Self-guided Approximate Linear Programs:

Randomized Multi-shot Approximation of Markov Decision Processes

by

PARSHAN PAKIMAN
B.S., University of Tehran, 2016

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Business Administration
in the Graduate College of the
University of Illinois Chicago, 2023

Chicago, Illinois

Defense Committee:
Selvaprabu Nadarajah, Chair and Advisor
Boxiao Chen,
Negar Soheili,
Daniel Adelman, University of Chicago
Itai Gurvich, Northwestern University

Copyright by
PARSHAN PAKIMAN

2023

To my lovely wife and my wonderful parents.

iii

ACKNOWLEDGMENT

The best way to begin my doctoral thesis is to express my deepest and most sincere gratitude
to Selva Nadarajah, my advisor, mentor, co-author, and close friend. His generosity with his
time and patience has been priceless to me, and his unwavering support and encouragement
were indispensable, without which this research would not have been possible. I am profoundly
grateful for the opportunity to be trained and mentored by Selva. Words cannot adequately
convey my appreciation for all he has done for me. Additionally, I am grateful to Negar Soheili for
her valuable guidance and insights that shaped my Ph.D. journey. Negar and Selva always cared
about my academic growth and personal well-being, which has been remarkably meaningful to
me. I am thankful to both of them for their support and mentorship.

During my doctoral studies, I had the privilege of collaborating with incredible scholars.
Qihang Lin provided valuable guidance, particularly in strengthening proofs and streamlining
their understanding. I am privileged to work with Beryl Chen and Stefanus Jasin. They en-
couraged me to work on a research project beyond my doctoral thesis, greatly enhancing my
overall research experience. I was fortunate to also collaborate with Abhilash Chenreddy and
Ranga Chandrasekaran on an industry-based research project resulting in my first conference
paper. Last but certainly not least, I had the pleasure of collaborating with Yun Fong Lim,

whose research insights and encouragement have been valuable in my academic growth.

v

ACKNOWLEDGMENT (Continued)

I express my deep gratitude to all my doctoral defense committee members, Dan Adelman,
Beryl Chen, Itai Gurvich, Selva Nadarajah, and Negar Soheili, for their valuable feedback and
insightful comments that significantly enhanced the quality of this thesis. I consider myself
fortunate to have been guided by such a supportive and knowledgeable group of faculty members.
Thank you for your time and thoughtful suggestions.

I am thankful to the Information and Decision Sciences family at the University of Illinois
Chicago for their support and kindness. Your welcoming presence facilitated my academic
growth. Thank you for creating such a warm and supportive research environment.

To Homali, my sweet wife, most supportive partner, and soulmate, I am at a loss for words
to express my gratitude for everything you have done for me. I cannot imagine where I would
be today without you by my side. Your patience and emotional support have been my rock
throughout my Ph.D. journey. In addition, your insights and thought-provoking questions
helped me immensely with refining this research. I am endlessly thankful for your presence
in my life and for everything you have given me, my love.

I am deeply grateful to my parents (Ahmad Pakiman and Maryam Lak), who supported me
from thousands of miles away. My brother (Koushan Pakiman) brought immense happiness,
fun, and joy into my life, and I am truly grateful for his presence. My wonderful friends and
family members, I thank you for your patience with me during times of heavy workload. I will
forever hold the memories of those family members (Fariba, Mamani, and Baba-Bozorg) I lost

during my Ph.D. and was unable to reunite with.

Parshan Pakiman

CONTRIBUTIONS OF AUTHORS

Chapter 1 outlines the overarching goal of my thesis and summarizes its contributions. Chap-
ter 2 contains the content of a manuscript titled “Self-Guided Approximate Linear Programs:
Randomized Multi-Shot Approximation of Discounted Cost Markov Decision Processes,” which
is currently under minor review at Management Science. The co-authors of this work are Selva
Nadarajah, Negar Soheili, and Qihang Lin, with me serving as the lead author who has done the
majority of the work. My advisor, Dr. Nadarajah, defined the research question as part of my
first-year summer research paper and subsequently helped with ideation, technical development,
and writing. Drs. Soheili and Lin have helped refine the theory and provided feedback to improve
the paper. Chapter 3 describes a working paper titled “Randomized Multi-Shot Approximation
of Average Cost Markov Decision Processes.” Dr. Nadarajah and I co-authored this paper. |
am the lead author and have done the majority of the work. Dr. Nadarajah helped with the
ideation and technical development aspects and also provided valuable feedback on the exposi-
tion. Each chapter required the development of code to solve large-scale optimization models,
which was done solely by me. All code has been open-sourced and can be accessed through the

following repository: https://github.com/Multi-Shot-Approximation-of-MDPs.

vi

https://github.com/Multi-Shot-Approximation-of-MDPs

TABLE OF CONTENTS

CHAPTER
1 INTRODUCTION e
2 SELF-GUIDED APPROXIMATE LINEAR PROGRAMS:

RANDOMIZED MULTI-SHOT APPROXIMATION OF
DISCOUNTED COST MARKOV DECISION PROCESSES

2.1 Introduction
2.2 Exact Mathematical Programs
2.2.1 Background
2.2.2 Feature-based Exact Program
2.3 Randomized One-Shot Approximation
2.3.1 Model and Theory
2.3.2 Implementation Guidelines
2.4 Randomized Multi-Shot Approximation
2.4.1 Model and Algorithm
2.4.2 Understanding the Self-guiding Mechanism
2.4.3 Theoretical Guarantees
2.4.4 Implementation Guidelines
2.5 Extensions
2.6 Perishable Inventory Control
2.6.1 MDP Formulation and Instances
2.6.2 Computational Setup
2.6.3 Results.
2.7 Bermudan Options Pricing.
2.7.1 MDP Formulation
2.7.2 Computational Setup and Benchmarks
2.7.3 Results.
2.8 Conclusions
2.9 Proofs
2.9.1 Additional Details of Assumption 1
2.9.2 Proofs of Statements in §2.2.
2.9.3 Proofs of Statements in §2.3.
2.94 Proofs of Statements in §2.4.
2.9.5 Proofs of Statements in §2.5. L.
2.10 Relaxing Assumptions
2.10.1 Relaxing Assumptionof V€ R o L
2.10.2 Relaxing Assumption 3

vil

11
12
19
19
22
25
26
31
36
37
40
44
48
49
52
52
55
56
61
62
63
64
66
69
69
70
70
82
89
91
91
92

TABLE OF CONTENTS (Continued)

CHAPTER PAGE
2.11 Constraint Sampling Bound for Self-guided FALP 95
2.12 Optimistic Bound Estimation. 97
2.12.1 Constraint Violation Learning 97
2.12.2 Information Relaxation and Duality 101
2.13 Addendum to Numerical Study 103
2.13.1 Visualization of Self-guiding Mechanism 104
2.13.2 Analyzing the Impact of Constraint Sampling on Policy-

guided FALP 107
2.13.3 Analyzing ReLLU Basis Functions 109
2.13.4 Upper and Lower Bound Values 113

3 RANDOMIZED MULTI-SHOT APPROXIMATION OF

AVERAGE COST MARKOV DECISION PROCESSES 119
3.1 Introduction 120
3.1.1 Contributions 124
3.1.2 Related work 126
3.2 Markov Decision Processes. 128
3.3 Bound-Focused Programs 132
3.3.1 Bound-Focused Exact Linear Program 133
3.3.2 Bound-Focused Feature-based Exact Program 134
3.3.3 Bound-Focused Approximate Linear Program 138
3.4 Policy-Focused Programs 145
3.4.1 Policy Performance Bound 145
3.4.2 Discounted-cost Approach to Average-Cost MDPs 147
3.4.3 Policy-Focused Exact Programs 151
3.4.4 Policy-Focused Approximate Linear Program 155
3.5 Algorithm 160
3.6 Generalized Joint Replenishment 165
3.6.1 Constraint Generation for Stump Basis Functions 168
3.6.2 Instances and Computational Setup 171
3.6.3 Results. 172
3.7 Perishable Inventory Control Problem. 174
3.7.1 Instances and Benchmarks 174
3.7.2 Results. 176
3.8 Conclusion 178
3.9 Addendum to Assumption 7. 180
3.10 Proofs 182
CITED LITERATURE 196
VI A 202

TABLE

II

III

v

VI
VII

VIII

IX

XI
XII
XIII
X1V
XV
XVI

XVII
XVIII

LIST OF TABLES

Examples of universal random basis functions.
Comparison of ALP™™ and FALP on the three-dimensional perish-

able inventory control instances (0 =2 and ¢; =100).
Comparison of ALP™™ FALP, policy-guided FALP, and self-guided
FALP on the five-dimensional perishable inventory control instances
(Yy=095and ¢t =1000).t
Comparison of ALPLNS, FALP, and self-guided FALP on the ten-
dimensional perishable inventory control instances (y = 0.95 and
CL=1T1000). . .
Comparison of optimality gaps on the Bermudan options pricing
application.
Comparison of the effect of different constraint sampling strategies

on policy-guided FALP (extended version of Table III).
Comparison of ReLU FALP and Fourier FALP on the three-dimensional
perishable inventory control instances (0 =2 and ¢, =100).
Comparison of ReLLU FALP and RelLU self-guided FALP with Fourier
FALP and Fourier self-guided FALP on the Bermudan options pric-

Ing instances.
Lower bound and upper bounds used to compute optimality and
lower-bound gaps in Table IT.
Lower bound and upper bounds used to compute optimality and
lower-bound gaps in Table ITI.
Lower bound and upper bounds used to compute optimality and
lower-bound gaps in Table IV.
Lower bound and upper bounds used to compute optimality and
lower-bound gaps in Table V. o
Lower bound and upper bounds used to compute optimality and
lower-bound gaps in Table VI.
Lower bound and upper bounds used to compute optimality and
lower-bound gaps in Table VIL..
Lower bound and upper bounds used to compute optimality and
lower-bound gaps in Table VIII.
Comparison of BALP and AK-ALP lower and upper bounds in
generalized joint replenishment problem instances.
Parameters of five-dimensional perishable inventory control instances. .
Comparison of methods on perishable inventory control problem
INSEANCES.

X

58

99

65

109

110

112

115

115

116

116

117

117

118

173
174

177

LIST OF FIGURES

FIGURE PAGE

1 Ilustration of self-guiding mechanism with v equal to a uniform

distribution. 40
2 FALPZ(SOJ upper and lower bounds on two representative ten-dimensional

perishable inventory control instances with (cp, cq, ¢y, 0) equal to

(1,8,2,5) and (1,8,2,2) in the left and right panels, respectively. 60
3 Comparison of FALP VFA V(B.,) (left panel) and self-guided

FALP VFA V() (right panel) on a two-dimensional perishable

inventory control instance. L. 105
4 Mlustrating the impact of guiding constraints on greedy policy

performance. 106
5 Self-guided FALP state-relevance distributions v/(B5;) (left panel),

v/(B) (middle panel), and v/(B2) (right panel) on a two-dimensional

perishable inventory control instance. 108
6 [lustrating the connection between lower bound quality and BFA

quality on a toy MDP. 141

AC

ALP

BALP

BELP

BFEP

BFA

BOP

DC

FALP

FEP

GJR

IMP

LB

LSM

MCMC

MDP

PALP

LIST OF ABBREVIATIONS

Average Cost

Approximate Linear Program

Bound-focused Approximate Linear Program

Bound-focused Exact Linear Program

Bound-focused Feature-based Exact Program

Bias Function Approximation

Bermudan Options Pricing

Discounted Cost

Feature-based Approximate Linear Program

Feature-based Exact Program

Generalized Joint Replenishment

Idealized Math Program

Lower Bound

Least Squares Monte Carlo

Markov Chain Monte Carlo

Markov Decision Process

Policy-focused Approximate Linear Program

xi

LIST OF ABBREVIATIONS (Continued)

PELP Policy-focused Exact Linear Program

PFEP Policy-focused Feature-based Exact Program
PIC Perishable Inventory Control

RL Reinforcement Learning

SP Separation Problem

Semi-MDP Semi-Markov Decision Process

UB Upper Bound

VFA Value Function Approximation

xii

SUMMARY

We revisit the well-established approximate linear programming approach to Markov deci-
sion processes (MDPs). This model-based reinforcement learning (RL) algorithm has strong
theoretical properties and has been successfully applied to many Operations Management and
Operations Research applications. However, guaranteeing this approach results in near-optimal
control policies for new applications and problem instances poses known practical challenges.
These challenges include (i) the design of approximation architectures and (ii) the formulation
of approximate linear programs (ALPs) along with the fine-tuning of their parameters. Specifi-
cally, designing approximation architectures that ensure near-optimal MDP bias/value function
approximations (B/VFAs) often involves tedious trial-and-error and exploiting problem struc-
tures. Additionally, formulating an ALP that ensures its B/VFA corresponds to high-quality
control policies requires refining previously suggested ALP formulations and developing methods
to tune ALP parameters. Although prior research has proposed solutions to these challenges for
specific applications and problem instances, bridging the gap to design an application-agnostic
ALP method that is both

This doctoral thesis research presents novel ALP methodologies for discounted-cost and
average-cost MDPs that mitigate the aforementioned practical challenges. Our methods lever-
age random basis functions commonly used in Machine Learning and extend them to the ALP
framework. Random basis functions allow us to replace the hand-engineering of B/VFAs with

computationally low-cost sampling of random basis function parameters from known distribu-

xiii

SUMMARY (Continued)

tions. Our methods also involve generating multiple randomized approximations to the MDP
bias/value function instead of constructing a single deterministic B/VFA, as predominantly
done in the literature. Therefore, our randomized multiple-shot approximation approaches in-
volve iteratively solving a sequence of ALPs, where two consecutive models in this sequence
are connected using “guiding” constraints that utilize the ALP B/VFA obtained in the previous
iteration to guide the computation of the B/VFAs in the current iteration. Thus, our methods
iteratively refine their own ALP formulations and parameters, so we refer to them as “self-guided
ALPs.” We establish several theoretical properties of our methods, including probabilistic con-
vergence rates and policy performance bounds, that are new to the ALP and RL literature.
We also apply our application-agnostic algorithms to challenging inventory control and options
pricing problems. We show that they deliver excellent control policies and performance bounds
and improve upon or compete with existing problem-specific benchmarks. More broadly, our
research takes a meaningful step toward easy-to-implement model-based RL methods that are
guaranteed to compute near-optimal policies and performance bounds in both discounted-cost
and average-cost MDP settings.

Chapter 1 provides an introduction to this thesis and a summary of its contributions. In
chapters 2 and 3, our randomized multiple-shot approximation approaches for discounted-cost

and average-cost MDPs are outlined, respectively.

Xiv

CHAPTER 1

INTRODUCTION

After a few months into my Ph.D., I asked the following question from my thesis advisor:
Despite the success of reinforcement learning algorithms for operations management and op-
erations research applications, why has the implementation of such methods not gained much
attention? This question has influenced my doctoral thesis research.

Reinforcement learning (RL) is a subfield of Artificial Intelligence that focuses on solving
large-scale Markov decision processes (MDPs). MDPs model a wide range of operations manage-
ment and operations research problems for which model-based RL (i.e., approximate dynamic
programming) provides tractable solutions for computing control policies. Several families of
RL algorithms, such as Approximate Value Iteration, Approximate Policy Iteration, and Ap-
proximate Linear Programming, are developed for approximately solving these MDPs with
high-dimensional state and/or action spaces. Nonetheless, deploying these algorithms relies on
exploiting problem structure, engaging in tedious trial and error, and human intervention is
necessary to ensure the quality of their solutions. While the literature documents how to tailor
these RL methods for specific problems, it is unclear how to adapt them to new problem in-
stances and applications. These deployment challenges are rooted in the formulations and the
theory behind these algorithms, and they severely limit the potential of RL to be conveniently

applied to business applications. These reasons answer the question above.

This thesis leverages the well-established approximate linear programming approach to
MDPs because it has several strong theoretical properties and is shown to perform well across
multiple application domains. This approach for discounted-cost (DC) and average-cost (AC)
MDPs relies on solving a so-called approximate linear program (ALP). We present two novel
approximate linear programming frameworks, one for DC MDPs and one for AC MDPs. Both
frameworks (i) are application-agnostic such that they can be applied directly to different prob-
lem instances and applications, (ii) deliver theoretical support for the performance of models
solved during their implementation, and (iii) exhibit “near-optimal” numerical performance.

DC ALP relies on approximating the MDP value function, and its formulation necessitates
making two choices: basis functions and state-relevance distribution, which are both defined
over the MDP state space. The linear combination of basis functions provides a value function
approximation (VFA), and the state-relevance distribution assigns weights to different regions of
the MDP state space. DC ALP minimizes a VFA error weighted by the state-relevance distribu-
tion, i.e., it reduces VFA error at states where state-relevance distribution assigns high weights.
The ALP VFA enables computing a “greedy policy,” along with upper and lower bounds on the
optimal policy cost. In particular, plugging this VFA into a so-called greedy optimization prob-
lem results in the greedy policy, whose cost is an upper bound. The VFA can also be plugged
into other methods (e.g., information relaxation and duality, constraint violation learning) to
obtain a lower bound. Combining these upper and lower bounds on the optimal policy cost, we
can calculate an optimality gap that reflects how close the greedy policy cost is relative to the

optimal policy cost without directly knowing the optimal policy.

AC ALP relies on approximating the MDP bias function. It leverages a linear combination
of chosen basis functions to perform bias function approximation (BFA). AC ALP treats as a
variable a lower bound on the optimal policy cost, and it maximizes this lower bound without
having an explicit term in its objective to minimize a BFA error. AC ALP objective is thus
different from the DC ALP objective that minimizes a VFA error weighted by a state-relevance
distribution. This difference resulted in fundamentally different formulations, theoretical results,
and algorithm development for AC ALP compared to DC ALP. The literature suggests using
the AC ALP formulation for computing the lower bound. However, to compute BFAs, greedy
policies, and upper bounds, it is standard to solve AC ALP modifications that include some
notion of BFA error in their objective function.

Below we describe the main contributions of this research.

Quality of lower bound. The quality of lower bounds from DC ALP and AC ALP
relies on the choice of basis functions used to define VFA and BFA, respectively. However,
selecting appropriate basis functions to ensure these ALPs deliver near-optimal lower bounds
is challenging without prior domain knowledge. Most existing theory for ALP assumes basis
functions are provided as input. Only a few studies have investigated the selection of basis
functions and developed innovative methods to generate basis functions. These studies either
focus on a specific application or rely on the structure of MDP optimal policy, which is idealized
information not available during the deployment of ALP.

This thesis is the first to extend random basis functions, also referred to as random features,

widely used in machine learning tasks such as classification and regression, to RL approaches

based on mathematical programming, specifically DC ALP and AC ALP. We show that this
extension addresses the issue with the suboptimal ALP lower bounds resulting from poorly
selected basis functions. Consider two gaps: one between the DC ALP lower bound and the
optimal policy DC, and the other between the AC ALP lower bound and the optimal policy
AC. We develop probabilistic error bounds on these gaps and demonstrate that they converge
to zero with a high probability and at a dimension-free rate of one divided by the square root
of the number of random bases used to formulate VFA in DC ALP and BFA in AC ALP. These
rates can be viewed as the convergence rate of a Markov chain Monte Carlo (MCMC) method
extended to Hilbert spaces for function approximation instead of estimating a single value. Our
rates are the first finite convergence rates in the ALP literature with respect to the number of
basis functions. Although our error bounds converge to zero at the same rate for both DC and
AC settings, the constants in these bounds differ. Specifically, in the case of AC ALP, we are
able to show that approximating the MDP bias function at a possibly small region of the state
space suffices to obtain tight lower bounds. Thus, the constant in our AC ALP error bound
relies on how “hard” it is to approximate the MDP bias function in this region. For these results,
which are our first main contribution, please see §2.3 and §3.3 that correspond to DC MDPs
and AC MDPs, respectively.

Different basis functions are used to define V/BFA and formulate ALP. We illustrate two
choices below while a broader discussion on basis functions studied in the literature can be found
in §2.1. Trick and Zin (1997) use spline basis functions to perform VFA in ALP. While this paper

successfully applies such VFA to a low-dimensional MDP, using this VFA on large-scale prob-

lems has not been investigated. The challenge lies in generating splines with low computational
cost while ensuring the resulting VFA maintains near-optimality. Alternatively, one can define
a VFA using neural networks that are known to provide near-optimal approximations of MDP
value function under mild conditions, but they depend non-linearly on their weights, necessitat-
ing solving non-linear programs. Random basis functions are generated by low-cost sampling
from known distributions, and universal random basis functions, such as random Fourier bases,
provide an arbitrarily close approximation of the MDP value function. In addition, a VFA con-
structed with random basis functions is linear in its weights, requiring the solution of a linear
program. We leverage these low-cost sampling, universality, and linearity properties of VFAs
based on random bases to develop our methods that are computationally appealing and provide
convergence rates. Similar results may not carry over when using splines or neural networks in
an ALP.

Quality of policy. In DC ALP, it is known that the state-relevance distribution used to
define its objective function highly impacts the quality of greedy policy. Approaches for choos-
ing this parameter are limited. For example, one can set the state-relevance distribution to the
state-visit frequency of a baseline policy, but this approach lacks theoretical and computational
justification (De Farias and Van Roy 2003, Farias and Van Roy 2006). In AC ALP, the state-
relevance distribution does not appear in the ALP formulation. While it might be intriguing
that there is no need to tune this ALP parameter in the AC setting, the absence of the state-
relevance distribution can result in poor BFAs and greedy policies. Two lines of research studied

this issue. The first line modifies the original ALP formulation by assuming a fixed set of basis

functions is given (De Farias and Van Roy 2002, 2006, Veatch 2013). Theoretical results for
these modified models typically rely on idealized information, and there is no numerical evidence
on how such ALP models perform. Klabjan and Adelman (2007) and Adelman and Klabjan
(2012) proposed the second line that dynamically refines basis functions using dual ALP infor-
mation and optimization. Their approach addresses this issue with AC ALP formulation via
basis function generation. For a general MDP, their basis function generation requires solving
a nonlinear math program, a practically challenging task. For a generalized joint replenishment
(GJR) problem, they showed that this nonlinear program simplifies to a mixed-integer program.
While extensions of their simplified model to other applications are, in principle, possible, no
research has yet explored such extensions.

The second main contribution of this research involves taking multiple shots at randomly ap-
proximating the MDP value/bias function rather than performing a single-shot approximation,
which is predominantly done in the literature, to mitigate the issues related to the state-relevance
distribution in DC ALP and AC ALP. We propose two randomized multi-shot approximation
mechanisms: one for DC MDPs and another for AC MDPs. Both these mechanisms involve an
iterative process of sampling random basis functions in batches and constructing multiple ALP
models with nested V/BFAs that are increasing in the number of random bases. Specifically, in
the current iteration, we formulate an ALP using basis functions sampled thus far and include
in its formulation additional “guiding constraints” that are defined based on V/BFA obtained
from the previous iteration’s ALP with fewer random bases. We thus label an ALP constructed

in this manner as “self-guided ALP” because it uses its own past V/BFA information to direct

the computation of the next V/BFA by incorporating guiding constraints. While the main idea
behind both mechanisms is the same, they are fundamentally different, as explained next.

In the DC setting, our guiding constraints are added directly to the original DC ALP formu-
lation to obtain self-guided ALP. We show that these constraints dynamically update the state-
relevance distribution and thus avoid the need for hand-tuning this ALP parameter. Therefore,
our self-guided ALP models do not rely on idealized information or problem structure to define
state-relevance distribution. We develop an error rate for the quality of our self-guided ALP
VFAs and demonstrate that a worst-case measure of their greedy policy performance is weakly
improving as more random bases are sampled. To our knowledge, our approach is the only
method in the literature that dynamically updates state-relevance distribution and has asso-
ciated theoretical guarantees. These results, which serve as the third main contribution, are
presented in §2.4.

In the AC setting, there is no hope of obtaining high-quality BFAs for a general MDP from
the original AC ALP formulation with a fixed set of bases because it does not have any BFA
error term in its objective function. Accordingly, there is no value in adding guiding constraints
to this model. Therefore, we use an alternative ALP formulation proposed by De Farias and
Van Roy (2002) that includes (an artificially added) state-relevance distribution to control BFA
error in different regions of the MDP state space. Our self-guided ALP in the AC setting is
thus based on the formulation in De Farias and Van Roy (2002), random basis functions, and
guiding constraints. Note that the self-guided ALP model is solved only for computing good

BFAs, not lower bounds, because we already discussed that the original AC ALP model with

universal random bases provides near-optimal lower bounds (please see our first contribution).
We develop a weakly improving upper bound on the worst-case performance of policy obtained
from our self-guided ALP for AC MDPs. The self-guided ALP formulation for AC MDPs and
its theoretical properties are our fourth main contribution in this thesis. Please see §3.4 for
details.

Numerical studies. We have numerically tested both DC and AC versions of our self-
guided ALP method. In the DC setting, we applied it to high-dimensional instances of perish-
able inventory control (PIC) and Bermudan options pricing (BOP) problems. Self-guided ALP
achieves excellent policies and bounds, leading to the best-known policies and lower bounds on
the PIC instances and competing with a state-of-the-art benchmark for BOP. It is encouraging
that our application-agnostic policies and lower bounds outperform benchmarks that use domain
knowledge for basis function selection and/or heuristically updating state-relevance distribution.
In the AC setting, we considered two applications: GJR, which gives rise to an AC semi-MDP,
and an AC version of PIC. We benchmarked our method on GJR instances against the algo-
rithm in Adelman and Klabjan (2012) that adaptively generates basis functions, as we do, but
exploits the structure of GJR. On GJR instances without holding cost, the challenge is to find
tight lower bounds, as shown in Adelman and Klabjan (2012). Therefore, we only perform the
part of the self-guided ALP method that pertains to computing the lower bound (i.e., single
shot). We observe that our application-agnostic lower bounds are comparable with the ones from
this application-specific benchmark on these GJR instances, which is encouraging. To evaluate

the effectiveness of our self-guiding mechanism in the AC setting, we applied our method to

PIC instances with AC criteria. We observed that our approach leads to near-optimal policies.
It also outperforms several heuristics and benchmarks based on our DC self-guided ALP model.
These extensive numerical studies serve as the fifth main contribution of this thesis. The results
for DC and AC self-guided ALP models are reported in §2.6-§2.7 and §3.6-83.7, respectively.

Solving ALPs. Our self-guided ALP models are semi-infinite linear programs if MDP state
and /or state spaces are continuous. For PIC and BOP applications, we solve these programs
via the widely-used constraint sampling approach (please see §2.6-§2.7). We observed that this
method delivers high-quality approximations on the instances we considered. Nevertheless, for
the GJR application, we use a more sophisticated approach called constraint generation (please
see §3.6.1) for two reasons. First, the state and action spaces of GJR are both high-dimensional,
so we expect constraint sampling to fail in providing a good approximation of semi-infinite linear
programs. Second, solving the greedy policy optimization problem in GJR is challenging and
cannot be done via discretization, given the high dimensionality of its MDP action space. Note
that discretization of the action space is possible in PIC and BOP applications since they have
one-dimensional action spaces. For GJR, we thus showcase how two families of random bases,
namely random Stump and random ReLU, can be used to reformulate the constraint generation
and greedy policy optimization problems as mixed-integer programs (please see §3.6). These
solution approaches for (approximately) solving semi-infinite linear programs formulated with
random bases are our last main contribution.

Circling back to the question I posed at the beginning of this chapter, this dissertation

takes a significant step toward application-agnostic policies and bounds for MDPs, making the

10

deployment of ALPs much easier. To make our approach accessible to a wider range of appli-
cations beyond those studied in this thesis, we have made publicly available Python codes that
include the implementation of our methods, benchmarks, and the three applications considered
(https://github.com/Multi-Shot-Approximation-of-MDPs).

More broadly, this thesis opened new research directions in RL to develop easy-to-implement
methodologies that provide theoretical guarantees and are computationally efficient. While
several model-based RL algorithms exist in the literature, such as approximate value iteration
and least-square Monte Carlo, these methods, similar to ALP, often require significant hand-
tuning to perform well on a specific problem. In addition, because they lack the same theoretical
properties as the ALP approach when a fixed set of basis functions is used, it remains unclear
what should be the correct notion of “self-guiding” or “randomized multi-shot approximation” in
these methods. Therefore, it would be valuable to investigate model-based RL algorithms other
than ALP within the multi-shot approximation framework of this thesis. Moreover, this research
raises the broader question of extending randomized multi-shot approximation to model-free RL

and offline RL.

https://github.com/Multi-Shot-Approximation-of-MDPs

CHAPTER 2

SELF-GUIDED APPROXIMATE LINEAR PROGRAMS:
RANDOMIZED MULTI-SHOT APPROXIMATION OF
DISCOUNTED COST MARKOV DECISION PROCESSES

(Co-authors: Parshan Pakiman, Selvaprabu Nadarajah, Negar Soheili, Qihang Lin)

Abstract

Approximate linear programs (ALPs) are well-known models based on value function approx-
imations (VFAs) to obtain policies and lower bounds on the optimal policy cost of discounted-
cost Markov decision processes (MDPs). Formulating an ALP requires (i) basis functions, the
linear combination of which defines the VFA, and (ii) a state-relevance distribution, which de-
termines the relative importance of different states in the ALP objective for the purpose of min-
imizing VFA error. Both these choices are typically heuristic: basis function selection relies on
domain knowledge while the state-relevance distribution is specified using the frequency of states
visited by a baseline policy. We propose a self-guided sequence of ALPs that embeds random
basis functions obtained via inexpensive sampling and uses the known VFA from the previous
iteration to guide VFA computation in the current iteration. In other words, this sequence takes
multiple shots at randomly approximating the MDP value function with VFA-based guidance
between consecutive approximation attempts. Self-guided ALPs mitigate domain knowledge

during basis function selection and the impact of the state-relevance-distribution choice, thus

11

12

reducing the ALP implementation burden. We establish high probability error bounds on the
VFAs from this sequence and show that a worst-case measure of policy performance is improved.
We find that these favorable implementation and theoretical properties translate to encouraging
numerical results on perishable inventory control and options pricing applications, where self-
guided ALP policies improve upon policies from problem-specific methods. More broadly, our

research takes a meaningful step toward application-agnostic policies and bounds for MDPs.

2.1 Introduction

Computing high-quality control policies in sequential decision making problems is an im-
portant task across several application domains. Markov decision processes (MDPs; Puterman
1994) provide a powerful framework to find optimal policies in such problems but are often
intractable to solve exactly due to their large state and action spaces or the presence of high-
dimensional expectations (see §1.2 and §4.1 of Powell 2007). Therefore, a class of approximate
dynamic programming (ADP) approaches instead approximate the value functions of MDPs and
use the resulting approximations to obtain control policies in simulations (Bertsekas and Tsit-
siklis 1996). Approximate linear programming (Schweitzer and Seidmann 1985, De Farias and
Van Roy 2003) is a math-programming-based ADP approach for computing value function ap-
proximations (VFAs) that has been applied to a wide variety of domains, including operations re-
search and artificial intelligence (Adelman 2003, Guestrin et al. 2003, Forsell and Sabbadin 2006,
Desai et al. 2012a, Adelman and Mersereau 2013, Tong and Topaloglu 2013, Nadarajah et al.
2015, Mladenov et al. 2017, Balseiro et al. 2019, Blado and Toriello 2019). It solves a so-called ap-

proximate linear program (ALP) to obtain a VFA| from which a control policy can be computed.

13

This VFA can also be used to obtain a lower bound on the optimal policy cost, which enables
the computation of an optimality gap for the ALP policy as well as other heuristic policies.

Formulating an ALP requires (i) basis functions, the linear combination of which defines the
VFA over the MDP state space, and (ii) a state-relevance distribution, which determines the
relative importance of different states in the ALP objective for the purpose of minimizing VFA
error. It is well known that the choices of basis functions and the state-relevance distribution
are challenging to make and impact the VFA quality significantly. These choices are typically
handled heuristically, the former using domain knowledge and the latter by considering the
states visited by a baseline policy (see §5 in Farias and Van Roy 2006 and §3.2.2 in Sun et al.
2014). The goal of this paper is to broaden the applicability of ALP by reducing the burden of
making these choices.

Our contributions are the following.

1. Our starting point is to provide a new reformulation of a discounted-cost MDP as a large-
scale mathematical program. This program has infinitely many variables corresponding
to a weighted integral of a continuum of basis functions, referred to as random basis
functions (or random features in machine learning), and a large number of constraints
(possibly infinite), one for each MDP state and action pair. The class of random Fourier
basis functions defined using cosines is a popular example (Rahimi and Recht 2008). A
functional analogue of Monte Carlo sampling can be used to approximate the integral over
random basis functions. The resulting model, dubbed feature-based approximate linear

program (FALP), has variables corresponding to the VFA weights in a linear combination

14

of randomly sampled basis functions. This model can be viewed as a randomized one-shot
approzimation of the MDP value function. We establish high probability bounds on the
worst-case error between the FALP VFA and the MDP value function. In particular, this
error bound converges at the dimension-free rate of one divided by the square root of the
number of sampled random basis functions, analogous to the convergence rate of standard

Monte Carlo sampling with respect to the number of samples.

. While FALP does not rely on defining basis functions using domain knowledge, its formu-
lation still requires choosing a state-relevance distribution. Misspecifying this distribution
can lead to poor ALP policies (De Farias and Van Roy 2003, Sun et al. 2014). To address
this issue, we propose a multi-shot randomized approximation approach that leverages the
ability to sample additional random basis functions inexpensively. This approach solves
a sequence of FALP models with increasing numbers of random basis functions and guid-
ing constraints that ensure successive VFAs weakly improve their distances to the MDP
value function at each state. These constraints can be interpreted as adaptively updat-
ing the state-relevance distribution. We label our multi-shot approximation approach as
self-guided FALP because the guiding constraints only require VFA information from a
preceding approximation attempt. The sequence of self-guided FALP VFAs is guaranteed
to provide monotonically increasing lower bounds and a monotonically non-increasing
worst-case measure of policy performance. We establish an error bound for self-guided

FALP that reflects the effect of the guiding constraints on this bound.

15

3. We validate the performance of the proposed models on perishable inventory control and
options pricing applications. We find that FALP outperforms ALP models with tai-
lored application-specific basis functions and leads to near-optimal policies and bounds on
low-dimensional instances for both applications, also closing the optimality gaps of prior
ALP-based policies on known perishable inventory control instances. In other words, ap-
proximations based on one-shot randomization suffice in these low-dimensional instances.
This is, however, not the case on higher dimensional instances, where FALP policies
and/or bounds are suboptimal and randomized multi-shot approximations deliver value.
Specifically, self-guided FALP provides excellent policies and bounds that significantly
improve upon FALP as well as benchmarks. The benchmarks for the first and second
applications are, respectively, FALP with state-relevance distribution updates based on
the states visited by past FALP policies (see De Farias and Van Roy 2003) and the
least-squares Monte Carlo algorithm, which is popular for options pricing (Longstaff
and Schwartz 2001). Beyond these specific applications, the application-agnostic poli-
cies from self-guided FALP can serve as a useful benchmark to assess the value of proce-
dures that exploit application structures. To facilitate such benchmarking, we have made
Python code implementing the approaches developed in this paper publicly available at

https://github.com/multi-shot-approximation-of-mdps.

Our contributions add to the research on ALPs, which predominantly assumes a fixed set of
basis functions and a heuristic choice of the state-relevance distribution. Work relaxing these

assumptions, as we do, is limited.

https://github.com/multi-shot-approximation-of-mdps

16

Klabjan and Adelman (2007) is a seminal paper that develops a convergent algorithm to
generate basis functions for semi-Markov decision processes. It requires the solution of a chal-
lenging nonlinear program. Building on this work, Adelman and Klabjan (2012) considers an
innovative algorithm for basis function generation in a generalized joint replenishment problem.
Their algorithm leverages structure and numerical experience for this application. Our approach
differs from this work because it uses low-cost sampling to generate basis functions, focuses on
discounted-cost MDPs, and is application-agnostic.

Bhat et al. (2012) side-step basis function selection when computing VFAs by applying the
kernel trick (see, e.g., chapter 5 of Mohri et al. 2012), which replaces the inner products of such
functions in the dual of a regularized ALP relaxation by kernels. Guarantees on the approxi-
mation quality of their VFAs depend on the kernel and an idealized sampling distribution that
assumes knowledge of an optimal policy. Our approach instead works directly on the primal ALP
formulation and samples parameters that define a class of random basis functions as opposed
to state-action pairs. Moreover, the sampling distribution is readily available in our framework
and the error bounds that we develop are for models that do not rely on the knowledge of an
optimal policy for their formulation and solution.

The papers above do not address the choice of the state-relevance distribution. Parametric
forms for the state-relevance distribution that are close to the steady-state distribution of an
optimal policy can be obtained for some queuing applications but not in general (De Farias
and Van Roy 2003). De Farias and Van Roy (2003, page 854) and Farias and Van Roy (2006)

propose dynamically updating this distribution using the state-visit frequency from simulating

17

a policy, versions of which are employed in Sun et al. (2014) and in conjunction with FALP in
our numerical experiments. This strategy lacks theoretical backing and it can also be computa-
tionally expensive to simulate a policy each time an update of the state-relevance distribution
is made. Self-guided FALP, while iterative, is fundamentally different as it leverages the ability
to cheaply sample new random basis functions and uses only past VFA information available
from solving an ALP model to guide the state-relevance distribution. Along with the theo-
retical guarantees mentioned earlier, one can view self-guided FALP as a conceptually sound
mechanism for updating the state-relevance distribution.

To solve ALP models, which are large-scale, potentially semi-infinite, linear programs, we
rely on the constraint sampling approach to obtain a linear program with a manageable number
of variables and constraints that can be sent to a commercial solver such as Gurobi (De Farias
and Van Roy 2004, Calafiore and Campi 2005). To generate a lower bound on the optimal
policy cost using a given VFA, we explore two approaches from the literature in our numerical
study, neither of which deal with basis function selection or state-relevance distribution choice.
For the perishable inventory control application, where the controllable part of state space
is high dimensional, we embed VFAs within the primal-dual ALP approach from Lin et al.
(2020), which is based on learning regions of high constraint violation and is thus referred to
as constraint-violation learning. For the options pricing application, where there is essentially
no controllable part of the state, we use VFAs within the information relaxation and duality

approach studied by Haugh and Kogan (2004) and Brown et al. (2010), which solves penalized

18

hindsight optimization models and is known to be effective for this class of applications (see
Brown et al. 2022 for a tutorial).

Our work builds on the seminal research on random bases by Rahimi and Recht (2008),
Rahimi and Recht (2008) and Rahimi and Recht (2009). There is extant literature applying
this idea to data mining and machine learning applications (Lu et al. 2013, McWilliams et al.
2013, Beevi et al. 2016, Wu et al. 2018) and to a value iteration algorithm by Haskell et al. (2020).
These papers embed random bases in what amounts to a regression setting, whereas we show that
such bases can be effectively used in ALPs that have complicated constraints. We also add to
this literature in terms of theory. Our approximation guarantees for FALP adapt the arguments
in Rahimi and Recht (2008) to an ALP setting and also strengthen the error bounds. A similar
analysis of self-guided FALP, unfortunately, does not lead to insightful bounds. Therefore, we
develop an error bound for self-guided FALP based on functional projections and a geometric
notion of feasibility, which are new to this literature, and potentially of independent interest.

More broadly, our work adds to the rich literature on reinforcement learning that attempts
to reduce the burden of feature engineering (Mnih et al. 2015, Silver et al. 2017). Here, neural
networks and deep learning have received significant research attention as they facilitate the
approximation of complex functions with limited domain knowledge (Fujimoto et al. 2018, Os-
band et al. 2019, Franke et al. 2021). They give rise to VFAs that depend nonlinearly on the
parameters but involve the solution of non-convex optimization problems (Wang et al. 2020).
Our use of random basis functions in ALP mitigates domain knowledge while retaining linear

programming structure; it can thus be viewed as a complementary strategy.

19

In §2.2, we present the standard linear programming formulation to solve MDPs and then
introduce an alternative formulation in a randomized feature space. Randomized single-shot and
multi-shot approximations of the MDP value function are discussed in §2.3 and §2.4, respectively.
In §2.5, we present extensions to finite-state and finite-horizon MDPs. The numerical studies
on perishable inventory control and options pricing are covered in §2.6 and §2.7, respectively.

We conclude in §2.8. All proofs and supporting materials are available in §§2.9-2.13.

2.2 Exact Mathematical Programs

In §2.2.1, we provide background on infinite-horizon discounted-cost MDPs and their known
linear programming MDP reformulation. In §2.2.2, we propose an alternative mathematical
programming reformulation for MDPs based on randomized feature spaces, which plays a central

role in the approximations we develop in later sections.

2.2.1 Background

Consider a decision maker controlling a system over an infinite horizon. A policy t: S — As
assigns an action a € A to each state s € S, where S denotes the MDP state space and Aj
represents the feasible action space at state s. An action a € A taken at state s € S results in
an immediate cost of c(s, a) and the transition of the system to the next state according to the

probability distribution P(-|s, a).

20

The decision maker’s objective is to find a stationary and deterministic optimal policy 7t that
minimizes discounted expected costs. Starting from an initial state sy = s € S, the discounted

expected cost of a policy 7 is

PCls,m) = | Y v'elsfmlsh) | s3]
t=0

where vy € [0,1) denotes the discount factor, expectation E is with respect to the state-action
probability distribution induced by the transition probability distribution P(:|s, a) and the policy
7, and sT is the state reached at stage t when following this policy. The quality of a given policy
is evaluated with respect to a distribution x(s) for the initial state. Specifically, we define the
cost of policy m as PC(m) == E,[PC(s, m)].

The policy-cost minimization problem is

_nf PC(n). (2.1)

The MDP value function V*: S — R is defined as V*(s) = inf PC(s,7) for all s € S.

TS—Ag

Assumption 1 An optimal policy T* that solves (2.1) exists and the MDP wvalue function sat-
isfies V*(s) = PC(s, ") for all s € S. The state space S is a continuous, compact real-valued
set and the action spaces As for all s € S either share this property or are finite. Moreover, the

MDP wvalue function V*(-) is continuous.

21

The existence of 71" in the literature is guaranteed under different requirements, mainly over
the cost function c(-,-) and state transition kernel P(:|s,a). Informally, one such set of con-
ditions requires the lower semi-continuity of the immediate cost and the strong continuity of
state transitions. We present them formally in §2.9.1 and refer to Theorem 4.2.3 in Hernandez-
Lerma and Lasserre (1996) for a more elaborate discussion. Continuous state spaces and value
functions arise in applications such as lost-sales inventory control (Zipkin 2008), healthcare
screening (Steimle and Denton 2017), dual sourcing (Hua et al. 2015), robotics (Peters et al.
2003, Haarnoja et al. 2019), and flight simulators (McGrew et al. 2010, Yang et al. 2019). Our
models and analysis in the remainder of this section and §§2.3-2.4 focus on MDPs satisfying
Assumption 1. We discuss in §2.5 how they apply to a broader class of MDPs, for instance,
where the state space can have discrete components.

The computation of the MDP value function can be conceptually approached without know-
ing 7" via the exact linear program (ELP; see, e.g., pages 131-143 in Hernandez-Lerma and

Lasserre 1996)

s.t. V'(s) — YE[V'(s') | s,a] < c(s,a), V(s,a)eS x As, (2.2)

where Vv is a state-relevance distribution that specifies the relative importance of each state in
the state space. ELP is well defined because Assumption 1 ensures that the MDP value function

V* solves the optimality equations V*(s) = mingea{c(s,a) + YE[V'(s')[s, al} for every s € S.

22

Thus, V* is an optimal solution to ELP, which follows from its constraints holding as equali-
ties at V*. Since V* is continuous over a compact domain (Assumption 1), it is bounded and
the objective function of ELP, which is an expectation of V*, is also bounded. However, ELP
is intractable to solve since it is a doubly infinite linear program. It has continua of decision

variables and constraints, one for each state and state-action pair, respectively.

2.2.2 Feature-based Exact Program

ELP directly computes the MDP value function. We present an alternative formulation
that represents the MDP value function in a transformed feature space. This feature space is
defined by a vector 8 = (09,01,...,04) € ® C R a scalar mapping ¢(-) : R — R, and
an associated sampling density p(6), where integer d denotes the dimension of the state space
S. These elements can be used to represent a feature (p(GT(l,s)) using the inner product
07(1,s) =00+ Z?:] 0;isi. In other words, for each 0 sampled from p, we can define a “random”
feature @(s;0) = (p(GTU,s)). We define a representation of the MDP value function in this
randomized feature space using the pair B := (o, B) containing an intercept fo € R and an

integrable weighting function B: © — R:

V(s:B) = Po + J@B(e)qa(s;e) a0. (2.3)

The class of functions that can be covered by this construction is

R = {v SR ‘ 3B = (Bo,B) st V(s)=V(s;B), ¥s €S, and |B/p||,, < oo},

23

where the (2, p)-norm of B()/p() :® — R is defined as

2 2
o (25 - 50

Replacing the MDP value function with the integral form (2.3) and requiring the weighting
function to have a finite (2, p)-norm as in the definition of R gives the feature-based exact
program (FEP):

sup Bo +j B(0)E, [¢(s;0)] d 0
Bo,B (€]

st (1—V)B0+J®B(9)(<p(8) ~ VEle(s) | s,al)d0 <c(s,a), V(s,a) €S x A

HB/pHZ,p < 0.

Unlike ELP, which directly optimizes a value function, the above program optimizes the weights
associated with the feature-based representation of the value function in the set R. It is a

reformulation of ELP when V* € R as shown in Proposition 1.

Proposition 1 If V* € R, there is an optimal FEP solution B* = (B;,B*) such that V*(s) =

By + [o B (0)p(s;0)d6 for all s € S.

The assumption V* belonging to R can be restrictive if R is not rich enough to contain an arbi-
trarily close approximation of V*. When random features satisfy a “universality” property, this
assumption is mild because R contains a function that is arbitrarily close to any continuous func-

tion, and in particular V*, as we formally show in §2.10.1. Thus, FEP should not result in any

24

Table I: Examples of universal random basis functions.

@) p(0) Parameter
Fourier cos(+) 0o ~ uniform([—m, 7]); 6; ~ normal(0, cy), for i > 1 Cp
ReLU max(-,0) 0 ~ uniform(d-dimensional unit sphere) None
Stump sign(-) 0o ~ uniform([—cp, cpl); (01,...,04) ~ uniform({e’, ..., ed}) Co

significant error when using universal random features defined below. For function V:S — R,
define the oo-norm as ||V/||, = maxscs|V(s)|, and consider shorthand V() = V(-;p) for each

function V € R.

Definition 1 A class of random features @ with sampling density p is called universal if for
any continuous function V: S +— R and € > 0, there exists B, = (Bo,e, Be) such that V(B.) € R

and ||V = V(B,) 0 < &.

Each random feature @(s;0) in the definition of FEP is a mapping from the state space to the
real line. As a result, we refer to it as a random basis function because this terminology is more
common in the ALP literature. Table I lists the components of three universal random basis
functions that satisfy Definition 1: the mapping ¢(-), the sampling density p(-) for the vector
0, and the parameters defining this density. Fourier basis functions are defined using a cosine
mapping with 0y sampled from a uniform distribution with support involving the Archimedes
constant 7t and the remaining elements of 6 sampled from a normal distribution with mean zero

and standard deviation c,, which is a tunable scalar parameter. ReLU basis functions employ

25

a mapping that is a maximum with respect to zero. It samples 0 from a uniform distribution
over a unit sphere with no tunable parameters. Stump basis functions use a signum mapping
that evaluates to a —1, 0, or 1, depending on whether the input is negative, zero, or positive,
respectively. The element 0 is sampled from a uniform distribution with support over an interval
that depends on a tunable scalar parameter ¢,. The remaining elements of 0 are sampled from
a uniform distribution defined on the discrete set {e',...,ed}, where el, i € {1,2,...,d} is a
d-dimensional unit vector with 1 in the i-th coordinate and zero elsewhere.

Assumption 2, which holds for the rest of this chapter, includes V* € R and additional
conditions needed for our theoretical analysis, all of which are standard in the random basis

functions literature (see, e.g., Rahimi and Recht 2008, Theorem 3.2).

Assumption 2 The MDP value function V* belongs to R. Random basis function @ is uni-
versal, and its sampling distribution p has a finite second moment. Moreover, @ has a Lipschitz

constant L > 0 and satisfies ||@||, < 1 and @(0) =0.

This assumption is satisfied by Fourier and ReLLU basis functions in Table I but not by Stump
basis functions as they are not continuous. While Assumption 2 is needed for analysis, the

algorithms we present in §§2.3-2.4 can be applied even when this assumption fails to hold.

2.3 Randomized One-Shot Approximation

In §2.3.1, we introduce and analyze FALP, which uses a single set of sampled random basis
functions to approximate FEP. That is, FALP is a randomized single-shot approximation of

FEP. In §2.3.2, we provide implementation guidelines for FALP.

26

2.3.1 Model and Theory

In the literature, an ALP is derived from ELP by substituting its decision variable V'(s)
with a linear combination of pre-specified basis functions. Our starting point is instead FEP.

We replace the integral form (2.3) with a sampled VFA

N
V(s;B)=PBo+) Bip(s;0Y),

i=1

where 01,07%,...,0N are iid samples of the basis function vector from p and f is the finite
weight vector (Bo, B1y...,Bn) € RN The weight o represents an intercept as in FEP and
the remaining elements of 3 are weights associated with the random basis functions. In other
words, B1,p2,..., PN is the finite analogue of the weighting function B in FEP and V(s;)
can be viewed as an approximation constructed using a functional extension of Monte Carlo
sampling applied to V(s;B). The resulting ALP with N random basis functions, denoted by
FALPy, is

N
sup Bo+ D Biiv[e(s;0]

i=1

N
st (1=7)Bo+Y_Bi (@509 —VE[0(s09) [5,0]) < cls,a), (s,0) €S x Ay
i=1

This model is a semi-infinite linear program with N 4 1 variables and an infinite number of
constraints. We assume the existence of a solution to FALPy. This is mild because we can
always bound the absolute value of the elements of 3 by a large constant to ensure the existence

of a finite optimal solution without affecting our results. We show this formally in §2.10.2.

27

Assumption 3 A finite optimal solution to FALPy exists.

Theorem 1 establishes key properties of FALPy and relies on the constant

Q = 5(Ds + 1)Ly/E, [[|0]3],

where ||-||, denotes the 2-norm, Dy = maxgcsllsllz, L is the Lipschitz constant of random
basis @(-) defined in Assumption 2, and E, is the expectation under the distribution p. Let

Bx = (Bro - - -» Bua) Tepresent an optimal solution to FALPy.

Theorem 1 The following hold:

(i) For a given N, we have V(s;Bx) < V*(s) for alls € S.

(ii) Suppose there exists a p > 0 such that p(0) > p for all © € ©. Given 5 € (0,1], we have

that any finite optimal FALPy solution By satisfies

2[B/pll,

hy < RERYIW <Q+,/21n <;)> :

with a probability of at least T — 3.

VF —V(Bx)

Part (i) of this theorem shows that FALPy is well-defined and provides a lower bound on the
MDP value function V* at all states. The latter is a known result in approximate linear pro-
gramming (see, e.g., §2 in De Farias and Van Roy 2003). Part (ii) establishes a high probability
(1,v)-norm error bound for this VFA. This bound holds for every choice of v and decreases

at the dimension-independent rate of 1/v/N akin to Monte Carlo sampling, which are both

28

encouraging properties. The magnitude of the error increases only logarithmically to obtain a
more stringent probability guarantee, that is, as § is decreased. Its growth also depends on the
dimension of the state space as is the case with Monte Carlo sampling. The exact nature of this
dependence is captured through Q and p. In the definition of Q, both the diameter of the state
space Ds and the term E, [||6H§] may change as we move to higher dimensions. For example, it
can be verified that Dy increases at the rate of v/d when the state space is a d-dimensional unit
hypercube and Ep[HeHﬁ] = 1 for ReLU bases, that is, it does not change with the state space
dimension. The analogous change for the parameter p depends on the choice of the basis func-
tion @. It can be verified that for Fourier bases and a given probability level, there is a constant
¢ > 0 depending on this probability level such that B_] = (c/cp)?. This suggests that 9_1 can
be super- or sub- linear in d depending on whether c is larger or smaller than c,, respectively.

Indeed, the nature of the MDP value function V* also affects the error and this factor is

signaled by the presence of the term HB*H 2,0 in the error bound. When the representation of

V*(.) = [3:; + f® B*(0)@(-;0) is not unique, one can select (BS,B*) such that norm HB*| 2p 18
minimized and this minimum can be viewed as the approximation difficulty associated with V*
when using a class of random basis functions. The condition in Theorem 1(ii) of p(-) > p is
needed to avoid a situation where random basis functions with a certain set of 0 values are
needed to approximate the value function well but are not sampled because p(-) is zero in this

set. This requirement is fairly mild. Sampling distributions with bounded support (e.g., uni-

form) clearly satisfy it. Since N is finite, distributions with support over an unbounded set,

29

such as the normal distribution, satisfy it with high probability because the sampled 0 vectors
highly likely come from a truncated version of the distribution, which has bounded support.
The error bound in Theorem 1 extends to ALP the random basis function sampling results
in Rahimi and Recht (2008), which proposes a functional form of Monte Carlo sampling in the
regression setting and assumes knowledge of the function being approximated. If V* is known,
we can regress N random basis functions against V* to compute a VFA defined by the weight
vector By° = arg mingcpn+1 [[V(B)—V*||1y. It follows from Proposition 7 that this VFA satisfies

the following error bound with a probability of 1 — &:

1B /ol 1
v S QT (Q—i— 21n <6>> (2.4)

The (2, p)-norm term in (2.4) involving B* improves on an oo-norm variant of this term in the

[V —V(B®)

original bound of Rahimi and Recht (2008) because we employ in the proofs a solution con-
struction that differs from the one used in that paper. The error bound in (2.4) is unattainable
because V* is unknown. FALPy provides a mechanism to compute a VFA without the knowledge
of V* at the cost of incurring the higher approximation error shown in Theorem 1 compared
0 (2.4). This increase in error occurs because FALPy is equivalent to the following constrained

regression, a result derived from Lemma 1 in De Farias and Van Roy (2003):

min [V(B) = V"]l

s, V(s;B) —YE[V(s;B) | s,a] < c(s,a), V(s,a) € S x As.

30

Proposition 2 establishes that satisfying the constraints in FALPy worsens the error bound in
(2.4) by a factor of 2/(1—+), which is precisely what we observe in Theorem 1. In other words,
reg
N

to avoid the need for knowing V*, which is assumed in the definition of 3.~, FALPy incurs a cost

of feasibility captured by the factor of 2/(1 —).

Proposition 2 If [|[V* — V(f\fg)H]’V < g, then ||V* —V([SFI\?)HM < (2/(1 —v))e.

We note that the universal random basis functions that underpin the convergence result in
Theorem 1 are closely related to universal kernels (Micchelli et al. 2006). For random basis
function ¢ with sampling density p, the associated kernel k : S x § — R at centroid § € S
is defined as k(s,$) := j@ p(0)(s;0)p(8;0)d0O for all s € S. From this integral relationship,
random basis functions can be viewed as a way of using samples from the known distribution p
to approximate kernels. Rahimi and Recht (2008) show that the class of functions R spanned
by random basis functions coincides with the space of all finite linear combinations of their
associated kernels, {&g +) ; «ik(+8i) : o € R, 8 € S}. Nevertheless, unlike kernels, random
basis functions do not require the specification of centroids §;. Optimizing the centroid locations
of a collection of N kernels is, in general, non-convex. Sampling centroids requires a sampling
distribution over the state space. Such a distribution that ensures convergence rate guarantees

is not readily available, and thus sampling is often done heuristically (see, e.g., Bhat et al. 2012).

31

2.3.2 Implementation Guidelines

We outline an implementation strategy that utilizes constraint sampling to approximate
FALPy and calculate VFA weights 3. These weights can be used to define the greedy policy
T4(B) (see, e.g., Powell 2007). The action my(s; 3) taken by this policy at state s € S solves

min {c(s,a) +YE[V(s';B) | s,a] }. (2.6)

acAs

Given VFA weights (3, the cost of the greedy (feasible) policy 74(f), which we denote by
PC(B) = PC(mg(B)) (where PC(-) was defined in §2.2.1), is an upper bound on the optimal
policy cost. In addition, these weights can be incorporated into other methods in the literature
to obtain a lower bound on the optimal cost, which can be used for benchmarking purposes.
Please see §2.12.1 and §2.12.2 for a discussion of two such methodologies.

The key step in constraint sampling to solve FALPy is to replace its set of constraints with a
subset obtained by sampling K iid state-action pairs {(s*, a*) € S x As : k =1,2,...,K} from a
probability distribution ¢ over the state-action space S x Ag (Calafiore and Campi 2005). The

result is the following linear program with N random basis functions and K constraint samples:

mx Bo + Z BiEy [¢(s;0Y)]
i=1 (27)

o—l—Z[.’n(s 01 VIE[(p(s’;Gi)Isk,akDgc(sk,ak), k=1,2,...,K.

Proposition 3 is an application of a key result in Calafiore and Campi (2006) and shows that the

linear program (2.7) for large enough K provides a good randomized approximation of FALPy.

32

Proposition 3 (Theorem 1 in Calafiore and Campi 2006) Given & € (0,1], if P is sup-

ported over S x As, linear program (2.7) is bounded, and

K > ﬁln(1)+2(N+1)+

2A0NFT) 2
;)

then for every optimal solution /6 to this program, the following inequality holds

() ({(s,a) €S x A

with a probability of at least 1 — 8.

N
(1=v)Bo+Y_ B (050"~ vE[0(s;6s,a]) < c(s,a)}> >1-3,

i=1

In particular, this proposition shows that as more samples are added, the set of states where the
FALP constraints are violated when measured using 1 is at most 6 and this holds with a prob-
ability of at least 1 —5. Therefore, if one solves the constraint-sampled version of FALP in (2.7)
with a large number of samples K, we expect the results in Theorem 1 to hold approximately.
A sharper constraint sampling result specific to ALP can be found in De Farias and Van Roy
(2004, Theorem 3.1) when 1 is chosen using information from the optimal policy, which is un-
known. During implementation, 1p can be a uniform distribution or based on states visited by a
baseline policy. A candidate baseline policy is greedy policy 74(f3) computed based on an ALP
VFA weights 3. Expectations in (2.7) are typically replaced by sample average approximations.
The number of constraint samples K can be chosen so that the optimal objective function of
(2.7) does not decrease significantly as more samples are added. Once these parameters are set,

the optimal solution B to (2.7) defines VFA V(B).

33

The quality of the VFA obtained using the above procedure depends on how FALP is formu-
lated, in particular, the number of basis function samples N, the choice of random basis func-
tions, and the state relevance distribution v. We provide some guidance on these choices next.

Similar to standard Monte Carlo sampling, the value of N depends on the computational
budget. That is, one determines the largest N for which the sampled version (2.7) of FALPy can
be tackled within a reasonable time limit (and possibly memory limit) using an off-the-shelf com-
mercial solver. The ability to get good VFAs with a small number of basis functions N is thus an
important consideration in choosing random basis functions. While multiple universal random
basis functions guarantee the same theoretical convergence rate, their empirical rates may differ.
A good starting point is to consider random Fourier basis functions (see Table I), as they are
known to provide better approximations as the continuous function V* becomes smoother (please
see §2.1.1 of Canuto et al. 2012 and Nersessian 2019 for recent examples). The non-smoothness
of the MDP value function in several applications is localized, that is, even these value func-
tions are smooth in most neighborhoods. Given a choice of random basis functions, the tunable
parameters are few and do not depend on the application. The random bases examples in Table
I have at most one such parameter (i.e., ¢,). We recommend tuning this parameter according
to the following steps: (i) choose multiple candidate values for ¢, (ii) sample N random basis
functions for each candidate, (iii) solve the constraint-sampled version (2.7) of FALPy based on
each candidate, and (iv) choose the candidate with the highest optimal objective value. Fourier
basis functions, which depend on a single bandwidth parameter, tuned using the aforementioned

simple tuning strategy, worked well in both applications in our numerical experiments.

34

The state-relevance distribution v plays an important role in linking the quality of the VFA
with weights (3 to the performance of its associated greedy policy 7t4(p) (De Farias and Van Roy
2003, Desai et al. 2012a, Sun et al. 2014). Proposition 4 formalizes this link using the state-visit
frequency K, (P) of this greedy policy, which defines the following probability of visiting a subset

of states S; C S (see, e.g., pages 132-133 in Hernandez-Lerma and Lasserre 1996):

H(815B) = X(8) + Y YE[P(sE € 81l s mlsiB)], (238)
t=0

where state s?j’rgﬁ) and transition probability distribution P retain their definitions from §2.2,

and x(S7) is the probability of the initial state belonging to S;. The expectation E is taken with

respect to control policy 7t4(f) and the distribution x over initial the state so.

Proposition 4 (Theorem 1 in De Farias and Van Roy 2003) For a VFA V() such that

V(B) < V*, we have

* 1 *
PC(B) —PC(n") < ﬁ”v(ﬁ)—v [FEITSE

Proposition 4 shows that for a VFA V(f) that lower bounds V* (e.g., the FALP VFA), the
additional cost incurred by using the greedy policy 74() instead of the optimal policy m* is
bounded above by the (1, K, (f3))-norm difference between the VFA V() and the MDP value
function V*. This result motivates the search for good VFAs.

If v and uX(BIF\?) are identical, Proposition 4 and the reformulation (2.5) imply that FALP

VFA V(By) with a small (1,v)-norm error also guarantees good performance for greedy policy

35

ﬂg(B;?). However, one does not know uX(B;?) before solving FALP, which makes this choice
challenging (De Farias and Van Roy 2003). Heuristics in the literature can be interpreted as
approximating the expression (2.8) for p, (By). They either consider a static choice of v or dy-
namically update it. Popular examples of static choices of v are (i) the initial state distribution
X, which ignores the second term in (2.8) capturing the effect of states visited by the policy
in the future; (ii) a uniform distribution, which can be interpreted as acknowledging that we
do not have any information about v; and (iii) the state-visit frequency of a baseline policy ,
which can be estimated by simulating this policy.

De Farias and Van Roy (2003) and Farias and Van Roy (2006) describe a dynamic approach
to update the state-relevance distribution by iteratively applying the third static choice for v
mentioned above. Algorithm 1 summarizes this approach used in conjunction with FALP to
guide the choice of the state-relevance distribution. To ease exposition, we make the dependence
of FALPy on Vv explicit by writing FALPx[v| and assume this refers to the constraint-sampled
version (2.7). The initial iteration q = 0 starts by solving FALPx[v°] based on an initial state-
relevance distribution choice v° to obtain the VFA weights B°. Then, it simulates the greedy
policy 719([30) to obtain the state-visit distribution K, (B°). This distribution is chosen as the new
state-relevance distribution v'. Tteration q = 1 starts by solving FALPx[v'] and so on. A total of
Q iterations are performed, after which the VFA weights B! is returned. The algorithm thus
updates the state state-relevance distribution Q — 1 times, while retaining the same random
basis functions, that is, the same randomized one-shot approximation. We refer to Algorithm 1

as policy-guided FALP. As Algorithm 1 iterates, one hopes that the state-relevance distribution

36

Algorithm 1: Policy-guided FALP

Receive: number of random basis functions N, random basis function ¢ with sampling density
p, initial state-relevance distribution v°, and maximum number of iterations Q.

Initialize: formulate FALPx[v®] using v° and random basis function ¢ with N iid @ samples from p.
for q=0,1,...,Q—1do

(i) Solve FALPN[VY] to obtain VFA weights $9.
(ii) Simulate greedy policy mg(B9) to estimate K, (B9), and then set vqi1 — K (B9).

Return: VFA weights 3R,

K. (B9) overlaps more with states visited under greedy policy mg(9), but there is no guarantee
that this will happen. In addition, this dynamic approach is more costly than a static choice of
v. As N becomes larger, the time for a single iteration of Algorithm 1 increases, which includes
solving FALPy[v9] to compute VFA weights 39 and simulating the greedy policy 7tq(39). This
is because FALPy[vY9] will have more variables, so we need to evaluate expectations of a larger
number of random basis functions during policy simulation. A sequential strategy is to first
select N such that the per iteration cost allows for choosing Q such that a few iterations can be

performed within an acceptable time limit.

2.4 Randomized Multi-Shot Approximation

In this section, we introduce a randomized multi-shot approximation approach for dynami-

cally updating the state-relevance distribution that leverages our ability to inexpensively sample

37

new random basis functions. We present the model and algorithm in §2.4.1, interpret it in §2.4.2,
provide supporting theory in §2.4.3, and discuss implementation guidelines in §2.4.4.

2.4.1 Model and Algorithm

Our randomized multi-shot approximation scheme gradually increases the number of basis
functions in FALP by sampling new batches of random basis functions of size B and adds guiding
constraints to FALP that link the VFAs across consecutive iterations. For a given N, we refer
to this modification of FALPy as FALPy (SG stands for self-guiding).

Consider sampling random basis functions in batches of size B iteratively. At iteration

q€{0,1,...,Q}, model FALPiG with N = gqB random basis functions is

N
InéiX Bo + Z BiEy [(P(S; ei)]

i=1

N
st (1=v)Bo+) B (@(S;ei) —VE[o(s";6")] s>a]) < cls,a), ¥(s,a) €S xA;, (29)
i=1

N
Bo+) Biols;0') > V(s;B,), Vs € S. (2.10)

i=1

The only difference between FALP;G and FALPy is that the former linear program includes addi-
tional constraints (2.10) that require its VFA to be a state-wise upper bound on the past VFA
V(BiﬁB), which is computed in the previous iteration q — 1 by solving FALP. . Note that the
N-dimensional vector (B ,0,...,0) obtained by appending B zeros to the VFA weights B>,
is feasible to FALPY . At the first iteration (i.e., q = 0), the FALP)® VFA becomes a constant
function that only includes an intercept term. We assume V(s; [3?(];) = —oo for all s € §, which

implies that the guiding constraints (2.10) are redundant in the first iteration. We refer to the

38

Algorithm 2: Self-guided FALP

Receive: sampling batch size B, random basis function ¢ with sampling density p,
state-relevance distribution v, and maximum number of iterations Q.

Initialize: the set & of sampled 0 vectors to {}.
for q=0,1,...,Q—1do
(i) Set N « ¢gB.

(i) Compute coefficients B3 by solving FALPY formulated using N random basis functions
with parameters in set 9, the state-relevance distribution v, and the past VFA V(BiﬁB).

(iii) Draw B iid samples {0',...,0B} from p and update d < duU{0',...,08}.

Return: VFA weights By .

resulting iterative scheme summarized in Algorithm 2 as self-guided FALP because the new
constraints (2.10) use its own past VFA (hence the label “self”) to shape the current VFA (hence
the label “guided”).

The inputs to Algorithm 2 are similar to Algorithm 1, except for the batch size B, which
replaces the apriori fixed number of basis functions N across iterations. At each iteration q > 0,
Algorithm 2 (i) sets the number of random basis function N to B, (ii) solves a revised FALP
model formulated with B additional random basis functions compared to FALP, ,, and (iii)
samples a batch of 0 vectors of size B and includes them in the current set 9 of such vectors.

After Q iterations, it returns the VFA weights B}, where N = (Q — 1)B.

Proposition 5 establishes a key property of the VFAs generated by Algorithm 2.

39

Proposition 5 At any iteration q > 1 of Algorithm 2 with N = qB, it holds that

V(s;Bo) =V(siBy) < V(siBy) < -+ < V(siBy) < V*(s), VseS. (2.11)

The equality in (2.11) follows from our assumption that V(- ; Bi‘;) = —oo. For every iteration

q > 0 with N = gB, the relationship V(s;BY’) < V*(s) holds for all s € S. This follows from

SG
N

Part (i) of Theorem 1 because By is feasible to FALP , and thus, it is also feasible to FALPy.
The inequalities of the type V(s; B) < V(s; By) are directly implied by the guiding constraints
(2.10).

An important consequence of Proposition 5 is that Algorithm 2 generates a sequence of

VFAs that draws (weakly) closer to V* at all states. Therefore, two consecutive VFAs with

N — B and N random basis functions satisfy

IVIBY) = Vil < IVIBS) = VI

for any proper distribution pu defined over the state space and, in particular, when p is the
state-visit frequency p, (B3) associated with the greedy policy T[Q(BEG). As a result, for any
fixed iteration index q > 1 and its corresponding state-visit frequency },LX(BZE), it follows that
the sequence of VFAs {V(Bi:):q=0,1,...,q} generated by Algorithm 2 improves the worst-
case performance bound of greedy policies in Proposition 4, that is ||V([3:(];) _V*Hhux(ﬁig) is

non-increasing in .

40

Figure 1: Illustration of self-guiding mechanism with v equal to a uniform distribution.

IV* = VBE) e < IV =VBE) e < IV = V(B

—N AN TTN—
S

—— W© oooooo V(BEA) = V(659) - = V(BEM) 2 tzzz2 Orange state SN Green state

2.4.2 Understanding the Self-guiding Mechanism

We begin by shedding light on a connection between the guiding constraints and the greedy
policy performance using the illustrative example in Figure 1. Consider the left panel in this
figure, where the MDP value function V* is represented by a (black) solid line. The lowest-cost
state of V* corresponds to the global minimum of this function. The (blue) dotted line represents
an intercept-only VFA V(B;") obtained from FALPy with N = 0 random basis functions and a
uniform state-relevance distribution. Leveraging the constrained regression equivalence of FALP
n (2.5), it follows that the intercept-only VFA (i) must be below V* (i.e., gray region) because of
the constraints and (ii) must equal the value of V* at the lowest-cost state because the objective

minimizes the (1,v)-norm distance to V*. This results in our first observation:

41

(O1) The intercept-only VFA V(B;A) provides a constant approzimation across all states that

equals V* at the lowest-cost state.

However, since all states receive an identical value under the intercept-only VFA, its greedy
policy is driven by the immediate cost (i.e., myopic). This is undesirable and motivates adding
random basis functions to obtain richer VFAs that direct their greedy policies towards the
low-cost state.

The middle panel of Figure 1 shows in (red) dotted-and-dashed line the richer VFA V(BFBA)
that is computed by FALPy with N = B basis functions and a uniform state-relevance distribu-
tion. This VFA assigns low values to states having high cost under V*, thus incorrectly directing
its greedy policy. To elaborate, vector By, defining this VFA is optimal to FALPy because we
assume that the chosen B basis functions only represent specific shapes within the gray region
and cannot entirely span it. Particularly, these basis functions do not represent functions in
the gray region that are both above the intercept-only VFA at all states (i.e., visually above),
and have a lower (1,v)-norm than the VFA V(B") (i.e., better objective value). Our second

observation is the following:

(02) The FALPy VFA V(By') provides a better (1,v)-norm approzimation than V(By") but can

result in assigning its lowest value to states that have high cost under V*.

The right panel illustrates the VFA V(B5’) by a (pink) dashed line. This VFA is obtained
from FALPY" with N = B random basis functions and a uniform state relevance distribution. It
does not suffer from the issue outlined in (O2) because the guiding constraints require V(B;G)

to be above the intercept-only VFA V(B;") at all states. This restriction results in V(B}) not

42

only having an improved (1,v)-norm distance to V* compared to V(B;A) but also continuing to

assign the lowest value to the lowest-cost state under V*. Our third observation follows.

(03) The FALPy VFA V(B}) provides a better (1,v)-norm approzimation than V(B,) and, in

addition, assigns its lowest value to the lowest-cost state under V*.

Overall, the key takeaway is that good policies are more likely to visit states where V* is
small rather than large. As noted in (O1), the FALP, VFA V(B;") is exact at the lowest-cost
state. The FALPZG VFA V(B}) improves this approximation such that the lowest-cost state
under V* remains the lowest-cost state under V(B}), which is (03). Hence, its greedy policy
moves the system toward “real” low-cost states under V*. In contrast, as mentioned in (02),
the FALP; VFA V(B,) may worsen the approximation quality at the lowest-cost state under
V*, which certainly occurs in Figure 1. Hence, its greedy policy moves the system towards the
lowest-cost state under V(B,) whose actual cost is higher under V*. While this illustration
considers a single iteration of Algorithm 2, analogous behavior continues in future iterations,
with the approximation quality at low-cost states under V* not being compromised to improve
the approximation quality at high-cost states with respect to V*. We also verified this behavior
on a small instance of the inventory control problem tested in our numerical study and provide

details in §2.13.1.

43

Next, to provide insight into the self-guiding mechanism in FALPiIG, we dualize constraints
(2.10). Specifically, let y*(s) > 0 denote the optimal dual value associated with the constraint

(2.10) at state s € S and define a state-relevance distribution v’ that evaluates at this state to

Ve Y)Y

T oy ()5 (2.12)

If strong duality holds, it can be easily verified that an optimal solution of FALPY solves

N
max Bo+ Z BiEy [@(s;01)] st. (2.9).

i=1

For brevity, we do not discuss the technical conditions for strong duality here (see, e.g., Shapiro
2009, Theorem 2.3, and Basu et al. 2017, Theorem 4.1) because the constraints will be sampled
during implementation, in which case standard strong duality for finite linear programs will
apply. The above reformulation shows that FALPiG can be viewed as a modification of the FALPy
static state-relevance distribution using its own past VFA information, that is, the FALPISfB VFA.

We revisit the example in Figure 1 to illustrate the states where guiding constraints will be
binding and the impact of these states on the updated state-relevance distribution v’ used by
self-guided FALP (i.e., (2.12)). The guiding constraints must be binding at some of the states
colored in orange in the middle panel because V(B) is below V(B;"), hence B, violates the
guiding constraints of FALPSBG. By virtue of complementary slackness, the dual variables y* in

(2.12) take positive values at the subset of orange states where the guiding constraints (2.10)

are binding. That is, the updated state-relevance distribution v’ assigns higher values at these

44

states such that the new VFA V(B}’) (i) provides a better approximation of V* at the orange
states, and (ii) is above the previous VFA V(B;") = V(B;') at all states. This can be seen in
the right panel of Figure 1.

2.4.3 Theoretical Guarantees

Studying the quality of the VFAs generated by Algorithm 2 is challenging because consec-
utive VFAs in this sequence are linked by the guiding constraints (2.10). We propose a new
approach to establish an error bound for self-guided FALP VFAs. Specifically, we use the FALPISVG
VFA composed of N > 1 random basis functions as a baseline and analyze the rate at which
the (1,v)-norm distance between the FALPi(jH VFA V(BiﬁH) and V* decreases as H new random
basis functions are added. We proceed in two steps.

Step 1: Effect of FALPiG VFA. Consider the set of functions spanned by an intercept plus

a linear combination of N random basis functions in set {@(-;0'), @(0%),..., @(-;0MN)}:

N
Wy = {V €ER ‘3 (BoyB1y---, Bn) € RN st V() = f30+Z Bi@(';ei)}-

i=1

A strategy to account for the impact of V(BY') on the number of additional basis functions H is
to ask if V* is a part of the functional space Wy containing V(B). If V¥ € Wy, then it would
not be possible to improve the incumbent VFA V(BY) via additional sampling. If V* & Wy,
then V* intuitively has a (projected) component in the functional space Wy, as well as a nonzero
(projected) component in the orthogonal complement of this space. We approximate this or-

thogonal component using the H additional random basis functions.

45

Formally, we decompose V* as V* = V(BY°) +V([3f{fl), where functions V(BY°) and V(BEL)
are the projections of V* onto Wy and its orthogonal complement, respectively (to be precise,
these projections are performed onto the closures of these sets). We design an idealized VFA
V(ﬁMH) € W with associated vector /SMH e RNTHHT that retains the approximation quality
of V(BX’®) and uses the H additional random basis functions to approximate V(BEJ‘). As H
increases, this VFA V(GNAH) becomes increasingly close to V* with high probability (specifically,

probability 1 — &) as shown by the error bound HV(/[.’;WI) — V*Hl,v < E(n,H), where

By /p [(1
B = Hl\;\/ﬁz’p (Q +24/2In <6> :

This bound is unattainable since constructing V(/BMH) involves a direct regression on V([?)I(I’L),

the knowledge of which is unavailable (see Theorem 7 for details). It is thus similar to the
unattainable bound (2.4) that regresses on V* but with an important difference. The term
E(n,g) contains the norm HB;I’J‘/pHZ’p in lieu of HB*/QHZ,p in (2.4). It is easy to verify that
HB;}J‘/szyp < HB*/sz’p if the projection of V* onto Wy is nonzero. The difference between
these norms signals the quality of the most recently computed VFA V(BY). This suggests that
the number of additional samples H needed to obtain a good approximation of V* decreases
with HBEL/szyp, that is, when V(By) is itself closer to V*.

Step 2: Cost of Feasibility. We now turn to update the unattainable error bound

SG
N+H

from Step 1 to one that relates to the FALP_~ = VFA. The key challenge in doing so is that

the idealized VFA V(GMH) may not belong to the set of feasible solutions F,; defined by

46

constraints (2.9) and (2.10) of FALP)", — we can show that {3, violates these constraints by
at most (1 +v)E,m). Indeed, the projection of B.n onto Fyu, denoted by proij(/BMH), has

zero violation. It also satisfies [|[V* — V(B[, < [[V* — V(projMH(f:iMH))||1 , for any optimal

SG
N+H®

solution B, to FALP We thus need to upper bound ||V* — V(proij(/[.’;MH))H] » Which we

do via the following triangle inequality:

||V* - v(prOjN+H(/BN+H))H]’V < ”V* - V(/BMH)H],V + Hv(/BI\+H) - v(prOjN+II(/BN+H))‘|]’V‘

The first term is bounded above by E(n g) from Step 1. For the second term, we show that
the inequality ||V(/[§N+H) — V(PTOjMH(GNm))H]N < ||/B\N+H — pTOij(/an)H] holds because random
basis function evaluations are no more than 1 (Assumption 8). The 1-norm difference ||y, —
projy.;(Bx.) |1 can itself be upper bounded directly from the error bound condition (EBC) used
in the optimization literature (Lewis and Pang 1998, Drusvyatskiy and Lewis 2018, Van Ngai
et al. 2010, Lin et al. 2022), which is stated as Assumption 4. Define function w : RNHHHT
[0,00) at p € RNFTHFT a5 follows:

w(B) = max {0, max {V(s;',) ~ VI(siB)}, max (V(s;B) ~ vEIV(s';B)ls,a] —cls,a))}.

Given VFA V(BiciB), the value of w(p) measures the maximum violation in FALPiﬁH constraints

SG
N+H

by a vector 3, where w(p) = 0 if B is feasible to FALP, , and w(f3) > 0 otherwise.

47

Assumption 4 (EBC) Fiz N > 1 and H > 1. There exists a constant G > 0 and an exponent

m > 1 such that for every vector p € RNTHT it holds that w(B) > é”proij(B) — Bl

EBC ensures that w(f) is lower bounded by a degree m polynomial of the 1-norm distance
between the vectors proj,,() and {3, which is mild. For instance, it is known that m equals

SG
N-+H

1 for finite linear programs, which applies to FALP, = with constraint sampling. For a general
semi-infinite linear system, both cases of m = 1T and m > 1 can occur, with Van Ngai et al.
(2010) providing technical conditions under which m =1 holds.

The consequence of steps 1 and 2 described above is the high probability (1,v)-norm error
bound for the self-guided FALP VFA stated in Theorem 2. Indeed the difference between E(n)
and the error bound in this theorem can be interpreted as (i) the cost of feasibility to overcome

the lack of knowledge of V* by satisfying (2.9) and (ii) an additional cost of feasibility to ensure

improvement in the worst-case greedy policy performance by satisfying the guiding constraints

(2.10).

SG
N+H

Theorem 2 Suppose Assumption 4 holds and p(0) > p for all® € © and let By be any FALP

optimal solution. Given & € (0,1] and N > 1, for any H > 1, it holds that

v =Vl < B [T+ 6 (0 ¥)Exm) T,

with a probability of at least 1 — 3.

This bound consists of two terms: the first term is the idealized rate from Step 1, and the

second term is the worsening of this rate as a result of ensuring feasibility. The convergence

48

rates with respect to N of the first and second terms are 1/v/N and 1/ *¥/N, respectively. If
ensuring feasibility is difficult for an instance (i.e., m > 1), then the dominant rate is 1/ *UN.
However, if ensuring feasibility is easy (i.e., m = 1), then the FALP,., VFA error rate is 1/v/'N,
which is similar to the error rate associated with FALP in Theorem 1. It is also worth noting
that m equals 1 and G equals 1/(1 —) for FALPy,y, which is easy to verify based on the proof
of Theorem 1 and prior results in ALP. The rate in Theorem 2 essentially reduces to the rate of
Theorem 1 under these choices for m and G. Our convergence rate can thus be seen as a way of

generalizing the feasibility analysis in the ALP literature when additional constraints are added

to its formulation.

2.4.4 Implementation Guidelines

We discuss the implementation guidelines for Algorithm 2, focusing on parameter choices
and solution issues that were not already discussed in §2.3.2. Specifically, we need to choose
the batch size B and the number of iterations Q. These choices become easier if we fix a target
number of basis functions N = (Q — 1)B following the logic discussed for FALP in §2.3.2. Then,
smaller values of B entail solving linear programs with fewer decision variables and doing so
more often. In other words, the per iteration cost is lower with smaller B, but more iterations
are needed and the improvement between iterations will likely be smaller. Therefore, the value
of B can be selected to balance improvement in the self-guided FALP objective function value
and the per-iteration cost. Solving self-guided FALP requires handling both constraints (2.9)

and (2.10). We suggest replacing these constraints with a sampled subset, as done for FALP in

49

§2.3.2. Under such replacement, analogues of Proposition 5 and the discussion following it hold
over the sampled states (please see §2.11 for details).

Although we consider an iteration limit as the stopping criterion in Algorithm 1, several
alternatives are possible. For instance, the iteration limit can be replaced by a time limit, or
both types of limits can be imposed together. Another strategy is to look at the improvement
of consecutive policies and stop when these improvements are smaller than a certain threshold.
If a lower bound on the optimal policy cost is available, these improvements can be converted

to optimality gaps, and a termination gap can be set.

2.5 Extensions

Although we have assumed continuous state spaces and value functions thus far, the random
basis function sampling approach underpinning our models can be readily extended to handle
discounted-cost MDPs with finite state spaces. A special structure that arises in important
applications is a state space with a low dimensional discrete component and a high dimensional
continuous component (e.g., financial and real options pricing). In this case, it is common to
define a separate continuous VFA for each discrete state value, and our results directly apply.
Next, we handle the more general case when such a strategy may not be computationally feasible.

Consider the analogue of the MDP in §2.2.1 with a discrete state space S :=={s™ € R :m €
M}, where M is a finite index set and each state s™ is a bounded real-valued vector. We denote
by V* the MDP value function. Proposition 6 provides a bound on the oco-norm error between
the FALPy VFA and V*, which decreases at a rate of 1/4/N as more random basis functions are

sampled. Such a bound is possible because we can construct a continuous extension of V*, as

50

discussed next. Let S€ be the smallest continuous and compact set containing S. It is easy to
verify that the following continuous function defined for each s € S€ coincides with V* at all

the discrete states:

VO(s):= Y V*(s™) max {0,1 _ ”3_51“”2})

memM s
where s = min{Hsm—smle DS s e Sy s™ £ sml} is a positive constant. We assume
VC € R, in which case, we have VC(.) = [58 + [oB°(0)@(-;08)d6 for some B = (BS,BC) (the
results extend to the case when V€ & R, as explained in §2.2 and in §2.10.1). Compared with
Theorem 1 in the continuous state space case, the weighting function B* is replaced by B®, and
the constant Q is instead QF == 5(DY + 1)L/E,[[|0]|3], where DY = max,cgc [|s||,. Here,

we will continue to use the notation related to FALPyx from §2.3.1 and define ||[V* — V(B;\)Hl,v

to denote the (1,v)-norm distance over the discrete state space, which is HV* — V(B;\?) Iy =

> mem VISMIVE(s™) — V(s™; By).

Proposition 6 Suppose Assumption 2 with V* replaced by VC and Assumption 3 hold, and in
addition, p(0) > p > 0 for all © € ©. Given & € (0,1], we have that any finite FALPy optimal

. FA .
solution By satisfies

2|B/ollp (¢]
ngm Q-+ 21n<5) ,

[V = V(py)

with a probability of at least 1 — 8.

o1

When the action space is finite for all states, we can drop Assumption 3 and establish the
existence of a finite optimal solution, although as discussed in §2.3.1, this assumption is already
mild. We highlight that the construction of FALPy does not change based on the structure of the
state space since the sampling distribution p(-) does not depend on this structure. Therefore,
the same procedures for generating basis functions apply in the discrete state space case. Using
the arguments here, we can also handle state spaces with a mixture of discrete and continuous
elements.

Our results also extend to handle MDPs with a finite horizon T < oo by considering time to
be in the state; that is, we can define the state as (t,s). Because the options pricing application
in §2.7 gives rise to a finite-horizon MDP, we formulate FALPy next in the more familiar notation
of such MDPs. Let the index set of stages in the horizon be 7 :={0,1,...,T}. The MDP value
function at stage t € 7 \ {T} is V{, and we assume without a loss of generality that Vi = 0. At
stage t € T, the state space is S, and the action space at this stage and state s € St is A¢(s).
Then, the finite horizon analogue of FALPy computes VFAs that approximate V{ at each stage

by sampling {8',0%,...,0N}):

N
Vi m V(B =PBro+) Brio(:6Y),

i=1

where B¢ := (B0, Bt,1,- .-, Bt,N) are the stage t VFA weights. Because the sampling distribution
p(-) does not depend on the stages or state space, the set of random basis functions can be the

same across stages, which also provides the flexibility to use the same basis function weights

52

across stages if needed. Assuming that the state-relevance distribution v is defined over the
stage O state space Sy (it could easily be defined over the state spaces at all stages), FALPy in

the finite horizon setting is

N
max Boo + Z Bo,iEv[@(s;0")]
i=1
N
st (Bro—YBer1o) + D (Bt,icp(S;Gi) — B, iEe[@(s;0Y) | s,a]) < cls, a),
i=1

Y(t,s,a) € T\{T} x S x Ai(s),

where c¢(s, a) and E; are the stage t cost function and expectation under the state transition
function from stage t to t+1, respectively. We omit the terminal condition for brevity. Theoret-
ical guarantees that are analogous to the infinite horizon case for FALP and self-guided FALP

can be derived in the finite horizon setting as well.

2.6 Perishable Inventory Control

We perform a numerical study on the perishable inventory control problem considered in
Lin et al. (2020, henceforth abbreviated LNS). We discuss the infinite-horizon discounted-cost
MDP formulation of the problem and instances in §2.6.1, the experimental setup in §2.6.2, and

numerical findings in §2.6.3.

2.6.1 MDP Formulation and Instances

Managing the inventory of a perishable commodity is a fundamental and challenging problem
in Operations Management (Karaesmen et al. 2011, Chen et al. 2014, Sun et al. 2014, and LNS).

We study a variant of this problem with partial backlogging and lead time from §7.3 in LNS.

53

Consider a perishable commodity with L > 0 and] > 0 periods of lifetime and ordering
lead time, respectively. Ordering decisions are made over an infinite planning horizon. At each
decision epoch, the state vector is s = (Sg,S1y...y S 1, W, Usy..., Uy) Of size L+] — 1. The
state element w; for i=1,2,...,] — 1 is the previously ordered quantity that will be received 1
periods from now. If s > 0, s; fori =0,1,...,1—1 is the amount of available commodity with 1
periods of life remaining. If sy < 0, the values of these state elements are notional quantities to
compute the total on-hand inventory, which is s, + Z};} s;. Inventories s; and u; take values in
the interval [0,a] foralli=1,...,1—Tand j=1,2,...,]—1, respectively, where a > 0 denotes
the maximum ordering level. If s, € [— ZE;} Si, @], then the on-hand inventory is non-negative.
Instead, if sy < — Z:} s;, then the on-hand inventory s, + Z};} s; is negative and represents
the amount of backlogged orders.

The demand for the commodity is governed by a random variable. In each period, we as-
sume that the demand is realized before the arrival of order and is satisfied in a first-in-first-out

manner. Given a demand realization D, taking an ordering decision (i.e., action) a from a state

s results in the system transitioning to a new state

where (-); = max{-,0} and s < 0 is a maximum limit on the amount of backlogged orders,
beyond which we treat unsatisfied orders as lost sales. The updating logic in the first element
of s’ ensures that the backlogging limit is enforced. This can be understood as follows: If there

was no backlogging limit, then the on-hand inventory after demand realization and before order

54

arrival would be s; — (D —sy)y + Z};; si; instead, in the presence of the maximum backlog limit
s, this total on-hand inventory of s; — (D — sy)4 + Z};; s; is greater than or equal to s if and
only if sy —(D—sp)s >s— Z};} si. The remaining elements of s’ are shifted elements of s, with
the last element accounting for the latest order a.

The immediate cost associated with a transition from a state-action pair (s, a) is
c(s,a) =vlc,a+Ep

i=1 +

1-1 1-1 1-1
ch[zsi(Dsm +cd(soD)++cb[Dzsﬂ m[wnzsi}]
i=0 + i=0 +

where expectation Ep is given with respect to the demand distribution. The per-unit ordering
cost ¢, > 0 is discounted by y/ because we assume payments for orders are made only upon
receipt. The holding cost c¢p > 0 penalizes leftover inventory (Z};} si — (D — so)+) b while
the per-unit disposal and backlogging costs c¢q4 > 0 and cp > 0 factor in, respectively, the costs
associated with disposing (s, — D)+ units and backlogging (D — Zl;(]) si)Jr units. Finally, each
unit of lost sales (§+ D— Z};(]) s-l)Jr is charged ¢; > 0.

We consider 24 perishable inventory control instances — twelve from LNS with 1 =] = 2
(three-dimensional state space) and twelve new higher-dimensional instances. Six of the new
instances have | = 2 and | = 4 (five-dimensional state space), and the remaining six instances
have 1 =5 and] = 6 (ten-dimensional state space). Similar to LNS, across all instances, we fix
the demand distribution to a truncated normal distribution with a mean of 5 and support in the
range [0,10]. We require the maximum limit on the amount of backlogged orders to equal the

maximum ordering level, that is, s = —a. We vary the cost function parameters, the discount

55

factor v, the maximum ordering level a, and the demand standard deviation o. Their specific

values are shown in tables II-TV.

2.6.2 Computational Setup

We formulate FALPy using the guidelines in §2.3.2. We considered both ReLU and Fourier
bases and found the latter to perform better as described in §2.13.3. We thus focus on dis-
cussing results for Fourier bases. The bandwidth parameter c, is tuned over the candidate set
(10°,10%,...,107°}). For v, we consider both the initial MDP state of s; = (5,5,...,5) € R4
(i.e., a degenerate initial distribution x) and a uniform distribution over the hyper-cube & =
s, a] x [0, a4 ". The latter choice leads to substantially better policies, so we report the results
only for this choice. We use constraint sampling to solve FALPy and choose K = 200, 000 state-
action pairs sampled from a uniform distribution over the hyper-cube S x As = [s, al x [0, al9.
The number of basis functions N was set to 150, 300, and 600 for the three-, five-, and ten-
dimensional instances, respectively. We approximate expectations in FALPy using sample average
approximations constructed using 2,000 iid samples.

We formulate policy-guided FALP (Algorithm 1) and self-guided FALP (Algorithm 2) using
the guidelines in §2.3.2 and §2.4.4, respectively. We denote these methods by FALPE?Q and FALPif}Q,
respectively, to make the number of iterations Q and the number of basis functions N explicit.

In both these models, we choose N and the sampled parameters of the basis functions to be

the same as FALPy. We also set Q equal to 7 so that the number of state-relevance distribution

PG

updates in both models is Q — 1 = 6. At iteration q of FALP,

we solve model FALPy|VY|

using constraint sampling strategies that create a set of state-action pairs: (i) uniformly as in

56

FALPy, (ii) using the greedy policy 7[9([3‘4_1) at iteration q — 1, and (iii) by taking the union
of the samples from (i) and (ii). We present the results for the best-performing strategy for

each instance. For FALPX®

xq» We enforce ALP constraints (2.9) at the state-action samples used

in FALPy and the guiding constraints (2.10) at the states in these state-action samples. We
also consider the ALP model in LNS as a benchmark, denoted by ALP™, with a fixed set of
(7d—2) application-specific basis functions that include hinges (i.e., ()4) to mirror the MDP cost
function structure shown in §2.6. We sample the constraints of this model uniformly as in FALPy.

We use the Gurobi commercial solver to solve linear programs. We simulate the cost of a
greedy policy using 500 sample paths. Similar to LNS, we replace the action space [0, a] by a
equally spaced points and find the best action using enumeration. We estimate a lower bound
on the optimal cost via a heuristic based on the constraint violation learning approach discussed
in §2.12.1. In addition, for each instance and method, we repeat solving linear programs and

the simulations of bounds ten times and report averages.

2.6.3 Results

Table II contains results for FALP,5, and ALP"™ on three-dimensional instances. Columns 1-5
report the parameters of problem instances. Columns 6-7 and 8-9 display the optimality gaps
and lower bound gaps, respectively, computed with respect to the best lower bound among these
two methods. Both the FALP5, and ALP™™" policies are near-optimal with only small differences
in their respective optimality gaps. The FALP;5q lower-bound dominates the one from ALP™™,
which has a lower bound gap between 2.2% and 10.5%. The FALP,5, results show that random

basis functions, which are not designed based on application structure, deliver near-optimal

o7

Table II: Comparison of ALP"™” and FALP on the three-dimensional perishable inventory control
instances (o0 =2 and ¢; = 100).

_ % (UB - best LB)/(best LB) % (Best LB - LB)/(best LB)

Y Ch Ca Cp a
ALPLNS FALP 5 ALPLNS FALP,5,
2 5 10 10 0.2 0.1 3.4 0.0
2 5 10 50 6.3 5.9 2.2 0.0
0.95 5 10 8 10 0.3 0.2 4.0 0.0
9 5 10 8 50 0.1 0.2 10.5 0.0
2 10 10 10 0.3 0.2 3.5 0.0
2 10 10 30 0.8 1.7 3.1 0.0
2 5 10 10 0.6 0.2 2.9 0.0
2 5 10 50 6.2 5.6 2.7 0.0
0.99 5 10 8 10 0.3 0.3 4.1 0.0
) 5 10 8 50 1.1 1.5 10.3 0.0
2 10 10 10 0.6 0.3 3.1 0.0
2 10 10 30 1.1 1.5 2.9 0.0
Average 1.5 1.5 44 0.0

policies and lower bounds. In addition, methods that dynamically update the state-relevance
distribution (i.e., policy-guided FALP and self-guided FALP) are not needed for these instances.

Table IIT displays results for ALP“, FALPs, FALngOJ, and FALP?;SO)? on five-dimensional
instances. The policy performance of ALP™ varies greatly across instances, with a maximum
optimality gap of 139.4%. FALP3y,’s policy performance exhibits less variation to instance prim-
itives but still has a sizeable maximum optimality gap of 21.0%. Unlike the three-dimensional
instances, ALP™> and FALP,y, policies based on a static state relevance distribution are quite
suboptimal on the five-dimensional instances. Among the two methods that update the state
relevance distribution, FALP;S’W is highly sensitive to the three constraint sampling strategies
described in §2.6.2. In particular, the best sampling strategy changes by instance (see §2.13.2 for

more details). The policy-guided FALP performance can deteriorate substantially if the best-

58

LNS

Table IIT: Comparison of ALP", FALP, policy-guided FALP, and self-guided FALP on the five-
dimensional perishable inventory control instances (y = 0.95 and ¢; = 1000).

% (UB - best LB)/(best LB) % (Best LB - LB)/(best LB)

Ch Cq4 Cph O
ALPINS FALP309 FALP5o) - FALPS) - ALP'NS FALP300 FALP5q); FALPS) -
1 8 2 5 139.4 19.6 12.9 13.9 15.0 0.0 0.1 0.4
1 8 2 2 18.0 21.0 11.7 11.5 6.2 0.0 0.2 0.2
1 2 8 5 13.6 15.6 10.6 7.9 7.8 0.0 1.9 0.8
1 2 8 2 6.8 12.1 4.3 4.3 6.2 0.0 0.9 0.7
2 8 5 5 59.4 15.9 7.1 8.4 12.1 0.2 0.0 0.5
2 8 5 2 8.2 16.1 7.0 7.7 7.6 0.0 0.1 0.5
Average 40.9 16.7 8.9 9.0 9.1 0.0 0.5 0.5

performing strategy is not used, with optimality gaps and lower bound gaps reaching 82.3% and
17.1%, respectively. Moreover, constraint sampling strategy (ii) in §2.6.2 leads to unbounded lin-
ear programs, rendering Algorithm 1 unable to be fully executed when employing this strategy.
The FALP?:S(L7 instead exhibits stable performance and competitive optimality gaps to FALP;SOJ.
These findings underscore the value of the self-guiding mechanism underpinning self-guided
FALP in computing near-optimal policies. In contrast, all the methods, except ALP"™ with pre-
selected application-specific basis functions, deliver excellent lower bounds, which is consistent
with the discussions in §2.4 that FALPs providing good lower bounds may not provide good
policies due to a poor state relevance distribution choice.

Table IV reports results for ALPLNS, FALPgqy, FALP g9, and FALPZ?)O’7 on ten-dimensional in-
stances. The methods with the worst policies are ALPLNS, followed by FALP;, and then FALPgqg.

The poor performance of the ALP™™ policies with fixed basis functions is consistent with results

59

LNS

Table IV: Comparison of ALP", FALP, and self-guided FALP on the ten-dimensional perishable
inventory control instances (y = 0.95 and c¢; = 1000).

% (UB - best LB)/(best LB) % (Best LB - LB)/(best LB)

Ch Cqg Cp O
ALPLNS FALPgoo FALP1ggo FALP) - ALPLNS FALPggo FALP1ggo FALPG(-
1 8 2 5 45.6 13.0 33.0 7.4 26.7 0.9 1.3 0.0
1 8 2 2 43.6 6.1 14.6 4.8 19.2 2.2 1.4 0.0
1 2 8 5 110.0 11.4 31.9 7.1 24.1 15 1.1 0.0
1 2 8 2 48.3 7.0 10.6 5.1 17.9 15 1.4 0.0
2 8 5 5 43.4 14.5 38.4 8.1 31.3 15 1.1 0.0
2 8 5 2 8.9 9.1 13.9 6.5 25.1 2.6 2.1 0.0
Average 50.0 10.2 23.7 6.5 24.1 1.7 1.4 0.0

on the five-dimensional instances. A new observation emerges in the ten-dimensional instances
when comparing FALPgy and FALPgo: ALPs with random basis functions, despite increasing
the number of basis functions, can lead to poor policies. This behavior is reasonable because
near-optimal policies cover smaller portions of the state space in higher dimensions and this
makes it more important to align ALP VFA error minimization and policy performance via
the update of the state relevance distribution. Self-guided FALP helps achieve this alignment,
as witnessed by its low optimality gaps, while policy-guided FALP exhibits more erratic be-
havior than on the five-dimensional instances. Specifically, we encountered unbounded linear
programs for constraint sampling strategy strategy (ii), which led to unboundedness on the five-
dimensional instances, as well as other strategies. We were thus unable to obtain meaningful
results for FALngO’7 on ten-dimensional instances. This finding is consistent with the behavior

reported by Farias and Van Roy (2006) on a Tetris application: improved policy performance in

60

Figure 2: FALPZ(C]’OJ upper and lower bounds on two representative ten-dimensional perishable
inventory control instances with (cp, cq,Cp, 0) equal to (1,8,2,5) and (1,8,2,2) in the left and
right panels, respectively.

0;
wn D677 A 1837% B Upper bound 55325 1921% B Upper bound
_i:') B Lower bound B Lower bound
< oo , - o
= i 372% Mean optimality gap % 4 Mean optimality gap %
< 24252 218% 21294 - 364%
3
2 11245 4
= 8458 1 < 8628
z
2
—d 219
% 3134 A 8% 2892 |
o 0
o 19384 -+ 4
10% 1797

g 1431 1 . 1z 1383
- I/_.———i

874 I 822 -

T T T T T T
0 1 2 3 4 5
Iteration ¢ Iteration ¢

the first few iterations followed by an unexplainable drop-off. With regards to the lower bound
gaps reported in Table IV, FALPESO’7 delivers the best lower bounds, suggesting that the self-
guiding mechanism can help tighten lower bounds when used in conjunction with our heuristic
based on constraint violation learning on the ten-dimensional instances.

To understand the self-guiding mechanism in FALPZ%OJ, we display in Figure 2 the violin plot
of upper and lower bound distributions computed from FALP?BO’? over ten trials on two repre-
sentative ten-dimensional instances, as iteration q increases in Algorithm 2. We also show the
optimality gap percentages based on the average of the upper and lower bounds for each q. This
figure shows how the upper and lower bounds converge as FALPZEW iterates. The lower bounds
are increasing as the algorithm iterates and they exhibit a relatively small variation across trials.

The upper bounds exhibit a decrease in their mean but have high initial variability (q equals 1

61

to 3) with a subsequent rapid decrease in variation (q equals 4 onwards). The converged policies
are near optimal.

As expected, the average run times increase as we employ more basis functions and move
to higher dimensional instances. Here, run time refers to the total time in minutes required to
solve linear programs, simulate policies, and estimate lower bounds. On the three-dimensional
instances, the average run times (over instances and trials) of ALP"™ and FALPs, were 1 and
7 minutes, respectively. For instances with a five-dimensional state space, ALP™, FALP3,
FALP;SOJ, and FALP;SO)7 take on average 3, 15, 118, and 42 minutes, respectively. The average
run times of ALP""", FALPgy, FALP 1900, and FALPq ; were 5, 33, 106, and 74 minutes, respectively,
on the ten-dimensional instances. Thus, the computational times of self-guided FALP to obtain

the policy improvements discussed earlier are encouraging.

2.7 Bermudan Options Pricing

We consider the pricing of a Bermudan call option that provides the holder the option (right
but not the obligation) to sell the underlying once over a pre-specified set of future dates. The
option-exercise payoff is based on the maximum of the prices of multiple assets, where each price
evolves stochastically over time. Specifically, the payoff occurs if the holder exercises the options
and the maximum price does not exceed a threshold known as the barrier price or knock-out
price; otherwise, the option is worthless. This version is referred to as a knock-out Bermudan
option and arises in practice because the knock-out feature limits the risk exposure of the seller
and also makes the price of the option lower than its counterpart without this feature. Our

numerical study of this problem is based on Desai et al. (2012b, henceforth abbreviated DFM).

62

In §2.7.1, we present the finite-horizon discounted MDP formulation. In §2.7.2, we describe our

computational setup. In §2.7.3, we discuss results and findings.

2.7.1 MDP Formulation

We model the Bermudan call option in DFM which depends on the prices of | assets and
formulate it as a finite-horizon MDP based on the notation in §2.5, except for using a reward
function 1¢(st, at) instead of a cost function c¢(st, a;). The option has T exercise opportunities
over Y years; that is, exercise is possible at times {T, 27, ..., Tt}, where T := Y/T. The asset prices
at staget € T ={0,1,..., T} are pt == (Pt,1, Pt,2, - - - » Pt,])» Where pyj is the price of the j-th asset
at this time. Prices evolve according to a multi-asset geometric Brownian motion. The option
is knocked out and becomes worthless any time the maximum of the] asset prices exceeds a
pre-specified barrier price p®. We use the binary variable y; € {0, 1} to indicate if the option is
knocked out at time t. It takes the value of one in this case and is zero otherwise. The transition
equations governing yi are yo = d{max;jpo;j > p"} and y¢ = max {ytq , d{max; pyj > pB}} for
t > 0, where 8{a} equals one if a is true and zero otherwise. At time t, the MDP state is given by
the vector s¢ = (pg1,Pt2y---,Pt],Yt) that belongs to the state space S = [0, B x {0,1}. The
MDP action at is binary, with values of one and zero corresponding to “stop” and “continue,”
respectively. Stopping at stage t yields the reward r¢(s¢,0) = y'g(st), where the discount factor
v = exp(—rT), r is the risk-free interest rate, and the payoff function g(-) : RI*!" — R with
respect to a pre-specified strike price pS is g(s¢) == max { max;j{pt,j —p5, 0}(1 —VYt). A continue
decision at state sy has zero reward, that is, r¢(s¢, 1) = 0. The objective is to find an exercise

policy that maximizes the discounted expected reward.

63

Our experiments use nine instances from DFM, for which Y, T, p5, pB, and r are 3, 54,
100, 170, and 5%, respectively. The geometric Brownian motion driving the prices has zero
correlation and volatilities equal to 20%. All assets share the same initial price p! > 0, that is,
Po,1 =Po2 =-"-=Po] = pl. This price takes values from 90,100, and 110, and the number of
assets | takes on the values 4, 8, and 16. Although the asset prices can take values greater than
the barrier price p?, they need not be included in the state space because the option becomes
worthless at all such prices. Thus, the range of each price relevant to the MDP belongs to the
interval [O,pB].

2.7.2 Computational Setup and Benchmarks

We formulate the finite-horizon version of FALPy given in §2.5 using N = 500 random Fourier
basis functions, with its bandwidth parameter c, tuned over the candidate set {1 0°,104,...,107°}.
(The focus on random Fourier basis functions is based on this choice outperforming random
ReLU basis functions in experiments discussed in §2.13.3.) The strategy of using a policy to
obtain a state-relevance distribution in §2.3.2 is simplified because the exercise decisions do not
affect prices. Therefore, the price-portion of the state evolves according to the geometric Brown-
ian motion model, regardless of the policy used. Motivated by this property, we use a lognormal
state-relevance distribution of prices. We find that FALPsy, performs much better with this
choice than a uniform distribution. We do not consider policy-guided FALP given its unstable
behavior. For self-guided FALP, we set Q = 6. We sample the constraints of both FALP5y, and
FALP;EO,ES by generating 3,000 trajectories of prices from the geometric Brownian motion model.

We approximate the expected values by sampling 500 transitions from this model.

64

We consider two application-specific benchmarks. The first is least squares Monte Carlo
(LSM), which is popular for financial and real option valuation (Carriere 1996, Longstaff and
Schwartz 2001, Glasserman and Yu 2004, and see Nadarajah and Secomandi 2022 for a recent
review) and provides very good policies on the instances we consider. This method approximates

the optimal continuation function Ci(st) = E[V{,;

(Pte1)Yta1lpt) with the boundary condition
Cr(st) = 0 using a backward recursive scheme that uses a regression. To construct the con-
tinuation function approximation, we use the same application-specific] 4+ 2 basis functions
considered in DFM, which are ¢1(st) = 1 —yt, ¢a(st) = g(si), and ¢j(s¢) = (1 —yi)py,; for
j=1,2,...,]. We use 100,000 sample paths to estimate the weights of these basis functions at
each time t. Our second benchmark is an ALP with the same] + 2 basis functions as LSM. We

DFM

denote this model by ALP™ ~. We construct the constraints of this model using the same price
trajectories and transitions used in the construction of FALP5q.

We simulate 20,000 price trajectories to evaluate the reward of each greedy policy, which
provides a lower bound on the optimal policy value (because we are maximizing reward). The
maximum standard error of these estimates is 0.4%. We embed the value/continuation func-
tion approximation from each method within the information relaxation and duality framework
(Brown et al. 2010) to estimate an upper bound on the optimal reward (see §2.12.2 for details).

2.7.3 Results

DFM

Table V reports the performance of LSM, ALP , FALP5q, and FALP?SO’6 on nine Bermudan
option pricing instances in DFM. This table follows the same structure as the tables in §2.6.3.

The performance of the FALPy policy is within 1% of the one from FALP;%O,@’ on six of the nine

65

Table V: Comparison of optimality gaps on the Bermudan options pricing application.

j o pimt % (Best UB - LB)/(best UB) % (UB - best UB)/(best UB)
LSM ALPPFM FALP5oo FALPR(4 LSM ALPP™ FALP50o FALPZ(¢
4 90 6.6 4.8 0.9 0.8 0.0 13.3 1.5 1.3
4 100 6.4 6.4 1.9 1.9 0.7 7.5 0.0 0.0
4 110 6.6 8.0 8.4 5.3 0.0 2.6 992.0 3.6
8 90 6.2 6.1 4.1 4.0 0.0 4.1 5.8 5.4
8 100 5.5 7.0 7.8 4.2 0.0 0.7 6.0 0.6
8 110 3.9 6.4 9.5 3.1 0.6 0.1 172.5 0.0
16 90 4.9 6.3 3.3 3.3 0.0 0.0 0.5 0.4
16 100 3.4 5.5 2.4 2.3 0.6 0.0 0.3 0.0
16 110 2.8 5.2 2.4 2.1 0.6 1054.4 0.2 4.0
Average 5.2 6.2 4.5 3.0 0.3 9.1 130.8 1.6

instances but 3.1%, 3.6%, and 6.4% worse on the remaining instances. Once again, we see

significant value in updating the state-relevance distribution using the logic in FALPZEO,& There

DFM

is no clear ordering between the policies of ALP and LSM — the average optimality gap of

DFM

the LSM method across all the instances is 1% smaller than ALP The FALP;SO’6 policy is

significantly better than the LSM policy, with improvements of less than 2% on six instances and
greater than 2% on the remaining three. The largest such improvement is 5.8%.
The upper-bound gaps show that LSM and FALP;SO’6 lead to the tightest upper bounds on

five and four instances, respectively. The upper bounds from ALP”™ and FALPs, vary from

DFM

being near-optimal to highly sub-optimal. ALP™ = and FALPsq, provide substantially weak upper

bounds on one and two instances, respectively, where they also deliver their worst policies rel-

DFM

ative to other methods. This observation suggests that the ALP and FALPsy, VFAs on these

66

instances are far from V* not only at states visited by good policies but more broadly at other
states as well.
The superior self-guided FALP policies come at a computational cost. The average runtime

DFM

of LSM, ALP"~ ', FALP5y, and FALPE(SQ6 across trials and instances are, respectively, 2.42, 5.1, 99.5,
and 117.9 minutes. There is thus an additional, albeit manageable, computational overhead to
obtain the improved FALPEE’Q6 policies.

A broader takeaway from these experiments is that an application-agnostic ALP model with
random basis functions and a guided state-relevance distribution can provide near-optimal poli-

cies and bounds for a challenging option pricing problem, also improving on application-specific

benchmarks.

2.8 Conclusions

We revisit the approximate linear programming approach for computing value function ap-
proximations (VFAs) of discounted-cost Markov decision processes (MDPs). We focus on the
key elements needed to formulate an approximate linear program (ALP). The first is the selec-
tion of the basis functions defining the ALP VFA, which we address by cheaply sampled random
basis functions. We call the resulting randomized one-shot approximation as feature-based ALP
(FALP). The second element is the choice of a state-relevance distribution in the ALP objective.
We propose a randomized multi-shot approximation scheme, which we dub self-guided FALP,
to guide the state-relevance distribution in FALP using its past VFA information. We develop
error bounds showing that self-guided FALP has desirable theoretical properties not shared by

existing ALP-based models. We test FALP and self-guided FALP on challenging perishable

67

inventory control and options pricing applications. Self-guided FALP outperforms FALP and
application-specific benchmarks. Our findings showcase the potential for our procedure to (i)
reduce the implementation burden of using ALP and (ii) provide an application-agnostic policy
and lower bound for MDPs that can be used to benchmark other methods.

Our research suggests several interesting directions for future work, of which we state two.
The first is to study the possibility and value of a guided sampling mechanism for ALP where
the new samples of random basis functions leverage information from past VFAs. Approaches
for the data-dependent sampling of random basis functions in machine learning (see, e.g., Sinha
and Duchi 2016, Shahrampour et al. 2018) can query the function being approximated, which
is the unknown MDP value function in our setting. It is unclear how to develop inexpensive
and approximate queries of the MDP value function that still provide useful information, which
would be needed to obtain an effective and efficient sampling approach. The second is to inves-
tigate the value of random basis functions and multi-shot approximations in other approximate
dynamic programming methods, also comparing against neural networks and deep learning that
attempt to mitigate tuning but lead to nonlinearly parametrized VFAs, which are typically

harder to train.

APPENDICES

68

69

In §2.9, we provide the proofs of all statements in Chapter 2. In §2.10, we discuss how
the assumptions used in §2.2.2 and §2.3.1 can be relaxed. In §2.11, we introduce a constraint
sampling bound for self-guided FALP. In §2.12, we discuss two methods for computing optimistic
bounds on the optimal policy cost. In §2.13, we provide additional numerical results that

supplement the numerical experiments discussed in Chapter 2.

2.9 Proofs

We define a constant I' := (1 +y)/(1 —v) which we will use in various proofs. We also use

the notation &{a} to show the indicator function that is 1 when a is true and 0 otherwise.

2.9.1 Additional Details of Assumption 1

Assumptions 1 and 2 will hold for all proofs in the electronic companions. In particular,
Assumption 1 ensures the existence of an optimal policy solving program (2.1). There are
known conditions in the literature that guarantee such existence. We provide an example of

these conditions in Assumption 5.

Assumption 5 It holds that (i) the MDP cost function is bounded over S x As and function
c(s,) : As — R is lower semicontinuous for all s € S. (ii) For every bounded and measurable
function V : § — R, the mapping (s,a) — fs V(s')P(ds'|s,a) is bounded and continuous over

S x As. (iii) There exists a finite-cost policy 1 such that PC(s,7) < oo for all s € S.

Assumption 5 is adopted from assumptions 4.2.1 and 4.2.2 in Hernandez-Lerma and Lasserre
1996, henceforth abbreviated as HL. Specifically, in Part (a) of Assumption 4.2.1 in HL, the cost

function c(s,-) is assumed to be lower semi-continuous, non-negative, and inf-compact (defined

70

in Condition 3.3.3 in HL)) whereas, in our setting, non-negativity is replaced by boundedness and
the inf-compactness is guaranteed by virtue of c(s, -) being lower semi-continuous and its domain
A being either a continuous compact real-valued set or a finite set (please see Assumption 1).
Part (b) of Assumption 4.2.1 and Assumption 4.2.2 in HL are equivalent to parts (ii) and (iii) of
Assumption 5, respectively. Note that the condition specified in part (iii) of Assumption 5 is the
definition of the strong continuity of the MDP stochastic kernel P (see Condition 3.3.3 in HL).
Under the aforementioned technical conditions, Part (b) of Theorem 4.2.3 in HL. guarantees the
existence of a deterministic and stationary policy that is “y-discount optimal". In other words,

7" € TT solves (2.1) in our setting.

2.9.2 Proofs of Statements in §2.2

Proof of Proposition 1.

Since V* € R, there exists (BS,B*) such that V*(s) = [3; + f® B*(0)@p(s;0)d 0O for all
s € §. We show that (BS,B*) is our desirable solution. This solution is feasible to FEP since
V* satisfies constraints (2.2). It is also optimal because V* satisfies the optimality equations
V*(s) = minge 4,{c(s, a)+YE[V'(s')[s, al} for every s € S which indicates that all the constraints
of (2.2) hold as equality. []

2.9.3 Proofs of Statements in §2.3

To prove Theorem 1, we require the following lemmas and propositions.

Lemma 1 Any continuous function V : S — R that is feasible to constraints (2.2) satisfies

V(s) < V*(s) foralls € S.

71

Proof. The proof follows from Part (b) of Lemma 4.2.7 in HL, which requires four assumptions
to hold. We now show that these assumptions are true in our setting. (i) Since V is continuous,
it is measurable; (ii) the Bellman operator TV(s) := minge4.{c(s,a) + YE[V(s')s, al} is well
defined for every continuous function V, i.e. the minimum over Ay is attained since As is either
a real-valued continuous compact set or a finite set from Assumption 1, c(-,-) is bounded, and
the expectation E[V(s')|s,a] = [¢V(s')P(ds'|s,a) is finite by Assumption 5; (iii) since V is
feasible to constraints (2.2), we have

V(s) < mi}‘l {c(s,a) +VEIV(s')ls,a]} = TV(s), Vs € S;

T acAs

(iv) finally, the continuity of V and the compactness of S imply maxses [V(s)| < oo and thus

n

ZV(S?)‘SOZS] < max|V(s)
=0 sesS

lim y"E (n+1)y" =0, Y(s,m) € S x T,

| lim
n—oo n—oo

where expectation E and the notation s7 retain their definitions from §2.2. These indicate
that the function V fulfills the four assumptions of Part (b) of Lemma 4.2.7 in HL and hence

V(s) < V*(s) for all s € S. |

Proposition 7 Suppose p(0) > p, for all © € © and Assumption 2 holds. Consider & € (0,1]
and a function V(s;B) = Bo + IQB(O)@(S;G)dG with ”B/sz,p < oo. Given N idid samples

(0t:i=1,2,...,N} from p, there exist finite coefficients pi,i=0,1,2,...,N, such that

72

N
V(B) — (BOJF; Bi(p(.;ei)) Hoo < % <Q+ 21n <;)> (2.13)

with a probability of at least T — 6.

Proof. The proof of this proposition follows similar steps to the proof of Theorem 3.2 in
Rahimi and Recht (2008). In particular, given a constant r > 0 and N iid samples ¥ =
(8',02,...,8N), we first define random variable Vy(s) := Bo + % Z{L Vio(s) where Viy(s) =

BIo(s;0%) and Bl := 1= [B(0)5 {0: (0 — 6%, <7} dO. Let
g(9) = ||V(B) — Va]| . -

We provide an upper bound on g(9) that is decreasing in N and holds with high probability.
To do so, we take the following steps:

Step (i): We first prove

4 | Eo [I013]
Elg(®)] <L(1+Dy)|[[B/pll,, |+ N~ (2.14)
Step (ii): We then use McDiarmid’s inequality to show the inequality
HB/p 2 2 1
<E ——=P = In | - 2.1
9(8) < Elg(d)]+ 22, /< n<6>, (2.15)

holds with a probability of at least 1 — 6.

73

The inequality (2.13) then follows from combining (2.14) and (2.15), using the definitions of
s . _ lar: o 2
9() and O, and setting Bo = Bo and Bi = % BL,i for r:= /By [I6]3] /(v N).

Proof of Step (i): The inequality (2.14) can be easily derived from the following two inequal-

ities:

E[|[V(B) —E, [Vo]]|] <Lr(1+Dy)[[B/pll,,. (2.16)

and

B (1% ~ By [Vlll.) < e 1B/0l,01 + D)y 101 (2,17

In particular, using these two inequalities we get

Elg®)] =E [[[V(B) — Val|,]
=E[||V(B) —E, [Vs] +Eo [Vs] — Vo]

<E[|V(B) ~E, [Vo] [l..] +E[[[Vo —Ep [Vo]].]

4L
< Lr(1+ Dy)|B/pll,, + p\/NHB/p 21+ D)y /By [HG\Iﬂ
4 | Ep [I013]

(2.18)

=L(1+Dy)[IB/pll,, T+§ N

We next prove (2.16) and (2.17).
To prove (2.16), we first note that E, [_/,9] = Bo+E, V1] holds because 84,1 =1,..., N, are
iid samples. In addition, since B : ©® — R is (2, p)-integrable function and thus measurable, it

can be written by its positive and negative parts as follows: B = B, —B_ where B := max(0, B)

74

and B_ := max(0,—B). It is also known that both positive and negative parts of a measurable

function are measurable. Hence, for every s € & we can write

Eo [Va(s)] = Bo + Ep [Vi(s)]

B [a1y [@(s;07) . 1 L
— Bﬁu@p(e) [o 0T] J@B(e)s{e 2|6 —0'2 Sr}de} do

~ Bo +: (B..(6) —B_(0)) U@ 0(5:0")5(0 : He - e‘HZ < r}de‘} a0

S}

< Bo+ " B, (0) U ((p(s;e) +L||(1,s)]2]0" —e||2) 50:]0—0']; < r}d@‘} de
JO (S
—j@ B_(6) U@ (e(s:0) = L1115, ||e" 0|) 8(6: 0 — 0> < r}dw] do

< 60+J®(B+(e)—B(e>)<p(s;e>de 4 L|(1>S)||2TJ® [B.(6) + B_(8)] 6

2
SV(823)+LrII(1>S)HzJ® <[;((§))) p(do)

< V(s;B) +Lr(1+Dy)||B/p|,,, (2.19)

where the second equality follows from the definition of V; 3(s) and Ey[V; 3(s)]; the third equality
from the Fubini’s theorem on the exchange of integrals and using B = B, — B_; the first
inequality from the Lipschitz continuity of ¢ (by Assumption 2), Cauchy-Schwartz inequality,
and the fact that both functions B, and B_ are non-negative; the second inequality from the
fact that the indicator function is less than one and 0 is considered in a ball of radius r; the
third inequality from the definition of V() and the Jensen’s inequality E[/-] < \/Im ; and the
last inequality form the definitions of Dg and HB/ pH 2,0~ Recalling that (2.19) holds for every

s € S, taking expectation from both sides and rearranging the terms, we obtain (2.16).

75

To prove (2.17), we consider a sequence of Rademacher random variables (€1, ..., eN), where
each €; is a uniform sample from {—1,1}. It is easy to see the function Bi¢(-) is (L/p) HB/szyp—
Lipschitz and B ¢@(0) = 0. This follows from the fact that the function ¢ is L-Lipschitz contin-

uous (by Assumption 2) and

Traly| 1 . LY
Sélip|Bi(e)I—s&p{p(ei) L)|B(6)|6{6.H9 0 zgr}de}
1 B(6)\?
<o Ly Gy) ot
1
= EHB/pllz,p, (2.20)

where the first equality holds by the definition of 37; the first inequality by our assumption that
p(-) is bounded below by p, and the fact that the indicator function is less than one.
Using Theorem 12(4) of Bartlett and Mendelson (2002), Cauchy-Schwartz inequality, and

Jensen’s inequality, we get

By (1% ~ By [Volll..] = B sup Vo — E, [V

D eiBlo(s;0Y)

i=1

2
N e

IN

sup]
S
N
Y ellys)'el
N
Z €1‘L9i
i=1

i=1
4L /
pimHB/pH;p“ + Ds)y/Ep [He\\ﬂ

IN

|

4L
piN HB/pHZ)pEp,E

sup
S

IN

4L
p—NHB/sz,pm +Dy)E, .

2

IN

76

Note that the above inequalities follow similar steps as in inequalities (21) - (24) in Rahimi and
Recht (2008).

Proof of Step (ii): Observe that g is stable under any perturbation of its arguments. In

particular, for an arbitrary € € {1,2,...,N}, let § := (0',0%,...,0%,...,0N) be the same as 9,

except its {-th component. That is, 0F = 0%, for all i # { and o # 0'. We then have

19(®) —g®)| =1 ||V(B O—NZVw) Ves() -
1AL oo
1o 1
VIB) = Bo— 5y 2_ Vasls) — Vasls)
) ~

1

< *HVe,s(S) - Ve,@(S)HOO
= & [Biovetsi09 — pi@e(s0Y)]|

2
<= N Sup|f5e(9l
< @\\B/p}lz,p, (2.21)

where the first equality follows from the definition of g(-); the first inequality from the triangle
inequality; the second equality from the definition of Vi 3(s); the second inequality from ||@|/cc <
1 (by Assumption 2); and the last inequality from (2.20).

Given ¢ > 0 and (2.21), McDiarmid’s concentration inequality guarantees that

_NBZ£2

Prig®) —E[g®)] >¢] < exp| ————
2|[B/ol5,

7

where Pr(-) denotes the probability over the samples & = (8',...,0N). This inequality indicates
that
1 2 1
9(0) <Elg (0] + [[B/pll5p/51n (5)
with a probability of at least T — 9. |

Definition 2 Let r:=+/2In(1/8)/(L(14+ D)VN). Given an optimal solution B* = (B;,B*) to

FEP, for N idid samples {Si,i =12,.. .,N} from p, we define p® € RN as follows:

Bo for 1=0;

1

WJQB*(G)é{G:\|6—ei||2§r}de for 1=1,2,...,N,

and V(B®) = B + Y I, Blo(0%).

Lemma 2 Suppose p(0) > p, for all © € © and Assumption 2 holds. Given ¢ > 0 and & €
(0,11, let (BS,B*) denote an optimal solution to FEP with value function V* and B® be the

corresponding vector defined in Definition 2. Define

2

2
HB*/p 2 1
N, = sz <Q+ 2In (5)) : (2.22)

(i) If N > N, with a probability of at least 1 — 5, it holds that |[V* — V(B)|| . < e .

o0

78

(i) If N > N, with a probability of at least 1 — 8, the vector (BS —Te,BY,...,BY) is feasible

to FALPy and

* 0 2¢
V- VB - T < s

Proof. Part (i). First notice that the vector B® defined in the Definition 2 is the same
vector of coefficients (o, B1,.-.,Pn) defined in Proposition 7 corresponding to V(") = [53 +
f® B*(0)p(s;0)d 0. Following similar steps as in the proof of this proposition, we guarantee

that with a probability of at least 1 — 0

HB*/sz 1
* 0 > —
V= V(9] < oVN 2 (Q~|— 2In <z‘>>>

For N > Ng, this inequality indicates that HV* — V(BO)H o < € holds with a probability of at
least 1 — 9.

Part (ii). If N > N, the vector (B —Te, BY,...,BY) is feasible to FALPy with a probability of

at least 1 — 0 since

< V*(s) — YE[V*(s')]s, a] (2.23)

79

where the first equality comes from the definitions of V(B®) and T; the first inequality holds
because [V*(s) — V(s; %) < [|[V* — V(B9)|loo < € for all s € S with a probability of at least
1—5 by Part (i) of this lemma; the second equality results from using the definition of V*; and
the second inequality holds because ([3;, B*) is an optimal (hence feasible) solution of FEP.

Moreover, if N > N, by Part (i) of this lemma and the definition of ', we get

* 0 * 0 _
I\% —(V(B)—Fs) | <V =vieO) o +Te<etTe= o)

with a probability of at least 1 — 6. |

Proof of Theorem 1.

Part (i). The function V(- By) is continuous due to the continuity of the class of basis func-
tions @ (by Assumption 2), and is feasible to constraints (2.2) due to the feasibility of By to

FALPy. Hence, Lemma 1 guarantees V(s; By) < V*(s) for all s € S.

Part (ii). Consider ¢ > 0. Given B® = (BS,BY,...,B%) and N defined in Definition 2
and Lemma 2, respectively, part (ii) of Lemma 2 ensures that when N > N, the vector
(Bg —Te, BY,.. ,[3%) is a feasible solution to FALPy with a probability of at least 1 — & and

hence

)

IV = VBl < Ve = (ViB®) —Te)

R) S

80

where we used the optimality of By to obtain the first inequality, the relationship between (1,v)-
and co-norms to obtain the second inequality, and part (ii) of Lemma 2 for the last one. Since

N > N¢, the proof is complete if we choose

[B*/p 2, 1
sSTNp Q+ 21n<5> .

Proof of Proposition 2.

Recall the definition of vector By* := argmingegn+1 [V(B) — V¥l v. While this vector may
not be feasible to FALPy constraints, it is easy to verify that if we deduct term (1+4+vy)e/(1—7v)
from the first element of Bi® € RN*!, the resulting vector, which we denote by By~, is feasible

to the constraints in (2.5) and thus feasible to FALPy. Hence, we have

Vo= VBl < Vo= V(B

1,v

IN

V=V + VB = VB

1,v

1
T—vy

IN

11—y

feas

The first inequality is derived from the feasibility of ;" to (2.5), and the second one from
the triangle inequality. The last inequality is a result of assumption HV* —V(f\fg)H])v < ¢ and

equality [[V(BL®) — V(BE™)

1v = (1+7v)e/(1 —v), which is based on the definition of . M

81

Proof of Proposition 3.

The proof follows from the Corollary 1 and Theorem 1 in Calafiore and Campi 2006, ab-
breviated by CC, applied to the program (2.7), which is a random relaxation of FALPy. Under
assumptions 1 and 2 in CC, Corollary 1 and Theorem 1 guarantee that with a probability of at

least 1 — &, the optimal solution B of problem (2.7) satisfies:
¥ ({(s,a) €S x As : h™(B;s,a) <0}) > 13,

where given B = (Bo, B1,..., Bn) € RN the function h™ : RN*! x S x As — R is defined as

follows:

N
R (Bss,a) = (1—¥)Bo+ D B (@(S;Gi) —YE[p(s;0") | s, a]) —c(s, a).

i=1

We only need to show that Assumptions 1 and 2 of CC hold in our setting. First notice that
we use the notations h™, B, RN*T N +1, (s,a), and S x A, in Chapter 2 instead of f, 0, ©, ng,
5, and A, respectively, in CC. Assumption 1 in CC requires the function h*™*(3;-,-) to be convex
in B and continuous. This clearly holds in our setting since h*™(f;-,-) is linear in B, and we
assume @(-) is a Lipschitz continuous function. We use a relaxation of Assumption 2 in CC as
stated in Appendix A. In particular, we only show that the program (2.7) is feasible and forgo
the uniqueness assumption of the optimal solution to FALPy. Define ¢ := ming 4 c(s,a)/(1 —7v)

which is well-defined since c(-,-) is bounded by Assumption 5. It is straightforward to verify

82

that (c,0,...,0) € RN*! is feasible to FALPy and hence feasible to program (2.7) for all samples
{(s%a") e S x A : k=1,2,...,K}. [

2.9.4 Proofs of Statements in §2.4

Proof of Proposition 5.

For every iteration q > 0, self-guided FALP VFA V(-;B%) with N = gB basis functions is a
continuous function because of the Lipschitz continuity of ¢ in Assumption 2. Moreover, this
function is feasible to constraints (2.2) because vector By is feasible to the constraints (2.9) of
FALPiG. As a result, Lemma 1 guarantees V(s; By) < V*(s) for all ¢ > 0 and s € S. In addition,
guiding constraints (2.10) in FALPIS,(EB imply V(;By) < V(5 Bi,iB) for every q > 0, where identity
N = gB holds. |

The proof of Theorem 2 relies on the following definition, propositions 8-10, and Theorem 3.

Definition 3 Given N did samples {81 :1=1,2,...,N} from p, we define

N N
BNZZ{B:@)’_)R EI(BH---»BN)ERN) Zﬁiz<ooa B(e):ZBié{ezei}’}'
i=1 i=1

Moreover, let By and Bf\,- denote the closure of BN and the perpendicular complement of By,
respectively. In addition, suppose B ={B:0 — R : ||B/p||zyp < oo} denotes the space of all

(2, p)-integrable functions equipped with the following inner product

(B,B)g = J de, forB,B c€B.

o p(6)

83

Proposition 8 It follows that

(i) The space B defined in Definition 3 equipped with inner product (-,-)g is a Hilbert space.
(i) The set BN is a closed subset of B under addition and scalar multiplication.

(iii) Let ([SZ,B*) be the optimal solution associated with V*. There exist BY® € By and BE’L €

] * *, *, L % o *y *, L
By such that B = BY® + By~ and |[B*/p|l,, = [BY°/ell, + IBY /el

Proof. Part (i): The space B is a Hilbert space by Example 4.5 in Rudin (1987).

Part (ii): The set By is a closed subset of B since for every B € By with B(0) = Z{\’:] B:0{6 =
0'}, we have ||B/p|| 20 < > Biz /p < oo. In addition, By is closed under addition since for every
B,B’ € By, we have B+B’ € By. It is also closed under scalar multiplication because for every
B € By and @ € R, we have aB € By.

Part (iii): Since B* € B, using parts (i) and (ii) and the orthogonal projection theorem of

Hilbert spaces (Theorem 5.23 in Folland 1999), there exist functions BY® € By and B;fj‘ € By

*) *y *) *)J—
such that B* = BY® + B and [[B*/pll,, = [BX°/pl,, + IBX " /pll,,- n

Proposition 9 Consider { > 0 and N iid samples {0* :i = 1,2,...,N} from p. Let (BS,B*)
denote an optimal solution to FEP with B* = BR° + B;(fL for some BY® € By and Blth € By
(see Proposition 8). Define BEL = (O,B;I’L). There exists a coefficient function Bf\] € BN such

that for By, = (B;,Bf\]), we get

v (viBg) + V") I < (2.24)

84

Moreover, V([ﬁf\]) can be represented as V(- [5]((‘) = By + Z?I:] Bf(p(-;@i) for some coefficients

BEeR,i=1,2,...,N.

Proof. Given (> 0, since BN® € By and By is the closure of By, there exists a function Bf\, € By

such that ||(BY® — Bf\,)/sz’p < 2. Therefore, for all s € S, we have

[Ve(s) - (Vs B + Visi B3)|

B J@ p(6)?

= [|(BY” = BR)/pll,,

1 * ¢ *, L) 2
J@p(e) [B (6) — (By (0) + By (9))} cp(s,e)p(de)>
1

N

[Bif(e) + By (0) — (By(0) + Bﬁl(e))}z P(d0)

<, (2.25)

where the first equality follows from the definitions of V*(s) and V(s;-) evaluated at Bf\] and BEL;
the first inequality from the Jensen’s inequality (E[])? < E[(-)?] and ||$|co < 1 from Assumption
2; and the second equality from the definition of the (2, p)-norm. Since the expression (2.25)

holds for all s € S, we have

[ve = (VB8 + VB)| =sup [v(s) = (Visi) + Visi B3 D))| < €.

oo seES

Finally, since Bf\] = (B;,Bf\‘) with B]EI € By, the VFA V(Bf\‘) can be represented as

V(-;Bf\,) =By + Z{i] Bf(p(-;Si) for some coefficients Bf eRi=1,2,...,N. [|

85

Proposition 10 Suppose there exists a constant p > 0 such that p(0) > p for all 0 € O.
Consider ¢ > 0, & € (0,1], and N iid samples {6" : 1 =1,2,...,N} from p. Let (B4, B*) denote
an optimal solution to FEP and ([3](, ceey [STC\]) and Bﬁl = (O,B;fj‘) be the coefficients described
in Proposition 9. For every H > 1 did samples {8 : i = N+ 1,N+2,...,N + H}, there exist

({SOL, Bﬁﬂ, ﬁﬁ+z> ceey B§+H) € RY such that the vector

B = (Bo+ By, B -y By BNw1 Biigzs - - -y BRip) € RN

satisfies

Hv* . V(B)HooguuBT\//%Hz‘p <Q+ 2In (;))

with a probability of at least 1 — 8.

Proof. Since B;fl € B, it is easy to see that V(B;I‘J‘) € R. Then, Proposition 7 applied to
the function V(ﬁ;fj‘) and H samples {0': 1= N+1,N+2,..., N+ H} guarantees that there are

H coefficients (B, Bajs1s Brisay - - - Brar) € R such that

V(*,l) 1 Rath 1 (,ei) < HBlth/PHz,p 0 1 1 596
Bn") — Bo"‘i_%r]ﬁi@‘, _BT + H<6)) (2.26)

with a probability of at least T — 6. Using Proposition 9 and the triangle inequality, with the

same probability, we obtain

v~ v

o0

86

< v = (visho i)+ (vieto + viskh) —vid|
(V(BR) + V(BN ")) - (B +ZBC O Hp Y ol))

1=N+1
—Bo— Z Biol
i=1 00

N H
< HB*»J— [I <]>
>~ C /— Q 2 5)

+HIIVBY) =BT — Y Brol
where we used (2.24) and the definition of V(B) to obtain the second inequality; the triangle

<¢+

(o9}

<+ ||V

i=N+1 .

inequality for the third inequality; and V(Bf\,) = By + Z]i\; qu)(-;ei) and (2.26) for the last

one. [|

o = e <Q+2 2 <;)).

Theorem 3 Suppose there exists a constant p > 0 such that p(0) > p for all 0 € ©. Given

Recall that

N > 1 and & € (0,1], for every H > 1, there exists a vector p € RN such that with a

probability of at least 1 — 0
(i) [[V* = V(B)[lo < Epnmy and
(it) w((1+v)EnNn)-

Proof. Let ¢ = HB;I’L/F’Hz,p‘/ZIH (1/6)/9\/ﬁ and B be the coefficient vector described in

Proposition 10 for this specific choice of (. We claim that [~3 is the desired vector in Theorem 3.

87

Part (i). Proposition 10 indicates, with a probability of at least 1 — 8, that

HV* _ V(B)HOO < c+HBI§//%2»p <Q+ 2In <;>> = ENH)-

Part (ii). The inequality ||[V* — V()] < E(n,m) from Part (i) indicates that with a proba-

bility of at least 1 — 6, we have

V(s;B) —Enm < V*(s) and V(s;B)+Enm > V*(s), VseS. (2.27)

Hence, with the same probability, it follows that

N+H

(1=v)Bo+ D Bi(@ls;0)) —vE [@(s;6:)]s,a])
i=1
— V(s B) —VE | V(s';B)]s,

< VA(s) + Evyy — YE [VE(s))|s, a] + YE,m)

= cfs, @) + (1 +¥)Epm), (2.28)

)

where the first equality follows from the definition of B and the inequality from (2.27). The
second equality holds since V* is an optimal solution to ELP. In addition, Proposition 5 and

(2.27) imply that, with a probability of at least T — 8, we have

V(s;By) < V*(s) < V(s;B) + En i) (2.29)

88

Inequalities (2.28) and (2.29) ensure that f is ((1 +V)E(n,m))-feasible to constraints (2.9) and

E(n,m)-feasible to constraints (2.10) of FALP.®

N+H

with a probability of at least T — 6, respectively.

Therefore, we can conclude 3 satisfies

w(B) < max {(T+v)Enu), Enn } = (1+V)EN),

with a probability of at least 1 — 6. |

Proof of Theorem 2.

SG

wu 1s a closed

Let B € RN*HH! be the vector in Theorem 3. Since the feasible set of FALP
convex set, the 1-norm projection of 3 onto this set, which we denote by /[3 = proj.,(B), is well

defined. From Assumption 4, we have

BBl <G-w(P)™< G ((1+v)Enm)™,

with a probability of at least 1 — 0. Considering VFAs with respect to [@ and 3, we have

N-+H '
IV(B) = V(B = ||(Bo—Bo) + Y (Bi—Bi)e(s; 0%
N-+H - -
S Z H/-)\)l Bl|
i=0

89

where the first inequality holds since we have |||, < 1 from Assumption 2 and the second
inequality follows from || — Bll, < G((1 —i—y)E(N’H))Vm. Using the triangle inequality and

Part (i) of Theorem 3, we can show that

IVE=V(B)lloo < [V* = V(B)lloo + [V(B) = V(B)lloo < Enyiny + G (T +V)Enmm)™,

¢ to FALP®

holds with a probability of at least T —&. Hence, for any optimal solution B}, > With

a probability of at least 1 — 9, it holds that

SG
N{H)

v —v(p

w < IV = VB, < IV=VB)lle < Epm [14 6 (14 VEam) ™™

SG

where the first inequality holds since B is feasible to FALP, . and B, is optimal. |

2.9.5 Proofs of Statements in §2.5

Proof of Proposition 6.

Applying Proposition 7 to VC(-) = Bg + [B (8)@(-;6) d 6 with HBC/PHz,p < oo and replac-

ing Q with Q€, we get that for N iid samples {8': 1 =1,2,..., N} from p, there exist coefficients

B = (BO)B])"')BN) such that

_ _ B¢
sp [VE(s) = VisiB)] = [V9 VB |, < B = Hp%zp (QC 2 (;)) . (230

90

with a probability of at least 1 — 8. Using the definition of V€ (see §2.5), it is straightforward
to see that VC(s™) = V*(s™) for all s™ € S. Hence, the inequality (2.30) indicates that with a
probability of at least 1 — 9,

sup [V*(s™) — V(s™B)| = sup |VE(s™) — V(s™ B)| < sup |VO(s) — V(s;B)| < En, (2:31)
smeS smeS SGSC

where we used the fact that S C SC to obtain the first inequality.

In addition, since V*(s™) satisfies FALP constraints, i.e., V*(s™) — yE [V*(s')[s™, a] <
c(s™,ya) for all (s™,a) € S x A, following similar steps as in (2.23), the inequality (2.31)
indicates that the solution /B\ = (Bo—TEN, B1,.-.,BN) is feasible to FALPy with a probability of

at least 1 — 8. Hence, we have

v = VB2, < [[v" — viB)

1,v

= [V = V(B + MEn

= > v(s™|V*(s™) — V(s™,B)| + MEn
memM

< (1+NEy
2Boll, (o [(1
=—=2 10 2In | -
(1—v)pvN i <5> ’

where the first inequality follows from the feasibility of B and optimality of B. to FALPy; the
first equality from the definition of B: the second equality from the (1,v)-norm definition; the

second inequality from (2.31); and the last equality from the definition of Ey. |

91

2.10 Relaxing Assumptions

In §2.10.1 and §2.10.2, we discuss how our theory extends when assumptions V* € R and 3

fail to hold, respectively.

2.10.1 Relaxing Assumption of V* € R

In this section, Proposition 11 shows that there exists a feasible solution to FEP such that
its VFA is e-close to V* under the co-norm for every choice of ¢ > 0, given that Assumptions 1
and 2 are satisfied (refer to §2.9.1). Consider the sequence of these feasible solutions when
e — o0o. While each element in this sequence is feasible to FEP and gets closer to V*, the
limit point of this sequence may not be feasible to FEP because the set R is not a closed set.
Therefore, whenever V* € R fails to hold, FEP may not attain an optimal solution. In this
case, one can replace the constraint ||B/p||, , < oo in the formulation of FEP by the constraint
IB/pll,,, < C¢ for a sufficiently large finite constant Ce > 0 to ensure FEP attains an optimal

solution with a VFA that is e-close to V*.

Proposition 11 Assume V* € R. Given ¢ > 0, there exists a feasible solution, B, = (B(F)i, B.")

to FEP such that

2¢
1—v°

V"= V(B <

Proof. Since MDP value function V* is continuous (by Assumption 1) and the class of random
basis function ¢ is universal (by Assumption 2), there is V € R such that ||[V* — V| o < €. Since
V belongs to R, it can be written as V(s,B) = Bo + ~f@ﬁ(e)(p(s;ﬁ)de for some B = (Bo, B)

with ||ﬁ/p|]ij < o0o. Recall that T = (1 +7)/(1 —v). We now show that B;" = (ﬁgi,BiE) =

92

(B\O — F&,ﬁ) is the desired feasible FEP solution. This is because ||B;"/p|,, = Hﬁ/pHLp < 00

and for any (s,a) € S x As, we have

(1B + L) B™(0) ((s) — vEl(s') | s,al)do
_ —v)(éo—re)+J®ﬁ(e)(cp(s) — VElg(s') | s,al)do
= —(1+7y)e+ V(s) —YE[V(s')Is, a]

< —(T+v)e+V*(s) + e —VEV*(s") —els, o]

= V*(s) —yE[V*(s)s, d]

IN

c(s,a),

where the first inequality is valid since ||[V* — VH o < €, which ensures V(s) < V*(s) + ¢ and
—V(s) < —V*(s)4¢ for all s € S. Thus, BL* is feasible to FEP. In addition, the VFA V(B!") =
V(B) —I'e belongs to R and ||[V* —V (B, < IIv*— V|l +Te < e+ Te = 2¢/(1 —v), which
completes the proof. [|

2.10.2 Relaxing Assumption 3

For a given « > 0, define vector p € RN*! as an optimal solution to the following program:

N
méiX Bo+ZBiEv[(P(5§ei)]
i=1
N
st (—vIBot Y B ((p(s;ei) —E[e(s’;0Y | s,a}) <c(s,a), V¥(s,a) €S xAs (2.32)
i=1

Bil<a Wi=1,2,...,N.

93

Although there are explicit bounds on (1, 2,..., N, the constraints of the problem also

imply

N

c(s,a) =) B (@(S;Gi) —vE[o(s6Y) | s, a])] } ,

i=1

Bo < max max S
{(B1yensBN)IBil<) (s,0)eSxAs | 1T —7Y

where the right-hand side is upper bounded by a constant because the state and action spaces
are compact, and the cost function evaluations are finite because V* is bounded, which follows
from it being a continuous function defined over a compact set. Program (2.32) always attains its
maximum since it optimizes a continuous function with N 4 1 decision variables over a compact
convex set.

Proposition 12 develops an error bound for the VFA associated with (2.32).

Proposition 12 Suppose p(0) > p for all 0 € ©. Given & € (0,1], we have that any optimal

solution B € RNT! to linear program (2.32) with « > IB*/pll; ,/(Np) satisfies

1B*/0l],, 1
Iy STW 1o+ 21n<5> ,

[V = V(B)

with a probability of at least 1 — 8.

Proof. (1) Any feasible solution $ to (2.32) satisfies V(s;) < V*(s) for all s € S by Lemma 1
since V(-;B) is continuous by Assumption 2. From this it follows that E,[V(B)] < E,[V*]. By

Assumption 1, V* is a continuous function over a compact domain and is thus bounded by a

94

finite constant, which implies that the optimal objective function value of (2.32) is also bounded
above by this constant. Therefore, FALPy has a finite optimal objective function value.

Let B* be an optimal solution to (2.32). Then B7,B3,...,B% are finite because of the
bounding constraints. The next proposition develops a VFA error rate for this program.

(ii) Consider ¢ > 0. Given B® = (BS, BY,...,BY) and N respectively defined in Definition 2
and Lemma 2, part (ii) of Lemma 2 ensures that when N > N, the vector ([38 —Te, BY, ..., [5%)
is a feasible solution to FALPy with a probability of at least 1 — . From the definition of each

element B9, we have that

Hence, vector (Bg —Te, [316, ceny B%) is a feasible solution to (2.32) with a probability of at least

1 — 9, and we thus have

v =v@l,, < v = (vie) —re)|

R R

In above, we used the optimality of B to obtain the first inequality, the relationship between
(1,v)- and oo-norms to obtain the second inequality, and part (ii) of Lemma 2 for the last one.

Since N > N¢, by choosing choose ¢ according to

IB/p 2, 1
SSTNP Q+ 21n<6> ,

we complete the proof. |

95

2.11 Constraint Sampling Bound for Self-guided FALP

Let {(s®,a¥) € S x Ay : k = 1,2,...,K} be a set of K state-action pairs sampled from a
probability distribution 1\ over the state-action space S x As. The constraint-sampled self-
guided FALP is given by the following linear program that has N random basis functions and
2K constraints:

N
max Bo + > BiEv[o(s;6]

i=1

N
st. (T—=y)Bo+) B (cp(sk;ei) —vE[@(s’;0")Is", ak}) <c(s%d"), k=1,2,...,K, (2.33)
i=1

N
Bo+) Bip(s0Y) > V(s%BY,), k=1,2,...,K.

i=1
The following proposition develops a probabilistic bound on the number of samples K to

ensure that the volume of state-action pairs that an optimal solution to (2.33) satisfies their

corresponding constraints of FALPY is high.

Proposition 13 Given & € (0,1], if b is supported over S x As, linear program (2.33) is

bounded, and the number of samples K satisfies

2 1 2(N+1) 2

then for every optimal solution /B to (2.33), the following inequality holds

b ({(s,a) €8x A | VisiB) —vE[V(s;Blls,a] < cls,a), VI(siB) > V(siBY,)) =18

96

with a probability of at least 1 — 8.

Proof. The proof of this proposition is similar to the proof of Proposition 3, where we leverage the
theoretical results in CC. Following the program called “prototype control problem” introduced
in §IT of CC, we define three functions h™, h%¢ h: RN*'x Sx A — R at B = (Bo, B1y..., PN) €

RNt s € S, and a € A; as follows:

N
R (Bis,a) = (1= Y)Bo+) Bi (@(s:09) —VE[@(s;0) | 5,a]) —cls,a),
i=1 N |
R%(B;s,a) = V(siByy) — Bo—) _Bio(s;0Y),
i=1
h(f?), Sy (1) = max {hFA(B;S) (1), hSG(B; Sy (1)}

Note that given s € S, the function h%(f;s, a) is constant across all actions a € A. Thus,

program FALPY can be reformulated as:

N
mgx Bo+ Z BiEy [(p(s;ei)] s.t. h(B;s,a) <0, V(s,a)eS x As. (2.34)
i=1

Taking assumptions 1 and 2 in CC to hold, if we apply Corollary 1 and Theorem 1 of CC to
program (2.33), which is a random relaxation of (2.34), we obtain a guarantee that the optimal

solution P of (2.33) satisfies:

¥ ({(s,a) € S x A : h(B;s,a) <0}) > 13,

97

with a probability of at least 1 — 6. To complete the proof, we show that assumptions 1 and 2
of CC hold in our setting.

First notice that we use the notations h, §, RNt N4+ 1, (s,a), and S x A in Chapter 2
instead of f, 0, ©, ng, 6, and A, respectively, in CC. Assumption 1 in CC requires the function
h(pB;-,-) to be convex in B and continuous. In our setting, h(B;-,-) = max{h™(B;-,), K°¢(B;-,)}
is convex because it is the pointwise maximum of two convex (linear) functions h™ and h%¢. It
is also continuous in P since we assume @(-) is Lipschitz continuous. We use a relaxation of
Assumption 2 in CC as stated in Appendix A. In particular, we only show that the program
(2.33) is feasible and forgo the uniqueness assumption of the optimal solution to FALP;G. By
appending B zeros to the past self-guided FALP solution B, € RN*17B we define vector
(B,,0,0,...,0) € RN which is feasible to FALPIS\IG and thus is feasible to (2.33) for all samples
{(sFav) e S x A1 k=1,2,...,K. |

2.12 Optimistic Bound Estimation

In §2.12.1, we discuss the estimation of optimistic bounds on the MDP optimal policy value
using the constraint violation learning approach in Lin et al. (2020). In §2.12.2, we discuss
the information relaxation and duality approach from Brown et al. (2010) that can be used to
estimate optimistic bounds on the optimal policy value of an MDP, where the exogenous state

space is large and the controllable part of the state space is low dimensional.

2.12.1 Constraint Violation Learning

We first discuss a heuristic approach based on the constraint violation learning approach

(CVL; Lin et al. 2020) for estimating a lower bound on the optimal policy cost (or upper

98

bounds on the optimal policy reward). We then explain how we use this method to estimate
lower bounds for the perishable inventory control instances studied in §2.6. CVL utilizes primal
and dual updates to approximate the MDP value function while simultaneously learning which
constraints of ALP are being violated by the current VFA weights. Our CVL-based heuristic
only performs the dual update to obtain a valid lower bound. Specifically, for a given VFA, this
approach uses the ideas in CVL to learn a distribution that assigns high values to state-action
pairs where ALP constraints are violated and then employs this information to define a valid
lower bound.

CVL-based heuristic. For any VFA V() with B € RN*! define function y(-,-;B) :

SxA;— R as

y(s,a5B) = BxV(B)) + 7= (cls,a) +VE[V(s;B) | s,a] = V(5;),

1T—vy

where the second term encodes the slack in the FALP constraint for a given (3 at a state-
action pair (s,a). The coefficient may not be feasible for all FALP constraints. We observe
that minimizing the function y(s, a;) over state-action pairs corresponds to finding the most
violated constraint in FALPy since the term E,[V(f)] is independent of the state and action
and the term (c(s,a) +YE[V(s’;B)[s,al — V(s;B))/(1 —7) is the constraint slack. Thus, if the
minimum value of function y(s, a;) over state-action pairs is strictly less than E,[V({)], then

[3 violates a constraint of FALPy. Otherwise, {3 is feasible to FALPy.

99

Lemma 3 is directly based on Lemma EC.3 in Lin et al. (2020) and provides a lower bound

on the optimal cost. For a given VFA V() and A € (0, 1], we define a density Y on S x As as

Y(s, a; B, A) = exp (—y(s, a;B)/A)

B foAS eXp (_U(S,a;ﬁ)/A) d(s,a)' (2.35)

Lemma 3 (Lemma EC.3 in Lin et al. 2020) Suppose y is Lipschitz continuous with con-

stant Ly > 0. For any A € (0,1] and B € RN we have
Ey [y(s, a;)] + AM(A + dsq In(A)) < PC(m),

where constant A is defined as follows:

= dsa 7ds,a
A::—ln[r<1+ (2*)> (RSMS\/E> ()J

A d(S, (1):| B LU(RSX-AS + D(S»a))'

Moreover, d(sq is the dimension of the space S x As. Function I is the standard gamma function,
T is the Archimedes constant, Rsx.a, > 0 is the radius of the largest ball contained in S x A,

and Dys q) s the diameter of S x A.

Given a solution and its VFA V(f3), Lemma 3 shows that a valid lower bound on optimal cost
PC(7*) can be computed as the sum of the expected value Ey [y(s, a; [3)] and a constant term.

Applying CVL-based heuristic to perishable inventory control instances. Estimat-
ing a lower bound using the aforementioned CVL-based heuristic requires generating samples

{(st,a") : i = 1,2,...,1} from distribution Y in (2.35). Computing the denominator of this

100

distribution is intractable but it is known that there are MCMC methods that can generate
samples from un-normalized distributions. For example, the Metropolis-Hastings algorithm
can be used to generate samples {(s,a') : i = 1,2,...,I} from the un-normalized density
exp (—y(s, qa; [5)/7\) in the numerator of Y, which is proportional to Y(s,a;p,A). Upon gen-
erating samples {(s!,al) : 1=1,2,..., I}, we obtain the following lower bound estimate based on

a sample average approximation:

LB(B) = Ey[V(B)] + - ’

Ty 2 (el @) + VB[V Bl 0] = VIS B)] +AA + disey (M)

i=1

The two additional expectations here can be also replaced by sample average approximations.
In our numerical experiments in §2.6, we estimate LB(f3) using the Metropolis-Hastings method
with I = 4000 samples. These samples are obtained by generating 8 Markov Chains with
the length of 1500 in parallel, burning the first 1000 samples, and then using the last 500
samples. Parameter A can be easily evaluated for the instances studied in §2.6. The perishable
inventory control application cost function is Lipschitz with constant L, > 0, where L. =
2(yrco@+cha+ cps+cqa+cra). From this we infer that the Lipchitz constant associated with
yis Ly = (4||B]l; +L¢)/(1 —v). We choose the other parameters defining A as follows: ds q
is given by the summation of the dimensions of MDP state and action spaces that depends on
each instance; Rsx 4, is % and D5 q) = 3@+ (s — @)% and A is set to 1/(A + d(s,a))- One can

tune the last parameter to possibly obtain tighter bounds.

101

2.12.2 Information Relaxation and Duality

We switch from cost minimization to reward maximization here to be consistent with the
Bermudan option pricing problem that we apply it to. Information relaxation and duality (IR;
Brown et al. 2010, 2022) is a general framework to compute upper bounds on the optimal policy
reward of MDPs. This approach relies on allowing the decision maker to observe realizations
of future uncertainties when making a decision at the current time and then penalizing the
knowledge of such information. We discuss how this method can be used for Bermudan options
pricing to derive upper bounds on the optimal policy reward. For applying this method beyond
this application, please see Brown et al. (2010), Nadarajah et al. (2017), and Brown et al. (2022).

Let {(s}), s%, ceey s%) :1=1,2,...,1} be a set of I sample paths generated from a fixed initial
state so. At time t, st = (p;hpiyz, e ,piy],y%) encodes prices of | assets at time t on the i-th
sample path as well as the binary variable yi that shows if the option is knocked-out or not
(please see §2.7.1). A perfect information relaxation with zero dual penalty requires solving the

following deterministic dual dynamic program on each sample path i

) Q(SD, t=T
VP (sh) =

max{g(si%YVBr](SiH)}, t=T—-1,T—-2,...,0.

The average of the dual value function at the initial state along each sample path defines the
upper bound estimate UB = (Z%ﬂ V(])3 (sé))/1. This bound based on a zero dual bound is typically

loose.

102

VFAs/CFAs can be used to define dual penalties that can be incorporated into the above
dynamic program for improving the bound quality. Let Vi : S — R be the time-t VFA. Define
the VFA-based dual penalty zt(sh] , Sty ay; V1) at time t, action ay, and the state pair (SLH ,85)

on the i-th sample path as follows:

ze(stiq, sty ag Visr) = v(1 — ay) (Vt+1 sti1) Z Vi (SH])

where the next state s,?il] is drawn from stochastic kernel P(-|s}). The set of samples {S::-H] m=
1,2,..., M} are called inner samples. For the action a; = 1 that corresponds to option exercise,
we have zt(s}[_H,si, 1:Viy1) = 0. Note that Elz¢(s¢y1, St, at; Vig1)|st] = 0, which shows that the
VFA-based dual penalties is feasible. We can also construct feasible dual penalties based on
CFAs. Let C¢: S — R be the time-t CFA. The dual penalty zt(-,-,-;Cri1) = 0 and define the

time-t dual penalty zt(shr],si, ai; Cy1) with respect to CFA Cyyq as follows:

Zt(si-i-])si) ag; Ce1) =v(1 —ay) <max {Q(SLA)y Ceq (S}[H)} -

T

=
M=

matg(s21), Cunn (5Ll).

103

Both VFA-based and CFA-based dual penalties can be used to improve the upper bound ob-
tained from perfect information relaxation with zero dual penalty. Consider the following de-

terministic dual dynamic program:

) g(s‘t)) t :Ta
VP(sliz) = (2:36)

maX{g(S}g)>va(si+];Zt+1) *Zt(SLL])Si{)O)}) t=T-— 1)T*2)---3O)

where dual penalties (zg,z1,...,27) can be defined using VFAs or CFAs as described above.

Note that the maximum term in (2.36) is equivalent to
max {9(3}[) - Zt(si{H) Sj;) 1)»VVP(SLH $Ze1) — Zt(stﬂ) 51) 0)} .

Because zt(er] ,8t,1) = 0, the above maximization simplifies to the one in (2.36). Upon solving
dual dynamic program (2.36), we obtain the upper bound estimate UB(z) = (2{21 V(l)j(s(i);z))/l.

For the Bermudan options pricing instances considered in §2.7, we use I = 20,000 sample
paths and M = 500 inner samples to estimate the upper bound UB(z). We use LSM to compute
a CFA and and ALP”™" FALP5y, and FALP;EO,@‘ to compute VFAs in §2.7.3. In each case, we
estimate an upper bound UB(z) using the corresponding CFA- and VFA-based dual penalty

definition.

2.13 Addendum to Numerical Study

In §2.13.1, we numerically visualize the self-guiding mechanism on a two-dimensional in-

stance of the perishable inventory control problem. In §2.13.2, we report the performance of

104

policy-guided FALP when using different constraint sampling strategies. In §2.13.3, we evaluate
how our approach performs on perishable inventory control and Bermudan options pricing ap-
plications when using ReLLU basis functions. In §2.13.4, we report raw lower and upper bound
values computed from FALP, self-guided FALP, and other benchmarks we consider in Chapter

2.

2.13.1 Visualization of Self-guiding Mechanism

We consider a two-dimensional instance of the perishable inventory control problem studied
in §2.6.1 to visualize the following: (i) VFAs, (ii) relative approximation quality and the states
visited by policies, and (iii) the implicit state-relevance distribution used by self-guided FALP.
We focus on an instance of the MDP in §2.6.1 with a lifetime of 1 =1 and a lead time of] = 2.
The state vector of this instance has two elements s = (s, u;) € R?, where s, is the on-hand
inventory level expiring in the current period and w, is the order quantity arriving in the next
period. Demand follows a truncated normal distribution with a mean of 5, a standard deviation
of 2, and has support in the interval [0,10]. These choices are the ones we used for the three-
dimensional instances in Table II. We choose the state space diameter of this MDP to be large
by setting the maximum ordering level to be a = 500 and the maximum limit on the number of
backlogged orders to be s = —50. We use the following cost function parameters: ordering cost
co = 20, holding cost cp = 2, disposal cost cq = 8, backlogging cost ¢, = 100, and lost sales
cost ¢ = 100. We set the discount factor to y = 0.95. Using the computational setup in §2.6.2,

we compute control policies for this MDP using FALPy with N = 50 random basis functions and

105

FALPifQ with N =50 and Q =51 (implied batch size is B = 1). For both these models, we use

a uniform v.

Figure 3: Comparison of FALP VFA V(B;,) (left panel) and self-guided FALP VFA V(B..)

(right panel) on a two-dimensional perishable inventory control instance.

500

High

Uy

Low
—50 So 500 —50 So 500

The left panel of Figure 3 shows the VFA V(B5,) and the right panel shows the VFA V(B5;).
Both panels share the same x-axis of s, and y-axis of u;, with the color bar encoding high
(low) values as red (black). We observe that the optimal objective values of FALPs, and FALPy,
are 5610 and 4832, respectively. As expected, V(Bi,) is closer to V* than V(B.;) under the
(1,v)-norm. Since V(Bi,) is a lower bound on V* (we say lower bound because we employ

constraint sampling such that our samples are very dense in the 2-D state-action space), the

106

Figure 4: Illustrating the impact of guiding constraints on greedy policy performance.

500 20

400
‘
—
—
]
—-—

300

o r T
-50 20

200

V(553 > V(55)
100 B3 V(555 < V(55)
Bl States visited under 7, (35)
Bl States visited under 7, (355)

0 100 200 300 400 500

reddish states likely correspond to the states where V* has very high values. This suggests
that FALP5, improves the (1,v)-norm by making V(B.,) close to V* at states where V* has high
values. In contrast, FALP;% is distinctly different and this difference affects policy performance.
The optimality gaps of 7tg([3:§) and ng(ﬁg‘g) are 4.1% and 48.2%, respectively (computed w.r.t
the FALPy lower bound).

Figure 4 shows two regions of the state space: orange states that satisfy the inequality
V(Bi) > V(B:,) (which is analogous to orange states in Figure 1), while green states satisfy
V(Bi) < V(B:,) (which is analogous to green states in Figure 1). Since both panels in Figure 3
show low values in the orange states, it is likely that V* takes low values at these states. In the

orange region, it is necessary that some of the guiding constraints with right-hand sides from

107

the set {V(Bff) :q=0,1,...,50} are binding because V(B,) is closer to V* in this region. If
all of the guiding constraints are redundant, then the optimal objective values of FALPs, and
FALPZ(S must coincide, which is not the case in this example. The smaller subplot in Figure
4 zooms into the bottom-left corner of the state space and depicts the states visited under
greedy policies 719([5?3) and ng([s;‘j) that are shown in blue and purple, respectively. Since both
V(B:,) and V(B:,) are highly likely to lower bound V*, it follows that V(B.,) provides a better
approximation of V* at the orange states, which also suggests that V(Bzg) should provide a
greedy policy that is better at driving the system to lower cost states under V* in the orange

FA
50

region than the greedy policy based on V(f3,,). This provides support for the observed lower
optimality gap of 719([3;3) compared to 7'[9([3;8).

We next visualize the state-relevance distribution under self-guided FALP. Figure 5 plots the
state-relevance distributions v/(B}), v/(Bis), and v/(B5;). It is reassuring to see that all these

distributions are concentrated at the bottom left corner of the state space where we expect V*

to take its lowest values.

2.13.2 Analyzing the Impact of Constraint Sampling on Policy-guided FALP

As discussed in §2.6.2, we have implemented three versions of policy-guided FALP that differ
only in how their constraints are sampled. Version (i) uses uniformly sampled state-action pairs
to define constraints of the linear program FALPy[v9] solved at iteration q of policy-guided FALP
algorithm. Version (ii) constructs the constraints of FALPx[vY| at iteration q using state-action
pairs visited under greedy policy ﬁg(Bq*]) obtained in iteration g — 1. For the initial iteration

q = 0, Version (ii) employs uniformly sampled state-action pairs. Version (iii) integrates both

108

Figure 5: Self-guided FALP state-relevance distributions v/(B;) (left panel), v/(B}:) (middle
panel), and v’ ([3;(6) (right panel) on a two-dimensional perishable inventory control instance.

500 . High

41

T —- Low
-50 S0 500 —50 S0 500 —50 S0 500

uniformly sampled state-action pairs in Version (i) and the pairs visited under the policy-guided
FALP greedy policy in Version (ii). Unfortunately, Version (ii) results in severely poor greedy
policies, so we did not report its optimality gaps.

Table VI is an extended version of Table 111 that reports the optimality gaps and lower-bound
gaps of Versions (i) and (iii) on the five-dimensional perishable inventory control instances.
The optimality-gap ranges for Version (i) and Version (iii) are 4.3%-82.3% and 7.1%-57.8%),
respectively. Both versions deliver good policies on some instances and lead to poor policies
on a couple of them. These results suggest that the performance of greedy policies obtained
from policy-guided FALP is sensitive to the constraint sampling strategy used and the problem
instance solved. The lower-bound gap ranges for Versions (i) and (iii) are respectively 0.0%
to 7.8% and 0.0% to 17.1%, where we can see Version (i) produces better lower bounds than

Version (iii) on five out of six instances.

109

Table VI: Comparison of the effect of different constraint sampling strategies on policy-guided

FALP (extended version of Table III).

% (UB - best LB)/(best LB)

% (Best LB - LB)/(best LB)

Ch Ca Cp O
ALPLNS FALPy, FALPyy, (i) FALPyy, (i) FALPj; ALPINS FALPyy, FALPy. (i) FALPh.. (iii) FALPSy,
1 8 25 1394 196 12.9 38.7 13.9 15.0 0.0 0.1 0.3 0.4
18 22 180 210 1.7 12.6 115 6.2 0.0 0.2 L7 0.2
1 2 85 136 15.6 82.3 10.6 7.9 7.8 0.0 7.8 1.9 0.8
1282 68 121 43 57.8 43 6.2 0.0 0.9 17.1 0.7
2 8 55 594 159 10.6 7.1 8.4 12.1 0.2 0.0 03 0.5
2 8 5 2 8.2 16.1 7.0 74 7.7 7.6 0.0 0.1 9.8 0.5
Average 409 16.7 2.5 22.4 9.0 9.1 0.0 L5 5.2 0.5
2.13.3 Analyzing ReLU Basis Functions

In this section, we compare the performance of FALP and self-guided FALP models for-

mulated using two different random basis function classes: ReL.U bases (@(-) = max{-,0}) and

Fourier bases (@(-) = cos(:)). We refer to the formulation of the FALPy model with ReLU and

Fourier basis functions as ReLU FALPy and Fourier FALPy, respectively. Similarly, we use ReLU

FALPY and Fourier FALPY' when ReLU and Fourier basis functions are used to formulate FALPY; .

Perishable Inventory Control. We apply ReLLU FALPy with N = 300 and N = 600 to our

three-dimensional perishable inventory control instances studied in Table II. Table VII reports

the optimality gap and lower-bound gap values for Fourier FALP;5, (also considered in Table II),

ReLU FALP3q9, and ReLLU FALPgyy. These gaps retain their definitions from Table II, except that

the best lower bound (LB) in Table VII is the maximum of the lower bounds obtained from

110

Table VII: Comparison of ReLU FALP and Fourier FALP on the three-dimensional perishable
inventory control instances (0 = 2 and ¢; = 100).

% (UB - best LB)/(best LB)

% (Best LB - LB)/(best LB)

Y Ch Cd Cp a
Fourier ReLU Fourier ReLU

FALP150 FALP300 FALP(}OO FALP150 FALP';OO FALP5OO

2 10 10 0.2 1.4 0.3 0.0 1.5 0.8

2 10 50 6.3 66.4 7.7 0.0 12.5 16.0

0.95 5 10 8 10 0.3 4.4 0.3 0.0 1.5 0.8

) 5 10 8 50 0.1 202.2 3.9 0.0 8.6 15.6

2 10 10 10 0.3 1.3 0.3 0.0 1.5 0.9

2 10 10 30 0.8 41.7 1.9 0.0 4.0 4.2

2 5 10 10 0.6 35.9 0.5 0.0 14 0.8

2 5 10 50 6.2 164.0 8.2 0.0 4.3 11.9

0.99 5 10 8 10 0.3 9.0 0.5 0.0 1.4 0.8

’ 5 10 8 50 1.1 163.6 4.3 0.0 9.8 15.0

2 10 10 10 0.6 35.3 0.6 0.0 14 0.9

2 10 10 30 1.1 12.7 2.0 0.0 2.4 6.6

Average 1.5 61.5 2.6 0.0 4.2 6.2

these three models. Optimality gap ranges for Fourier FALP 5, ReLU FALP3yq, and ReLU FALPggq

are 0.1%6.3%, 1.3%202.2%, and 0.3%8.2%, respectively. We observe that Fourier FALP;5q

provides near-optimal policies on all three-dimensional instances. On four out of six instances

with a small state-space diameter (a = 10), ReLU FALP3y also leads to tight optimality gaps.

However, on the remaining instances, especially those with a large state-space diameter (a = 50),

ReLU FALP3 results in poor policies. Doubling the number of basis functions N, we observe

that ReLLU FALPgy, essentially closes the optimality gaps on almost all instances. Therefore,

ReLU FALPgy has comparable policy performance to Fourier FALP5y. Fourier FALP;5, has zero

111

lower-bound gaps across all instances which indicates it results in the best lower bounds among
three models considered in Table VII. For ReLU FALP3y, and ReLU FALPgyq, the lower-bound
gap ranges are 1.4%-12.5% and 0.8%-16.0%, respectively. While both of these models produce
excellent lower bounds on instances with small and medium state space diameters, i.e., a = 10
and a = 30, they lead to suboptimal lower bounds on four instances with the largest state-space
diameter (a = 50).

Our results in Table VII show that our FALP model with both Fourier and ReLLU bases
leads to very good greedy policies and lower bounds. However, to achieve comparable greedy
policies from Fourier FALPy and ReLLU FALPy, we need to use a significantly larger number of
basis functions N in the latter basis function class. This behavior is particularly pronounced
when dealing with challenging instances with large state space diameters. We did not apply
ReLU FALPy to our five- and ten-dimensional instances, as we expect that a very large number
of ReLLU basis functions would be needed to achieve near-optimal policies and lower bounds.
This would require us to solve linear programs with a very large number of columns, which is
computationally onerous.

Bermudan Options Pricing. We next apply ReLU basis functions to the Bermudan op-
tions pricing instances considered in §2.7. The Bermudan options pricing problem is a finite-time
horizon MDP, which means that VFA-based models such as FALP and self-guided FALP need
to store VFA weights for each stage. As a result, applying VFA-based methods to finite-time
horizon MDPs requires significantly more memory than infinite-time horizon MDPs. Thus, un-

like the perishable inventory control application where we tested ReLLU bases with N = 300 and

112

Table VIII: Comparison of ReLU FALP and ReLU self-guided FALP with Fourier FALP and
Fourier self-guided FALP on the Bermudan options pricing instances.

% (Best UB - LB)/(best UB)

% (UB - best UB)/(best UB)

] pinit
Fourier ReLU Fourier ReLU

FALP500 FALPSS, 4 FALP50o FALPES ¢ FALP5o9 FALPSS, 4 FALP5oo FALPSS, 4
4 90 2.1 2.0 3.8 3.8 0.3 0.0 3.8 3.8
4 100 1.9 L9 4.2 4.2 0.0 0.0 2.3 2.3
4 110 8.0 4.9 5.4 5.4 996.7 4.0 0.0 0.0
8 90 6.7 6.6 9.0 9.0 2.9 2.5 0.0 0.0
8 100 7.9 4.3 6.7 6.7 5.9 0.4 0.0 0.0
8 110 9.5 3.1 5.8 5.6 1725 0.0 1.1 0.5
16 90 3.7 3.7 7.7 7.2 0.1 0.0 1.8 0.2
16 100 2.5 2.4 7.8 7.3 0.2 0.0 5.1 0.9
16 110 2.4 2.1 7.4 6.7 0.2 0.0 12.3 19
Average 5.0 34 6.4 6.2 131.0 0.8 2.9 1.1

N = 600 on three-dimensional instances, we maintain a fixed number of samples N = 500 across

Bermudan options pricing instances but consider four-, eight-, and sixteen-dimensional instances.

Table VIII shows the optimality gap and upper-bound gap values of four models: Fourier

FALPsy, and Fourier FALP::;(SO‘6 (also considered in Table V), and ReLU FALP5y and ReLU

FALP;EO’G. Note that the best upper bound (UB) in this table is the smallest upper bound.

Specifically, we use the CFA or VFA obtained from each of these models to compute upper

bound on the optimal policy payoff using the information relaxation and duality approach

discussed in §2.12.2 and as we did in §2.7. Optimality gap ranges for Fourier FALP5qy, Fourier

FALP() ¢, ReLU FALPsq, and ReLU FALPYy ¢ are 1.9%9.5%, 1.9%6.6%, 3.8%9.0%, and 3.8%

113

9.0%. We observe that for four-dimensional instances with] =4, both ReLLU FALP5,, and ReLLU
FALPEEO’6 yield good policies. However, for the other instances with | = 8 and | = 16, these
methods lead to weaker policies compared to Fourier FALPE(SO’G. The upper-bound gap ranges for
Fourier FALP5qy, Fourier FALPSj, 5, ReLU FALPs, and ReLU FALPy 4 are 0.0%-996.7%, 0.0%—
4.0%, 0.0%-12.3%, and 0.0%-3.8%, respectively. Fourier FALP?SQ6 and ReLU FALPE(SO’6 deliver
excellent upper bounds for most of the instances. But they perform poorly on a few instances
Our results in Table VIII suggest that increasing the dimension of the state space] leads
to an increase in the optimality gaps for ReLU FALP;y, and ReLU FALP?EO)G, especially when
] = 16. These observations imply that Fourier bases scale better with the state space dimension,
as evidenced by the near-optimal performance of Fourier FALP;EO,B on the largest instances with
] = 16. This finding complements the results presented in Table VII, which indicates that more

ReLU bases are required for solving instances with larger state space diameters.

2.13.4 Upper and Lower Bound Values

In this section, we report the upper and lower bound values obtained from all methods
studied in Chapter 2 for both perishable inventory control and Bermudan options pricing ap-
plications. Table IX presents ALP™> and FALP,5, bounds on the three-dimensional perishable
inventory control instances studies in Table II. Table X reports ALP™" | FALPs, FALPESW, and
FALP§80,7 bounds on the five-dimensional perishable inventory control instances studies in Table
ITI. Table XI presents 1-\LPLNS7 FALPgo9, FALP;g, and FALPZSOJ lower and upper bounds on the
ten-dimensional perishable inventory control instances studies in Table IV. Table XII presents

DFM

lower and upper bounds computed from methods LSM, ALP ~, FALP;y, and FALP;SO‘6 on the

114

nine DFM instances studied in Table V. Table XIII reports lower and upper bounds that are
computed from Versions (i) and (iii) of policy-guided FALP discussed in §2.13.2 and are used to
compute optimality gap and lower-bound gap values in Table VI. Table XIV reports lower and
upper bounds obtained from Fourier FALP5y, ReLU FALP3y,, and ReLU FALPgy, on the three-
dimensional perishable inventory control instances and are used to create Table VII. Finally,
Table XV reports Fourier FALP5,, Fourier FALP;SO’G, ReLU FALP5y, and ReLLU FALngo,ﬁ lower
and upper bounds that are used to in Table VIII. We note that the lower and upper bound
values reported in Tables IX—XV are the average values across 10 trials for each method and

each instance.

115

Table IX: Lower bound and upper bounds used to compute optimality and lower-bound gaps in

Table II.
L bound U bound (poli t
v e e e a ower boun pper bound (policy cost)
ALPLNS FALP 59 ALPLNS FALP5,
2 5 10 10 1974.7 2043.4 2048.2 2046.1
2) 10 50 1895.8 1938.4 2060.9 2053.4
0.95) 10 8 10 2035.7 2120.8 2126.2 2125.7
' 5 10 8 50 1906.5 2131.2 2132.3 2135.9
2 10 10 10 1989.9 2062.7 2069.3 2067.8
2 10 10 30 1988.4 2052.4 2068.3 2086.4
2 10 10 10883.9 11206.9 11270.4 11231.0
2 10 50 10425.3 10716.1 11379.0 11315.5
0.99 5 10 8 10 11121.1 11590.5 11629.8 11621.2
. 5 10 8 50 10335.8 11522.4 11643.6 11689.6
2 10 10 10 10943.5 11290.0 11355.9 11324.0
2 10 10 30 10912.4 11233.3 11360.7 11400.1

Table X: Lower bound and upper bounds used to compute optimality and lower-bound gaps in

Table III.
_ Lower bound Upper bound (policy cost)
Ch Cg Cp @
ALPINS FALP3og FALPyy ; FALPS ; ALPINS FALP3oq FALPYy , FALPy ;
1 8 2 5 10246 12052 12037 1200.5 2885.7 1441.8 13612 1373.3
1 8 2 2 9584 10220 10202 10202 1205.8 12364 11415 1139.7
1 2 8 5 11259 12204 11968 1210.5 1386.1 1410.5 1349.8 1316.4
1 2 8 2 10167 10838 10740 10758 11579 12154 11301 11307
2 8 5 5 11536 13087 1311.7 13056 2090.3 1520.7 14052 14424
2 8 5 2 10365 11221 11207 1116.1 1214.6 13027 12009 1208.7

116

Table XI: Lower bound and upper bounds used to compute optimality and lower-bound gaps in

Table IV.

L bound * bound (poli t

e cq b @ ower boun Upper bound (policy cost)
ALPINS FALPgoy FALP1go0 FALPgo 7 ALPLNS FALPgoy FALP1g00 FALPggo 7
1 8 2 5 9019 12200 12154 1231.0 17925 13914 1636.7 1322.5
1 8 2 2 804 10651 10743 1089.4 1563.9 11562 1248.3 1141.1
1 2 8 5 9036 1173.1 1177.3 11904 2500.0 13262 1570.5 1274.8
1 2 8 2 887 10540 10545 1070.0 1587.2 11445 1183.7 11246
2 8 5 5 10257 14713 1477.3 1493.8 2141.7 17103 2067.5 1614.8
2 8 5 2 9819 12761 12838 13107 1427.6 1430.2 14934 1396.1

Table XII: Lower bound and upper bounds used to

compute optimality and lower-bound gaps

in Table V.

j o pi Lower bound (policy payoff) Upper bound
LSM ALPPFM FALP;y FALPSG LSM ALPP™ = FALP5, FALPSS) ,
4 90 33.17 33.83 35.20 35.24 35.52 40.24 36.07 35.97
4 100 41.46 41.47 43.43 43.44 44.57 47.60 44.29 44.28
4 110 47.77 47.06 46.85 48.42 51.13 52.45 558.35 52.95
8 90 43.83 43.91 44.85 44.88 46.74 43.91 49.45 49.27
8 100 49.92 49.16 48.74 50.63 52.85 53.22 56.03 53.16
8 110 53.41 52.03 50.30 53.91 55.91 55.68 151.55 55.61
16 90 50.62 49.86 51.48 51.48 53.25 53.22 53.49 53.44
16 100 53.60 52.43 54.18 54.23 55.84 55.49 55.68 55.59
16 110 55.25 53.90 55.46 55.65 57.18 655.99 56.95 56.82

117

Table XIII: Lower bound and upper bounds used to compute optimality and lower-bound gaps

in Table VI.

_ Lower bound Upper bound (policy cost)

Ch Ca Cp a
Version (i) Version (iii) Version (i) Version (iii)
1 8 2) 1203.7 1201.4 1361.2 1671.7
1 8 2 2 1020.2 1004.7 1141.5 1151.3
1 2 8) 1125.0 1196.8 22245 1349.8
1 2 8 2 1074.0 898.4 1130.1 1710.1
2 8 5) 1311.7 1307.7 1450.5 1405.2
2 8 5 2 1120.7 1012.1 1200.9 1205.4

Table XIV: Lower bound and upper bounds used to compute optimality and lower-bound gaps

in Table VII.

Lower bound

Upper bound (policy cost)

Y Ch Ca Cp a
Fourier ReLU Fourier ReLLU
FALP5 FALP3q FALPgqo FALP;5 FALP3q0 FALPggo
2 5 10 10 2043.4 2012.4 2026.5 2048.2 2071.9 2049.4
2 5 10 50 1938.4 1696.9 1629.0 2060.9 3225.9 2087.4
0.95 5 10 10 2120.8 2089.3 2103.1 2126.2 2213.7 2127.8
5 10 50 2131.2 1948.6 1798.2 2132.3 6440.6 2214.7
2 10 10 10 2062.7 2031.7 2043.9 2069.3 2090.2 2069.8
2 10 10 30 2052.4 1970.6 1966.4 2068.3 2907.7 2091.2
2 5 10 10 11206.9 1153.5 11112.8 11270.4 15235.1 11260.6
2 5 10 50 10716.1 10250.7 9445.1 11379.0 28286.6 11596.5
0.99 5 10 8 10 11590.5 11429.1 11497.2 11629.8 12631.0 11654.0
5 10 8 50 115224 10392.1 9788.5 11643.6 30374.5 12022.8
2 10 10 10 11290.0 111276 11193.8 11355.9 15277.4 11355.1
2 10 10 30 11233.3 10969.2 10496.4 11360.7 13654.6 11459.2

118

Table XV: Lower bound and upper bounds used to compute optimality and lower-bound gaps

in Table VIII.

Lower bound (policy payoff)

Upper bound

I pinit
Fourier ReLU Fourier ReLU

FALP5o FALPSS) ¢ FALP5o) FALPSG) FALP5 FALPSG) FALPs5o) FALPSG) ¢
4 90 35.2 35.2 34.6 34.6 36.1 36.0 37.3 37.3
4 100 43.4 43.4 42.4 42.4 44.3 44.3 45.3 45.3
4 110 46.8 48.4 48.1 48.1 558.4 52.9 50.9 50.9
8 90 44.8 44.9 43.7 43.7 49.5 49.3 48.1 48.1
8 100 48.7 50.6 49.4 49.4 56.0 53.2 52.9 52.9
8 110 50.3 53.9 52.4 52.5 151.5 55.6 56.2 55.9
16 90 51.5 51.5 49.3 49.6 53.5 53.4 54.4 53.5
16 100 54.2 54.2 51.2 51.5 55.7 55.6 58.4 56.1
16 110 55.5 55.6 52.6 53.0 56.9 56.8 63.8 57.9

CHAPTER 3

RANDOMIZED MULTI-SHOT APPROXIMATION OF
AVERAGE COST MARKOV DECISION PROCESSES

(Co-authors: Parshan Pakiman and Selva Nadarajah)

Abstract

Approximate linear programming is a well-established approach for computing control poli-
cies for average-cost Markov decision processes (MDPs). This method approximates the MDP
bias function using a weighted sum of basis functions. It solves an approximate linear program
(ALP) that maximizes a lower bound on the optimal policy cost and produces optimal weight for
each basis function. When rich basis functions are selected, the optimal objective value of ALP
is a near-optimal lower bound. However, ALP can result in weak bias function approximations
(BFAs) and control policies even if bases are rich because ALP formulation does not include
any measure of BFA error in its objective function. We propose a new approximate linear
programming approach to tackle the challenges of selecting rich basis functions and modifying
ALP formulation. We combine a known two-phase ALP model studied in the literature with a
randomized multi-shot approximation mechanism recently proposed for discounted-cost MDPs.
Our method thus has two phases. First, it defines BFA in ALP using universal random basis
functions to mitigate the impact of poor basis functions on ALP lower bound quality. Second,

it solves a sequence of ALP models that iteratively refine their formulation using previously

119

120

computed BFAs in this sequence to mitigate the impact of poor ALP formulation on policy per-
formance. We establish a probabilistic convergence rate showing our lower bound approaches to
the optimal policy cost. In addition, we show that our sequence of ALP models taking multiple
shots at randomly approximating MDP bias function results in policies with improving worst-
case performance. We apply our method to two inventory management problems, resulting in

near-optimal lower bounds and effective control policies.

3.1 Introduction

Average-cost Markov decision processes (MDPs; see, e.g., Chapter 5 of Herndndez-Lerma
and Lasserre 1996) provide mathematical models for sequential decision-making problems such
as inventory control, capacity allocation, queuing, and hospital management (Mahadevan 1996,
Adelman and Klabjan 2005, De Farias and Van Roy 2006, Adelman and Klabjan 2012, Adelman
and Mersereau 2013, Dai and Shi 2019). These MDPs usually feature high-dimensional state
and action spaces, making exact solutions intractable.

Approximate linear programming (Schweitzer and Seidmann 1985, De Farias and Van Roy
2003) is a well-established model-based reinforcement learning method for approximating large-
scale average-cost MDPs. This method relies on (i) approximating the MDP bias function
using a linear combination of so-called basis functions defined over the MDP state space and
(ii) solving an approximate linear program (ALP) to obtain the optimal weight of each basis
function in this linear combination. ALP has one decision variable for each basis function weight,
in addition to a variable representing a lower bound on the optimal policy cost. ALP maximizes

this lower bound and yields optimal weights of basis functions. It is known that if basis functions

121

are powerful enough to approximate the MDP bias function closely, the ALP lower bound is
arbitrarily close to the optimal policy cost. However, because the ALP objective function does
not include any BFA error term, ALP BFA and policy qualities can be highly sub-optimal even
if basis functions are powerful.

The studies below explored modifying ALP reformulations by integrating a BFA error term
into its objective function, thereby improving the qualities of ALP BFA and policies. These

reformulations all require a predetermined set of basis functions as input.

e De Farias and Van Roy (2002) proposed a two-phase ALP model. In the first phase, it
solves the original ALP formulation to obtain a lower bound on the optimal policy cost.
In the second phase, it uses the lower bound value from the first phase and solves a differ-
ent ALP model that minimizes a surrogate loss for BFA error. This loss is the difference
between BFA and an upper bound on the MDP bias function that is weighted based on a
state-relevance distribution, which assigns weights to different regions of the state space.
This distribution naturally arises in ALP formulations for discounted-cost MDPs, as we
saw in Chapter 2. Therefore, the second-phase ALP can be seen as artificially adding the
state-relevance distribution to the average-cost ALP formulation in order to control BFA
quality. Although this surrogate loss enables controlling BFA quality in the second-phase
ALP, a capability lacking in the first-phase model, it may not accurately capture BFA
error. In particular, when the first-phase ALP produces a weak lower bound, the upper
bound on the MDP bias function arising in the definition of the surrogate loss can be weak

and thus lead to a poor BFA in the second-phase ALP. In other words, minimizing this

122

surrogate loss may not directly translate into minimizing the true loss between BFA and

the MDP bias function.

De Farias and Van Roy (2006) proposed a cost-shaping ALP formulation to control BFA
quality. This formulation involves constructing a perturbed MDP with a transition kernel
obtained from a convex combination of the original MDP transition kernel and a so-called
restart distribution. The cost-shaping ALP formulation is obtained from the original ALP
model written for the perturbed MDP with an additional slack variable allowing for con-
straints violation. The amount of such violation is then managed by adding a penalty term
in the cost-shaping ALP objective function. The authors showed that the performance of
the greedy policy obtained from the cost-shaping approach is proportional to the least at-
tainable BFA error for a given set of basis functions. However, to deploy this approach, one
needs to specify multiple parameters, including a distribution that determines the amount
of constraint violation at each state, a penalty factor for constraint violation in the ALP
objective, the restart distribution, and basis functions. The authors stated that automat-
ically choosing these parameters is an open question. To the best of our knowledge, there
have been no numerical experiments conducted to assess the performance of this approach,

possibly due to the computational difficulties associated with tuning its parameters.

Veatch (2013) builds on the work by De Farias and Van Roy (2006) and utilizes the
“smoothed” ALP formulation in Desai et al. (2012a) to design an ALP model for average-
cost MDPs. In comparison to the original ALP formulation for average-cost MDPs, the

model in Veatch (2013) features a modified objective function with a surrogate loss for

123

BFA error and a penalty term for constraint violation. Unfortunately, this formulation
relies on idealized information based on the MDP optimal policy, limiting the use of this

method. Moreover, the numerical performance of this method has not been explored yet.

We develop an ALP method that integrates the two-phase ALP model in De Farias and
Van Roy (2002) with the randomized multi-shot approximation mechanism proposed in Chapter
2 for discounted-cost MDPs and relies on random basis functions (Rahimi and Recht 2008,
Rahimi and Recht 2009). Our method is based on two randomized ALP models, namely bound-
focused ALP (BALP) and policy-focused ALP (PALP), which are analogous to the first and
second phase ALPs in De Farias and Van Roy (2002). BALP uses a batch of random basis
functions sampled from a readily available distribution, i.e., a single-shot approximation. We
show that BALP lower bound converges to the optimal policy cost with a high probability.
Upon solving BALP, our method solves a sequence of PALP models that utilize BALP lower
bound and BFA. These PALPs, which are analogous to self-guided ALPs in Chapter 2, have an
increasing number of random basis functions that are sampled iteratively in multiple batches.
We link BFAs in this sequence of PALP models using “guiding constraints”. They ensure the
error of these BFAs and an upper bound on the cost of greedy policies with respect to these
PALP BFAs are weakly improving.

In contrast to the approach outlined in De Farias and Van Roy (2002), where a single
second-phase ALP is solved, our method solves multiple second-phase ALPs, specifically PALPs.
Additionally, our guiding constraints in the context of average-cost MDPs are added to the

second-phase ALP formulation in De Farias and Van Roy (2002), whereas our guiding constraints

124

in the context of discounted-cost MDPs are added directly to the original ALP model. Therefore,
our algorithms and their analyses in this chapter are fundamentally different from those in De

Farias and Van Roy (2002) and in Chapter 2.

3.1.1 Contributions

e Model. We propose new average-cost ALP models, BALP and PALP, that address issues
associated with the original ALP formulation as well as the two-phase ALP method in
De Farias and Van Roy (2002). These models extend our randomized multi-shot approx-
imation of discounted-cost MDPs in Chapter 2 to average-cost MDPs. This extension
is non-trivial because if we directly add guiding constraints to the original average-cost
ALP model, as done in Chapter 2 for discounted-cost MDPs, these constraints become

redundant and do not guarantee improving worst-case policy performance improvement.

e Theory. We show that the gap between optimal policy cost and BALP lower bound
converges to zero at a dimension-free rate of one divided by the square root of the num-
ber of random bases used to formulate BALP. We also develop an upper bound on the
performance of greedy policies obtained from PALP. To this end, we first generalize a
previously known bound in De Farias and Van Roy (2002) for finite-state MDPs to the
continuous-state MDPs. Then, using this performance bound, we show that our guiding
constraints weakly improve the cost of greedy policies based on PALP models as more ba-
sis functions are sampled. Moreover, our theoretical findings for BALP and PALP provide
a new insight: the number of random basis function samples required to obtain a tight

lower bound from BALP can be significantly smaller than the number of samples needed

125

to achieve near-optimal BFAs from PALP. In other words, learning accurate lower bounds

can be much easier than learning accurate BFAs.

Numerical experiments. We apply our method to the generalized joint replenishment
problem studied in Adelman and Klabjan (2012) and an average-cost version of the per-
ishable inventory control (PIC) problem studied in Chapter 2. Adelman and Klabjan
(2012) showed that affine BFAs provide high-quality greedy policies on their instances
without holding cost, but computing tight lower bounds requires using more sophisticated
BFAs based on ridge-type basis functions. We benchmark BALP lower bounds against
the ones obtained from the algorithm in Adelman and Klabjan (2012). Our application-
agnostic BALP method formulated with Stump bases results in near-optimal lower bounds
comparable to those obtained from the application-specific benchmark in Adelman and
Klabjan (2012) on the instances without holding cost. As shown in Chapter 2, computing
near-optimal policies for high-dimensional discounted-cost PIC instances is challenging.
We also observe that this is, in fact, the case when considering an average-cost version of
these problem instances. We apply our randomized multi-shot approximation method that
solves PALPs formulated using Fourier basis functions to these instances and find that it
provides near-optimal policies. We demonstrate that PALP greedy policies are substan-
tially better than the ones from BALP and its modified version. Moreover, we show that
PALP significantly outperforms several benchmarks. Our numerical results contribute to
the limited literature evaluating the numerical performance of ALP models for large-scale

average-cost MDPs.

126

e Solution of BALP and PALP. BALP and PALP are semi-infinite linear programs.
These models can be solved using constraint sampling (De Farias and Van Roy 2004,
Calafiore and Campi 2006). For generalized joint replenishment (GJR) problem instances
studied in Adelman and Klabjan (2012), constraint sampling may not provide good ap-
proximations of the original semi-infinite linear programs because of action space high-
dimensionality. In addition, the greedy policy optimization method for GJR cannot be ap-
proached via discretization, as was done in Chapter 2, because GJR has a high-dimensional
action space, unlike applications in Chapter 2. We thus show how BALP and PALP for-
mulated using specific classes of random basis functions can be solved using constraint
generation. Specifically, if the random basis function class used to formulate these models
is piecewise constant (e.g., Stump bases) or piecewise linear (e.g., ReLU bases) and the
MDP cost function and transition kernel have structure, we can use the constraint genera-
tion method to solve BALP and PALP. For the GJR problem, because MDP components
have linear structures, we can reformulate the separation problem in the constraint genera-
tion method and the greedy policy optimization problem as mixed-integer linear programs
when Stump basis functions are used to formulate BALP. Constraint generation in con-

junction with random basis functions is new in the ALP literature.

3.1.2 Related work

Pakiman et al. (2020), which is the paper underpinning Chapter 2, applies random basis
functions to discounted-cost ALP and proposes a “self-guiding” mechanism to mitigate the effect

of state-relevance distribution choice on greedy policy performance, where this distribution is

127

a parameter appearing in the discounted-cost ALP formulation (see Chapter 2). The main
difference between our work and Pakiman et al. (2020) is that there is no value in adding
guiding constraints proposed by Pakiman et al. (2020) to the standard ALP formulation for
average-cost MDPs (i.e., these constraints become redundant). Instead, we demonstrate that
by adding analogous guiding constraints to a second-phase ALP model based on De Farias and
Van Roy (2002), we can ensure a worst-case measure of greedy policy is improving. Therefore,
our work extends the results in Pakiman et al. (2020) to average-cost MDPs in a non-trivial
manner. In addition, we show that accessing an approximation of the MDP bias function over a
possibly small region of the state space suffices to obtain tight lower bounds, but this is not true
if we want to ensure a near-optimal greedy policy. This result is new relative to our findings in
Pakiman et al. (2020).

The seminal work by Klabjan and Adelman (2007) proposes a convergent algorithm based
on primal-dual linear programs that produce basis functions for average-cost semi-MDPs, albeit
requiring the solution of challenging nonlinear programs. Adelman and Klabjan (2012) leverages
the structure of the GJR problem and develops a tractable algorithm to perform these primal-
dual steps, and they show that this method delivers excellent policies and lower bounds for
this application. Our work is similar to both of these papers in terms of dynamically updating
basis functions. The main difference is that our basis functions are sampled inexpensively
from known distributions and do not require optimization or domain knowledge. Adelman and

Klabjan (2012) use information based on flow-balance constraints in dual ALP and problem

128

structure to generate bases, but we leverage the primal ALP formulation. Moreover, we focus
on MDPs, but Adelman and Klabjan (2012) focus on deterministic semi-MDPs.

The structure of the paper is as follows. In §3.2, we provide background material on MDPs.
In §3.3 and §3.4, we discuss BALP and PALP models, respectively. In §3.5, we present our
main algorithm that combines BALP and PALP models and explain how to solve them with
constraint sampling and constraint generation methods. In §3.6 and §3.7, we present our nu-
merical experiments on GJR and PIC problems, respectively. We conclude in §3.8. All proofs

and supporting materials are available in §§3.9-3.10.

3.2 Markov Decision Processes

We consider an MDP with the state space of S C R4 and the action space of A C Rda,
We denote by As C A the set of feasible actions from state s € S. Taking action a € A in
state s € S results in the immediate cost of c(s,a) and in the transition of the system to the
next state s’ with the probability of P(s’|s,a). The expected average cost per stage of a given

(deterministic and stationary) policy 7: S +— A from an initial state s = sy € S is:

1 n—1
AC(s;m) :=limsup EI |— c(sn,ﬂ(sn))] , (3.1)
n—o0 n =
where {(sn,7t(sn)) : m = 0,1,...} is an infinite sequence of states and actions under policy 7

when starting from initial state sp = s. For each policy 7t and initial state s, the expectation
operator E?[] over infinite sequences of states and actions is well-defined by the Ionescu-Tulcea

theorem (see, e.g., Proposition C.10 in Hernandez-Lerma and Lasserre 1996).

129

The goal of the system is to find an optimal control policy 7m* with the minimum expected
long-run average cost when starting from an initial state s € §. Formally, this goal requires
solving the following policy optimization problem:

mlsr'l_f)A AC(s;m). (3.2)

When the Markov process defined by the stochastic kernel P(-|-,7t(-)) over S is positive Harris-
recurrent for every policy 7 (see, e.g., Theorem 2.5 in Saldi et al. 2017), the average cost AC(s;)
is a constant independent of the initial state s. Thus, under this condition, if a policy is optimal
to (3.2) in a specific state s, then it will also be optimal in all other states. Harris-recurrence
means that every state s € § can be reached in a finite number of transitions when starting
from an arbitrary initial state s and taking actions according to 7t. The positiveness means that
the Markov process of states under 7t admits a unique invariant probability measure w(-;7t) that

satisfies ¢ u(s;m) ds =1 and
J P(s’ € Xls,m(s))p(s;) ds = p(X;m), vX CS. (3.3)
S

In the context of MDPs with a finite state space, when a so-called weak accessibility assump-
tion holds, the optimal average cost is the same for all initial states (see Proposition 5.2.3 in
Bertsekas 2015). This assumption is similar to the positive Harris-recurrence assumption in our

setting for MDPs with continuous state space.

130

Assumption 6 requires the MDP state and action spaces to be compact continuous sets and
the Markov process generated by every policy to be positive Harris-recurrent, which is widely
used in the literature for analyzing average-cost MDPs. For example, please see Assumption 2.3

in Gordienko and Hernandez-Lerma (1995) and Theorem 3.3 in Vega-Amaya (2003).

Assumption 6 State space S C RY and each feasible action set A, C R are compact con-
tinuous sets. Moreover, for each policy T, the Markov process defined by the transition kernel

P(-|-,7t(-)) over the state space is positive Harris-recurrent.

Under Assumption 6, the average cost of a policy 7t is the constant n™ € R that satisfies the

following identities (as shown in Theorem 2.5 of Saldi et al. 2017):

n" =AC(8m) = L c(s,mt(s))u(s;m)ds, Vs e S.

Therefore, the average cost minimization problem (3.2) can be written as inf;n™ that finds an
optimal 7t* (if exists) with the smallest cost N .
The cost minimization problem (3.2) over the set of all policies for finding 7* is related to

the following average cost optimality equation:

u(s) = ig&{c(s, a) —n + E[u(s’)s, al}, Vs € S, (3.4)

131

where constant € R and function u : § — R are variables in (3.4). In the following assumption,
we require both an optimal policy 7m* that solves (3.2) and a pair (n*,u*) that solves (3.4) exist.

We also clarify how (3.2) and (3.4) are linked.

Assumption 7 There exists triplet (7*,m*, u*) such that (i) the optimal policy T* solves (3.2),
(1) pair (n*,u*) solves (3.4), (#3) function u* : S — R is continuous over S, and (iv) following

identities hold for all s € S:

n*=n" =AC(s;7") = ir%f AC(s;m), and u*(s)=c(s,m*(s)) —n* +E[u*(s’)|s, " (s)].

Assumption 7 states that (i) an optimal policy 7t* solving (3.2) exists, i.e., the “inf” in (3.2)
can be replaced by a “min”; (ii) solution (n*,u*) to the optimality equation (3.4) exists, where
u* : S — R is known as the MDP bias function; (iii) the MDP bias function is continuous
over S; (iv) n* obtained from optimality equation is the cost of the optimal policy cost, i.e.,
N™ = AC(s;7*), and the optimal policy m* selects action 77*(s) that minimizes the expression
given in (3.4) for every state s. Another way to express this final property is that 7t* is greedy
with respect to u*. Specifically, define the greedy policy 7tq(s;u) with respect to u: S — R at
state s € § as,

Tg(s;u) := argeﬂin{c(s, a) + Efu(s)s, al}. (3.5)

The above objective function is based on optimality equation (3.4) without including the con-
stant term 1 because removing it from the minimization does not change the optimal ac-

tion obtained in optimization problem (3.5). Assumption 7 (iv) guarantees that the identity

132

7" (s) = my(s;u*) holds for all s € S, meaning 7* is greedy with respect to u*. In other words,
the policy optimization problem (3.2) is equivalent to solving optimality equation (3.4) to obtain
pair (n*,u*) and then plug in u* into the greedy optimization problem (3.5) to recover 7*. A
body of work studies conditions on the MDP primitives under which Assumption 7 holds. For
example, see Theorem 5.5.4 of Hernandez-Lerma and Lasserre (1996) and Theorem 2.5 of Saldi
et al. (2017). See also Klabjan and Adelman (2006) for analogous results for semi-MDPs. In
§3.9, we discuss a set of such conditions for the completeness.

Although Assumption 7 ensures existence of triplet (7t*,n*, u*), it is known that every shift
of u* by a constant ¢ € R results in the updated pair (n*,u* +¢) that is also a solution to (3.4).
Theorem 10.3.7 of Hernandez-Lerma and Lasserre (1999) states that all pairs satisfying optimal-
ity equation (3.4) has the form of (n*,u* + c) for some constant c. For a given solution (n*, u*)
to (3.4), if we define ¢ = —u*(s) for a fixed reference state s € S, then (n*, u* —u*(s)) becomes
the unique solution to (3.4) that satisfies u*(s) —u*(s) = 0 at s = 5. Hereafter, notation (n*,u*)
thus refers to the unique solution of the optimality equation, where the MDP bias function u*
satisfies condition u*(s) = 0 at the reference state s = 5. We define U as the collection of all

continuous functions w: S +— R that satisfy condition u*(s) = 0. Thus, u* belong to U.

3.3 Bound-Focused Programs

In §3.3.1, we present a linear programming reformulation of the optimality equation. In
§3.3.2, we present an alternative reformulation based on random basis functions. In §3.3.3, we
construct BALP using the reformulation in §3.3.2, and we develop a probabilistic error bound

for BALP.

133

3.3.1 Bound-Focused Exact Linear Program

Linear programming provides a well-established approach to reformulate optimality equation
(3.4). The computation of the optimal average cost n* can be reformulated according to the

following bound-focused exact linear program (BELP):

sup n
(myuw)eERxU

n+u(s) —Eu(s')s,a] < c(s,a) V(s,a) € S x As. (3.6)

BELP has a decision variable u(s) per state s € S, where u € U, and an additional variable
n € R. It also has a constraint for each state-action pair. Therefore, BELP is an infinite-
dimensional linear program. To better understand BELP and the use of the term “bound-

focused”, consider the following proposition.

Proposition 14 Every BELP feasible solution (1, u) satisfies 1 < n*, and pair (m*,u*) is an

optimal solution to BELP.

Proposition 14 shows that BELP maximizes a lower bound 1 on n*, suggesting the name “bound-
focused”. Also, it shows that pair (n*,u*) solving (3.4) is an optimal solution to BELP. This
means that BELP is an exact reformulation of optimality equation (3.4), and the “sup” in BELP
can be replaced by “max” because BELP attains its optimal solution (n*,u*). Moreover, this

proposition suggests that BELP is equivalent to the regression problem

}ni%{In —1n*: (m,u) € R x U satisfies (3.6)},
nu

134

that minimizes the absolute deviation between 1 and the optimal cost n*. Proposition 14,
which suggests this regression-based reformulation of BELP, extends the results in Lemma 1
of De Farias and Van Roy (2002) to the MDPs with continuous state space. An important
implication of this proposition is that if one can solve BELP, then the optimal cost n* can be
recovered from the optimal objective value of this program, but solving BELP to obtain n*
is, unfortunately, interactable because this program is infinite-dimensional. In the following
section, we use random basis functions to derive a BELP reformulation that enables closely
approximating it.

3.3.2 Bound-Focused Feature-based Exact Program

Proposition 14 suggests that BELP can be seen as a non-parametric regression model to
find n*. This model is non-parametric because it has decision variables belonging to the non-
parametric set of all continuous functions u € U satisfying u(s) = 0. We discuss an alternative
representation of the elements in U/ based on random basis functions that allow us to develop
an exact but parametric reformulation of BELP. The resulting parametric model enables closely
approximating n*.

Random basis functions are a popular tool in Machine Learning for approximating functions
and tackling supervised learning problems. Let s € RY be a state vector, 8 € R4 be a param-

eter vector that belongs to a parameter space © C R+

, and p be a probability distribution
over ©. Given 6 = (6y,07,...,04) sampled from p, we can define the random linear feature map

0o + Zle $i0; that is obtained by taking the inner product of (1,s) and 6. A key benefit of

random features is that 8 does not need to be chosen or optimized. Instead, new feature maps

135

can be generated inexpensively by sampling 0 from p. A nonlinear version of this feature map
can be constructed if we apply nonlinear (activation) function ¢ : R +— R to the inner product
B0 + Zf:] $i0;. For example, random Fourier feature maps are defined based on @(-) = cos(-).
A random Fourier feature maps pair (s,0) to the value of cos(0y + Z{L si0;). Random Fourier
features have sampling distribution p defined over ® = R4+ for which 6y is sampled from a uni-
form distribution over interval [—7, 7] and each 0; is drawn from a standard normal distribution
with the standard deviation of ¢, > 0, which is a tunable parameter.

In the ALP literature, a basis function is a mapping from MDP state space to the real line.
Therefore, we can interpret mapping (s,0) — @(6o +Zf:1 $i0i) as a random basis function with
parameter 0. Other examples of random bases are Stump and ReLU basis functions specified
by piecewise constant and piecewise linear functions @(-) = sgn{-,0} and @(-) = max{:, 0},
respectively. The signum function sgn{a,0} evaluates to —1, 0, or 1 if a is negative, zero,
and positive, respectively. The parameter 0 for ReLLU bases can be sampled from a uniform
distribution over a unit sphere in R4, For Stump basis functions, 6y is sampled from a uniform
distribution with support over an interval [—c,,c,], where ¢, > 0 is a tunable parameter, and
the remaining elements of 0 are sampled from a uniform distribution defined on the discrete
set {e!,...,ed}, where e for i € {1,2,...,d} is the d-dimensional unit vector with 1 in the i-th

coordinate and zero elsewhere. Parameter c, needs to be chosen such that [—c,, cp]d D S holds.

136

Random basis functions provide parametric representations of functions in the non-parametric
set U. Given random basis functions identified by (¢, p), consider an integrable weighting func-

tion B : ® — R and define its (2, p)-norm as follows:

0 2 0 2

Given B, define function u(-;B) : S — R parameterized by B(0) as follows:

u(s;B) = J@B(e)@(s;e)de, (3.7)

and further let R be the class of all continuous functions in &/ admitting representation (3.7)

and having a finite (2, p)-norm, i.e.,

R={ueu ‘ B st ul) =ul-;B), ws;B) =0, [|B/pl,, < oo}

When random bases have a “universality” property, R becomes a dense subset of ¢/. That is,
every non-parametric function in & can be approximated closely using a function in R that is
parameterized by (0). Formally, if random basis function identified by (¢, p) is universal, then
for each uw € U and € > 0, there is au(f) € R such that ||ju — u(p)|

= sup; [u(s)—u(s; B)| < e.

| o0

Assumption 8 Random basis function @ is universal, and its sampling distribution p has a

finite second moment. Also, @ has a Lipschitz constant L > 0 and satisfies ||@]|,, < 1 and

137

©(0) = 0. Moreover, we require W* € R that entails existence of B* such that ||[5”‘/p||21p < 00

and wW* =u(p*).

The universality requirement in Assumption 8 is non-restrictive as Fourier, ReLLU, and Stump
basis functions are all universal. This assumption also requires Lipschitz continuity of ¢,
lelloo < 1, and @(0) = 0, which are standard assumptions in the literature (see, e.g., The-
orem 3.2 in Rahimi and Recht 2008). Fourier and ReLU bases meet these requirements, but
Stump does not due to its discontinuity at zero. Requirement u* € R is non-restrictive because
if it does not hold, then R includes an arbitrarily close approximation of u* (please see Chapter
2 for a similar discussion).

Random basis functions provide a natural reformulation of BELP based on the parametric
form (3.7). Specifically, when the random basis function is universal, we can replace decision
variable u € U with u(p) € R without incurring a significant loss. Performing this replacement,
we obtain the bound-focused feature-based exact program (BFEP):

sup 1
(m,B)ERXB

n +J@ B(G)((p(s;e) *E[(p(S';G)Is,aD de < c(s,a), V(s,a)eS x A,

where B:={B: 0 — R: [B/pl,, < oo, u(s;B) = 0} is the set of all weighting functions
with a finite (2, p)-norm such that their associated function w(s;) is zero at s = s, similar to

all continuous functions u € U. Note that BFEP is not a linear program because of constraint

1B/l < o0

138

In Proposition 15, we show that pair (n*, ") is an optimal BFEP solution. Thus, BFEP

attains an optimal solution, and the “sup” in its formulation can be replaced by a “max”.

Proposition 15 Pair (n*, ") is an optimal solution to BFEP.

Proposition 15 suggests that BFEP is an exact parametric reformulation of BELP. The paramet-
ric form and the exactness of BFEP allow us to construct ALP models whose optimal objective

values are arbitrarily close to n*, as we discuss in the subsequent section.

3.3.3 Bound-Focused Approximate Linear Program

Consider the integral form (3.7) for the BFEP decision variable u(f). We can approximate
it to obtain a BFA using sample average approximation with N randomly sampled parameters

0',08%,...,08N from p as follows:

N
u(s;B):=Bo+) Bie(s;0Y),

i=1

where B is the finite weight vector B = (Bo, B1,..., BN) € RN*!. Coefficients p is a finite
analogue of the weighting function B in FELP and u(s;) can be viewed as a randomized BFA
constructed using a functional extension of Monte Carlo sampling applied to u(s;). The ad-
dition of intercept g is solely for the purpose of ensuring BFA satisfies constraint u(s;) = 0

for an appropriate choice of 3.

139

Replacing BFA u(s;3) with bias function u(s;p) in BFEP results in the following bound-
focused ALP (BALP), denoted BALPy:

sup M
(m,B)ERN+2

N
n+) Bi(@(s0Y) — Elp(s;09s,al) < cls,a) Vis,a) € S x A,
i=1

N
Bo+) Bip(50') =0.

i=1
This model is a semi-infinite linear program with N+ 2 variables and a continuum of constraints.
If BALPy attains an optimal solution, we denote it by (n3*, ") € RN+, Otherwise, we can
add a constraint to this program requiring a norm of 3 to be finite. The resulting restriction
of BALPy always attains an optimal solution. The formulation of BALPy raises fundamental
questions: Does the optimal objective value of BALPy converge to n* as we increase the value
of N? And if so, at what rate does this convergence occur? We show that the answer to the
first question is yes, and the optimal objective value of BALPy converges to n* at the rate of
1/V/N. To motivate our theoretical analyses formalizing answers to these questions, we use the

following example.

Example 1 Consider an MDP with a finite number of S states in the set S :={1,2,...,S} and
two actions a € {0, 1}. This MDP is shown in Figure 6 and its transition probabilities are depicted
in gray boxes. Specifically, we have P(s+1|s,a) = a and P(s—1|s,a) =1—a, wheres—1 =1 for
s=1ands+1=S fors=S. The MDP immediate cost function c(s,a) =s for all s € S, which

1s independent of the action. The optimal policy that minimizes the long-run average cost per

140

stage selects the optimal action a = 0 at all states and results in the optimal long-run expected
average cost ofn* = 1. Solving the optimality equation w(s) = min{s—1+u(s—1),s—14+u(s+1)},
the MDP bias function becomes u*(s) = s(s — 1)/2. We choose state s to be s = 1 for which

u*(s) =0. The BELP in this example can be written as follows:

+u(s)—u(s—1) < s Vs=1,2,...,S
n+u(s) —uf) < yeees S, (3.8)

n+u(s)—u(s+1) < s Vs=1,2,...,8S,

Assume we use the constant BFA of the form {i(s) = k to approximate the MDP bias function
u*(s) =s(s—1)/2, where k € R. It is easy to see that for k =0, this BFA is feasible to (3.8).
In fact, pair (1,Q0) with k = 0 is an optimal solution to (3.8). This observation suggests that to
learn the optimal cost n* = 1, one may only need a simple BFA such as i(s) = 0, which is a
poor approzimation of u*(s) = s(s —1)/2. In other words, it may not be needed to find a BFA
that closely approximates the MDP bias function u*(s) = s(s — 1)/2 at all states in order to

recover the optimal average cost n® = 1.

In Example 1, we recover n* using BFA {i that satisfies {i(s) = u*(s) at state s = 1. This
particular state is the only point visited by the optimal policy in the long run. Extending
this insight, we can likely derive an approximation for n* as long as we access to a BFA {i that
closely approximates u* within the region of the MDP state space that are visited by the optimal

policy. This region can be smaller than S and thus approximating u* over this region can be

141

Figure 6: Illustrating the connection between lower bound quality and BFA quality on a toy
MDP.

much easier than approximating it over the entire state space S. In Example 1, the function
that matches u* at s =1 is a constant function, yet the MDP bias function is a quadratic bias
function u*(s) = s(s — 1)/2, which is harder to approximate than a constant function.

To formalize this concept, let S* denote the largest subset of S to which the invariant
probability distribution u*(-) = pu(-;7w*) assigns a positive mass. Specifically, define $* := {s €
S : W (s) > 0} that satisfies u*(S*) = 1 and u*(S\S*) = 0. Additionally, introduce the following
hypothetical idealized math program (IMP):

sup n
(n,B)ERXB

n+uls;B) —Efu(s’B)ls, m*(s)] < c(s,m"(s)) VseS™

142

The term “idealized” is used for IMP since its formulation depends on the knowledge of the
optimal policy 7t*. We show in Proposition 16 that n* can be obtained from IMP, a considerably

smaller model than BELP. Define ™" as follows

Bmp = arg min{”ﬁ/sz,p B eBuls;B) = u*(s),‘v’s S S*}a

that is the weight function with the smallest (2, p)-norm among all weight functions whose
associated bias functions match u* over S*. Note that ™" is well-defined because the mini-

mum in its definition is attainable, and it possesses a smaller (2, p)-norm compared to B*, i.e.,

1B™ 120 < 1IB"ll2,p-

IMP)

Proposition 16 Pair (n*, B is an optimal solution to IMP.

The implication of Proposition 16 is that obtaining n* does not require knowing u* at all states.
Instead, knowing u* at &* suffices to recover n*. Thus, approximating the optimal average cost

™MP) is simpler than approximating the MDP bias function

1n*, which is possible through u(p

To establish an error bound on the difference between n* and the optimal objective value of
BALPy, denoted as ny*, we can either approximate u* or u("™"). Approximating the former
function seems excessive, as recovering n* doesn’t require the full knowledge of u* across the
entire state space. Thus, approximating the latter function appears to be reasonable. However,

pair (n*, B™") based on this latter function might not be feasible to BFEP constraints because

IMP constraints are a subset of BFEP constraints. Thus, approximating w(p™") may result

143

in a BFA that does not satisfy constraints (3.6). As a solution, we introduce a third function,

IMP)

different from u* and u(p™"), that is simpler to approximate compared to u* and is feasible to

BFEP constraints. Define the following set of weight functions,
B = {B eB) (m*,u(pB)) is feasible to (3.6), u(s;B) =u*(s),Vs € S*},

and the weight function B*° := argmin{||3/ pll2p : B € B} Set BA includes the weighting
function B of each BFA u(f) € U, where (i) pair (n*, u(B)) is feasible to BELP constraints when
n is set ton*, and (ii) BFA u(s;) matches u* at all states within S*. Because u* = u(p*) € R,
we have B* € B, i.e., BA° is non-empty and thus the weighting function B*¢ is well-defined.

Moreover, 3" has the following property:

IB™ llz0 < 1B*ll2p < [IB*[l2,p-

The weight function B thus possesses the smallest (2, p)-norm among all other weight functions
whose corresponding BFA u() € R is feasible to constraints (3.6) when 1 =n* and is identical

to u* at all states visited under the optimal policy 7t*. Proposition 17 formalizes an important

property of pair (n*, B*9).

Proposition 17 Pair (n*, B*°) is an optimal solution to BFEP.

144

Comparing propositions 15 and 17, we observe that (n*,) and (n*, *) are both optimal to
BFEP. To develop our error bound, we use the former pair with the associated bias function
u(pB*°) that can be easier to approximate compared to the MDP bias function u(g*) = u*.

Theorem 4 establishes that BALPy optimal objective value n>* converges ton* at a dimension-

free rate of 1/4/N with a high probability. This theorem relies on the following definition:

The error rate Err(N,d;B"°) is defined for every integer N > 1 and probability threshold
& € (0,1], given weight function B*°. It depends on the constant p > 0, state space diameter

Ds := maxges||s||2, Lipschitz constant L of random basis ¢(-) defined in Assumption 8, and

term /E, [||9H§] that signals the standard deviation of p.

Theorem 4 Suppose p(6) > p > 0 for all © € ©. Given & € (0,1], we have that every finite

optimal BALPy solution (n*, ") satisfies
0 <n* —n* <4Err(N, 5 Err(N, §;),

with a probability of at least 1 — 8.

Theorem 4 suggests that BALP is convergent, i.e., if we sample a sufficiently large number
of random bases, then lower bound n?* becomes arbitrarily close to the optimal policy cost n*

with a high probability.

145

3.4 Policy-Focused Programs

In §3.4.1, we present a general performance bound for greedy policies. In §3.4.2, we discuss
how a discounted-cost ALP delivers BFA for average-cost MDPs. In §3.4.3, we introduce an
alternative exact linear program that relies on random basis functions and includes a BFA error

term in its objective function. In §3.4.4, we present PALP and analyze its theoretical properties.

3.4.1 Policy Performance Bound

Recall Proposition 14 and Example 1. They suggest that while (n*,u*) is an optimal solution
to BELP, there might be an alternative optimal solution to this program. That is, if we denote
this alternative solution by u®® then we have u* # uP®. This degeneracy imposes an issue when
computing greedy policy with respect to u®®. Specifically, although both (n*,u*) and (n®", u®")
are both optimal to BELP, the cost of greedy policy mg(u"”) can be substantially worse than

the cost of the greedy policy mg(u*) = m* with respect to u*. We show this degeneracy issue

arises in Example 1.

Example 2 (Revisiting Example 1) Recall the MDP bias function u*(s) = s(s —1)/2 in
Example 1. Define L with Qi(s) = 0 at s =s =1 and ((s) = 1/s for s > 2. It is easy to
verify that the pair (1,41) is an optimal solution to BELP (3.8). However, the greedy policy with
respect to QU always chooses the worst action a =1 at all states, i.e., mg(s;q) =1 for all s € S.
This greedy policy has the average cost of WM =S, which is S times larger than the optimal
policy cost n* = 1. Therefore, greedy policies based on bias functions obtained from BELP may

lead to highly suboptimal greedy policies.

146

The above example thus suggests that if we are lucky such that solving BELP results in the MDP
bias function u*, then the greedy policy with respect to this BELP optimal solution coincides
with the optimal policy. Nevertheless, there can be alternative BELP optimal solutions with
sub-optimal greedy policies.

In Theorem 5, we show that to compute good greedy policies, we need to access a BFA
that is close to the MDP bias function u* at all states. In Example 2, because {i(s) is a poor
approximation of u*(s) at all states, except s = 1, it led to a poor greedy policy, matching the
insight from Theorem 5. Let pu(-;3) = u(-;74(B)) be the invariant probability measure defined

in (3.3) for greedy policy my(f).

Theorem 5 Given p € RNt the cost of the greedy policy 7i4(B) is upper bounded as follows:

AC(mg(B)) < n" + [[u(B) —ufloo + [u" —u(B)lliup) < 0" +2[uB) —u . (3.9)

Theorem 5 generalizes Theorem 2 in De Farias and Van Roy (2002) to MDPs with a continuous
state space. Performance bound (3.9) suggests that the cost of a greedy policy depends on the
oo-norm quality of BFA. Consequently, for the optimal pair (n2*, B%*) derived from BALPy,
the co-norm gap [[u(B2*) — u*|le may be substantial, leading to its greedy policy mq(n2*, B2*)
being sub-optimal. It is worth noting that the performance bound (3.9) can be improved to

AC(T[g(B)) <"+ [u —w(B)]1,up) if B is such that u(s; B) < u*(s) for every state s € S.

147

3.4.2 Discounted-cost Approach to Average-Cost MDPs

In this section, we discuss a strategy to compute control policies such that bound (3.9) on
their average cost performance can be potentially low. This strategy relies on approximately
solving the discounted-cost version of the MDP and has the following steps: (i) formulate
a discounted-cost variant of the MDP, (ii) solve an ALP model to obtain a value function
approximation (VFA) for the discounted-cost model, (iii) recover a BFA from this VFA, and
(iv) construct the greedy policy with respect to the resulting BFA.

For the average-cost MDP model in §3.2, we define the expected discounted cost of a policy

Ty : S — A as follows similar to Chapter 2:

DC(s;7y) := ET* [i O(tC(St,Tt(St))] , (3.10)

where o« € (0,1) is a discount factor. Comparing the two measures for evaluating the effec-
tiveness of a policy, namely average and discounted costs in (3.10) and (3.1), respectively, we
consider the optimization problem inf; DC(s;7y) that seeks to identify a policy that minimizes
latter measure, unlike the optimization problem (3.2) that focuses on the former measure. There
are several known conditions under which there exists a discounted-cost optimal policy 7}, that

solves problem inf, DC(s;7«) at all states, meaning that identity DC(s;) = DC(s; %) holds

148

for every state s € S. In addition, there exists an MDP value function, denoted V§ : § — R,
that is a solution to the following discounted-cost optimality equation:

Vi(s) := meiﬂ{c(s, a) + o«E[VE(s")]s, all, Vs € S.

The optimal policy 75, and the MDP value function V}(s) are linked as follows: the action

*

Tl

(s) € As chosen in state s by the optimal policy 7t minimizes the objective function inside

the above optimality equation. That is, for every s € S, the following equality holds:
VE(s) 1= (s, i(s)) + aBIVE(s s, 7 (s)).

Similar to our discussion in Chapter 2, there are known assumptions under which the optimal
pair (75, V%) for the discounted-cost objective exists. We thus assume such conditions hold and
the optimal pair (7}, V) exists.

The discounted-cost and average-cost objectives are connected. Given discount factor « and
MDP value function Vj, define the average-cost as 1Ny := (1 — «)my and the bias function as
Uu(s) = Vi(s) — my, where my := V;(5). It is easy to confirm that pair (n«, Uy) is a solution

to the following optimality equation (see pages 84-55 in Hernandez-Lerma and Lasserre 1996):

Uq(s) = min{e(s, a) — e + aE[uq(s')s,al}, VseS.
ac

149

The above equation resembles the average-cost optimality equation (3.4), except it has an addi-
tional o before the expectation term such that if « = 1, the above equation boils down to (3.4).
In addition, if « is close to 1, we may expect the MDP bias function u* to be close to the bias
function ug.

Motivated by the construction of the bias function u, from value function Vj, we can
construct a BFA if we access a VFA approximating V3. A VFA is defined as a linear combination
of basis functions, e.g., random basis functions. Specifically, given N random basis functions
with parameters 0',02,...,0N, we can define VFA Vy(s;B) := o + Z{\]:o Bip(s;0), as we did
in Chapter 2. The coefficients of this VFA can be optimized using the following discounted-cost

ALP model:

sup {Ev[Va(s;B)]: Vuls;B) < cls,a) + oE[Vq(s’sB)ls,a],¥(s,a) € S x A}, (3.11)
ﬁGRNH

where distribution v over S is called the state-relevance distribution that assigns a non-negative
value to each state. It is known that the objective of (3.11) can be equivalently written as
ming || Vi —Vu«(B) |1y, where || VE—Vx(B)]l1,v = Ev[[VE—V4ll. This reformulation of (3.11) means
that the ALP model minimizes the (1, v)-norm distance between the MDP value function V} and
VFA V,(B). Note that we labeled ALP model (3.11) as the “feature-based ALP” in Chapter 2.

Let Bgc be a finite optimal solution to (3.11). We can define BFA u(s; BEC) using VFA

weights B at state s € S as Ua(s; By) == Vals; Bo’) — Ma(ByC), where mu(BY) := Vu(5; B).

150

We also define ng(BEC; o) as the greedy policy with respect to BFA ua(ﬁic). Using Theorem 5,

it is easy to derive the following upper bound on the performance of mg(f3;):

AC(mg(By5e)) < M+ 2me — ma(ByO) +2 ||V — Va(B];C)HOO +2|ug — oo (3.12)

Two terms |my — mcx(ﬁﬁcﬂ and [|[V(B) — V||, are errors incurred due to approximating MDP
value function, and the term |[uy, — u*||oo is the error resulted by solving a discounted cost
objective in lieu of the average-cost objective.

To shed light on (3.12), we use Theorem 1 from Chapter 2. Note that ALP model (3.11)
minimizes the (1,v)-norm gap, but we observe in (3.12) the co-norm gap. Therefore, this model
does not necessarily minimize the third term in (3.12). Temporarily assume that v is selected
to make the reduction in (1,v)-norm gap translates to a reduction in the co-norm gap. From
Theorem 1, we can infer that inequality ||V«(f3) —V;';HLV < C/(1 — «)V/N holds with a high
probability, where C > 0 represents a non-negative constant. This upper bound suggests that
as o approaches 1, a substantially larger number of random basis functions N is needed to
maintain the (1,v)-norm gap ||V«(B) — V;Hw below a fixed threshold. Specifically, to ensure
IVa(B) —V;Hw < ¢, we need to require N > (C/(1 — «)e)?, indicating that N must grow
superlinearly in 1 — «. Thus « plays a trade-off between making either ||[V(p)— V;HLV or
e — U0 small. That is, when « is close to zero, it is easy to reduce |[V«(B) — V]|, but
|lue — U is large, whereas when o is close to one, ||[ug — U*||oo is small but minimizing

[Va(B) — VZllqy is hard becuase of needing a large N.

151

The error term [my — ma(BL°)| relies on the choices of both « and §. Specifically, if the
VFA error |Vi(s) — Va(s;B)| at state s = § is substantial, then the constant m“(ﬁﬁc) will
deviate significantly from the true value of V}(5). Therefore, when using the discounted-cost
approach to average-cost MDP, the choices of the discount factor o and the reference state s
can substantially impact policy performance. Regrettably, determining the optimal values for

these parameters remains a practical challenge.

3.4.3 Policy-Focused Exact Programs

In this section, we present a direct strategy to compute policies such that the upper bound
(3.9) on their performance is small. As discussed, BELP suffers from a critical degeneracy issue.
De Farias and Van Roy (2002) identified this issue in an average-cost ALP model and used
a queuing example to illustrate why this issue impacts greedy policy quality. In fact, as we
already see, the root cause of this issue is in the formulation of the exact model BELP. Thus,
if we directly approximate BELP to obtain an ALP, the resulting ALP model will also suffer
from the same degeneracy issue in BELP. To mitigate this issue, De Farias and Van Roy (2002)
suggested solving a different ALP formulation, called second-phase ALP, that has the expected
value of its BFA with respect to a state-relevance distribution in its objective function. This
distribution assigns weights to different regions of the state space and thus controls the quality
of BFA, similar to the role of v in the formulation of (3.11). State-relevance distribution directly
arises in the objective function ALPs for discounted-cost MDPs, e.g., see (3.11), but this is not
the case in the average-cost ALP. Therefore, De Farias and Van Roy (2002) suggested artificially

adding state-relevance distribution to an ALP model for average-cost MDPs. Motivated by their

152

formulation, we introduce below an exact linear program involving a state-relevance distribution
in its objective function.

Let v be a state-relevance distribution defined over §. We define the policy-focused exact
linear program (PELP) as follows:

sup [Ey[ul
ueld

u(s) —Eu(s’)]s,al < c(s,a)—1n*, V(s,a) €S x As.
The bias function u is the only decision variable of the PELP, unlike BELP with decision
variables of both 1 and u. In the former model, 1 is essentially fixed to the optimal objective
value of the latter model. At state s, both models require u(s) = 0. Comparing PELP with
(3.11), both models incorporate the state-relevance distribution v in their objective functions.
However, PELP focuses on the direct optimization of the bias function, whereas (3.11) performs
VFA optimization for a discounted-cost version of the MDP. As we show in Proposition 18,
PELP is a regression problem that minimizes (1,v)-norm gap between the decision variable u
and u*. In addition, we show that u* is the unique solution to the PELP if v is positive almost

everywhere.

Proposition 18 Assume state-relevance distribution v assigns a positive mass to all non-zero

measure subsets of S. Then, PELP is equivalent to the following regression model:

min |lu—u’fjy
ueld

u(s) - E[LL(S/NS, Cl} < C(S, (1) —ﬂ*> V(S, Cl) €S x -As-

153

Moreover, W* is the unique PELP optimal solution.

Proposition 18 indicates that PELP aims to minimize the (1,v)-norm distance between a
bias function uw € Y and the MDP bias function u*. Because PELP is an exact model (i.e.,
it does not include any approximation), minimizing the (1,v)-norm results in minimizing the
oo-norm, as can be inferred from Proposition 18.

Proposition 18 highlights that PELP minimizes the (1,v)-norm distance between a bias
function w € U and the MDP bias function u*. Specifically, since PELP is an exact model
without any approximations, minimizing the (1, v)-norm translates into minimizing the co-norm.
This is established by Proposition 18 because u* is the unique PELP optimal solution. Because
of this co-norm reduction, PELP can be seen as a model that reduces the co-norm error term in
performance bound (3.9). Therefore, we refer to it as “policy-focused”. Moreover, Proposition 18
suggests that computing (n*,u*), in principle, is equivalent to first solving BELP to obtain n*
and then using n* in PELP to obtain u*. In fact, if we use a uniform state-relevance distribution
v in PELP, then Proposition 18 suggests that the greedy policy with respect to PELP optimal
solution u* is the optimal policy. For the MDP in Example 1, if we use a uniform state relevance
distribution in PELP, then it is easy to verify that the MDP bias function u*(s) = s(s —1)/2
becomes its optimal solution, as we expect by Proposition 18.

We next define the policy-focused feature-based exact program (PFEP) as follows:

sup J B(O)E, [p(s;0)] 6
peB JO

| Blo)(os:0) - Blp(s50ls,a) a0 < cls,0)—n7, Vs @) €S x A
(C]

154

Unlike BELP and PELP directly optimizing the non-parametric bias function w € &, PFEP op-
timizes the parametric weighting function 3 € B, similar to BFEP. In the following proposition,
we show that $* is an optimal solution to PFEP. Therefore, PFEP attains an optimal solution,

and its “sup” can be replaced by a “max”.

Proposition 19 Assume state-relevance distribution v assigns a positive mass to all non-zero

measure subsets of S. Weighting function B* is an optimal solution to PFEP.

Proposition 19 implies that PFEP is a parametric reformulation of PELP, which is a result of
the universality of random bases, our mild assumption u* € R in §3.3.2, and Proposition 18.

An important implication of this proposition is provided in the following remark.

Remark 1 As we observed in Proposition 17, pair (n*,B*°) is an optimal solution to BFEP.

However, the weighting function B*° may not be an optimal solution for PFEP. Specifically, if

v({s:S | u(s;) Au(s)}) >0 and v(S\S*) >0,

then B¢ is suboptimal to PFEP. In other words, PFEP finds a bias function that is close to
u* at all states s € S, but BFEP only focuses on those states visited by 7", which is S*. Thus,
PFEP is an appropriate model for computing BFAs and reducing co-norm.Thus, PFEP is an
appropriate model for computing BFAs and reducing co-norm. Thus, PFEP is an appropriate

model for computing BFAs with small co-norm errors.

155

3.4.4 Policy-Focused Approximate Linear Program

Recall PFEP that minimizes the (1, v)-norm distance of u(f) to u*. As we discussed, the
(1,v)-norm reduction in PFEP and PELP translates to oco-norm BFA error reduction since
these models are exact. However, if we approximate PFEP decision variable u(f) by sampling
random basis functions, similar to the derivation of BALP from BFEP, then the reduction in
(1, v)-norm distance to u* does not necessarily translate to reduction in the oo-distance to u*,
which is essential to ensure the performance of the greedy policy obtained form the approximate
model (see Theorem 5). Therefore, to achieve BFAs with low co-norm errors, we use a similar
idea to our “self-guiding mechanism” in Chapter 2. We design a method that includes (i)
iteratively sampling random basis functions in batches and solving a sequence of ALP models
obtained upon approximating BFEP and (ii) connecting BFAs in this sequence using guiding
constraints that ensure an upper bound on the BFA oco-norm error is weakly decreasing.

Let n* be the optimal objective value of BALPy that includes N random basis functions
with parameters {0',02,...,0N}. We construct a sequence of ALP models with N, N+ B, ...,
N + QB basis functions, where B is a sampling batch size and Q is the number of times random
bases are sampled. In other words, we sample random bases in batches of size B for Q iterations
to construct these ALP models and obtain the total of N + QB basis functions. At iteration
q > 1, we obtain N + qB bases with parameters {8',...,0N} U {8N+1)... ON*9B} and solve

policy-focused approximate linear program (PALPy, s):

N+qB

sup Bo+ > Bilnle(s;0Y)]
i=1

ﬁeRN+qB

156

N+gB . ‘
> Bi(ls;0) —Elp(s0s,al) < cls,a) —nit, Vls,a) €8 x A,
i=1

N+qB
Bot+ D Bio(s;0Y) >u(s;p2 L), Vs €S, (3.13)

i=1
N+qB

Bo+) Bio(s6Y) =0.

i=1

PA

In the above formulation, 3y B

denotes a finite optimal solution of PALPy, 5. We use initial-
ization u(ﬁf\’IA) = u(B2) at g = 1. We refer to constraints (3.13) as guiding constraints that
ensure the BFA with N + B basis functions is a state-wise upper bound on the past BFA with
N+ (q—1)B bases, where our initial BFA used for guiding is the BALP VFA u(3?"). PALPy.
has the objective with respect to the state-relevance distribution v to control the quality of the
BFA, similar to PELP and PFEP.

To understand why PALP results in BFAs with a small co-norm gap (i.e., strong greedy
policies), we present an analysis that relies on an idealized bias function. This analysis general-
ized the one in De Farias and Van Roy (2002) for finite-state MDPs to continuous-state MDPs.
BA)

Informally, given lower bound n3* on n*, there is an idealized bias function, denoted u'”(ng

)

that is a state-wise upper bound on every feasible solution to PALPy, s for all q. We will show
that PALP minimizes the (1,v)-gap between its BFA and this idealized bias function. We will
also show that the idealized bias function u'”(ng*) gets closer to the MDP bias function u* as
Nt gets closer to n* upon increasing N. Therefore, PALP indirectly minimizes the co-norm gap

between BFA and the MDP bias function u*.

157

To define the idealized bias function, we revisit the optimality equation (3.4). Let Tu: S — R
be the transformation of u under mapping T. We define the evaluation of Tu at state s € &
as Tu(s) := E[u(s’)|s,7m*(s)]. Under Assumption 9, we can show that T is a bounded linear
transformation over the Banach space of all continuous functions defined over S (please see
Proposition 23). In the literature, this assumption is referred to as the strong continuity of the

MDP transition kernel (see, e.g., Condition 3.3.3 in Herndndez-Lerma and Lasserre 1996).

Assumption 9 For every measurable bounded function w, mapping (s, a) — fs u(s’)P(ds’|s, a)

1 bounded and continuous over S x As.

Recall pair (n*,u*) solves optimality equation (3.4). We can rewrite this equation in terms
of T and g*(s) := c(s,m*(s)) —m* as follows u* = g* + Tu*. Iterating this equation for K times,
which requires replacing Tu* with its definition recursively, results in the following version of

the optimality equation:

K
wi(s) =Y Teg*(s) + T Mu*(s), Vs€S, (3.14)
k=0

where function T° := I is the identity transformation that satisfies Iu = u. For each k, trans-
formation T* applied to an arbitrary function u results in function T*u : S — R that evaluates
to Thu(s) := s P¥(s’|s,m)u(s’)ds’ at state s. Here, P¥(-[s,71*) denotes the k-step transi-
tion probabilities from initial state s when using the optimal policy * (see, e.g., Page 21 in
Hernéndez-Lerma and Lasserre 1996). Taking the limit of (3.14) when K — oo, we obtain

*

u* = limg 00 ZE:O Tkg

158

From our discussion in §3.2, function u* satisfying the additional condition u*(s) = 0 at
the reference state s = s is the unique solution of the optimality equation (3.4). The recent
formulation of u*, which is u* = limyg_,o ZE:O Tkg*, does not reflect condition u*(s) = 0. To
incorporate this condition into this definition, we utilize the following identities:

u*(s) = u*(s) —u*(s) = lim ZTk *(s) — T*g*(5) = lim ZFk *(

K—oo K—oo

where the evaluation of transformation F* applied to an arbitrary function u at state s is:

Feu(s) = L (P¥(s'ls, ") — P¥(s'[s, "))u(s’) ds’.
Therefore, unlike the former definition of u* based on T¥, which is u* = limg_,ee lef:o T*g*,
the latter definition based on F¥, which is u* = limg_e0 lej:o Fkg*(s), reflects the condition
u*(s) = 0. Once again, because u* = limg_,q ZIE:O Fkg*(s) satisfying condition u*(s) = 0
is the unique solution of the optimality equation (3.4), limit limg_;co Z};O F*g* must exist.
Therefore, u* can be explicitly written as u* = F*°g*, where transformation F* is defined as

=3 F.

BA " where

We are now ready to define the idealized bias function. Define u(s;n3*) := F*°g>
gt (s) = (c(s, ﬁ*(s))—nEA)). Note that gi* is similar to g*, expect g>* includes the value of n*
obtained by BALPy and not the optimal average cost n*. The following proposition establishes

that the co-norm difference between the idealized bias function u”(n?*) and the MDP bias

159

function u* linearly scales on the error term n* —n2*, where the slope of this linear function

depends on a norm of F* defined as ||[F*°|| := sup{||F®u|co : [[U]|oc < T,u:S — R}

Proposition 20 Given N, it holds that |[u™M2") — W[l < [[F*®||(M* —M2Y). Moreover, for

every q =1,2,...,Q and each solution p € RNT9® feasible to PALPy. s, it holds that
u(s;B) <uP(s;nt) <ut(s) + [F°[(m* —nt), VseS.

Using Proposition 20, it is easy to verify that PALPy, s is equivalent to the following opti-

mization problem:

: ., ID(. BA
smin o ((B) — My

u(s;) —Elu(s’;B)ls,al < c(s,a) =3t V(s,a) € S x Ay,

Jua(8) — w2 |, < (B) ")

u(s; B) =0.

Therefore, the infinity-norm gap between PALPy, s BFA and the idealized bias function, which

PA

is Hu'D (M) —u(N+qB)HOO, is weakly decreases in ¢, meaning,

ID(BA)_

PA
N)

N+QB

. (3.15)

[e o]

[i) = (B p) . 2 R () — wlBRap)] = -+ > [u(

Using the above inequalities, we can show that the worst-case performance of greedy policies

obtained from PALP is weakly improving in q. This result is formalized in the following corollary.

160

Corollary 1 Fiz N and q = 1,2,...,Q. Given feasible solution p € RN*9® to PALPy.qs, the

average cost of the greedy policy Ty4(p) satisfies:

AC(mg(B)) < n* 42" =M [[F + 2[[u(B) — u (M3l

Corollary 1 upper bounds the performance of greedy policy AC (T[Q(B)) obtained from any
PALPy, s feasible solution B € RN*98 based on two error terms: (n* —n2M)|[F|| and |[u(p) —
uP(MP*)||oo. The first term captures the impact of using n2* in lieu of n* in the formulation
PALPy, s on the greedy policy 74(f3). The second term captures how close BFA u(f3) is to the
idealized bias function u™(m>*), given lower bound n?* obtained from BALPy. The upper bound
established in Corollary 1, in conjunction with Theorem 4 and inequalities (3.15), indicate that

when both N and Q take large values, our randomized multi-shot approximation approach,

which involves two steps of solving BALPy initially to obtain lower bound n* and then solving

PA

a sequence of PALPs to compute BFA u(By QB

), culminates greedy policy ng(ﬁifiQB) with an
average cost close to n*.

3.5 Algorithm

Our main algorithm, which involves solving BALP and PALP, is summarized in Algorithm
3 and is the average-cost counterpart of the self-guided FALP algorithm (see Algorithm 2 in
Chapter 2). In Step 1, we sample N random basis function parameters {8' : i = 1,2...,N}
from p in one shot and initialize the set of samples & to these N samples. We next formulate

BALPy and solve it to obtain its optimal solution (n3*, f%*). In addition, we initialize vector

161

Algorithm 3: Randomized Multi-shot Approximation Algorithm for Average-Cost MDPs

Step 1. Sample N random basis parameters {8 :i=1,...,N} from p, set ¥ « {8*:1i=1,..., N},
and solve BALPy formulated using parameters in § to compute (n3*, B2*). Also, initialize
BPA — BBA
N N

for q=1,2,...,Q do

Step 2. Sample B random basis parameters (oN*(a=1B+i . —{ =1 2. .. B} from p, and
update the set of sampled parameters § « d U {@N+la-1B+i.{ —12 B}

Step 3. Solve PALPy s formulated using parameters in 9, constant n3* from Step 1, and

past BFA weights B} . from iteration q — 1 to obtain new BFA weights IliliqB'

Step 4. Simulate greedy policy 7ty (B4) by solving (3.5) to estimate policy cost AC(7q(BL).

Return: Lower bound n2*, upper bound AC (T[g(ﬁiign))7 optimal BFA weights Bi“*@.

Br* to BALPy BFA weights %%, which is used in the right-hand-side of guiding constraints of
PALPy.p. Next, we perform steps 2 and 3 iteratively for Q iterations. In Step 2, we sample B

B+1:1=1,2...,B} and append them to

additional random basis function parameters {oNT(a-1)
V. In Step 3, we formulate PALPy, s via random basis function samples in ¥ and past solution
B - Then, we solve PALPy 45 to obtain BFA weights B* . In Step 4, we simulate greedy
policy mg(B7%) with respect to the terminal BFA weights 3" . The algorithm returns lower
and upper bounds as well as the terminal BFA weights.

In steps 1 and 3, the Algorithm 3 requires solving BALP and PALP, respectively, and

Step 4 requires solving greedy policy optimization (3.5) with respect to BFA u([SEfQB). BALP

and PALP can be solved using two commonly used methods for solving semi-infinite linear

162

programs: constraint sampling and constraint generation. Note that the constraint violation
learning approach in Lin et al. (2020) may be also used as an alternative approach to solve these
semi-infinite linear programs. Solving greedy policy optimization (3.5) is not trivial. If MDP has
a low-dimensional action space, we can solve this program using discretization and enumeration,
as we did in Chapter 2. Otherwise, solving it may be approached by leveraging the problem
structure. For example, if underlying MDP has a structure such that (3.5) can be reformulated as
a known optimization problem (e.g., linear program, mixed-integer program, convex program),
then we can apply commercial solvers to such reformulations and get the greedy policy. In §3.6,
we discuss that this optimization problem can be cast as a mixed-integer linear program for a
generalized joint replenishment problem and can be solved via Gurobi (Gurobi Optimization
2019). If MDP does not have any structure, then one might use a first-order method to solve
the greedy policy optimization problem.

We describe below constraint sampling and constraint generation techniques for solving
BALP. These methods can be similarly and directly applied to PALP, but we omit the details
for brevity.

Constraint sampling. The constraint sampling approach replaces the continuum of BALP
constraints with a finite subset of them obtained from sampling K iid state-action pairs {(s*, a¥) €

SxAs:k=1,2,...,K} from a probability distribution { over the state-action space S x As.

163

The result is the following finite linear program with N random basis functions and K constraint
samples:

max
(n,B)ERN+2

n+erl(509 — Elo(s5001s%,04) < e(s,a") Vk=12...K (3

Bo+ Z Bip(5;0') =0.

i=1

If the number of samples K is sufficiently large and 1 is positive almost everywhere in S x As,
the existing theory suggests that (3.16) should provide a good randomized approximation of
BALP (De Farias and Van Roy 2004, Calafiore and Campi 2006). Please also see Proposition 3
in Chapter 2. We utilize formulation (3.16) in our numerical experiments in §3.7 and show that
it is effective on our perishable inventory control instances. However, in general, (3.16) may be
an unbounded model when K is small or a poor choice of 1\ is used. In addition, we may need
to use a large value of K to obtain a good approximation of BALP from (3.16).

Constraint generation. Constraint generation is a complementary approach to constraint

sampling. This method starts by solving the following version of BALP, denoted BALPy[Hn]:

max
(n,B)ERN+2

n+Zﬁ1< 56') — Elo (S’;Gi)ls,a]) < cfs,a) V(s,a) € Hp

o+ Z Bip(s;0") =0,
iz

164

where Hp, is a set of h state-action pairs. For example, this set can be constructed by sampling
state-action pairs from 1 in constraint sampling. By solving BALPy[H] for a small h, we obtain
an initial solution (n°, B°). Here, we assume BALPy[Hy] is bounded, so (n°, B°) exists. Utilizing
(M B°), constraint generation method requires solving the following separation problem (SP;
e.g., see §3.1 of Adelman and Klabjan 2012):

N
(8% @°) = argmin {C(s, a)-n—)_ Bi(‘P(Sk} oY) + Elp(s’;0Y]s, a]) } ,
i=1

s,a

Upon solving SP and obtaining (8°, 4°), we define the updated set Hpy1 as Hny1 := HnU{(8%, a°)}
and solve program BALPy[Hy1] that has the following additional (most violating) constraint

compared to BALPy[Hn]:
N . .
n+ Y Bi(e(s%69 — Elp(s;500%,a%) < c(s”,a).
i=1

This process of iteratively solving BALPy[Hn], solving SP, and updating Hy, is repeated for
H iterations. We stop when the optimal objective value of SP is non-negative. If the optimal
objective value of SP at iteration h is non-negative, then there is no more “violating” constraint
and thus BALPy[Hy] has the same optimal objective value as BALPy. In this case, we stop
the process and use the terminal BFA weights from BALPy[#], which is an optimal solution
to BALPy.

The bottleneck in the constraint generation approach is solving SP, which is a nonlinear

program in general. There are multiple sources of non-linearity: the MDP cost function, the

165

MDP transition kernel, and basis functions. Because Stump bases and ReLLU bases are piecewise
constant and piecewise linear, respectively, we can mitigate non-linearity associated with the
basis functions in SP formulation. Therefore, if the MDP has structure, e.g., both cost function
and transition kernel are linear, SP can become a linear or mixed-integer program, depending
on the basis functions structure. For example, in the generalized joint replenishment problem
considered in §3.6, the MDP cost function and transition kernel have linear structures. Thus,
we show that SP becomes a mixed-integer linear program for this application when using Stump
basis functions, which are piecewise constant. It is easy to see that a similar mixed-integer linear

program exists when using ReLLU bases to formulate BALP for this application.

3.6 Generalized Joint Replenishment

The generalized joint replenishment (GJR) involves the replenishment of a collection of
products that are consumed at a fixed and deterministic rate and are coupled via a shared
replenishment capacity Adelman and Klabjan 2012, abbreviated as AK. We present the average-
cost deterministic semi-MDP formulation of this problem using the formulation in AK. Note
that the methodology we presented in this chapter, which is designed for average-cost MDPs,
can be extended to cover deterministic semi-MDPs.

Consider managing the replenishment of inventories across] products over a continuous time
horizon. Each product j is consumed at a finite and deterministic rate A; > 0. We denote by
A = (A1,A2,...,A) the vector of these rates. A state vector s = (s1,s3,...,5;) encodes the
inventory levels of these produced measured in normalized units, where each component s; > 0

is non-negative for all j € {1,2,...,J}. A zero value for the j-th state component signals that the

166

j-th product is stocked out. Since the replenishment time can be postponed when there is no
product that is stocked out, we can assume that at least one product has zero inventory in the
state vector. Thus, the state space of GJR is given by S :={s:0 <s < S, s; =0 for some j €
{1,2,...,J}}, where S = (53, S3,...,5;)) € (0,00)) is a vector of maximum inventory levels. The
replenishment decision is specified by action a €]RL. This decision at a given state s € S belongs
to the set Ag := {a € RL :s+a<S§, Z]J:1 a; < A}. Here, constant A € R, denotes a capacity
constraint on the total replenishment amount. The immediate MDP cost c(s,a) for GJR has

two components. The first one is a fixed value, denoted ¢ , that depends on the subset of

supp(a)
products replenished, denoted supp(a) :={j € {1,...,]J}a; > 0}. The second one is given by the
variable cost 21121 (2s5a5 + ajz)hj /2A; with h; > 0 denoting the holding cost per unit per time
of product j. Because the usage rate is deterministic, the time until the next replenishment
and the MDP transition kernel are both given by deterministic functions. Specifically, the time
until the next replenishment is t(s, a) := minj{(s; + a;)/A;} if the system is currently in state
s and action a is taken. The system transitions to the new state s’ = s + a — 1(s, a)A from

current state s when taking action a. The optimality equation for this deterministic semi-MDP

is slightly different from (3.4) and is given by:

u(s) = Cilgi{c(s, a) —nt(s,a) +u(s+ a—1(s,a)A)}, Vs € S,

where we use the definition of GJR transition function, that is, s’ = s + a — A1(s, a), to derive

this equation.

167

AK approximate u(s) using a (static) affine component By — Z]J:1 B1;s; and an adaptive
component Zilﬂ [Szyifi(Z]]:] T}Sj) with I terms, where f' : R — R is a piecewise linear ridge
function and ' € RJ is a ridge vector. Putting these two components together results in the

following AK BFA:
I

J J
ulsiB) = Bo— Y Buysi— Y Paf(D i),
j=1 =1 j=1
AK decompose 1 according to nf(A) = fj + Zj]:1 31,7, where f] is an intercept and each 7 can
be interpreted as the marginal value associated with product j. This breakdown is not needed
for the tractability of their algorithm but facilitates managerial interpretation. Putting together

AK BFA with their decomposition of 1, we obtain the following ALP solved by AK, which we

refer to this ALP as AK-ALP,

J
max ﬁ + Z ﬁ]y]‘)\j
A,p i
I

J J J
fit(s,a) — Z Bija;— Z B2 fi(Z?}S{) - fi(ZT}sj) <c(s,a), VY(s,a)e S x As.
=1 i=1 j=1 j=1

AK approach the solution of AK-ALP using constraint generation, which involves solving mixed
integer programs. In addition, their algorithm dynamically generates ridge basis functions to
update BFA via information from dual of AK-ALP formulation for GJR. We implemented AK-

ALP as a benchmark following the details in AK.

168

To be consistent with AK, we use the same approximation n(A) for 1, and we also define

our BFA as follows:

J N
u(s;B):=Bo—) Brysi— Y B2ip(s;0Y), (3.17)
j=1 i=1

where the adaptive basis function component in the AK-ALP BFA has been substituted with
random basis functions. We let @(s;0) be Stump basis function defined in §3.4.3 (please also

see Table I in Chapter 2).

3.6.1 Constraint Generation for Stump Basis Functions

We show that constraint generation can be used to solve BALP and PALP formulated
using Stump basis functions. Motivated by the mixed integer linear programming reformulation
of the SP when holding cost is zero in §3.1 of AK, we discuss the analogous mixed integer
linear programming formulation of SP for BALP. Recall that for Stump basis functions with
@(-) = sgn(-) we have that intercept 6 is drawn from a uniform distribution over [—c,, ¢,] and
the remaining elements of 0 are sampled from a uniform distribution defined on the discrete
set {e',...,ed}. For the ease of notation, write each sample 0 as the pair (wj,{;), where

w; € [—cp,cp] and & € {0,1,...,d}. Using the transition time T(s,a) = minj{sj;\r%} and the

169

BFA in (3.17), it can be verified that SP in §3.5 for GJR is equivalent to following mixed-integer

linear program:

SP

min
(G)Q>Ql)s\a)t)S/)ZYZ,)

Z{ = sgn(sy, — wi),

G,Q,Q’, binary,

Z,7Z', integer,

J
(C/ + Z C]{/Gj>
j=1

s, a,t,s’, non-negative.

J N
<ﬁt +) Bija+) Bi(Zi—Zy)

=1

i=1

)

i=12
j =12,
j=12
j=1,2,
=12,
i=12
j=12,
i=12
i=1,

i=1,

s

R

Ty
T,
T
Ty

170

In the above mixed-integer linear program, the variable Gj is one if product j is replenished
and zero otherwise. Constraint Z]-I:1 Gj > 1 ensures that at least one product is replenished. If
Gj = 1 for some product j € {1,2...,]}, i.e., it is replenished, then constraint a; < S; ensures
that the replenishment decision q; can take any feasible replenishment value. If G; = 0, product
j is not replenishment and thus constraint a; < S; enforces a; = 0. Constraint s]f =sj+a; —Ajt
models the MDP transition function. Constraints s; + a; < S; and Z]J:1 a; < A guarantee
that the state-action pair (s,a) adheres to the inventory and the replenishment capacities,
respectively. For product j € {1,2...,]}, if binary variable Qj is one, product j is stocked out at
the current decision time, i.e., s; =0, and if Q; is one, then this product will be stocked out in
the next decision epoch, i.e., s; = 0. Constraints Z]-I:] Qj; > 1 and Z]-I:] Q; > 1 ensure at least
a product at the current and one product at the next decision epoch is stocked out. If Gj =0
for some product j, then it should not be replenished, and thus Q; = 0 via constraint Q; < Gj;
otherwise, Qj; € {0, 1}, that is, we can either replenish a stocked-out product or a product with
a non-zero inventory level. Integer variables Z; € {—1,0,1} and Z{ € {—1,0,1} model the value
of random basis functions @ (s;0) and ¢(s’;0'), respectively. The sign function defining Stump
bases can be implemented in a commercial solver as a piecewise constant function using a big-M
formulation or approximately as a piecewise linear function.

The setup of AK-ALP and BALP differ mainly in how adaptive basis functions are generated.
In the former approach, ridge basis functions are generated via an application-specific algorithm,
whereas, in the latter case, we sample Stump basis functions. Because we solve AK-ALP and

PALP via constraint generation, the optimal objective values of these programs provide a lower

171

bound on the optimal policy cost. To estimate policy cost, we simulate the policy only based
on the static part of the BFA because AK showed that this affine BFA suffices to obtain good
policies for GJR instances without holding cost. We perform policy simulation by solving K-step
greedy policy optimization problem discussed in §3.2 of AK for this affine BFA. We highlight
that it is possible to cast this K-step greedy policy optimization problem when using a BFA

based on Stump bases as a mixed-integer linear program, similar to SP.

3.6.2 Instances and Computational Setup

We conduct numerical experiments on 14 instances of the GJR problem based on Table
2 of AK. These instances have a zero holding cost, and the number of products (]) is varied
between 4 and 6. Because the holding cost is zero, the MDP cost function becomes c(s,a) =
Couppla) = € + 2 jesupp(a) €j » Where ¢/ > 0 and c¢j’ > 0 are constant and product-specific fixed
costs, respectively. AK set ¢’ to 100 and sample each c]{’ from a uniform distribution over the
range [0, 60] independently. The usage rate A; is distributed uniformly in the interval [0, 10].
The vector of maximum inventory levels S is chosen based on two random variables u; and
o associated with each product j € {1,2,...,]} that are distributed uniformly over [0, 1] and
{2,4, 8}, respectively. These random variables are independent across products. The j-th upper
bound S; on the inventory level is defined in three ways, labeled “random”, “constant”, and
“discrete”, as S5 = T10Aju; + Ay, S5 = ZL:] A (uy + %), and §j = oy leﬂ M (uy + %), respectively.

The joint replenishment capacity A equals the summation of the first z% of the smallest storage

limits {S; :j =1,2,...,]J}, where z varies in set {50, 60, 67,75, 80, 100} across instances.

172

We formulate BALPy using N Stump bases with parameter c, := max;{S;}. We compute
lower bounds using BALP BFA, AK-ALP BFA, and affine BFA. We numerically observed that
performing SP for BALPy when N is large (e.g., N > 50) is challenging. We thus increase
N in batches of size 10 and solve multiple BALP and SP problems to ensure tractability. No
information is shared across multiple iterations in this process. To ensure the tractability of SP,
we also add a 1-norm constraint to BALP, which reduces the number of times we need to solve
SP. We also simulate the greedy policy with respect to the affine BFA using the K-step greedy
policy optimization problem with K = 5. For each method and each instance, we compute an
optimality gap, which is the difference between the affine BFA upper bound and the lower bound
from each method, expressed as a percentage of the lower bound. We stop BALP and AK-ALP
when the optimality gap drops below 2%. If this criterion is not met, we stop these programs

after 2 hours of runtime.

3.6.3 Results

Table XVI reports upper bounds obtained from the greedy policy with respect to the affine
BFA, in addition to lower bounds from affine BFA, BALP, and AK-ALP. It also reports the
optimality gap computed as (upper bound - lower bound) expressed as a percentage of the lower
bound, where the upper bound is obtained from affine VFA, and the lower bound can be the
lower bound from either of the three models. As explained, affine BFA leads to near-optimal
lower and upper bounds on 8 instances for which we did not run algorithms BALP and AK-
ALP. Therefore, entries of the table of these methods and such instances are empty. BALP and

AK-ALP result in significantly better lower bounds than the affine BFA model. The maximum

173

Table XVI: Comparison of BALP and AK-ALP lower and upper bounds in generalized joint

replenishment problem instances.

Affine BALP AK-ALP
J Instance UB LB Gap LB Gap LB Gap
1 184.6 184.3 0.1%
2 93.7 92.7 1.0%
4 3 179.3 165.0 8.7% 175.3 2.3% 175.2 2.4%
4 171.2 160.0 7.0% 170.1 0.7% 169.6 0.9%
5 69.3 68.7 0.8%
6 294 29.4 0.0%
7 146.0 145.8 0.2%
8 91.8 90.5 1.5%
9 91.0 90.2 0.9%
10 117.8 114.5 3.0% 115.3 2.2% 115.3 2.2%
6 11 107.8 104.9 2.8% 105.9 1.7% 105.9 1.8%
12 108.2 104.9 3.2% 106.9 1.2% 107.0 1.1%
13 53.1 52.2 1.6%
14 31.9 29.0 9.9% 31.7 0.7% 31.7 0.8%
15 31.8 29.0 9.5% 31.7 0.4% 31.7 0.5%

improvements from BALP and AK-ALP are 9.3% and 9.2%, respectively. The average of BALP

and AK-ALP optimality gaps are 1.4% and 1.7%, respectively, which shows these models are

near-optimal. Our results suggest that lower bounds from BALP, which does not exploit the

structure of the GJR problem to generate bases, are comparable to the AK-ALP model, which

performs basis function selection by exploiting problem structure. In addition, in the case of

GJR, because the upper bounds based on affine BFA are near-optimal upper bounds, there is

no need for our randomized multi-shot approximation mechanism in Algorithm 3. Therefore,

BALP is enough to close the optimality gap, and there is no need to use PALP.

174

Table XVII: Parameters of five-dimensional perishable inventory control instances.

Instance Holding cost ¢, Disposal cost ¢q Backlogging cost ¢, Demand STD o c
1 1 8 2 5 1000
2 1 8 2 2 1000
3 1 2 8 5 1000
4 1 2 8 2 1000
5 2 8 5 5 1000
6 2 8 5 2 1000

3.7 Perishable Inventory Control Problem

We perform a numerical study on an average-cost variant of the perishable inventory control
problem considered in §3.7 of Chapter 2. In §3.7.1, we discuss problem instances and bench-

marks, and we report our results in §3.7.2.

3.7.1 Instances and Benchmarks

We revisit the perishable inventory control problem studied in §2.6 of Chapter 2. Specifically,
we focus on our five-dimensional instances in Table III. We repeat the parameters of these
instances in Table XVII. Instead of using a discounted cost function, we use the following

average cost function:

c(s,a) =coa+Ep
i= + i=0 i=0

ch{Esi(Dsoh +cd(soD)++cb{DEsi] +01{5+DE31}]
L + +

Compared to the MDP cost function in §2.6, the above cost function does not have any discount

factor.

175

We formulate BALP and PALP using Fourier basis functions. We use our parameter choices
in Chapter 2 to set up our experiments in this section. To solve BALP and PALP, we use the
constraint sampling approach discussed in §3.5 with K = 200, 000 state-action pairs sampled from
a uniform distribution over the hyper-cube S x As = [s, a] x [0, al¢. We set the number of random
basis functions N to 300 for BALP, i.e., we solve BALP3y,. We also consider a modification of
BALPy that first solves BALP3y, and then solves PALPy that has a fixed average-cost value
of ;4 obtained from BALP;3y and includes a uniform state-relevance distribution. We refer
to this version of BALPy as BALP*550. Moreover, we consider our randomized multi-shot
approximation approach in Algorithm 3. We use the notation ALPY*150 150 to refer to this
approach. Specifically, ALP"*150 150 runs Step 1 of Algorithm 3 with N = 150 random bases
(the first subscript) and runs steps 2 and 3 of this algorithm for Q = 6 iterations using batch size
B = 25 that results in BQ of 150 (the second subscript). Method ALP*®50 150 relies on solving
PALP. For each PALP solved in ALP"®5(150, we use a uniform state-relevance distribution v.

As a benchmark, we considered FALP and self-guided FALP models proposed in Chap-
ter 2. We run discounted-cost model FALP3y with vy = 0.999, but we add constraint o +
Z?:] Bip(s;0Y) = m, to this model, where m, is some constant. The addition of this con-
straint is based on the discussion on pages 84-85 of Hernandez-Lerma and Lasserre (1996) that
constructs a BFA from a VFA. We consider two choices for m, that are m, =0 and m, = vy
with vy being the optimal objective value of FALP with the intercept-only VFA having N =0
random bases. We use notations y-FALP30[0] and y-FALP3q[vo] for FALP models with m, =0

and m, = vy, respectively. Both these models have N = 300 random bases. For self-guided

176

FALP, we run Algorithm 3 in Chapter 2 for Q = 7 iterations. We denote this method by
y-FALP 7 [vol.

We approximate expectations in all aforementioned models using sample average approxi-
mations constructed using 2,000 iid samples. We run each model 10 times with freshly sampled
random basis function parameters. We simulate policies from initial state so = (5,5,...,5) € R4
We simulate 100 trajectories of length 10,000 to estimate the long-run average cost of each
method.

Because we solve BALP using constraint sampling, its optimal objective value does not
provide a valid lower bound on the optimal cost. We thus compute a lower bound on n* based
on y-FALPsq[vo] VFA. Specifically, we plug iny-FALPs[vg] VFA into our heuristic based on
constraint violation learning approach in §2.12.1 of Chapter Chapter 2 to obtain a lower bound
on the optimal cost of the discounted-cost problem. Denote this quantity by LB,. It is known
that (1 —y)LB, is a lower bound on the optimal policy cost of the average-cost problem, i.e.,
(1 —v)LBy < 1* (please see pages 84-85 of Hernandez-Lerma and Lasserre 1996). Utilizing
this lower bound, we compute the optimality gap for each method and instance, similar to the
optimality gap we computed in §3.6.

3.7.2 Results

Table X VIII reports upper bounds (UBs) and lower bounds (LBs) obtained from y-FALP30,[0],
Y-FALP3g0 Vo], y—FALPzgw[vo], BALP;y, BALP*309, and ALP"®150 150. We also report the lower
bounds based on y-FALP3y0[vg] and optimality gaps computed using this lower bound in Table

XVIII. Note that the lower bound values, upper bounds, and optimality gaps are averages across

177

Table XVIII: Comparison of methods on perishable inventory control problem instances.

g § Y-FALP34[0] Y-FALP300[vo] y—FALPg’&})J[vo} BALP3 BALP* 300 ALP™ 150,150

g 3

a - LB UB Gap UB Gap UB Gap UB Gap UB Gap UB Gap
1 66 115 4% 98 49% 101 53% 86 30% 84 28% 72 8%
2 57 610 973% 615 982% 1058 1761% 75 32% 85 49% 60 5%

5 3 67 1832 2651% 1871 2710% 1070 1506% 666 900% 82 24% 69 4%

4 60 1442 2300% 1105 1738% 1081 1699% 162 170% 77 29% 61 1%
5 71 654 816% 639 794% 100 40% 90 26% 89 24% 7 7%

6 62 1303 2008% 1203 1847% 836 1252% 750 1114% 82 33% 64 4%

10 trials. All discounted-cost models deliver poor policies, suggesting solving the discounted-
cost problems does not provide good policies for our average-cost problem instances. BALP 3
leads to policies with the optimality gap of less than 32% on 3 out of 6 instances but highly
sub-optimal policies on the other 3 instances. The worst-case performance of BALP3q, is on the
6th instance, where its optimality gap is 1114%. Interestingly, when we correct this model and
consider BALP*3, across all 6 instances, this version of BALP delivers policies of at most 49%.
The best method is ALP*®50 150, which provides near-optimal control policies and beats all
other models. These results underscore the value of our randomized multi-shot approximation
approach relying on PALP. Moreover, we note that y-FALP3p0 VFA with m, = 0 leads to a

great lower bound, as witnessed by the low optimality gap values of y-FALP3qg.

178

3.8 Conclusion

Our work focuses on solving large-scale average-cost Markov decision processes (MDPs) by
employing an approximate linear programming approach. This method involves approximating
MDP bias functions through a linear combination of basis functions and solving an approximate
linear program (ALP) to compute the weights of these basis functions. It is known that when
basis functions deliver a good approximation of the MDP bias function, ALP generates tight
lower bounds on the optimal policy cost. However, this method fails to provide good bias
function approximations (BFA) and control policies.

We introduce a new approximate linear programming (ALP) approach by combining a two-
phase ALP model in De Farias and Van Roy (2002) with a randomized multi-shot approximation
method for discounted-cost MDPs in Pakiman et al. (2020). Our approach has two steps. First,
we use universal random basis functions to formulate an ALP that ensures delivering a near-
optimal lower bound. We develop a finite probabilistic convergence rate for this lower bound
obtained from our method. Second, we solve a sequence of ALP models that iteratively refine
their formulations using previously computed BFAs. We show that this iterative randomized
multi-shot approximation mechanism ensures a worst-case measure of policy performace is im-
proving. We applied our approach to two inventory management problems, yielding near-optimal

lower bounds and effective control policies.

179

APPENDICES

180

3.9 Addendum to Assumption 7

There are known conditions documented in the literature that validate Assumption 7. A
set of such conditions is available in Gordienko and Hernandez-Lerma (1995). Specifically, The-
orem 2.8 in Gordienko and Hernéndez-Lerma (1995) guarantees that our Assumption 7 holds
if Assumptions 2.2, 2.3, 2.4, and 2.7 from that paper are satisfied. Another set of conditions
relies on a “vanishing-discount” argument outlined in Hernadndez-Lerma and Lasserre (1996).
We present these conditions relative to our setting in Assumptions 10-11 below. When these
assumptions hold, Theorem 5.5.4 in Hernandez-Lerma and Lasserre (1996) ensures the validity

of Assumption 7.

Assumption 10 The MDP cost function ¢ is bounded below, lower semicontinuous, and inf-
compact. The MDP transition kernel Q is strongly continuous: given any measurable bounded
function V : S — R, the mapping (s,a) — fs V(s')P(ds'|s,a) is bounded and continuous over

S x As.

The first part of Assumption 10 is the same as Assumption 4.2.1 in Hernandez-Lerma and
Lasserre (1996). Note that lower semicontinuity and inf-compactness are defined before Con-
dition 3.3.4 and in Condition 3.3.3 of Hernandez-Lerma and Lasserre (1996), respectively. The
second part of Assumption 10 is the same as Part (b) of Assumption 4.2.1 in Hernandez-Lerma

and Lasserre (1996).

181

Define the a-discount value function Vy : S +— R for some discount factor « € [0,1) at s € S
as:

— t _
Vi (s) :i= ﬂ:}SIERET[[g oc(sy, 7(sy)) | so =s]|.

Assumption 11 There exists a state § € S, a non-negative function w : S — [0,00), a number
« € (0,1), and constants MyN > 0 such that (i) inequality (1 — a)V(8) < M holds for every
x € [, 1), and (i1) inequality —N < Vi (s) — V(8) < w(s) holds for every s € S and « € [x, 1).

Moreover, w is measurable and satisfies fsw(d s’)P(s’ls,a) < co for every (s,a) € S x As.

Assumption 11 is an integration of Assumptions 5.4.1 and Assumption 5.5.1 (a) in Hernéandez-
Lerma and Lasserre (1996). It can be verified for different problems, for example, the discounted
Linear-Quadratic problem in Example 5.4.2 of Hernandez-Lerma and Lasserre (1996). Under
Assumption 11, the following lemma, which appears as a proof of Theorem 5.4.3 in Hernéndez-

Lerma and Lasserre (1996), holds.

Lemma 4 Under Assumption 11, there is a sequence {atn, : v = 0,1,...} C [0,1) approaching

from below to 1 such that limn_00(1 — otn) Vi, (8) exists and is a constant for all s € S.

Using the sequence of functions V, in the above lemma, we require the following assumption

that is the same as Assumption 5.5.1 (b) in Hernandez-Lerma and Lasserre (1996).

Assumption 12 The family of functions {Vy, (s) — Vu, (8) :n = 0,1,...}, where {an, : 1 =

0,1,...} and S are defined in Lemma 4 and Assumption 11, respectively, is equicontinuous.

182

For the formal definition of equicontinuity in Assumption 11, please see Remark 5.5.2 in Hernandez-
Lerma and Lasserre (1996). Once again, if Assumptions 10-11 hold, Theorem 5.5.4 in Hernandez-

Lerma and Lasserre (1996) ensures the validity of Assumption 7 in our paper.

3.10 Proofs

Proof of Proposition 14.

We first show that inequality 1 < n* holds for every feasible solutions (n,u) € R x U to
BELP. Consider an initial state s = sy € S and a policy 7t such that n™ = AC(sp;7t) < co. Let
sn and a, be the state and action, respectively, reach at stage n when following policy 7. For

every BELP feasible solution (n,u) € R x U, it holds that
u(so) < Efc(so, ao) —m +u(s1) | so, aol.

Iterating the above inequality for n > 1 times, we obtain the following inequality:

n

ZC(Siyai)] — nn + E[ulsnii)lsn, anl.
i=0

u(sp) < ET

If we divide the above inequality by n, rearrange its terms, and take its limit when n — oo, we

obtain the following upper bound on n:

ET [>T oclsyy ai)l LE [W(Sni1)lsn, Gnl —
n n

u(So)} — AC(s0;7) =™ (3.18)

183

n exists

The first equality above holds since AC(sp;7t) < oo and thus limit limy, s

Elu(sny1)lsn,anl—u(so)

and equals AC(sg;7). Also, fraction o

goes to zero when n — oo, noting that
the numerator of this fraction is bounded because u € U is a continuous function defined over
a compact domain. Because (3.18) holds for every policy 7 with a finite cost AC(sp;7) < o0,
it should hold for 7t*. Using 7* in conjunction with (3.18) results in the required inequality
1 <1n*. Next, we show that pair (n*,u*) € R x U is optimal to BELP. Because this pair solves
optimality equation (3.4), it is a feasible solution to BELP. Thus, the optimal objective value of
BELP is an upper bound on n*. On the other hand, we observed that for every feasible solution
(M,u) € R x U to the BELP, 1 is a lower bound on n*. Hence, the optimal objective value of

BELP is, in fact, n*, and the pair (n*,u*) is an optimal solution to BELP. |

Proof of Proposition 15.

Recall the definition of B ={f : ©® — R : Hﬁ/sz’p < 00, u(s;p) = 0} and R = {u €
u } B st u(-) = u(-;p), u(s;p) =0, |H.’>/p||2’p < oo}. We can rewrite B in terms of
elements in R as B={B : ©® — R: u(p) € R}. Therefore, we can rewrite BFEP by replacing
its decision variable B € B with decision variable u(f) € R as follows:

sup n
(mu(B))ERXR

n +'LL(S, B) —]E['LL(S,, B)|Sa (.1] S C(S) 0.), V(Sa a) €8x AS~

Because R C U, the feasible set of the above program (which is equivalent to BFEP) is a subset

of the BELP feasible set. Thus, we have that the BFEP optimal objective value is upper bounded

*

by n*. Because pair (n*,u*) is feasible to BELP by Proposition 14 and u* = u(f*) € R by

184

Assumption 8, we observe that pair (n*,u(p*)) is feasible to the above reformulation of BFEP.
Thus, pair (n*, ") is feasible to BELP. Therefore, n* should be a lower bound on the BFEP
optimal objective value. Since n* is both an upper and a lower bound on the BFEP optimal
objective value, it must be the BFEP optimal objective value. Hence, pair (n*, *) is a BFEP

optimal solution. [

Proof of Proposition 16.

Let (n,B) € R x B be a feasible solution to IMP. It holds that
n < c(s,m(s)) +u(s; B) —E[u(s’;B) | s,7"(s)], Vs eS™

Integrating the inequalities above with respect to the invariant probability measure p(-;7*)
defined in (3.3), and employing the definition of §*, encompassing all states s € S for which

w(s;) > 0, yields the following inequality:

J nu(ds;m*) SJ c(s, " (s))u(d s;) +J (u(s; B) —E[u(s;B) | s,m*(s)]) u(ds;*).
S S S

If we combine the above inequality with properties [¢u(ds;m*) = IS* w(ds;m™*) = 1 and
n* = AC(s;m*) = fsc(s,ﬂ*(s))p(s;ﬁ*)ds, where the latter one holds for every s € S due

to Assumption 6, we obtain the following inequality:

n<n*+J
S

u(s; B)(d ;) — J

S

u(s’sB) (LP(S’,T{*(S))}L(S;W*)ds) ds’.

185

Applying identity (3.3) for the choice of X = {s’} to the last term in the above inequality, it
boils down to [¢u(s’; B)u(ds’;m*). Therefore, we obtain inequality 1 <n* that holds for every
feasible solution (1, 3) € R x B to IMP. From the definition of ™", we have u(s; ™") = u*(s)
for all s € S*. Because pair (n*,u*) is feasible to all BELP constraints and w(s; ™) = u*(s)
for all s € 8*, pair (n*, B™") is feasible to IMP. Notably, this feasible pair represents an optimal

solution to IMP since it yields the maximum attainable objective value of IMP, namely n*. W

Proof of Proposition 17.

We show (n*, *°) is an optimal solution to both BFEP. To show this result, we use duality
theory for infinite-dimensional linear programs. Define set K :={(s,a):s € S,a € A;}. Klabjan
and Adelman (2006) provide primal dual linear programs for general semi-MDPs. Specifically,
primal-dual pair (6) and (7) in their paper can be written in our setting as the following primal-

dual pair:

zP = su
TMIL) " (3.19)

n+u(s) —E[u(s')s,a] < c(s,a) V(s,a) €S x As.

z% .= inf P c(s,a)q(s,a)d(s,a)
919 Jk

P P(X|s,a)q(s,a)d(s,a) = q((X x A) NK), VX CS,

Jx (3.20)

q(S) a)d(s, (1) = 1)

JK

q(s,a) > 0.

186

In above, u : § — R is a bounded measurable function and q : £ — R is a signed measure
with a finite total variation norm. Note that the difference between (3.19) and BELP is that
the former is a relaxation of the latter because BELP requires u € /. We proceed in two steps.

In Step (i), we show that (3.19) and (3.20) are consistent, i.e., they have feasible solutions.
From Proposition 14, pair (n*,u*) is feasible to BELP, so it is feasible to (3.19), which is
a relaxation of BELP. It thus hold that n* < zP. Next, we show that (3.20) has a feasible
solution. Recall Assumption 6. Define probability measure {i(s, a) := u*(s)6{a = 7w*(s)}, where
&{a = 7*(s)} is the Dirac measure evaluating to one if a = 7t*(s) and zero otherwise. From the

definition of invariant distribution p*(-) = u(-;7c*), for each X C S, we have

J}C P(Xs, a)(s,)d(s, a) = L P(Xls,m(s)) e (d's) = () = B((X x Ag) N K).

In addition, we know that f,c fi(d(s,a)) =1 and fi(s,a) > 0. Hence, {l is feasible to (3.20).

In Step (ii), we use complementary slackness for the primal-dual pair (3.19) and (3.20)
(e.g., see Theorem 6.2.4 of Hernandez-Lerma and Lasserre 1996). This result states that if
triplet (n, u, q) is such that pair (n,u) is feasible to primal problem (3.19), q is feasible to dual
problem (3.20), and identity [, q(s,a)(c(s,a) —u(s) —n+E[u(s’)ls, a]) d(s, a) = 0 holds, then
(M, u) is optimal to (3.19) and q is optimal to (3.20). Now consider ((n*, u(p*“)),ft). From
the definition of weighting function B*°, pair (n*,u(pB*)) is feasible to BELP and thus feasible

to (3.19). As we already saw in Step (i), {i is feasible to dual problem (3.20). Therefore, if

187

we show identity [, (s, a)(c(s, a) —u(s; B*°) —n* + Eu(s’; $)ls, al) d(s, a) = 0 holds, then

((n*,u(B**)), 1) is an optimal primal-dual solution. This identity holds as we can write:

L (s, a) (c(s, @) — uls; B*) —1* + Elu(s’; s, al) (s, a)

= :S W (s)(c(s, 7" (s)) —uls; B*9) —n" + Eu(s’; B*)ls,m*(s)]) d s
= [W S) el ()~ ulsi B~ Efuls's Bl ()] ds
= | WISl (5~ s) — -+ B (), (51 s

—0

The first and second equalities above follows from the definitions of i and S*, respectively.
The third equality holds because u(s; 3*°) = u*(s) for all s € S*. The last equality because
(n*,u*) solve optimality equation (3.4). Therefore, (n*,u(B*“)) is an optimal solution to the
primal model (3.19). Since u(s;B*“) evaluates to zero at s = s due to the definition of 3*°, and
function u(B*°) € R C C is continuous, pair (n*, ") is feasible to BFEP. In fact, this pair is
optimal because this feasible solution attains the BFEP optimal objective value n*, guaranteed

by Proposition 15. Hence, pair (n*, %) is an optimal solution of BFEP. |

188

Proposition 21 (Proposition 7 in Chapter 2) Suppose p(0) > p, for all © € © and As-
sumption 8 holds. Consider & € (0,1] and a function w(B) with B € B. Given N iid samples

(0t:i=1,2,...,N} from p, there is a vector p € RN such that

< Err(N, & B), (3.21)

o

N
u(s;B) —) Bip(s;0Y)
i=1

with a probability of at least 1 — 3.

Corollary 2 Suppose p(0) > p, for all © € © and Assumption 8 holds. Consider 6 € (0,1] and
a function w(B) with B € B. Given N iid samples {8*:1=1,2,...,N} from p, if we let p € RN

be the vector defined in Proposition 21, then there exists a vector

N
/B = (_Z Bi(P(§§ei)> B]) BZ)H-)BN) € RN+])
i=1

such that

[w(B) — u(B)|,, < 2Err(N,88), (3.22)

with a probability of at least 1 — 8. Moreover, we have u(s;B) =0, i.e., w(B) € U.

Proof. From Proposition 21 and the fact that w(s;) = 0 since B € B, we have

u(B) — u(B)lloo < IBol +

N
u(s;B) — (Z Bi(P(Slei))

i=1

[e o]

189
< 2Err(N, 5;)

Applying the right hand side of the above inequality to (3.22), we obtain (3.22). Identity
u(s; B) = 0 is trivial given the definition of Bo. |
Proof of Theorem 4.

Since pair (n*, ") is optimal to BFEP by Proposition 17, we have c(s, a)—n* > u(s; B*°) —
Elu(s’; *°)s, a] for every (s,a) € Sx.As. Applying Corollary 2 to B*° € B, there exists a vector
B € RNt such that [|u(B*®) — w(B)||eo < 2Err(N, d; 3°). Therefore, for every (s,a) € S x As,

the following inequalities hold with a probability of at least T — &:

c(s,a) =" > u(s; B*) —Efu(s’; B*)ls,

> u(s; B) — (2Err(N, &) — Elu(s'; B)ls, al — (2Err(N, §; B*°))

Therefore, with this probability, we have
(s, @) = (n* —4Brx(N, 5,8) > u(s;) — Elu(s;B)ls,), V(s,a) €S x A, (3.23)

that together with identity w(s;B) = 0, which holds by Corollary 2, shows that pair (n* —

4Err(N, &;), /[3) € RN*2 is feasible to BALPy. As a result, we obtain bound 0 < n* —n* <

4Err(N, &;). [

190

Proof of Theorem 5.

Consider the following inequalities:

Ac(ﬂg(ﬁ)) -7

2 Eyp) [c(s,m(s:B))] —n*

2 Eup [e(smg(s:B)) — 1"+ E[u(s's B)]s, m(s;B)] — (s)]

s,a]}—u(s;ﬁ)}

(iv)
< Ju(B) ~ s + Eup) [gelgl {e(s,0) —n" +E[w(s5B)

(i) E,p) [min {c(s, a) —n* +E[u(s’;[3)

acAs

s, a] } —u(s; [3)]

v)

= u(B) —u'flee + Epup) be*(s) —uls; B)]

(vi)

< uB) = u oo + W —w(B)1,um,p)

Identity (i) holds due to Assumption 6 under which identity AC(s’;m) = fS c(s,m(s))u(s;m)ds

holds for every policy 7t and state s’ € S; equality (ii) relies on the following identity:

Eyp) Eu(s’; B) | s,7(s; B)1] = By uls; B,

that holds by virtue of (3.3); equality (iii) is obtained using the definition of the greedy policy;
inequality (iv) is a result of inequality u(s;) < u*(s) + [[u — u*||oo that holds for every s € S;
equality (v) holds since pair (n*,u*) solves optimality equation (3.4); inequality (vi) directly
follows from the definition of (1, u(n, 3))-norm. Rearranging the terms in the above inequalities

results in (3.9), which finishes the proof. [

191

Proposition 22 The MDP bias function W* admits the following representation for each s € S:

n—oo

n
w(s) =limsup) ET [c(si,a) — n7],
i=0

where sy and an are, respectively, the state and action reach at stage 1 under optimal policy TT*.

Proof. Please see Lemma 4.3 in Luque-Vasquez and Hernandez-Lerma (1999).

Proof of Proposition 18.

Proof entails three following steps. First, we show that every feasible solution u to PELP
satisfies u(s) < u*(s) for all s € S. Fix some initial state s = sg € S. Let s, and a, be the
state and action, respectively, reach at stage n when following policy 7t*. Since u is feasible to
PELP, we have that u(sg) < c(sp, ap) —n* + E[u(s1)]so, apl. Iterating this inequality, we obtain
that

u(so) < Y EF le(siyai) — '] + EQu(snii)lsn, an
i=0

Taking the limit of the above inequality and applying Lemma 22, we obtain that

n
u(so) < limsup Y EJ [c(si, ai) — 1*] =u*(so),

n—oo *
i=0

for every arbitrary choice of sy € S. Next, we show the regression-based model in the proposition

is a correct reformulation of PELP. The PELP is equivalent to

min E,[u*] —E,[u]
uel

192
u(s) — Efu(s')ls,a] < c(s,a) =77, V(s,a) € S x As.

Because of the first step, we have Ey[u] < E,[u*] and thus |u —u*|j1y = Ey[u*] — E,[ul.
Therefore, we can replace the objective function of the above program with |[u —u*{|; -, where
this replacement shows that the regression-based model in the proposition is a reformulation of
PELP. Finally, we show that for every PELP optimal solution u®, we have u(s) = u*(s) for
all s € S. From the previous part, we see that u™(s) < u*(s) for all s € S because u"™ is feasible
to PELP. Assume there is a state § such that u™(8) < u*(8). Since u* and u™ are continuous,
there must exist a ball around §, denoted Nz, such that u™(s) < u*(s) for all s € N;. Since v(-)

is positive for all non-zero measure subsets of S, which includes Nz, we have

E,[u™ = J u™(s)v(ds) —I—J u"(s)v(ds) < Ey[u*].
S\Ns

PS

S

Because (n*,u*) is feasible to the optimality equation (3.4) and is thus u* a feasible to PELP,
we have E,[u*] < E,[u*®]. This contradicts with E, [u'®] < E,[u*] and thus there is no § such
that u™(8) < u*(8). In other words, for all s € S, it must hold that u™(s) > u*(s). From the
first step of the proof, we saw that u™(s) < u*(s). Therefore, we obtain equality u™(s) = u*(s)

for all s € S. [|

193

Proof of Proposition 19.

Similar to the proof of Proposition 15, where we rewrite BEEP by substituting its decision

variable B € B with the decision variable u(p) € R, we can reformulate PFEP as follows:

sup Ey[u(p)]
u(B)ER

u(s;B) —E[u(s’; B)ls,al <c(s,a) —n*, V(s,a) €S x As.

Because R C U and u* is optimal to PELP by Proposition 18, for every feasible PFEP solution
u € R, it follows that Ey[u(B)] < Ey[u*]. Under Assumption 8, which requires u* = u(p*),
the inequality Ey[u(p)] < Ey[u(p*)] holds for any feasible PFEP solution u(p) € R. From
Proposition 18, u* = u(p*) is feasible to PELP, so B* satisfies all PFEP constraints. Since
weighting function B* is a feasible PFEP solution and achieves the maximum attainable objective

value E,[w(B*)], it is optimal to BFEP. Next, we show that 3 |

Proposition 23 Let C be the space of all continuous functions over S. Mapping T : C — C is

a bounded linear transformation over Banach space C equipped with co-norm || - ||co-

Proof. We claim that T : C — C is a linear bounded transformation over C. First, recall C
which is the space of all real-valued continuous functions u : § — R defined over compact

domain §. It is known that C is a vector space and if it is equipped with the infinity-norm

194

|u]|oo := maxs [u(s)], it becomes a Banach space. Second, T is linear because for every u,v € C

and every «, 3 € R, we have
T(ow+ Bv) = Eloau(s’) + Bv(s’) | -, *(1)] = o«Tu+ BTv.
Next, T is bounded in essence that for every u € C, the following holds:

[Tu/|oo < sup U P(s|s,m*(s))u(ds’)
s |Js

< supU P(ds'ls, 7 (s))1efloo] d 8" < [ty
N S

We observe that T is a transformation because the MDP stochastic kernel P is strongly continu-
ous by Assumption 9 and thus function Tu(s) := E[u(s’)| s, 7t*(s)] is continuous over S for every
u e, ie., TueC. Therefore, T:C — C is a linear bounded transformation over Banach space

C. [

Proof of Proposition 20.

Let e :=n* —nJ*. Define function e : S +— R as e(-) = 1. Utilizing identity u* = F*°g* and

the definition of u™(M3*) = F*gy*, for every s € S, we have
uP(sint) —ut(s) = F2g"(s) = F g (s) = F(g" — g")(s) = eFe(s).
Using the definition of norm ||[F*°||, we have

[uP(siny?) —u'(s)fleo = €Sug|F°°e(S)| < esup{[[Fufloo ¢ [[ufloo < T} = e[F|.
se u

195

The first part of the proof is thus complete. We next focus on the second part. Given q =

1,2,...,Q, let B be a feasible solution to program PALPy,s. For u(f), we have
u(s; B) —E[u(s’sB)ls,al < cfs,a)—mn, V(s,a).

For the particular choice of actions a = 7t*(s) at each state s, the above inequality holds. That
is, for B that is feasible to PALPy, 5, we have u(s; B) — E[u(s’; B)ls, 77" (s)] < c(s,*(s)) —n*
for all s € S. Combining this inequality with the definition of T nad F, we obtain that (3 satisfies
u(p) < go* + Tu(P). Iterating this inequality, we obtain u(f) < limg_,o ZE:O TkgﬁA. Hence,

we have

K K
u(siB) =uls;B) —u(s;p) < lim 3 Tg¥(s) — TG (s) = lim 3 Fegi(s) = FPgu(s)
k=0 k=0

Using the definition of the idealized solution u'(s;n3*) = F*°g?*(s), the above inequalities, and

the first part of the proposition, we obtain that
u(s; B) < uP(smyt) <ut(s) + (T =t [IFl,

for all s € §. The above inequalities complete the proof. |

CITED LITERATURE

196

Bibliography

Adelman D (2003) Price-directed replenishment of subsets: methodology and its application to inventory
routing. Manufacturing € Service Operations Management 5(4):348-371.

Adelman D, Klabjan D (2005) Duality and existence of optimal policies in generalized joint replenish-
ment. Mathematics of Operations Research 30(1):28-50.

Adelman D, Klabjan D (2012) Computing near-optimal policies in generalized joint replenishment.
INFORMS Journal on Computing 24(1):148-164.

Adelman D, Mersereau AJ (2013) Dynamic capacity allocation to customers who remember past service.
Management Science 59(3):592-612.

Balseiro SR, Gurkan H, Sun P (2019) Multiagent mechanism design without money. Operations Research
67(5):1417-1436.

Bartlett PL, Mendelson S (2002) Rademacher and Gaussian complexities: risk bounds and structural
results. Journal of Machine Learning Research 3(Nov):463-482.

Basu A, Martin K, Ryan CT (2017) Strong duality and sensitivity analysis in semi-infinite linear pro-
gramming. Mathematical Programming 161(1-2):451-485.

Beevi KS, Nair MS, Bindu GR (2016) Detection of mitotic nuclei in breast histopathology images us-
ing localized ACM and Random Kitchen Sink based classifier. 2016 38th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2435-2439.

Bertsekas DP (2015) Dynamic programming and optimal control, 4th Edition, volume 2 (Athena Scien-
tific).
Bertsekas DP, Tsitsiklis JN (1996) Neuro-dynamic Programming, volume 5 (Athena Scientific).

Bhat N, Farias V, Moallemi CC (2012) Non-parametric approximate dynamic programming via the
kernel method. Advances in Neural Information Processing Systems, 386—394.

Blado D, Toriello A (2019) Relaxation analysis for the dynamic knapsack problem with stochastic item
sizes. SIAM Journal on Optimization 29(1):1-30.

Brown DB, Smith JE, Sun P (2010) Information relaxations and duality in stochastic dynamic programs.
Operations Research 58(4-part-1):785-801.

Brown DB, Smith JE, et al. (2022) Information relaxations and duality in stochastic dynamic programs:
A review and tutorial. Foundations and Trends ®) in Optimization 5(3):246-339.

Calafiore G, Campi MC (2005) Uncertain convex programs: randomized solutions and confidence levels.
Mathematical Programming 102(1):25-46.

Calafiore GC, Campi MC (2006) The scenario approach to robust control design. IEEE Transactions on
automatic control 51(5):742-753.

Canuto C, Hussaini MY, Quarteroni A, Thomas Jr A, et al. (2012) Spectral methods in fluid dynamics
(Springer Science & Business Media).

Carriere JF (1996) Valuation of the early-exercise price for options using simulations and nonparametric
regression. Insurance: Mathematics and Economics 19(1):19-30.

Chen X, Pang Z, Pan L (2014) Coordinating inventory control and pricing strategies for perishable
products. Operations Research 62(2):284-300.

Dai JG, Shi P (2019) Inpatient overflow: An approximate dynamic programming approach. Manufac-
turing & Service Operations Management 21(4):894-911.

197

198

De Farias DP, Van Roy B (2002) Approximate linear programming for average-cost dynamic program-
ming. Advances in Neural Information Processing Systems 15.

De Farias DP, Van Roy B (2003) The linear programming approach to approximate dynamic program-
ming. Operations Research 51(6):850-865.

De Farias DP, Van Roy B (2004) On constraint sampling in the linear programming approach to ap-
proximate dynamic programming. Mathematics of Operations Research 29(3):462-478.

De Farias DP, Van Roy B (2006) A cost-shaping linear program for average-cost approximate dynamic
programming with performance guarantees. Mathematics of Operations Research 31(3):597-620.

Desai VV, Farias VF, Moallemi CC (2012a) Approximate dynamic programming via a smoothed linear
program. Operations Research 60(3):655-674.

Desai VV, Farias VF, Moallemi CC (2012b) Pathwise optimization for optimal stopping problems.
Management Science 58(12):2292-2308.

Drusvyatskiy D, Lewis AS (2018) Error bounds, quadratic growth, and linear convergence of proximal
methods. Mathematics of Operations Research 43(3):919-948.

Farias VF, Van Roy B (2006) Tetris: a study of randomized constraint sampling. Probabilistic and
Randomized Methods for Design Under Uncertainty 189-201.

Folland GB (1999) Real Analysis: Modern Techniques and Their Applications (New York, NY: John
Wiley & Sons).

Forsell N, Sabbadin R (2006) Approximate linear-programming algorithms for graph-based Markov
decision processes. Proceedings of the 2006 Conference on ECAI 2006: 17th European Conference
on Artificial Intelligence August 29-September 1, 2006, Riva del Garda, Italy, 590-594.

Franke JK, Koehler G, Biedenkapp A, Hutter F (2021) Sample-efficient automated deep reinforcement
learning. International Conference on Learning Representations.

Fujimoto S, Hoof H, Meger D (2018) Addressing function approximation error in actor-critic methods.
International Conference on Machine Learning, 1587-1596 (PMLR).

Glasserman P, Yu B (2004) Simulation for American options: regression now or regression later? Monte
Carlo and Quasi-Monte Carlo Methods 2002, 213-226 (Springer).

Gordienko E, Hernandez-Lerma O (1995) Average cost Markov control processes with weighted norms:
existence of canonical policies. Applicationes Mathematicae 23(2):199-218.

Guestrin C, Koller D, Parr R, Venkataraman S (2003) Efficient solution algorithms for factored MDPs.
Journal of Artificial Intelligence Research 19:399-468.

Gurobi Optimization L (2019) Gurobi optimizer reference manual. URL http://www.gurobi.com.

Haarnoja T, Ha S, Zhou A, Tan J, Tucker G, Levine S (2019) Learning to walk via deep reinforcement
learning. Robotics: Science and Systems .

Haskell WB, Jain R, Sharma H, Yu P (2020) A universal empirical dynamic programming algorithm for
continuous state MDPs. IEEE Transactions on Automatic Control 65(1):115-129, ISSN 2334-3303.

Haugh MB, Kogan L (2004) Pricing American options: a duality approach. Operations Research
52(2):258-270.

Hernéndez-Lerma O, Lasserre JB (1996) Discrete-time Markov Control Processes: Basic Optimality
Criteria, volume 30 (New York, NY: Springer Science & Business Media).

Hernandez-Lerma O, Lasserre JB (1999) Further Topics on Discrete-time Markov Control Processes,
volume 42 (New York, NY: Springer Science & Business Media).

http://www.gurobi.com

199

Hua Z, Yu Y, Zhang W, Xu X (2015) Structural properties of the optimal policy for dual-sourcing
systems with general lead times. IIE Transactions 47(8):841-850.

Karaesmen 1Z, Scheller-Wolf A, Deniz B (2011) Managing perishable and aging inventories: review and
future research directions, 393-436 (New York, NY: Springer).

Klabjan D, Adelman D (2006) Existence of optimal policies for semi-Markov decision processes using
duality for infinite linear programming. SIAM Journal on Control and Optimization 44(6):2104—
2122.

Klabjan D, Adelman D (2007) An infinite-dimensional linear programming algorithm for deterministic

semi-Markov decision processes on Borel spaces. Mathematics of Operations Research 32(3):528—
550.

Lewis AS, Pang JS (1998) Error bounds for convex inequality systems. Generalized Convezity, General-
ized Monotonicity: Recent Results 75-110.

Lin Q, Ma R, Nadarajah S, Soheili N (2022) A parameter-free and projection-free restarting level set
method for adaptive constrained convex optimization under the error bound condition. Working
paper .

Lin Q, Nadarajah S, Soheili N (2020) Revisiting approximate linear programming: Constraint-
violation learning with applications to inventory control and energy storage. Management Science
66(4):1544-1562.

Longstaff FA, Schwartz ES (2001) Valuing American options by simulation: a simple least-squares
approach. The Review of Financial Studies 14(1):113-147.

Lu Y, Dhillon P, Foster DP, Ungar L (2013) Faster ridge regression via the subsampled randomized
hadamard transform. Advances in Neural Information Processing Systems, 369-377.

Luque-Vasquez F, Hernandez-Lerma O (1999) Semi-Markov control models with average costs. Appli-
cationes mathematicae 26(3):315-331.

Mahadevan S (1996) An average-reward reinforcement learning algorithm for computing bias-optimal
policies. AAAI/TAAI Vol. 1, 875-880 (Citeseer).

McGrew JS, How JP, Williams B, Roy N (2010) Air-combat strategy using approximate dynamic pro-
gramming. Journal of Guidance, Control, and Dynamics 33(5):1641-1654.

McWilliams B, Balduzzi D, Buhmann JM (2013) Correlated random features for fast semi-supervised
learning. Advances in Neural Information Processing Systems, 440-448.

Micchelli CA, Xu Y, Zhang H (2006) Universal kernels. Journal of Machine Learning Research
7(Dec):2651-2667.

Mladenov M, Boutilier C, Schuurmans D, Elidan G, Meshi O, Lu T (2017) Approximate linear program-
ming for logistic Markov decision processes. Proceedings of the Twenty-sizth International Joint
Conference on Artificial Intelligence, 2486—2493.

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland
AK, Ostrovski G, et al. (2015) Human-level control through deep reinforcement learning. Nature
518(7540):529-533.

Mohri M, Rostamizadeh A, Talwalkar A (2012) Foundations of Machine Learning (Cambridge, MA:
MIT press), first edition.

Nadarajah S, Margot F, Secomandi N (2015) Relaxations of approximate linear programs for the real
option management of commodity storage. Management Science 61(12):3054—-3076.

Nadarajah S, Margot F, Secomandi N (2017) Comparison of least squares monte carlo methods with
applications to energy real options. European Journal of Operational Research 256(1):196-204.

200

Nadarajah S, Secomandi N (2022) A review of the operations literature on real options in energy.
FEuropean Journal of Operational Research ISSN 0377-2217.

Nersessian A (2019) Fourier tools are much more powerful than commonly thought. Lobachevskii Journal
of Mathematics 40(8):1122-1131.

Osband I, Van Roy B, Russo DJ, Wen Z, et al. (2019) Deep exploration via randomized value functions.
Journal of Machine Learning Research 20(124):1-62.

Pakiman P, Nadarajah S, Soheili N, Lin Q (2020) Self-guided approximate linear programs: randomized
multi-shot approximation of discounted cost markov decision processes. Available at SSRN: http:
//dx. dot. org/10. 2139/ ssrn. 3512665 .

Peters J, Vijayakumar S, Schaal S (2003) Reinforcement learning for humanoid robotics. Proceedings of
the third IEEE-RAS International Conference on Humanoid Robots, 1-20.

Powell WB (2007) Approzimate Dynamic Programming: Solving the Curses of Dimensionality (Hoboken,
NJ: John Wiley & Sons).

Puterman ML (1994) Markov Decision Processes: Discrete Stochastic Dynamic Programming (Hoboken,
NJ: John Wiley & Sons).

Rahimi A, Recht B (2008) Random features for large-scale kernel machines. Advances in Neural Infor-
mation Processing Systems, 1177-1184.

Rahimi A, Recht B (2008) Uniform approximation of functions with random bases. 2008 46th Annual
Allerton Conference on Communication, Control, and Computing, 555-561.

Rahimi A, Recht B (2009) Weighted sums of random kitchen sinks: replacing minimization with ran-
domization in learning. Advances in Neural Information Processing Systems, 1313-1320.

Rudin W (1987) Real and Complex Analysis (Singapore: McGraw-Hill).

Saldi N, Yiiksel S, Linder T (2017) On the asymptotic optimality of finite approximations to Markov
decision processes with Borel spaces. Mathematics of Operations Research 42(4):945-978.

Schweitzer PJ, Seidmann A (1985) Generalized polynomial approximations in Markovian decision pro-
cesses. Journal of Mathematical Analysis and Applications 110(2):568-582.

Shahrampour S, Beirami A, Tarokh V (2018) On data-dependent random features for improved gen-
eralization in supervised learning. Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32.

Shapiro A (2009) Semi-infinite programming, duality, discretization and optimality conditions. Opti-
mization 58(2):133-161.

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M,
Bolton A, et al. (2017) Mastering the game of go without human knowledge. Nature 550(7676):354—
399.

Sinha A, Duchi JC (2016) Learning kernels with random features. Advances in Neural Information
Processing Systems 29:1298-1306.

Steimle LN, Denton BT (2017) Markov decision processes for screening and treatment of chronic diseases.
Markov Decision Processes in Practice, 189-222 (Springer).

Sun P, Wang K, Zipkin P (2014) Quadratic approximation of cost functions in lost sales and perishable
inventory control problems. Fuqua School of Business, Duke University, Durham, NC .

Tong C, Topaloglu H (2013) On the approximate linear programming approach for network revenue
management problems. INFORMS Journal on Computing 26(1):121-134.

http://dx.doi.org/10.2139/ssrn.3512665
http://dx.doi.org/10.2139/ssrn.3512665

201

Trick MA, Zin SE (1997) Spline approximations to value functions: linear programming approach.
Macroeconomic Dynamics 1(1):255-277.

Van Ngai H, Kruger A, Théra M (2010) Stability of error bounds for semi-infinite convex constraint
systems. SIAM Journal on Optimization 20(4):2080-2096.

Veatch MH (2013) Approximate linear programming for average cost MDPs. Mathematics of Operations
Research 38(3):535-544.

Vega-Amaya O (2003) The average cost optimality equation: a fixed point approach. Bol. Soc. Mat.
Mezicana 9(1):185-195.

Wang D, Zeng J, Lin SB (2020) Random sketching for neural networks with ReLLU. IEEE Transactions
on Neural Networks and Learning Systems 32(2):748-762.

Wu L, Chen PY, Yen IEH, Xu F, Xia Y, Aggarwal C (2018) Scalable spectral clustering using random
binning features. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2506—2515.

Yang Q, Zhang J, Shi G, Hu J, Wu Y (2019) Maneuver decision of UAV in short-range air combat based
on deep reinforcement learning. IEEE Access 8:363-378.

Zipkin P (2008) On the structure of lost-sales inventory models. Operations Research 56(4):937-944.

NAME

EDUCATION

PUBLICATIONS

VITA

Parshan Pakiman

Ph.D., Information and Decision Sciences, University of Illinois Chicago,
Chicago, 1L, USA, 2023.

M.Sc., Business Analytics, University of Illinois Chicago, Chicago, 1L,
USA, 2023.

B.Sc., Applied Mathematics, University of Tehran, Tehran, Iran, 2016.

P. Pakiman, S. Nadarajah, N. Soheili, and Q. Lin. “Self-Guided Ap-
proximate Linear Programs: Randomized Multi-Shot Approzimation of
Discounted Cost Markov Decision Processes.” Under review at Man-
agement Science.

P. Pakiman, and S. Nadarajah. “Randomized Multi-Shot Approxima-
tion of Average Cost Markov Decision Processes.” Working paper.

A. Chenreddy, P. Pakiman, S. Nadarajah, R. Chandrasekaran, and
R. Abens. “SMOILE: A Shopper Marketing Optimization and Inverse
Learning Engine.” Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining (2019).

202

	to1 Introduction
	to2 Self-Guided Approximate Linear Programs: Randomized Multi-Shot Approximation of Discounted Cost Markov Decision Processes
	 Introduction
	 Exact Mathematical Programs
	 Background
	 Feature-based Exact Program

	 Randomized One-Shot Approximation
	 Model and Theory
	 Implementation Guidelines

	 Randomized Multi-Shot Approximation
	 Model and Algorithm
	 Understanding the Self-guiding Mechanism
	 Theoretical Guarantees
	 Implementation Guidelines

	 Extensions
	 Perishable Inventory Control
	 MDP Formulation and Instances
	 Computational Setup
	 Results

	 Bermudan Options Pricing
	 MDP Formulation
	 Computational Setup and Benchmarks
	 Results

	 Conclusions
	 Proofs
	 Additional Details of Assumption 1
	 Proofs of Statements in §2.2
	 Proofs of Statements in §2.3
	 Proofs of Statements in §2.4
	 Proofs of Statements in §2.5

	 Relaxing Assumptions
	 Relaxing Assumption of V*R
	 Relaxing Assumption 3

	 Constraint Sampling Bound for Self-guided FALP
	 Optimistic Bound Estimation
	 Constraint Violation Learning
	 Information Relaxation and Duality

	 Addendum to Numerical Study
	 Visualization of Self-guiding Mechanism
	 Analyzing the Impact of Constraint Sampling on Policy-guided FALP
	 Analyzing ReLU Basis Functions
	 Upper and Lower Bound Values

	to3 Randomized Multi-Shot Approximation of Average Cost Markov Decision Processes
	 Introduction
	 Contributions
	 Related work

	 Markov Decision Processes
	 Bound-Focused Programs
	 Bound-Focused Exact Linear Program
	 Bound-Focused Feature-based Exact Program
	 Bound-Focused Approximate Linear Program

	 Policy-Focused Programs
	 Policy Performance Bound
	 Discounted-cost Approach to Average-Cost MDPs
	 Policy-Focused Exact Programs
	 Policy-Focused Approximate Linear Program

	 Algorithm
	 Generalized Joint Replenishment
	 Constraint Generation for Stump Basis Functions
	 Instances and Computational Setup
	 Results

	 Perishable Inventory Control Problem
	 Instances and Benchmarks
	 Results

	 Conclusion
	 Addendum to Assumption 7
	 Proofs

	to CITED LITERATURE
	to VITA

