

]
dθ

−

∫
Θ

B−(θ)

[∫
Θ

(
φ(s; θ) − L ∥(1, s)∥2

∥∥∥θ1 − θ∥∥∥
2

)
δ{θ : ∥θ− θ1∥2 ≤ r}dθ1

]
dθ

≤ β0 +
∫
Θ

(B+(θ) − B−(θ))φ(s; θ)dθ + L ∥(1, s)∥2 r
∫
Θ

[B+(θ) + B−(θ)] dθ

≤ V(s;β) + Lr ∥(1, s)∥2
∫
Θ

√(
β(θ)

ρ(θ)

)2
ρ(dθ)

≤ V(s;β) + Lr(1+Ds)
∥∥B/ρ∥∥2,ρ, (2.19)

where the second equality follows from the definition of V1,ϑ(s) and Eρ[V1,ϑ(s)]; the third equality

from the Fubini’s theorem on the exchange of integrals and using B = B+ − B−; the first

inequality from the Lipschitz continuity of φ (by Assumption 2), Cauchy-Schwartz inequality,

and the fact that both functions B+ and B− are non-negative; the second inequality from the

fact that the indicator function is less than one and θ is considered in a ball of radius r; the

third inequality from the definition of V(β) and the Jensen’s inequality E[
√
·] ≤

√
E[·]; and the

last inequality form the definitions of Ds and
∥∥B/ρ∥∥2,ρ. Recalling that (2.19) holds for every

s ∈ S, taking expectation from both sides and rearranging the terms, we obtain (2.16).

75

To prove (2.17), we consider a sequence of Rademacher random variables (ϵ1, . . . , ϵN), where

each ϵi is a uniform sample from {−1, 1}. It is easy to see the function βriφ(·) is (L/ρ)
∥∥B/ρ∥∥2,ρ-

Lipschitz and βriφ(0) = 0. This follows from the fact that the function φ is L-Lipschitz contin-

uous (by Assumption 2) and

sup
θi

|βri(θ
i)| = sup

θi

{
1

ρ(θi)

∫
Θ

|B(θ)| δ
{
θ :
∥∥∥θ− θi∥∥∥

2
≤ r
}
dθ

}

≤ 1

ρ

∫
Θ

√(
B(θ)

ρ(θ)

)2
ρ(dθ)

=
1

ρ
∥B/ρ∥2,ρ, (2.20)

where the first equality holds by the definition of βri ; the first inequality by our assumption that

ρ(·) is bounded below by ρ, and the fact that the indicator function is less than one.

Using Theorem 12(4) of Bartlett and Mendelson (2002), Cauchy-Schwartz inequality, and

Jensen’s inequality, we get

Eρ
[∥∥V̄ϑ − Eρ

[
V̄ϑ
]∥∥∞] = Eρ

[
sup
s

∣∣V̄ϑ − Eρ
[
V̄ϑ
]∣∣]

≤ 2

N
Eρ,ϵ

[
sup
s

∣∣∣∣∣
N∑
i=1

ϵiβ
r
iφ(s; θ

i)

∣∣∣∣∣
]

≤ 4L

ρN

∥∥B/ρ∥∥2,ρEρ,ϵ
[
sup
s

∣∣∣∣∣
N∑
i=1

ϵi(1, s)
⊤θi

∣∣∣∣∣
]

≤ 4L

ρN

∥∥B/ρ∥∥2,ρ(1+Ds)Eρ,ϵ
∥∥∥∥∥
N∑
i=1

ϵiθ
i

∥∥∥∥∥
2

≤ 4L

ρ
√
N

∥∥B/ρ∥∥2,ρ(1+Ds)√Eρ
[
∥θ∥22

]
.

76

Note that the above inequalities follow similar steps as in inequalities (21) - (24) in Rahimi and

Recht (2008).

Proof of Step (ii): Observe that g is stable under any perturbation of its arguments. In

particular, for an arbitrary ℓ ∈ {1, 2, . . . ,N}, let ϑ̂ := (θ1, θ2, . . . , θ̂ℓ, . . . , θN) be the same as ϑ,

except its ℓ-th component. That is, θ̂i = θi, for all i ̸= ℓ and θ̂ℓ ̸= θℓ. We then have

∣∣g(ϑ) − g(ϑ̂)∣∣ = ∣∣∣∣∣
∥∥∥∥∥∥V(β) − β0 − 1

N

∑
i̸=ℓ

Vi,ϑ(s) −
1

N
Vℓ,ϑ(s)

∥∥∥∥∥∥∞−

∥∥∥∥∥∥V(β) − β0 − 1

N

N∑
i̸=ℓ

Vi,ϑ̂(s) −
1

N
Vl,ϑ̂(s)

∥∥∥∥∥∥∞
∣∣∣∣∣

≤ 1

N

∥∥Vℓ,ϑ(s) − Vℓ,ϑ̂(s)
∥∥∞

=
1

N

∥∥∥βrℓ(θℓ)φ(s; θℓ) − βrℓ(θ̂
ℓ)φ(s; θ̂ℓ)

∥∥∥∞
≤ 2

N
sup
θℓ

|βrℓ(θ
ℓ)|

≤ 2

Nρ

∥∥B/ρ∥∥2,ρ, (2.21)

where the first equality follows from the definition of g(·); the first inequality from the triangle

inequality; the second equality from the definition of Vl,ϑ(s); the second inequality from ∥φ∥∞ ≤

1 (by Assumption 2); and the last inequality from (2.20).

Given ε > 0 and (2.21), McDiarmid’s concentration inequality guarantees that

Pr [g(ϑ) − E [g(ϑ)] ≥ ε] ≤ exp

 −Nρ2ε2

2
∥∥B/ρ∥∥22,ρ

 ,

77

where Pr(·) denotes the probability over the samples ϑ = (θ1, . . . , θN). This inequality indicates

that

g (ϑ) ≤ E [g (ϑ)] +
1

ρ

∥∥B/ρ∥∥2,ρ
√
2

N
ln

(
1

δ

)
,

with a probability of at least 1− δ. ■

Definition 2 Let r :=
√
2 ln (1/δ)/(L(1+Ds)

√
N). Given an optimal solution β

∗
= (β

∗
0,B

∗) to

FEP, for N iid samples
{
θi, i = 1, 2, . . . ,N

}
from ρ, we define βθ ∈ RN+1 as follows:

βθi :=


β
∗
0 for i = 0;

1

Nρ(θi)

∫
ΘB∗(θ)δ

{
θ : ∥θ− θi∥2 ≤ r

}
d θ for i = 1, 2, . . . ,N,

and V(βθ) = βθ0 +
∑N
i=1 β

θ
iφ(·; θi).

Lemma 2 Suppose ρ(θ) ≥ ρ, for all θ ∈ Θ and Assumption 2 holds. Given ε > 0 and δ ∈

(0, 1], let (β
∗
0,B

∗) denote an optimal solution to FEP with value function V∗ and βθ be the

corresponding vector defined in Definition 2. Define

Nε :=


∥∥B∗/ρ

∥∥2
2,ρ

ρ2ε2

(
Ω+

√
2 ln

(
1

δ

))2 . (2.22)

(i) If N ≥ Nε, with a probability of at least 1− δ, it holds that
∥∥V∗ − V(βθ)

∥∥∞ ≤ ε .

78

(ii) If N ≥ Nε, with a probability of at least 1 − δ, the vector (βθ0 − Γε, β
θ
1 , . . . , β

θ
N) is feasible

to FALPN and ∥∥V∗ −
(
V(βθ) − Γε

)∥∥∞ ≤ 2ε

(1− γ)
.

Proof. Part (i). First notice that the vector βθ defined in the Definition 2 is the same

vector of coefficients (β̄0, β̄1, . . . , β̄N) defined in Proposition 7 corresponding to V(β∗
) = β

∗
0 +∫

ΘB∗(θ)φ(s; θ) d θ. Following similar steps as in the proof of this proposition, we guarantee

that with a probability of at least 1− δ

∥∥V∗ − V(βθ)
∥∥∞ ≤

∥∥B∗/ρ
∥∥
2,ρ

ρ
√
N

(
Ω+

√
2 ln

(
1

δ

))
.

For N ≥ Nε, this inequality indicates that
∥∥V∗ − V(βθ)

∥∥∞ ≤ ε holds with a probability of at

least 1− δ.

Part (ii). If N ≥ Nε, the vector (βθ0 − Γε, β
θ
1 , . . . , β

θ
N) is feasible to FALPN with a probability of

at least 1− δ since

(1− γ)
(
βθ0 − Γε

)
+

N∑
i=1

βθi
(
φ(s; θi) − γE

[
φ(s′; θi)

∣∣s, a])
= V(s;βθ) − ε− γE

[
V(s′;βθ) + ε

∣∣s, a]
≤ V∗(s) − γE[V∗(s′)|s, a]

= (1− γ)β
∗
0 +

∫
Θ

B∗(θ)
(
φ(s) − γE[φ(s′) | s, a]

)
d θ

≤ c(s, a),

(2.23)

79

where the first equality comes from the definitions of V(βθ) and Γ ; the first inequality holds

because |V∗(s) − V(s;βθ)| ≤ ∥V∗ − V(βθ)∥∞ ≤ ε for all s ∈ S with a probability of at least

1− δ by Part (i) of this lemma; the second equality results from using the definition of V∗; and

the second inequality holds because (β
∗
0,B

∗) is an optimal (hence feasible) solution of FEP.

Moreover, if N ≥ Nε, by Part (i) of this lemma and the definition of Γ , we get

∥∥V∗ −
(
V(βθ) − Γε

)∥∥∞ ≤
∥∥V∗ − V(βθ)

∥∥∞ + Γε ≤ ε+ Γε = 2ε

(1− γ)

with a probability of at least 1− δ. ■

Proof of Theorem 1.

Part (i). The function V(·;βFA

N) is continuous due to the continuity of the class of basis func-

tions φ (by Assumption 2), and is feasible to constraints (2.2) due to the feasibility of βFA

N to

FALPN. Hence, Lemma 1 guarantees V(s;βFA

N) ≤ V∗(s) for all s ∈ S.

Part (ii). Consider ε > 0. Given βθ = (βθ0 , β
θ
1 , . . . , β

θ
N) and Nε defined in Definition 2

and Lemma 2, respectively, part (ii) of Lemma 2 ensures that when N ≥ Nε, the vector(
βθ0 − Γε, β

θ
1 , . . . , β

θ
N

)
is a feasible solution to FALPN with a probability of at least 1 − δ and

hence

∥∥V∗ − V(β
FA

N)
∥∥
1,ν

≤
∥∥∥V∗ −

(
V(βθ) − Γε

)∥∥∥
1,ν

≤
∥∥∥V∗ −

(
V(βθ) − Γε

)∥∥∥∞ ≤ 2ε

1− γ
,

80

where we used the optimality of βFA

N to obtain the first inequality, the relationship between (1, ν)-

and ∞-norms to obtain the second inequality, and part (ii) of Lemma 2 for the last one. Since

N ≥ Nε, the proof is complete if we choose

ε ≤

∥∥B∗/ρ
∥∥
2,ρ

ρ
√
N

(
Ω+

√
2 ln

(
1

δ

))
.

■

Proof of Proposition 2.

Recall the definition of vector βreg

N := argminβ∈RN+1 ∥V(β) − V∗∥1,ν. While this vector may

not be feasible to FALPN constraints, it is easy to verify that if we deduct term (1+ γ)ε/(1− γ)

from the first element of βreg

N ∈ RN+1, the resulting vector, which we denote by βfeas

N , is feasible

to the constraints in (2.5) and thus feasible to FALPN. Hence, we have

∥∥V∗ − V(β
FA

N)
∥∥
1,ν ≤

∥∥V∗ − V(β
feas

N)
∥∥
1,ν

≤
∥∥V∗ − V(β

reg

N)
∥∥
1,ν +

∥∥V(βreg

N) − V(β
feas

N)
∥∥
1,ν

≤ ε+ 1+ γ

1− γ
ε

=
2

1− γ
ε.

The first inequality is derived from the feasibility of βfeas

N to (2.5), and the second one from

the triangle inequality. The last inequality is a result of assumption
∥∥V∗ − V(β

reg

N)
∥∥
1,ν ≤ ε and

equality
∥∥V(βreg

N) − V(β
feas

N)
∥∥
1,ν = (1+ γ)ε/(1− γ), which is based on the definition of βfeas

N . ■

81

Proof of Proposition 3.

The proof follows from the Corollary 1 and Theorem 1 in Calafiore and Campi 2006, ab-

breviated by CC, applied to the program (2.7), which is a random relaxation of FALPN. Under

assumptions 1 and 2 in CC, Corollary 1 and Theorem 1 guarantee that with a probability of at

least 1− δ, the optimal solution β̂ of problem (2.7) satisfies:

ψ
({

(s, a) ∈ S ×As : hFA(β̂; s, a) ≤ 0
})

≥ 1− δ,

where given β = (β0, β1, . . . , βN) ∈ RN+1, the function hFA : RN+1 × S × As 7→ R is defined as

follows:

hFA(β; s, a) := (1− γ)β0 +

N∑
i=1

βi

(
φ(s; θi) − γE

[
φ(s ′; θi) | s, a

])
− c(s, a).

We only need to show that Assumptions 1 and 2 of CC hold in our setting. First notice that

we use the notations hFA, β, RN+1, N+1, (s, a), and S ×As in Chapter 2 instead of f, θ, Θ, nθ,

δ, and ∆, respectively, in CC. Assumption 1 in CC requires the function hFA(β; ·, ·) to be convex

in β and continuous. This clearly holds in our setting since hFA(β; ·, ·) is linear in β, and we

assume φ(·) is a Lipschitz continuous function. We use a relaxation of Assumption 2 in CC as

stated in Appendix A. In particular, we only show that the program (2.7) is feasible and forgo

the uniqueness assumption of the optimal solution to FALPN. Define c := mins,a c(s, a)/(1 − γ)

which is well-defined since c(·, ·) is bounded by Assumption 5. It is straightforward to verify

82

that (c, 0, . . . , 0) ∈ RN+1 is feasible to FALPN and hence feasible to program (2.7) for all samples

{(sk, ak) ∈ S ×As : k = 1, 2, . . . , K}. ■

2.9.4 Proofs of Statements in §2.4

Proof of Proposition 5.

For every iteration q ≥ 0, self-guided FALP VFA V(· ;βSG

N) with N = qB basis functions is a

continuous function because of the Lipschitz continuity of φ in Assumption 2. Moreover, this

function is feasible to constraints (2.2) because vector βSG

N is feasible to the constraints (2.9) of

FALPSG

N . As a result, Lemma 1 guarantees V(s;βSG

N) ≤ V∗(s) for all q ≥ 0 and s ∈ S. In addition,

guiding constraints (2.10) in FALPSG

N+B
imply V(·;βSG

N) ≤ V(·;βSG

N+B
) for every q ≥ 0, where identity

N = qB holds. ■

The proof of Theorem 2 relies on the following definition, propositions 8–10, and Theorem 3.

Definition 3 Given N iid samples {θi : i = 1, 2, . . . ,N} from ρ, we define

BN :=

{
B : Θ 7→ R

∣∣∣ ∃(β1, . . . , βN) ∈ RN,
N∑
i=1

β2i <∞, B(θ) =

N∑
i=1

βiδ{θ = θi},

}
.

Moreover, let B̄N and B̄⊥
N denote the closure of BN and the perpendicular complement of B̄N,

respectively. In addition, suppose B := {B : Θ 7→ R : ∥B/ρ∥2,ρ < ∞} denotes the space of all

(2, ρ)-integrable functions equipped with the following inner product

⟨B,B′⟩B :=

∫
Θ

B(θ) B′(θ)

ρ(θ)
d θ, for B,B′ ∈ B.

83

Proposition 8 It follows that

(i) The space B defined in Definition 3 equipped with inner product ⟨· , · ⟩B is a Hilbert space.

(ii) The set B̄N is a closed subset of B under addition and scalar multiplication.

(iii) Let (β∗
0,B

∗) be the optimal solution associated with V∗. There exist B∗,o
N ∈ B̄N and B∗,⊥

N ∈

B̄⊥
N such that B∗ = B∗,o

N + B∗,⊥
N and ∥B∗/ρ∥2,ρ = ∥B∗,o

N /ρ∥2,ρ + ∥B∗,⊥
N /ρ∥2,ρ.

Proof. Part (i): The space B is a Hilbert space by Example 4.5 in Rudin (1987).

Part (ii): The set B̄N is a closed subset of B since for every B ∈ B̄N with B(θ) =
∑N
i=1 βiδ{θ =

θi}, we have ∥B/ρ∥2,ρ ≤
∑
i β

2
i/ρ <∞. In addition, B̄N is closed under addition since for every

B,B ′ ∈ B̄N, we have B+B ′ ∈ B̄N. It is also closed under scalar multiplication because for every

B ∈ B̄N and α ∈ R, we have αB ∈ B̄N.

Part (iii): Since B∗ ∈ B, using parts (i) and (ii) and the orthogonal projection theorem of

Hilbert spaces (Theorem 5.23 in Folland 1999), there exist functions B∗,o
N ∈ B̄N and B∗,⊥

N ∈ B̄⊥
N

such that B∗ = B∗,o
N + B∗,⊥

N and ∥B∗/ρ∥2,ρ = ∥B∗,o
N /ρ∥2,ρ + ∥B∗,⊥

N /ρ∥2,ρ. ■

Proposition 9 Consider ζ > 0 and N iid samples {θi : i = 1, 2, . . . ,N} from ρ. Let (β
∗
0,B

∗)

denote an optimal solution to FEP with B∗ = B∗,o
N + B∗,⊥

N for some B∗,o
N ∈ B̄N and B∗,⊥

N ∈ B̄⊥
N

(see Proposition 8). Define β
∗,⊥
N := (0,B∗,⊥

N). There exists a coefficient function BζN ∈ BN such

that for βζN := (β
∗
0,B

ζ
N), we get

∥∥V∗ −
(
V(βζN) + V(β

∗,⊥
N)

)∥∥∞ ≤ ζ. (2.24)

84

Moreover, V(βζN) can be represented as V(· ;βζN) = β
∗
0 +
∑N
i=1 β

ζ
iφ(· ; θ

i) for some coefficients

βζi ∈ R, i = 1, 2, . . . ,N.

Proof. Given ζ > 0, since B∗,o
N ∈ B̄N and B̄N is the closure of BN, there exists a function BζN ∈ BN

such that ∥(B∗,o
N − BζN)/ρ∥2,ρ ≤ ζ

2. Therefore, for all s ∈ S, we have

∣∣∣V∗(s) −
(
V(s;βζN) + V(s;β

∗,⊥
N)

)∣∣∣2
=

(∫
Θ

1

ρ(θ)

[
B∗(θ) −

(
BζN(θ) + B

∗,⊥
N (θ)

)]
φ(s; θ)ρ(d θ)

)2
≤
∫
Θ

1

ρ(θ)2

[
B
∗,o
N (θ) + B

∗,⊥
N (θ) −

(
BζN(θ) + B

∗,⊥
N (θ)

)]2
ρ(d θ)

=
∥∥(B∗,o

N − BζN)/ρ
∥∥
2,ρ

≤ ζ2, (2.25)

where the first equality follows from the definitions of V∗(s) and V(s; ·) evaluated at βζN and β
∗,⊥
N ;

the first inequality from the Jensen’s inequality (E[·])2 ≤ E[(·)2] and ∥ϕ∥∞ ≤ 1 from Assumption

2; and the second equality from the definition of the (2, ρ)-norm. Since the expression (2.25)

holds for all s ∈ S, we have

∥∥∥V∗ −
(
V(βζN) + V(β

∗,⊥
N)

)∥∥∥∞ = sup
s∈S

∣∣∣V∗(s) −
(
V(s;βζN) + V(s;β

∗,⊥
N)

)∣∣∣ ≤ ζ.
Finally, since βζN := (β

∗
0,B

ζ
N) with BζN ∈ BN, the VFA V(βζN) can be represented as

V(· ;βζN) = β
∗
0 +
∑N
i=1 β

ζ
iφ(· ; θ

i) for some coefficients βζi ∈ R, i = 1, 2, . . . ,N. ■

85

Proposition 10 Suppose there exists a constant ρ > 0 such that ρ(θ) ≥ ρ for all θ ∈ Θ.

Consider ζ > 0, δ ∈ (0, 1], and N iid samples {θi : i = 1, 2, . . . ,N} from ρ. Let (β∗
0,B

∗) denote

an optimal solution to FEP and (βζ1, . . . , β
ζ
N) and β

∗,⊥
N := (0,B∗,⊥

N) be the coefficients described

in Proposition 9. For every H ≥ 1 iid samples {θi : i = N + 1,N + 2, . . . ,N + H}, there exist

(β⊥
0 , β

⊥
N+1, β

⊥
N+2, . . . , β

⊥
N+H) ∈ RH such that the vector

β̃ := (β
∗
0 + β

⊥
0 , β

ζ
1, . . . , β

ζ
N, β

⊥
N+1, β

⊥
N+2, . . . , β

⊥
N+H) ∈ RN+H+1

satisfies ∥∥∥V∗ − V(β̃)
∥∥∥∞ ≤ ζ+

∥∥B∗,⊥
N /ρ

∥∥
2,ρ

ρ
√
H

(
Ω+

√
2 ln

(
1

δ

))
,

with a probability of at least 1− δ.

Proof. Since B∗,⊥
N ∈ B, it is easy to see that V(β∗,⊥

N) ∈ R. Then, Proposition 7 applied to

the function V(β∗,⊥
N) and H samples {θi : i = N+ 1,N+ 2, . . . ,N+H} guarantees that there are

H coefficients (β⊥
0 , β

⊥
N+1, β

⊥
N+2, . . . , β

⊥
N+H) ∈ RH+1, such that

∥∥∥∥∥V(β∗,⊥
N) −

(
β⊥
0 +

N+H∑
i=N+1

β⊥
i φ(·; θi)

)∥∥∥∥∥∞ ≤

∥∥B∗,⊥
N /ρ

∥∥
2,ρ

ρ
√
H

(
Ω+

√
2 ln

(
1

δ

))
, (2.26)

with a probability of at least 1 − δ. Using Proposition 9 and the triangle inequality, with the

same probability, we obtain

∥∥∥V∗ − V(β̃)
∥∥∥∞

86

≤
∥∥∥V∗ −

(
V(βζN) + V(β

∗,⊥
N)

)∥∥∥∞ +
∥∥∥(V(βζN) + V(β∗,⊥

N)
)
− V(β̃)

∥∥∥∞
≤ ζ+

∥∥∥∥∥(V(βζN) + V(β∗,⊥
N)

)
−

(
β
∗
0 +

N∑
i=1

βζiφ(· ; θ
i) + β⊥

0 +

N+H∑
i=N+1

β⊥
i φ(· ; θi)

)∥∥∥∥∥∞
≤ ζ+

∥∥∥∥∥V(βζN) − β∗
0 −

N∑
i=1

βζiφ(· ; θ
i)

∥∥∥∥∥∞ +

∥∥∥∥∥V(β∗,⊥
N) − β⊥

0 −

N+H∑
i=N+1

β⊥
i φ(· ; θi)

∥∥∥∥∥∞
≤ ζ+

∥∥B∗,⊥
N /ρ

∥∥
2,ρ

ρ
√
H

(
Ω+

√
2 ln

(
1

δ

))
,

where we used (2.24) and the definition of V(β̃) to obtain the second inequality; the triangle

inequality for the third inequality; and V(βζN) = β
∗
0 +
∑N
i=1 β

ζ
iφ(· ; θ

i) and (2.26) for the last

one. ■

Recall that

E(N,H) =

∥∥B∗,⊥
N /ρ

∥∥
2,ρ

ρ
√
H

(
Ω+ 2

√
2 ln

(
1

δ

))
.

Theorem 3 Suppose there exists a constant ρ > 0 such that ρ(θ) ≥ ρ for all θ ∈ Θ. Given

N ≥ 1 and δ ∈ (0, 1], for every H ≥ 1, there exists a vector β ∈ RN+H+1 such that with a

probability of at least 1− δ

(i)
∥∥V∗ − V(β)

∥∥∞ ≤ E(N,H) and

(ii) ω(β) ≤ (1+ γ)E(N,H).

Proof. Let ζ :=
∥∥B∗,⊥

N /ρ
∥∥
2,ρ

√
2 ln (1/δ)

/
ρ
√
H and β̃ be the coefficient vector described in

Proposition 10 for this specific choice of ζ. We claim that β̃ is the desired vector in Theorem 3.

87

Part (i). Proposition 10 indicates, with a probability of at least 1− δ, that

∥∥∥V∗ − V(β̃)
∥∥∥∞ ≤ ζ+

∥∥B∗,⊥
N /ρ

∥∥
2,ρ

ρ
√
H

(
Ω+

√
2 ln

(
1

δ

))
= E(N,H).

Part (ii). The inequality ∥V∗ − V(β̃)∥∞ ≤ E(N,H) from Part (i) indicates that with a proba-

bility of at least 1− δ, we have

V(s; β̃) − E(N,H) ≤ V∗(s) and V(s; β̃) + E(N,H) ≥ V∗(s), ∀s ∈ S. (2.27)

Hence, with the same probability, it follows that

(1− γ)β̃0 +

N+H∑
i=1

β̃i
(
φ(s; θi) − γE

[
φ(s′; θi)

∣∣s, a])
= V(s; β̃) − γE

[
V(s ′; β̃)

∣∣s, a]
≤ V∗(s) + E(N,H) − γE

[
V∗(s ′)

∣∣s, a]+ γE(N,H)

= c(s, a) + (1+ γ)E(N,H), (2.28)

where the first equality follows from the definition of β̃ and the inequality from (2.27). The

second equality holds since V∗ is an optimal solution to ELP. In addition, Proposition 5 and

(2.27) imply that, with a probability of at least 1− δ, we have

V(s;β
SG

N) ≤ V∗(s) ≤ V(s; β̃) + E(N,H). (2.29)

88

Inequalities (2.28) and (2.29) ensure that β̃ is ((1 + γ)E(N,H))-feasible to constraints (2.9) and

E(N,H)-feasible to constraints (2.10) of FALPSG

N+H
with a probability of at least 1− δ, respectively.

Therefore, we can conclude β̃ satisfies

ω(β̃) ≤ max
{
(1+ γ)E(N,H), E(N,H)

}
= (1+ γ)E(N,H),

with a probability of at least 1− δ. ■

Proof of Theorem 2.

Let β ∈ RN+H+1 be the vector in Theorem 3. Since the feasible set of FALPSG

N+H
is a closed

convex set, the 1-norm projection of β onto this set, which we denote by β̂ := proj
N+H

(β), is well

defined. From Assumption 4, we have

∥β̂− β∥1 ≤ G ·ω(β)1/m ≤ G
(
(1+ γ)E(N,H)

)1/m
,

with a probability of at least 1− δ. Considering VFAs with respect to β̂ and β, we have

∥∥V(β̂) − V(β)∥∥∞ =

∥∥∥∥∥(β̂0 − β0) +
N+H∑
i=1

(β̂i − βi)φ(s; θ
i)

∥∥∥∥∥∞
≤
N+H∑
i=0

|β̂i − βi|

≤ G
(
(1+ γ)E(N,H)

)1/m
,

89

where the first inequality holds since we have ∥φ∥∞ ≤ 1 from Assumption 2 and the second

inequality follows from ∥β̂− β∥1 ≤ G
(
(1+ γ)E(N,H)

)1/m. Using the triangle inequality and

Part (i) of Theorem 3, we can show that

∥V∗ − V(β̂)∥∞ ≤ ∥V∗ − V(β)∥∞ + ∥V(β) − V(β̂)∥∞ ≤ E(N,H) +G
(
(1+ γ)E(N,H)

)1/m
,

holds with a probability of at least 1− δ. Hence, for any optimal solution βSG

N+H
to FALPSG

N+H
, with

a probability of at least 1− δ, it holds that

∥∥V∗ − V(β
SG

N+H
)
∥∥
1,ν ≤

∥∥V∗ − V(β̂)
∥∥
1,ν ≤ ∥V∗−V(β̂)∥∞ ≤ E(N,H)

[
1+G

(
(1+ γ)E(N,H)

)(1−m)/m
]
,

where the first inequality holds since β̂ is feasible to FALPSG

N+H
and βSG

N+H
is optimal. ■

2.9.5 Proofs of Statements in §2.5

Proof of Proposition 6.

Applying Proposition 7 to VC(·) = βC

0+
∫
ΘBC(θ)φ(· ; θ) d θ with ∥BC/ρ∥2,ρ <∞ and replac-

ing Ω with ΩC, we get that for N iid samples {θi : i = 1, 2, . . . ,N} from ρ, there exist coefficients

β̄ := (β̄0, β̄1, . . . , β̄N) such that

sup
s∈SC

∣∣VC(s) − V(s; β̄)
∣∣ = ∥∥VC − V(β̄)

∥∥∞ ≤ EN :=

∥∥BC/ρ
∥∥
2,ρ

ρ
√
N

(
ΩC +

√
2 ln

(
1

δ

))
, (2.30)

90

with a probability of at least 1 − δ. Using the definition of VC (see §2.5), it is straightforward

to see that VC(sm) = V∗(sm) for all sm ∈ S. Hence, the inequality (2.30) indicates that with a

probability of at least 1− δ,

sup
sm∈S

∣∣V∗(sm) − V(sm; β̄)
∣∣ = sup

sm∈S

∣∣VC(sm) − V(sm; β̄)
∣∣ ≤ sup

s∈SC

∣∣VC(s) − V(s; β̄)
∣∣ ≤ EN, (2.31)

where we used the fact that S ⊆ SC to obtain the first inequality.

In addition, since V∗(sm) satisfies FALP constraints, i.e., V∗(sm) − γE [V∗(s ′)|sm, a] ≤

c(sm, a) for all (sm, a) ∈ S × As, following similar steps as in (2.23), the inequality (2.31)

indicates that the solution β̂ := (β̄0− ΓEN, β̄1, . . . , β̄N) is feasible to FALPN with a probability of

at least 1− δ. Hence, we have

∥∥V∗ − V(β
FA

N)
∥∥
1,ν

≤
∥∥V∗ − V(β̂)

∥∥
1,ν

= ∥V∗ − V(β̄)∥1,ν + ΓEN

=
∑
m∈M

ν(sm)
∣∣V∗(sm) − V(sm, β̄)

∣∣+ ΓEN
≤ (1+ Γ)EN

=
2
∥∥BC/ρ

∥∥
2,ρ

(1− γ)ρ
√
N

(
ΩC +

√
2 ln

(
1

δ

))
,

where the first inequality follows from the feasibility of β̂ and optimality of βFA

N to FALPN; the

first equality from the definition of β̂; the second equality from the (1, ν)-norm definition; the

second inequality from (2.31); and the last equality from the definition of EN. ■

91

2.10 Relaxing Assumptions

In §2.10.1 and §2.10.2, we discuss how our theory extends when assumptions V∗ ∈ R and 3

fail to hold, respectively.

2.10.1 Relaxing Assumption of V∗ ∈ R

In this section, Proposition 11 shows that there exists a feasible solution to FEP such that

its VFA is ε-close to V∗ under the ∞-norm for every choice of ε > 0, given that Assumptions 1

and 2 are satisfied (refer to §2.9.1). Consider the sequence of these feasible solutions when

ε → ∞. While each element in this sequence is feasible to FEP and gets closer to V∗, the

limit point of this sequence may not be feasible to FEP because the set R is not a closed set.

Therefore, whenever V∗ ∈ R fails to hold, FEP may not attain an optimal solution. In this

case, one can replace the constraint ∥B/ρ∥2,ρ <∞ in the formulation of FEP by the constraint

∥B/ρ∥2,ρ ≤ Cε for a sufficiently large finite constant Cε > 0 to ensure FEP attains an optimal

solution with a VFA that is ε-close to V∗.

Proposition 11 Assume V∗ /∈ R. Given ε > 0, there exists a feasible solution, βFE

ε = (β
FE

0,ε,B
FE

ε)

to FEP such that ∥∥V∗ − V(β
FE

ε)
∥∥∞ ≤ 2ε

1− γ
.

Proof. Since MDP value function V∗ is continuous (by Assumption 1) and the class of random

basis function φ is universal (by Assumption 2), there is V̂ ∈ R such that ∥V∗ − V̂∥∞ ≤ ε. Since

V̂ belongs to R, it can be written as V̂(s, β̂) = β̂0 +
∫
Θ B̂(θ)φ(s; θ) d θ for some β̂ = (β̂0, B̂)

with ∥B̂/ρ∥2,ρ < ∞. Recall that Γ = (1+ γ)/(1− γ). We now show that β
FE

ε = (β
FE

0,ε,B
FE

ε) :=

92

(
β̂0 − Γε, B̂

)
is the desired feasible FEP solution. This is because ∥BFE

ε /ρ∥2,ρ = ∥B̂/ρ∥2,ρ < ∞
and for any (s, a) ∈ S ×As, we have

(1− γ)β
FE

0,ε +

∫
Θ

B
FE

ε (θ)
(
φ(s) − γE[φ(s′) | s, a]

)
d θ

= (1− γ)
(
β̂0 − Γε

)
+

∫
Θ

B̂(θ)
(
φ(s) − γE[φ(s′) | s, a]

)
d θ

= −(1+ γ)ε+ V̂(s) − γE[V̂(s′)|s, a]

≤ −(1+ γ)ε+ V∗(s) + ε− γE[V∗(s′) − ε|s, a]

= V∗(s) − γE[V∗(s′)|s, a]

≤ c(s, a),

where the first inequality is valid since ∥V∗ − V̂∥∞ ≤ ε, which ensures V̂(s) ≤ V∗(s) + ε and

−V̂(s) ≤ −V∗(s) + ε for all s ∈ S. Thus, βFE

ε is feasible to FEP. In addition, the VFA V(β
FE

ε) =

V̂(β̂) − Γε belongs to R and ∥V∗ − V
(
β

FE

ε

)
∥∞ ≤ ∥V∗ − V̂∥∞ + Γε ≤ ε+ Γε = 2ε/(1− γ), which

completes the proof. ■

2.10.2 Relaxing Assumption 3

For a given α > 0, define vector β̂ ∈ RN+1 as an optimal solution to the following program:

max
β

β0 +

N∑
i=1

βiEν
[
φ(s; θi)

]
s.t. (1− γ)β0 +

N∑
i=1

βi

(
φ(s; θi) − γE

[
φ(s ′; θi) | s, a

])
≤ c(s, a), ∀(s, a) ∈ S ×As (2.32)

|βi| ≤ α, ∀i = 1, 2, . . . ,N.

93

Although there are explicit bounds on β1, β2, . . . , βN, the constraints of the problem also

imply

β0 ≤ max
{(β1,...,βN):|βi|≤α}

max
(s,a)∈S×As

{
1

1− γ

[
c(s, a) −

N∑
i=1

βi

(
φ(s; θi) − γE

[
φ(s ′; θi) | s, a

])]}
,

where the right-hand side is upper bounded by a constant because the state and action spaces

are compact, and the cost function evaluations are finite because V∗ is bounded, which follows

from it being a continuous function defined over a compact set. Program (2.32) always attains its

maximum since it optimizes a continuous function with N+ 1 decision variables over a compact

convex set.

Proposition 12 develops an error bound for the VFA associated with (2.32).

Proposition 12 Suppose ρ(θ) ≥ ρ for all θ ∈ Θ. Given δ ∈ (0, 1], we have that any optimal

solution β̂ ∈ RN+1 to linear program (2.32) with α ≥ ∥B∗/ρ∥2,ρ/(Nρ) satisfies

∥∥V∗ − V(β̂)
∥∥
1,ν ≤

∥∥B∗/ρ
∥∥
2,ρ

ρ
√
N

(
Ω+

√
2 ln

(
1

δ

))
,

with a probability of at least 1− δ.

Proof. (i) Any feasible solution β to (2.32) satisfies V(s;β) ≤ V∗(s) for all s ∈ S by Lemma 1

since V(· ;β) is continuous by Assumption 2. From this it follows that Eν[V(β)] ≤ Eν[V∗]. By

Assumption 1, V∗ is a continuous function over a compact domain and is thus bounded by a

94

finite constant, which implies that the optimal objective function value of (2.32) is also bounded

above by this constant. Therefore, FALPN has a finite optimal objective function value.

Let β∗ be an optimal solution to (2.32). Then β∗
1, β

∗
2, . . . , β

∗
N are finite because of the

bounding constraints. The next proposition develops a VFA error rate for this program.

(ii) Consider ε > 0. Given βθ = (βθ0 , β
θ
1 , . . . , β

θ
N) and Nε respectively defined in Definition 2

and Lemma 2, part (ii) of Lemma 2 ensures that when N ≥ Nε, the vector
(
βθ0 − Γε, β

θ
1 , . . . , β

θ
N

)
is a feasible solution to FALPN with a probability of at least 1 − δ. From the definition of each

element βθi , we have that

|βθi | ≤
∥B∗/ρ∥2,ρ
Nρ

.

Hence, vector
(
βθ0 − Γε, β

θ
1 , . . . , β

θ
N

)
is a feasible solution to (2.32) with a probability of at least

1− δ, and we thus have

∥∥V∗ − V(β̂)
∥∥
1,ν

≤
∥∥∥V∗ −

(
V(βθ) − Γε

)∥∥∥
1,ν

≤
∥∥∥V∗ −

(
V(βθ) − Γε

)∥∥∥∞ ≤ 2ε

1− γ
.

In above, we used the optimality of β̂ to obtain the first inequality, the relationship between

(1, ν)- and ∞-norms to obtain the second inequality, and part (ii) of Lemma 2 for the last one.

Since N ≥ Nε, by choosing choose ε according to

ε ≤

∥∥B∗/ρ
∥∥
2,ρ

ρ
√
N

(
Ω+

√
2 ln

(
1

δ

))
,

we complete the proof. ■

95

2.11 Constraint Sampling Bound for Self-guided FALP

Let {(sk, ak) ∈ S × As : k = 1, 2, . . . , K} be a set of K state-action pairs sampled from a

probability distribution ψ over the state-action space S × As. The constraint-sampled self-

guided FALP is given by the following linear program that has N random basis functions and

2K constraints:

max
β
β0 +

N∑
i=1

βiEν
[
φ(s; θi)

]
s.t. (1− γ)β0 +

N∑
i=1

βi

(
φ(sk; θi) − γE

[
φ(s ′; θi)|sk, ak

])
≤ c(sk, ak), k = 1, 2, . . . , K,

β0 +

N∑
i=1

βiφ(s
k; θi) ≥ V

(
sk;β

SG

N−B

)
, k = 1, 2, . . . , K.

(2.33)

The following proposition develops a probabilistic bound on the number of samples K to

ensure that the volume of state-action pairs that an optimal solution to (2.33) satisfies their

corresponding constraints of FALPSG

N is high.

Proposition 13 Given δ ∈ (0, 1], if ψ is supported over S × As, linear program (2.33) is

bounded, and the number of samples K satisfies

K ≥
⌈
2

δ
ln

(
1

δ

)
+ 2 (N+ 1) +

2(N+ 1)

δ
ln

(
2

δ

)⌉
,

then for every optimal solution β̂ to (2.33), the following inequality holds

ψ
({

(s, a) ∈ S ×As
∣∣∣ V(s; β̂) − γE[V(s ′; β̂)|s, a] ≤ c(s, a), V(s; β̂) ≥ V(s;βSG

N−B

)})
≥ 1− δ.

96

with a probability of at least 1− δ.

Proof. The proof of this proposition is similar to the proof of Proposition 3, where we leverage the

theoretical results in CC. Following the program called “prototype control problem” introduced

in §II of CC, we define three functions hFA, hSG, h : RN+1×S×As 7→ R at β = (β0, β1, . . . , βN) ∈

RN+1, s ∈ S, and a ∈ As as follows:

hFA(β; s, a) := (1− γ)β0 +

N∑
i=1

βi

(
φ(s; θi) − γE

[
φ(s ′; θi) | s, a

])
− c(s, a),

hSG(β; s, a) := V
(
s;β

SG

N−B

)
− β0 −

N∑
i=1

βiφ(s; θ
i),

h(β; s, a) := max
{
hFA(β; s, a), hSG(β; s, a)

}
.

Note that given s ∈ S, the function hSG(β; s, a) is constant across all actions a ∈ A. Thus,

program FALPSG

N can be reformulated as:

max
β

β0 +

N∑
i=1

βiEν
[
φ(s; θi)

]
s.t. h(β; s, a) ≤ 0, ∀(s, a) ∈ S ×As. (2.34)

Taking assumptions 1 and 2 in CC to hold, if we apply Corollary 1 and Theorem 1 of CC to

program (2.33), which is a random relaxation of (2.34), we obtain a guarantee that the optimal

solution β̂ of (2.33) satisfies:

ψ
({

(s, a) ∈ S ×As : h(β̂; s, a) ≤ 0
})

≥ 1− δ,

97

with a probability of at least 1 − δ. To complete the proof, we show that assumptions 1 and 2

of CC hold in our setting.

First notice that we use the notations h, β, RN+1, N + 1, (s, a), and S × As in Chapter 2

instead of f, θ, Θ, nθ, δ, and ∆, respectively, in CC. Assumption 1 in CC requires the function

h(β; ·, ·) to be convex in β and continuous. In our setting, h(β; ·, ·) = max{hFA(β; ·, ·), hSG(β; ·, ·)}

is convex because it is the pointwise maximum of two convex (linear) functions hFA and hSG. It

is also continuous in β since we assume φ(·) is Lipschitz continuous. We use a relaxation of

Assumption 2 in CC as stated in Appendix A. In particular, we only show that the program

(2.33) is feasible and forgo the uniqueness assumption of the optimal solution to FALPSG

N . By

appending B zeros to the past self-guided FALP solution β
SG

N−B
∈ RN+1−B, we define vector

(β
SG

N−B
, 0, 0, . . . , 0) ∈ RN+1 which is feasible to FALPSG

N and thus is feasible to (2.33) for all samples

{(sk, ak) ∈ S ×As : k = 1, 2, . . . , K}. ■

2.12 Optimistic Bound Estimation

In §2.12.1, we discuss the estimation of optimistic bounds on the MDP optimal policy value

using the constraint violation learning approach in Lin et al. (2020). In §2.12.2, we discuss

the information relaxation and duality approach from Brown et al. (2010) that can be used to

estimate optimistic bounds on the optimal policy value of an MDP, where the exogenous state

space is large and the controllable part of the state space is low dimensional.

2.12.1 Constraint Violation Learning

We first discuss a heuristic approach based on the constraint violation learning approach

(CVL; Lin et al. 2020) for estimating a lower bound on the optimal policy cost (or upper

98

bounds on the optimal policy reward). We then explain how we use this method to estimate

lower bounds for the perishable inventory control instances studied in §2.6. CVL utilizes primal

and dual updates to approximate the MDP value function while simultaneously learning which

constraints of ALP are being violated by the current VFA weights. Our CVL-based heuristic

only performs the dual update to obtain a valid lower bound. Specifically, for a given VFA, this

approach uses the ideas in CVL to learn a distribution that assigns high values to state-action

pairs where ALP constraints are violated and then employs this information to define a valid

lower bound.

CVL-based heuristic. For any VFA V(β) with β ∈ RN+1, define function y(·, ·;β) :

S ×As 7→ R as

y(s, a;β) := Eχ[V(β)] +
1

1− γ

(
c(s, a) + γE

[
V(s′;β) | s, a

]
− V(s;β)

)
,

where the second term encodes the slack in the FALP constraint for a given β at a state-

action pair (s, a). The coefficient β may not be feasible for all FALP constraints. We observe

that minimizing the function y(s, a;β) over state-action pairs corresponds to finding the most

violated constraint in FALPN since the term Eχ[V(β)] is independent of the state and action

and the term (c(s, a) + γE[V(s′;β)|s, a] − V(s;β))/(1− γ) is the constraint slack. Thus, if the

minimum value of function y(s, a;β) over state-action pairs is strictly less than Eχ[V(β)], then

β violates a constraint of FALPN. Otherwise, β is feasible to FALPN.

99

Lemma 3 is directly based on Lemma EC.3 in Lin et al. (2020) and provides a lower bound

on the optimal cost. For a given VFA V(β) and λ ∈ (0, 1], we define a density Y on S ×As as

Y(s, a;β, λ) :=
exp

(
−y(s, a;β)

/
λ
)∫

S×As
exp

(
−y(s, a;β)

/
λ
)
d(s, a)

. (2.35)

Lemma 3 (Lemma EC.3 in Lin et al. 2020) Suppose y is Lipschitz continuous with con-

stant Ly > 0. For any λ ∈ (0, 1] and β ∈ RN+1, we have

EY [y(s, a;β)] + λ(Λ+ d(s,a) ln(λ)) ≤ PC(π∗),

where constant Λ is defined as follows:

Λ := − ln

[
Γ̄

(
1+

d(s,a)

2

) (
RS×As

√
π
)−d(s,a) ∫

As

d(s, a)

]
− Ly(RS×As +D(s,a)).

Moreover, d(s,a) is the dimension of the space S×As. Function Γ̄ is the standard gamma function,

π is the Archimedes constant, RS×As > 0 is the radius of the largest ball contained in S × A,

and D(s,a) is the diameter of S ×A.

Given a solution β and its VFA V(β), Lemma 3 shows that a valid lower bound on optimal cost

PC(π∗) can be computed as the sum of the expected value EY
[
y(s, a;β)

]
and a constant term.

Applying CVL-based heuristic to perishable inventory control instances. Estimat-

ing a lower bound using the aforementioned CVL-based heuristic requires generating samples

{(si, ai) : i = 1, 2, . . . , I} from distribution Y in (2.35). Computing the denominator of this

100

distribution is intractable but it is known that there are MCMC methods that can generate

samples from un-normalized distributions. For example, the Metropolis-Hastings algorithm

can be used to generate samples {(si, ai) : i = 1, 2, . . . , I} from the un-normalized density

exp
(
−y(s, a;β)

/
λ
)

in the numerator of Y, which is proportional to Y(s, a;β, λ). Upon gen-

erating samples {(si, ai) : i = 1, 2, . . . , I}, we obtain the following lower bound estimate based on

a sample average approximation:

LB(β) := Eχ[V(β)] +
1

I(1− γ)

I∑
i=1

[
c(si, ai) + γE

[
V(s′;β)|si, ai

]
− V(si;β)

]
+ λ(Λ+ d(s,a) ln(λ))

The two additional expectations here can be also replaced by sample average approximations.

In our numerical experiments in §2.6, we estimate LB(β) using the Metropolis-Hastings method

with I = 4000 samples. These samples are obtained by generating 8 Markov Chains with

the length of 1500 in parallel, burning the first 1000 samples, and then using the last 500

samples. Parameter Λ can be easily evaluated for the instances studied in §2.6. The perishable

inventory control application cost function is Lipschitz with constant Lc > 0, where Lc =

2(γLcoā+ chā+ cbs+ cdā+ clā). From this we infer that the Lipchitz constant associated with

y is Ly = (4∥β∥1 + Lc)/(1− γ). We choose the other parameters defining Λ as follows: d(s,a)

is given by the summation of the dimensions of MDP state and action spaces that depends on

each instance; RS×As is ā
2 and D(s,a) = 3ā2 + (s − ā)2; and λ is set to 1/(Λ+ d(s,a)). One can

tune the last parameter to possibly obtain tighter bounds.

101

2.12.2 Information Relaxation and Duality

We switch from cost minimization to reward maximization here to be consistent with the

Bermudan option pricing problem that we apply it to. Information relaxation and duality (IR;

Brown et al. 2010, 2022) is a general framework to compute upper bounds on the optimal policy

reward of MDPs. This approach relies on allowing the decision maker to observe realizations

of future uncertainties when making a decision at the current time and then penalizing the

knowledge of such information. We discuss how this method can be used for Bermudan options

pricing to derive upper bounds on the optimal policy reward. For applying this method beyond

this application, please see Brown et al. (2010), Nadarajah et al. (2017), and Brown et al. (2022).

Let {(si0, s
i
1, . . . , s

i
T) : i = 1, 2, . . . , I} be a set of I sample paths generated from a fixed initial

state s0. At time t, sit = (pit,1, p
i
t,2, . . . , p

i
t,J, y

i
t) encodes prices of J assets at time t on the i-th

sample path as well as the binary variable yit that shows if the option is knocked-out or not

(please see §2.7.1). A perfect information relaxation with zero dual penalty requires solving the

following deterministic dual dynamic program on each sample path i:

VD
t (s

i
t) =


g(sit), t = T

max
{
g(sit), γV

D
t+1(s

i
t+1)
}
, t = T − 1, T − 2, . . . , 0.

The average of the dual value function at the initial state along each sample path defines the

upper bound estimate UB = (
∑I
i=1 V

D
0 (s

i
0))/I. This bound based on a zero dual bound is typically

loose.

102

VFAs/CFAs can be used to define dual penalties that can be incorporated into the above

dynamic program for improving the bound quality. Let Vt : S 7→ R be the time-t VFA. Define

the VFA-based dual penalty zt(sit+1, s
i
t, at;Vt+1) at time t, action at, and the state pair (sit+1, s

i
t)

on the i-th sample path as follows:

zt(s
i
t+1, s

i
t, at;Vt+1) = γ(1− at)

(
Vt+1(s

i
t+1) −

1

M

M∑
m=1

Vt+1(s
m|i
t+1)

)
,

where the next state sm|i
t+1 is drawn from stochastic kernel P(· |sit). The set of samples {sm|i

t+1 : m =

1, 2, . . . ,M} are called inner samples. For the action at = 1 that corresponds to option exercise,

we have zt(sit+1, s
i
t, 1;Vt+1) = 0. Note that E[zt(st+1, st, at;Vt+1)|st] = 0, which shows that the

VFA-based dual penalties is feasible. We can also construct feasible dual penalties based on

CFAs. Let Ct : S 7→ R be the time-t CFA. The dual penalty zT (·, · , ·;CT+1) ≡ 0 and define the

time-t dual penalty zt(sit+1, s
i
t, at;Ct+1) with respect to CFA Ct+1 as follows:

zt(s
i
t+1, s

i
t, at;Ct+1) = γ(1− at)

(
max

{
g(sit+1), Ct+1(s

i
t+1)
}
−

1

M

M∑
m=1

[
max{g(s

m|i
t+1), Ct+1(s

m|i
t+1)}

])
.

103

Both VFA-based and CFA-based dual penalties can be used to improve the upper bound ob-

tained from perfect information relaxation with zero dual penalty. Consider the following de-

terministic dual dynamic program:

VD
t (s

i
t; z) =


g(sit), t = T,

max
{
g(sit), γV

D
t (s

i
t+1; zt+1) − zt(s

i
t+1, s

i
t, 0)
}
, t = T − 1, T − 2, . . . , 0,

(2.36)

where dual penalties (z0, z1, . . . , zT) can be defined using VFAs or CFAs as described above.

Note that the maximum term in (2.36) is equivalent to

max
{
g(sit) − zt(s

i
t+1, s

i
t, 1), γV

D
t (s

i
t+1; zt+1) − zt(s

i
t+1, s

i
t, 0)
}
.

Because zt(sit+1, s
i
t, 1) = 0, the above maximization simplifies to the one in (2.36). Upon solving

dual dynamic program (2.36), we obtain the upper bound estimate UB(z) = (
∑I
i=1 V

D
0 (s

i
0; z))/I.

For the Bermudan options pricing instances considered in §2.7, we use I = 20, 000 sample

paths and M = 500 inner samples to estimate the upper bound UB(z). We use LSM to compute

a CFA and and ALPDFM, FALP500, and FALPSG

500,6 to compute VFAs in §2.7.3. In each case, we

estimate an upper bound UB(z) using the corresponding CFA- and VFA-based dual penalty

definition.

2.13 Addendum to Numerical Study

In §2.13.1, we numerically visualize the self-guiding mechanism on a two-dimensional in-

stance of the perishable inventory control problem. In §2.13.2, we report the performance of

104

policy-guided FALP when using different constraint sampling strategies. In §2.13.3, we evaluate

how our approach performs on perishable inventory control and Bermudan options pricing ap-

plications when using ReLU basis functions. In §2.13.4, we report raw lower and upper bound

values computed from FALP, self-guided FALP, and other benchmarks we consider in Chapter

2.

2.13.1 Visualization of Self-guiding Mechanism

We consider a two-dimensional instance of the perishable inventory control problem studied

in §2.6.1 to visualize the following: (i) VFAs, (ii) relative approximation quality and the states

visited by policies, and (iii) the implicit state-relevance distribution used by self-guided FALP.

We focus on an instance of the MDP in §2.6.1 with a lifetime of l = 1 and a lead time of J = 2.

The state vector of this instance has two elements s = (s0, u1) ∈ R2, where s0 is the on-hand

inventory level expiring in the current period and u1 is the order quantity arriving in the next

period. Demand follows a truncated normal distribution with a mean of 5, a standard deviation

of 2, and has support in the interval [0, 10]. These choices are the ones we used for the three-

dimensional instances in Table II. We choose the state space diameter of this MDP to be large

by setting the maximum ordering level to be ā = 500 and the maximum limit on the number of

backlogged orders to be s = −50. We use the following cost function parameters: ordering cost

co = 20, holding cost ch = 2, disposal cost cd = 8, backlogging cost cb = 100, and lost sales

cost cl = 100. We set the discount factor to γ = 0.95. Using the computational setup in §2.6.2,

we compute control policies for this MDP using FALPN with N = 50 random basis functions and

105

FALPSG

N,Q with N = 50 and Q = 51 (implied batch size is B = 1). For both these models, we use

a uniform ν.

Figure 3: Comparison of FALP VFA V(β
FA

50) (left panel) and self-guided FALP VFA V(β
SG

50)

(right panel) on a two-dimensional perishable inventory control instance.

The left panel of Figure 3 shows the VFA V(β
FA

50) and the right panel shows the VFA V(β
SG

50).

Both panels share the same x-axis of s0 and y-axis of u1, with the color bar encoding high

(low) values as red (black). We observe that the optimal objective values of FALP50 and FALPSG

50

are 5610 and 4832, respectively. As expected, V(βFA

50) is closer to V∗ than V(βSG

50) under the

(1, ν)-norm. Since V(βFA

50) is a lower bound on V∗ (we say lower bound because we employ

constraint sampling such that our samples are very dense in the 2-D state-action space), the

106

Figure 4: Illustrating the impact of guiding constraints on greedy policy performance.

reddish states likely correspond to the states where V∗ has very high values. This suggests

that FALP50 improves the (1, ν)-norm by making V(βFA

50) close to V∗ at states where V∗ has high

values. In contrast, FALPSG

50 is distinctly different and this difference affects policy performance.

The optimality gaps of πg(β
SG

50) and πg(β
FA

50) are 4.1% and 48.2%, respectively (computed w.r.t

the FALPN lower bound).

Figure 4 shows two regions of the state space: orange states that satisfy the inequality

V(β
SG

50) > V(β
FA

50) (which is analogous to orange states in Figure 1), while green states satisfy

V(β
SG

50) ≤ V(β
FA

50) (which is analogous to green states in Figure 1). Since both panels in Figure 3

show low values in the orange states, it is likely that V∗ takes low values at these states. In the

orange region, it is necessary that some of the guiding constraints with right-hand sides from

107

the set {V(β
SG

q) : q = 0, 1, . . . , 50} are binding because V(βSG

50) is closer to V∗ in this region. If

all of the guiding constraints are redundant, then the optimal objective values of FALP50 and

FALPSG

50 must coincide, which is not the case in this example. The smaller subplot in Figure

4 zooms into the bottom-left corner of the state space and depicts the states visited under

greedy policies πg(β
FA

50) and πg(β
SG

50) that are shown in blue and purple, respectively. Since both

V(β
FA

50) and V(βSG

50) are highly likely to lower bound V∗, it follows that V(βSG

50) provides a better

approximation of V∗ at the orange states, which also suggests that V(βSG

50) should provide a

greedy policy that is better at driving the system to lower cost states under V∗ in the orange

region than the greedy policy based on V(βFA

50). This provides support for the observed lower

optimality gap of πg(β
SG

50) compared to πg(β
FA

50).

We next visualize the state-relevance distribution under self-guided FALP. Figure 5 plots the

state-relevance distributions ν ′(β
SG

40), ν ′(β
SG

45), and ν ′(β
SG

50). It is reassuring to see that all these

distributions are concentrated at the bottom left corner of the state space where we expect V∗

to take its lowest values.

2.13.2 Analyzing the Impact of Constraint Sampling on Policy-guided FALP

As discussed in §2.6.2, we have implemented three versions of policy-guided FALP that differ

only in how their constraints are sampled. Version (i) uses uniformly sampled state-action pairs

to define constraints of the linear program FALPN[νq] solved at iteration q of policy-guided FALP

algorithm. Version (ii) constructs the constraints of FALPN[νq] at iteration q using state-action

pairs visited under greedy policy πg(βq−1) obtained in iteration q− 1. For the initial iteration

q = 0, Version (ii) employs uniformly sampled state-action pairs. Version (iii) integrates both

108

Figure 5: Self-guided FALP state-relevance distributions ν ′(β
SG

40) (left panel), ν ′(β
SG

45) (middle
panel), and ν ′(β

SG

50) (right panel) on a two-dimensional perishable inventory control instance.

uniformly sampled state-action pairs in Version (i) and the pairs visited under the policy-guided

FALP greedy policy in Version (ii). Unfortunately, Version (ii) results in severely poor greedy

policies, so we did not report its optimality gaps.

Table VI is an extended version of Table III that reports the optimality gaps and lower-bound

gaps of Versions (i) and (iii) on the five-dimensional perishable inventory control instances.

The optimality-gap ranges for Version (i) and Version (iii) are 4.3%–82.3% and 7.1%–57.8%,

respectively. Both versions deliver good policies on some instances and lead to poor policies

on a couple of them. These results suggest that the performance of greedy policies obtained

from policy-guided FALP is sensitive to the constraint sampling strategy used and the problem

instance solved. The lower-bound gap ranges for Versions (i) and (iii) are respectively 0.0%

to 7.8% and 0.0% to 17.1%, where we can see Version (i) produces better lower bounds than

Version (iii) on five out of six instances.

109

Table VI: Comparison of the effect of different constraint sampling strategies on policy-guided
FALP (extended version of Table III).

ch cd cb σ
% (UB - best LB)/(best LB) % (Best LB - LB)/(best LB)

ALPLNS FALP300 FALPPG300,7 (i) FALPPG300,7 (iii) FALPSG300,7 ALPLNS FALP300 FALPPG300,7 (i) FALPPG300,7 (iii) FALPSG300,7

1 8 2 5 139.4 19.6 12.9 38.7 13.9 15.0 0.0 0.1 0.3 0.4

1 8 2 2 18.0 21.0 11.7 12.6 11.5 6.2 0.0 0.2 1.7 0.2

1 2 8 5 13.6 15.6 82.3 10.6 7.9 7.8 0.0 7.8 1.9 0.8

1 2 8 2 6.8 12.1 4.3 57.8 4.3 6.2 0.0 0.9 17.1 0.7

2 8 5 5 59.4 15.9 10.6 7.1 8.4 12.1 0.2 0.0 0.3 0.5

2 8 5 2 8.2 16.1 7.0 7.4 7.7 7.6 0.0 0.1 9.8 0.5

Average 40.9 16.7 21.5 22.4 9.0 9.1 0.0 1.5 5.2 0.5

2.13.3 Analyzing ReLU Basis Functions

In this section, we compare the performance of FALP and self-guided FALP models for-

mulated using two different random basis function classes: ReLU bases (φ(·) = max{·, 0}) and

Fourier bases (φ(·) = cos(·)). We refer to the formulation of the FALPN model with ReLU and

Fourier basis functions as ReLU FALPN and Fourier FALPN, respectively. Similarly, we use ReLU

FALPSG

N and Fourier FALPSG

N when ReLU and Fourier basis functions are used to formulate FALPSG

N .

Perishable Inventory Control. We apply ReLU FALPN with N = 300 and N = 600 to our

three-dimensional perishable inventory control instances studied in Table II. Table VII reports

the optimality gap and lower-bound gap values for Fourier FALP150 (also considered in Table II),

ReLU FALP300, and ReLU FALP600. These gaps retain their definitions from Table II, except that

the best lower bound (LB) in Table VII is the maximum of the lower bounds obtained from

110

Table VII: Comparison of ReLU FALP and Fourier FALP on the three-dimensional perishable
inventory control instances (σ = 2 and cl = 100).

γ ch cd cb ā

% (UB - best LB)/(best LB) % (Best LB - LB)/(best LB)

Fourier ReLU Fourier ReLU

FALP150 FALP300 FALP600 FALP150 FALP300 FALP600

0.95

2 5 10 10 0.2 1.4 0.3 0.0 1.5 0.8
2 5 10 50 6.3 66.4 7.7 0.0 12.5 16.0
5 10 8 10 0.3 4.4 0.3 0.0 1.5 0.8
5 10 8 50 0.1 202.2 3.9 0.0 8.6 15.6
2 10 10 10 0.3 1.3 0.3 0.0 1.5 0.9
2 10 10 30 0.8 41.7 1.9 0.0 4.0 4.2

0.99

2 5 10 10 0.6 35.9 0.5 0.0 1.4 0.8
2 5 10 50 6.2 164.0 8.2 0.0 4.3 11.9
5 10 8 10 0.3 9.0 0.5 0.0 1.4 0.8
5 10 8 50 1.1 163.6 4.3 0.0 9.8 15.0
2 10 10 10 0.6 35.3 0.6 0.0 1.4 0.9
2 10 10 30 1.1 12.7 2.0 0.0 2.4 6.6

Average 1.5 61.5 2.6 0.0 4.2 6.2

these three models. Optimality gap ranges for Fourier FALP150, ReLU FALP300, and ReLU FALP600

are 0.1%–6.3%, 1.3%–202.2%, and 0.3%–8.2%, respectively. We observe that Fourier FALP150

provides near-optimal policies on all three-dimensional instances. On four out of six instances

with a small state-space diameter (ā = 10), ReLU FALP300 also leads to tight optimality gaps.

However, on the remaining instances, especially those with a large state-space diameter (ā = 50),

ReLU FALP300 results in poor policies. Doubling the number of basis functions N, we observe

that ReLU FALP600 essentially closes the optimality gaps on almost all instances. Therefore,

ReLU FALP600 has comparable policy performance to Fourier FALP150. Fourier FALP150 has zero

111

lower-bound gaps across all instances which indicates it results in the best lower bounds among

three models considered in Table VII. For ReLU FALP300 and ReLU FALP600, the lower-bound

gap ranges are 1.4%–12.5% and 0.8%–16.0%, respectively. While both of these models produce

excellent lower bounds on instances with small and medium state space diameters, i.e., ā = 10

and ā = 30, they lead to suboptimal lower bounds on four instances with the largest state-space

diameter (ā = 50).

Our results in Table VII show that our FALP model with both Fourier and ReLU bases

leads to very good greedy policies and lower bounds. However, to achieve comparable greedy

policies from Fourier FALPN and ReLU FALPN, we need to use a significantly larger number of

basis functions N in the latter basis function class. This behavior is particularly pronounced

when dealing with challenging instances with large state space diameters. We did not apply

ReLU FALPN to our five- and ten-dimensional instances, as we expect that a very large number

of ReLU basis functions would be needed to achieve near-optimal policies and lower bounds.

This would require us to solve linear programs with a very large number of columns, which is

computationally onerous.

Bermudan Options Pricing. We next apply ReLU basis functions to the Bermudan op-

tions pricing instances considered in §2.7. The Bermudan options pricing problem is a finite-time

horizon MDP, which means that VFA-based models such as FALP and self-guided FALP need

to store VFA weights for each stage. As a result, applying VFA-based methods to finite-time

horizon MDPs requires significantly more memory than infinite-time horizon MDPs. Thus, un-

like the perishable inventory control application where we tested ReLU bases with N = 300 and

112

Table VIII: Comparison of ReLU FALP and ReLU self-guided FALP with Fourier FALP and
Fourier self-guided FALP on the Bermudan options pricing instances.

J pinit
% (Best UB - LB)/(best UB) % (UB - best UB)/(best UB)

Fourier ReLU Fourier ReLU

FALP500 FALPSG500,6 FALP500 FALPSG500,6 FALP500 FALPSG500,6 FALP500 FALPSG500,6

4 90 2.1 2.0 3.8 3.8 0.3 0.0 3.8 3.8
4 100 1.9 1.9 4.2 4.2 0.0 0.0 2.3 2.3
4 110 8.0 4.9 5.4 5.4 996.7 4.0 0.0 0.0

8 90 6.7 6.6 9.0 9.0 2.9 2.5 0.0 0.0
8 100 7.9 4.3 6.7 6.7 5.9 0.4 0.0 0.0
8 110 9.5 3.1 5.8 5.6 172.5 0.0 1.1 0.5

16 90 3.7 3.7 7.7 7.2 0.1 0.0 1.8 0.2
16 100 2.5 2.4 7.8 7.3 0.2 0.0 5.1 0.9
16 110 2.4 2.1 7.4 6.7 0.2 0.0 12.3 1.9

Average 5.0 3.4 6.4 6.2 131.0 0.8 2.9 1.1

N = 600 on three-dimensional instances, we maintain a fixed number of samples N = 500 across

Bermudan options pricing instances but consider four-, eight-, and sixteen-dimensional instances.

Table VIII shows the optimality gap and upper-bound gap values of four models: Fourier

FALP500 and Fourier FALPSG

500,6 (also considered in Table V), and ReLU FALP500 and ReLU

FALPSG

500,6. Note that the best upper bound (UB) in this table is the smallest upper bound.

Specifically, we use the CFA or VFA obtained from each of these models to compute upper

bound on the optimal policy payoff using the information relaxation and duality approach

discussed in §2.12.2 and as we did in §2.7. Optimality gap ranges for Fourier FALP500, Fourier

FALPSG

500,6, ReLU FALP500, and ReLU FALPSG

500,6 are 1.9%–9.5%, 1.9%–6.6%, 3.8%–9.0%, and 3.8%–

113

9.0%. We observe that for four-dimensional instances with J = 4, both ReLU FALP500 and ReLU

FALPSG

500,6 yield good policies. However, for the other instances with J = 8 and J = 16, these

methods lead to weaker policies compared to Fourier FALPSG

500,6. The upper-bound gap ranges for

Fourier FALP500, Fourier FALPSG

500,6, ReLU FALP500, and ReLU FALPSG

500,6 are 0.0%–996.7%, 0.0%–

4.0%, 0.0%–12.3%, and 0.0%–3.8%, respectively. Fourier FALPSG

500,6 and ReLU FALPSG

500,6 deliver

excellent upper bounds for most of the instances. But they perform poorly on a few instances

Our results in Table VIII suggest that increasing the dimension of the state space J leads

to an increase in the optimality gaps for ReLU FALP500 and ReLU FALPSG

500,6, especially when

J = 16. These observations imply that Fourier bases scale better with the state space dimension,

as evidenced by the near-optimal performance of Fourier FALPSG

500,6 on the largest instances with

J = 16. This finding complements the results presented in Table VII, which indicates that more

ReLU bases are required for solving instances with larger state space diameters.

2.13.4 Upper and Lower Bound Values

In this section, we report the upper and lower bound values obtained from all methods

studied in Chapter 2 for both perishable inventory control and Bermudan options pricing ap-

plications. Table IX presents ALPLNS and FALP150 bounds on the three-dimensional perishable

inventory control instances studies in Table II. Table X reports ALPLNS, FALP300, FALP
PG

300,7, and

FALPSG

300,7 bounds on the five-dimensional perishable inventory control instances studies in Table

III. Table XI presents ALPLNS, FALP600, FALP1000, and FALPSG

600,7 lower and upper bounds on the

ten-dimensional perishable inventory control instances studies in Table IV. Table XII presents

lower and upper bounds computed from methods LSM, ALPDFM, FALP500, and FALPSG

500,6 on the

114

nine DFM instances studied in Table V. Table XIII reports lower and upper bounds that are

computed from Versions (i) and (iii) of policy-guided FALP discussed in §2.13.2 and are used to

compute optimality gap and lower-bound gap values in Table VI. Table XIV reports lower and

upper bounds obtained from Fourier FALP150, ReLU FALP300, and ReLU FALP600 on the three-

dimensional perishable inventory control instances and are used to create Table VII. Finally,

Table XV reports Fourier FALP500, Fourier FALPSG

500,6, ReLU FALP500, and ReLU FALPSG

500,6 lower

and upper bounds that are used to in Table VIII. We note that the lower and upper bound

values reported in Tables IX–XV are the average values across 10 trials for each method and

each instance.

115

Table IX: Lower bound and upper bounds used to compute optimality and lower-bound gaps in
Table II.

γ ch cd cb ā
Lower bound Upper bound (policy cost)

ALPLNS FALP150 ALPLNS FALP150

0.95

2 5 10 10 1974.7 2043.4 2048.2 2046.1
2 5 10 50 1895.8 1938.4 2060.9 2053.4
5 10 8 10 2035.7 2120.8 2126.2 2125.7
5 10 8 50 1906.5 2131.2 2132.3 2135.9
2 10 10 10 1989.9 2062.7 2069.3 2067.8
2 10 10 30 1988.4 2052.4 2068.3 2086.4

0.99

2 5 10 10 10883.9 11206.9 11270.4 11231.0
2 5 10 50 10425.3 10716.1 11379.0 11315.5
5 10 8 10 11121.1 11590.5 11629.8 11621.2
5 10 8 50 10335.8 11522.4 11643.6 11689.6
2 10 10 10 10943.5 11290.0 11355.9 11324.0
2 10 10 30 10912.4 11233.3 11360.7 11400.1

Table X: Lower bound and upper bounds used to compute optimality and lower-bound gaps in
Table III.

ch cd cb ā
Lower bound Upper bound (policy cost)

ALPLNS FALP300 FALPPG300,7 FALPSG300,7 ALPLNS FALP300 FALPPG300,7 FALPSG300,7

1 8 2 5 1024.6 1205.2 1203.7 1200.5 2885.7 1441.8 1361.2 1373.3
1 8 2 2 958.4 1022.0 1020.2 1020.2 1205.8 1236.4 1141.5 1139.7
1 2 8 5 1125.9 1220.4 1196.8 1210.5 1386.1 1410.5 1349.8 1316.4
1 2 8 2 1016.7 1083.8 1074.0 1075.8 1157.9 1215.4 1130.1 1130.7
2 8 5 5 1153.6 1308.7 1311.7 1305.6 2090.3 1520.7 1405.2 1442.4
2 8 5 2 1036.5 1122.1 1120.7 1116.1 1214.6 1302.7 1200.9 1208.7

116

Table XI: Lower bound and upper bounds used to compute optimality and lower-bound gaps in
Table IV.

ch cd cb ā
Lower bound Upper bound (policy cost)

ALPLNS FALP600 FALP1000 FALPSG600,7 ALPLNS FALP600 FALP1000 FALPSG600,7

1 8 2 5 901.9 1220.0 1215.4 1231.0 1792.5 1391.4 1636.7 1322.5
1 8 2 2 880.4 1065.1 1074.3 1089.4 1563.9 1156.2 1248.3 1141.1
1 2 8 5 903.6 1173.1 1177.3 1190.4 2500.0 1326.2 1570.5 1274.8
1 2 8 2 878.7 1054.0 1054.5 1070.0 1587.2 1144.5 1183.7 1124.6
2 8 5 5 1025.7 1471.3 1477.3 1493.8 2141.7 1710.3 2067.5 1614.8
2 8 5 2 981.9 1276.1 1283.8 1310.7 1427.6 1430.2 1493.4 1396.1

Table XII: Lower bound and upper bounds used to compute optimality and lower-bound gaps
in Table V.

J pinit
Lower bound (policy payoff) Upper bound

LSM ALPDFM FALP500 FALPSG600,7 LSM ALPDFM FALP500 FALPSG600,7

4 90 33.17 33.83 35.20 35.24 35.52 40.24 36.07 35.97
4 100 41.46 41.47 43.43 43.44 44.57 47.60 44.29 44.28
4 110 47.77 47.06 46.85 48.42 51.13 52.45 558.35 52.95

8 90 43.83 43.91 44.85 44.88 46.74 43.91 49.45 49.27
8 100 49.92 49.16 48.74 50.63 52.85 53.22 56.03 53.16
8 110 53.41 52.03 50.30 53.91 55.91 55.68 151.55 55.61

16 90 50.62 49.86 51.48 51.48 53.25 53.22 53.49 53.44
16 100 53.60 52.43 54.18 54.23 55.84 55.49 55.68 55.59
16 110 55.25 53.90 55.46 55.65 57.18 655.99 56.95 56.82

117

Table XIII: Lower bound and upper bounds used to compute optimality and lower-bound gaps
in Table VI.

ch cd cb ā
Lower bound Upper bound (policy cost)

Version (i) Version (iii) Version (i) Version (iii)

1 8 2 5 1203.7 1201.4 1361.2 1671.7
1 8 2 2 1020.2 1004.7 1141.5 1151.3
1 2 8 5 1125.0 1196.8 2224.5 1349.8
1 2 8 2 1074.0 898.4 1130.1 1710.1
2 8 5 5 1311.7 1307.7 1450.5 1405.2
2 8 5 2 1120.7 1012.1 1200.9 1205.4

Table XIV: Lower bound and upper bounds used to compute optimality and lower-bound gaps
in Table VII.

γ ch cd cb ā

Lower bound Upper bound (policy cost)

Fourier ReLU Fourier ReLU

FALP150 FALP300 FALP600 FALP150 FALP300 FALP600

0.95

2 5 10 10 2043.4 2012.4 2026.5 2048.2 2071.9 2049.4
2 5 10 50 1938.4 1696.9 1629.0 2060.9 3225.9 2087.4
5 10 8 10 2120.8 2089.3 2103.1 2126.2 2213.7 2127.8
5 10 8 50 2131.2 1948.6 1798.2 2132.3 6440.6 2214.7
2 10 10 10 2062.7 2031.7 2043.9 2069.3 2090.2 2069.8
2 10 10 30 2052.4 1970.6 1966.4 2068.3 2907.7 2091.2

0.99

2 5 10 10 11206.9 1153.5 11112.8 11270.4 15235.1 11260.6
2 5 10 50 10716.1 10250.7 9445.1 11379.0 28286.6 11596.5
5 10 8 10 11590.5 11429.1 11497.2 11629.8 12631.0 11654.0
5 10 8 50 11522.4 10392.1 9788.5 11643.6 30374.5 12022.8
2 10 10 10 11290.0 11127.6 11193.8 11355.9 15277.4 11355.1
2 10 10 30 11233.3 10969.2 10496.4 11360.7 13654.6 11459.2

118

Table XV: Lower bound and upper bounds used to compute optimality and lower-bound gaps
in Table VIII.

J pinit
Lower bound (policy payoff) Upper bound

Fourier ReLU Fourier ReLU

FALP500 FALPSG500,6 FALP500 FALPSG500,6 FALP500 FALPSG500,6 FALP500 FALPSG500,6

4 90 35.2 35.2 34.6 34.6 36.1 36.0 37.3 37.3
4 100 43.4 43.4 42.4 42.4 44.3 44.3 45.3 45.3
4 110 46.8 48.4 48.1 48.1 558.4 52.9 50.9 50.9

8 90 44.8 44.9 43.7 43.7 49.5 49.3 48.1 48.1
8 100 48.7 50.6 49.4 49.4 56.0 53.2 52.9 52.9
8 110 50.3 53.9 52.4 52.5 151.5 55.6 56.2 55.9

16 90 51.5 51.5 49.3 49.6 53.5 53.4 54.4 53.5
16 100 54.2 54.2 51.2 51.5 55.7 55.6 58.4 56.1
16 110 55.5 55.6 52.6 53.0 56.9 56.8 63.8 57.9

CHAPTER 3

RANDOMIZED MULTI-SHOT APPROXIMATION OF

AVERAGE COST MARKOV DECISION PROCESSES

(Co-authors: Parshan Pakiman and Selva Nadarajah)

Abstract

Approximate linear programming is a well-established approach for computing control poli-

cies for average-cost Markov decision processes (MDPs). This method approximates the MDP

bias function using a weighted sum of basis functions. It solves an approximate linear program

(ALP) that maximizes a lower bound on the optimal policy cost and produces optimal weight for

each basis function. When rich basis functions are selected, the optimal objective value of ALP

is a near-optimal lower bound. However, ALP can result in weak bias function approximations

(BFAs) and control policies even if bases are rich because ALP formulation does not include

any measure of BFA error in its objective function. We propose a new approximate linear

programming approach to tackle the challenges of selecting rich basis functions and modifying

ALP formulation. We combine a known two-phase ALP model studied in the literature with a

randomized multi-shot approximation mechanism recently proposed for discounted-cost MDPs.

Our method thus has two phases. First, it defines BFA in ALP using universal random basis

functions to mitigate the impact of poor basis functions on ALP lower bound quality. Second,

it solves a sequence of ALP models that iteratively refine their formulation using previously

119

120

computed BFAs in this sequence to mitigate the impact of poor ALP formulation on policy per-

formance. We establish a probabilistic convergence rate showing our lower bound approaches to

the optimal policy cost. In addition, we show that our sequence of ALP models taking multiple

shots at randomly approximating MDP bias function results in policies with improving worst-

case performance. We apply our method to two inventory management problems, resulting in

near-optimal lower bounds and effective control policies.

3.1 Introduction

Average-cost Markov decision processes (MDPs; see, e.g., Chapter 5 of Hernández-Lerma

and Lasserre 1996) provide mathematical models for sequential decision-making problems such

as inventory control, capacity allocation, queuing, and hospital management (Mahadevan 1996,

Adelman and Klabjan 2005, De Farias and Van Roy 2006, Adelman and Klabjan 2012, Adelman

and Mersereau 2013, Dai and Shi 2019). These MDPs usually feature high-dimensional state

and action spaces, making exact solutions intractable.

Approximate linear programming (Schweitzer and Seidmann 1985, De Farias and Van Roy

2003) is a well-established model-based reinforcement learning method for approximating large-

scale average-cost MDPs. This method relies on (i) approximating the MDP bias function

using a linear combination of so-called basis functions defined over the MDP state space and

(ii) solving an approximate linear program (ALP) to obtain the optimal weight of each basis

function in this linear combination. ALP has one decision variable for each basis function weight,

in addition to a variable representing a lower bound on the optimal policy cost. ALP maximizes

this lower bound and yields optimal weights of basis functions. It is known that if basis functions

121

are powerful enough to approximate the MDP bias function closely, the ALP lower bound is

arbitrarily close to the optimal policy cost. However, because the ALP objective function does

not include any BFA error term, ALP BFA and policy qualities can be highly sub-optimal even

if basis functions are powerful.

The studies below explored modifying ALP reformulations by integrating a BFA error term

into its objective function, thereby improving the qualities of ALP BFA and policies. These

reformulations all require a predetermined set of basis functions as input.

• De Farias and Van Roy (2002) proposed a two-phase ALP model. In the first phase, it

solves the original ALP formulation to obtain a lower bound on the optimal policy cost.

In the second phase, it uses the lower bound value from the first phase and solves a differ-

ent ALP model that minimizes a surrogate loss for BFA error. This loss is the difference

between BFA and an upper bound on the MDP bias function that is weighted based on a

state-relevance distribution, which assigns weights to different regions of the state space.

This distribution naturally arises in ALP formulations for discounted-cost MDPs, as we

saw in Chapter 2. Therefore, the second-phase ALP can be seen as artificially adding the

state-relevance distribution to the average-cost ALP formulation in order to control BFA

quality. Although this surrogate loss enables controlling BFA quality in the second-phase

ALP, a capability lacking in the first-phase model, it may not accurately capture BFA

error. In particular, when the first-phase ALP produces a weak lower bound, the upper

bound on the MDP bias function arising in the definition of the surrogate loss can be weak

and thus lead to a poor BFA in the second-phase ALP. In other words, minimizing this

122

surrogate loss may not directly translate into minimizing the true loss between BFA and

the MDP bias function.

• De Farias and Van Roy (2006) proposed a cost-shaping ALP formulation to control BFA

quality. This formulation involves constructing a perturbed MDP with a transition kernel

obtained from a convex combination of the original MDP transition kernel and a so-called

restart distribution. The cost-shaping ALP formulation is obtained from the original ALP

model written for the perturbed MDP with an additional slack variable allowing for con-

straints violation. The amount of such violation is then managed by adding a penalty term

in the cost-shaping ALP objective function. The authors showed that the performance of

the greedy policy obtained from the cost-shaping approach is proportional to the least at-

tainable BFA error for a given set of basis functions. However, to deploy this approach, one

needs to specify multiple parameters, including a distribution that determines the amount

of constraint violation at each state, a penalty factor for constraint violation in the ALP

objective, the restart distribution, and basis functions. The authors stated that automat-

ically choosing these parameters is an open question. To the best of our knowledge, there

have been no numerical experiments conducted to assess the performance of this approach,

possibly due to the computational difficulties associated with tuning its parameters.

• Veatch (2013) builds on the work by De Farias and Van Roy (2006) and utilizes the

“smoothed” ALP formulation in Desai et al. (2012a) to design an ALP model for average-

cost MDPs. In comparison to the original ALP formulation for average-cost MDPs, the

model in Veatch (2013) features a modified objective function with a surrogate loss for

123

BFA error and a penalty term for constraint violation. Unfortunately, this formulation

relies on idealized information based on the MDP optimal policy, limiting the use of this

method. Moreover, the numerical performance of this method has not been explored yet.

We develop an ALP method that integrates the two-phase ALP model in De Farias and

Van Roy (2002) with the randomized multi-shot approximation mechanism proposed in Chapter

2 for discounted-cost MDPs and relies on random basis functions (Rahimi and Recht 2008,

Rahimi and Recht 2009). Our method is based on two randomized ALP models, namely bound-

focused ALP (BALP) and policy-focused ALP (PALP), which are analogous to the first and

second phase ALPs in De Farias and Van Roy (2002). BALP uses a batch of random basis

functions sampled from a readily available distribution, i.e., a single-shot approximation. We

show that BALP lower bound converges to the optimal policy cost with a high probability.

Upon solving BALP, our method solves a sequence of PALP models that utilize BALP lower

bound and BFA. These PALPs, which are analogous to self-guided ALPs in Chapter 2, have an

increasing number of random basis functions that are sampled iteratively in multiple batches.

We link BFAs in this sequence of PALP models using “guiding constraints”. They ensure the

error of these BFAs and an upper bound on the cost of greedy policies with respect to these

PALP BFAs are weakly improving.

In contrast to the approach outlined in De Farias and Van Roy (2002), where a single

second-phase ALP is solved, our method solves multiple second-phase ALPs, specifically PALPs.

Additionally, our guiding constraints in the context of average-cost MDPs are added to the

second-phase ALP formulation in De Farias and Van Roy (2002), whereas our guiding constraints

124

in the context of discounted-cost MDPs are added directly to the original ALP model. Therefore,

our algorithms and their analyses in this chapter are fundamentally different from those in De

Farias and Van Roy (2002) and in Chapter 2.

3.1.1 Contributions

• Model. We propose new average-cost ALP models, BALP and PALP, that address issues

associated with the original ALP formulation as well as the two-phase ALP method in

De Farias and Van Roy (2002). These models extend our randomized multi-shot approx-

imation of discounted-cost MDPs in Chapter 2 to average-cost MDPs. This extension

is non-trivial because if we directly add guiding constraints to the original average-cost

ALP model, as done in Chapter 2 for discounted-cost MDPs, these constraints become

redundant and do not guarantee improving worst-case policy performance improvement.

• Theory. We show that the gap between optimal policy cost and BALP lower bound

converges to zero at a dimension-free rate of one divided by the square root of the num-

ber of random bases used to formulate BALP. We also develop an upper bound on the

performance of greedy policies obtained from PALP. To this end, we first generalize a

previously known bound in De Farias and Van Roy (2002) for finite-state MDPs to the

continuous-state MDPs. Then, using this performance bound, we show that our guiding

constraints weakly improve the cost of greedy policies based on PALP models as more ba-

sis functions are sampled. Moreover, our theoretical findings for BALP and PALP provide

a new insight: the number of random basis function samples required to obtain a tight

lower bound from BALP can be significantly smaller than the number of samples needed

125

to achieve near-optimal BFAs from PALP. In other words, learning accurate lower bounds

can be much easier than learning accurate BFAs.

• Numerical experiments. We apply our method to the generalized joint replenishment

problem studied in Adelman and Klabjan (2012) and an average-cost version of the per-

ishable inventory control (PIC) problem studied in Chapter 2. Adelman and Klabjan

(2012) showed that affine BFAs provide high-quality greedy policies on their instances

without holding cost, but computing tight lower bounds requires using more sophisticated

BFAs based on ridge-type basis functions. We benchmark BALP lower bounds against

the ones obtained from the algorithm in Adelman and Klabjan (2012). Our application-

agnostic BALP method formulated with Stump bases results in near-optimal lower bounds

comparable to those obtained from the application-specific benchmark in Adelman and

Klabjan (2012) on the instances without holding cost. As shown in Chapter 2, computing

near-optimal policies for high-dimensional discounted-cost PIC instances is challenging.

We also observe that this is, in fact, the case when considering an average-cost version of

these problem instances. We apply our randomized multi-shot approximation method that

solves PALPs formulated using Fourier basis functions to these instances and find that it

provides near-optimal policies. We demonstrate that PALP greedy policies are substan-

tially better than the ones from BALP and its modified version. Moreover, we show that

PALP significantly outperforms several benchmarks. Our numerical results contribute to

the limited literature evaluating the numerical performance of ALP models for large-scale

average-cost MDPs.

126

• Solution of BALP and PALP. BALP and PALP are semi-infinite linear programs.

These models can be solved using constraint sampling (De Farias and Van Roy 2004,

Calafiore and Campi 2006). For generalized joint replenishment (GJR) problem instances

studied in Adelman and Klabjan (2012), constraint sampling may not provide good ap-

proximations of the original semi-infinite linear programs because of action space high-

dimensionality. In addition, the greedy policy optimization method for GJR cannot be ap-

proached via discretization, as was done in Chapter 2, because GJR has a high-dimensional

action space, unlike applications in Chapter 2. We thus show how BALP and PALP for-

mulated using specific classes of random basis functions can be solved using constraint

generation. Specifically, if the random basis function class used to formulate these models

is piecewise constant (e.g., Stump bases) or piecewise linear (e.g., ReLU bases) and the

MDP cost function and transition kernel have structure, we can use the constraint genera-

tion method to solve BALP and PALP. For the GJR problem, because MDP components

have linear structures, we can reformulate the separation problem in the constraint genera-

tion method and the greedy policy optimization problem as mixed-integer linear programs

when Stump basis functions are used to formulate BALP. Constraint generation in con-

junction with random basis functions is new in the ALP literature.

3.1.2 Related work

Pakiman et al. (2020), which is the paper underpinning Chapter 2, applies random basis

functions to discounted-cost ALP and proposes a “self-guiding” mechanism to mitigate the effect

of state-relevance distribution choice on greedy policy performance, where this distribution is

127

a parameter appearing in the discounted-cost ALP formulation (see Chapter 2). The main

difference between our work and Pakiman et al. (2020) is that there is no value in adding

guiding constraints proposed by Pakiman et al. (2020) to the standard ALP formulation for

average-cost MDPs (i.e., these constraints become redundant). Instead, we demonstrate that

by adding analogous guiding constraints to a second-phase ALP model based on De Farias and

Van Roy (2002), we can ensure a worst-case measure of greedy policy is improving. Therefore,

our work extends the results in Pakiman et al. (2020) to average-cost MDPs in a non-trivial

manner. In addition, we show that accessing an approximation of the MDP bias function over a

possibly small region of the state space suffices to obtain tight lower bounds, but this is not true

if we want to ensure a near-optimal greedy policy. This result is new relative to our findings in

Pakiman et al. (2020).

The seminal work by Klabjan and Adelman (2007) proposes a convergent algorithm based

on primal-dual linear programs that produce basis functions for average-cost semi-MDPs, albeit

requiring the solution of challenging nonlinear programs. Adelman and Klabjan (2012) leverages

the structure of the GJR problem and develops a tractable algorithm to perform these primal-

dual steps, and they show that this method delivers excellent policies and lower bounds for

this application. Our work is similar to both of these papers in terms of dynamically updating

basis functions. The main difference is that our basis functions are sampled inexpensively

from known distributions and do not require optimization or domain knowledge. Adelman and

Klabjan (2012) use information based on flow-balance constraints in dual ALP and problem

128

structure to generate bases, but we leverage the primal ALP formulation. Moreover, we focus

on MDPs, but Adelman and Klabjan (2012) focus on deterministic semi-MDPs.

The structure of the paper is as follows. In §3.2, we provide background material on MDPs.

In §3.3 and §3.4, we discuss BALP and PALP models, respectively. In §3.5, we present our

main algorithm that combines BALP and PALP models and explain how to solve them with

constraint sampling and constraint generation methods. In §3.6 and §3.7, we present our nu-

merical experiments on GJR and PIC problems, respectively. We conclude in §3.8. All proofs

and supporting materials are available in §§3.9-3.10.

3.2 Markov Decision Processes

We consider an MDP with the state space of S ⊆ Rd and the action space of A ⊆ Rda .

We denote by As ⊆ A the set of feasible actions from state s ∈ S. Taking action a ∈ As in

state s ∈ S results in the immediate cost of c(s, a) and in the transition of the system to the

next state s ′ with the probability of P(s ′|s, a). The expected average cost per stage of a given

(deterministic and stationary) policy π : S 7→ A from an initial state s = s0 ∈ S is:

AC(s;π) := lim sup
n→∞ Eπs

[
1

n

n−1∑
t=0

c(sn, π(sn))

]
, (3.1)

where {(sn, π(sn)) : n = 0, 1, . . . } is an infinite sequence of states and actions under policy π

when starting from initial state s0 = s. For each policy π and initial state s, the expectation

operator Eπs [·] over infinite sequences of states and actions is well-defined by the Ionescu-Tulcea

theorem (see, e.g., Proposition C.10 in Hernández-Lerma and Lasserre 1996).

129

The goal of the system is to find an optimal control policy π∗ with the minimum expected

long-run average cost when starting from an initial state s ∈ S. Formally, this goal requires

solving the following policy optimization problem:

inf
π:S7→A

AC(s;π). (3.2)

When the Markov process defined by the stochastic kernel P(· |· , π(·)) over S is positive Harris-

recurrent for every policy π (see, e.g., Theorem 2.5 in Saldi et al. 2017), the average cost AC(s;π)

is a constant independent of the initial state s. Thus, under this condition, if a policy is optimal

to (3.2) in a specific state s, then it will also be optimal in all other states. Harris-recurrence

means that every state s ∈ S can be reached in a finite number of transitions when starting

from an arbitrary initial state s and taking actions according to π. The positiveness means that

the Markov process of states under π admits a unique invariant probability measure µ(·;π) that

satisfies
∫
S µ(s;π) d s = 1 and

∫
S
P
(
s ′ ∈ X |s, π(s)

)
µ(s;π) d s = µ(X ;π), ∀X ⊆ S. (3.3)

In the context of MDPs with a finite state space, when a so-called weak accessibility assump-

tion holds, the optimal average cost is the same for all initial states (see Proposition 5.2.3 in

Bertsekas 2015). This assumption is similar to the positive Harris-recurrence assumption in our

setting for MDPs with continuous state space.

130

Assumption 6 requires the MDP state and action spaces to be compact continuous sets and

the Markov process generated by every policy to be positive Harris-recurrent, which is widely

used in the literature for analyzing average-cost MDPs. For example, please see Assumption 2.3

in Gordienko and Hernández-Lerma (1995) and Theorem 3.3 in Vega-Amaya (2003).

Assumption 6 State space S ⊆ Rd and each feasible action set As ⊆ Rda are compact con-

tinuous sets. Moreover, for each policy π, the Markov process defined by the transition kernel

P(· |· , π(·)) over the state space is positive Harris-recurrent.

Under Assumption 6, the average cost of a policy π is the constant ηπ ∈ R that satisfies the

following identities (as shown in Theorem 2.5 of Saldi et al. 2017):

ηπ = AC(ŝ;π) =

∫
S
c(s, π(s))µ(s;π) d s, ∀ŝ ∈ S.

Therefore, the average cost minimization problem (3.2) can be written as infπ η
π that finds an

optimal π∗ (if exists) with the smallest cost ηπ∗ .

The cost minimization problem (3.2) over the set of all policies for finding π∗ is related to

the following average cost optimality equation:

u(s) = inf
a∈A

{c(s, a) − η+ E[u(s ′)|s, a]}, ∀s ∈ S, (3.4)

131

where constant η ∈ R and function u : S 7→ R are variables in (3.4). In the following assumption,

we require both an optimal policy π∗ that solves (3.2) and a pair (η∗, u∗) that solves (3.4) exist.

We also clarify how (3.2) and (3.4) are linked.

Assumption 7 There exists triplet (π∗, η∗, u∗) such that (i) the optimal policy π∗ solves (3.2),

(ii) pair (η∗, u∗) solves (3.4), (iii) function u∗ : S 7→ R is continuous over S, and (iv) following

identities hold for all s ∈ S:

η∗ = ηπ
∗
= AC(s;π∗) = inf

π
AC(s;π), and u∗(s) = c(s, π∗(s)) − η∗ + E[u∗(s ′)|s, π∗(s)].

Assumption 7 states that (i) an optimal policy π∗ solving (3.2) exists, i.e., the “inf” in (3.2)

can be replaced by a “min”; (ii) solution (η∗, u∗) to the optimality equation (3.4) exists, where

u∗ : S 7→ R is known as the MDP bias function; (iii) the MDP bias function is continuous

over S; (iv) η∗ obtained from optimality equation is the cost of the optimal policy cost, i.e.,

ηπ
∗
= AC(s;π∗), and the optimal policy π∗ selects action π∗(s) that minimizes the expression

given in (3.4) for every state s. Another way to express this final property is that π∗ is greedy

with respect to u∗. Specifically, define the greedy policy πg(s;u) with respect to u : S 7→ R at

state s ∈ S as,

πg(s;u) := argmin
a∈A

{c(s, a) + E[u(s ′)|s, a]}. (3.5)

The above objective function is based on optimality equation (3.4) without including the con-

stant term η because removing it from the minimization does not change the optimal ac-

tion obtained in optimization problem (3.5). Assumption 7 (iv) guarantees that the identity

132

π∗(s) = πg(s;u
∗) holds for all s ∈ S, meaning π∗ is greedy with respect to u∗. In other words,

the policy optimization problem (3.2) is equivalent to solving optimality equation (3.4) to obtain

pair (η∗, u∗) and then plug in u∗ into the greedy optimization problem (3.5) to recover π∗. A

body of work studies conditions on the MDP primitives under which Assumption 7 holds. For

example, see Theorem 5.5.4 of Hernández-Lerma and Lasserre (1996) and Theorem 2.5 of Saldi

et al. (2017). See also Klabjan and Adelman (2006) for analogous results for semi-MDPs. In

§3.9, we discuss a set of such conditions for the completeness.

Although Assumption 7 ensures existence of triplet (π∗, η∗, u∗), it is known that every shift

of u∗ by a constant c ∈ R results in the updated pair (η∗, u∗+c) that is also a solution to (3.4).

Theorem 10.3.7 of Hernández-Lerma and Lasserre (1999) states that all pairs satisfying optimal-

ity equation (3.4) has the form of (η∗, u∗ + c) for some constant c. For a given solution (η∗, u∗)

to (3.4), if we define c = −u∗(s̄) for a fixed reference state s̄ ∈ S, then (η∗, u∗ −u∗(s̄)) becomes

the unique solution to (3.4) that satisfies u∗(s)−u∗(s̄) = 0 at s = s̄. Hereafter, notation (η∗, u∗)

thus refers to the unique solution of the optimality equation, where the MDP bias function u∗

satisfies condition u∗(s) = 0 at the reference state s = s̄. We define U as the collection of all

continuous functions u : S 7→ R that satisfy condition u∗(s̄) = 0. Thus, u∗ belong to U .

3.3 Bound-Focused Programs

In §3.3.1, we present a linear programming reformulation of the optimality equation. In

§3.3.2, we present an alternative reformulation based on random basis functions. In §3.3.3, we

construct BALP using the reformulation in §3.3.2, and we develop a probabilistic error bound

for BALP.

133

3.3.1 Bound-Focused Exact Linear Program

Linear programming provides a well-established approach to reformulate optimality equation

(3.4). The computation of the optimal average cost η∗ can be reformulated according to the

following bound-focused exact linear program (BELP):

sup
(η,u)∈R×U

η

η+ u(s) − E[u(s ′)|s, a] ≤ c(s, a) ∀(s, a) ∈ S ×As. (3.6)

BELP has a decision variable u(s) per state s ∈ S, where u ∈ U , and an additional variable

η ∈ R. It also has a constraint for each state-action pair. Therefore, BELP is an infinite-

dimensional linear program. To better understand BELP and the use of the term “bound-

focused”, consider the following proposition.

Proposition 14 Every BELP feasible solution (η, u) satisfies η ≤ η∗, and pair (η∗, u∗) is an

optimal solution to BELP.

Proposition 14 shows that BELP maximizes a lower bound η on η∗, suggesting the name “bound-

focused”. Also, it shows that pair (η∗, u∗) solving (3.4) is an optimal solution to BELP. This

means that BELP is an exact reformulation of optimality equation (3.4), and the “sup” in BELP

can be replaced by “max” because BELP attains its optimal solution (η∗, u∗). Moreover, this

proposition suggests that BELP is equivalent to the regression problem

min
(η,u)

{|η− η∗| : (η, u) ∈ R× U satisfies (3.6)} ,

134

that minimizes the absolute deviation between η and the optimal cost η∗. Proposition 14,

which suggests this regression-based reformulation of BELP, extends the results in Lemma 1

of De Farias and Van Roy (2002) to the MDPs with continuous state space. An important

implication of this proposition is that if one can solve BELP, then the optimal cost η∗ can be

recovered from the optimal objective value of this program, but solving BELP to obtain η∗

is, unfortunately, interactable because this program is infinite-dimensional. In the following

section, we use random basis functions to derive a BELP reformulation that enables closely

approximating it.

3.3.2 Bound-Focused Feature-based Exact Program

Proposition 14 suggests that BELP can be seen as a non-parametric regression model to

find η∗. This model is non-parametric because it has decision variables belonging to the non-

parametric set of all continuous functions u ∈ U satisfying u(s̄) = 0. We discuss an alternative

representation of the elements in U based on random basis functions that allow us to develop

an exact but parametric reformulation of BELP. The resulting parametric model enables closely

approximating η∗.

Random basis functions are a popular tool in Machine Learning for approximating functions

and tackling supervised learning problems. Let s ∈ Rd be a state vector, θ ∈ Rd+1 be a param-

eter vector that belongs to a parameter space Θ ⊆ Rd+1, and ρ be a probability distribution

over Θ. Given θ = (θ0, θ1, . . . , θd) sampled from ρ, we can define the random linear feature map

θ0 +
∑d
i=1 siθi that is obtained by taking the inner product of (1, s) and θ. A key benefit of

random features is that θ does not need to be chosen or optimized. Instead, new feature maps

135

can be generated inexpensively by sampling θ from ρ. A nonlinear version of this feature map

can be constructed if we apply nonlinear (activation) function φ : R 7→ R to the inner product

θ0 +
∑d
i=1 siθi. For example, random Fourier feature maps are defined based on φ(·) = cos(·).

A random Fourier feature maps pair (s, θ) to the value of cos(θ0 +
∑d
i=1 siθi). Random Fourier

features have sampling distribution ρ defined over Θ = Rd+1 for which θ0 is sampled from a uni-

form distribution over interval [−π, π] and each θi is drawn from a standard normal distribution

with the standard deviation of cρ > 0, which is a tunable parameter.

In the ALP literature, a basis function is a mapping from MDP state space to the real line.

Therefore, we can interpret mapping (s, θ) 7→ φ(θ0+
∑d
i=1 siθi) as a random basis function with

parameter θ. Other examples of random bases are Stump and ReLU basis functions specified

by piecewise constant and piecewise linear functions φ(·) = sgn{·, 0} and φ(·) = max{·, 0},

respectively. The signum function sgn{a, 0} evaluates to −1, 0, or 1 if a is negative, zero,

and positive, respectively. The parameter θ for ReLU bases can be sampled from a uniform

distribution over a unit sphere in Rd+1. For Stump basis functions, θ0 is sampled from a uniform

distribution with support over an interval [−cρ, cρ], where cρ > 0 is a tunable parameter, and

the remaining elements of θ are sampled from a uniform distribution defined on the discrete

set {e1, . . . , ed}, where ei for i ∈ {1, 2, . . . , d} is the d-dimensional unit vector with 1 in the i-th

coordinate and zero elsewhere. Parameter cρ needs to be chosen such that [−cρ, cρ]d ⊇ S holds.

136

Random basis functions provide parametric representations of functions in the non-parametric

set U . Given random basis functions identified by (φ, ρ), consider an integrable weighting func-

tion β : Θ 7→ R and define its (2, ρ)-norm as follows:

∥β/ρ∥2,ρ :=
∫
Θ

(
β(θ)

ρ(θ)

)2
ρ(d θ) =

∫
Θ

(β(θ))2

ρ(θ)
d θ.

Given β, define function u(· ;β) : S 7→ R parameterized by β(θ) as follows:

u(s;β) :=

∫
Θ

β(θ)φ(s; θ) d θ, (3.7)

and further let R be the class of all continuous functions in U admitting representation (3.7)

and having a finite (2, ρ)-norm, i.e.,

R :=
{
u ∈ U

∣∣∣ ∃β s.t. u(·) = u(· ;β), u(s̄;β) = 0, ∥β/ρ∥2,ρ <∞} .
When random bases have a “universality” property, R becomes a dense subset of U . That is,

every non-parametric function in U can be approximated closely using a function in R that is

parameterized by β(θ). Formally, if random basis function identified by (φ, ρ) is universal, then

for each u ∈ U and ε > 0, there is a u(β) ∈ R such that ∥u− u(β)∥∞ := sups |u(s)−u(s;β)| ≤ ε.

Assumption 8 Random basis function φ is universal, and its sampling distribution ρ has a

finite second moment. Also, φ has a Lipschitz constant L > 0 and satisfies ∥φ∥∞ ≤ 1 and

137

φ(0) = 0. Moreover, we require u∗ ∈ R that entails existence of β∗ such that ∥β∗/ρ∥2,ρ < ∞
and u∗ = u(β∗).

The universality requirement in Assumption 8 is non-restrictive as Fourier, ReLU, and Stump

basis functions are all universal. This assumption also requires Lipschitz continuity of φ,

∥φ∥∞ ≤ 1, and φ(0) = 0, which are standard assumptions in the literature (see, e.g., The-

orem 3.2 in Rahimi and Recht 2008). Fourier and ReLU bases meet these requirements, but

Stump does not due to its discontinuity at zero. Requirement u∗ ∈ R is non-restrictive because

if it does not hold, then R includes an arbitrarily close approximation of u∗ (please see Chapter

2 for a similar discussion).

Random basis functions provide a natural reformulation of BELP based on the parametric

form (3.7). Specifically, when the random basis function is universal, we can replace decision

variable u ∈ U with u(β) ∈ R without incurring a significant loss. Performing this replacement,

we obtain the bound-focused feature-based exact program (BFEP):

sup
(η,β)∈R×B

η

η+

∫
Θ

β(θ)
(
φ(s; θ) − E[φ(s ′; θ)|s, a]

)
d θ ≤ c(s, a), ∀(s, a) ∈ S ×As,

where B := {β : Θ 7→ R : ∥β/ρ∥2,ρ < ∞, u(s̄;β) = 0} is the set of all weighting functions β

with a finite (2, ρ)-norm such that their associated function u(s;β) is zero at s = s̄, similar to

all continuous functions u ∈ U . Note that BFEP is not a linear program because of constraint

∥β/ρ∥2,ρ <∞.

138

In Proposition 15, we show that pair (η∗,β∗) is an optimal BFEP solution. Thus, BFEP

attains an optimal solution, and the “sup” in its formulation can be replaced by a “max”.

Proposition 15 Pair (η∗,β∗) is an optimal solution to BFEP.

Proposition 15 suggests that BFEP is an exact parametric reformulation of BELP. The paramet-

ric form and the exactness of BFEP allow us to construct ALP models whose optimal objective

values are arbitrarily close to η∗, as we discuss in the subsequent section.

3.3.3 Bound-Focused Approximate Linear Program

Consider the integral form (3.7) for the BFEP decision variable u(β). We can approximate

it to obtain a BFA using sample average approximation with N randomly sampled parameters

θ1, θ2, . . . , θN from ρ as follows:

u(s;β) := β0 +

N∑
i=1

βiφ(s; θ
i),

where β is the finite weight vector β = (β0, β1, . . . , βN) ∈ RN+1. Coefficients β is a finite

analogue of the weighting function β in FELP and u(s;β) can be viewed as a randomized BFA

constructed using a functional extension of Monte Carlo sampling applied to u(s;β). The ad-

dition of intercept β0 is solely for the purpose of ensuring BFA satisfies constraint u(s̄;β) = 0

for an appropriate choice of β0.

139

Replacing BFA u(s;β) with bias function u(s;β) in BFEP results in the following bound-

focused ALP (BALP), denoted BALPN:

sup
(η,β)∈RN+2

η

η+

N∑
i=1

βi

(
φ(s; θi) − E[φ(s ′; θi)|s, a]

)
≤ c(s, a) ∀(s, a) ∈ S ×As,

β0 +

N∑
i=1

βiφ(s̄; θ
i) = 0.

This model is a semi-infinite linear program with N+2 variables and a continuum of constraints.

If BALPN attains an optimal solution, we denote it by (ηBA

N
, βBA

N
) ∈ RN+1. Otherwise, we can

add a constraint to this program requiring a norm of β to be finite. The resulting restriction

of BALPN always attains an optimal solution. The formulation of BALPN raises fundamental

questions: Does the optimal objective value of BALPN converge to η∗ as we increase the value

of N? And if so, at what rate does this convergence occur? We show that the answer to the

first question is yes, and the optimal objective value of BALPN converges to η∗ at the rate of

1/
√
N. To motivate our theoretical analyses formalizing answers to these questions, we use the

following example.

Example 1 Consider an MDP with a finite number of S states in the set S := {1, 2, . . . , S} and

two actions a ∈ {0, 1}. This MDP is shown in Figure 6 and its transition probabilities are depicted

in gray boxes. Specifically, we have P(s+1|s, a) = a and P(s−1|s, a) = 1−a, where s−1 ≡ 1 for

s = 1 and s+1 ≡ S for s = S. The MDP immediate cost function c(s, a) = s for all s ∈ S, which

is independent of the action. The optimal policy that minimizes the long-run average cost per

140

stage selects the optimal action a = 0 at all states and results in the optimal long-run expected

average cost of η∗ = 1. Solving the optimality equation u(s) = min{s−1+u(s−1), s−1+u(s+1)},

the MDP bias function becomes u∗(s) = s(s − 1)/2. We choose state s̄ to be s = 1 for which

u∗(s̄) = 0. The BELP in this example can be written as follows:

max
(η,u)

η

η+ u(s) − u(s− 1) ≤ s ∀s = 1, 2, . . . , S,

η+ u(s) − u(s+ 1) ≤ s ∀s = 1, 2, . . . , S,

u(1) = 0.

(3.8)

Assume we use the constant BFA of the form û(s) = k to approximate the MDP bias function

u∗(s) = s(s − 1)/2, where k ∈ R. It is easy to see that for k = 0, this BFA is feasible to (3.8).

In fact, pair (1, û) with k = 0 is an optimal solution to (3.8). This observation suggests that to

learn the optimal cost η∗ = 1, one may only need a simple BFA such as û(s) = 0, which is a

poor approximation of u∗(s) = s(s − 1)/2. In other words, it may not be needed to find a BFA

that closely approximates the MDP bias function u∗(s) = s(s − 1)/2 at all states in order to

recover the optimal average cost η∗ = 1.

In Example 1, we recover η∗ using BFA û that satisfies û(s) = u∗(s) at state s = 1. This

particular state is the only point visited by the optimal policy in the long run. Extending

this insight, we can likely derive an approximation for η∗ as long as we access to a BFA û that

closely approximates u∗ within the region of the MDP state space that are visited by the optimal

policy. This region can be smaller than S and thus approximating u∗ over this region can be

141

Figure 6: Illustrating the connection between lower bound quality and BFA quality on a toy
MDP.

much easier than approximating it over the entire state space S. In Example 1, the function

that matches u∗ at s = 1 is a constant function, yet the MDP bias function is a quadratic bias

function u∗(s) = s(s− 1)/2, which is harder to approximate than a constant function.

To formalize this concept, let S∗ denote the largest subset of S to which the invariant

probability distribution µ∗(·) ≡ µ(·;π∗) assigns a positive mass. Specifically, define S∗ := {s ∈

S : µ∗(s) > 0} that satisfies µ∗(S∗) = 1 and µ∗(S\S∗) = 0. Additionally, introduce the following

hypothetical idealized math program (IMP):

sup
(η,β)∈R×B

η

η+ u(s;β) − E[u(s ′;β)|s, π∗(s)] ≤ c(s, π∗(s)) ∀s ∈ S∗.

142

The term “idealized” is used for IMP since its formulation depends on the knowledge of the

optimal policy π∗. We show in Proposition 16 that η∗ can be obtained from IMP, a considerably

smaller model than BELP. Define βIMP as follows

βIMP := argmin{∥β/ρ∥2,ρ : β ∈ B, u(s;β) = u∗(s), ∀s ∈ S∗},

that is the weight function with the smallest (2, ρ)-norm among all weight functions whose

associated bias functions match u∗ over S∗. Note that βIMP is well-defined because the mini-

mum in its definition is attainable, and it possesses a smaller (2, ρ)-norm compared to β∗, i.e.,

∥βIMP∥2,ρ ≤ ∥β∗∥2,ρ.

Proposition 16 Pair (η∗,βIMP) is an optimal solution to IMP.

The implication of Proposition 16 is that obtaining η∗ does not require knowing u∗ at all states.

Instead, knowing u∗ at S∗ suffices to recover η∗. Thus, approximating the optimal average cost

η∗, which is possible through u(βIMP), is simpler than approximating the MDP bias function

u∗ = u(β∗).

To establish an error bound on the difference between η∗ and the optimal objective value of

BALPN, denoted as ηBA

N
, we can either approximate u∗ or u(βIMP). Approximating the former

function seems excessive, as recovering η∗ doesn’t require the full knowledge of u∗ across the

entire state space. Thus, approximating the latter function appears to be reasonable. However,

pair (η∗,βIMP) based on this latter function might not be feasible to BFEP constraints because

IMP constraints are a subset of BFEP constraints. Thus, approximating u(βIMP) may result

143

in a BFA that does not satisfy constraints (3.6). As a solution, we introduce a third function,

different from u∗ and u(βIMP), that is simpler to approximate compared to u∗ and is feasible to

BFEP constraints. Define the following set of weight functions,

BAC :=
{
β ∈ B

∣∣∣ (η∗, u(β)) is feasible to (3.6), u(s;β) = u∗(s), ∀s ∈ S∗
}
,

and the weight function βAC := argmin{∥β/ρ∥2,ρ : β ∈ BAC}. Set BAC includes the weighting

function β of each BFA u(β) ∈ U , where (i) pair
(
η∗, u(β)

)
is feasible to BELP constraints when

η is set to η∗, and (ii) BFA u(s;β) matches u∗ at all states within S∗. Because u∗ = u(β∗) ∈ R,

we have β∗ ∈ BAC, i.e., BAC is non-empty and thus the weighting function βAC is well-defined.

Moreover, βAC has the following property:

∥βIMP∥2,ρ ≤ ∥βAC∥2,ρ ≤ ∥β∗∥2,ρ.

The weight function βAC thus possesses the smallest (2, ρ)-norm among all other weight functions

whose corresponding BFA u(β) ∈ R is feasible to constraints (3.6) when η = η∗ and is identical

to u∗ at all states visited under the optimal policy π∗. Proposition 17 formalizes an important

property of pair (η∗,βAC).

Proposition 17 Pair (η∗,βAC) is an optimal solution to BFEP.

144

Comparing propositions 15 and 17, we observe that (η∗,βAC) and (η∗,β∗) are both optimal to

BFEP. To develop our error bound, we use the former pair with the associated bias function

u(βAC) that can be easier to approximate compared to the MDP bias function u(β∗) = u∗.

Theorem 4 establishes that BALPN optimal objective value ηBA

N
converges to η∗ at a dimension-

free rate of 1/
√
N with a high probability. This theorem relies on the following definition:

Err(N, δ;βAC) :=

∥∥βAC/ρ
∥∥
2,ρ

ρ
√
N

(
5(Ds + 1)L

√
Eρ
[
∥θ∥22

]
+

√
2 ln

(
1

δ

))
.

The error rate Err(N, δ;βAC) is defined for every integer N ≥ 1 and probability threshold

δ ∈ (0, 1], given weight function βAC. It depends on the constant ρ > 0, state space diameter

Ds := maxs∈S∥s∥2, Lipschitz constant L of random basis φ(·) defined in Assumption 8, and

term
√

Eρ
[
∥θ∥22

]
that signals the standard deviation of ρ.

Theorem 4 Suppose ρ(θ) ≥ ρ > 0 for all θ ∈ Θ. Given δ ∈ (0, 1], we have that every finite

optimal BALPN solution (ηBA

N
, βBA

N
) satisfies

0 ≤ η∗ − ηBA

N
≤ 4Err(N, δ;Err(N, δ;βAC)),

with a probability of at least 1− δ.

Theorem 4 suggests that BALP is convergent, i.e., if we sample a sufficiently large number

of random bases, then lower bound ηBA

N
becomes arbitrarily close to the optimal policy cost η∗

with a high probability.

145

3.4 Policy-Focused Programs

In §3.4.1, we present a general performance bound for greedy policies. In §3.4.2, we discuss

how a discounted-cost ALP delivers BFA for average-cost MDPs. In §3.4.3, we introduce an

alternative exact linear program that relies on random basis functions and includes a BFA error

term in its objective function. In §3.4.4, we present PALP and analyze its theoretical properties.

3.4.1 Policy Performance Bound

Recall Proposition 14 and Example 1. They suggest that while (η∗, u∗) is an optimal solution

to BELP, there might be an alternative optimal solution to this program. That is, if we denote

this alternative solution by uBE, then we have u∗ ̸= uBE. This degeneracy imposes an issue when

computing greedy policy with respect to uBE. Specifically, although both (η∗, u∗) and (ηBE, uBE)

are both optimal to BELP, the cost of greedy policy πg(uBE) can be substantially worse than

the cost of the greedy policy πg(u∗) = π∗ with respect to u∗. We show this degeneracy issue

arises in Example 1.

Example 2 (Revisiting Example 1) Recall the MDP bias function u∗(s) = s(s − 1)/2 in

Example 1. Define û with û(s) = 0 at s = s̄ = 1 and û(s) = 1/s for s ≥ 2. It is easy to

verify that the pair (1, û) is an optimal solution to BELP (3.8). However, the greedy policy with

respect to û always chooses the worst action a = 1 at all states, i.e., πg(s; û) = 1 for all s ∈ S.

This greedy policy has the average cost of ηπg(û) = S, which is S times larger than the optimal

policy cost η∗ = 1. Therefore, greedy policies based on bias functions obtained from BELP may

lead to highly suboptimal greedy policies.

146

The above example thus suggests that if we are lucky such that solving BELP results in the MDP

bias function u∗, then the greedy policy with respect to this BELP optimal solution coincides

with the optimal policy. Nevertheless, there can be alternative BELP optimal solutions with

sub-optimal greedy policies.

In Theorem 5, we show that to compute good greedy policies, we need to access a BFA

that is close to the MDP bias function u∗ at all states. In Example 2, because û(s) is a poor

approximation of u∗(s) at all states, except s = 1, it led to a poor greedy policy, matching the

insight from Theorem 5. Let µ(· ;β) ≡ µ(· ;πg(β)) be the invariant probability measure defined

in (3.3) for greedy policy πg(β).

Theorem 5 Given β ∈ RN+1, the cost of the greedy policy πg(β) is upper bounded as follows:

AC
(
πg(β)

)
≤ η∗ + ∥u(β) − u∗∥∞ + ∥u∗ − u(β)∥1,µ(β) ≤ η∗ + 2∥u(β) − u∗∥∞. (3.9)

Theorem 5 generalizes Theorem 2 in De Farias and Van Roy (2002) to MDPs with a continuous

state space. Performance bound (3.9) suggests that the cost of a greedy policy depends on the

∞-norm quality of BFA. Consequently, for the optimal pair (ηBA

N
, βBA

N
) derived from BALPN,

the ∞-norm gap ∥u(βBA

N
) − u∗∥∞ may be substantial, leading to its greedy policy πg(ηBA

N
, βBA

N
)

being sub-optimal. It is worth noting that the performance bound (3.9) can be improved to

AC
(
πg(β)

)
≤ η∗ + ∥u∗ − u(β)∥1,µ(β) if β is such that u(s;β) ≤ u∗(s) for every state s ∈ S.

147

3.4.2 Discounted-cost Approach to Average-Cost MDPs

In this section, we discuss a strategy to compute control policies such that bound (3.9) on

their average cost performance can be potentially low. This strategy relies on approximately

solving the discounted-cost version of the MDP and has the following steps: (i) formulate

a discounted-cost variant of the MDP, (ii) solve an ALP model to obtain a value function

approximation (VFA) for the discounted-cost model, (iii) recover a BFA from this VFA, and

(iv) construct the greedy policy with respect to the resulting BFA.

For the average-cost MDP model in §3.2, we define the expected discounted cost of a policy

πα : S 7→ A as follows similar to Chapter 2:

DC(s;πα) := Eπαs

[∞∑
t=0

αtc(st, π(st))

]
, (3.10)

where α ∈ (0, 1) is a discount factor. Comparing the two measures for evaluating the effec-

tiveness of a policy, namely average and discounted costs in (3.10) and (3.1), respectively, we

consider the optimization problem infπα DC(s;πα) that seeks to identify a policy that minimizes

latter measure, unlike the optimization problem (3.2) that focuses on the former measure. There

are several known conditions under which there exists a discounted-cost optimal policy π∗α that

solves problem infπα DC(s;πα) at all states, meaning that identity DC(s;πα) = DC(s;π∗α) holds

148

for every state s ∈ S. In addition, there exists an MDP value function, denoted V∗
α : S 7→ R,

that is a solution to the following discounted-cost optimality equation:

V∗
α(s) := min

a∈A
{c(s, a) + αE[V∗

α(s
′)|s, a]}, ∀s ∈ S.

The optimal policy π∗α and the MDP value function V∗
α(s) are linked as follows: the action

π∗α(s) ∈ As chosen in state s by the optimal policy π∗α minimizes the objective function inside

the above optimality equation. That is, for every s ∈ S, the following equality holds:

V∗
α(s) := c(s, π

∗
α(s)) + αE[V∗

α(s
′)|s, π∗α(s)].

Similar to our discussion in Chapter 2, there are known assumptions under which the optimal

pair (π∗α, V∗
α) for the discounted-cost objective exists. We thus assume such conditions hold and

the optimal pair (π∗α, V
∗
α) exists.

The discounted-cost and average-cost objectives are connected. Given discount factor α and

MDP value function V∗
α, define the average-cost as ηα := (1 − α)mα and the bias function as

uα(s) := V
∗
α(s) −mα, where mα := V∗

α(s̄). It is easy to confirm that pair (ηα, uα) is a solution

to the following optimality equation (see pages 84–55 in Hernández-Lerma and Lasserre 1996):

uα(s) = min
a∈A

{c(s, a) − ηα + αE[uα(s ′)|s, a]}, ∀s ∈ S.

149

The above equation resembles the average-cost optimality equation (3.4), except it has an addi-

tional α before the expectation term such that if α = 1, the above equation boils down to (3.4).

In addition, if α is close to 1, we may expect the MDP bias function u∗ to be close to the bias

function uα.

Motivated by the construction of the bias function uα from value function V∗
α, we can

construct a BFA if we access a VFA approximating V∗
α. A VFA is defined as a linear combination

of basis functions, e.g., random basis functions. Specifically, given N random basis functions

with parameters θ1, θ2, . . . , θN, we can define VFA Vα(s;β) := β0 +
∑N
i=0 βiφ(s; θ

i), as we did

in Chapter 2. The coefficients of this VFA can be optimized using the following discounted-cost

ALP model:

sup
β∈RN+1

{
Eν[Vα(s;β)] : Vα(s;β) ≤ c(s, a) + αE

[
Vα(s

′;β)|s, a
]
,∀(s, a) ∈ S ×As

}
, (3.11)

where distribution ν over S is called the state-relevance distribution that assigns a non-negative

value to each state. It is known that the objective of (3.11) can be equivalently written as

minβ∥V∗
α−Vα(β)∥1,ν, where ∥V∗

α−Vα(β)∥1,ν := Eν[|V∗
α−Vα|]. This reformulation of (3.11) means

that the ALP model minimizes the (1, ν)-norm distance between the MDP value function V∗
α and

VFA Vα(β). Note that we labeled ALP model (3.11) as the “feature-based ALP” in Chapter 2.

Let βDC

N
be a finite optimal solution to (3.11). We can define BFA uα(s;β

DC

N
) using VFA

weights βDC

N
at state s ∈ S as uα(s;βDC

N
) := Vα(s;β

DC

N
) −mα(β

DC

N
), where mα(β

DC

N
) := Vα(s̄; β̂).

150

We also define πg(βDC

N
;α) as the greedy policy with respect to BFA uα(β

DC

N
). Using Theorem 5,

it is easy to derive the following upper bound on the performance of πg(β;α):

AC
(
πg(β

DC

N
;α)
)

≤ η∗ + 2|mα −mα(β
DC

N
)|+ 2

∥∥V∗
α − Vα(β

DC

N
)
∥∥∞ + 2∥uα − u∗∥∞ (3.12)

Two terms |mα−mα(β
DC

N
)| and ∥Vα(β) − V∗

α∥∞ are errors incurred due to approximating MDP

value function, and the term ∥uα − u∗∥∞ is the error resulted by solving a discounted cost

objective in lieu of the average-cost objective.

To shed light on (3.12), we use Theorem 1 from Chapter 2. Note that ALP model (3.11)

minimizes the (1, ν)-norm gap, but we observe in (3.12) the∞-norm gap. Therefore, this model

does not necessarily minimize the third term in (3.12). Temporarily assume that ν is selected

to make the reduction in (1, ν)-norm gap translates to a reduction in the ∞-norm gap. From

Theorem 1, we can infer that inequality ∥Vα(β) − V∗
α∥1,ν ≤ C/(1− α)

√
N holds with a high

probability, where C > 0 represents a non-negative constant. This upper bound suggests that

as α approaches 1, a substantially larger number of random basis functions N is needed to

maintain the (1, ν)-norm gap ∥Vα(β) − V∗
α∥1,ν below a fixed threshold. Specifically, to ensure

∥Vα(β) − V∗
α∥1,ν ≤ ε, we need to require N ≥ (C/(1 − α)ε)2, indicating that N must grow

superlinearly in 1 − α. Thus α plays a trade-off between making either ∥Vα(β) − V∗
α∥1,ν or

∥uα − u∗∥∞ small. That is, when α is close to zero, it is easy to reduce ∥Vα(β) − V∗
α∥1,ν but

∥uα − u∗∥∞ is large, whereas when α is close to one, ∥uα − u∗∥∞ is small but minimizing

∥Vα(β) − V∗
α∥1,ν is hard becuase of needing a large N.

151

The error term |mα −mα(β
DC

N
)| relies on the choices of both α and s̄. Specifically, if the

VFA error |V∗
α(s) − Vα(s; β̂)| at state s = s̄ is substantial, then the constant mα(β

DC

N
) will

deviate significantly from the true value of V∗
α(s̄). Therefore, when using the discounted-cost

approach to average-cost MDP, the choices of the discount factor α and the reference state s̄

can substantially impact policy performance. Regrettably, determining the optimal values for

these parameters remains a practical challenge.

3.4.3 Policy-Focused Exact Programs

In this section, we present a direct strategy to compute policies such that the upper bound

(3.9) on their performance is small. As discussed, BELP suffers from a critical degeneracy issue.

De Farias and Van Roy (2002) identified this issue in an average-cost ALP model and used

a queuing example to illustrate why this issue impacts greedy policy quality. In fact, as we

already see, the root cause of this issue is in the formulation of the exact model BELP. Thus,

if we directly approximate BELP to obtain an ALP, the resulting ALP model will also suffer

from the same degeneracy issue in BELP. To mitigate this issue, De Farias and Van Roy (2002)

suggested solving a different ALP formulation, called second-phase ALP, that has the expected

value of its BFA with respect to a state-relevance distribution in its objective function. This

distribution assigns weights to different regions of the state space and thus controls the quality

of BFA, similar to the role of ν in the formulation of (3.11). State-relevance distribution directly

arises in the objective function ALPs for discounted-cost MDPs, e.g., see (3.11), but this is not

the case in the average-cost ALP. Therefore, De Farias and Van Roy (2002) suggested artificially

adding state-relevance distribution to an ALP model for average-cost MDPs. Motivated by their

152

formulation, we introduce below an exact linear program involving a state-relevance distribution

in its objective function.

Let ν be a state-relevance distribution defined over S. We define the policy-focused exact

linear program (PELP) as follows:

sup
u∈U

Eν[u]

u(s) − E[u(s ′)|s, a] ≤ c(s, a) − η∗, ∀(s, a) ∈ S ×As.

The bias function u is the only decision variable of the PELP, unlike BELP with decision

variables of both η and u. In the former model, η is essentially fixed to the optimal objective

value of the latter model. At state s̄, both models require u(s̄) = 0. Comparing PELP with

(3.11), both models incorporate the state-relevance distribution ν in their objective functions.

However, PELP focuses on the direct optimization of the bias function, whereas (3.11) performs

VFA optimization for a discounted-cost version of the MDP. As we show in Proposition 18,

PELP is a regression problem that minimizes (1, ν)-norm gap between the decision variable u

and u∗. In addition, we show that u∗ is the unique solution to the PELP if ν is positive almost

everywhere.

Proposition 18 Assume state-relevance distribution ν assigns a positive mass to all non-zero

measure subsets of S. Then, PELP is equivalent to the following regression model:

min
u∈U

∥u− u∗∥1,ν

u(s) − E[u(s ′)|s, a] ≤ c(s, a) − η∗, ∀(s, a) ∈ S ×As.

153

Moreover, u∗ is the unique PELP optimal solution.

Proposition 18 indicates that PELP aims to minimize the (1, ν)-norm distance between a

bias function u ∈ U and the MDP bias function u∗. Because PELP is an exact model (i.e.,

it does not include any approximation), minimizing the (1, ν)-norm results in minimizing the

∞-norm, as can be inferred from Proposition 18.

Proposition 18 highlights that PELP minimizes the (1, ν)-norm distance between a bias

function u ∈ U and the MDP bias function u∗. Specifically, since PELP is an exact model

without any approximations, minimizing the (1, ν)-norm translates into minimizing the∞-norm.

This is established by Proposition 18 because u∗ is the unique PELP optimal solution. Because

of this∞-norm reduction, PELP can be seen as a model that reduces the∞-norm error term in

performance bound (3.9). Therefore, we refer to it as “policy-focused”. Moreover, Proposition 18

suggests that computing (η∗, u∗), in principle, is equivalent to first solving BELP to obtain η∗

and then using η∗ in PELP to obtain u∗. In fact, if we use a uniform state-relevance distribution

ν in PELP, then Proposition 18 suggests that the greedy policy with respect to PELP optimal

solution u∗ is the optimal policy. For the MDP in Example 1, if we use a uniform state relevance

distribution in PELP, then it is easy to verify that the MDP bias function u∗(s) = s(s − 1)/2

becomes its optimal solution, as we expect by Proposition 18.

We next define the policy-focused feature-based exact program (PFEP) as follows:

sup
β∈B

∫
Θ

β(θ)Eν[φ(s; θ)] d θ∫
Θ

β(θ)
(
φ(s; θ) − E[φ(s ′; θ)|s, a]

)
d θ ≤ c(s, a) − η∗, ∀(s, a) ∈ S ×As.

154

Unlike BELP and PELP directly optimizing the non-parametric bias function u ∈ U , PFEP op-

timizes the parametric weighting function β ∈ B, similar to BFEP. In the following proposition,

we show that β∗ is an optimal solution to PFEP. Therefore, PFEP attains an optimal solution,

and its “sup” can be replaced by a “max”.

Proposition 19 Assume state-relevance distribution ν assigns a positive mass to all non-zero

measure subsets of S. Weighting function β∗ is an optimal solution to PFEP.

Proposition 19 implies that PFEP is a parametric reformulation of PELP, which is a result of

the universality of random bases, our mild assumption u∗ ∈ R in §3.3.2, and Proposition 18.

An important implication of this proposition is provided in the following remark.

Remark 1 As we observed in Proposition 17, pair (η∗,βAC) is an optimal solution to BFEP.

However, the weighting function βAC may not be an optimal solution for PFEP. Specifically, if

ν({s : S | u(s;βAC) ̸= u∗(s)}) > 0 and ν(S\S∗) > 0,

then βAC is suboptimal to PFEP. In other words, PFEP finds a bias function that is close to

u∗ at all states s ∈ S, but BFEP only focuses on those states visited by π∗, which is S∗. Thus,

PFEP is an appropriate model for computing BFAs and reducing ∞-norm.Thus, PFEP is an

appropriate model for computing BFAs and reducing ∞-norm. Thus, PFEP is an appropriate

model for computing BFAs with small ∞-norm errors.

155

3.4.4 Policy-Focused Approximate Linear Program

Recall PFEP that minimizes the (1, ν)-norm distance of u(β) to u∗. As we discussed, the

(1, ν)-norm reduction in PFEP and PELP translates to ∞-norm BFA error reduction since

these models are exact. However, if we approximate PFEP decision variable u(β) by sampling

random basis functions, similar to the derivation of BALP from BFEP, then the reduction in

(1, ν)-norm distance to u∗ does not necessarily translate to reduction in the ∞-distance to u∗,

which is essential to ensure the performance of the greedy policy obtained form the approximate

model (see Theorem 5). Therefore, to achieve BFAs with low ∞-norm errors, we use a similar

idea to our “self-guiding mechanism” in Chapter 2. We design a method that includes (i)

iteratively sampling random basis functions in batches and solving a sequence of ALP models

obtained upon approximating BFEP and (ii) connecting BFAs in this sequence using guiding

constraints that ensure an upper bound on the BFA ∞-norm error is weakly decreasing.

Let ηBA

N
be the optimal objective value of BALPN that includes N random basis functions

with parameters {θ1, θ2, . . . , θN}. We construct a sequence of ALP models with N, N + B, . . .,

N+QB basis functions, where B is a sampling batch size and Q is the number of times random

bases are sampled. In other words, we sample random bases in batches of size B for Q iterations

to construct these ALP models and obtain the total of N + QB basis functions. At iteration

q ≥ 1, we obtain N + qB bases with parameters {θ1, . . . , θN} ∪ {θN+1, . . . , θN+qB} and solve

policy-focused approximate linear program (PALPN+qB):

sup
β∈RN+qB

β0 +

N+qB∑
i=1

βiEν[φ(s; θi)]

156

N+qB∑
i=1

βi

(
φ(s; θi) − E[φ(s ′; θi)|s, a]

)
≤ c(s, a) − ηBA

N
, ∀(s, a) ∈ S ×As,

β0 +

N+qB∑
i=1

βiφ(s; θ
i) ≥ u

(
s;βPA

N+(q−1)B

)
, ∀s ∈ S, (3.13)

β0 +

N+qB∑
i=1

βiφ(s̄; θ
i) = 0.

In the above formulation, βPA

N+qB
denotes a finite optimal solution of PALPN+qB. We use initial-

ization u
(
βPA

N

)
≡ u(βBA

N
) at q = 1. We refer to constraints (3.13) as guiding constraints that

ensure the BFA with N+ qB basis functions is a state-wise upper bound on the past BFA with

N+(q−1)B bases, where our initial BFA used for guiding is the BALP VFA u(βBA

N
). PALPN+qB

has the objective with respect to the state-relevance distribution ν to control the quality of the

BFA, similar to PELP and PFEP.

To understand why PALP results in BFAs with a small ∞-norm gap (i.e., strong greedy

policies), we present an analysis that relies on an idealized bias function. This analysis general-

ized the one in De Farias and Van Roy (2002) for finite-state MDPs to continuous-state MDPs.

Informally, given lower bound ηBA

N
on η∗, there is an idealized bias function, denoted uID(ηBA

N
),

that is a state-wise upper bound on every feasible solution to PALPN+qB for all q. We will show

that PALP minimizes the (1, ν)-gap between its BFA and this idealized bias function. We will

also show that the idealized bias function uID(ηBA

N
) gets closer to the MDP bias function u∗ as

ηBA

N
gets closer to η∗ upon increasing N. Therefore, PALP indirectly minimizes the∞-norm gap

between BFA and the MDP bias function u∗.

157

To define the idealized bias function, we revisit the optimality equation (3.4). Let Tu : S 7→ R

be the transformation of u under mapping T . We define the evaluation of Tu at state s ∈ S

as Tu(s) := E[u(s ′)|s, π∗(s)]. Under Assumption 9, we can show that T is a bounded linear

transformation over the Banach space of all continuous functions defined over S (please see

Proposition 23). In the literature, this assumption is referred to as the strong continuity of the

MDP transition kernel (see, e.g., Condition 3.3.3 in Hernández-Lerma and Lasserre 1996).

Assumption 9 For every measurable bounded function u, mapping (s, a) 7→ ∫S u(s′)P(ds′|s, a)
is bounded and continuous over S ×As.

Recall pair (η∗, u∗) solves optimality equation (3.4). We can rewrite this equation in terms

of T and g∗(s) := c(s, π∗(s)) − η∗ as follows u∗ = g∗ + Tu∗. Iterating this equation for K times,

which requires replacing Tu∗ with its definition recursively, results in the following version of

the optimality equation:

u∗(s) =

K∑
k=0

Tkg∗(s) + TK+1u∗(s), ∀s ∈ S, (3.14)

where function T 0 := I is the identity transformation that satisfies Iu = u. For each k, trans-

formation Tk applied to an arbitrary function u results in function Tku : S 7→ R that evaluates

to Tku(s) :=
∫
S P

k(s ′|s, π∗)u(s ′) d s ′ at state s. Here, Pk(·|s, π∗) denotes the k-step transi-

tion probabilities from initial state s when using the optimal policy π∗ (see, e.g., Page 21 in

Hernández-Lerma and Lasserre 1996). Taking the limit of (3.14) when K → ∞, we obtain

u∗ = limK→∞∑K
k=0 T

kg∗.

158

From our discussion in §3.2, function u∗ satisfying the additional condition u∗(s) = 0 at

the reference state s = s̄ is the unique solution of the optimality equation (3.4). The recent

formulation of u∗, which is u∗ = limK→∞∑K
k=0 T

kg∗, does not reflect condition u∗(s̄) = 0. To

incorporate this condition into this definition, we utilize the following identities:

u∗(s) = u∗(s) − u∗(s̄) = lim
K→∞

K∑
k=0

Tkg∗(s) − Tkg∗(s̄) = lim
K→∞

K∑
k=0

Fkg∗(s),

where the evaluation of transformation Fk applied to an arbitrary function u at state s is:

Fku(s) =

∫
S

(
Pk(s ′|s, π∗) − Pk(s ′|s̄, π∗)

)
u(s ′) d s ′.

Therefore, unlike the former definition of u∗ based on Tk, which is u∗ = limK→∞∑K
k=0 T

kg∗,

the latter definition based on Fk, which is u∗ = limK→∞∑K
k=0 F

kg∗(s), reflects the condition

u∗(s̄) = 0. Once again, because u∗ = limK→∞∑K
k=0 F

kg∗(s) satisfying condition u∗(s̄) = 0

is the unique solution of the optimality equation (3.4), limit limK→∞∑K
k=0 F

kg∗ must exist.

Therefore, u∗ can be explicitly written as u∗ = F∞g∗, where transformation F∞ is defined as

F∞ :=
∑∞
k=0 F

k.

We are now ready to define the idealized bias function. Define uID(s;ηBA

N
) := F∞gBA

N
, where

gBA

N
(s) :=

(
c(s, π∗(s))−ηBA

N
)
)
. Note that gBA

N
is similar to g∗, expect gBA

N
includes the value of ηBA

N

obtained by BALPN and not the optimal average cost η∗. The following proposition establishes

that the ∞-norm difference between the idealized bias function uID(ηBA

N
) and the MDP bias

159

function u∗ linearly scales on the error term η∗ − ηBA

N
, where the slope of this linear function

depends on a norm of F∞ defined as ∥F∞∥ := sup{∥F∞u∥∞ : ∥u∥∞ ≤ 1, u : S 7→ R}.

Proposition 20 Given N, it holds that ∥uID(ηBA

N
) − u∗∥∞ ≤ ∥F∞∥(η∗ − ηBA

N
). Moreover, for

every q = 1, 2, . . . ,Q and each solution β ∈ RN+qB feasible to PALPN+qB, it holds that

u(s;β) ≤ uID(s;ηBA

N
) ≤ u∗(s) + ∥F∞∥(η∗ − ηBA

N
), ∀s ∈ S.

Using Proposition 20, it is easy to verify that PALPN+qB is equivalent to the following opti-

mization problem:

min
β∈RN+qB

∥u(β) − uID(ηBA

N
)∥1,ν

u(s;β) − E[u(s ′;β)|s, a] ≤ c(s, a) − ηBA

N
, ∀(s, a) ∈ S ×As,∥∥u(β) − uID(ηBA

N
)
∥∥∞ ≤

∥∥∥u(βPA

N+(q−1)B

)
− uID(ηBA

N
)
∥∥∥∞ ,

u(s̄;β) = 0.

Therefore, the infinity-norm gap between PALPN+qB BFA and the idealized bias function, which

is
∥∥uID(ηBA

N
) − u(βPA

N+qB
)
∥∥∞, is weakly decreases in q, meaning,

∥∥uID(ηBA

N
) − u(βPA

N+B)
∥∥∞ ≥

∥∥uID(ηBA

N
) − u(βPA

N+2B)
∥∥∞ ≥ · · · ≥

∥∥∥uID(ηBA

N
) − u(βPA

N+QB
)
∥∥∥∞ . (3.15)

Using the above inequalities, we can show that the worst-case performance of greedy policies

obtained from PALP is weakly improving in q. This result is formalized in the following corollary.

160

Corollary 1 Fix N and q = 1, 2, . . . ,Q. Given feasible solution β ∈ RN+qB to PALPN+qB, the

average cost of the greedy policy πg(β) satisfies:

AC
(
πg(β)

)
≤ η∗ + 2(η∗ − ηBA

N
)∥F∞∥+ 2∥u(β) − uID(ηBA

N
)∥∞

Corollary 1 upper bounds the performance of greedy policy AC
(
πg(β)

)
obtained from any

PALPN+qB feasible solution β ∈ RN+qB based on two error terms: (η∗ − ηBA

N
)∥F∞∥ and ∥u(β) −

uID(ηBA

N
)∥∞. The first term captures the impact of using ηBA

N
in lieu of η∗ in the formulation

PALPN+qB on the greedy policy πg(β). The second term captures how close BFA u(β) is to the

idealized bias function uID(ηBA

N
), given lower bound ηBA

N
obtained from BALPN. The upper bound

established in Corollary 1, in conjunction with Theorem 4 and inequalities (3.15), indicate that

when both N and Q take large values, our randomized multi-shot approximation approach,

which involves two steps of solving BALPN initially to obtain lower bound ηBA

N
and then solving

a sequence of PALPs to compute BFA u(βPA

N+QB
), culminates greedy policy πg(βPA

N+QB
) with an

average cost close to η∗.

3.5 Algorithm

Our main algorithm, which involves solving BALP and PALP, is summarized in Algorithm

3 and is the average-cost counterpart of the self-guided FALP algorithm (see Algorithm 2 in

Chapter 2). In Step 1, we sample N random basis function parameters {θi : i = 1, 2 . . . ,N}

from ρ in one shot and initialize the set of samples ϑ to these N samples. We next formulate

BALPN and solve it to obtain its optimal solution (ηBA

N
, βBA

N
). In addition, we initialize vector

161

Algorithm 3: Randomized Multi-shot Approximation Algorithm for Average-Cost MDPs

Step 1. Sample N random basis parameters {θi : i = 1, . . . ,N} from ρ, set ϑ← {θi : i = 1, . . . ,N},
and solve BALPN formulated using parameters in ϑ to compute (ηBA

N
, βBA

N
). Also, initialize

βPA
N
← βBA

N
.

for q = 1, 2, . . . , Q do

Step 2. Sample B random basis parameters {θN+(q−1)B+i : i = i = 1, 2 . . . , B} from ρ, and
update the set of sampled parameters ϑ← ϑ ∪ {θN+(q−1)B+i : i = 1, 2 . . . , B}.

Step 3. Solve PALPN+qB formulated using parameters in ϑ, constant ηBA
N

from Step 1, and
past BFA weights βPA

N+(q−1)B
from iteration q− 1 to obtain new BFA weights βPA

N+qB
.

Step 4. Simulate greedy policy πg(βPA
N+QB

) by solving (3.5) to estimate policy cost AC
(
πg(β

PA
N+QB

)
)
.

Return: Lower bound ηBA
N

, upper bound AC
(
πg(β

PA
N+QB

)
)
, optimal BFA weights βPA

N+QB
.

βPA

N
to BALPN BFA weights βBA

N
, which is used in the right-hand-side of guiding constraints of

PALPN+B. Next, we perform steps 2 and 3 iteratively for Q iterations. In Step 2, we sample B

additional random basis function parameters {θN+(q−1)B+i : i = 1, 2 . . . , B} and append them to

ϑ. In Step 3, we formulate PALPN+qB via random basis function samples in ϑ and past solution

βPA

N+(q−1)B
. Then, we solve PALPN+qB to obtain BFA weights βPA

N+qB
. In Step 4, we simulate greedy

policy πg(βPA

N+QB
) with respect to the terminal BFA weights βPA

N+QB
. The algorithm returns lower

and upper bounds as well as the terminal BFA weights.

In steps 1 and 3, the Algorithm 3 requires solving BALP and PALP, respectively, and

Step 4 requires solving greedy policy optimization (3.5) with respect to BFA u(βPA

N+QB
). BALP

and PALP can be solved using two commonly used methods for solving semi-infinite linear

162

programs: constraint sampling and constraint generation. Note that the constraint violation

learning approach in Lin et al. (2020) may be also used as an alternative approach to solve these

semi-infinite linear programs. Solving greedy policy optimization (3.5) is not trivial. If MDP has

a low-dimensional action space, we can solve this program using discretization and enumeration,

as we did in Chapter 2. Otherwise, solving it may be approached by leveraging the problem

structure. For example, if underlying MDP has a structure such that (3.5) can be reformulated as

a known optimization problem (e.g., linear program, mixed-integer program, convex program),

then we can apply commercial solvers to such reformulations and get the greedy policy. In §3.6,

we discuss that this optimization problem can be cast as a mixed-integer linear program for a

generalized joint replenishment problem and can be solved via Gurobi (Gurobi Optimization

2019). If MDP does not have any structure, then one might use a first-order method to solve

the greedy policy optimization problem.

We describe below constraint sampling and constraint generation techniques for solving

BALP. These methods can be similarly and directly applied to PALP, but we omit the details

for brevity.

Constraint sampling. The constraint sampling approach replaces the continuum of BALP

constraints with a finite subset of them obtained from sampling K iid state-action pairs {(sk, ak) ∈

S × As : k = 1, 2, . . . , K} from a probability distribution ψ over the state-action space S × As.

163

The result is the following finite linear program with N random basis functions and K constraint

samples:

max
(η,β)∈RN+2

η

η+

N∑
i=1

βi

(
φ(sk; θi) − E[φ(s ′; θi)|sk, ak]

)
≤ c(sk, ak) ∀k = 1, 2, . . . , K

β0 +

N∑
i=1

βiφ(s̄; θ
i) = 0.

(3.16)

If the number of samples K is sufficiently large and ψ is positive almost everywhere in S × As,

the existing theory suggests that (3.16) should provide a good randomized approximation of

BALP (De Farias and Van Roy 2004, Calafiore and Campi 2006). Please also see Proposition 3

in Chapter 2. We utilize formulation (3.16) in our numerical experiments in §3.7 and show that

it is effective on our perishable inventory control instances. However, in general, (3.16) may be

an unbounded model when K is small or a poor choice of ψ is used. In addition, we may need

to use a large value of K to obtain a good approximation of BALP from (3.16).

Constraint generation. Constraint generation is a complementary approach to constraint

sampling. This method starts by solving the following version of BALP, denoted BALPN[Hh]:

max
(η,β)∈RN+2

η

η+

N∑
i=1

βi

(
φ(s; θi) − E[φ(s ′; θi)|s, a]

)
≤ c(s, a) ∀(s, a) ∈ Hh

β0 +

N∑
i=1

βiφ(s̄; θ
i) = 0,

164

where Hh is a set of h state-action pairs. For example, this set can be constructed by sampling

state-action pairs from ψ in constraint sampling. By solving BALPN[Hh] for a small h, we obtain

an initial solution (η0, β0). Here, we assume BALPN[Hh] is bounded, so (η0, β0) exists. Utilizing

(η0, β0), constraint generation method requires solving the following separation problem (SP;

e.g., see §3.1 of Adelman and Klabjan 2012):

(ŝ0, â0) = argmin
s,a

{
c(s, a) − η−

N∑
i=1

βi

(
φ(sk; θi) + E[φ(s ′; θi)|s, a]

)}
,

Upon solving SP and obtaining (ŝ0, â0), we define the updated set Hh+1 as Hh+1 := Hh∪{(ŝ0, â0)}

and solve program BALPN[Hh+1] that has the following additional (most violating) constraint

compared to BALPN[Hh]:

η+

N∑
i=1

βi

(
φ(ŝ0; θi) − E[φ(s ′; θi)|ŝ0, â0]

)
≤ c(ŝ0, â0).

This process of iteratively solving BALPN[Hh], solving SP, and updating Hh is repeated for

H iterations. We stop when the optimal objective value of SP is non-negative. If the optimal

objective value of SP at iteration h is non-negative, then there is no more “violating” constraint

and thus BALPN[Hh] has the same optimal objective value as BALPN. In this case, we stop

the process and use the terminal BFA weights from BALPN[Hh], which is an optimal solution

to BALPN.

The bottleneck in the constraint generation approach is solving SP, which is a nonlinear

program in general. There are multiple sources of non-linearity: the MDP cost function, the

165

MDP transition kernel, and basis functions. Because Stump bases and ReLU bases are piecewise

constant and piecewise linear, respectively, we can mitigate non-linearity associated with the

basis functions in SP formulation. Therefore, if the MDP has structure, e.g., both cost function

and transition kernel are linear, SP can become a linear or mixed-integer program, depending

on the basis functions structure. For example, in the generalized joint replenishment problem

considered in §3.6, the MDP cost function and transition kernel have linear structures. Thus,

we show that SP becomes a mixed-integer linear program for this application when using Stump

basis functions, which are piecewise constant. It is easy to see that a similar mixed-integer linear

program exists when using ReLU bases to formulate BALP for this application.

3.6 Generalized Joint Replenishment

The generalized joint replenishment (GJR) involves the replenishment of a collection of

products that are consumed at a fixed and deterministic rate and are coupled via a shared

replenishment capacity Adelman and Klabjan 2012, abbreviated as AK. We present the average-

cost deterministic semi-MDP formulation of this problem using the formulation in AK. Note

that the methodology we presented in this chapter, which is designed for average-cost MDPs,

can be extended to cover deterministic semi-MDPs.

Consider managing the replenishment of inventories across J products over a continuous time

horizon. Each product j is consumed at a finite and deterministic rate λj > 0. We denote by

λ = (λ1, λ2, . . . , λJ) the vector of these rates. A state vector s = (s1, s2, . . . , sJ) encodes the

inventory levels of these produced measured in normalized units, where each component sj ≥ 0

is non-negative for all j ∈ {1, 2, . . . , J}. A zero value for the j-th state component signals that the

166

j-th product is stocked out. Since the replenishment time can be postponed when there is no

product that is stocked out, we can assume that at least one product has zero inventory in the

state vector. Thus, the state space of GJR is given by S := {s : 0 ≤ s ≤ S, sj = 0 for some j ∈

{1, 2, . . . , J}}, where S = (S1, S2, . . . , SJ) ∈ (0,∞)J is a vector of maximum inventory levels. The

replenishment decision is specified by action a ∈ RJ+. This decision at a given state s ∈ S belongs

to the set As :=
{
a ∈ RJ+ : s+a ≤ S,

∑J
j=1 aj ≤ A

}
. Here, constant A ∈ R+ denotes a capacity

constraint on the total replenishment amount. The immediate MDP cost c(s, a) for GJR has

two components. The first one is a fixed value, denoted csupp(a), that depends on the subset of

products replenished, denoted supp(a) := {j ∈ {1, . . . , J}|aj > 0}. The second one is given by the

variable cost
∑J
j=1(2sjaj + a

2
j)hj/2λj with hj ≥ 0 denoting the holding cost per unit per time

of product j. Because the usage rate is deterministic, the time until the next replenishment

and the MDP transition kernel are both given by deterministic functions. Specifically, the time

until the next replenishment is τ(s, a) := minj{(sj + aj)/λj} if the system is currently in state

s and action a is taken. The system transitions to the new state s ′ = s + a − τ(s, a)λ from

current state s when taking action a. The optimality equation for this deterministic semi-MDP

is slightly different from (3.4) and is given by:

u(s) = inf
a∈A

{c(s, a) − ητ(s, a) + u(s+ a− τ(s, a)λ)}, ∀s ∈ S,

where we use the definition of GJR transition function, that is, s′ = s + a − λτ(s, a), to derive

this equation.

167

AK approximate u(s) using a (static) affine component β0 −
∑J
j=1 β1,jsj and an adaptive

component
∑I
i=1 β2,if

i
(∑J

j=1 r
i
jsj
)

with I terms, where fi : R 7→ R is a piecewise linear ridge

function and ri ∈ RJ is a ridge vector. Putting these two components together results in the

following AK BFA:

u(s;β) := β0 −

J∑
j=1

β1,jsj −

I∑
i=1

β2,if
i
(J∑
j=1

rijsj

)
.

AK decompose η according to η(λ) = η̂+
∑J
j=1 β1,jλj, where η̂ is an intercept and each β1,j can

be interpreted as the marginal value associated with product j. This breakdown is not needed

for the tractability of their algorithm but facilitates managerial interpretation. Putting together

AK BFA with their decomposition of η, we obtain the following ALP solved by AK, which we

refer to this ALP as AK-ALP,

max
η̂,β

η̂+

J∑
j=1

β1,jλj

η̂τ(s, a) −

J∑
j=1

β1,jaj −

I∑
i=1

β2,i

fi(J∑
j=1

rijs
′
j

)
− fi

(J∑
j=1

rijsj

) ≤ c(s, a), ∀(s, a) ∈ S ×As.

AK approach the solution of AK-ALP using constraint generation, which involves solving mixed

integer programs. In addition, their algorithm dynamically generates ridge basis functions to

update BFA via information from dual of AK-ALP formulation for GJR. We implemented AK-

ALP as a benchmark following the details in AK.

168

To be consistent with AK, we use the same approximation η(λ) for η, and we also define

our BFA as follows:

u(s;β) := β0 −

J∑
j=1

β1,jsj −

N∑
i=1

β2,iφ(s; θ
i), (3.17)

where the adaptive basis function component in the AK-ALP BFA has been substituted with

random basis functions. We let φ(s; θ) be Stump basis function defined in §3.4.3 (please also

see Table I in Chapter 2).

3.6.1 Constraint Generation for Stump Basis Functions

We show that constraint generation can be used to solve BALP and PALP formulated

using Stump basis functions. Motivated by the mixed integer linear programming reformulation

of the SP when holding cost is zero in §3.1 of AK, we discuss the analogous mixed integer

linear programming formulation of SP for BALP. Recall that for Stump basis functions with

φ(·) = sgn(·) we have that intercept θ0 is drawn from a uniform distribution over [−cρ, cρ] and

the remaining elements of θ are sampled from a uniform distribution defined on the discrete

set {e1, . . . , ed}. For the ease of notation, write each sample θi as the pair (ωi, ℓi), where

ωi ∈ [−cρ, cρ] and ℓi ∈ {0, 1, . . . , d}. Using the transition time τ(s, a) = minj{
sj+aj
λj

} and the

169

BFA in (3.17), it can be verified that SP in §3.5 for GJR is equivalent to following mixed-integer

linear program:

SP ≡ min
(G,Q,Q ′,s,a,t,s ′,Z,Z ′)

[(
c′ +

J∑
j=1

c′′jGj

)
−(
η̂t+

J∑
j=1

β1,jaj +

N∑
i=1

β2,i
(
Z′
i − Zi

))]
J∑
j=1

Qj ≥ 1, j = 1, 2, . . . J,

J∑
j=1

Gj ≥ 1, j = 1, 2, . . . J,

J∑
j=1

aj ≤ A,

J∑
j=1

Q′
j ≥ 1,

aj ≤ SjGj, j = 1, 2, . . . J,

s′j = sj + aj − λjt, j = 1, 2, . . . J,

sj + aj ≤ Sj, j = 1, 2, . . . J,

sj ≤ Sj(1−Qj), j = 1, 2, . . . J,

s′i ≤ Sj(1−Q′
j), j = 1, 2, . . . J,

Qj ≤ Gj, j = 1, 2, . . . J,

Zi = sgn(s ′ℓi −ωi), i = 1, . . . ,N,

Z ′
i = sgn(sℓi −ωi), i = 1, . . . ,N,

G,Q,Q′, binary,

Z,Z′, integer,

s, a, t, s′, non-negative.

170

In the above mixed-integer linear program, the variable Gj is one if product j is replenished

and zero otherwise. Constraint
∑J
j=1Gj ≥ 1 ensures that at least one product is replenished. If

Gj = 1 for some product j ∈ {1, 2 . . . , J}, i.e., it is replenished, then constraint aj ≤ Sj ensures

that the replenishment decision aj can take any feasible replenishment value. If Gj = 0, product

j is not replenishment and thus constraint aj ≤ Sj enforces aj = 0. Constraint s′j = sj + aj − λjt

models the MDP transition function. Constraints sj + aj ≤ Sj and
∑J
j=1 aj ≤ A guarantee

that the state-action pair (s, a) adheres to the inventory and the replenishment capacities,

respectively. For product j ∈ {1, 2 . . . , J}, if binary variable Qj is one, product j is stocked out at

the current decision time, i.e., sj = 0, and if Q′
j is one, then this product will be stocked out in

the next decision epoch, i.e., s′j = 0. Constraints
∑J
j=1Qj ≥ 1 and

∑J
j=1Q

′
j ≥ 1 ensure at least

a product at the current and one product at the next decision epoch is stocked out. If Gj = 0

for some product j, then it should not be replenished, and thus Qj = 0 via constraint Qj ≤ Gj;

otherwise, Qj ∈ {0, 1}, that is, we can either replenish a stocked-out product or a product with

a non-zero inventory level. Integer variables Zi ∈ {−1, 0, 1} and Z′
i ∈ {−1, 0, 1} model the value

of random basis functions φ(s; θi) and φ(s′; θi), respectively. The sign function defining Stump

bases can be implemented in a commercial solver as a piecewise constant function using a big-M

formulation or approximately as a piecewise linear function.

The setup of AK-ALP and BALP differ mainly in how adaptive basis functions are generated.

In the former approach, ridge basis functions are generated via an application-specific algorithm,

whereas, in the latter case, we sample Stump basis functions. Because we solve AK-ALP and

PALP via constraint generation, the optimal objective values of these programs provide a lower

171

bound on the optimal policy cost. To estimate policy cost, we simulate the policy only based

on the static part of the BFA because AK showed that this affine BFA suffices to obtain good

policies for GJR instances without holding cost. We perform policy simulation by solving K-step

greedy policy optimization problem discussed in §3.2 of AK for this affine BFA. We highlight

that it is possible to cast this K-step greedy policy optimization problem when using a BFA

based on Stump bases as a mixed-integer linear program, similar to SP.

3.6.2 Instances and Computational Setup

We conduct numerical experiments on 14 instances of the GJR problem based on Table

2 of AK. These instances have a zero holding cost, and the number of products (J) is varied

between 4 and 6. Because the holding cost is zero, the MDP cost function becomes c(s, a) =

csupp(a) = c′ +
∑
j∈supp(a) c

′′
j , where c′ ≥ 0 and c′′j ≥ 0 are constant and product-specific fixed

costs, respectively. AK set c′ to 100 and sample each c′′j from a uniform distribution over the

range [0, 60] independently. The usage rate λj is distributed uniformly in the interval [0, 10].

The vector of maximum inventory levels S is chosen based on two random variables uj and

αj associated with each product j ∈ {1, 2, . . . , J} that are distributed uniformly over [0, 1] and

{2, 4, 8}, respectively. These random variables are independent across products. The j-th upper

bound Sj on the inventory level is defined in three ways, labeled “random”, “constant”, and

“discrete”, as Sj = 10λjuj+ λj, Sj =
∑J
k=1 λk(uk+

1
J), and Sj = αj

∑J
k=1 λk(uk+

1
J), respectively.

The joint replenishment capacity A equals the summation of the first z% of the smallest storage

limits {Sj : j = 1, 2, . . . , J}, where z varies in set {50, 60, 67, 75, 80, 100} across instances.

172

We formulate BALPN using N Stump bases with parameter cρ := maxj{Sj}. We compute

lower bounds using BALP BFA, AK-ALP BFA, and affine BFA. We numerically observed that

performing SP for BALPN when N is large (e.g., N ≥ 50) is challenging. We thus increase

N in batches of size 10 and solve multiple BALP and SP problems to ensure tractability. No

information is shared across multiple iterations in this process. To ensure the tractability of SP,

we also add a 1-norm constraint to BALP, which reduces the number of times we need to solve

SP. We also simulate the greedy policy with respect to the affine BFA using the K-step greedy

policy optimization problem with K = 5. For each method and each instance, we compute an

optimality gap, which is the difference between the affine BFA upper bound and the lower bound

from each method, expressed as a percentage of the lower bound. We stop BALP and AK-ALP

when the optimality gap drops below 2%. If this criterion is not met, we stop these programs

after 2 hours of runtime.

3.6.3 Results

Table XVI reports upper bounds obtained from the greedy policy with respect to the affine

BFA, in addition to lower bounds from affine BFA, BALP, and AK-ALP. It also reports the

optimality gap computed as (upper bound - lower bound) expressed as a percentage of the lower

bound, where the upper bound is obtained from affine VFA, and the lower bound can be the

lower bound from either of the three models. As explained, affine BFA leads to near-optimal

lower and upper bounds on 8 instances for which we did not run algorithms BALP and AK-

ALP. Therefore, entries of the table of these methods and such instances are empty. BALP and

AK-ALP result in significantly better lower bounds than the affine BFA model. The maximum

173

Table XVI: Comparison of BALP and AK-ALP lower and upper bounds in generalized joint
replenishment problem instances.

J Instance
Affine BALP AK-ALP

UB LB Gap LB Gap LB Gap

4

1 184.6 184.3 0.1%
2 93.7 92.7 1.0%
3 179.3 165.0 8.7% 175.3 2.3% 175.2 2.4%
4 171.2 160.0 7.0% 170.1 0.7% 169.6 0.9%
5 69.3 68.7 0.8%
6 29.4 29.4 0.0%

6

7 146.0 145.8 0.2%
8 91.8 90.5 1.5%
9 91.0 90.2 0.9%
10 117.8 114.5 3.0% 115.3 2.2% 115.3 2.2%
11 107.8 104.9 2.8% 105.9 1.7% 105.9 1.8%
12 108.2 104.9 3.2% 106.9 1.2% 107.0 1.1%
13 53.1 52.2 1.6%
14 31.9 29.0 9.9% 31.7 0.7% 31.7 0.8%
15 31.8 29.0 9.5% 31.7 0.4% 31.7 0.5%

improvements from BALP and AK-ALP are 9.3% and 9.2%, respectively. The average of BALP

and AK-ALP optimality gaps are 1.4% and 1.7%, respectively, which shows these models are

near-optimal. Our results suggest that lower bounds from BALP, which does not exploit the

structure of the GJR problem to generate bases, are comparable to the AK-ALP model, which

performs basis function selection by exploiting problem structure. In addition, in the case of

GJR, because the upper bounds based on affine BFA are near-optimal upper bounds, there is

no need for our randomized multi-shot approximation mechanism in Algorithm 3. Therefore,

BALP is enough to close the optimality gap, and there is no need to use PALP.

174

Table XVII: Parameters of five-dimensional perishable inventory control instances.
Instance Holding cost ch Disposal cost cd Backlogging cost cb Demand STD σ cl

1 1 8 2 5 1000
2 1 8 2 2 1000
3 1 2 8 5 1000
4 1 2 8 2 1000
5 2 8 5 5 1000
6 2 8 5 2 1000

3.7 Perishable Inventory Control Problem

We perform a numerical study on an average-cost variant of the perishable inventory control

problem considered in §3.7 of Chapter 2. In §3.7.1, we discuss problem instances and bench-

marks, and we report our results in §3.7.2.

3.7.1 Instances and Benchmarks

We revisit the perishable inventory control problem studied in §2.6 of Chapter 2. Specifically,

we focus on our five-dimensional instances in Table III. We repeat the parameters of these

instances in Table XVII. Instead of using a discounted cost function, we use the following

average cost function:

c(s, a) := coa+ ED

[
ch

[
l−1∑
i=1

si − (D− s0)+

]
+

+ cd(s0 −D)+ + cb

[
D−

l−1∑
i=0

si

]
+

+ cl

[
s+D−

l−1∑
i=0

si

]
+

]
.

Compared to the MDP cost function in §2.6, the above cost function does not have any discount

factor.

175

We formulate BALP and PALP using Fourier basis functions. We use our parameter choices

in Chapter 2 to set up our experiments in this section. To solve BALP and PALP, we use the

constraint sampling approach discussed in §3.5 with K = 200, 000 state-action pairs sampled from

a uniform distribution over the hyper-cube S×As = [s, ā]×[0, ā]d. We set the number of random

basis functions N to 300 for BALP, i.e., we solve BALP300. We also consider a modification of

BALPN that first solves BALP300 and then solves PALPN that has a fixed average-cost value

of ηBA

300
obtained from BALP300 and includes a uniform state-relevance distribution. We refer

to this version of BALPN as BALP∗
300. Moreover, we consider our randomized multi-shot

approximation approach in Algorithm 3. We use the notation ALPMS
150,150 to refer to this

approach. Specifically, ALPMS
150,150 runs Step 1 of Algorithm 3 with N = 150 random bases

(the first subscript) and runs steps 2 and 3 of this algorithm for Q = 6 iterations using batch size

B = 25 that results in BQ of 150 (the second subscript). Method ALPMS
150,150 relies on solving

PALP. For each PALP solved in ALPMS
150,150, we use a uniform state-relevance distribution ν.

As a benchmark, we considered FALP and self-guided FALP models proposed in Chap-

ter 2. We run discounted-cost model FALP300 with γ = 0.999, but we add constraint β0 +∑N
i=1 βiφ(s̄; θ

i) = mγ to this model, where mγ is some constant. The addition of this con-

straint is based on the discussion on pages 84–85 of Hernández-Lerma and Lasserre (1996) that

constructs a BFA from a VFA. We consider two choices for mγ that are mγ = 0 and mγ = v0

with v0 being the optimal objective value of FALP with the intercept-only VFA having N = 0

random bases. We use notations γ-FALP300[0] and γ-FALP300[v0] for FALP models with mγ = 0

and mγ = v0, respectively. Both these models have N = 300 random bases. For self-guided

176

FALP, we run Algorithm 3 in Chapter 2 for Q = 7 iterations. We denote this method by

γ-FALPSG

300,7[v0].

We approximate expectations in all aforementioned models using sample average approxi-

mations constructed using 2, 000 iid samples. We run each model 10 times with freshly sampled

random basis function parameters. We simulate policies from initial state s0 = (5, 5, . . . , 5) ∈ Rd.

We simulate 100 trajectories of length 10, 000 to estimate the long-run average cost of each

method.

Because we solve BALP using constraint sampling, its optimal objective value does not

provide a valid lower bound on the optimal cost. We thus compute a lower bound on η∗ based

on γ-FALP300[v0] VFA. Specifically, we plug inγ-FALP300[v0] VFA into our heuristic based on

constraint violation learning approach in §2.12.1 of Chapter Chapter 2 to obtain a lower bound

on the optimal cost of the discounted-cost problem. Denote this quantity by LBγ. It is known

that (1 − γ)LBγ is a lower bound on the optimal policy cost of the average-cost problem, i.e.,

(1 − γ)LBγ ≤ η∗ (please see pages 84–85 of Hernández-Lerma and Lasserre 1996). Utilizing

this lower bound, we compute the optimality gap for each method and instance, similar to the

optimality gap we computed in §3.6.

3.7.2 Results

Table XVIII reports upper bounds (UBs) and lower bounds (LBs) obtained from γ-FALP300[0],

γ-FALP300[v0], γ-FALPSG

300,7[v0], BALP300, BALP∗
300, and ALPMS

150,150. We also report the lower

bounds based on γ-FALP300[v0] and optimality gaps computed using this lower bound in Table

XVIII. Note that the lower bound values, upper bounds, and optimality gaps are averages across

177

Table XVIII: Comparison of methods on perishable inventory control problem instances.

D
im

en
si

on

In
st

an
ce γ-FALP300[0] γ-FALP300[v0] γ-FALPSG

300,7[v0] BALP300 BALP∗
300 ALPMS

150,150

LB UB Gap UB Gap UB Gap UB Gap UB Gap UB Gap

5

1 66 115 74% 98 49% 101 53% 86 30% 84 28% 72 8%

2 57 610 973% 615 982% 1058 1761% 75 32% 85 49% 60 5%

3 67 1832 2651% 1871 2710% 1070 1506% 666 900% 82 24% 69 4%

4 60 1442 2300% 1105 1738% 1081 1699% 162 170% 77 29% 61 1%

5 71 654 816% 639 794% 100 40% 90 26% 89 24% 77 7%

6 62 1303 2008% 1203 1847% 836 1252% 750 1114% 82 33% 64 4%

10 trials. All discounted-cost models deliver poor policies, suggesting solving the discounted-

cost problems does not provide good policies for our average-cost problem instances. BALP300

leads to policies with the optimality gap of less than 32% on 3 out of 6 instances but highly

sub-optimal policies on the other 3 instances. The worst-case performance of BALP300 is on the

6th instance, where its optimality gap is 1114%. Interestingly, when we correct this model and

consider BALP∗
300, across all 6 instances, this version of BALP delivers policies of at most 49%.

The best method is ALPMS
150,150, which provides near-optimal control policies and beats all

other models. These results underscore the value of our randomized multi-shot approximation

approach relying on PALP. Moreover, we note that γ-FALP300 VFA with mγ = 0 leads to a

great lower bound, as witnessed by the low optimality gap values of γ-FALP300.

178

3.8 Conclusion

Our work focuses on solving large-scale average-cost Markov decision processes (MDPs) by

employing an approximate linear programming approach. This method involves approximating

MDP bias functions through a linear combination of basis functions and solving an approximate

linear program (ALP) to compute the weights of these basis functions. It is known that when

basis functions deliver a good approximation of the MDP bias function, ALP generates tight

lower bounds on the optimal policy cost. However, this method fails to provide good bias

function approximations (BFA) and control policies.

We introduce a new approximate linear programming (ALP) approach by combining a two-

phase ALP model in De Farias and Van Roy (2002) with a randomized multi-shot approximation

method for discounted-cost MDPs in Pakiman et al. (2020). Our approach has two steps. First,

we use universal random basis functions to formulate an ALP that ensures delivering a near-

optimal lower bound. We develop a finite probabilistic convergence rate for this lower bound

obtained from our method. Second, we solve a sequence of ALP models that iteratively refine

their formulations using previously computed BFAs. We show that this iterative randomized

multi-shot approximation mechanism ensures a worst-case measure of policy performace is im-

proving. We applied our approach to two inventory management problems, yielding near-optimal

lower bounds and effective control policies.

179

APPENDICES

180

3.9 Addendum to Assumption 7

There are known conditions documented in the literature that validate Assumption 7. A

set of such conditions is available in Gordienko and Hernández-Lerma (1995). Specifically, The-

orem 2.8 in Gordienko and Hernández-Lerma (1995) guarantees that our Assumption 7 holds

if Assumptions 2.2, 2.3, 2.4, and 2.7 from that paper are satisfied. Another set of conditions

relies on a “vanishing-discount” argument outlined in Hernández-Lerma and Lasserre (1996).

We present these conditions relative to our setting in Assumptions 10–11 below. When these

assumptions hold, Theorem 5.5.4 in Hernández-Lerma and Lasserre (1996) ensures the validity

of Assumption 7.

Assumption 10 The MDP cost function c is bounded below, lower semicontinuous, and inf-

compact. The MDP transition kernel Q is strongly continuous: given any measurable bounded

function V : S 7→ R, the mapping (s, a) 7→ ∫S V(s′)P(ds′|s, a) is bounded and continuous over

S ×As.

The first part of Assumption 10 is the same as Assumption 4.2.1 in Hernández-Lerma and

Lasserre (1996). Note that lower semicontinuity and inf-compactness are defined before Con-

dition 3.3.4 and in Condition 3.3.3 of Hernández-Lerma and Lasserre (1996), respectively. The

second part of Assumption 10 is the same as Part (b) of Assumption 4.2.1 in Hernández-Lerma

and Lasserre (1996).

181

Define the α-discount value function Vα : S 7→ R for some discount factor α ∈ [0, 1) at s ∈ S

as:

Vα(s) := inf
π:S7→R

Eπ
[∞∑
t=0

αtc(st, π(st)) | s0 = s

]
.

Assumption 11 There exists a state ŝ ∈ S, a non-negative function w : S 7→ [0,∞), a number

α ∈ (0, 1), and constants M,N ≥ 0 such that (i) inequality (1 − α)Vα(ŝ) ≤ M holds for every

α ∈ [α, 1), and (ii) inequality −N ≤ Vα(s) −Vα(ŝ) ≤ w(s) holds for every s ∈ S and α ∈ [α, 1).

Moreover, w is measurable and satisfies
∫
S w(d s

′)P(s ′|s, a) <∞ for every (s, a) ∈ S ×As.

Assumption 11 is an integration of Assumptions 5.4.1 and Assumption 5.5.1 (a) in Hernández-

Lerma and Lasserre (1996). It can be verified for different problems, for example, the discounted

Linear-Quadratic problem in Example 5.4.2 of Hernández-Lerma and Lasserre (1996). Under

Assumption 11, the following lemma, which appears as a proof of Theorem 5.4.3 in Hernández-

Lerma and Lasserre (1996), holds.

Lemma 4 Under Assumption 11, there is a sequence {αn : n = 0, 1, . . . } ⊆ [0, 1) approaching

from below to 1 such that limn→∞(1− αn)Vαn(s) exists and is a constant for all s ∈ S.

Using the sequence of functions Vαn in the above lemma, we require the following assumption

that is the same as Assumption 5.5.1 (b) in Hernández-Lerma and Lasserre (1996).

Assumption 12 The family of functions {Vαn(s) − Vαn(ŝ) : n = 0, 1, . . . }, where {αn : n =

0, 1, . . . } and ŝ are defined in Lemma 4 and Assumption 11, respectively, is equicontinuous.

182

For the formal definition of equicontinuity in Assumption 11, please see Remark 5.5.2 in Hernández-

Lerma and Lasserre (1996). Once again, if Assumptions 10–11 hold, Theorem 5.5.4 in Hernández-

Lerma and Lasserre (1996) ensures the validity of Assumption 7 in our paper.

3.10 Proofs

Proof of Proposition 14.

We first show that inequality η ≤ η∗ holds for every feasible solutions (η, u) ∈ R × U to

BELP. Consider an initial state s = s0 ∈ S and a policy π such that ηπ = AC(s0;π) < ∞. Let

sn and an be the state and action, respectively, reach at stage n when following policy π. For

every BELP feasible solution (η, u) ∈ R× U , it holds that

u(s0) ≤ E
[
c(s0, a0) − η+ u(s1) | s0, a0

]
.

Iterating the above inequality for n ≥ 1 times, we obtain the following inequality:

u(s0) ≤ Eπs

[
n∑
i=0

c(si, ai)

]
− nη + E [u(sn+1)|sn, an] .

If we divide the above inequality by n, rearrange its terms, and take its limit when n→∞, we

obtain the following upper bound on η:

η ≤ lim
n→∞

{
Eπs [
∑n
i=0 c(si, ai)]

n
+

E [u(sn+1)|sn, an] − u(s0)

n

}
= AC(s0;π) = η

π. (3.18)

183

The first equality above holds since AC(s0;π) <∞ and thus limit limn→∞ Eπ
s [

∑n
i=0 c(si,ai)]
n exists

and equals AC(s0;π). Also, fraction E[u(sn+1)|sn,an]−u(s0)
n goes to zero when n→∞, noting that

the numerator of this fraction is bounded because u ∈ U is a continuous function defined over

a compact domain. Because (3.18) holds for every policy π with a finite cost AC(s0;π) < ∞,

it should hold for π∗. Using π∗ in conjunction with (3.18) results in the required inequality

η ≤ η∗. Next, we show that pair (η∗, u∗) ∈ R× U is optimal to BELP. Because this pair solves

optimality equation (3.4), it is a feasible solution to BELP. Thus, the optimal objective value of

BELP is an upper bound on η∗. On the other hand, we observed that for every feasible solution

(η, u) ∈ R × U to the BELP, η is a lower bound on η∗. Hence, the optimal objective value of

BELP is, in fact, η∗, and the pair (η∗, u∗) is an optimal solution to BELP. ■

Proof of Proposition 15.

Recall the definition of B = {β : Θ 7→ R : ∥β/ρ∥2,ρ < ∞, u(s̄;β) = 0} and R =
{
u ∈

U
∣∣ ∃β s.t. u(·) = u(· ;β), u(s̄;β) = 0, ∥β/ρ∥2,ρ < ∞}. We can rewrite B in terms of

elements in R as B = {β : Θ 7→ R : u(β) ∈ R}. Therefore, we can rewrite BFEP by replacing

its decision variable β ∈ B with decision variable u(β) ∈ R as follows:

sup
(η,u(β))∈R×R

η

η+ u(s;β) − E[u(s ′;β)|s, a] ≤ c(s, a), ∀(s, a) ∈ S ×As.

Because R ⊆ U , the feasible set of the above program (which is equivalent to BFEP) is a subset

of the BELP feasible set. Thus, we have that the BFEP optimal objective value is upper bounded

by η∗. Because pair (η∗, u∗) is feasible to BELP by Proposition 14 and u∗ = u(β∗) ∈ R by

184

Assumption 8, we observe that pair (η∗, u(β∗)) is feasible to the above reformulation of BFEP.

Thus, pair (η∗,β∗) is feasible to BELP. Therefore, η∗ should be a lower bound on the BFEP

optimal objective value. Since η∗ is both an upper and a lower bound on the BFEP optimal

objective value, it must be the BFEP optimal objective value. Hence, pair (η∗,β∗) is a BFEP

optimal solution. ■

Proof of Proposition 16.

Let (η,β) ∈ R× B be a feasible solution to IMP. It holds that

η ≤ c(s, π∗(s)) + u(s;β) − E
[
u(s ′;β) | s, π∗(s)

]
, ∀s ∈ S∗.

Integrating the inequalities above with respect to the invariant probability measure µ(·;π∗)

defined in (3.3), and employing the definition of S∗, encompassing all states s ∈ S for which

µ(s;π∗) > 0, yields the following inequality:

∫
S
ηµ(d s;π∗) ≤

∫
S
c(s, π∗(s))µ(d s;π∗) +

∫
S

(
u(s;β) − E

[
u(s ′;β) | s, π∗(s)

])
µ(d s;π∗).

If we combine the above inequality with properties
∫
S µ(d s;π

∗) =
∫
S∗ µ(d s;π

∗) = 1 and

η∗ = AC(s;π∗) =
∫
S c(s, π

∗(s))µ(s;π∗) d s, where the latter one holds for every s ∈ S due

to Assumption 6, we obtain the following inequality:

η ≤ η∗ +
∫
S
u(s;β)µ(d s;π∗) −

∫
S
u(s ′;β)

(∫
S
P(s ′, π∗(s))µ(s;π∗) d s

)
d s ′.

185

Applying identity (3.3) for the choice of X = {s ′} to the last term in the above inequality, it

boils down to
∫
S u(s

′;β)µ(d s ′;π∗). Therefore, we obtain inequality η ≤ η∗ that holds for every

feasible solution (η,β) ∈ R×B to IMP. From the definition of βIMP, we have u(s;βIMP) = u∗(s)

for all s ∈ S∗. Because pair (η∗, u∗) is feasible to all BELP constraints and u(s;βIMP) = u∗(s)

for all s ∈ S∗, pair (η∗,βIMP) is feasible to IMP. Notably, this feasible pair represents an optimal

solution to IMP since it yields the maximum attainable objective value of IMP, namely η∗. ■

Proof of Proposition 17.

We show (η∗,βAC) is an optimal solution to both BFEP. To show this result, we use duality

theory for infinite-dimensional linear programs. Define set K := {(s, a) : s ∈ S, a ∈ As}. Klabjan

and Adelman (2006) provide primal dual linear programs for general semi-MDPs. Specifically,

primal-dual pair (6) and (7) in their paper can be written in our setting as the following primal-

dual pair:

zp := sup
η,u

η

η+ u(s) − E[u(s ′)|s, a] ≤ c(s, a) ∀(s, a) ∈ S ×As.
(3.19)

zd := inf
q

∫
K
c(s, a)q(s, a) d(s, a)∫

K
P(X |s, a)q(s, a)d(s, a) = q((X ×As) ∩ K), ∀X ⊆ S,∫

K
q(s, a)d(s, a) = 1,

q(s, a) ≥ 0.

(3.20)

186

In above, u : S 7→ R is a bounded measurable function and q : K 7→ R is a signed measure

with a finite total variation norm. Note that the difference between (3.19) and BELP is that

the former is a relaxation of the latter because BELP requires u ∈ U . We proceed in two steps.

In Step (i), we show that (3.19) and (3.20) are consistent, i.e., they have feasible solutions.

From Proposition 14, pair (η∗, u∗) is feasible to BELP, so it is feasible to (3.19), which is

a relaxation of BELP. It thus hold that η∗ ≤ zp. Next, we show that (3.20) has a feasible

solution. Recall Assumption 6. Define probability measure µ̂(s, a) := µ∗(s)δ{a = π∗(s)}, where

δ{a = π∗(s)} is the Dirac measure evaluating to one if a = π∗(s) and zero otherwise. From the

definition of invariant distribution µ∗(·) = µ(·;π∗), for each X ⊆ S, we have

∫
K
P(X |s, a)µ̂(s, a)d(s, a) =

∫
S
P
(
X |s, π∗(s)

)
µ∗(d s) = µ∗(X) = µ̂((X ×As) ∩ K).

In addition, we know that
∫
K µ̂(d(s, a)) = 1 and µ̂(s, a) ≥ 0. Hence, µ̂ is feasible to (3.20).

In Step (ii), we use complementary slackness for the primal-dual pair (3.19) and (3.20)

(e.g., see Theorem 6.2.4 of Hernández-Lerma and Lasserre 1996). This result states that if

triplet
(
η, u, q

)
is such that pair (η, u) is feasible to primal problem (3.19), q is feasible to dual

problem (3.20), and identity
∫
K q(s, a)

(
c(s, a)−u(s)− η+E[u(s ′)|s, a]

)
d(s, a) = 0 holds, then

(η, u) is optimal to (3.19) and q is optimal to (3.20). Now consider
(
(η∗, u(βAC)), µ̂

)
. From

the definition of weighting function βAC, pair (η∗, u(βAC)) is feasible to BELP and thus feasible

to (3.19). As we already saw in Step (i), µ̂ is feasible to dual problem (3.20). Therefore, if

187

we show identity
∫
K µ̂(s, a)

(
c(s, a) − u(s;βAC) − η∗ + E[u(s ′;βAC)|s, a]

)
d(s, a) = 0 holds, then(

(η∗, u(βAC)), µ̂
)

is an optimal primal-dual solution. This identity holds as we can write:

∫
K
µ̂(s, a)(c(s, a) − u(s;βAC) − η∗ + E[u(s ′;βAC)|s, a]) d(s, a)

=

∫
S
µ∗(s)(c(s, π∗(s)) − u(s;βAC) − η∗ + E[u(s ′;βAC)|s, π∗(s)]) d s

=

∫
S∗
µ∗(s)

(
c(s, π∗(s)) − u(s;βAC) − η∗ + E[u(s ′;βAC)|s, π∗(s)]

)
d s

=

∫
S∗
µ∗(s)

(
c(s, π∗(s)) − u∗(s) − η∗ + E[u∗(s ′)|s, π∗(s)]

)
d s

= 0

The first and second equalities above follows from the definitions of µ̂ and S∗, respectively.

The third equality holds because u(s;βAC) = u∗(s) for all s ∈ S∗. The last equality because

(η∗, u∗) solve optimality equation (3.4). Therefore, (η∗, u(βAC)) is an optimal solution to the

primal model (3.19). Since u(s;βAC) evaluates to zero at s = s̄ due to the definition of βAC, and

function u(βAC) ∈ R ⊆ C is continuous, pair (η∗,βAC) is feasible to BFEP. In fact, this pair is

optimal because this feasible solution attains the BFEP optimal objective value η∗, guaranteed

by Proposition 15. Hence, pair (η∗,βAC) is an optimal solution of BFEP. ■

188

Proposition 21 (Proposition 7 in Chapter 2) Suppose ρ(θ) ≥ ρ, for all θ ∈ Θ and As-

sumption 8 holds. Consider δ ∈ (0, 1] and a function u(β) with β ∈ B. Given N iid samples

{θi : i = 1, 2, . . . ,N} from ρ, there is a vector β̄ ∈ RN such that

∥∥∥∥∥u(s;β) −

N∑
i=1

β̄iφ(s; θ
i)

∥∥∥∥∥∞ ≤ Err(N, δ;β), (3.21)

with a probability of at least 1− δ.

Corollary 2 Suppose ρ(θ) ≥ ρ, for all θ ∈ Θ and Assumption 8 holds. Consider δ ∈ (0, 1] and

a function u(β) with β ∈ B. Given N iid samples {θi : i = 1, 2, . . . ,N} from ρ, if we let β̄ ∈ RN

be the vector defined in Proposition 21, then there exists a vector

β̂ := (−

N∑
i=1

β̄iφ(s̄; θ
i), β̄1, β̄2, . . . , β̄N) ∈ RN+1,

such that ∥∥u(β) − u(β̂)
∥∥∞ ≤ 2Err(N, δ;β), (3.22)

with a probability of at least 1− δ. Moreover, we have u(s̄; β̂) = 0, i.e., u(β̂) ∈ U .

Proof. From Proposition 21 and the fact that u(s̄;β) = 0 since β ∈ B, we have

∥u(β) − u(β̂)∥∞ ≤ |β̂0|+

∥∥∥∥∥u(s;β) −

(
N∑
i=1

β̄iφ(s; θ
i)

)∥∥∥∥∥∞
=

∣∣∣∣∣u(s̄;β) −
N∑
i=1

β̄iφ(s̄; θ
i)

∣∣∣∣∣+
∥∥∥∥∥u(s;β) −

(
N∑
i=1

β̄iφ(s; θ
i)

)∥∥∥∥∥∞

189

≤ 2Err(N, δ;β)

Applying the right hand side of the above inequality to (3.22), we obtain (3.22). Identity

u(s̄; β̂) = 0 is trivial given the definition of β̂0. ■

Proof of Theorem 4.

Since pair (η∗,βAC) is optimal to BFEP by Proposition 17, we have c(s, a)−η∗ ≥ u(s;βAC)−

E[u(s ′;βAC)|s, a] for every (s, a) ∈ S×As. Applying Corollary 2 to βAC ∈ B, there exists a vector

β̂ ∈ RN+1 such that ∥u(βAC) − u(β̂)∥∞ ≤ 2Err(N, δ;βAC). Therefore, for every (s, a) ∈ S ×As,

the following inequalities hold with a probability of at least 1− δ:

c(s, a) − η∗ ≥ u(s;βAC) − E[u(s ′;βAC)|s, a]

≥ u(s; β̂) − (2Err(N, δ;βAC)) − E[u(s ′; β̂)|s, a] − (2Err(N, δ;βAC))

Therefore, with this probability, we have

c(s, a) −
(
η∗ − 4Err(N, δ;βAC)

)
≥ u(s; β̂) − E[u(s ′; β̂)|s, a], ∀(s, a) ∈ S ×As, (3.23)

that together with identity u(s̄; β̂) = 0, which holds by Corollary 2, shows that pair
(
η∗ −

4Err(N, δ;βAC), β̂
)
∈ RN+2 is feasible to BALPN. As a result, we obtain bound 0 ≤ η∗ − ηBA

N
≤

4Err(N, δ;βAC). ■

190

Proof of Theorem 5.

Consider the following inequalities:

AC
(
πg(β)

)
− η∗

(i)
= Eµ(β)

[
c
(
s, πg(s;β)

)]
− η∗

(ii)
= Eµ(β)

[
c
(
s, πg(s;β)

)
− η∗ + E

[
u(s ′;β)

∣∣s, πg(s;β)]− u(s;β)]
(iii)
= Eµ(β)

[
min
a∈As

{
c
(
s, a
)
− η∗ + E

[
u(s ′;β)

∣∣∣s, a]}− u(s;β)

]
(iv)

≤ ∥u(β) − u∗∥∞ + Eµ(β)
[
min
a∈As

{
c
(
s, a
)
− η∗ + E

[
u∗(s ′;β)

∣∣∣s, a]}− u(s;β)

]
(v)
= ∥u(β) − u∗∥∞ + Eµ(β) [u∗(s) − u(s;β)]

(vi)

≤ ∥u(β) − u∗∥∞ + ∥u∗ − u(β)∥1,µ(η,β)

Identity (i) holds due to Assumption 6 under which identity AC(s ′;π) =
∫
S c(s, π(s))µ(s;π) d s

holds for every policy π and state s ′ ∈ S; equality (ii) relies on the following identity:

Eµ(β)[E[u(s ′;β) | s, πg(s;β)]] = Eµ(β)[u(s;β)],

that holds by virtue of (3.3); equality (iii) is obtained using the definition of the greedy policy;

inequality (iv) is a result of inequality u(s;β) ≤ u∗(s) + ∥u− u∗∥∞ that holds for every s ∈ S;

equality (v) holds since pair (η∗, u∗) solves optimality equation (3.4); inequality (vi) directly

follows from the definition of (1, µ(η, β))-norm. Rearranging the terms in the above inequalities

results in (3.9), which finishes the proof. ■

191

Proposition 22 The MDP bias function u∗ admits the following representation for each s ∈ S:

u∗(s) = lim sup
n 7→∞

n∑
i=0

Eπ
∗
s

[
c(si, ai) − η∗

]
,

where sn and an are, respectively, the state and action reach at stage n under optimal policy π∗.

Proof. Please see Lemma 4.3 in Luque-Vásquez and Hernández-Lerma (1999).

Proof of Proposition 18.

Proof entails three following steps. First, we show that every feasible solution u to PELP

satisfies u(s) ≤ u∗(s) for all s ∈ S. Fix some initial state s = s0 ∈ S. Let sn and an be the

state and action, respectively, reach at stage n when following policy π∗. Since u is feasible to

PELP, we have that u(s0) ≤ c(s0, a0) − η∗ +E[u(s1)|s0, a0]. Iterating this inequality, we obtain

that

u(s0) ≤
n∑
i=0

Eπ
∗
s0

[c(si, ai) − η∗] + E [u(sn+1)|sn, an]

Taking the limit of the above inequality and applying Lemma 22, we obtain that

u(s0) ≤ lim sup
n7→∞

n∑
i=0

Eπ
∗
s0

[
c(si, ai) − η∗

]
= u∗(s0),

for every arbitrary choice of s0 ∈ S. Next, we show the regression-based model in the proposition

is a correct reformulation of PELP. The PELP is equivalent to

min
u∈U

Eν[u∗] − Eν[u]

192

u(s) − E[u(s ′)|s, a] ≤ c(s, a) − η∗, ∀(s, a) ∈ S ×As.

Because of the first step, we have Eν[u] ≤ Eν[u∗] and thus ∥u − u∗∥1,ν = Eν[u∗] − Eν[u].

Therefore, we can replace the objective function of the above program with ∥u− u∗∥1,ν, where

this replacement shows that the regression-based model in the proposition is a reformulation of

PELP. Finally, we show that for every PELP optimal solution uPE, we have uPE(s) = u∗(s) for

all s ∈ S. From the previous part, we see that uPE(s) ≤ u∗(s) for all s ∈ S because uPE is feasible

to PELP. Assume there is a state ŝ such that uPE(ŝ) < u∗(ŝ). Since u∗ and uPE are continuous,

there must exist a ball around ŝ, denoted Nŝ, such that uPE(s) < u∗(s) for all s ∈ Nŝ. Since ν(·)

is positive for all non-zero measure subsets of S, which includes Nŝ, we have

Eν[uPE] =

∫
S\Nŝ

uPE(s)ν(d s) +

∫
Nŝ

uPE(s)ν(d s) < Eν[u∗].

Because (η∗, u∗) is feasible to the optimality equation (3.4) and is thus u∗ a feasible to PELP,

we have Eν[u∗] ≤ Eν[uPE]. This contradicts with Eν[uPE] < Eν[u∗] and thus there is no ŝ such

that uPE(ŝ) < u∗(ŝ). In other words, for all s ∈ S, it must hold that uPE(s) ≥ u∗(s). From the

first step of the proof, we saw that uPE(s) ≤ u∗(s). Therefore, we obtain equality uPE(s) = u∗(s)

for all s ∈ S. ■

193

Proof of Proposition 19.

Similar to the proof of Proposition 15, where we rewrite BFEP by substituting its decision

variable β ∈ B with the decision variable u(β) ∈ R, we can reformulate PFEP as follows:

sup
u(β)∈R

Eν[u(β)]

u(s;β) − E[u(s ′;β)|s, a] ≤ c(s, a) − η∗, ∀(s, a) ∈ S ×As.

Because R ⊆ U and u∗ is optimal to PELP by Proposition 18, for every feasible PFEP solution

u ∈ R, it follows that Eν[u(β)] ≤ Eν[u∗]. Under Assumption 8, which requires u∗ = u(β∗),

the inequality Eν[u(β)] ≤ Eν[u(β∗)] holds for any feasible PFEP solution u(β) ∈ R. From

Proposition 18, u∗ = u(β∗) is feasible to PELP, so β∗ satisfies all PFEP constraints. Since

weighting function β∗ is a feasible PFEP solution and achieves the maximum attainable objective

value Eν[u(β∗)], it is optimal to BFEP. Next, we show that β ■

Proposition 23 Let C be the space of all continuous functions over S. Mapping T : C 7→ C is

a bounded linear transformation over Banach space C equipped with ∞-norm ∥ · ∥∞.

Proof. We claim that T : C 7→ C is a linear bounded transformation over C. First, recall C

which is the space of all real-valued continuous functions u : S 7→ R defined over compact

domain S. It is known that C is a vector space and if it is equipped with the infinity-norm

194

∥u∥∞ := maxs |u(s)|, it becomes a Banach space. Second, T is linear because for every u, v ∈ C

and every α,β ∈ R, we have

T(αu+ βv) = E[αu(s ′) + βv(s ′) | · , π∗(·)] = αTu+ βTv.

Next, T is bounded in essence that for every u ∈ C, the following holds:

∥Tu∥∞ ≤ sup
s

∣∣∣∣∫
S
P(s ′|s, π∗(s))u(d s ′)

∣∣∣∣ ≤ sup
s

∣∣∣∣∫
S
P(d s ′|s, π∗(s))∥u∥∞

∣∣∣∣d s ′ ≤ ∥u∥∞,

We observe that T is a transformation because the MDP stochastic kernel P is strongly continu-

ous by Assumption 9 and thus function Tu(s) := E[u(s ′)| s, π∗(s)] is continuous over S for every

u ∈ C, i.e., Tu ∈ C. Therefore, T : C 7→ C is a linear bounded transformation over Banach space

C. ■

Proof of Proposition 20.

Let ε := η∗ − ηBA

N
. Define function e : S 7→ R as e(·) = 1. Utilizing identity u∗ = F∞g∗ and

the definition of uID(ηBA

N
) = F∞gBA

N
, for every s ∈ S, we have

uID(s;ηBA

N
) − u∗(s) = F∞g∗(s) − F∞gBA

N
(s) = F∞(g∗ − gBA

N
)(s) = εF∞e(s).

Using the definition of norm ∥F∞∥, we have

∥uID(s;ηBA

N
) − u∗(s)∥∞ = ε sup

s∈S
|F∞e(s)| ≤ ε sup

u
{∥F∞u∥∞ : ∥u∥∞ ≤ 1} = ε ∥F∞∥ .

195

The first part of the proof is thus complete. We next focus on the second part. Given q =

1, 2, . . . ,Q, let β be a feasible solution to program PALPN+qB. For u(β), we have

u(s;β) − E[u(s ′;β)|s, a] ≤ c(s, a) − ηBA

N
, ∀(s, a).

For the particular choice of actions a = π∗(s) at each state s, the above inequality holds. That

is, for β that is feasible to PALPN+qB, we have u(s;β) − E[u(s ′;β)|s, π∗(s)] ≤ c(s, π∗(s)) − ηBA

N

for all s ∈ S. Combining this inequality with the definition of T nad F, we obtain that β satisfies

u(β) ≤ gBA

N
+ Tu(β). Iterating this inequality, we obtain u(β) ≤ limK→∞∑K

k=0 T
kgBA

N
. Hence,

we have

u(s;β) = u(s;β) − u(s̄;β) ≤ lim
K→∞

K∑
k=0

TkgBA

N
(s) − TkgBA

N
(s̄) = lim

K→∞
K∑
k=0

FkgBA

N
(s) = F∞gBA

N
(s)

Using the definition of the idealized solution uID(s;ηBA

N
) = F∞gBA

N
(s), the above inequalities, and

the first part of the proposition, we obtain that

u(s;β) ≤ uID(s;ηBA

N
) ≤ u∗(s) + (η∗ − ηBA

N
) ∥F∞∥ ,

for all s ∈ S. The above inequalities complete the proof. ■

CITED LITERATURE

196

Bibliography

Adelman D (2003) Price-directed replenishment of subsets: methodology and its application to inventory
routing. Manufacturing & Service Operations Management 5(4):348–371.

Adelman D, Klabjan D (2005) Duality and existence of optimal policies in generalized joint replenish-
ment. Mathematics of Operations Research 30(1):28–50.

Adelman D, Klabjan D (2012) Computing near-optimal policies in generalized joint replenishment.
INFORMS Journal on Computing 24(1):148–164.

Adelman D, Mersereau AJ (2013) Dynamic capacity allocation to customers who remember past service.
Management Science 59(3):592–612.

Balseiro SR, Gurkan H, Sun P (2019) Multiagent mechanism design without money. Operations Research
67(5):1417–1436.

Bartlett PL, Mendelson S (2002) Rademacher and Gaussian complexities: risk bounds and structural
results. Journal of Machine Learning Research 3(Nov):463–482.

Basu A, Martin K, Ryan CT (2017) Strong duality and sensitivity analysis in semi-infinite linear pro-
gramming. Mathematical Programming 161(1-2):451–485.

Beevi KS, Nair MS, Bindu GR (2016) Detection of mitotic nuclei in breast histopathology images us-
ing localized ACM and Random Kitchen Sink based classifier. 2016 38th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2435–2439.

Bertsekas DP (2015) Dynamic programming and optimal control, 4th Edition, volume 2 (Athena Scien-
tific).

Bertsekas DP, Tsitsiklis JN (1996) Neuro-dynamic Programming, volume 5 (Athena Scientific).
Bhat N, Farias V, Moallemi CC (2012) Non-parametric approximate dynamic programming via the

kernel method. Advances in Neural Information Processing Systems, 386–394.
Blado D, Toriello A (2019) Relaxation analysis for the dynamic knapsack problem with stochastic item

sizes. SIAM Journal on Optimization 29(1):1–30.
Brown DB, Smith JE, Sun P (2010) Information relaxations and duality in stochastic dynamic programs.

Operations Research 58(4-part-1):785–801.
Brown DB, Smith JE, et al. (2022) Information relaxations and duality in stochastic dynamic programs:

A review and tutorial. Foundations and Trends ® in Optimization 5(3):246–339.
Calafiore G, Campi MC (2005) Uncertain convex programs: randomized solutions and confidence levels.

Mathematical Programming 102(1):25–46.
Calafiore GC, Campi MC (2006) The scenario approach to robust control design. IEEE Transactions on

automatic control 51(5):742–753.
Canuto C, Hussaini MY, Quarteroni A, Thomas Jr A, et al. (2012) Spectral methods in fluid dynamics

(Springer Science & Business Media).
Carriere JF (1996) Valuation of the early-exercise price for options using simulations and nonparametric

regression. Insurance: Mathematics and Economics 19(1):19–30.
Chen X, Pang Z, Pan L (2014) Coordinating inventory control and pricing strategies for perishable

products. Operations Research 62(2):284–300.
Dai JG, Shi P (2019) Inpatient overflow: An approximate dynamic programming approach. Manufac-

turing & Service Operations Management 21(4):894–911.

197

198

De Farias DP, Van Roy B (2002) Approximate linear programming for average-cost dynamic program-
ming. Advances in Neural Information Processing Systems 15.

De Farias DP, Van Roy B (2003) The linear programming approach to approximate dynamic program-
ming. Operations Research 51(6):850–865.

De Farias DP, Van Roy B (2004) On constraint sampling in the linear programming approach to ap-
proximate dynamic programming. Mathematics of Operations Research 29(3):462–478.

De Farias DP, Van Roy B (2006) A cost-shaping linear program for average-cost approximate dynamic
programming with performance guarantees. Mathematics of Operations Research 31(3):597–620.

Desai VV, Farias VF, Moallemi CC (2012a) Approximate dynamic programming via a smoothed linear
program. Operations Research 60(3):655–674.

Desai VV, Farias VF, Moallemi CC (2012b) Pathwise optimization for optimal stopping problems.
Management Science 58(12):2292–2308.

Drusvyatskiy D, Lewis AS (2018) Error bounds, quadratic growth, and linear convergence of proximal
methods. Mathematics of Operations Research 43(3):919–948.

Farias VF, Van Roy B (2006) Tetris: a study of randomized constraint sampling. Probabilistic and
Randomized Methods for Design Under Uncertainty 189–201.

Folland GB (1999) Real Analysis: Modern Techniques and Their Applications (New York, NY: John
Wiley & Sons).

Forsell N, Sabbadin R (2006) Approximate linear-programming algorithms for graph-based Markov
decision processes. Proceedings of the 2006 Conference on ECAI 2006: 17th European Conference
on Artificial Intelligence August 29–September 1, 2006, Riva del Garda, Italy, 590–594.

Franke JK, Koehler G, Biedenkapp A, Hutter F (2021) Sample-efficient automated deep reinforcement
learning. International Conference on Learning Representations.

Fujimoto S, Hoof H, Meger D (2018) Addressing function approximation error in actor-critic methods.
International Conference on Machine Learning, 1587–1596 (PMLR).

Glasserman P, Yu B (2004) Simulation for American options: regression now or regression later? Monte
Carlo and Quasi-Monte Carlo Methods 2002, 213–226 (Springer).

Gordienko E, Hernández-Lerma O (1995) Average cost Markov control processes with weighted norms:
existence of canonical policies. Applicationes Mathematicae 23(2):199–218.

Guestrin C, Koller D, Parr R, Venkataraman S (2003) Efficient solution algorithms for factored MDPs.
Journal of Artificial Intelligence Research 19:399–468.

Gurobi Optimization L (2019) Gurobi optimizer reference manual. URL http://www.gurobi.com.
Haarnoja T, Ha S, Zhou A, Tan J, Tucker G, Levine S (2019) Learning to walk via deep reinforcement

learning. Robotics: Science and Systems .
Haskell WB, Jain R, Sharma H, Yu P (2020) A universal empirical dynamic programming algorithm for

continuous state MDPs. IEEE Transactions on Automatic Control 65(1):115–129, ISSN 2334-3303.
Haugh MB, Kogan L (2004) Pricing American options: a duality approach. Operations Research

52(2):258–270.
Hernández-Lerma O, Lasserre JB (1996) Discrete-time Markov Control Processes: Basic Optimality

Criteria, volume 30 (New York, NY: Springer Science & Business Media).
Hernández-Lerma O, Lasserre JB (1999) Further Topics on Discrete-time Markov Control Processes,

volume 42 (New York, NY: Springer Science & Business Media).

http://www.gurobi.com

199

Hua Z, Yu Y, Zhang W, Xu X (2015) Structural properties of the optimal policy for dual-sourcing
systems with general lead times. IIE Transactions 47(8):841–850.

Karaesmen IZ, Scheller-Wolf A, Deniz B (2011) Managing perishable and aging inventories: review and
future research directions, 393–436 (New York, NY: Springer).

Klabjan D, Adelman D (2006) Existence of optimal policies for semi-Markov decision processes using
duality for infinite linear programming. SIAM Journal on Control and Optimization 44(6):2104–
2122.

Klabjan D, Adelman D (2007) An infinite-dimensional linear programming algorithm for deterministic
semi-Markov decision processes on Borel spaces. Mathematics of Operations Research 32(3):528–
550.

Lewis AS, Pang JS (1998) Error bounds for convex inequality systems. Generalized Convexity, General-
ized Monotonicity: Recent Results 75–110.

Lin Q, Ma R, Nadarajah S, Soheili N (2022) A parameter-free and projection-free restarting level set
method for adaptive constrained convex optimization under the error bound condition. Working
paper .

Lin Q, Nadarajah S, Soheili N (2020) Revisiting approximate linear programming: Constraint-
violation learning with applications to inventory control and energy storage. Management Science
66(4):1544–1562.

Longstaff FA, Schwartz ES (2001) Valuing American options by simulation: a simple least-squares
approach. The Review of Financial Studies 14(1):113–147.

Lu Y, Dhillon P, Foster DP, Ungar L (2013) Faster ridge regression via the subsampled randomized
hadamard transform. Advances in Neural Information Processing Systems, 369–377.

Luque-Vásquez F, Hernández-Lerma O (1999) Semi-Markov control models with average costs. Appli-
cationes mathematicae 26(3):315–331.

Mahadevan S (1996) An average-reward reinforcement learning algorithm for computing bias-optimal
policies. AAAI/IAAI, Vol. 1, 875–880 (Citeseer).

McGrew JS, How JP, Williams B, Roy N (2010) Air-combat strategy using approximate dynamic pro-
gramming. Journal of Guidance, Control, and Dynamics 33(5):1641–1654.

McWilliams B, Balduzzi D, Buhmann JM (2013) Correlated random features for fast semi-supervised
learning. Advances in Neural Information Processing Systems, 440–448.

Micchelli CA, Xu Y, Zhang H (2006) Universal kernels. Journal of Machine Learning Research
7(Dec):2651–2667.

Mladenov M, Boutilier C, Schuurmans D, Elidan G, Meshi O, Lu T (2017) Approximate linear program-
ming for logistic Markov decision processes. Proceedings of the Twenty-sixth International Joint
Conference on Artificial Intelligence, 2486–2493.

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland
AK, Ostrovski G, et al. (2015) Human-level control through deep reinforcement learning. Nature
518(7540):529–533.

Mohri M, Rostamizadeh A, Talwalkar A (2012) Foundations of Machine Learning (Cambridge, MA:
MIT press), first edition.

Nadarajah S, Margot F, Secomandi N (2015) Relaxations of approximate linear programs for the real
option management of commodity storage. Management Science 61(12):3054–3076.

Nadarajah S, Margot F, Secomandi N (2017) Comparison of least squares monte carlo methods with
applications to energy real options. European Journal of Operational Research 256(1):196–204.

200

Nadarajah S, Secomandi N (2022) A review of the operations literature on real options in energy.
European Journal of Operational Research ISSN 0377-2217.

Nersessian A (2019) Fourier tools are much more powerful than commonly thought. Lobachevskii Journal
of Mathematics 40(8):1122–1131.

Osband I, Van Roy B, Russo DJ, Wen Z, et al. (2019) Deep exploration via randomized value functions.
Journal of Machine Learning Research 20(124):1–62.

Pakiman P, Nadarajah S, Soheili N, Lin Q (2020) Self-guided approximate linear programs: randomized
multi-shot approximation of discounted cost markov decision processes. Available at SSRN: http:
// dx. doi. org/ 10. 2139/ ssrn. 3512665 .

Peters J, Vijayakumar S, Schaal S (2003) Reinforcement learning for humanoid robotics. Proceedings of
the third IEEE-RAS International Conference on Humanoid Robots, 1–20.

Powell WB (2007) Approximate Dynamic Programming: Solving the Curses of Dimensionality (Hoboken,
NJ: John Wiley & Sons).

Puterman ML (1994) Markov Decision Processes: Discrete Stochastic Dynamic Programming (Hoboken,
NJ: John Wiley & Sons).

Rahimi A, Recht B (2008) Random features for large-scale kernel machines. Advances in Neural Infor-
mation Processing Systems, 1177–1184.

Rahimi A, Recht B (2008) Uniform approximation of functions with random bases. 2008 46th Annual
Allerton Conference on Communication, Control, and Computing, 555–561.

Rahimi A, Recht B (2009) Weighted sums of random kitchen sinks: replacing minimization with ran-
domization in learning. Advances in Neural Information Processing Systems, 1313–1320.

Rudin W (1987) Real and Complex Analysis (Singapore: McGraw-Hill).
Saldi N, Yüksel S, Linder T (2017) On the asymptotic optimality of finite approximations to Markov

decision processes with Borel spaces. Mathematics of Operations Research 42(4):945–978.
Schweitzer PJ, Seidmann A (1985) Generalized polynomial approximations in Markovian decision pro-

cesses. Journal of Mathematical Analysis and Applications 110(2):568–582.
Shahrampour S, Beirami A, Tarokh V (2018) On data-dependent random features for improved gen-

eralization in supervised learning. Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32.

Shapiro A (2009) Semi-infinite programming, duality, discretization and optimality conditions. Opti-
mization 58(2):133–161.

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M,
Bolton A, et al. (2017) Mastering the game of go without human knowledge. Nature 550(7676):354–
359.

Sinha A, Duchi JC (2016) Learning kernels with random features. Advances in Neural Information
Processing Systems 29:1298–1306.

Steimle LN, Denton BT (2017) Markov decision processes for screening and treatment of chronic diseases.
Markov Decision Processes in Practice, 189–222 (Springer).

Sun P, Wang K, Zipkin P (2014) Quadratic approximation of cost functions in lost sales and perishable
inventory control problems. Fuqua School of Business, Duke University, Durham, NC .

Tong C, Topaloglu H (2013) On the approximate linear programming approach for network revenue
management problems. INFORMS Journal on Computing 26(1):121–134.

http://dx.doi.org/10.2139/ssrn.3512665
http://dx.doi.org/10.2139/ssrn.3512665

201

Trick MA, Zin SE (1997) Spline approximations to value functions: linear programming approach.
Macroeconomic Dynamics 1(1):255–277.

Van Ngai H, Kruger A, Théra M (2010) Stability of error bounds for semi-infinite convex constraint
systems. SIAM Journal on Optimization 20(4):2080–2096.

Veatch MH (2013) Approximate linear programming for average cost MDPs. Mathematics of Operations
Research 38(3):535–544.

Vega-Amaya O (2003) The average cost optimality equation: a fixed point approach. Bol. Soc. Mat.
Mexicana 9(1):185–195.

Wang D, Zeng J, Lin SB (2020) Random sketching for neural networks with ReLU. IEEE Transactions
on Neural Networks and Learning Systems 32(2):748–762.

Wu L, Chen PY, Yen IEH, Xu F, Xia Y, Aggarwal C (2018) Scalable spectral clustering using random
binning features. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2506–2515.

Yang Q, Zhang J, Shi G, Hu J, Wu Y (2019) Maneuver decision of UAV in short-range air combat based
on deep reinforcement learning. IEEE Access 8:363–378.

Zipkin P (2008) On the structure of lost-sales inventory models. Operations Research 56(4):937–944.

VITA

NAME Parshan Pakiman

EDUCATION Ph.D., Information and Decision Sciences, University of Illinois Chicago,
Chicago, IL, USA, 2023.

M.Sc., Business Analytics, University of Illinois Chicago, Chicago, IL,
USA, 2023.

B.Sc., Applied Mathematics, University of Tehran, Tehran, Iran, 2016.

PUBLICATIONS P. Pakiman, S. Nadarajah, N. Soheili, and Q. Lin. “Self-Guided Ap-
proximate Linear Programs: Randomized Multi-Shot Approximation of
Discounted Cost Markov Decision Processes.” Under review at Man-
agement Science.

P. Pakiman, and S. Nadarajah. “Randomized Multi-Shot Approxima-
tion of Average Cost Markov Decision Processes.” Working paper.

A. Chenreddy, P. Pakiman, S. Nadarajah, R. Chandrasekaran, and
R. Abens. “SMOILE: A Shopper Marketing Optimization and Inverse
Learning Engine.” Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining (2019).

202

	to1 Introduction
	to2 Self-Guided Approximate Linear Programs: Randomized Multi-Shot Approximation of Discounted Cost Markov Decision Processes
	 Introduction
	 Exact Mathematical Programs
	 Background
	 Feature-based Exact Program

	 Randomized One-Shot Approximation
	 Model and Theory
	 Implementation Guidelines

	 Randomized Multi-Shot Approximation
	 Model and Algorithm
	 Understanding the Self-guiding Mechanism
	 Theoretical Guarantees
	 Implementation Guidelines

	 Extensions
	 Perishable Inventory Control
	 MDP Formulation and Instances
	 Computational Setup
	 Results

	 Bermudan Options Pricing
	 MDP Formulation
	 Computational Setup and Benchmarks
	 Results

	 Conclusions
	 Proofs
	 Additional Details of Assumption 1
	 Proofs of Statements in §2.2
	 Proofs of Statements in §2.3
	 Proofs of Statements in §2.4
	 Proofs of Statements in §2.5

	 Relaxing Assumptions
	 Relaxing Assumption of V*R
	 Relaxing Assumption 3

	 Constraint Sampling Bound for Self-guided FALP
	 Optimistic Bound Estimation
	 Constraint Violation Learning
	 Information Relaxation and Duality

	 Addendum to Numerical Study
	 Visualization of Self-guiding Mechanism
	 Analyzing the Impact of Constraint Sampling on Policy-guided FALP
	 Analyzing ReLU Basis Functions
	 Upper and Lower Bound Values

	to3 Randomized Multi-Shot Approximation of Average Cost Markov Decision Processes
	 Introduction
	 Contributions
	 Related work

	 Markov Decision Processes
	 Bound-Focused Programs
	 Bound-Focused Exact Linear Program
	 Bound-Focused Feature-based Exact Program
	 Bound-Focused Approximate Linear Program

	 Policy-Focused Programs
	 Policy Performance Bound
	 Discounted-cost Approach to Average-Cost MDPs
	 Policy-Focused Exact Programs
	 Policy-Focused Approximate Linear Program

	 Algorithm
	 Generalized Joint Replenishment
	 Constraint Generation for Stump Basis Functions
	 Instances and Computational Setup
	 Results

	 Perishable Inventory Control Problem
	 Instances and Benchmarks
	 Results

	 Conclusion
	 Addendum to Assumption 7
	 Proofs

	to CITED LITERATURE
	to VITA

