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SUMMARY

This dissertation focuses on the electrification of freight and transit vehicles as a sustainable

solution to mitigate greenhouse gas emissions. The primary objectives of this dissertation

focuses on efficiently addressing Electric Vehicle Supply Equipment Location and Capacity

Allocation (EVSELCA) problems, optimizing Single Depot Electric Vehicle Scheduling Problem

(SDEVSP) for urban transit systems, and optimizing the Electric Bus Scheduling and Charger

Location (EBSCL). By addressing these objectives, this dissertation aims to contribute to the

advancement of sustainable and environmentally responsible transportation in the context of

heavy electric vehicles. In this regard, first, this dissertation introduces a mixed-integer linear

programming (MILP) model for EVSELCA. This model optimizes the locations and number and

type of chargers, aiming to minimize strategic investment costs. Second, the research proposes

a two-step solution to SDEVSP. In the first step, an integer programming model generates

blocks of consecutive trips. The second step introduces an MILP, which involves chaining these

blocks to create efficient bus runs, optimizing recharging between blocks, and ensuring next

day operability constraints are satisfied. Finally, the dissertation presents an integrated model

that optimizes both electric vehicle scheduling and charger location. Each developed model

undergoes computational performance analysis, and a comprehensive case study is designed to

provide key managerial and policy insights, along with extensive sensitivity analyses aiming to

identify crucial parametric levers.

xii



CHAPTER 1

INTRODUCTION

1.1 Background and motivation

The widespread use of fossil fuels for meeting energy needs has long been associated with the

generation of greenhouse gas (GHG) emissions, which exert detrimental effects on our climate

and environment (Metz et al. 2007). Among the various sectors contributing to GHG emissions,

the transportation sector stands out as a significant player, accounting for a substantial 27% of

total emissions in the United States (US Environmental Protection Agency 2020). Within the

transportation landscape, medium and heavy-duty vehicles, as well as buses, stand as pivotal

contributors to the GHG challenge, further intensifying the environmental dilemma (Metz et al.

2007).

In particular, medium-duty (MD) and heavy-duty (HD) trucks have raised concerns, being

responsible for a significant 26% of emissions within the transportation sector (US Environmen-

tal Protection Agency 2020). With the increase in e-commerce, the number of trucks and their

total miles traveled are expected to grow, resulting in higher emissions from freight transporta-

tion (Hovland Consulting LLC 2020). This trend underscores the pressing need for sustainable

alternatives in the freight industry.

Truck electrification is a promising solution that can help mitigate the negative impact of

their GHG emissions (Talebian et al. 2018). By replacing conventional engines with electric

1
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motors, the transportation sector can significantly reduce GHG emissions. While conventional

trucks can cover long distances without refueling, a critical factor for electric trucks is their

relatively shorter battery range (Hovland Consulting LLC 2020). The range of a typical HD/MD

electric truck is around 130 miles (Lightning eMotors 2022), which limits their use in long-

haul trucking. Additionally, the time required for recharging electric trucks can be another

significant challenge: Depending on the charging method, it can take 20 minutes to 8 hours

to fully recharge their batteries (Bennett et al. 2021). This can lead to significant downtimes

for trucking companies, which affect their productivity and profitability. Therefore, efficiently

solving electric vehicle supply equipment location and capacity allocation (EVSELCA) problems

is crucial to making electric trucks a viable option for commercial transportation.

On a parallel track, the realm of public transit faces a different yet equally significant

challenge. Public transportation plays a crucial role in cities by providing accessible, affordable,

efficient, and equitable mobility options for travelers while helping to alleviate congestion.

However, buses have taken center stage as primary contributors to carbon emissions in the

transit sector, emitting an average of 0.643 lbs of carbon per passenger-mile traveled (FTA

2010). This figure is a staggering 76% higher than the emissions from the next highest transit

mode, light-rail systems. Recognizing the urgency of reducing carbon emissions and improving

air quality, the U.S. Department of Transportation (DOT) Federal Transit Administration has

committed billions of dollars to achieve a net-zero emissions economy by 2050 (The White

House 2022).
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Similar to freight, within public transit, transitioning to electric vehicles (EVs) holds the

promise of significantly reducing harmful emissions and enhancing local air quality (Muñoz et al.

2022). Nevertheless, the adoption of electric buses comes with its own set of challenges. One

major concern is the higher upfront cost of EVs compared to conventional DVs (Muñoz et al.

2022). This cost disparity can impose financial barriers, particularly when there is a need to

replace a large number of buses in existing fleets. Driving range, long charging time, and elec-

tricity grid impact of EVs are other issues to be tackled. Although technological advancements

have improved battery capacity and charging speeds, EVs still have a shorter range and longer

downtime compared to DVs. This can pose operational challenges, especially for longer routes

that require long periods of operation. To overcome these challenges, one potential solution is

to increase the number of buses in operation. However, the high cost of electric buses can be

a hindrance. Therefore, optimizing EV scheduling becomes essential to minimize the bus fleet

size and idle time, while ensuring sufficient recharging during idle periods. Additionally, there

is the task of strategically placing charging locations to accommodate charging activities. The

use of pantograph chargers, which supply power from the top of the bus through scissor-like

arms, introduces issues related to space occupancy and cost Daliah (2023). A growing concern

is the optimal placement of these chargers across the transit service network, including terminal

garages, to ensure seamless electric vehicle operations.

1.2 Study objectives

The primary objective of this thesis is to strategically plan for the infrastructure required

to support heavy electric vehicles. To achieve this goal, we have defined three key objectives,
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each addressing critical aspects of electric vehicle deployment and operation within urban en-

vironments:

Objective 1: the first objective focuses on the efficient resolution of Electric Vehicle Supply

Equipment Location and Capacity Allocation (EVSELCA) problems. This objective is pivotal

in making electric trucks a viable and sustainable option for commercial transportation. The

EVSELCA problem entails identifying optimal locations, quantities, and types of electric vehicle

supply equipment, commonly referred to as ”EV chargers.” The primary aim is to minimize

strategic investment costs while ensuring compliance with operational constraints. By tackling

this challenge, we aim to pave the way for cost-effective and strategically located charging

infrastructure that supports the seamless integration of electric trucks into commercial transport

networks.

Objective 2: the second objective focuses on the optimization of electric vehicle schedul-

ing, which is essential for minimizing bus fleet sizes and idle times, while ensuring sufficient

recharging during idle periods. This objective primarily targets urban transit systems, where

electric buses play a pivotal role in reducing emissions and enhancing sustainable mobility.

Through advanced scheduling techniques, our aim is to enhance the operational efficiency of

electric bus fleets, making them a more economically and environmentally viable choice for

public transportation services.

Objective 3: the third objective focuses on the strategically locating chargers for electric

buses, with a focus on minimizing strategic investment costs while adhering to operational

constraints. While bus garages are primary locations for housing chargers, placing chargers
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at trip end locations could facilitate charging activities. Regular recharging at these locations

could make electric buses function similarly to conventional diesel-powered buses. Resolving

this necessitates solving a facility location problem (FLP) to identify optimal locations from a

candidate set for housing these chargers. FLP decisions often have strategic implications, as

altering or retracting them can be challenging and costly. Identifying the candidate facility set

requires consideration of vehicle schedules as well.

1.3 Organization of the Thesis

This thesis includes four chapters. Chapter 2: Electric Vehicle Supply Equipment Location

and Capacity Allocation (EVSELCA). In this chapter, we introduce a mathematical model and

propose a metaheuristic solution approach to address the intricate challenges related to the

optimal deployment of charging infrastructure. Additionally, this chapter includes a thorough

presentation and analysis of our research findings. Chapter 3: Single Depot Electric Vehicle

Scheduling Problem (SDEVSP). Within this chapter, we provide a mathematical model and

propose a heuristic solution approach designed to efficiently address the challenges associated

with scheduling electric vehicles. Furthermore, we present and discuss the results obtained

from two distinct urban areas, namely Chicago, IL and Austin, TX. Chapter 4: Electric Bus

Scheduling and Charger Location (EBSCL). In this chapter, we formulate an MILP model.

Our objective is to optimize electric bus schedules and strategically identify charging facilities,

especially at trip end locations. We offer comprehensive insights into the utilized data, and

present case studies to showcase the practicality of the proposed model. Finally, Chapter 5

presents the conclusion, policy implications, and study limitations.



CHAPTER 2

ELECTRIC VEHICLE SUPPLY EQUIPMENT LOCATION AND

CAPACITY ALLOCATION

2.1 Introduction

In this chapter, we present a new approach to solve the EVSELCA problem by developing a

mixed-integer linear programming (MILP) model that optimizes the locations and numbers of

various types of chargers. The objective of the MILP model is to minimize strategic investment

costs while satisfying operational constraints. To achieve this, our MILP model takes into ac-

count fixed-facility costs, charger costs, recharging energy costs, and value of time (VOT) costs.

VOT costs account for the time spent traveling to a recharging station, waiting and recharg-

ing, and returning to service. By finding the optimal balance between these cost components,

our model can aid in long-term EVSELCA planning. Because of the problem’s complexity, we

use a clustering approach that groups customers into clusters and allows recharging only after

servicing these clusters. Moreover, we propose a metaheuristic solution method based on a

genetic algorithm (GA) to generate near-optimal solutions within a reasonable time, enabling

the model to be applied to large-scale instances.

Our study contributes to the EVSELCA literature through four crucial aspects. First, when

designing EVSELCA for the freight transportation industry, it is important to consider fixed

routes (Ghamami, Zockaie, and Nie 2016, Wang, Wang, and Lin 2016). The EVSELCA prob-

6
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lem has often been modeled as an EV location routing problem (EVLRP), which solves both

the strategic charging facility location (and allocation in some cases) problem and the routing

problem Yang and Sun (2015), Hof, Schneider, and Goeke (2017), Schiffer and Walther (2017),

Schiffer, Schneider, and Laporte (2018), Schiffer and Walther (2018). Although creating new

routes for EVs may lead to better solutions (Shojaei et al. 2022), the convention in this indus-

try is to use a fixed-route approach, usually electrifying existing routes that are shorter than

an EV range. Second, the location and allocation decisions should be made jointly, with the

numbers and types of chargers for each location serving as decision variables (Davatgari 2021,

Ghamami et al. 2020, Londoño and Granada-Echeverri 2019). The type of charger impacts

recharging time and infrastructure costs, while the number of chargers affects installation costs

and waiting times for recharging. Thus, strategic planning requires a balance between waiting

costs, recharging time, and infrastructure costs through the selection of appropriate types and

numbers of chargers. Third, it is crucial to take into account the dynamic nature of charging

demand over time since it plays a critical role, as highlighted by Ghamami, Zockaie, and Nie

(2016) and Wang, Wang, and Lin (2016). If multiple recharging events happen simultaneously,

the design would require an excessive number of chargers. By considering dynamic charging

demand for recharging, however, it becomes possible to schedule these events in a way that

uses fewer chargers, resulting in higher utilization rates. Therefore, the spatiotemporal aspect

of the problem is conserved. Fourth, partial recharging is crucial and should be considered

in the EVSELCA problem (Li, Huang, and Mason 2016). In some cases, electric trucks may

be partially recharged because of operational time limitations, and a model without this con-
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sideration may produce impractical solutions. Overall, the main contribution of our study is

its comprehensive consideration of these four key aspects of the EVSELCA problem. While

other studies in the literature have addressed these aspects, they modeled each aspect either

individually or as a combinatorial subset that lacked one of the other aspects.

In Section 2.2 we first review studies that have used various approaches to tackle the

EVSELCA problem. We provide a more comprehensive definition of the EVSELCA prob-

lem and clearly demonstrate the MILP in Section 2.3. Metaheuristic solution procedures are

developed in Section 2.4. The setup and results of numerical experiments are presented in Sec-

tion 2.5 using data from POLARIS, the Planning and Operations Language for Agent-based

Regional Integrated Simulation developed at Argonne National Laboratory (Auld et al. 2016).

In Section 3.6 we conclude the study and discuss potential future research directions.

2.2 Literature review

Many studies explore the strategic planning of EV charger placement (Ghamami et al. 2020,

Zhu et al. 2016, Ghamami, Zockaie, and Nie 2016, Li, Huang, and Mason 2016, Wang, Wang,

and Lin 2016, Davatgari 2021, Whitehead et al. 2021, Liu and Song 2018, Worley, Klabjan,

and Sweda 2012, Speth et al. 2022, Londoño and Granada-Echeverri 2019). Most of these

studies focus on light-duty (LD) vehicles rather than MD and HD vehicles (hereafter called

trucks) (Ghamami et al. 2020, Zhu et al. 2016, Liu and Song 2018, Ghamami, Zockaie, and Nie

2016, Wang, Wang, and Lin 2016). For example, Davatgari (2021) develops a mixed-integer

nonlinear programming (MINLP) model to solve the EVSELCA problem considering routing
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for LD vehicles. Our study, in contrast, aims to solve the EVSELCA problem for trucks with

fixed routes.

The planning of EV chargers for trucks is different from that of LD vehicles because trucks

often require fast recharging due to the high value of time in the business world and because

their larger batteries necessitate longer recharging times. Although fast-charging equipment

can reduce recharging time, it is also more costly. Additionally, unlike LD vehicles, trucks

typically have predetermined routes and operate with time limits enforced by law and regula-

tions (Williams 2020). Given the differences, the EVSELCA problem for trucks is an area that

has not been extensively explored in the literature, and this study aims to address this gap.

The studies conducted on this problem generally can be classified into two categories based

on their methodology: (1) a coverage-oriented approach (Whitehead et al. 2021, Speth et al.

2022) and (2) a demand-oriented approach (Worley, Klabjan, and Sweda 2012, Londoño and

Granada-Echeverri 2019, Liu and Song 2018); our study falls into the second category.

Coverage-oriented approaches aim to maximize the geographical coverage of a recharging ser-

vice. This approach often assumes that each charger location can meet the recharging demand

of a circular area. The objective is then to maximize the coverage of a region while minimizing

the number of circles, which represents the number of charger locations. Such approaches often

do not consider demand intensity, the potential impact of queuing during recharging events,

and other operational constraints such as the inability to recharge two vehicles simultaneously

using one charger. For instance, Speth et al. (2022) model a coverage-oriented approach as a

linear programming (LP) model to determine charger locations in order to minimize the num-
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ber of chargers while maximizing the geographic coverage. After locating a charger, the model

uses queuing to estimate the number of chargers in each EV charging facility. In contrast,

our research focuses on locating EV chargers and optimizing the number of chargers using a

demand-oriented approach that considers the impact of queuing during charging events.

Demand-oriented approaches aim to minimize strategic (e.g., infrastructure and charger)

costs and operational (e.g., time and energy) costs subject to demand-conservation constraints

that guarantee a certain level of service based on a deployment decision. This approach is

often modeled as an EVLRP in the literature, which involves determining the allocation and

location of EV chargers and solving the routing problem (Yang and Sun 2015, Hof, Schneider,

and Goeke 2017, Schiffer and Walther 2017, Schiffer, Schneider, and Laporte 2018, Schiffer and

Walther 2018). For example, Worley, Klabjan, and Sweda (2012) develop an MILP to determine

charger locations that minimize travel time, recharging costs, and construction costs. While

our study shares a similar objective, our approach differs in the vehicle routing aspect because

we focus on fixed routes. Additionally, our study takes into account several important factors

that were not considered in the aforementioned research, such as allocation, dynamic charging

demand, and partial recharging. By taking into account these additional variables, we aim to

provide a more accurate and comprehensive solution. Another study by Liu and Song (2018)

uses a bilevel approach to model the EVLRP. In this approach, the upper level focuses on

minimizing GHG emissions by determining the optimal location of chargers, while the lower

level solves a mixed-traffic assignment of LD vehicles and trucks. Our study differs from this

approach as well. Specifically, we use a fixed-route approach to minimize the costs associated
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with charger placement, location, energy consumption, the value of time for recharging, and

detouring. Additionally, like our previous example, we take into account allocation, dynamic

charging demand, and partial recharging. Table I summarizes relevant studies and compares

our study with their objectives, model types, and other features.

TABLE I: Summary of the existing literature on EVSELCA

Study Vehicle Objective Model (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Ghamami et al. (2020) LD Minimize infrastructure cost
and users’ detour, waiting,
and charging delay

MINLP ✓ ✓ ✓ - - - ✓ N/A

Zhu et al. (2016) LD Minimize construction costs
and station access cost

MILP ✓ ✓ ✓ - - - - N/A

Ghamami, Zockaie,
and Nie (2016)

LD Minimize infrastructure and
battery costs, and recharging
and queueing time

MINLP - ✓ ✓ - ✓ - ✓ -

Li, Huang, and Mason
(2016)

LD Minimize cost of construction
and relocation of existing
chargers

MILP ✓ ✓ - - - ✓ - N/A

Wang, Wang, and Lin
(2016)

LD Minimize operational and
construction costs

MILP - ✓ - - ✓ - - ✓

Davatgari (2021) LD Minimize total system travel
time and construction cost of
EV charging infrastructure

MINLP ✓ ✓ ✓ ✓ - - - N/A

Whitehead et al.
(2021)

MD Maximize coverage MILP ✓ ✓ - - - - - N/A

Liu and Song (2018) MD Minimize emissions MPCC ✓ ✓ - - - - - N/A

Worley, Klabjan, and
Sweda (2012)

HD Minimize transportation,
recharging, and charging
station placement costs

MILP ✓ ✓ - - - - - N/A

Speth et al. (2022) HD Maximize coverage LP ✓ ✓ - - - - - N/A

Londoño and Granada-
Echeverri (2019)

HD Minimize energy consumption,
charger installation, and
routing costs

MILP ✓ ✓ - - - - - N/A

This study MD/HD Minimize charger, location,
energy, value of time for
recharging and detouring costs

MILP - ✓ ✓ ✓ ✓ ✓ ✓ ✓

(i) Route choice, (ii) Location planning, (iii) Number of chargers, (iv) Charger type, (v) Dynamic charging demand over
time in a day, (vi) Partial recharging, (vii) Queuing, (viii) Multiple fixed routes, MPCC: Mathematical programs with
complementarity constraints, N/A: Not applicable.
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2.3 Problem definition

We now formally describe the EVSELCA problem, which we model as an MILP. To ease

reading, we use calligraphic letters to represent sets (e.g., R), uppercase Roman letters for

parameters (e.g., T ), lowercase Roman letters for variables and indices (e.g., yf ), and Greek

letters (e.g., α) as superscripts to modify parameters and variables.

Let C denote a set of customers, and let R denote a set of trucks serving these customers

with routes to be electrified while keeping their routes intact. (That is, regenerating routes

from scratch due to electrification is not of interest.) We call these routes EV routes. The

goal of the EVSELCA is to allow EVs to complete their daily operations at a minimum cost

by planning recharging infrastructure and scheduling recharging activities. Although solving

a strategic decision-making problem, the model respects operational limitations, such as total

route time and charging capacities. Each EV route r ∈ R contains a subset of customers,

denoted by the subset Cr = {c0r, c1r, ..., cir, ..., cNr} satisfying ∀i ̸= j, (i, j) ̸= (0, N) by the

order of visits: c0r → c1r → ..., cN−1,r → cNr, where c0r = cNr = depot of route r ∈ R. A set

of charger types K can be located at a set of candidate facilities F. The optimization time is

discretized into a set of time steps T. Table II and Table III provide sets and parameters used

in the model, respectively. Note that the definition of sets will be modified in Section 2.4.2 as

we will cluster the customers to simplify the problem.

We now state our critical modeling assumptions (and note that some of these can easily be

relaxed). We assume customer demand is deterministic, which means that the travel sequences

in the routes remain unchanged over time except for accommodating on-route charging activ-
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ities. Furthermore, the adoption of EV technology does not change the truck routes, and the

customer visit sequences of a route are assumed to be the same as in conventional truck routes.

Additionally, EVs are assumed to be identical. The amount of energy received from a charger

type is assumed to be a linear function of recharging time, and the energy spent by EVs is

assumed to be a linear function of travel time. Furthermore, we assume there is a fixed set of

locations for possible EV charging facilities.

TABLE II: Sets used in the MILP.

Set Definition

C set of customers, C = ∪r∈RCr

Cr subset of customers in route r ∈ R, Cr = {c0r, c1r, ..., cir, ..., cNr} satisfy ∀i ̸= j, (i, j) ̸= (0, N) by
continuation order of visit: c0r → c1r → ..., cN−1,r → cNr, where c0r = cNr = depot of route r ∈ R

Crft subset of customers in route r ∈ R, after serving which the vehicle may visit f ∈ F for recharg-

ing at time step t ∈ T, that is Crft =
{
c ∈ Cr|

∑i−1
j=0

[
T τ
cjr,cj+1,r

+ Tκ
cjr

]
+ Tκ

cir ≤ Dt ≤

T −
∑N

j=i

[
T τ
cjr,cj+1,r

+ Tκ
cjr

]}
∀r ∈ R, f ∈ F, t ∈ T

F set of candidate EV charging facility locations
Fcir subset of candidate locations that the vehicle of r ∈ R, after serving customer cir, may possibly visit

for recharging, that is, Fcir =
{
f ∈ F|T τ

cirf
≤ B ∧T τ

cirf
+T τ

fci+1,r
≤ T −

∑N−1
j=0

[
T τ
cjr,cj+1,r

+ Tκ
cjr

]
+

min{0,
Bι

r−
∑N−1

j=0 Tτ
cjr,cj+1,r

−Bω
r

RK
}
}
∀cir ∈ Cr \ {cNr}, r ∈ R

⋃{
f ∈ F|T τ

cNrf
≤ B ∧ T τ

cNrf
+ T τ

fcNr
≤

T −
∑N−1

j=0

[
T τ
cjr,cj+1,r

+ Tκ
cjr

]
+min{0,

Bι
r−

∑N−1
j=0 Tτ

cjr,cj+1,r
−Bω

r

RK
}
}
∀r ∈ R

K set of charger types, K = {1, 2, 3, ...,K}
R set of routes
T set of time steps
Tcirf subset of time steps in the beginning of which the vehicle of r ∈ R after serving customer cir may

possibly visit f ∈ Fcir for recharging, that is, Tcirf =
{
t ∈ T|

∑i−1
j=0

[
T τ
cjr,cj+1,r

+ Tκ
cjr

]
+Tκ

cir ≤ Dt ≤

T −
∑N−1

j=i

[
T τ
cjr,cj+1,r

+ Tκ
cjr

]}
∀cir ∈ Cr, r ∈ R, f ∈ Fcir



14

TABLE III: Parameters used in the MILP.

Parameter Definition

B maximum battery capacity in time unit
Bι

r initial battery capacity of EV route r ∈ R

Bω
r desired final battery capacity of EV route r ∈ R

Cρ value of time spent for recharging and driving to recharging facility

Cξ
k energy cost of recharging per time unit with charger type k ∈ K

Cν
k cost of installing charger type k ∈ K per time unit

Cϕ
f fixed charging facility cost at candidate location f ∈ F per time unit

Dt actual time associated with time step t ∈ T, that is Dt = tT∆

M an adequately large number, e.g., M > 2B
Rk recharging amount received from charger type k ∈ K per time unit

T maximum allowed operational time for each EV route
T∆ duration of time steps
T τ
circjr travel time from customer cir ∈ Cr to customer cjr ∈ Cr by EV route r ∈ R

T δ
cirf

detour travel time from customer cir ∈ Cr by EV route r ∈ R to f ∈ F

Tκ
cir time spent for serving customer cir ∈ Cr by EV route r ∈ R

We let the binary variable xcirfkt = 1 denote that the EV of route r ∈ R recharges at f ∈ F

using charger type k ∈ K at time step t ∈ T immediately after serving customer cir ∈ Cr;

xcirfkt = 0, otherwise. To ensure xcirfkt represents the desired value, we keep track of the

start and end time for recharging an EV for cir, f , and k with continuous variables scirfk and

ecirfk. Let the binary variable xαcirfkt = 1 indicate that the EV route r ∈ R is recharging at

facility f ∈ F using charger k ∈ K after detouring from cir ∈ Cr for time steps, where the

associated time Dt falls within the range [0, scirfk) (excluding t ∈ T). On the other hand, let

binary variable xβcirfkt = 1 denote that the EV route r ∈ R is recharging at facility f ∈ F using

charger k ∈ K after detouring from cir ∈ Cr for time steps, where the associated time Dt falls

within the range [0, ecirfk] (including t ∈ T).
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Figure 1: Example of how xcirfkt is maintained.

Figure 1 illustrates how our constraints ensure the variable xcirfkt takes the desired value.

In this example, EV route r ∈ R starts recharging at facility f ∈ F using charger k ∈ K after

detouring from cir ∈ Cr at time scirfk, where the equivalent time step is 2 and ends at time ecirfk,

where the equivalent time step is 5. The binary variable xαcirfkt = 1 for all time steps preceding

and excluding time step 2, while the binary variable xβcirfkt = 1 for all time steps preceding

and including time step 5. Consequently, utilizing the equation xcirfkt = xβcirfkt − xαcirfkt, the

binary variable xcirfkt is 1 only for the expected time steps that are in the interval [2, 5].

The binary variable yf = 1 denotes f ∈ F is open; yf = 0, otherwise. The variable

zfk ∈ Z≥0 denotes the number of charger type k ∈ K allocated to f ∈ F. Refer to Table XVI

for the definitions of all variables used in the model. The EVSELCA problem is formulated as

follows:
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TABLE IV: Variables used in the MILP.

Variable Definition

b′cirf remaining battery capacity (in time units) before arriving f ∈ F for EV route r ∈ R after
detouring from cir ∈ Cr

bcir remaining battery capacity (in time units) before serving cir ∈ Cr of EV route r ∈ R

dcir departure time from cir ∈ Cr of EV route r ∈ R

ucirfk duration of recharging time EV route r ∈ R spends at f ∈ F using k ∈ K after detouring from
cir ∈ Cr

wcirfk duration of waiting time EV route r ∈ R spends to recharge at f ∈ F using k ∈ K after detouring
from cir ∈ Cr

scirfk time that EV route r ∈ R starts recharging at f ∈ F using k ∈ K after detouring from cir ∈ Cr

ecirfk time that EV route r ∈ R ends recharging f ∈ F using k ∈ K after detouring from cir ∈ Cr

qcirfk

{
1 if EV route r ∈ R detours from cir ∈ Cr to f ∈ F to recharge using k ∈ K

0 otherwise

xα
cirfkt


1 if EV route r ∈ R is recharging at facility f ∈ F using charger k ∈ K after detouring from

cir ∈ Cr for time steps where the equivalent time, Dt, falls within the range [0, scirfk)
(excluding t ∈ T)

0 otherwise

xβ
cirfkt


1 if EV route r ∈ R is recharging at facility f ∈ F using charger k ∈ K after detouring from

cir ∈ Cr for time steps where the equivalent time, Dt, falls within the range [0, ecirfk]
(including t ∈ T)

0 otherwise

xcirfkt

1 if EV route r ∈ R is recharging at f ∈ F using k ∈ K at time step t ∈ T after detouring
from cir ∈ Cr

0 otherwise

yf

{
1 if a charging facility is located at f ∈ F

0 otherwise

zfk number of charger type k ∈ K installed at f ∈ F, zfk ∈ Z≥0

minC =
∑

cir∈Cr,r∈R,
f∈Fcir ,k∈K

[
Cρ

(
T δ
cirf

qcirfk + wcirfk

)
+ (Cρ + Cξ

k)ucirfk

]
+

∑
f∈F

Cϕ
f yf

+
∑

f∈F,k∈K
Cν
k zfk

(2.1)
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subject to,

xcirfkt = xβcirfkt − xαcirfkt ∀cir ∈ Cr, r ∈ R, f ∈ Fcir , k ∈ K, t ∈ Tcirf (2.2)

∑
cir∈Crft,r∈R

xcirfkt ≤ zfk ∀f ∈ F, k ∈ K, t ∈ T (2.3)

ucirfk ≤ T∆
∑

t∈Tcirf

xcirfkt ∀cir ∈ Cr, r ∈ R, f ∈ Fcir , k ∈ K (2.4)

T∆
∑

t∈Tcirf

xcirfkt − ucirfk ≤ T∆ − ϵ ∀cir ∈ Cr, r ∈ R, f ∈ Fcir , k ∈ K (2.5)

zfk ≤Myf ∀f ∈ F, k ∈ K (2.6)

ucirfk ≤Mqcirfk ∀cir ∈ Cr, r ∈ R, f ∈ Fcir , k ∈ K (2.7)

wcirfk ≤Mqcirfk ∀cir ∈ Cr, r ∈ R, f ∈ Fcir , k ∈ K (2.8)

qcirfk ≤
∑

t∈Tcirf

xcirfkt ∀cir ∈ Cr, r ∈ R, f ∈ Fcir , k ∈ K (2.9)

xcirfkt ≤ qcirfk ∀cir ∈ Cr, r ∈ R, f ∈ Fcir , k ∈ K, t ∈ Tcirf (2.10)

∑
f∈Fcir ,k∈K

qcirfk ≤ 1 ∀cir ∈ Cr, r ∈ R (2.11)

b′cirf ≤ bcir − T τ
cirf

+M(1−
∑
k∈K

qcirfk) ∀cir ∈ Cr, r ∈ R, f ∈ Fcir (2.12)

b′cirf ≤M
∑
k∈K

qcirfk ∀cir ∈ Cr, r ∈ R, f ∈ Fcir (2.13)

b′cirf +
∑
k∈K

ucirfk ≤ B ∀cir ∈ Cr, r ∈ R, f ∈ Fcir (2.14)
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bci+1,r ≤ bcir − T τ
cir,ci+1,r

(1−
∑

f∈Fcir ,k∈K
qcirfk) +M

∑
f∈Fcir ,k∈K

qcirfk

∀cir ∈ Cr, r ∈ R

(2.15)

bci+1,r ≤
∑

f∈Fcir

[
b′cirf +

∑
k∈K

(
Rkucirfk − T τ

fci+1,r
qcirfk

)]

+M
(
1−

∑
f∈Fcir ,k∈K

qcirfk

)
∀cir ∈ Cr, r ∈ R

(2.16)

bc0r = Bι
r ∀cir ∈ Cr, r ∈ R (2.17)

bcNr ≥ Bω
r ∀cir ∈ Cr, r ∈ R (2.18)

dcir =
i−1∑
j=0

T τ
cjr,cj+1,r

+
∑

f∈Fcir ,k∈K
(T δ

cjrf
qcjrfk + ucjrfk + wcjrfk) + T κ

cjr

+ T κ
cir

∀cir ∈ Cr, r ∈ R

(2.19)

scirfk = dcir + T τ
cirf

qcirfk + wcirfk

∀cir ∈ Cr, r ∈ R, f ∈ Fcir , k ∈ K, t ∈ Tcirf

(2.20)

ecirfk = dcir + T τ
cirf

qcirfk + wcirfk + ucirfk

∀cir ∈ Cr, r ∈ R, f ∈ Fcir , k ∈ K, t ∈ Tcirf

(2.21)

scirfk ≤ Dt + T∆ − ϵ+M
(
1− qcirfk + xαcirfkt

)
∀cir ∈ Cr, r ∈ R, f ∈ Fcir , k ∈ K, t ∈ Tcirf

(2.22)
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scirfk ≥ Dt + T∆ −M(2− qcirfk − xαcirfkt)

∀cir ∈ Cr, r ∈ R, f ∈ Fcir , k ∈ K, t ∈ Tcirf

(2.23)

ecirfk ≤ Dt − ϵ+M
(
1− qcirfk + xβcirfkt

)
∀cir ∈ Cr, r ∈ R, f ∈ Fcir , k ∈ K, t ∈ Tcirf

(2.24)

ecirfk ≥ Dt −M
(
2− qcirfk − xβcirfkt

)
∀cir ∈ Cr, r ∈ R, f ∈ Fcir , k ∈ K, t ∈ Tcirf

(2.25)

dcNr ≤ T ∀r ∈ R (2.26)

xcirfkt, xαcirfkt, xβcirfkt, yf , qcirfk ∈ {0, 1}, zfk ∈ Z≥0, bcir , dcir , ucirfk, wcirfk ∈ R≥0.

The objective function (2.1) minimizes the costs associated with detouring, waiting, recharg-

ing, energy consumption, charging facility, and charger installation. Note that all costs are

minimized per time unit (e.g., one day). Constraint (2.2) defines the variable xcirfkt in terms of

xαcirfkt and xβcirfkt. Constraint (2.3) ensures that the total number of trucks charging at a time

step does not exceed the capacity of the charging facility. Constraint (2.4) satisfies that the

recharging time does not exceed the total time occupied by a truck at a facility, and constraint

(2.5) ensures that a truck does not occupy a charger while not recharging. Constraint (2.6)

guarantees that if a charging facility is not located at f , a charger should not be allocated.

Constraints (2.7) and (2.8) enforce the charging time ucirfk and waiting time wcirfk to be zero
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when recharging does not occur. Constraints (2.9) and (2.10) ensure that if the truck recharges,

the charger will be considered occupied at least in one time step. Constraint (2.11) ensures

that a truck can recharge only at one facility using one charger type after serving a customer.

Constraints (2.12)–(2.16) define the remaining battery of trucks (in time units) after serving

every customer (bcir) and immediately before arriving at a charging facility (b′cirf ). Constraints

(2.17) and (2.18) enforce the initial and desired final battery capacity to be equal to Bι
r and Bω

r ,

respectively. Constraint (2.19) defines the departure time of trucks after serving each customer.

Constraints (2.22) and (2.23) define the variable xαcirfkt. Similarly, constraints (2.24) and (2.25)

define the variable xβcirfkt. Constraint (2.26) ensures that the total operational time cannot

exceed the maximum allowed operational time for each EV route.

2.4 Metaheuristic solution approaches with clustering

We now present a metaheuristic solution procedure for solving the EVSELCA problem, as

defined by Equations 2.1—2.26. We employ a metaheuristic approach because of substantial

growth in solution space of the EVSELCA problem as the problem size increases. First, we

adopt a clustering approach in Section 2.4.1 to simplify the problem. This involves redefining

sets, parameters, and variables in the MILP so that it can be used with clusters, as shown in

Section 2.4.2. Although clustering can help address the computational difficulty at a smaller

scale, we further develop a metaheuristic solution method using the GA to tackle the EVSELCA

problem in Section 2.4.3. Then, in Section 2.4.4 we describe a hybrid solution approach that

combines the GA and MILP solvers.
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2.4.1 Clustering

EVSELCA problems (Equations 2.1–2.26) can be complex, making solving them impractical

for large-scale instances. To overcome this challenge, we adopt a clustering approach proposed

by Cokyasar, Davatgari, and Mohammadian (2023). This approach simplifies the problem by

grouping customers into clusters and limiting recharging to after the completion of service at

these clusters. That is, rather than considering recharging after any customer, we create clusters

of customers and assume recharging occurs only after completing service at these clusters.

The clustering method aims to identify the best cut-points with a given number of clusters

to satisfy the following conditions:

i. All customers in a cluster must belong to a single route.

ii. The intersection of any two clusters must be empty.

iii. Customers in a cluster must follow the order of service.

iv. The distance traveled within a cluster must not exceed a certain threshold, such as a

portion of the EV range.

This clustering method uses an optimization model that maximizes the spatial difference

between clusters. In this model, the binary variable, pncir = 1 indicates cut n ∈ N is placed

right after customer cir. The auxiliary binary variable mncir regulates the order of cuts and

conserves sequencing. Table V provides sets and parameters used in the clustering model. The

clustering optimization model is formulated as follows.



22

max
∑

cir∈Cr,r∈R,
n∈N

T τ
circjrpncir (2.27)

subject to,

pncir = mncir −mnci+1,r ∀cir ∈ Cr, r ∈ R, n ∈ N (2.28)

mnci+1,r −mncir ≥ 0 ∀cir ∈ Cr, r ∈ R, n ∈ N (2.29)

∑
cir∈Cr,r∈R

pncir = 1 ∀n ∈ N (2.30)

∑
n∈N

pncir ≤ 1 ∀cir ∈ Cr, r ∈ R (2.31)

The objective function (2.27) maximizes the total travel time between clusters to ensure

that clusters are sufficiently apart from each other. Constraints (2.28) and (2.29) conserve the

order of cuts, preventing cut n from being placed after cut n + 1. Constraint (2.30) ensures

that every cut is positioned immediately after one specific point, while constraint (2.31) ensures

that only one cut can be placed after a particular point. The model in Cokyasar, Davatgari,

and Mohammadian (2023) also presents the within the cluster travel time constraints. As

these constraints require more parametric definition, we refrain providing these constraints for

simplicity.

With a predetermined number of clusters, the clustering method may not always guarantee

a feasible solution because the travel time within clusters could exceed a preset threshold. In

our analysis, we start with a small |N|, solve the problem, and increment |N| by one until a

feasible solution is obtained. Therefore, we find the minimum number of clusters (|N| > 0) and
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their partitioning. Note that such an approach sacrifices the solution quality to gain solution

speed. Our analysis in the upcoming sections will be a product of this sacrifice, and a real case

should better be handled with |N| large enough to obtain a higher quality solution.

TABLE V: Sets and variables used in the clustering model.

Set Definition

N set of cut-points for clustering

Variable Definition

pncir

{
1 if cut n ∈ N is placed right after customer cir

0 otherwise

mncir auxiliary binary variable regulating the order of cuts

2.4.2 Transformation

In switching from customer to cluster, the definition of some sets, parameters, variables,

and constraints changes. It is straightforward to redefine C from being the set of individual

customers to being the set of clusters of customers. We then define a new parameter T γ
cir

to represent the total travel time based on the order of visits within the cluster for serving

customers of cluster cir by the EV route r. Moreover, we redefine parameters T τ
circjr to be the

travel time from the last customer of cluster cir to the first customer of cluster cjr and T δ
cirf

to

be the travel time from the last customer of cluster cir to the location of facility f .

With these changes, we redefine the subset Crft in Definition 1.
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Definition 1. For a given r ∈ R, f ∈ F, and t ∈ T,

Crft =
{
c ∈ Cr|

i−1∑
j=0

[
T τ
cjr,cj+1,r

+ T κ
cjr + T γ

cjr

]
+ T κ

cir + T γ
cir

≤ t ≤ T −
N∑
j=i

[
T τ
cjr,cj+1,r

+ T κ
cjr + T γ

cir

]}
.

The definition of Crft requires that an EV route can recharge only after serving the last

customer of the cluster, rather than in the middle of the cluster. Therefore, Crft refers to the

subset of clusters on route r ∈ R that the vehicle must complete before it can visit f ∈ F for

recharging at time step t ∈ T.

Furthermore, we redefine Fcir and Tcirf due to the changes made to the definition of param-

eters. The updated Fcir denotes the subset of facilities that the vehicle of route r ∈ R can visit

after serving customers of cluster cir, as defined in Definition 2. Similarly, Tcirf denotes the

subset of time steps during which the vehicle of route r ∈ R can visit f ∈ Fcir for recharging

after serving customers of cluster cir, as defined in Definition 3.

Definition 2. For a given cir ∈ Cr \ {cNr} and r ∈ R,

Fcir =
{
f ∈ F|T τ

cirf
≤ B ∧ T τ

cirf
+ T τ

fci+1,r
≤ T −

N−1∑
j=0

[
T τ
cjr,cj+1,r

+ T κ
cjr + T γ

cjr

]
+min{0,

Bι
r −

∑N−1
j=0 [T τ

cjr,cj+1,r
+ T γ

cjr ]−Bω
r

RK
}
}

⋃{
f ∈ F|T τ

cNrf
≤ B ∧ T τ

cNrf
+ T τ

fcNr
≤ T −

N−1∑
j=0

[
T τ
cjr,cj+1,r

+ T κ
cjr + T γ

cjr

]
+min{0,

Bι
r −

∑N−1
j=0 [T τ

cjr,cj+1,r
+ T γ

cjr ]−Bω
r

RK
}
}
.

Definition 3. For a given cir ∈ Cr, r ∈ R, and f ∈ Fcir ,
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Tcirf =
{
t ∈ T|

i−1∑
j=0

[
T τ
cjr,cj+1,r

+ T κ
cjr + T γ

cjr

]
+ T κ

cir + T γ
cir

≤ t ≤ T −
N−1∑
j=i

[
T τ
cjr,cj+1,r

+ T κ
cjr + T γ

cjr

]}
.

Next, we replace the term customer with cluster wherever it is used in Table II, Table III,

and Table XVI. Following the changes we have made to the sets, parameters, and variable

definitions, we replace the constraints 2.12, 2.15, and 2.19 with 2.32, 2.33, and 2.34, respectively.

b′cirf ≤ bcir − T γ
cir − T τ

cirf
+M(1−

∑
k∈K

qcirfk) ∀cir ∈ Cr, r ∈ R, f ∈ Fcir (2.32)

bci+1,r ≤ bcir − (T τ
cir,ci+1,r

+ T γ
cir)(1−

∑
f∈Fcir ,k∈K

qcirfk) +M
∑

f∈Fcir ,k∈K
qcirfk

∀cir ∈ Cr, r ∈ R

(2.33)

dcir =

i−1∑
j=0

T τ
cjr,cj+1,r

+ T γ
cjr +

∑
f∈Fcir ,k∈K

(T δ
cjrf

qcjrfk + ucjrfk + wcjrfk) + T κ
cjr


+ T κ

cir + T γ
cir ∀cir ∈ Cr, r ∈ R

(2.34)

2.4.3 The genetic algorithm

In this study we employ a tailored genetic algorithm to solve the EVSELCA problem. The

GA is an evolutionary optimization search technique that has been widely used to solve MILPs

(Katoch, Chauhan, and Kumar 2021). Algorithm 1 provides pseudocode for the approach; the

functions used therein are detailed in the Supplementary Material. Key decision variables in

the model are qcirfk, xcirfkt, yf , and zfk, which are the same as in Table XVI with the redefined

C. Among key variables, yf and zfk relate to strategic decision-making, while xcirfkt aids in
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making an operational decision. At the tactical level, qcirfk plays an important role since it

determines after which cluster to recharge, where to recharge, and what type of charger to use.

To this end, we begin with exploring a solution for the tactical variable that implicitly impacts

solutions to strategic variables and provides implied time bounds for the recharging time. That

is, a solution to other variables can be derived for given solutions to qcirfk. First, N
pop number

of solutions for qcirfk is generated via the Initialization function as an initial population. In

the initialization step we randomly select a number of clusters, following which a recharging

is planned; and we select a facility for the recharging using a roulette wheel selection method

(i.e., closer facilities have a higher chance of being selected). Once the where aspect of qcirfk

is addressed, we randomly select a type of charger for those facilities that were just picked

to be visited. This population is then passed into Crossover and Mutation functions to

potentially find a better solution.

In Algorithm 1, T ρ
r was used to represent the route travel time minus the time spent serving

customers, recharging, and waiting, as defined in Definition 4.

Definition 4. For a given r ∈ R,

T ρ
r =

N−1∑
j=0

T τ
cjr,cj+1,r

+
∑

f∈Fcir ,k∈K
T δ
cjrf

qcjrfk

 .

The value of zfk is estimated to calculate the objective value for each given qcirfk in the initial

population. For a given qcirfk equal to 1, zfk can get values between 1 and
∑

cir∈Crft,r∈R qcirfk

as Lemma 1 denotes. (See the Appendix for proofs of lemmas). The trade-off between the
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waiting time and facility cost depends on zfk. The maximum of zfk (
∑

cir∈Crft,r∈R qcirfk)

implies zero waiting time as stated in Lemma 2 but high charger cost. We use a local search to

find a suitable zfk value. In this regard we first calculate the objective value (C) for the upper

and lower bounds of zfk; if the former has a lower objective value, we update zfk by subtracting

chargers using zlUpdater (Algorithm A.7). Otherwise (i.e., the latter has a lower objective

value), we increase the value of zfk using zlUpdater (Algorithm A.8) until C reaches the

minimum. The Evaluator function from (Algorithm A.5) updates the value of zfk.

Lemma 1. For a given f ∈ F and k ∈ K, z∗fk ∈ [1,
∑

cir∈Crft,r∈R qcirfk], if
∑

cir∈Crft
qcirfk > 1;

otherwise, z∗fk = 0.

Lemma 2. For a given f ∈ F and k ∈ K, wcirfk = 0, if zfk =
∑

cir∈Crft
qcirfk.

In each step of Evaluator, given qcirfk and zfk, we calculate other variables using Low-

erLevelEvaluator (Algorithm A.6). In LowerLevelEvaluator, we first calculate the

recharging time (ucirfk) using uCalculation (Algorithm A.10). We assume that trucks

recharge at a facility for a duration sufficient to complete the trip if it is less than the maximum

battery capacity minus the battery’s current level; otherwise, they recharge to full capacity.

Next, we calculate the wait time (wcirfk) using wCalculation (Algorithm A.11). To do so,

we follow the first-come-first-served rule: that is, vehicles recharge at a facility in the order

of their arrival times. Given qcirfk, ucirfk, wcirfk, and zfk, calculation of other variables and

therefore C is straightforward.
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Algorithm 1: Pseudocode for genetic algorithm

Input : Cr, F, Fcir , K, R, B, Bι, Bω, Bι
r, B

ω
r , C

α=0, Cρ, Cξ
k, C

ν
k , C

ϕ
f , N , N̄ , Npop,

N iter, Nparents, Pmutate, Rk, T , T
∆, T ρ

r , T
µ
r , T τ

circjr , T
δ
cirf

, T κ
cir

Output: Sols(1)
Function GAMain():

Sols← {};
for i← 1 to Npop, do

Sols(i)←Initialization(Cr, Fcir , K, R, B, Bι, Bω, Cα=0, Tµ
r , T δ

cirf
);

/* Create Npop solutions using Initialization function. */

for iter ← 1 to N iter, do
for i← 1 to Npop, do

C(Sols(i))← Evaluator(Cr, F, K, R, T, B, Bι
r, B

ω
r , C

ρ, Cξ
k, C

ν
k , C

ϕ
f , N ,

N̄ , Rk, T
τ
circjr , T

κ
cir , T

δ
cirf

, T ρ
r , Sols(i));

Sort Sols ascending based on C(Sols) and set Sols to the first Nparents of Sols;
CrossoverSols← {};
for i← 1 to Nparents, do

for j ← 1 to Nparents, do
if i ̸= j, then

CrossoverSols(i)← Crossover(Sols, i, j);

MutationSols← {};
for i← 1 to Nparents, do

MutationSols(i)← Mutation(Sols(i), Pmutate);

for i← 1 to Nparents, do

C(CrossoverSols(i))← Evaluator(Cr, F, K, R, T, B, Bι
r, B

ω
r , C

ρ, Cξ
k,

Cν
k , C

ϕ
f , N , N̄ , Rk, T

τ
circjr , T

κ
cir , T

δ
cirf

, T ρ
r , CrossoverSols(i));

C(MutationSols(i))← Evaluator(Cr, F, K, R, T, B, Bι
r, B

ω
r , C

ρ, Cξ
k,

Cν
k , C

ϕ
f , N , N̄ , Rk, T

τ
circjr , T

κ
cir , T

δ
cirf

, T ρ
r , MutationSols(i));

Merge Sols, CrossoverSols, and MutationSols to form newSols;
Sort newSols ascending based on C(newSols);
Replace Sols with first Npop of newSols;
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2.4.4 A hybrid solution approach supported by the genetic algorithm

The GA initializes with estimating values for qcirfk variables. A hybrid solution approach

can be formed by feeding these GA-generated qcirfk solutions into an MILP solver as a constraint

set. Therefore, the hybrid approach finds optimal solutions for fixed qcirfk decisions. This is

especially useful because many solutions can be investigated in parallel. In the following section,

the performance of this solution approach will be compared with that of the GA.

2.5 Case studies

This section describes the details of our experimental design and data in Section 2.5.1,

demonstrates the performance and limitations of the GA and the hybrid methods in Table XIV,

illustrates the impact of the time step duration on system cost in Section 2.5.3, and provides

key managerial and policy insights along with extensive sensitivity analyses aiming to identify

crucial parametric levers in Section 2.5.4–Section 2.5.7.

2.5.1 Design of experiments

We conduct numerical experiments using the Chicago metropolitan area. E-commerce daily

demand and road network data are obtained from POLARIS (Auld et al. 2016). We utilize

the framework developed by Cokyasar et al. (2022) to form parcel delivery truck routes. For

a given set of customer and depot locations and other parameters (e.g., the operational time

during a day and vehicle capacity) the framework yields vehicle routes that are the sequences

of customers to be visited. Customers in these routes are aggregated at clusters using the RCP

solution model in Cokyasar, Davatgari, and Mohammadian (2023).



30

Figure 2: Illustrative EVSELCA problem instance in the Chicago metropolitan area. The main
figure shows traffic analysis zones and depots used for e-commerce delivery in the area as well
as candidate charging facility locations. The inset depicts the study region including links of
routes and a depot of those routes. Links in the inset are color-coded, and each color indicates
a specific route.

Figure 2 depicts an example problem layout. In this figure, the centroids of traffic analysis

zones (TAZs), defined by metropolitan area organizations, represent candidate charging facility

locations. In the experiments we use 20 routes depicted and their feeder depot, called depot

1. The depot serves 4,580 customers, and customers are aggregated at 89 clusters. Unless

otherwise noted, in our experiments we consider four candidate locations, namely, the depot

and the three closest centroids to the depot.



31

The problem parameters used, based on the literature (Electrify America 2022, Williams

2020, Ellis 2017, Davatgari 2021, Lightning eMotors 2022, Smith and Castellano 2015), are

summarized in Table XIII. Aside from these parameters, we estimate T τ
circjr , T

κ
cir , and T δ

cirf

using Manhattan distances and assuming a constant truck speed of 30 mph (Illinois State

Police 2022). As with most studies in the literature, we consider three charger types with

varying powers (Liu and Wang 2017, Yilmaz and Krein 2013). The average time required

to power up a battery for 100 miles of range gain and charger installation costs are shown in

Table VII, which are derived from the literature (Bennett et al. 2021). All costs in the objective

function are converted to USD per day. To do so, the lifespans of chargers and facilities are set

to 10 and 40 years, respectively (Bennett et al. 2021).

TABLE VI: Parametric values used.

Cϕ
f

(USD/day)

Tκ
cir

(minute)
T

(hour)
B

(minute)
Bι

r

(minute)
Bω

r

(minute)
Cξ

k

(USD/kWh)

Cρ

(USD/mile)

35 2 14 200 200 160 0.43 1.377

2.5.2 Computational performance of the GA and the hybrid methods

We analyze the computational performance of the GA and the hybrid methods and compare

them with the MILP solved by Gurobi using |R| and |F| as problem size determinant levers.

The three solution approaches are given the same clusters as an input to make the solutions
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TABLE VII: Charger configuration.

Charger
type

Power
(kW)

Added driving
range (mile)

Added driving
charging

time (minute)

Cost
(USD×1000)

Basic 50 100 265 73
Moderate 180 100 88 157

Fast 360 100 29 228

comparable. A testbed of instances was generated utilizing simulated data from a depot in the

Chicago metropolitan area serving e-commerce deliveries. As a baseline, the parametric design

provided in Section 2.5.1 was utilized, and we selected three candidate charging facility locations

closest to the depot and three random routes out of 20 that the depot serves. While keeping

the three charging facility locations and the depot as candidates, a subset of routes |R| ∈

{3, 6, 10, 15, 20} were randomly (following a uniform distribution for the selection probability)

selected to generate 20 problem instances for each number of routes. Another 20 instances for

each of |F| ∈ {3, 6, 10, 15, 20} were generated such that the closest charging facility locations

to the depot were chosen as candidates, and the three routes in the baseline were used. These

200 instances were then solved by using the three methods with a limit of 600 seconds of

computational time per instance. Some of the instances were initially solved without a time

limit to observe the impact of the time limit choice. After many compute hours, we did not

observe considerable improvement in the solution quality compared to the solutions obtained

at the time limit. In the GA, we solved each instance five times and provide statistics of the

performances. All computations were carried out on an Intel® Xeon® Gold 6138 CPU @2.0
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GHz workstation with 128 GB of RAM and 40 cores. Problem instances were solved by using

the Python 3.8.8 interface to the commercial solver Gurobi 10.0 (Gurobi Optimization, LLC

2020).

Table VIII reports the computational performance of the MILP model solved via Gurobi,

the GA, and the hybrid solution approaches. The first columns specify the scenario. The MILP

columns denote the number of instances that could be solved (i.e., built and reported a feasible

solution within 600 seconds) and the number of instances for which optimality was reached,

respectively. In the GA, since each instance was solved five times, the maximum number of

instances that could be possibly solved was 100 for each scenario. We see that all approaches

were unable to produce a feasible solution within the time limit in some runs. GA columns

indicate the minimum, maximum, average, and standard deviation of the percent gap between

the best objective of the Gurobi-reported solution and the best solution found in the five GA

runs. A negative average percent indicates that the GA’s best solutions were better than that

of the MILP. Hybrid columns follow a similar presentation approach for the hybrid approach.

In Table VIII, we observe that an increase in |R| impacts the problem difficulty more than

does an increase in |F|. Using the MILP through a solver can address only small problems.

The GA performs better than the hybrid approach. Note that large gap percentages in the GA

and the hybrid should not be a sign of poor performance because these percentages are based

mostly on nonoptimal solutions obtained from the optimizer.

Figure 3 shows the solution time to the best solution per scenario and solution approach.

The hybrid approach is the fastest in finding a solution in most scenarios. The time-to-solution
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TABLE VIII: Summary of computational performance of the three solution approaches.

Scenario

MILP GA Hybrid

#
Solved

#
Opt

#
Solved

∆ Gap (%) #
Solved

∆ Gap (%)

Min Max Avg Std Min Max Avg Std

#
R
o
u
te
s 3 20 19 92 0 19.9 2.1 5.3 17 7 30 19 9.7

6 20 0 99 -0.5 30 6.6 7.6 12 4.1 18 9.7 4.8
10 16 0 95 -6.7 6.7 0.8 3.7 3 -3 2.5 0.1 2.3
15 6 0 94 -10 3.8 -3.5 4.5 1 -5.8 -5.8 -5.8 0
20 4 0 89 -5.2 -3.2 -3.8 0.8 0 - - - -

#
L
o
ca
ti
o
n
s 3 20 19 88 0 19.8 1.3 4.5 17 8.5 29 21 7.3

6 20 17 91 0 19.8 3.2 6.1 17 0 31 24 7.9
10 20 8 90 -0.1 25 3.9 7.8 17 0 27 13 9.4
15 20 1 94 0 11 1.1 2.5 17 0 10 5.9 2.9
20 20 1 89 -1.4 15.5 1.9 3.4 17 0 26 5.4 5.6

Note: ∆ Gap is calculated by one minus the division of the best solution obtained by the corresponding method
to the best objective reported by the MILP solver.

comparison between an increasing number of routes and an increasing number of depots sup-

ports the claim that |R| is a key metric in problem difficulty. In Figure 3a supported by

Table VIII, we can observe that 6–20 routes scenarios were not solved to optimality within 600

seconds. Figure 3a and Figure 3b show that the GA provides quick solutions that are indeed

not far off from the MILP (see Table VIII for a quality comparison).

2.5.3 Impact of time step duration on system cost

The duration of the time step, T∆, discretizes the time and control charger availability.

Understandably, it can have a considerable impact on the solution quality. It is clear that a

large T∆ could lead to a higher system cost as more chargers would be needed if an idle charger

is shown to be occupied. For instance, T∆ = 60 minutes will label a charger unavailable for an

hour even if a vehicle uses the charger for a portion of this time. To assess the impact of T∆
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(a) (b)

Figure 3: Time-to-best-solution statistics for the three solution approaches.

on C, we consider 1, 5, 10, 15, 30, and 60 minutes as values for the time step duration, and we

use the data from depot 1 and its 20 routes. Using the GA method with a time limit of 600

seconds, we solve each instance 20 times and retrieve the minimum C. We assume T∆ = 60

as our baseline scenario by setting its C = 100 and normalize C of other scenarios accordingly.

The resulting comparison is demonstrated in Figure 4. We can observe that T∆ = 1 yields 12%

lower C compared to that of T∆ = 60.

2.5.4 Impact of charger costs on system cost components

Because electrification is a relatively novel technology, charger costs are expected to decrease

in the future. Therefore, we analyze the impact of Cν
k on the cost components of the objective

function (3.4) and the number of chargers allocated by type. To this end, we define facility

costs by
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Figure 4: Impact of T∆ on C.

∑
f∈F Cϕ

f yf ,

charger costs by

∑
f∈F,k∈K Cν

k zfk,

energy costs by

∑
cir∈Cr,r∈R,f∈Fcir ,k∈K

Cξ
kucirfk,

and VOT costs by

∑
cir∈Cr,r∈R,f∈Fcir ,k∈K

Cρ(Tcirfkqcirfk +wcirfk + ucirfk).

Five percentages of decrease in Cν
k are considered: 0%, 20%, 40%, 60%, and 80%. We consider

depot 1 and the 20 routes it serves by sampling |R| ∈ {10, 12, 14, 16, 18, 20} and |F| ∈ {100}.
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We use the GA method, limit the solution time per instance by 600 seconds, and solve each

instance 20 times to obtain the best solution. We conducted 600 (6 × 5 × 20) runs for this

analysis, and we report the statistics of the best solutions out of 20 GA runs by aggregating

over |R| in Figure 5.

Figure 5a shows that the contribution of charger costs into (3.4) drops from 26% to 8%

parallel to Cν
k , while facility and energy costs substantially increase by 8% (from 24 to 32).

Note that five tiers, i.e., -80, -60, -40, -20, and 0, indicate the percent change in charger costs,

and these tiered representation is adopted for following subsections.

Figure 5b shows the decrease percent in Cν
k versus the normalized cost. The normalized cost

assumes C = 100 when the decrease in Cν
k is 0 and is calculated accordingly for other instances.

In this figure we observe that a large decrease in Cν
k increases the number of moderate and fast

chargers, although there are fluctuations. The spikes can be a result of finding nonoptimal

solutions through the GA and finding a better solution by swapping types of chargers along

with a drop in Cν
k . An example of the latter can be observed by seeing the number of chargers

for basic and fast moving from 40% to 60%: that is, fewer fast chargers are equipped, while

more basic chargers are utilized at 60% compared with 40%.

We note that an 80% decrease in Cν
k results in a 25% drop in C. This percentage will

indicate the importance of Cν
k compared with others analyzed in the following sections.

2.5.5 Impact of energy costs on system cost components

It is not certain how the wider adoption of EVs will impact energy prices. To analyze the

impact of energy costs, we consider a percent change of -50, -25, 0, 25, 50, 75, and 100 in Cξ
k.
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(a) Percent shares of cost components in C. (b) Change in normalized cost and charger
allocations.

Figure 5: Impact of percent decrease in charger costs.

The same settings as in the previous analysis are followed here and will be used in the upcoming

sections. Therefore, 840 (6× 7× 20) runs were conducted, and Figure 6 provides the summary

statistics.

Figure 6a shows a substantial jump in VOT costs along with an increase in Cξ
k. In Figure 6b,

moving from 0 to 100% increase in Cξ
k, the number of fast chargers rises, while the numbers of

other charger types reduce.

2.5.6 Impact of time value costs on system cost components

In some industries, VOT may be more important than others. Consumers may be willing

to pay more for faster delivery. To analyze how a percent increase of 0, 20, 40, 60, 80, and 100
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(a) Percent shares of cost components in C. (b) Change in normalized cost and charger
allocations.

Figure 6: Impact of percent change in energy costs.

in Cρ impact the decisions, we conducted 720 (6× 6× 20) runs and report summary statistics

in Figure 7.

Figure 7a illustrates how VOT costs can become dominant (by 40%) in Objective func-

tion (3.4) when Cρ is doubled. From Figure 7b, we observe that the number of moderate and

fast chargers increases as Cρ doubles.

2.5.7 Impact of battery capacity on system cost components

EV technology is continuously improving, and advancements in battery technology enable

longer vehicle ranges. In all analyses, we considered the low end of a 60–130 EV range reported

(Lightning eMotors 2022) to be conservative. We now analyze EV ranges of 60, 90, 110, 130,
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(a) Percent shares of cost components in C. (b) Change in normalized cost and charger
allocations.

Figure 7: Impact of percent increase in VOT costs.

and 250 miles. We conducted 600 (6 × 5 × 20) runs for this analysis, and the findings are

illustrated in Figure 8.

Increasing the EV range reduces facility costs by enabling vehicles to recharge at more

central locations, as shown in Figure 8a. Figure 8b demonstrates that a longer EV range

decreases C up to a point. A similar finding was observed in a previous study (Cokyasar et al.

2022).

2.6 Conclusion

This research addresses some challenges in electrifying trucks, particularly in designing the

necessary charging infrastructure. Indeed, infrastructure planning for large-scale electrification
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(a) Percent shares of cost components in C. (b) Change in normalized cost and charger
allocations.

Figure 8: Impact of battery capacity (in miles range).

projects can be complex because of factors including the placement of charging stations and

the scheduling of recharging activities. While previous studies have focused on solving the

EVLRP to address this issue, the freight industry has a different approach, where they make

electrification decisions based on the characteristics of existing routes. However, by prioritizing

routes shorter than the EV range and installing chargers only at depots, typically one charger

for each EV, they forego the potential for cost savings that can be achieved by optimizing the

charging activities. Exploiting and studying the limits of the associated economic opportunities

is crucial, given the long-term impacts of strategic location-allocation decisions on short-term

routing activities. Our paper seeks to address this gap by providing decision-making models
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that combine the best of existing studies while also respecting the freight industry’s philosophy

of electrifying existing routes.

To that end, we formally describe the EVSELCA problem and construct an MILP model

that focuses on fixed routes. The MILP model, solved through commercially available solvers

that often use branch and bound as a solution method, faces scalability issues, making it imprac-

tical for larger-scale problems. To overcome this challenge, we propose a clustering approach

that simplifies the problem by grouping customers into clusters and allowing recharging only

upon completion of service at these clusters. Clustering is shown to partially address computa-

tional difficulties for small-scale problems, yet it is not adequate to fully address the issue. For

this reason we develop a metaheuristic solution method using a GA. This approach generates

near-optimal solutions within a reasonable time frame, making it possible to apply the model at

a large scale. Combining the GA and MILP solvers, we introduce a hybrid solution approach.

We compare the computational performance of the GA and hybrid methods with the MILP

model solved through Gurobi, using the number of routes and charging facility locations as

problem-size-determinant levers. The results indicate that the GA outperforms the hybrid

method in terms of solution quality, but the hybrid method is faster in finding solutions in

most scenarios. The MILP model is suitable for small-scale problems. Overall, the GA provides

quick solutions that are close in quality to the optimal solution. Moreover, the findings show

that an increase in the number of routes has a greater impact on problem difficulty than does

an increase in the number of charging facility locations.
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We investigate the impact of four factors on the EVSELCA problem through a sensitivity

analysis. These are charger costs (Cν
k ), energy costs (Cξ

k), VOT (Cρ), and battery capacity

(B). Our key findings are summarized as follows. An 80% decrease in Cν
k results in a 25%

cost reduction. A substantial reduction in VOT cost shares is observed as Cξ
k increases. The

number of moderate and fast chargers increases as Cρ doubles. Longer EV ranges are beneficial

in decreasing the overall cost up to a certain point. Beyond this threshold, longer EV ranges

result in only a negligible decrease in the total cost. Our findings indicate that the objective

function is the most sensitive to charger costs compared with other factors, while energy and

VOT costs are less vital.

The proposed model is intricate and addresses critical concerns of determining the opti-

mal time for EVs to visit charging facilities, selecting suitable facilities, allocating appropriate

charging infrastructure, scheduling recharging activities to minimize wait times, and satisfying

operational constraints. The strength of the MILP developed in this study is that it addresses

all of these concerns. However, the model’s dependency on the candidate locations for charging

facility placement presents a challenge: that is, changing one candidate location may substan-

tially alter the solutions and their interpretation. To address this, we plan to develop a tool

that can mimic the MILP model to quickly find near-optimal solutions for any given set of

candidate locations, reducing the time required to solve the problem.



CHAPTER 3

SINGLE DEPOT ELECTRIC VEHICLE SCHEDULING PROBLEM

3.1 Introduction

Public transportation plays a crucial role in cities by providing accessible, affordable, effi-

cient, and equitable mobility options for travelers while helping to alleviate congestion. How-

ever, the use of conventional diesel vehicles (DVs) contributes to air pollution and carbon

emissions, influencing air quality and public health (FTA 2010). Electrification of transit buses

has emerged as a solution to address these environmental challenges. By transitioning to elec-

tric vehicles (EVs), cities can significantly reduce harmful emissions and improve air quality

(Muñoz et al. 2022). (Note that the terms vehicle and bus are used interchangeably in this

paper). Nevertheless, the adoption of electric buses comes with its own set of challenges. One

major concern is the higher upfront cost of EVs compared to conventional DVs (Muñoz et al.

2022). This cost disparity can impose financial barriers, particularly when there is a need to

replace a large number of buses in existing fleets. Driving range, long charging time, and elec-

tricity grid impact of EVs are other issues to be tackled. Although technological advancements

have improved battery capacity and charging speeds, EVs still have a shorter range and longer

downtime compared to DVs. This can pose operational challenges, especially for longer routes

that require long periods of operation. To overcome these challenges, one potential solution is

to increase the number of buses in operation. However, the high cost of electric buses can be

44
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a hindrance. Therefore, optimizing EV scheduling becomes essential to minimize the bus fleet

size and idle time, while ensuring sufficient recharging during idle periods.

The vehicle scheduling problem (VSP) involves the creation of vehicle runs (hereafter called

runs) based on a set of timetabled service or revenue trips, called trips. These trips come with

essential spatio-temporal information, including their origin (first stop), destination (last stop),

start time, and end time. The objective of the VSP is to strategically organize these trips into

bus runs that optimize the utilization of vehicles and ensure efficient transit operations. The

Electric Vehicle Scheduling Problem (EVSP) extends beyond the VSP by not only strategically

organizing these trips into bus runs but also facilitating the vehicle to recharge at the depot.

This involves recharging during the day to serve the trips and also during the night to ensure

the vehicle can serve runs in the upcoming planning horizons (often measured in days).

Figure 9 illustrates an example of an electric bus run. In this example, the bus run starts

6 AM on the current day and ends at 6 AM next day, with a planning horizon of 1 day. The

nighttime recharging ends ∼ 7 AM. Subsequently, the bus remains at the depot until ∼ 9 AM

and then deadheads to trip 1 (deadheading time refers to the duration spent traveling either

from the final stop of one trip or from the depot to the initial stop of another trip, or back to

the depot). In this example, after serving trip 4, the bus deadheads to trip 3 and arrives earlier

than the trip start time. Consequently, it stays at the first stop of trip 3 for a while, defined as

intertrip layover. Following the completion of trip 3, the bus deadheads to the depot. The bus

uses depot layover time for daytime recharging. After daytime recharging at the depot, the bus
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continues to serve the remaining scheduled trips. Upon completing the last trip, it returns to

the depot for nighttime recharging.

Figure 9: An example of a bus run.

The VSP has been extensively studied for many years, and various solution approaches have

been proposed to address its complexity. See Bunte and Kliewer (2009) and Freling, Wagelmans,

and Paixão (2001) for comprehensive reviews. However, with the emergence and early adoption

of electric vehicles (EVs), there is a need to revisit the problem and adapt it to accommodate

the unique characteristics and requirements of EVs. The EVSP can be classified into two main

types based on the number of depots involved: single-depot EVSP (SDEVSP) and multi-depot

EVSP (MDEVSP). In this study, we consider the SDEVSP. We develop an optimization-based

scheduling framework using mixed-integer linear programming (MILP) that can generate bus

runs with given trips. The framework ensures that each trip can be successfully completed
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using DVs or EVs, and schedules recharging (when necessary). Moreover, we consider next day

operability. Next day operability ensures each bus can serve at least one bus run the next day,

and every scheduled bus run can be served by at least one bus. This means that during the

night, when the buses are not in use, they recharge enough so they can serve bus runs the next

day.

In this study, we propose a two-step solution approach for the SDEVSP. In the first step,

solving an integer programming (IP) model, we generate blocks using the SDVSP model pre-

sented in Cokyasar, Verbas, and Auld (2023a). Each block is defined as a sequence of con-

secutive trips and has a designated depot as its starting and ending location. Blocks with a

length shorter than EV range are considered electrifiable. Given the target EV deployment level

(which is the ratio of number of electrifiable block to the total number of blocks), we adjust

control parameters in the SDVSP model, allowing us to generate shorter or longer blocks to

reach the target level. As the SDVSP with time or distance constraints is NP-hard (Bodin

1983), we do not impose hard constraints on block length or time to maintain computational

feasiblity. This approach does not guarantee that all blocks are within the EV range since we

do not have hard constraints. However, an acceptable or targeted share of within-range blocks

can be obtained using this soft approach.

Once the blocks are generated, the subsequent step involves chaining them together to form

a DV or EV schedules. This defines another set of problems: the block chaining problem

(BCP) for DVs and EVs. The former problem chains diesel blocks while adhering to spatio-

temporal conditions, while the latter adheres to both spatio-temporal and state-of-charge (SOC)
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conditions. Additionally, the generated electric bus runs must satisfy the next day operability

constraints, ensuring continuity of operations.

Figure 10 provides a visual representation of the study layout and the framework adopted for

our solution approach. The reason behind designing this heuristic solution approach is two-fold.

First, it aligns with the conventional practice employed by transit agencies, where bus blocks

are initially created, followed by the utilization of these blocks to create DV schedules and crew

schedules. Our approach is designed to resonate with this established method, facilitating its

adoption within transit agencies. Transit agencies acknowledge that shorter blocks than that

of DVs are needed to be created to electrify bus fleets, and these blocks can be chained to form

EV schedules. Second, The SDEVSP is known to be NP-hard due to the presence of time or

distance limitations (Bodin 1983). This implies that finding optimal solutions to large-scale

problems is computationally infeasible within a reasonable time. Our solution approach adopts

a two-step heuristic methodology, providing a practical and efficient means of resolving the

complexity associated with the SDEVSP.

The motivation behind this study is threefold. First, our approach builds upon the widely

adopted SDVSP modeling used by transit agencies to create schedules for conventional DVs.

By leveraging this well-established method, we facilitate the adoption and implementation of

our proposed solution framework, enabling transit agencies to seamlessly transition to electric

bus fleets. Transit agencies acknowledge the necessity of creating shorter blocks to electrify bus

fleets, and our approach allows for creating these blocks to form efficient electric vehicle (EV)

schedules. Second, the SDEVSP is recognized as an NP-hard problem, making it analytically
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Figure 10: Study layout - SDEVSP framework. The left figure is adopted from Perumal, Lusby,
and Larsen (2022a).

challenging to solve at a large-scale. By breaking down the SDEVSP into the SDVSP and the

BCP, we effectively manage the challenges associated with large-scale instances of the SDEVSP.

Third, our model incorporates next day operability constraints. This consideration ensures that

the scheduling of bus blocks allows for their repetition on the following day, promoting efficient

and reliable schedules. Our study considerably advances the SDEVSP literature by providing

these contributions. Our practical and scalable solution approach enhances the feasibility and

effectiveness of electric bus scheduling, supporting the transition towards more sustainable and

environmentally friendlier public transportation systems.

In this study, we assume that we are given a predefined set of timetabled bus trips, with

known start and end times as well as locations. Charging and discharging processes are as-

sumed to follow linear profiles, simplifying the representation of energy transfer dynamics.



50

Furthermore, we assume that each depot is sufficiently large to accommodate new buses and

the charging equipment. Moreover, there are as many slow and fast chargers as needed, result-

ing in zero waiting times for recharging. Moreover, We assume that during the day, vehicles

use fast chargers because they need to recharge quickly and get back into service promptly.

Slow chargers are not used during the day because the time between two bus blocks is limited,

making slow charging impractical. For nighttime recharging, we assume slow chargers are used

since they can recharge buses effectively during the night when buses are not in service. We

assume fast chargers are not used at night to avoid overusing them as they are more expensive.

This way, we balance the quick recharge needs during the day with the cost considerations,

making sure the chargers are used efficiently.

In Section 3.2, we begin with providing a literature review on the SDEVSP. Section 3.3

formally describes the problem, the next day operability constraints, and the formulation of

the MILP model. Section 3.4 outlines a heuristic approach to address the scalability concern in

the BCP model. In Section 3.5, we detail the experimental design and the parametric choices,

and demonstrate the results of numerical experiments conducted to evaluate the performance

of the proposed solution approaches. Finally, Section 3.6 concludes the study by summarizing

the key findings and discussing potential future research directions.

3.2 Literature review

Transit service design can be summarized as a sequence of five systematic decisions: Network

design, frequency setting, timetabling, vehicle scheduling, and crew scheduling (Ceder and

Wilson 1986). While many studies in the literature focus on solving these problems separately,
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some select a subset and solve that selection jointly. See Guihaire and Hao (2008) for a thorough

review on these problems. This study solely focuses on the vehicle scheduling problem, i.e. the

route alignments, frequencies, and timetables are given and fixed. Similarly, crew scheduling

that is solved either after or jointly with vehicle scheduling is also beyond the scope of this

study. Table IX gives an overview of the existing relevant literature on the EVSP.

The existing literature on the electric VSP (EVSP) can be viewed in two main categories

based on the number of depots included: SDEVSP and multi-depot EVSP (MDEVSP). While

both variants are significant, recent studies have shown a growing interest in the MDEVSP (Wu

et al. 2022, Liu and (Avi) Ceder 2020, Zhang et al. 2021, Yao et al. 2020, Diefenbach, Emde,

and Glock 2023, Wen et al. 2016, Li et al. 2020). For instance, Wu et al. (2022) proposed

a branch-and-price method for addressing the MDEVSP, incorporating time-of-use electricity

tariffs and peak load risk. Similarly, Diefenbach, Emde, and Glock (2023) employed a branch-

and-check method, considering non-linear charging and partial charging to minimize the electric

vehicle fleet size in the MDEVSP context. However, in our research, we specifically concentrate

on the single depot aspect of the EVSP. This decision is motivated by our understanding of

the needs and requirements of large-scale transit agencies. Those agencies that operate out of

multiple depots already have their blocks and runs assigned to certain depots by either solving

an MDVSP, or by pre-assigning routes or trips to certain depots and solving multiple SDVSPs.

In this study, we treat the existing assignment of trips to depots as initial conditions. By

focusing on the SDEVSP, we aim to provide practical and applicable solutions that align with

the operational context of these agencies. While the MDEVSP is undoubtedly an important
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area of research, addressing the complexities associated with multiple depots falls beyond the

scope and considerations of our study.

TABLE IX: Summary of the existing relevant literature.

Study Objective Model (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x)

Wu et al. (2022) Minimize the total operation cost. MILP ✓ - - - ✓ - - - - -

Liu and (Avi)
Ceder (2020)

Minimize the number of vehicles. IP ✓ - - - - - - ✓ ✓ -

Zhang et al.
(2021)

Minimize the vehicle purchasing
cost and operation cost.

MILP ✓ - - ✓ - - - ✓ ✓ -

Yao et al. (2020) Minimize the vehicle purchasing
cost and operation cost.

IP ✓ - ✓ - - - - ✓ - -

Diefenbach,
Emde, and Glock
(2023)

Minimize the number of vehicles. MILP ✓ - - - - - - ✓ ✓ -

Wen et al. (2016) Minimize the number of buses and
the total traveling distance.

MILP ✓ - - - - - - ✓ - -

Li et al. (2020) Minimize the total cost of con-
structing and operating the elec-
tric bus system.

MILP ✓ - - - - - - ✓ - -

Xu, Yu, and Long
(2023)

Maximize the difference between
the profit from the bus fare and
the operational cost.

IP - ✓ - - - - - - - -

Sistig and Sauer
(2023)

Minimize the investment costs for
vehicles and operational costs.

MILP - - ✓ - - - - - - -

Rinaldi et al.
(2020)

Minimize the total operational
cost.

MILP - - - ✓ - - ✓ - - -

Alwesabi et al.
(2020)

Minimize the battery cost and
charging infrastructure costs.

MIQCP - - - - - ✓ - - - -

Chao and
Xiaohong (2013)

Minimize the capital investment
for the electric fleet and the total
charging demand.

MILP - - - - - - - - - -

Perumal et al.
(2021)

Minimize the investment costs for
vehicles and operational costs.

MILP - - ✓ - - - - - - -

This study Minimize the number of vehicles
and deadheading time.

MILP - - - - - - - ✓ - ✓

(i) Multiple depots, (ii) Timetabling, (iii) Crew scheduling, (iv) Mixed fleet, (v) Power grid, (vi) Placement of charging
infrastructure, (vii) Number of chargers, (viii) Partial charging, (ix) Non-linear charging, (x) Operational continuity,
MIQCP: Mixed-integer quadratically-constrained program.
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The SDEVSP has received limited attention in the existing literature, with a few studies ded-

icated to exploring its various aspects (Xu, Yu, and Long 2023, Sistig and Sauer 2023, Perumal,

Lusby, and Larsen 2022a, Rinaldi et al. 2020, Alwesabi et al. 2020, Chao and Xiaohong 2013).

For instance, Xu, Yu, and Long (2023) focused on jointly solving the electric bus timetabling

and scheduling problem. They tackled this problem by employing the Lagrangian relaxation

heuristic method as their solution approach. It should be noted that including timetabling in-

troduced scalability challenges to their solution method. In our study, timetables are given and

fixed, and we ensure that all the revenue trips are served by a vehicle. This deliberate choice

ensures that our model is applicable to large-scale problems and can be effectively solved. An-

other related study conducted by Sistig and Sauer (2023) explored the integrated problem of

electric vehicle and crew scheduling. To solve this problem, they employed a metaheuristic

based on adaptive large neighborhood search (ALNS). Similarly, Perumal et al. (2021) also

addressed the integrated electric vehicle and crew scheduling problem and utilized an ALNS

as their solution approach. Our study does not consider the crew scheduling but considers the

operational continuity. By focusing on operational continuity, our research aims to contribute

to the field of sustainable electric vehicle scheduling. We recognize the importance of maintain-

ing a consistent and efficient electric vehicle fleet, thereby enabling smoother and more reliable

transportation services.

3.3 Problem definition

In this section, we provide a formal description of the SDVSP model as presented by

Cokyasar, Verbas, and Auld (2023a). Next, we develop an MILP formulation to solve the
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BCP. To ease reading, we adopt a specific notation convention where calligraphic letters denote

sets, uppercase Roman letters represent parameters, lowercase Roman letters represent variables

and indices, and lowercase Greek letters as superscripts modify parameters and variables.

3.3.1 Single Depot Vehicle Scheduling Problem (SDVSP)

The objective of SDVSP is to find optimal creation of bus blocks based on the given

timetabled trips. Figure 11 illustrates an example solution for SDVSP. In this particular sce-

nario, the SDVSP solution establishes three blocks based on the given trips. The connections

between trips are decision variables for SDVSP, aiming to minimize the total intertrip layover

time, deadheading time, and the number of blocks.

Figure 11: An example solution of SDVSP.

Let T represent set of timetabled bus trips with given origin Oi (first stop) and destination

Di (last stop). The tuple set L denotes all feasible arcs that connect bus trips, allowing them to

be performed sequentially. Additionally, R = L
⋃
(s×T)

⋃
(T × t) denotes set of all feasible
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arcs, where s and t indices denote. We denote the deadheading time by T τ
ij . The idle time spent

between two consecutive trips is called layover time, denoted by T λ
ij . Note that the layover time

does not include the deadheading time but is the time spent after a bus finishes deadheading

to the first stop Oj of trip j until the beginning of trip j. The block generation cost in time

units is defined by K, and a unitless weight parameter W adjusts the balance between vehicle

costs and layover time. The binary decision variable lij = 1 represents whether trip j ∈ T is

served after trip i ∈ T, and 0 otherwise. Table X denotes sets, parameters, and variables used

in this section, and the mathematical model is as follows:

min
∑

(i,j)∈L

(T τ
DiOj

+WT λ
ij)lij +

∑
j∈T

(
K + T τ

sOj

)
lsj +

∑
i∈T

T τ
Ditlit (3.1)

subject to, ∑
j:(i,j)∈R

lij = 1 ∀i ∈ T (3.2)

∑
i:(i,j)∈R

lij = 1 ∀j ∈ T (3.3)

lij ∈ {0, 1} ∀ (i, j) ∈ R.

The objective function 3.1 is to minimize the weighted summation of the total non-revenue

time (deadheading and weighted layover times) and the fleet size by adding an artificial time

K to depot-to-trip travels. Constraints 3.2 and 3.3 guarantee that each trip follows exactly

one preceding trip and is subsequently followed by exactly one subsequent trip. Adjusting the

parameters K and W affect the block length. Increasing the value of K leads to longer blocks

as the block generation cost becomes more significant, while increasing W results in shorter
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blocks since the importance of layover time increases in relation to deadheading time and block

generation cost.

TABLE X: Sets, parameters, and variables used in the SDVSP.

Set Definition

T set of timetabled bus trips
L set of arcs connecting two consecutive trips
R set of all feasible arcs connecting two consecutive trips, R = L

⋃
(s×T)

⋃
(T × t), where s

and t indices denote the depot

Parameter Definition

Di last stop of trip i ∈ T

K a big number representing the block generation cost in time units
Oi first stop of trip i ∈ T

Ti start time of trip i ∈ T

T ρ
i end time of trip i ∈ T

T τ
ij deadheading time, the travel time from the last stop Di of trip i ∈ T to the first stop Oj of

trip j ∈ T

Tλ
ij layover time, the idle time spent between two consecutive trips i ∈ T and j ∈ T at the first

stop Oj of trip j ∈ T

W weight factor for layover time between two consecutive trips

Variable Definition

lij

{
1 if trip j ∈ T is served after trip i ∈ T, i ̸= j

0 otherwise

3.3.2 Block Chaining Problem (BCP)

The BCP is to find the optimal combination of bus blocks to be served consecutively by

EVs that minimize the total depot layover time and the number of EVs, while making use of

the depot layover time between blocks for recharging. Figure 12 illustrates an example solution



57

of the BCP. In this instance, the BCP solution combines two blocks into a single bus run and

maintains the third block as an individual bus run. In the BCP, the connections between

trips serve as decision variables determining whether to connect two blocks. This connection

is contingent upon the layover time being sufficient for recharging the vehicle and preparing it

for the next block. Additionally, the BCP ensures that the nighttime layover time is adequate

for nighttime recharging, ensuring the vehicle’s readiness to serve a bus run the next day.

While adhering to these constraints, the BCP model aims to minimize both the total depot

layover time and the number of bus runs (i.e., fleet size). Now, we formally describe an MILP

formulation to solve the BCP, building upon the block results obtained from solving the SDVSP.

Figure 12: An example solution for the BCP.
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The set of blocks that can be run by EVs (i.e., blocks meeting the range constraints)

is denoted by B. The tuple set E denotes all feasible arcs that connect bus blocks within

the planning horizon. The tuple set C denotes all feasible arcs that connect bus blocks of

consecutive horizons, that is each pair consists of a bus block from the current planning horizon

and a bus block from the next planning horizon, and they can be combined in a sequential order.

Furthermore, A = E
⋃
(s× B)

⋃
(B × t) denotes set of all feasible arcs within a given horizon.

Similar to the SDVSP, the indices s and t indicate the depot from which buses are dispatched

and the depot to which they return, respectively. Table XV provides sets and parameters used

in the MILP to solve the BCP.

The energy consumption required to operate block i ∈ Bi is represented by Bi and is

measured in units of time. This energy consumption is assumed to be a linear function of the

travel time for the block. The start and end times of block i ∈ B, which are obtained by

solving the SDVSP, are denoted by Tα
i and T β

i , respectively. A recharging between consecutive

blocks in the same planning horizon is considered to occur during the day, while recharging

between consecutive blocks, one in the current and the other in the next planning horizon, is

assumed to be overnight. The rate of recharge during the day is denoted by Rδ, while the rate

of recharge overnight is denoted by Rν . These recharge rates indicate the quantity of energy

gained through recharging, measured in units of time per unit of time. The battery capacity,

measured in units of time, is denoted by B. This parameter represents the maximum amount

of energy that the EV’s battery can store, determining the maximum duration the vehicle can

travel without recharging. The end time of the planning horizon, denoted by T , establishes the
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time limit or deadline for the scheduling of blocks. This parameter sets the boundary for the

scheduling process, ensuring that all blocks are scheduled within the specified time frame. To

control the layover time between consecutive blocks, we introduce the maximum and minimum

layover time limits that are denoted by U and L, respectively. Weight parameters K ′ (in time

units) and W ′ (unitless) represent the vehicle cost and importance of layover time against fleet

size in the objective function, respectively. Lastly, M1 and M2 are adequately big numbers,

where M1 > B +max
{
(T +maxi∈B Tα

i )R
ν ,maxi∈B RδTα

i

}
and M2 ≥ B + 2M1.

Binary decision variable yij = 1 if block j ∈ B is served after block i ∈ B, and yij = 0,

otherwise. Binary decision variable zij takes a value of 1 if block j ∈ B on the next day can

be served after block i ∈ B in the current day, and 0 otherwise. Decision variable vij ∈ R≥0

represents the state of charge (SOC) in time units at the beginning of block j ∈ B after serving

block i ∈ B. Decision variable v′ij ∈ R represents the SOC in time units at the beginning of block

j ∈ B on the next planning horizon after serving block i ∈ B in the current horizon. Decision

variable bi ∈ R≥0 denotes the SOC in time units at the beginning of block i ∈ B. Decision

variable uij ∈ R≥0 represents the amount of energy gained measured in time units during

the layover time between two consecutive blocks. Additionally, we introduce two auxiliary

binary variables: xij and nij . These variables are used to linearize the max and min functions,

respectively. Table XVI provides variables and variable definitions used in the MILP. The

mathematical model to solve the BCP is as follows:

min
∑

(i,j)∈E

W ′
(
Tα
j − T β

i

)
yij +

∑
i∈B

K ′ysi (3.4)
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subject to, ∑
j:(i,j)∈A

yij = 1 ∀i ∈ B (3.5)

∑
i:(i,j)∈A

yij = 1 ∀j ∈ B (3.6)

vij = max
{
bi −Bi −M1 (1− yij) + uij , 0

}
∀(i, j) ∈A (3.7)

bj =
∑

i:(i,j)∈A

vij ∀j ∈ B (3.8)

Bi ≤ bi ≤ B ∀i ∈ B (3.9)

uij ≤
(
Tα
j − T β

i

)
Rδyij ∀(i, j) ∈ E (3.10)

uit = 0 ∀i ∈ B (3.11)

v′ij = min
{
B, vit +

(
T + Tα

j − T β
i

)
Rν −M1 (2− ysj − yit)

}
∀ (i, j) ∈ C (3.12)

v′ij ≥ bj −M2 (1− zij) ∀ (i, j) ∈ C (3.13)

∑
i:(i,j)∈C

zij = ysj ∀j ∈ B (3.14)

∑
j:(i,j)∈C

zij = yit ∀i ∈ B (3.15)

yij , zij ∈ {0, 1}, bi, uij , vij ∈ R≥0, v′ij ∈ R.

The objective function 3.4 minimizes the total layover time between blocks and the number

of vehicles. Constraints 3.5 and 3.6 guarantee that each block follows exactly one preceding



61

block or a depot block and is followed by exactly one subsequent block or a depot block,

respectively. Constraints 3.7 and 3.8 determine the SOC at the start of block j ∈ B based on

the SOC at the beginning of the preceding block i ∈ B, the energy consumption during block i,

and the energy gained between the blocks i and j. Note that vsj = bs + usj when ysj = 1 (that

is for each run) in 3.7. Then, we know from 3.8 that bj = bs + usj . Therefore, initial SOC of

each run can vary by artificially charging from s to the first block in the current horizon, and

we can ensure that the initial SOC for each run is a variable. Constraints 3.9 ensure that the

SOC does not exceed the maximum battery capacity, and EVs have adequate SOC to complete

each block i ∈ B without running out of energy. Constraints 3.10 guarantee that the energy

gained between two consecutive blocks does not exceed the maximum amount of energy that

can be gained during the layover time between those blocks. Constraints 3.11 enforce that no

daytime charging takes place if block i is the last block of the horizon.

The set of constraints 3.12 - 3.15 account for the feasibility of the next horizon’s operations.

Constraints 3.12 calculate the SOC at the beginning of block j ∈ B on the next horizon, after

serving block i ∈ B on the current horizon. This calculation takes into account the SOC at

the end of block i and considers the amount of energy gained between blocks i and j, where

(i, j) ∈ C. To establish the connection between block j ∈ B on the next horizon and block

i ∈ B on the current horizon, we introduce constraint 3.13. This constraint ensures that if

zij = 1, the SOC v′ij at the beginning of block j is sufficient to serve that block. Constraints

3.14 ensure that each block j that start from the depot on the next horizon is preceded only
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by one block i. Similarly, constraints 3.15 ensure that each block i that ends at the depot on

the current horizon is succeeded by only one block in the next horizon.

Constraints 3.7 and 3.12 in their current form involve min and max functions with variables,

which is quite straightforward to deal with by many commercial solvers without the need for

linearization. However, it can still be useful to remove the non-linearity to possibly accelerate

the solution. To this end, we replace constraints 3.7 with the set of constraints 3.16 - 3.18 and

constraints 3.12 with the set of constraints 3.19 - 3.22.

vij ≥ bi −Bi + uij −M1 (1− yij) ∀(i, j) ∈A (3.16)

vij ≤ bi −Bi + uij −M1 (1− yij − xij) ∀(i, j) ∈A (3.17)

vij ≤M1 (1− xij) ∀(i, j) ∈A (3.18)

v′ij ≤ B ∀ (i, j) ∈ C (3.19)

v′ij ≤ vit +
(
T + Tα

j − T β
i

)
Rν −M1 (2− ysj − yit) ∀ (i, j) ∈ C (3.20)

v′ij ≥ B −M2nij ∀ (i, j) ∈ C (3.21)

v′ij ≥ vit +
(
T + Tα

j − T β
i

)
Rν −M1 (3− ysj − yit − nij) ∀ (i, j) ∈ C (3.22)

xij , yij , nij ∈ {0, 1}, bi, uij , vij ∈ R≥0, v′ij ∈ R.
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TABLE XI: Sets and parameters used in the MILP for the BCP.

Set Definition

A set of all feasible arcs connecting two consecutive blocks within the horizon, A =
E
⋃

(s× B)
⋃

(B × t), where s and t indices denote the depot
B set of timetabled bus blocks
C set of arcs connecting two consecutive blocks over night i (first, current horizon) and j (second,

next horizon), C =
{
(i, j) |i, j ∈ B ∧ L ≤

(
T + Tα

j − T β
i

)
≤ U

}
E set of arcs connecting two consecutive blocks i (first, current horizon) and j (second, current

horizon), E =
{
(i, j) |i, j ∈ B ∧ i ̸= j ∧ L ≤

(
Tα
j − T β

i

)
≤ U

}
Parameter Definition

B battery capacity measured in time units
Bi energy consumption of block i ∈ B ∪ {s} measured in time units, and Bs = 0
K′ a big number representing the vehicle cost measured in time units
L minimum admitted recharging time between two consecutive blocks

M1 big number, that is M1 > B +max
{
(T +maxi∈B Tα

i )Rν ,maxi∈B RδTα
i

}
M2 big number, that is M2 ≥ B + 2M1

Rδ rate of recharge during day, i.e., energy (in time units) gained by recharging in one unit of
time, e.g., Rδ minutes of driving range is gained by recharging a bus for one minute

Rν rate of recharge during night, i.e., energy (in time units) gained by recharging in one unit of
time, e.g., Rν minutes of driving range is gained by recharging a bus for one minute

T end of planning horizon in time units
Tα
i start time of block i ∈ B

T β
i end time of block i ∈ B

U maximum admitted recharging time between two consecutive blocks
W ′ weight factor for recharging time between two consecutive blocks

3.4 Heuristic solution approaches

The SDEVSP is a known NP-hard problem, presenting a computational challenge for finding

an optimal solution. To tackle this problem, we propose a two-step heuristic solution approach.

In the first step, our objective is to identify suitable values for K and W that enable the

generation of blocks where the service time for each block does not exceed the vehicle range.

We use the method proposed by Cokyasar et al. (2023) to determine the suitable values for K

and W , then we use the resulting blocks generated in the previous step and solve the BCP. The
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TABLE XII: Variables used in the MILP for the BCP.

Variable Definition

bi state of charge at the beginning of block i ∈ B ∪ {s} measured in time units, bi ∈ R≥0

nij auxiliary binary variable used to linearize the min function, (i, j) ∈ C

uij energy gained between blocks i and j measured in time units on current horizon, uij ∈
R≥0, (i, j) ∈ A

vij state of charge at the beginning of block j on current horizon after serving block i on current
horizon measured in time units, vij ∈ R≥0, (i, j) ∈ A

v′ij state of charge at the beginning of block j on next horizon after serving block i on current horizon
measured in time units, v′ij ∈ R, (i, j) ∈ C

xij auxiliary binary variable used to linearize the max function, (i, j) ∈ A

yij

{
1 if block j on current horizon is served after block i on current horizon, (i, j) ∈ A

0 otherwise

zij

{
1 if block j on next horizon can be served after block i on current horizon, (i, j) ∈ C

0 otherwise

BCP aims to generate an optimal schedule for electric vehicles based on the given blocks and

their associated start and end times, taking into account charging requirements. Since the BCP

is a variant of the SDVSP model with resource constraints, it is NP-hard. We introduce two

solution algorithms to solve large-scale instances: A divide-and-conquer (DaC) algorithm and

a greedy heuristic algorithm. In the following Sections 3.4.1 and 3.4.2, we elaborate on these

solution algorithms in detail. Additionally, we present a computational analysis in Section 3.5.2,

where we evaluate and compare the performance of the DaC and the greedy heuristic algorithm

with an MILP solver.

3.4.1 Divide-and-conquer (DaC) algorithm

Divide and conquer (DaC) is well-known algorithm (Blahut 2010). The idea behind the

DaC algorithm is to break down the large-scale BCP into smaller and manageable subproblems.
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The subproblems at adequately small size (e.g., 20 blocks) can be solved independently using

commercial solvers. Once the subproblems are solved, the solutions are combined to form

an overall solution for the master problem. This combination step ensures that the solution

obtained is feasible as Lemma 3 (see Appendix for proof) denotes.

Lemma 3. LetM be the master problem and P be a set of subproblems, thatM =
⋃

p∈P p. If

each subproblem p ∈ P has a feasible solution Xp, then XM =
⋃

p∈P Xp is a feasible solution

forM.

In order to break down the large-scale BCP into smaller subproblems, we employ the

Kernighan-Lin (K-L) bisection algorithm, as introduced by Kernighan and Lin (1970). The

Kernighan-Lin algorithm is a graph partitioning technique that optimizes the division of ver-

tices into two sets, aiming to minimize the number of edges (cut size) connecting the sets.

By iteratively swapping pairs of nodes between sets based on gain calculations, the algorithm

efficiently refines the partition until reaching a locally optimal solution.

To apply the K-L bisection algorithm in the context of the BCP, we begin with representing

the problem as a graph. Each block is represented as a vertex, based on the set B, and the

relationships between the blocks are captured as edges, based on the tuple set E. The K-

L bisection algorithm then aims to partition this graph into two subgraphs with the goal of

minimizing the number of edges between the partitions while ensuring approximately equal

number of vertices in each partition. This partitioning is achieved through an iterative process

that involves swapping vertices between the two partitions to maximize the reduction in the
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number of edges between them. Using this method, we attempt to minimize the optimality

deviation caused by partitioning.

While the K-L algorithm is originally designed to partition a problem into two subproblems,

we aim to divide the problem into a larger number of subproblems. To do this, we can repeat

the K-L algorithm multiple times. In each iteration, the algorithm partitions a subproblem

into two subproblems by dividing the corresponding graph representation. The first iteration

applies the K-L algorithm to the original problem, resulting in two subproblems. Subsequent

iterations apply the K-L algorithm to each subproblem from the previous iteration, dividing

them into two subproblems each.

Let |M| represent the number of blocks in the master problem and |p| represent the maxi-

mum number of blocks that can be solved using commercial solvers within a reasonable time-

frame. The target number of subproblems is then m = |M|
|p| . This would require n = ⌈logm2 ⌉

iterations, and in each iteration k = 1, . . . , n the number of partitionings is 2k−1 resulting in

a total of 2n − 1 partitionings. The final number of subproblems would then be 2n. Figure 13

illustrates an example of partitioning results. In this case, there are 12 blocks (|M| = 12), and

let’s assume the largest problem size solvable by commercial solvers is 3 blocks, i.e., |p| = 3.

Consequently, we need to divide the problem into m = 12
3 = 4 subproblems. This requires

n = ⌈log2 4⌉ = 2 iterations and results in 22 − 1 = 3 partitionings. Note that, ideally, we

divide the problem into a reasonably large number of subproblems to fully exploit the potential

for parallelism and solution efficiency. However, dividing the problem into a larger number of
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subproblems leads to a natural decrease in solution quality. Therefore, we carefully consider

this trade-off to determine an appropriate value for m.

Figure 13: An example of partitioning a problem into subproblems.

3.4.2 Greedy algorithm

The greedy algorithm in Algorithm 2 iteratively assigns blocks to vehicles in a way that

minimizes the number of vehicles needed. The algorithm follows a greedy strategy, making
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locally optimal decisions at each step. It is one of the traditional methods to solve scheduling

problems and is similar to the earliest due date rule presented in (Sule 2007, pp. 152). The

algorithm begins with sorting the set of blocks B, based on their start times Tα
i . We initialize

various variables, including bi, uij , and u′ij , to zero. Additionally, we set bB(0) = B.

Next, we define bϕi as the net energy consumption until the end of block i. It is computed

by summing the consumption of all preceding blocks in the chain up to the previous block,

and subtracting the sum of all charging values uij that occurred between those blocks. All bϕi

values are initially set to zero. To begin, the algorithm generates the first vehicle V0 by adding

the first block B(0) to the itinerary. The net energy consumption for this vehicle is set to the

consumption of the first block, BB(0). After removing the first block B(0) from B, we initialize

the vehicle counter, denoted as v, and the block counter, denoted as k, to zero.

The algorithm runs until all blocks are assigned to vehicles. Within the while loop, the first

condition checks if a vehicle has at least one block already inserted. If not, the first block in

the current set of blocks is inserted. For a given block i, which represents the last block in the

current vehicle, and a block j currently under consideration for insertion, temporal conditions

are evaluated. These conditions compare the start time of block j with the start time of block

i to ensure chronological feasibility for both during the current horizon and also for the next

horizon. Temporary variables u, b, u′, and bϕ, are calculated. If the SOC conditions are met

for these variables, indicating sufficient energy levels, the evaluated block is inserted into the

current vehicle.
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The first condition checks if the overnight charging u′ is greater than or equal to the net

energy consumption if the current block is inserted into the itinerary. This guarantees that there

will be enough battery capacity for the next time period to continue the sequence of blocks.

The second condition verifies that the SOC bi of the last block in the vehicle is greater than

or equal to the energy consumption Bi of that block. Lastly, the SOC level after completing

block i (i.e., bi−Bi) and charging the vehicle with u is checked to determine if it is sufficient to

execute block j. If any of the SOC conditions are not satisfied, the block counter k or the vehicle

counter v is incremented accordingly. When a block is successfully inserted, it is removed from

the set of blocks B.

3.5 Numerical Experiments

In this section, we provide an overview of our experimental design and data in Section 3.5.1,

compare the performance and limitations of the Greedy, DaC, and the MILP solver methods in

Section 3.5.2, and conduct case studies in Section 3.5.3 to reveal key takeaways on large-scale,

real-world transit services.

3.5.1 Design of experiments

We conducted numerical experiments in Austin, TX and the Chicago Metropolitan Area

transit networks. We utilized Capital Metropolitan Transportation Authority (CapMetro) net-

work for Austin, and the Chicago Transit Authority (CTA) and the PACE Suburban Bus net-

works for Chicago through General Transit Feed Specification (GTFS) data (General Transit

Feed Specification 2022). CapMetro operates 75 bus routes, and Chicago agencies collectively

operate a total of 325 bus routes (Auld et al. 2016). The locations of these routes and depots
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Algorithm 2: Greedy algorithm pseudocode

Input : B, Bi, B, C, Rδ, Rν , Tα
i , Tβ

i , T
Output: V ▷ A set storing blocks of vehicles.
Function Greedy():

Sort(B, Tα);

bi, b
ϕ
i ← 0 ∀i ∈ B; uij ← 0 ∀(i, j) ∈ A;u′ij ← 0 ∀(i, j) ∈ C; bB(0) ← B; bϕ0 ← BB(0);

V0 ← {};
V0 ← V0 ∪ {B(0)};
B ← B \ B(0); ▷ Delete first block.
v ← 0; ▷ Index of vehicle id.
k ← 0; ▷ Counter for block indices of B.
while B ̸= {}, do

if |Vv | ̸= 0, then
i← Vv(|Vv |); ▷ Last block in Vv is i.
j ← B(k); ▷ The kth block in B is j.
if i ̸= j and temporal conditions hold, then

u← min
(
B − bi +Bi, (T

α
j − Tβ

i )Rδ
)
;

b← bi −Bi + u;

u′ ← min
(
B − b+Bj , (T + Tα

Vv(0)
− Tβ

i )Rν
)
;

bϕ ← bϕv +Bj − u′;

if u′ ≥ bϕ ∧ bi ≥ Bi ∧ b ≥ Bj , then
Vv ← Vv ∪ {j}; uij ← u;

bj ← b; u′ij ← u′; bϕv ← bϕ;

B ← B \ {j};
else

if k + 1 < |B|, then
k ← k + 1;

else
v ← v + 1; Vv ← {}; k ← 0;

else
if k + 1 < |B|, then

k ← k + 1;
else

v ← v + 1; Vv ← {}; k ← 0;

else
Vv ← Vv ∪ {B(0)};
bB(0) ← B; bϕv ← BB(0); B ← B \ B(0);

V ←
⋃

v′∈{0,1,...,v} Vv′ ;

used by these agencies are indicated in Figure 14. With the data provided, we identified 17 bus

depots in Chicago and verified the number and locations through official websites of the agen-

cies; however, we could locate four bus depots in Austin but could not verify neither the number
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(a) Austin, TX. (b) Chicago metropolitan area.

Figure 14: Maps showing the case study regions and depot locations and routes of the three
transit agencies.

nor the locations from other sources. To obtain the necessary trip schedule data, we referred

to the GTFS. For CTA trips, we utilized the route-to-depot mapping information available in

(ChicagoBus 2023) to assign trips to their respective depots. For CapMetro and PACE routes,

we did not find any mapping information. Therefore, we computed the mid-point of each trip

and assigned it to the closest depot.

The battery capacity B = 120 minutes. The cost parameter K ′ = 50, 000 seconds. The

values of M1 = 106 and M2 = 3 × 106. The planning horizon T = 86, 400 seconds, i.e., 24

hours. The weight factor for recharging time between consecutive blocks W ′ = 1. The revenue

trip information, i.e. start and end times, and locations, are obtained from the GTFS data
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(General Transit Feed Specification 2022). However, data for deadhead travel times is not

available, so we assumed an average speed of 30 mph and used Manhattan distances as a basis

for estimating deadheading travel times. The battery consumption Bi’s are calculated as a

summation of revenue trip and deadhead trip travel times within a block. For the parameters

L and U , we set L = 0 and left the upper bound U unrestricted. For our analysis, we consider a

40-foot bus for both DVs and EVs. The assumed vehicle energy consumption rate E = 220 kW

(Chicago Transit Authority 2022). To determine the EV battery capacity, we use the equation

Rκ = EB, which yields a battery capacity of 440 kWh for an EV range of two hours. The

parameters are summarized in Table XIII.

Regarding the charging infrastructure, we considered both fast charging and slow charging.

Overnight charging utilizes slow charging, while daytime charging utilizes fast charging. The

power for fast charging is represented by P δ = 450 kW, while slow charging is represented by

P ν = 125 kW. To determine the rates of recharge, we can apply the formulas Rδ = P δ

E and

Rν = P ν

E . These calculations yield recharge rates of Rδ = 2.045 and Rν = 0.568, respectively.

In words, charging a bus for one minute overnight or during the day increases the SOC by 0.568

minutes or by 2.045 minutes, respectively.

TABLE XIII: Parametric values used.

B (minute) K ($) M1 M2 Rδ Rν T (minute) W ′ ($)

120 50000 106 3× 106 0.568 2.045 86400 1
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3.5.2 Computational performance of the heuristic methods

We conduct an analysis to reveal the computational performance of the Greedy and DaC

methods, comparing them to the MILP solved by Gurobi using |B| as a problem size determinant

lever. We utilized data from a depot located in the Chicago metropolitan area. The parametric

design outlined in the previous section served as the baseline. We randomly selected a subset of

trips from the available trips of this depot with |B| ∈ [10, 20, 30, 40, 50, 100, 200, 300] following

a uniform distribution for the selection probability. A total of 2,230 instances were solved using

the three methods, with a computational time limit of 1,200 seconds per instance.

In the Greedy method, it is assumed that all buses begin their daily trips with a fully

charged battery. However, in the proposed MILP model, we allow the model to determine the

required initial battery level dynamically. This assumption is made in the Greedy algorithm

to simplify the model and enable it to handle large-scale problems more efficiently. To ensure

a fair comparison between the Greedy, DaC methods, and the MILP solver, we change the

proposed MILP model by incorporating an additional constraint. Constraint (3.23) ensures

that the initial battery level of the buses is equal to their battery capacity.

vsi = Bysi ∀i ∈ B (3.23)

All computations were performed on a workstation equipped with an Intel® Xeon® Gold

6138 CPU @2.0 GHz, 128 GB of RAM, and 64 cores. The Python 3.8.8 interface to the

commercial solver Gurobi 10.0 (Gurobi Optimization, LLC 2020) was employed to solve the

problem instances.
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The computational performance of the MILP model solved with Gurobi, as well as the

Greedy and DaC solution approaches, are reported in Table XIV. The first column specifies

the number of trips, while the second column indicates the number of instances solved for a

given number of trips. For the MILP approach, the first column represents the number of

instances where optimality was achieved. The second column for the MILP shows the average

MIP gap percentage, which measures the difference between the objective value of the best-

known feasible solution found and the best lower-bound found. The Greedy column displays the

average percentage ∆ gap, indicating the difference between the solution reported by the solver

and the solution found by the Greedy method. The DaC columns provide information on the

number of times each scenario is divided into subproblems, m, as well as the average percentage

∆ gap between the solution reported by the solver and the solution found by the DaC method.

A negative average percentage indicates that the solutions obtained by the Greedy or DaC

methods were superior to those achieved by the MILP approach. Note that in these instances,

MILP actually did not reach an optimal solution.

In the analysis presented in Figure 15, it is evident that utilizing the MILP approach through

a solver is only effective for handling small-scale problems. Comparatively, the DaC demon-

strates slightly better performance compared to the Greedy approach with some exceptions

reported on Table XIV. Furthermore, the results shown in Figure 15a indicate that as the num-

ber of subproblems (i.e., the number of times a problem is divided) increases, the quality of

the solutions decreases. However, despite the increase in the number of subproblems, there is

an improvement in solution quality for larger cases (e.g., 100, 200, and 300 trips) as shown in
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TABLE XIV: Computational performance of the heuristic methods

# Trips # Solved
MILP Greedy DaC

# OPTS Avg. MIP gap (%) Avg. ∆ gap (%) m Avg. ∆ gap (%)

10 1000 999 7.51E-06 11.69 2 9.13
20 500 497 4.69E-05 12.52 2 6.97
30 500 493 1.55E-04 13.35 4 17.76
40 100 98 1.97E-04 15.02 2 7.49
50 100 94 5.60E-04 16.20 4 15.81
100 10 8 0.035 15.39 2 8.00
200 10 0 15.5 3.65 4 -1.01
300 10 0 37.6 -21.74 4 -25.87

Figure 15b. This is because the solution quality of the Greedy and DaC approaches is compared

to sub-optimal solutions obtained from the MILP solver.

(a) (b)

Figure 15: Gap statistics for the three solution approaches.
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The solution times for the different approaches are visually represented in Figure 16a and

16b. These figures clearly demonstrate that the Greedy method consistently outperforms the

other approaches in terms of solution time. The DaC method also shows a faster performance

compared to the MILP solver, although it is slightly slower than the Greedy method. However,

it is important to note that as the problem size, measured by the number of trips, increases,

the solution time for the DaC method experiences a substantial increase.

Taking the problem size variability into account, each method exhibits its own strengths.

The MILP solver performs well for small cases, where its optimal solutions can be effectively

utilized. The DaC method proves to be effective for medium-sized cases, offering a balance

between solution quality and computational efficiency. The Greedy method, on the other hand,

excels in handling large cases by providing rapid solutions that are reasonably close to the

solutions obtained by the MILP solver, for solution quality refer to Table XIV and Figure 15.

This demonstrates the efficiency of the Greedy method in terms of both speed and solution

quality. As the Greedy is the fastest approach for very large-scale instances and finds reasonable

solutions, it is utilized in Section 3.5.3.

3.5.3 Large-scale case studies

Case studies were conducted to provide insights for key metrics, such as share of EVs,

number of EVs per each DV replaced, and share of revenue trip time over the day. These

studies also demonstrate the applicability of the proposed approach at large-scale problem

instances. We adopted the CTA, PACE, and CapMetro data as explained previously. The

number of revenue trips for CTA, PACE, and CapMetro are nearly 18,700, 7,300, and 5,400,
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(a) (b)

Figure 16: Time-to-best-solution statistics for the three solution approaches.

respectively. We consider three vehicle range lever: 60, 120, and 150 miles and three EV

deployment target lever: Low, medium, and high. The deployment target is controlled through

parameters K and W , which are described in the Section 3.3. We also ran a DV only scenario

for each agency by solving the SDVSP allowing longer blocks followed by a version of the BCP

without electrification constraints. Similarly, the leftover, longer than EV range, blocks in each

electrification scenario are also chained into DVs using that version of the BCP.

Figure 17 presents the percent share of EVs and DVs (i.e., the fleet decomposition) on

the left y-axis, and the total number of buses on the right one. Since our method does not

implement hard constraints on the block length, 100% electrification is not guaranteed but as

the results reveal, a near 100% electrification is possible at the expense of a substantial fleet

size increase. These are 54%, 59%, and 58% for CTA, PACE, and CapMetro, respectively, in
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the case of high deployment and 150-mile range compared to DV only. Note that “DV” on

x-axis of Figure 17 and figures to be presented hereafter denotes the DV only scenario.

(a) CTA. (b) PACE.

(c) CapMetro.

Figure 17: Percent share and number of buses.

Figure 18 presents the number of EVs replacing one DV. This metric is of particular interest

to transit agencies as it informs on an expected fleet size with EV deployment targets. Number

of EVs in a given scenario is divided by the difference of DVs in the DV only and the given
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scenario to obtain this ratio. The ratio decreases as the EV range increases. This is intuitive

because EVs become similar to DVs with increasing EV range. We do not observe such a strong

relationship between deployment target and replacement ratio for a given EV range with the

exception of 60-mile range, where there is a substantial decrease moving from low to medium.

(a) CTA. (b) PACE.

(c) CapMetro.

Figure 18: EV per DV replaced by deployment target.
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The block efficiency is demonstrated in Figure 19 and is simply the ratio of revenue trip time

to the entire block time. Comparing the high-deployment, 150-mile scenario to DV only, one

observes an 18% reduction in the share of revenue trip time for CTA and CapMetro, whereas a

20% reduction is observed for PACE. Since blocks become shorter with higher EV deployment,

there are more deadheading trips to and from the depot, which explains this change. Moreover,

with higher EV deployment, there is more layover at the depots due to recharging, which is

demonstrated in Figure 20. The vehicle schedule efficiency is calculated by dividing the revenue

trip time to the entire horizon. In this case the efficiency decrease is by 35% for CTA, and 37%

for PACE and CapMetro. Compared to the block efficiency, the drops are even more dramatic

because there is also time loss due to recharging, and not only extra deadheading.

3.6 Conclusion

In this study, we proposed a two-stage solution framework to solve the SDEVSP. We solve

the SDVSP to generate blocks in the first stage and then solve the BCP to form vehicle schedules.

While we utilized traditional solution methods to solve the SDVSP, three solution approaches,

namely MILP, DaC, and Greedy, were developed. An extensive computational experiments

conducted to compare these methods revealed solution quality and computational time trade-

off. We observed that the Greedy method can solve large-scale instances considerably fast, and

its solution quality is comparable to that of the MILP within reasonable solution time limits.

Utilizing the greedy method, we conducted case studies for three transit agencies: CTA,

PACE, and CapMetro. Near 100% electrification is possible with a replacement ratio of ∼1.6

EVs per DV and a 150-mile range. However, vehicle schedule efficiency would decrease by
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(a) CTA. (b) PACE.

(c) CapMetro.

Figure 19: Block efficiency statistics. BT: Block time, ST: Service time, DT: Deadhead time,
ILT: Intertrip layover time.
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(a) CTA. (b) PACE.

(c) CapMetro.

Figure 20: Vehicle schedule efficiency statistics. H: Horizon, ST: Service time, DT: Deadhead
time, ILT: Intertrip layover time. DLD: Daytime layover at depot, OLD: Overnight layover at
depot.
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∼35%. These results can be considered optimistic given our assumptions on depot size and

charger availability. On the other hand, we do not consider opportunistic charging at the

terminal stops, which would increase the schedule efficiency.

The SDEVSP is quite complex, and there are yet more aspects that are not considered

in this study. Some of these are i) charger availability, ii) charger choice, e.g., pantograph or

traditional, iii) charger level selection, e.g., 150 kW and 450 kW, iv) charger location including

en-route charging, v) non-linear charge and discharge profiles, and vi) vehicle sizes, e.g., 40 ft

and 60 ft. The readily difficult problem can easily become intractable considering a combination

of these aspects. Therefore, we may tackle these problems in stages. The proposed two-step

solution approach only finds a solution to the dauntingly challenging problem, and it can be

enhanced. The greedy solution method is flexible to incorporate charger availability, charger

level selection, and non-linear charge profiles. Future studies will improve the greedy algorithm

and propose methods to address a subset of these aspects.



CHAPTER 4

ELECTRIC BUS SCHEDULING AND CHARGER LOCATION

4.1 Introduction and Background

Transit bus electrification holds significant importance in the broader context of sustainable

urban transportation. The transition from traditional fossil fuel-powered buses to battery

electric buses (BEBs) offers a range of benefits, encompassing environmental, economic, and

social aspects The White House (2021). Some of these are reduced greenhouse gas emissions,

energy efficiency, lower operating costs, and noise reduction. Yet, electrification in the transit

bus context revives essential infrastructural and operational problems as well.

One such challenge is the need to reassign buses for revenue-generating service trips, re-

ferred to as the vehicle scheduling problem (VSP), due to the limited driving range of BEBs.

Additionally, there is the task of strategically placing charging locations to accommodate charg-

ing activities. The use of pantograph chargers, which supply power from the top of the bus

through scissor-like arms, introduces issues related to space occupancy and cost Daliah (2023).

A growing concern is the optimal placement of these chargers across the transit service network,

including terminal garages, to ensure seamless BEB operations.

A service trip, or simply a trip, is defined as a series of stop visits along a bus route

that generates revenue. While bus garages are primary locations for housing chargers, placing

chargers at trip end locations could facilitate charging activities. Regular recharging at these

84
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locations could make BEBs function similarly to conventional diesel-powered buses. Resolving

this necessitates solving a facility location problem (FLP) to identify optimal locations from

a candidate set for housing these chargers. FLP decisions often have strategic implications,

as altering or retracting them can be challenging and costly. Identifying the candidate facility

set requires consideration of vehicle schedules as well. Perumal, Lusby, and Larsen (2022b)

approached the VSP as a tactical planning problem, recognizing the need to address it whenever

changes occur in the transit system, such as alterations in driving schedules, bus maintenance

requirements, and spatial or temporal adjustments to bus routes. To address both concerns

concurrently, we introduce the electric bus scheduling and charger location (EBSCL) problem.

In the existing literature, numerous studies have extensively explored the planning of charg-

ing facilities for BEBs. For instance, Liu, Song, and He (2018) presented a robust optimization

model aimed at minimizing the total investment costs associated with deploying charging in-

frastructure for BEBs. Expanding on this work, Liu, Qu, and Ma (2021) broadened the scope

by incorporating seasonality and power matching into charger deployment. This extension

highlighted the significant impact of BEB energy consumption characteristics on the optimal

selection of charging station locations. A comprehensive approach was adopted in An (2020) by

integrating charging facility planning and fleet scheduling, addressing uncertainties in charging

demand through a stochastic integer optimization model. Meanwhile, Uslu and Kaya (2021)

proposed a model that focuses on determining optimal charging station locations and capacities,

with an assumption of limited waiting time. Lin et al. (2019) and Li et al. (2022) approached
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BEB charger deployment as a multi-stage planning problem, optimizing station locations at

various stages of the planning process.

In addition to determining optimal charger locations, the scheduling of the BEB fleet

emerges as a critical concern. Niekerk, Akker, and Hoogeveen (2017) made significant con-

tributions by incorporating BEBs into the classical VSP, taking into account driving range

limitations and linear charging. A more recent study by Cokyasar, Verbas, and Auld (2023b)

has further delved into BEB fleet scheduling, addressing the single depot VSP and proposing

a heuristic solution approach. This innovative approach involves generating short tours that

a BEB can serve, employing a mixed-integer non-linear program to combine tour tuples and

ultimately generate bus runs. Various aspects of BEB fleet scheduling, such as charging event

time, uncertainty in travel time, and energy consumption, have also been addressed by other

studies Bie et al. (2021), Wen et al. (2016), Xiong et al. (2022), Yildirim and Yildiz (2021).

Existing optimization approaches often fall short by either assuming predetermined charging

facility locations or neglecting the intricacies of the BEB scheduling. This gap in the literature

underscores the need for more comprehensive models that consider both charger location and

fleet scheduling in an integrated manner. Recognizing this critical interdependence, certain

studies have introduced integrated models to address this synergy effectively Alwesabi et al.

(2021), Liu and (Avi) Ceder (2020), Wang, Liao, and Lu (2022). Nonetheless, limited attention

has been given to EBSCL problem. Our research seeks to bridge this gap by focusing on

optimizing the scheduling of BEBs and strategically determining charging locations, taking into

account the dynamic nature of routes. By acknowledging and addressing the EBSCL problem,
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our study aims to contribute novel insights and pave the way for more comprehensive and

effective solutions, thereby advancing the current understanding of sustainable urban transit

systems.

In the subsequent sections of the paper, Section 4.2 formally describes the EBSCL prob-

lem and presents the mixed-integer linear programming (MILP) model formulation. Next, we

provide details about the data used for numerical experiments in Section 4.3. Following that,

we present a comprehensive overview of the case study design and discuss parametric choices

to evaluate the performance of our proposed solution algorithm in Section 4.4. Finally, Sec-

tion 4.5 concludes the study by summarizing the key findings and contributions of our work

and discussing potential future research directions.

4.2 Problem definition

We now formally describe the EBSCL problem, which we model as an MILP. To ease

reading, we use calligraphic letters to represent sets (e.g., A), uppercase Roman letters for

parameters (e.g., B), lowercase Roman letters for variables and indices (e.g., yij), and Greek

letters (e.g., α) as superscripts to modify parameters. Let T represent the set of timetabled

bus trips, and let E denote the set of all feasible arcs connecting consecutive trips. The binary

variable yij takes the value 1 if trip j is scheduled to follow trip i, forming valid sequences of

bus trips. Chargers can be located at a set of candidate facilities, denoted by F that includes

the garage denoted by d. This set is further partitioned into a subset Fij ⊆ F representing the

candidate facilities which could be used in connection of trips i and j, and ∪(i,j)∈AFij = F.

The binary variable eijf indicates whether recharging occurs between trips i and j at facility
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f . We symbolize the single garage with two indices s and t, that is every bus run starts from

s and ends at t. Table XV and Table XVI provide definition of sets, parameters, and variables

used in the MILP model. The model to solve the EBSCL problem is formulated as follows.

min
∑
f∈F

Cµ
f xf +

∑
i∈T

Cνysi +
∑

(i,j)∈E

Cρ
(
Tα
j − T β

i

)
yij (4.1)

subject to,

∑
j:(i,j)∈A

yij = 1 ∀i ∈ T (4.2)

∑
i:(i,j)∈A

yij = 1 ∀j ∈ T (4.3)

∑
f∈Fij

eijf ≤ yij ∀(i, j) ∈A (4.4)

uijf ≤ Beijf ∀(i, j) ∈A, f ∈ Fij (4.5)

∑
(i,j)∈A

eijf ≤Mxf ∀f ∈ F (4.6)

vij = max

{
bi −Bi − Eijyij −

∑
f∈Fij

(Eif + Efj − Eij) eijf +
∑
f∈Fij

uijf

−M (1− yij) , 0

}
∀(i, j) ∈A

(4.7)

bj =
∑

i:(i,j)∈A

vij ∀j ∈ T (4.8)



89

bi −Bi −
∑

j:(i,j)∈A

Eijyij ≥ −M
∑

j:(i,j)∈A,f∈Fij

eijf ∀i ∈ T (4.9)

bi −Bi −
∑

j:(i,j)∈A,f∈Fij

Eifeijf ≥ 0 ∀i ∈ T (4.10)

bi −Bi −
∑

j:(i,j)∈A,f∈Fij

Eifeijf +
∑

j:(i,j)∈A,f∈Fij

uijf ≤ B ∀i ∈ T (4.11)

bs −Bs −
∑
f∈Fsj

Esfesjf ≥ 0 ∀j ∈ T (4.12)

bs −Bs −
∑
f∈Fsj

Esfesjf +
∑
f∈Fsj

usjf ≤ B ∀j ∈ T (4.13)

bs ≤ B (4.14)

0 ≤
(
Tα
j − T β

i

)
yij −

Eijyij +
∑
f∈Fij

(Eif + Efj − Eij) eijf +

∑
f∈Fij

uijf

Rδ


≤ D +Meijd ∀(i, j) ∈ E

(4.15)

The objective function (4.1) minimizes the weighted total cost, including the cost of overall

time between two consecutive trips, the vehicle costs associated with each scheduled run, and

the charger facility costs. Constraints (4.2) and (4.3) ensure that each trip is both preceded

and succeeded by exactly one other trip, forming a valid sequence. Constraints (4.4) guarantee

that a BEB can recharge between trips i ∈ T and j ∈ T if they are connected. Constraints

(4.5) ensure that the charging amount between consecutive trips does not exceed the battery

capacity. Constraints (4.6) enforce that a charging facility must be located at f ∈ F if it is used
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TABLE XV: Sets and parameters used in the MILP for the EBSCL.

Set Definition

A set of all feasible arcs connecting two consecutive trips within the horizon, A =
E
⋃

({s} ×T)
⋃

(T × {t}), where s and t indices denote the garage buses are dispatched from
and return to, respectively

E set of arcs connecting consecutive trips i ∈ T (first) and j ∈ T (second), E =
{
(i, j) |i, j ∈

T ∧ i ̸= j ∧ L ≤
(
Tα
j − T β

i − Eij

)
≤ U

}
F set of candidate charging facilities f ∈ F, and F includes d, that represents the garage charging
Fij subset of candidate charging facilities that provide reasonable deflection between trips i ∈ T

and j ∈ T, ∪(i,j)∈AFij = F

T set of timetabled bus trips

Parameter Definition

B battery capacity in time units
Bi energy consumption of trip i ∈ T ∪ {s} measured in time units, and Bs = 0
Cν vehicle cost in time units
Cρ weight for time spent between service trips
Cµ

f charging facility cost at candidate location f ∈ F in time units

D maximum duration a BEB is allowed to spend in layover between two trips, anywhere other
than garage, measured in time units

Eij energy consumption of traveling from last stop of trip i ∈ T ∪ F ∪ {s, t} to first stop of trip
j ∈ T ∪F ∪ {s, t} measured in time units, e.g., for every minute a bus drives, it consumes one
minute of energy

L minimum admitted recharging and/or layover time between two consecutive trips
M big number

Rδ rate of recharge, i.e., energy (in time units) gained by recharging in one unit of time, e.g., Rδ

minutes of driving range is gained by recharging a bus for one minute
Tα
i start time of trip i ∈ T

T β
i end time of trip i ∈ T

U maximum admitted recharging and/or layover time between two consecutive trips

by at least one BEB. Constraints (4.7) and (4.8) calculate the state of charge (SOC) before

each trip, while constraints (4.9) – (4.11) maintain the SOC within feasible bounds. Constraints

(4.12) – (4.14) regulate the SOC at the beginning of each run. Constraints (4.15) set bounds

on the layover time between two consecutive trips. Here, layover time is defined as the time

that a BEB is not serving a trip, not deadheading between two trips, and not charging. To
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TABLE XVI: Variables used in the MILP for the EBSCL.

Variable Definition

bi state of charge (SOC) at the beginning of trip i ∈ T ∪ {s} measured in time units, bi ∈ R≥0

eijf

{
1 if BEB recharges between trips i ∈ T and j ∈ T at facility f ∈ Fij , (i, j) ∈ A

0 otherwise

uijf energy gained between trips i and j at facility f ∈ Fij measured in time units, uijf ∈ R≥0, (i, j) ∈
A, f ∈ Fij

vij SOC at the beginning of trip j after serving trip i measured in time units, vij ∈ R≥0, (i, j) ∈ A

xf

{
1 if a charging facility is placed at candidate location f ∈ F

0 otherwise

yij

{
1 if trip j is served after trip i, (i, j) ∈ A

0 otherwise

zij auxiliary binary variable used to linearize the max function, (i, j) ∈ A

linearize constraint (4.7), involving a non-linear term with the max function, we introduce an

auxiliary binary variable, zij . The linearization is achieved through the following constraints

(4.16) – (4.18).

vij ≥ bi −Bi − Eijyij −
∑
f∈Fij

(Eif + Efj − Eij) eijf +
∑
f∈Fij

uijf

−M (1− yij) ∀(i, j) ∈A

(4.16)

vij ≤ bi −Bi − Eijyij −
∑
f∈Fij

(Eif + Efj − Eij) eijf +
∑
f∈Fij

uijf

−M (1− yij − zij) ∀(i, j) ∈A

(4.17)

vij ≤M (1− zij) ∀(i, j) ∈A (4.18)

eijf , yij , xf , zij ∈ {0, 1}, bi, uijf , vij ∈ R≥0
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TABLE XVII: Parametric values used.

Cµ
f (s) Cρ V (mph) Rκ (kWh/mile) P (kW) D (s) M L (s) U (s)

1, 000 1 20 7.33 450 6, 000 106 0 10, 800

4.3 Data

Our experiments use Chicago metropolitan region as a testbed. We randomly select a bus

garage of the transit agency Pace Suburban Bus that serves 60 trips. The trip information, i.e.

Tα
i and T β

i are obtained from the General Transit Feed Specification (GTFS) data (General

Transit Feed Specification 2022). Figure 21 shows the location of the garage, the roadway links

used in these trips, and five candidate charging facilities. The parameters used are summarized

in Table XVII. We assumed an average speed of 20 mph and used Manhattan distances as a basis

for estimating deadheading energy consumption Eij in time units. The energy consumption

Bi is calculated as the time difference between T β
i and Tα

i . We consider a bus with battery

capacity Bκ = [60, 90, 120] miles. To determine the BEB capacity in time units, we calculate

B = Bκ

V , which yields a battery capacity of three hours for Bκ = 60 miles.

Regarding the charging infrastructure, we consider fast charging. The power for fast charg-

ing is P = 450 kW. To determine the rates of recharge, we calculate Rδ = P
V Rκ , where Rκ is bus

energy consumption rate in kWh/mile. These calculations yield recharge rates of Rδ = 3.068,

that is charging a bus for one unit of time increases the SOC by 3.068 time unit.
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Figure 21: Candidate facility, garage, and trip locations in the case study.

4.4 Case study

In the case study, we run 15 instances of the problem considering Bκ = [60, 90, 120] miles

and Cν = [1, 1K, 10K, 50K, 100K], where K denotes a thousand. The instances are solved

using the Python 3.6.9 interface to interface with the commercial solver Gurobi 10.0 (Gurobi
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Optimization, LLC 2020). Number of open facilities and the number of bus runs found by the

optimization shown in Figure 22 are key performance indicators. In Figure 22a, we observe

that the number of bus runs considerably decreases as vehicle cost Cν increases. On the other

hand, the bus range Bκ does not always impact the number of bus runs.

Figure 22b demonstrates the change in number of open facilities for different Bκ and Cν .

A strong correlation between Cν and the number of open facilities is not found, however the

number of facilities often increases as Cν moves up. We observe that the number of facilities

can decrease when the range increases. When Bκ changes from 60 to 90 and 120 miles at

Cν = 1, we observe that the number of open facilities drops from two to one. In the case when

it is one, the only open facility is the garage, while an additional candidate facility is chosen in

the other case. We observe two open facilities in many cases because the combined travel time

from garage to a trip’s origin, servicing the trip, and from trip’s destination to the garage is

larger than B. This finding shows that more facilities can be needed when trip times are close

to the vehicle range.

In these results, we also analyze the magnitude of times spent for service, deadhead, charg-

ing, and layover. Figure 23 shows the percent share of a day spent for these four activities in

these 15 scenarios. As Cν increases, we observe a larger service share indicating a higher vehicle

utilization.

4.5 Conclusion

The electrification trend, aimed at fostering a cleaner and sustainable environment, places

particular emphasis on transitioning from diesel buses due to their significant contribution to
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(a) (b)

Figure 22: Vehicle cost and bus range impact on fleet size.

Figure 23: Vehicle schedule efficiency statistics.
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emissions. However, the conversion of these buses is a challenge owing to their long ranges

and fast refueling times. In this research, we tackle the EBSCL problem by formulating an

MILP model. Our objective is to optimize BEB schedules and strategically identify charging

facilities, especially at trip end locations. We illustrate the linearization process of the model,

offer comprehensive insights into the utilized data, and present case studies to showcase the

practicality of our proposed model.

The case study specifically examines a bus garage of Pace Suburban Bus in Chicago region,

encompassing 60 trips and considering five potential charging locations that coincide with the

terminal stops of the analyzed trips. While we can achieve optimality for this scenario, it is

evident that the problem scale is not merely substantial but reaches a magnitude that exceeds

the capabilities of off-the-shelf solvers. Addressing the scalability of the problem necessitates

the incorporation of heuristic or metaheuristic solution methods.

This investigation concentrates exclusively on the location aspect, assuming that each iden-

tified site has the capacity to accommodate sufficient charging infrastructure. In essence, the

study does not determine the charging capacity or schedule. Even with these simplifications,

we highlight the inherent complexity of the problem, and introducing these factors would only

amplify its intricacy. Moreover, the decision-making process for locations could be aggregated

across different garages within a single transit service agency, allowing vehicles from various

garages to recharge at locations overlapping with another garage’s service area. In conclusion,

our study marks an initial step in modeling and solving a substantial and intricate electrification

problem, leaving numerous avenues for future research and exploration.



CHAPTER 5

CONCLUSION AND POLICY IMPLICATIONS

5.1 Summary

The dissertation comprises three comprehensive papers addressing critical challenges in the

electrification of trucks and buses, offering insights into optimizing charging infrastructure,

vehicle scheduling, and electrification strategies.

The first paper introduces the Electric Vehicle Shortest Electric Charging Location-Allocation

(EVSELCA) problem, focusing on optimizing the charging infrastructure for electrified trucks.

By proposing a Mixed-Integer Linear Programming (MILP) model and innovative solution ap-

proaches such as clustering and Genetic Algorithms, the study provides a versatile framework

for strategically planning charging facilities. The paper emphasizes the significance of balancing

economic opportunities with the freight industry’s operational philosophy, addressing scalability

challenges and uncovering key factors influencing the electrification decision-making process.

The second paper addresses the Stochastic Electric Demand Vehicle Scheduling Problem

(SDEVSP), presenting a two-stage solution framework. Utilizing traditional methods like MILP

alongside dynamic and greedy approaches, the study compares solution quality and computa-

tional time trade-offs. The research reveals that the Greedy method offers efficient solutions

for large-scale instances, presenting a viable alternative to traditional methods. The paper’s

97
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findings underscore the importance of considering both electrification rates and vehicle schedule

efficiency in achieving optimal transit fleet electrification.

The third paper tackles the Electrification of Bus Scheduling and Charging Location (EB-

SCL) problem, formulating an MILP model to optimize Battery Electric Bus (BEB) schedules

and strategically identify charging facilities. While presenting a case study focused on a bus

garage in the Chicago region, the paper delves into the inherent complexity of the problem, ne-

cessitating the incorporation of heuristic or metaheuristic solution methods for scalability. The

study’s insights highlight the need for strategic charging infrastructure planning, considering

factors such as charger locations, capacities, and types, and serves as an initial step in modeling

and solving intricate electrification challenges for buses.

5.2 Policy Implacations

The government’s commitment to electrification is crucial for fostering sustainable trans-

portation, with a particular emphasis on the planning and development of electric bus and truck

infrastructure. A key policy initiative involves the establishment of a dedicated fund to strate-

gically invest in charging infrastructure planning for both trucks and buses. This fund aims

to address the intricate challenges associated with the electrification process by incentivizing

the adoption of innovative technologies, especially in the realm of charging infrastructure. For

instance, transit agencies and freight companies that strategically plan their charging infrastruc-

ture, considering factors such as optimal locations, charger types, and capacities, could qualify

for financial incentives. These incentives may encompass grants for fast-charging infrastructure,

allowing for the efficient electrification of both buses and trucks.
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In recognizing the pivotal role of charger costs in determining the feasibility of electrification

projects, policymakers are urged to prioritize measures that reduce financial barriers hindering

the widespread adoption of electric vehicles. Financial incentives, subsidies, and tax credits will

be introduced to alleviate upfront costs for charger installation, fostering public-private part-

nerships to share financial burdens and encourage collaboration between government entities

and private enterprises. Additionally, the policymakers should allocate funds for research and

development initiatives aimed at advancing charger technologies, seeking to reduce manufac-

turing costs and enhance charging efficiency. Standardization and interoperability guidelines

will be promoted to ensure compatibility with various electric vehicles, fostering accessibility

and reducing overall costs.

Balancing electrification goals with operational efficiency is a crucial consideration for pol-

icymakers, especially in the context of the SDEVSP. As the study reveals trade-offs between

high electrification rates and vehicle schedule efficiency, policy frameworks should emphasize

a harmonious blend of environmental and operational considerations when establishing elec-

trification targets for transit agencies. This requires a nuanced approach that appreciates the

multifaceted challenges posed by electrification and strives to strike a delicate balance.

Strategic charging infrastructure planning, specifically for battery electric buses, is a tar-

geted policy initiative that can significantly impact the efficiency of electrification. Policymakers

are urged to develop comprehensive policies that encourage transit agencies to optimize charg-

ing locations, considering factors such as terminal stops, charger types, and capacities. The

proposed Electrification of EBSCL model provides a foundation for such strategies. Finan-
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cial incentives and supportive frameworks can motivate transit agencies to strategically plan

charging infrastructure, leading to more efficient electrification outcomes for bus fleets.

5.3 Limitations

While the dissertation makes significant contributions to the electrification discourse, it

is essential to acknowledge certain limitations that provide avenues for future research and

refinement. Firstly, the exclusion of stochastic demand in the analysis constitutes a notable

limitation. Real-world transportation systems often face uncertain and dynamic demand pat-

terns, and the absence of stochastic considerations may impact the models’ ability to accurately

reflect the complexities associated with fluctuating charging needs. Future research endeavors

could explore stochastic demand models to provide a more comprehensive understanding of the

electrification challenges in the face of unpredictable usage patterns.

Secondly, the dissertation relies on linear profiles for charge and discharge, overlooking

the potential nonlinearity inherent in electric vehicle charging and discharging processes. The

simplification to linear profiles may not fully capture the intricacies of real-world charging

behaviors and could impact the precision of optimization outcomes. Future studies could delve

into nonlinear charge and discharge profiles to refine models and enhance their applicability,

accounting for variations in charging rates and battery behaviors that linear approximations

might overlook.

It is crucial to recognize the specific limitations related to charger allocation, particularly

in the context of electric buses. While the EVSELCA chapter successfully determines optimal

charger allocation for electric trucks, the subsequent chapters (SDEVSP and EBSCL) focus
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on charger location optimization without explicitly addressing the charger allocation aspect

for electric buses. In these chapters, the assumption that a sufficient number of chargers

are available leads to zero waiting times for buses during the charging process. While this

assumption facilitates a simplified modeling approach, it introduces a limitation by not delving

into the critical aspect of charger allocation for electric buses. Charger allocation, determining

how many buses each charger serves and the optimal distribution of charging resources, is a

crucial consideration to ensure efficient and realistic electrification planning. This limitation

signals an opportunity for future research to build upon the existing foundation and extend the

optimization framework to explicitly address charger allocation for electric buses.
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Appendix Proofs

Proof of Lemma 1. We divide the proof of Lemma 1 into two parts: first we prove z∗fk ≤∑
cir∈Crft,r∈R qcirfk, then z∗fk ≥ 1. To prove z∗fk ≤

∑
cir∈Crft,r∈R qcirfk, we use proof by contra-

diction. We suppose z∗fk >
∑

cir∈Crft,r∈R qcirfk. From Constraint (2.10) we have xcirfkt ≤ qcirfk,

which if we aggregate both sides of inequality on cir,
∑

cir∈Crft,r∈R xcirfkt ≤
∑

cir∈Crft,r∈R qcirfk

holds. Then, we can conclude that z∗fk >
∑

cir∈Crft,r∈R xcirfkt, which indicates that for a given

f ∈ F and k ∈ K, at all t ∈ Tcirf there exist unused chargers. This is in contradiction with the

optimality of the z∗fk, and therefore our assumption that z∗fk >
∑

cir∈Crft,r∈R qcirfk is false, so

z∗fk ≤
∑

cir∈Crft,r∈R qcirfk holds. To prove z∗fk ≥ 1, from the condition of the Lemma 1, we have∑
cir∈Crft,r∈R qcirfk ≥ 1 and from Constraint (2.10) we know qcirfk ≤

∑
t∈Tcirf

xcirfkt, which if

we aggregate both sides of inequality on cir,
∑

cir∈Crft,r∈R
∑

t∈Tcirf
xcirfkt ≥

∑
cir∈Crft,r∈R qcirfk

holds. Then, we can conclude that
∑

cir∈Crft,r∈R
∑

t∈Tcirf
xcirfkt ≥ 1. This indicates at least

for one t ∈ Tcirf ,
∑

cir∈Crft,r∈R xcirfkt ≥ 1. So from Constraints (2.3), we can conclude

that for a given f ∈ F and k ∈ K, if
∑

cir∈Crft,r∈R qcirfk ≥ 1, then z∗fk ≥ 1; otherwise,∑
cir∈Crft,r∈R qcirfk = 0, and from first part of the proof we know z∗fk ≤

∑
cir∈Crft,r∈R qcirfk, so

z∗fk = 0.

Proof of Lemma 2. To prove Lemma 2, we aggregate Constraint (2.10) on cir, and we get

∑
cir∈Crft

r∈R

xcirfkt =
∑

cir∈Crft

r∈R

xβcirfkt −
∑

cir∈Crft

r∈R

xαcirfkt.
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If we suppose that all routes recharge at charger k in facility f at time t, then we have

∑
cir∈Crft

r∈R

xβcirfkt −
∑

cir∈Crft

r∈R

xαcirfkt =
∑

cir∈Crft

r∈R

qcirfk.

Based on the definition of xαcirfkt and xβcirfkt, if a route recharges at charger k in facility f at time

t after serving customer cir, x
α
cirfkt

= 0 and xβcirfkt = 1. Therefore, in the case that all routes

are recharging at the same charger and time,
∑

cir∈Crft

r∈R
xαcirfkt = 0 and

∑
cir∈Crft

r∈R
xβcirfkt = 1.

If we aggregate Constraints (2.22) and Constraints (2.23) on cir, we get

∑
cir∈Crft

r∈R

dcir +
∑

cir∈Crft

r∈R

T τ
cirf

qcirfk +
∑

cir∈Crft

r∈R

wcirfk ≤
∑

cir∈Crft

r∈R

t+
∑

cir∈Crft

r∈R

T∆ −
∑

cir∈Crft

r∈R

ϵ

+M
∑

cir∈Crft

r∈R

(
1− qcirfk + xαcirfkt

)

and

∑
cir∈Crft

r∈R

(
t+ T∆

)
−M

∑
cir∈Crft

r∈R

(
2− qcirfk − xαcirfkt

)
≤

∑
cir∈Crft

r∈R

dcir +
∑

cir∈Crft

r∈R

T τ
cirf

qcirfk

+
∑

cir∈Crft

r∈R

wcirfk,

where
∑

cir∈Crft

r∈R
xαcirfkt = 0. If we assume T∆ is small (T∆ → 0), then we can eliminate

T∆ and ϵ. Based on
∑

cir∈Crft

r∈R
dcir +

∑
cir∈Crft

r∈R
wcirfk +

∑
cir∈Crft

r∈R
T τ
cirf

qcirfk ≤
∑

cir∈Crft

r∈R
t and∑

cir∈Crft

r∈R
dcir +

∑
cir∈Crft

r∈R
wcirfk +

∑
cir∈Crft

r∈R
T τ
cirf

qcirfk ≥
∑

cir∈Crft

r∈R
t−M we can conclude that
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∑
cir∈Crft

r∈R
wcirfk ≤

∑
cir∈Crft

r∈R
t−

∑
cir∈Crft

r∈R
dcir −

∑
cir∈Crft

r∈R
T τ
cirf

qcirfk. Since t is a non-negative

variable and the model minimizes the wcirfk, wcirfk = 0.

Proof of Lemma 3. If each subproblem p ∈ P has a feasible solution Xp, then it means

that blocks in Bp form one or more feasible bus runs. Each run in a given subproblem p ∈ P

on the current horizon is connected to at least one run in the next horizon within the same

subproblem p ∈ P. Since there are no constraints on charging capacity or garage space, merging

the solutions Xp into XM is analogous to solving separate problems for separate garages.
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Appendix Pseudocodes

Algorithm A.1: Preliminary functions (see e.g., NumPy (2022) for details)

Function Abs(a):

/* finds absolute value of a. */

return absolute value of a

Function Enumerate(A):

/* returns index and item of A. */

return index and item of A

Function Int(a):

/* finds integer part of a. */

return integer part of a

Function Rand(a, b):

/* finds a pseudo-random real number c between a and b. */

return c, such that a ≤ c ∈ R ≤ b

Function RandChoice(A, B (optional), n):

/* choose n elements from list (or set) A given a list of weights B. */

return Z, that is Z ⊆ A and |Z| = n

Function SortGiven(A, B, R (optional)):

/* sorts A descending given B if R = True, otherwise sorts A ascending given B. */

return A sorted
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Algorithm A.2: Pseudocode for Initialization

Input : Cr, Fcir , K, R, B, Bι, Bω , Cα=0, Tµ
r , T δ

cirf

Output: F̂cir , K̂cir

Function Initialization():

/* Parameter Cα=0 is the probability that a recharging will not occur after servicing a given

cluster, and T ρ
r is the travel time for route r excluding service and recharging times. */

fclosest ← {}; F̂cir ← {};

/* F̂cir stores the facility that will be visited after serving cir; visiting 0 denotes no

recharging. */

for r ∈ R, do

for cir ∈ Cr, do

W ←; // a list of weights in [0, 1] based on Fcir

fclosest(cir)←RandChoice(SortGiven(Fcir , T
δ
cirf

), W , 1);

F̂cir ←RandChoice([0, fclosest(cir)], [C
α=0, 1− Cα=0], 1);

for r ∈ R, do

if F̂cir = 0 ∀cir ∈ Cr, then

Cselect ←RandChoice(Cr,
⌈
(Abs((Bι

r −Bω
r − Tµ

r )/B)))
⌉
);

/* ⌈(Abs((Bι
r −Bω

r − Tµ
r )/B)))⌉ denotes the minimum number of charging facilities need to

be visited. */

for c′ ∈ Cselect, do

F̂cir (c
′)← fclosest(c′);

K̂cir ← {};

/* K̂cir stores the charger type that will be used after cir; 0 refers to not visiting a

recharging station. */

W ←; // a list of weights in [0, 1] based on charger type

for r ∈ R, do

for cir ∈ Cr, do

if F̂cir ̸= 0, then

K̂cir ←RandChoice(K, W , 1);

else

K̂cir ← 0;
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Algorithm A.3: Pseudocode for Crossover
Input : Sols, i, j

Output: newSols

Function Crossover():

newSols← {};

for element← 1 to |Sols(i)|, do

if RandChoice([i, j], 1) = i, then

newSols(element)← Sols(i)(element);

else

newSols(element)← Sols(j)(element);

Algorithm A.4: Pseudocode for Mutation
Input : Sols, Pmutate

Output: newSols

Function Mutation():

Nmutate ← Int(|Sols|Pmutate);

/* The percent of solution to be mutated is denoted by Pmutate, and Nmutate is the number of

elements to mutate. */

newSols← {};

for i ∈RandChoice(Sols, Nmutate), do

if Sols(i) indicates not recharging after visiting i, then

newSols(i)←; // Closest facility in terms of travel time and charger type 1

else

newSols(i)←; // Next closest facility in terms of travel time and charger type

incremented by 1
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Algorithm A.5: Pseudocode for Evaluator

Input : Cr, F, K, R, T, B, Bι
r, B

ω
r , Cρ, Cξ

k, C
ν
k , C

ϕ
f , N , N̄ , Rk, T

τ
circjr

, Tκ
cir

, T δ
cirf

, T ρ
r , qcirfk

Output: C

Function Evaluator():

z̄fk ←
∑

cir∈Crft
qcirfk;

for f ∈ F, do

for k ∈ K, do

if
∑

cir∈Crft
qcirfk ≥ 0, then

zfk ← 1;

(bcir , b
′
cirf

,C, dcir , ucirfk
, wcirfk

, xcirfkt
, y

f
)← LowerLevelEvaluator(Cr, F, K, R, T, B, Bι

r, B
ω
r ,

Cρ, Cξ
k, C

ν
k , C

ϕ
f , Rk, T

ρ
r , T

τ
circjr

, Tκ
cir

, T δ
cirf

, qcirfk, zfk);

(b̄cir , b̄
′
cirf

, C̄, d̄cir , ūcirfk, w̄cirfk, x̄cirfkt, ȳf )← LowerLevelEvaluator(Cr, F, K, R, T, B, Bι
r, B

ω
r ,

Cρ, Cξ
k, C

ν
k , C

ϕ
f , Rk, T

ρ
r , T

τ
circjr

, Tκ
cir

, T δ
cirf

, qcirfk, z̄fk);

z̄fk ←
∑

cir∈Crft,t∈T x̄cirfkt;

while C is infeasible, do

L← {};

for f ∈ F, do

for k ∈ K, do

if zfk ≥ 0, then

L← L ∪ {(f, k)};

Sort(L,
∑

cir∈Crft
wcirfk

, R = True);

N ← Rand
(
N, N̄

)
;

for (f, k) ∈ L, do

zfk ← zfk + 1;

N̄ ← 1/2
(
N̄ +N

)
;

if C̄ ≤ C, then

zfk ← zuUpdater(Cr, F, K, R, T, B, Bι
r, B

ω
r , Cρ, Cξ

k, C
ν
k , C

ϕ
f , N , N̄ , Rk, T

ρ
r , T

τ
circjr

, Tκ
cir

, T δ
cirf

,

qcirfk, zfk, z̄fk);

else

zfk ←zlUpdater(Cr, F, K, R, T, B, Bι
r, B

ω
r , Cρ, Cξ

k, C
ν
k , C

ϕ
f , N , N̄ , Rk, T

ρ
r , T

τ
circjr

, Tκ
cir

, T δ
cirf

,

qcirfk, zfk, z̄fk);

(bcir , b
′
cirf

,C, ucirfk, dcir , wcirfk, xcirfkt, yf )← LowerLevelEvaluator(Cr, F, K, R, T, B, Bι
r, B

ω
r ,

Cρ, Cξ
k, C

ν
k , C

ϕ
f , Rk, T

ρ
r , T

τ
circjr

, Tκ
cir

, T δ
cirf

, qcirfk, zfk);
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Algorithm A.6: Pseudocode for LowerLevelEvaluator

Input : Cr, F, K, R, T, B, Bι
r, B

ω
r , Cρ, Cξ

k, C
ν
k , C

ϕ
f , Rk, T

ρ
r , T

τ
circjr

, Tκ
cir

, T δ
cirf

, qcirfk, zfk

Output: Out

Function LowerLevelEvaluator():

yf ← yCalculation
(
F, K, zfk

)
;(

Lfk, b
′
cirf

, ucirfk

)
← uCalculation(Cr, F, K, R, B, Bι

r, B
ω
r , Rk, T

ρ
r , T

τ
circjr

, Tκ
cir

, qcirfk;(
bcir , dcir , d

′
cirf

d′′cirf , wcirfk

)
← wCalculation(Cr, F, K, Lfk, R, T δ

cirf
, T τ

circjr
, Tκ

cir
, qcirfk, ucirfk);

xcirfkt ←xCalculation
(
Cr, F, K, T, d′cirf , d′′cirf , qcirfk, ucirfk

)
;

C←
∑

cir∈Cr,r∈R,
f∈Fcir ,k∈K

[
Cρ

(
T δ
cirf

qcirfk + wcirfk

)
+ (Cρ + Cξ

k)ucirfk

]
+

∑
f∈F Cϕ

f yf +
∑

f∈F,k∈K Cν
k zfk;

if ??–?? hold, then

Out← (bcir , b
′
cirf

, C, dcir , ucirfk, wcirfk, xcirfkt, yf );

else

Out← None;
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Algorithm A.7: Pseudocode for calculating z̄fk

Input : Cr, F, K, R, T, B, Bι
r, B

ω
r , Cρ, Cξ

k, C
ν
k , C

ϕ
f , N , N̄ , Rk, T

ρ
r , T

τ
circjr

, Tκ
cir

, T δ
cirf

, qcirfk, zfk, z̄fk

Output: zfk

Function zuUpdater():

while True, do

L← {};

for f ∈ F, do

for k ∈ K, do

if z̄fk − zfk ≥ 1 and zfk ≥ 0 , then

L← L ∪ {(f, k)};

Sort(L, z̄fk, R = True);

N ← Rand
(
N, N̄

)
;

¯̄zfk ← z̄fk;

for (f, k) ∈ L, do

¯̄zfk ← z̄fk − 1;

N̄ ← 1/2
(
N̄ +N

)
;

(¯̄bcir ,
¯̄b′cirf ,

¯̄C, ¯̄dcir , ¯̄ucirfk, ¯̄wcirfk, ¯̄xcirfkt, ¯̄yf )← LowerLevelEvaluator(Cr, F, K, R, T, B, Bι
r,

Bω
r , Cρ, Cξ

k, C
ν
k , C

ϕ
f , Rk, T

ρ
r , T

τ
circjr

, Tκ
cir

, T δ
cirf

, qcirfk, ¯̄zfk);

if ¯̄C ≤ C̄, then

z̄fk ← ¯̄zfk;

else

zfk ← z̄fk;

Break;
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Algorithm A.8: Pseudocode for calculating zfk

Input : Cr, F, K, R, T, B, Bι
r, B

ω
r , Cρ, Cξ

k, C
ν
k , C

ϕ
f , N , N̄ , T ρ

r , T
τ
circjr

, Tκ
cir

, T δ
cirf

, Rk, qcirfk, zfk, z̄fk

Output: zfk

Function zlUpdater():

while True, do

L← {};

for f ∈ F, do

for k ∈ K, do

if z̄fk − zfk ≥ 1 and zfk ≥ 0, then

L← L ∪ {(f, k)};

Sort(L,
∑

cir∈Crft
wcirfk

, R = True);

N ← Rand
(
N, N̄

)
;

z
fk
← zfk;

for (f, k) ∈ L, do

z
fk
← z

fk
+ 1;

N̄ ← 1/2
(
N̄ +N

)
;

(b
cir

, b′
cirf

,C, d
cir

, u
cirfk

, w
cirfk

, x
cirfkt

, y
f
)← LowerLevelEvaluator(Cr, F, K, R, T, B, Bι

r,

Bω
r , Cρ, Cξ

k, C
ν
k , C

ϕ
f , Rk, T

ρ
r , T

τ
circjr

, Tκ
cir

, T δ
cirf

, qcirfk, zfk);

if C ≤ C, then

zfk ← z
fk

;

else

zfk ← zfk;

Break;
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Algorithm A.9: Pseudocode for calculating yf
Input : F, K, zfk

Output: yf

Function yCalculation():

for f ∈ F, do

if
∑

k∈K zfk ≥ 0, then

yf ← 1;

else

yf ← 0;
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Algorithm A.10: Pseudocode for calculating ucirfk
Input : Cr, F, K, R, B, Bι

r, B
ω
r , T ρ

r , T
τ
circjr

, Tκ
cir

, qcirfk

Output: Lfk, b
′
cirf

, ucirfk

Function uCalculation():

for r ∈ R, do

for f ∈ F, do

for k ∈ K, do

Lfk ← {};

er ← Int
(
Abs

(
Bι

r −Bω
r − T ρ

r

)
+ 1

)
;

L← {};

for cir ∈ Cr, do

for f ∈ F, do

for k ∈ K, do

if qcirfk = 1 then

L ∪ {(cirfk)};

Lfk ∪ {(rcir)};

m← 1;

while er ≥ 0, do

if m = 1, then

(cirfk)← L{m};

b′cirf ← Bι
r −

∑cjr←ci−1,r
cjr←c0r T τ

cjrcj+1,r
− T τ

cirf
;

ucirfk ← min{er, B − b′cirf};

else

(cirfk)← L{m};(
c′irf

′k′
)
← L{m− 1};

b′cirf ← b′
c′irf

′ + uc′irf
′k′ −

∑cjr←ci−1,r
cjr←c0r T τ

cjrcj+1,r
− T τ

cirf
;

ucirfk ← min{er, B − b′cirf};

m← m+ 1;

er ← er − ucirfk;
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Algorithm A.11: Pseudocode for calculating wcirfk

Input : Cr, F, K, Lfk, R, T δ
cirf

, Rk, T
τ
circjr

, Tκ
cir

, qcirfk, ucirfk

Output: bcir , dcir , d
′
cirf

d′′cirf , wcirfk

Function wCalculation():

for iter ← 1 to |Lfk|, do

for r ∈ R, do

dc0r ← 0; bc0r ← Bι
r;

for cir ∈ Cr, do

if
∑

f∈F,k∈K qci−1,rfk = 1, then

dcir ← dci−1,r + T δ
ci−1,rf

+ wcirfk + ucirfk + Tκ
cir

;

bcir ← bci−1,r − T δ
ci−1,rf

+Rkucirfk ;

else

dcir ← dci−1,r + T τ
ci−1,rcir

+ Tκ
cir

;

bcir ← bci−1,r − T τ
circjr

;

for f ∈ F, do

for k ∈ K, do

if qcirfk = 1, then

d′cirf ← dcir + T τ
cirf

;

for f ∈ F, do

for k ∈ K, do

Sort(Lfk, d
′
cirf

, R = True);

for j, (r, cir) ∈ Enumerate
(
Lfk

)
, do

if j = 0, then

wcirfk ← 0;

d′′cirf ← d′cirf + ucirfk;

else (
r′, c′

ir′
)
← Lfk{j};

wcirfk ← max{d′′
c′
ir′f
− d′cirf , 0};

d′′cirf ← d′cirf + wcirfk + ucirfk;
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Algorithm A.12: Pseudocode for calculating xcirfkt
Input : Cr, F, K, T, d′cirf , d

′′
cirf

, qcirfk, ucirfk

Output: xcirfkt

Function xCalculation():

for cir ∈ Cr, do

for f ∈ F, do

for k ∈ K, do

for t ∈ T, do

if t ≥ d′cirf and t ≤ d′′cirf , then

xcirfkt ← 1;

else

xcirfkt ← 0;
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