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SUMMARY

This dissertation focuses on the electrification of freight and transit vehicles as a sustainable
solution to mitigate greenhouse gas emissions. The primary objectives of this dissertation
focuses on efficiently addressing Electric Vehicle Supply Equipment Location and Capacity
Allocation (EVSELCA) problems, optimizing Single Depot Electric Vehicle Scheduling Problem
(SDEVSP) for urban transit systems, and optimizing the Electric Bus Scheduling and Charger
Location (EBSCL). By addressing these objectives, this dissertation aims to contribute to the
advancement of sustainable and environmentally responsible transportation in the context of
heavy electric vehicles. In this regard, first, this dissertation introduces a mixed-integer linear
programming (MILP) model for EVSELCA. This model optimizes the locations and number and
type of chargers, aiming to minimize strategic investment costs. Second, the research proposes
a two-step solution to SDEVSP. In the first step, an integer programming model generates
blocks of consecutive trips. The second step introduces an MILP, which involves chaining these
blocks to create efficient bus runs, optimizing recharging between blocks, and ensuring next
day operability constraints are satisfied. Finally, the dissertation presents an integrated model
that optimizes both electric vehicle scheduling and charger location. Each developed model
undergoes computational performance analysis, and a comprehensive case study is designed to
provide key managerial and policy insights, along with extensive sensitivity analyses aiming to

identify crucial parametric levers.
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CHAPTER 1

INTRODUCTION

1.1 Background and motivation

The widespread use of fossil fuels for meeting energy needs has long been associated with the
generation of greenhouse gas (GHG) emissions, which exert detrimental effects on our climate
and environment (Metz et al. 2007). Among the various sectors contributing to GHG emissions,
the transportation sector stands out as a significant player, accounting for a substantial 27% of
total emissions in the United States (US Environmental Protection Agency 2020). Within the
transportation landscape, medium and heavy-duty vehicles, as well as buses, stand as pivotal
contributors to the GHG challenge, further intensifying the environmental dilemma (Metz et al.
2007).

In particular, medium-duty (MD) and heavy-duty (HD) trucks have raised concerns, being
responsible for a significant 26% of emissions within the transportation sector (US Environmen-
tal Protection Agency 2020). With the increase in e-commerce, the number of trucks and their
total miles traveled are expected to grow, resulting in higher emissions from freight transporta-
tion (Hovland Consulting LLC 2020). This trend underscores the pressing need for sustainable
alternatives in the freight industry.

Truck electrification is a promising solution that can help mitigate the negative impact of

their GHG emissions (Talebian et al. 2018). By replacing conventional engines with electric



motors, the transportation sector can significantly reduce GHG emissions. While conventional
trucks can cover long distances without refueling, a critical factor for electric trucks is their
relatively shorter battery range (Hovland Consulting LLC 2020). The range of a typical HD/MD
electric truck is around 130 miles (Lightning eMotors 2022), which limits their use in long-
haul trucking. Additionally, the time required for recharging electric trucks can be another
significant challenge: Depending on the charging method, it can take 20 minutes to 8 hours
to fully recharge their batteries (Bennett et al. 2021). This can lead to significant downtimes
for trucking companies, which affect their productivity and profitability. Therefore, efficiently
solving electric vehicle supply equipment location and capacity allocation (EVSELCA) problems
is crucial to making electric trucks a viable option for commercial transportation.

On a parallel track, the realm of public transit faces a different yet equally significant
challenge. Public transportation plays a crucial role in cities by providing accessible, affordable,
efficient, and equitable mobility options for travelers while helping to alleviate congestion.
However, buses have taken center stage as primary contributors to carbon emissions in the
transit sector, emitting an average of 0.643 lbs of carbon per passenger-mile traveled (FTA
2010). This figure is a staggering 76% higher than the emissions from the next highest transit
mode, light-rail systems. Recognizing the urgency of reducing carbon emissions and improving
air quality, the U.S. Department of Transportation (DOT) Federal Transit Administration has
committed billions of dollars to achieve a net-zero emissions economy by 2050 (The White

House 2022).



Similar to freight, within public transit, transitioning to electric vehicles (EVs) holds the
promise of significantly reducing harmful emissions and enhancing local air quality (Munoz et al.
2022). Nevertheless, the adoption of electric buses comes with its own set of challenges. One
major concern is the higher upfront cost of EVs compared to conventional DVs (Munoz et al.
2022). This cost disparity can impose financial barriers, particularly when there is a need to
replace a large number of buses in existing fleets. Driving range, long charging time, and elec-
tricity grid impact of EVs are other issues to be tackled. Although technological advancements
have improved battery capacity and charging speeds, EVs still have a shorter range and longer
downtime compared to DVs. This can pose operational challenges, especially for longer routes
that require long periods of operation. To overcome these challenges, one potential solution is
to increase the number of buses in operation. However, the high cost of electric buses can be
a hindrance. Therefore, optimizing EV scheduling becomes essential to minimize the bus fleet
size and idle time, while ensuring sufficient recharging during idle periods. Additionally, there
is the task of strategically placing charging locations to accommodate charging activities. The
use of pantograph chargers, which supply power from the top of the bus through scissor-like
arms, introduces issues related to space occupancy and cost Daliah (2023). A growing concern
is the optimal placement of these chargers across the transit service network, including terminal

garages, to ensure seamless electric vehicle operations.

1.2  Study objectives

The primary objective of this thesis is to strategically plan for the infrastructure required

to support heavy electric vehicles. To achieve this goal, we have defined three key objectives,



each addressing critical aspects of electric vehicle deployment and operation within urban en-
vironments:

Objective 1: the first objective focuses on the efficient resolution of Electric Vehicle Supply
Equipment Location and Capacity Allocation (EVSELCA) problems. This objective is pivotal
in making electric trucks a viable and sustainable option for commercial transportation. The
EVSELCA problem entails identifying optimal locations, quantities, and types of electric vehicle
supply equipment, commonly referred to as "EV chargers.” The primary aim is to minimize
strategic investment costs while ensuring compliance with operational constraints. By tackling
this challenge, we aim to pave the way for cost-effective and strategically located charging
infrastructure that supports the seamless integration of electric trucks into commercial transport
networks.

Objective 2: the second objective focuses on the optimization of electric vehicle schedul-
ing, which is essential for minimizing bus fleet sizes and idle times, while ensuring sufficient
recharging during idle periods. This objective primarily targets urban transit systems, where
electric buses play a pivotal role in reducing emissions and enhancing sustainable mobility.
Through advanced scheduling techniques, our aim is to enhance the operational efficiency of
electric bus fleets, making them a more economically and environmentally viable choice for
public transportation services.

Objective 3: the third objective focuses on the strategically locating chargers for electric
buses, with a focus on minimizing strategic investment costs while adhering to operational

constraints. While bus garages are primary locations for housing chargers, placing chargers



at trip end locations could facilitate charging activities. Regular recharging at these locations
could make electric buses function similarly to conventional diesel-powered buses. Resolving
this necessitates solving a facility location problem (FLP) to identify optimal locations from a
candidate set for housing these chargers. FLP decisions often have strategic implications, as
altering or retracting them can be challenging and costly. Identifying the candidate facility set

requires consideration of vehicle schedules as well.

1.3 Organization of the Thesis

This thesis includes four chapters. Chapter 2: Electric Vehicle Supply Equipment Location
and Capacity Allocation (EVSELCA). In this chapter, we introduce a mathematical model and
propose a metaheuristic solution approach to address the intricate challenges related to the
optimal deployment of charging infrastructure. Additionally, this chapter includes a thorough
presentation and analysis of our research findings. Chapter 3: Single Depot Electric Vehicle
Scheduling Problem (SDEVSP). Within this chapter, we provide a mathematical model and
propose a heuristic solution approach designed to efficiently address the challenges associated
with scheduling electric vehicles. Furthermore, we present and discuss the results obtained
from two distinct urban areas, namely Chicago, IL and Austin, TX. Chapter 4: Electric Bus
Scheduling and Charger Location (EBSCL). In this chapter, we formulate an MILP model.
Our objective is to optimize electric bus schedules and strategically identify charging facilities,
especially at trip end locations. We offer comprehensive insights into the utilized data, and
present case studies to showcase the practicality of the proposed model. Finally, Chapter 5

presents the conclusion, policy implications, and study limitations.



CHAPTER 2

ELECTRIC VEHICLE SUPPLY EQUIPMENT LOCATION AND

CAPACITY ALLOCATION

2.1 Introduction

In this chapter, we present a new approach to solve the EVSELCA problem by developing a
mixed-integer linear programming (MILP) model that optimizes the locations and numbers of
various types of chargers. The objective of the MILP model is to minimize strategic investment
costs while satisfying operational constraints. To achieve this, our MILP model takes into ac-
count fixed-facility costs, charger costs, recharging energy costs, and value of time (VOT) costs.
VOT costs account for the time spent traveling to a recharging station, waiting and recharg-
ing, and returning to service. By finding the optimal balance between these cost components,
our model can aid in long-term EVSELCA planning. Because of the problem’s complexity, we
use a clustering approach that groups customers into clusters and allows recharging only after
servicing these clusters. Moreover, we propose a metaheuristic solution method based on a
genetic algorithm (GA) to generate near-optimal solutions within a reasonable time, enabling
the model to be applied to large-scale instances.

Our study contributes to the EVSELCA literature through four crucial aspects. First, when
designing EVSELCA for the freight transportation industry, it is important to consider fixed

routes (Ghamami, Zockaie, and Nie 2016, Wang, Wang, and Lin 2016). The EVSELCA prob-



lem has often been modeled as an EV location routing problem (EVLRP), which solves both
the strategic charging facility location (and allocation in some cases) problem and the routing
problem Yang and Sun (2015), Hof, Schneider, and Goeke (2017), Schiffer and Walther (2017),
Schiffer, Schneider, and Laporte (2018), Schiffer and Walther (2018). Although creating new
routes for EVs may lead to better solutions (Shojaei et al. 2022), the convention in this indus-
try is to use a fixed-route approach, usually electrifying existing routes that are shorter than
an EV range. Second, the location and allocation decisions should be made jointly, with the
numbers and types of chargers for each location serving as decision variables (Davatgari 2021,
Ghamami et al. 2020, Londofio and Granada-Echeverri 2019). The type of charger impacts
recharging time and infrastructure costs, while the number of chargers affects installation costs
and waiting times for recharging. Thus, strategic planning requires a balance between waiting
costs, recharging time, and infrastructure costs through the selection of appropriate types and
numbers of chargers. Third, it is crucial to take into account the dynamic nature of charging
demand over time since it plays a critical role, as highlighted by Ghamami, Zockaie, and Nie
(2016) and Wang, Wang, and Lin (2016). If multiple recharging events happen simultaneously,
the design would require an excessive number of chargers. By considering dynamic charging
demand for recharging, however, it becomes possible to schedule these events in a way that
uses fewer chargers, resulting in higher utilization rates. Therefore, the spatiotemporal aspect
of the problem is conserved. Fourth, partial recharging is crucial and should be considered
in the EVSELCA problem (Li, Huang, and Mason 2016). In some cases, electric trucks may

be partially recharged because of operational time limitations, and a model without this con-



sideration may produce impractical solutions. Overall, the main contribution of our study is
its comprehensive consideration of these four key aspects of the EVSELCA problem. While
other studies in the literature have addressed these aspects, they modeled each aspect either
individually or as a combinatorial subset that lacked one of the other aspects.

In Section 2.2 we first review studies that have used various approaches to tackle the
EVSELCA problem. We provide a more comprehensive definition of the EVSELCA prob-
lem and clearly demonstrate the MILP in Section 2.3. Metaheuristic solution procedures are
developed in Section 2.4. The setup and results of numerical experiments are presented in Sec-
tion 2.5 using data from POLARIS, the Planning and Operations Language for Agent-based
Regional Integrated Simulation developed at Argonne National Laboratory (Auld et al. 2016).

In Section 3.6 we conclude the study and discuss potential future research directions.

2.2 Literature review

Many studies explore the strategic planning of EV charger placement (Ghamami et al. 2020,
Zhu et al. 2016, Ghamami, Zockaie, and Nie 2016, Li, Huang, and Mason 2016, Wang, Wang,
and Lin 2016, Davatgari 2021, Whitehead et al. 2021, Liu and Song 2018, Worley, Klabjan,
and Sweda 2012, Speth et al. 2022, Londono and Granada-Echeverri 2019). Most of these
studies focus on light-duty (LD) vehicles rather than MD and HD vehicles (hereafter called
trucks) (Ghamami et al. 2020, Zhu et al. 2016, Liu and Song 2018, Ghamami, Zockaie, and Nie
2016, Wang, Wang, and Lin 2016). For example, Davatgari (2021) develops a mixed-integer

nonlinear programming (MINLP) model to solve the EVSELCA problem considering routing



for LD vehicles. Our study, in contrast, aims to solve the EVSELCA problem for trucks with
fixed routes.

The planning of EV chargers for trucks is different from that of LD vehicles because trucks
often require fast recharging due to the high value of time in the business world and because
their larger batteries necessitate longer recharging times. Although fast-charging equipment
can reduce recharging time, it is also more costly. Additionally, unlike LD vehicles, trucks
typically have predetermined routes and operate with time limits enforced by law and regula-
tions (Williams 2020). Given the differences, the EVSELCA problem for trucks is an area that
has not been extensively explored in the literature, and this study aims to address this gap.
The studies conducted on this problem generally can be classified into two categories based
on their methodology: (1) a coverage-oriented approach (Whitehead et al. 2021, Speth et al.
2022) and (2) a demand-oriented approach (Worley, Klabjan, and Sweda 2012, Londono and
Granada-Echeverri 2019, Liu and Song 2018); our study falls into the second category.

Coverage-oriented approaches aim to maximize the geographical coverage of a recharging ser-
vice. This approach often assumes that each charger location can meet the recharging demand
of a circular area. The objective is then to maximize the coverage of a region while minimizing
the number of circles, which represents the number of charger locations. Such approaches often
do not consider demand intensity, the potential impact of queuing during recharging events,
and other operational constraints such as the inability to recharge two vehicles simultaneously
using one charger. For instance, Speth et al. (2022) model a coverage-oriented approach as a

linear programming (LP) model to determine charger locations in order to minimize the num-
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ber of chargers while maximizing the geographic coverage. After locating a charger, the model
uses queuing to estimate the number of chargers in each EV charging facility. In contrast,
our research focuses on locating EV chargers and optimizing the number of chargers using a
demand-oriented approach that considers the impact of queuing during charging events.
Demand-oriented approaches aim to minimize strategic (e.g., infrastructure and charger)
costs and operational (e.g., time and energy) costs subject to demand-conservation constraints
that guarantee a certain level of service based on a deployment decision. This approach is
often modeled as an EVLRP in the literature, which involves determining the allocation and
location of EV chargers and solving the routing problem (Yang and Sun 2015, Hof, Schneider,
and Goeke 2017, Schiffer and Walther 2017, Schiffer, Schneider, and Laporte 2018, Schiffer and
Walther 2018). For example, Worley, Klabjan, and Sweda (2012) develop an MILP to determine
charger locations that minimize travel time, recharging costs, and construction costs. While
our study shares a similar objective, our approach differs in the vehicle routing aspect because
we focus on fixed routes. Additionally, our study takes into account several important factors
that were not considered in the aforementioned research, such as allocation, dynamic charging
demand, and partial recharging. By taking into account these additional variables, we aim to
provide a more accurate and comprehensive solution. Another study by Liu and Song (2018)
uses a bilevel approach to model the EVLRP. In this approach, the upper level focuses on
minimizing GHG emissions by determining the optimal location of chargers, while the lower
level solves a mixed-traffic assignment of LD vehicles and trucks. Our study differs from this

approach as well. Specifically, we use a fixed-route approach to minimize the costs associated
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with charger placement, location, energy consumption, the value of time for recharging, and
detouring. Additionally, like our previous example, we take into account allocation, dynamic
charging demand, and partial recharging. Table I summarizes relevant studies and compares

our study with their objectives, model types, and other features.

TABLE I: Summary of the existing literature on EVSELCA

Study Vehicle Objective Model (i) (i) (iii) (iv) (v) (vi) (vii) (viii)

Ghamami et al. (2020) LD Minimize infrastructure cost MINLP v v Vv - - - v N/A
and users’ detour, waiting,
and charging delay

Zhu et al. (2016) LD Minimize construction costs MILP v v v - - - - N/A
and station access cost
Ghamami, Zockaie, LD Minimize infrastructure and MINLP - v v - v - v -
and Nie (2016) battery costs, and recharging
and queueing time
Li, Huang, and Mason LD Minimize cost of construction MILP v ovoo- - - v - N/A
(2016) and relocation of existing
chargers
Wang, Wang, and Lin LD Minimize operational and MILP - Vo= - v - - v
(2016) construction costs
Davatgari (2021) LD Minimize total system travel MINLP v v Vo= - - N/A

time and construction cost of
EV charging infrastructure

Whitehead et al. MD Maximize coverage MILP VA - - - - N/A
(2021)
Liu and Song (2018) MD Minimize emissions MPCC v v - - - - - N/A
Worley, Klabjan, and HD Minimize transportation, MILP v ovoo- - - - - N/A
Sweda (2012) recharging, and charging

station placement costs
Speth et al. (2022) HD Maximize coverage LP v v o- - - - - N/A
Londono and Granada- HD Minimize energy consumption, MILP v v - - - - N/A
Echeverri (2019) charger installation, and

routing costs
This study MD/HD Minimize charger, location, MILP - v v v v o v v

energy, value of time for
recharging and detouring costs

(i) Route choice, (ii) Location planning, (iii) Number of chargers, (iv) Charger type, (v) Dynamic charging demand over
time in a day, (vi) Partial recharging, (vii) Queuing, (viii) Multiple fixed routes, MPCC: Mathematical programs with
complementarity constraints, N/A: Not applicable.
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2.3 Problem definition

We now formally describe the EVSELCA problem, which we model as an MILP. To ease
reading, we use calligraphic letters to represent sets (e.g., R), uppercase Roman letters for
parameters (e.g., T), lowercase Roman letters for variables and indices (e.g., ys), and Greek
letters (e.g., ) as superscripts to modify parameters and variables.

Let C denote a set of customers, and let R denote a set of trucks serving these customers
with routes to be electrified while keeping their routes intact. (That is, regenerating routes
from scratch due to electrification is not of interest.) We call these routes E'V routes. The
goal of the EVSELCA is to allow EVs to complete their daily operations at a minimum cost
by planning recharging infrastructure and scheduling recharging activities. Although solving
a strategic decision-making problem, the model respects operational limitations, such as total
route time and charging capacities. Each EV route r € R contains a subset of customers,
denoted by the subset C, = {cor,Cir, ..., Cir, ..., Ny} satisfying Vi # 7, (i,7) # (0, N) by the
order of visits: co — ¢1, = ...,cN—1, — Ny, Where cor = ¢y = depot of route r € R. A set
of charger types K can be located at a set of candidate facilities . The optimization time is
discretized into a set of time steps J. Table II and Table III provide sets and parameters used
in the model, respectively. Note that the definition of sets will be modified in Section 2.4.2 as
we will cluster the customers to simplify the problem.

We now state our critical modeling assumptions (and note that some of these can easily be
relaxed). We assume customer demand is deterministic, which means that the travel sequences

in the routes remain unchanged over time except for accommodating on-route charging activ-
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ities. Furthermore, the adoption of EV technology does not change the truck routes, and the
customer visit sequences of a route are assumed to be the same as in conventional truck routes.
Additionally, EVs are assumed to be identical. The amount of energy received from a charger
type is assumed to be a linear function of recharging time, and the energy spent by EVs is
assumed to be a linear function of travel time. Furthermore, we assume there is a fixed set of

locations for possible EV charging facilities.

TABLE II: Sets used in the MILP.

Set Definition

C set of customers, C = U,exrCr

C, subset of customers in route r € R, C. = {cor, Cir, ..., Cir, ..., cNr} satisfy Vi # j,(i,5) # (0,N) by
continuation order of visit: cor = ¢c1r — ...,cN-1,r = cNr, Where cor = cnyr = depot of route r € R

Cryt  subset of customers in route r € R, after serving which the vehicle may visit f € F for recharg-

ing at time step ¢ € 7, that is Cppy = {c € GT\ZE;; [ngr,Cj+1,r+T:jr} + 717 < Dy <

T N T K
T-yN, [TC],T,CHM + ch,‘] }vT ERfeFteT
F set of candidate EV charging facility locations
. subset of candidate locations that the vehicle of r € R, after serving customer c;,, may possibly visit

={feq, s <BATL ;+T5.,,,, <T-S05H T2, +72, ]+

CjrsCitl,r jr

for recharging, that is, #.

BL-x Nt T

Tesenn B —
pmtste T ve, € C\ fenrh,r € RU{S € FITE, s S BATI ; + Ty, <

'K
L N—1 g7
rfz]’:o T

Cips Citq 7B7U:}
i Syt }}wefk

ir

min{0,

B
er:| + min{0, P
set of charger types, X = {1,2,3,..., K}
set of routes
set of time steps
.f subset of time steps in the beginning of which the vehicle of r € R after serving customer c;» may

possibly visit f € F,, for recharging, that is, 7;,, 5 = {t €T E;;B [ngmcﬂ_l’r + Tfjr} +7T5 <D <
sl N—-1 T K
T- Z]:’L |:Ter,cJ'+1y7‘ + T, :| }vcir € G'r,r S m, f S gcir

Cir

a2l N-1 T K
T- Zj:o [chwcjﬂw + T

N9




TABLE III: Parameters used in the MILP.
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Parameter Definition

B maximum battery capacity in time unit

By initial battery capacity of EV route r € R

By desired final battery capacity of EV route r € R

0k value of time spent for recharging and driving to recharging facility

C’,f energy cost of recharging per time unit with charger type k € K

Cy cost of installing charger type k € K per time unit

C‘fz5 fixed charging facility cost at candidate location f € F per time unit

Dy actual time associated with time step ¢t € 7, that is D, = o

M an adequately large number, e.g., M > 2B

Ry recharging amount received from charger type k € K per time unit

T maximum allowed operational time for each EV route

T4 duration of time steps

T;chr travel time from customer ¢;» € G, to customer c;. € C, by EV route r € R

TC(sirf detour travel time from customer c;» € C, by EV route r € R to f € &F
c’f”” time spent for serving customer c;» € C by EV route r € R

We let the binary variable z, s = 1 denote that the EV of route r € R recharges at f € &

using charger type k € K at time step ¢t € I immediately after serving customer c;. € C;;

Ze;, the = 0, otherwise. To ensure z., ri; represents the desired value, we keep track of the

start and end time for recharging an EV for ¢;, f, and k with continuous variables s, rx and

€c,fk- Let the binary variable zg ot = 1 indicate that the EV route » € R is recharging at

facility f € & using charger k € K after detouring from ¢; € C, for time steps, where the

associated time Dy falls within the range [0, s, rx) (excluding t € 7). On the other hand, let

binary variable xir e =1 denote that the EV route r € R is recharging at facility f € F using

charger k € K after detouring from ¢; € C, for time steps, where the associated time D, falls

within the range [0, e, x| (including t € 7).
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t 0 1 2 3 4 5 6 T1 T
xg fre | 1 1 olo|lo|lo]o]|..|lo01]o
B
Xk | 1 1 1 1 1 1o |..]o01]o
1
Scirfk €cirfk
)
Xegpie = % e =& | O O [ L1 110 |00

Figure 1: Example of how x., ¢ is maintained.

Figure 1 illustrates how our constraints ensure the variable x., i takes the desired value.
In this example, EV route r € R starts recharging at facility f € & using charger k € K after
detouring from ¢; € C; at time s, i, where the equivalent time step is 2 and ends at time e, fx,
where the equivalent time step is 5. The binary variable ¢ et =1 for all time steps preceding
and excluding time step 2, while the binary variable :JJZT frt = 1 for all time steps preceding
and including time step 5. Consequently, utilizing the equation ., rr; = xfz fkt T x?ﬂ Fht> the
binary variable x, i is 1 only for the expected time steps that are in the interval [2, 5].

The binary variable yy = 1 denotes f € F is open; y; = 0, otherwise. The variable
21, € Z>o denotes the number of charger type k € K allocated to f € &. Refer to Table XVI
for the definitions of all variables used in the model. The EVSELCA problem is formulated as

follows:
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TABLE IV: Variables used in the MILP.

Variable

Definition

/

cirf
be;,
de,,
Uei, fE

Wey fE

Scirfk
Ccin fk

Geir fk

o«
Loy flit

B
Ly fht

Ly fht

Yr

ka

remaining battery capacity (in time units) before arriving f € F for EV route r € R after
detouring from c¢; € C,
remaining battery capacity (in time units) before serving c¢;» € C, of EV route r € R
departure time from c;» € C, of EV route r € R
duration of recharging time EV route r € R spends at f € F using k € K after detouring from
Cir € Gr
duration of waiting time EV route r € R spends to recharge at f € F using k € K after detouring
from c¢;r € Cr
time that EV route r € R starts recharging at f € & using k € K after detouring from c¢;» € C,
time that EV route r € R ends recharging f € F using k € K after detouring from c¢;» € Cr
1 if EV route r € R detours from c¢;» € C, to f € F to recharge using k € K

otherwise

if EV route r € R is recharging at facility f € & using charger k € K after detouring from
cir € C, for time steps where the equivalent time, D, falls within the range [0, sc;, fx)
(excluding t € T)

0

1

0 otherwise

1 if EV route r € R is recharging at facility f € & using charger k € K after detouring from
cir € C, for time steps where the equivalent time, D, falls within the range [07ecirfk}
(including ¢t € )

0 otherwise

1 if EV route r € R is recharging at f € & using k € K at time step ¢ € T after detouring
from c;r € Cp-

0 otherwise

1 if a charging facility is located at f € F

0 otherwise

|
|
|
{
|

number of charger type k € K installed at f € F, zfr € Z>o

minC= Y [CP (TC‘S Fes f T We,, fk) +(CP + CY)ue, fk} +3 " Clyy

Cir €Cr,rER, fes
fEFe, kEK (2.1)

+ Y Clzp
FEF k€K



subject to,

Ly fht = xzrfkt - x?irfkt Ve, € Cryre R, f € 3'6”,]@ eEH,te chin

> e <z ViEFReK teT
cireerft:Tem

U, fe ST D Tt Veir €Crr €Rf €Ty k€K
teffcirf

T N ey pht —te, sk ST =€ Ve €Crr €R, f€Fey kEX
te%ir‘f

zpr < Myy VieF keX
Ue,, i < Mlge,, 1k Veir €Cryre R, f e, keXK
We,,. fk SMinrfk Ve GGT,TGQQ,]PE?@T,/{DGQ{

Qeirfl < Z T fht Ver ECrr ER fE T, kEXK
te'(rcirf

Ty, flt < Qeir fk Ve € Cpyr € fR,f € gcir,k eXK, te fTCin

Z de;, fk <1 vcir € GT,T‘ ER
fe, keX

ar?

éirf S bciT - TCTirf + M(l - Z qcirfk) Ve € Cryr € R, f € 5(0”
keX

lCin SMZQCink \V/Cir Eeraremvfegcir
keX

b/Cirf+ZuCirfk SE VCiTGGT,Teg{,fGG’CW
keX
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(2.3)

(2.4)

(2.5)

(2.6)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)



dcir =

bci+1,'r S bci'r - T;T,Ci+17r(]‘ - Z qcirfk) + M Z qci'r‘fk
JE€Te,, kXK fe€Te,, kEXK

Ve € Cryr € R

besprr <Y

feg;:i'r

brt > (Rkucir o= T}cmchirfk)]
keX

+ M(l — Z qcink> Yeir € Cryr € R
fede, keX

ir?

be,, = By Veir € Cryr € R

ben, > By Veir € Cryr € R
1—1
T 1
TCijcj+1,T‘ + Z (Terchjrfk + uch«fk + wcj'“fk) + TCF;T + TC‘L:T
j=0 fede, keX

ir?

Veir € Cryr € R

Scinfk = ey + 17, §Geir ke + Weir 1k

vci'f‘ EG’MT Emvf ngcirvk Eg{utegé”‘f

Ccirfk = ey + 17, $es, e+ Weyp fh + ey, f

\V/Cir € GT7T € (Rmf € gcirﬂk € g{)t S fTcwf

Seofk < De+ T — €+ M (1= qe, i + 38, 11t

Veir €Crore R, f e, keK teT,, r
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(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)
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Seask = Dy + T = M(2 = g g — 22, fit)

(2.23)
Veir €Crore R, f e, keK teT,, s

ecir'fk S Dt —€+ M (1 - qci'ffk + :Elfirfk:t) ( )
2.24

Ve €Crre R, feFe,  keK teT,, s
ecirfk Z Dt - M (2 - qci'rfk - xi‘rfkt) (2 25)

Ve €Cryre R, feFe,  keK, teT,, ¢
den, <T  Vre®R (2.26)

Leipfhts Ty, fits xfirfkt’ Yty Qe fr € {0, 1}, 2p5 € Z>0,bey,s deyyy Uey, fhs Wey, fre € R0

The objective function (2.1) minimizes the costs associated with detouring, waiting, recharg-
ing, energy consumption, charging facility, and charger installation. Note that all costs are
minimized per time unit (e.g., one day). Constraint (2.2) defines the variable z,,, ¢ in terms of
To pp and ZL‘EZ fkt Constraint (2.3) ensures that the total number of trucks charging at a time
step does not exceed the capacity of the charging facility. Constraint (2.4) satisfies that the
recharging time does not exceed the total time occupied by a truck at a facility, and constraint
(2.5) ensures that a truck does not occupy a charger while not recharging. Constraint (2.6)
guarantees that if a charging facility is not located at f, a charger should not be allocated.

Constraints (2.7) and (2.8) enforce the charging time u.,, ¢, and waiting time we,, 1, to be zero
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when recharging does not occur. Constraints (2.9) and (2.10) ensure that if the truck recharges,
the charger will be considered occupied at least in one time step. Constraint (2.11) ensures
that a truck can recharge only at one facility using one charger type after serving a customer.

Constraints (2.12)—(2.16) define the remaining battery of trucks (in time units) after serving
every customer (b, ) and immediately before arriving at a charging facility (b’cl_r f). Constraints
(2.17) and (2.18) enforce the initial and desired final battery capacity to be equal to B and BY,
respectively. Constraint (2.19) defines the departure time of trucks after serving each customer.
Constraints (2.22) and (2.23) define the variable z ;. Similarly, constraints (2.24) and (2.25)
define the variable wf" it Constraint (2.26) ensures that the total operational time cannot

exceed the maximum allowed operational time for each EV route.

2.4 Metaheuristic solution approaches with clustering

We now present a metaheuristic solution procedure for solving the EVSELCA problem, as
defined by Equations 2.1—2.26. We employ a metaheuristic approach because of substantial
growth in solution space of the EVSELCA problem as the problem size increases. First, we
adopt a clustering approach in Section 2.4.1 to simplify the problem. This involves redefining
sets, parameters, and variables in the MILP so that it can be used with clusters, as shown in
Section 2.4.2. Although clustering can help address the computational difficulty at a smaller
scale, we further develop a metaheuristic solution method using the GA to tackle the EVSELCA
problem in Section 2.4.3. Then, in Section 2.4.4 we describe a hybrid solution approach that

combines the GA and MILP solvers.
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2.4.1 Clustering

EVSELCA problems (Equations 2.1-2.26) can be complex, making solving them impractical
for large-scale instances. To overcome this challenge, we adopt a clustering approach proposed
by Cokyasar, Davatgari, and Mohammadian (2023). This approach simplifies the problem by
grouping customers into clusters and limiting recharging to after the completion of service at
these clusters. That is, rather than considering recharging after any customer, we create clusters
of customers and assume recharging occurs only after completing service at these clusters.

The clustering method aims to identify the best cut-points with a given number of clusters

to satisfy the following conditions:

i. All customers in a cluster must belong to a single route.
ii. The intersection of any two clusters must be empty.
iii. Customers in a cluster must follow the order of service.

iv. The distance traveled within a cluster must not exceed a certain threshold, such as a

portion of the EV range.

This clustering method uses an optimization model that maximizes the spatial difference
between clusters. In this model, the binary variable, p,.,. = 1 indicates cut n € 11 is placed
right after customer c;. The auxiliary binary variable my,, regulates the order of cuts and
conserves sequencing. Table V provides sets and parameters used in the clustering model. The

clustering optimization model is formulated as follows.
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max Y T e, (2.27)
cir€Cr,reR,
nel
subject to,
Pnci = Mnc, — Mnciyq p \V/C'L"r' S Gr,’l“ S !R,n en (2,28)
Mncip1,, — Mncyy >0 Ve € Cryr e Ry,me N (229)
> bue, =1 Vnen (2.30)
cir€Cr,TER

> Pne, <1 Vey €CrER (2.31)

nen

The objective function (2.27) maximizes the total travel time between clusters to ensure
that clusters are sufficiently apart from each other. Constraints (2.28) and (2.29) conserve the
order of cuts, preventing cut n from being placed after cut n 4+ 1. Constraint (2.30) ensures
that every cut is positioned immediately after one specific point, while constraint (2.31) ensures
that only one cut can be placed after a particular point. The model in Cokyasar, Davatgari,
and Mohammadian (2023) also presents the within the cluster travel time constraints. As
these constraints require more parametric definition, we refrain providing these constraints for
simplicity.

With a predetermined number of clusters, the clustering method may not always guarantee
a feasible solution because the travel time within clusters could exceed a preset threshold. In
our analysis, we start with a small ||, solve the problem, and increment [11| by one until a

feasible solution is obtained. Therefore, we find the minimum number of clusters (|77| > 0) and
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their partitioning. Note that such an approach sacrifices the solution quality to gain solution

speed. Our analysis in the upcoming sections will be a product of this sacrifice, and a real case

should better be handled with |77] large enough to obtain a higher quality solution.

TABLE V: Sets and variables used in the clustering model.

Set Definition
n set of cut-points for clustering
Variable Definition
1 if cut n € N is placed right after customer c;,
Prc;, .
0 otherwise
M, auxiliary binary variable regulating the order of cuts

2.4.2 Transformation

In switching from customer to cluster, the definition of some sets, parameters, variables,

and constraints changes. It is straightforward to redefine C from being the set of individual

customers to being the set of clusters of customers. We then define a new parameter T,

Cir

to represent the total travel time based on the order of visits within the cluster for serving

customers of cluster ¢;. by the EV route r. Moreover, we redefine parameters Tg'—i'rcjr to be the

travel time from the last customer of cluster ¢;. to the first customer of cluster c;, and Tc{_ f to

be the travel time from the last customer of cluster c¢;. to the location of facility f.

With these changes, we redefine the subset C,; in Definition 1.



24

Definition 1. For a givenr € R, f € F, andt € T,

i—1
G’f’ft = {C G Gr| Z |:T8Tjrycj+1,r + Tcljr + Tgyr:| + Tclj'r + TC’Z’I‘
7=0

N
<t Z [ PR +Tgr] }

The definition of C,y; requires that an EV route can recharge only after serving the last
customer of the cluster, rather than in the middle of the cluster. Therefore, C,s; refers to the
subset of clusters on route r € R that the vehicle must complete before it can visit f € F for
recharging at time step t € J.

Furthermore, we redefine 7., and 7., ; due to the changes made to the definition of param-
eters. The updated F.,, denotes the subset of facilities that the vehicle of route » € R can visit
after serving customers of cluster c;., as defined in Definition 2. Similarly, 7, s denotes the

subset of time steps during which the vehicle of route r € R can visit f € 7, for recharging

after serving customers of cluster ¢;,., as defined in Definition 3.

Definition 2. For a given ¢; € C, \ {cny} and r € R,

N—
*(}’Cw = {f € g|TC:rf < B A Tg;rf + T}’Ci+l,r S Z [ CirCit1,r + TIZT + T’y ]
7=0
B -y NIy L+ T8 - B
: 0’ J= g Ci+1,r r }
+ min{ R }
N-1

U{f€g| CNr f < B/\TN f+TfCN ST_ Z [ngT7Cj+1,T+Tij+ngT:|

=0
N-1
By =0 12, e, + T2, — B;j}}

RK :

+ min{0,

Definition 3. For a given ¢; € C., r € R, and f € F,

ir?
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i—1
o s = {t ey [ngmcjm T+ ng7} +TE 4T

r

Jj=0

N-1
<t<T- Y (17, + 15 +12,] }
Jj=t

Next, we replace the term customer with cluster wherever it is used in Table II, Table III,
and Table XVI. Following the changes we have made to the sets, parameters, and variable

definitions, we replace the constraints 2.12, 2.15, and 2.19 with 2.32, 2.33, and 2.34, respectively.

tof Sbey =T —TL +M(1 = qe 1) Ve €Crr €R,f €y, (2.32)
keX

bci+1,r < bci'r - (Tc:T,CH_LT + T;Z_T)(l - Z qcirfk) +M Z de;, fk

fege,, keX fE€Te;, kEK (2.33)
Veir € Cpyr € R
i—1
_ T y § K
ey, = Teicim, TI6,, + Z (15, peje fre + Uejppi + ey pi) + T2,
=0 FEFey, kEX (2.34)

—|—TC’:T+TCZT Ve € Cryr € R

2.4.3 The genetic algorithm

In this study we employ a tailored genetic algorithm to solve the EVSELCA problem. The
GA is an evolutionary optimization search technique that has been widely used to solve MILPs
(Katoch, Chauhan, and Kumar 2021). Algorithm 1 provides pseudocode for the approach; the
functions used therein are detailed in the Supplementary Material. Key decision variables in
the model are qc,, tk, T¢;, fkt» Y, and zgg, which are the same as in Table XVI with the redefined

C. Among key variables, y; and zy relate to strategic decision-making, while z., r1; aids in
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making an operational decision. At the tactical level, q., rr plays an important role since it
determines after which cluster to recharge, where to recharge, and what type of charger to use.
To this end, we begin with exploring a solution for the tactical variable that implicitly impacts
solutions to strategic variables and provides implied time bounds for the recharging time. That
is, a solution to other variables can be derived for given solutions to g, rx. First, NP’ number
of solutions for q.,, si, is generated via the INITIALIZATION function as an initial population. In
the initialization step we randomly select a number of clusters, following which a recharging
is planned; and we select a facility for the recharging using a roulette wheel selection method
(i.e., closer facilities have a higher chance of being selected). Once the where aspect of g, ¢k
is addressed, we randomly select a type of charger for those facilities that were just picked
to be visited. This population is then passed into CROSSOVER and MUTATION functions to
potentially find a better solution.

In Algorithm 1, T} was used to represent the route travel time minus the time spent serving

customers, recharging, and waiting, as defined in Definition 4.

Definition 4. For a given r € R,

N-1
o _ T S
Iy = Z chv"vcj+l,7' + Z Terqujrfk
j=0 €T, keX

The value of zyy, is estimated to calculate the objective value for each given q,, rx in the initial
population. For a given g, s equal to 1, zy, can get values between 1 and cir€Cy pore® deir fk

as Lemma 1 denotes. (See the Appendix for proofs of lemmas). The trade-off between the
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waiting time and facility cost depends on zf,. The maximum of zg (checﬁﬂem Qeir k)
implies zero waiting time as stated in Lemma 2 but high charger cost. We use a local search to
find a suitable zy;, value. In this regard we first calculate the objective value (C) for the upper
and lower bounds of zyy; if the former has a lower objective value, we update zyj by subtracting
chargers using ZLUPDATER (Algorithm A.7). Otherwise (i.e., the latter has a lower objective
value), we increase the value of zy, using ZLUPDATER (Algorithm A.8) until C reaches the

minimum. The EVALUATOR function from (Algorithm A.5) updates the value of zyy.

Lemma 1. For a given f € & andk € K, 2}, € [1, Zc”e()”ct,rem esr fE)s ichi,«ecm e i > 15

otherwise, z;’;k =0.
Lemma 2. For a given f € F and k € K, we,, 11 = 0, if zp, = Zcirecrﬂ Qeir f-

In each step of EVALUATOR, given q,, s and zy;, we calculate other variables using Low-
ERLEVELEVALUATOR (Algorithm A.6). In LOWERLEVELEVALUATOR, we first calculate the
recharging time (uc,, ¢r) using UCALCULATION (Algorithm A.10). We assume that trucks
recharge at a facility for a duration sufficient to complete the trip if it is less than the maximum
battery capacity minus the battery’s current level; otherwise, they recharge to full capacity.
Next, we calculate the wait time (we;, ;) using WCALCULATION (Algorithm A.11). To do so,
we follow the first-come-first-served rule: that is, vehicles recharge at a facility in the order
of their arrival times. Given q.,, fk, Uc;, fk, We,, fk» and zg, calculation of other variables and

therefore C is straightforward.
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Algorithm 1: Pseudocode for genetic algorithm

Input

GT? ‘7? gCira g(a ma Ev BL, Bwa B’/L‘? B;f), Ca:o, Cp’ CIE? CIZ? C?a N, N, Npop’

]\]’iter7 ]\[parenfs7 Pmutate’ Rk7 T7 ij7 Tf, T#, TT K

6
Circj'r’ TCirf’ Cir

Output: Sols(1)
Function GAMAIN():

Sols + {};
for i < 1 to N7, do
Sols(i) < INITIALIZATION(C,, F,,, K, R, B, B', B¥, C*=0 T T? );

/* Create NP’ solutions using INITIALIZATION function.

for iter < 1 to N do

for i + 1 to NP°?, do

*/

L C(Sols(i)) < EVALUATOR(C,, F, K, R, T, B, B, B, C?, C},, CY, C}, N,

N, Ry, T . ,TF , T

CirCjr ? Cir? Cir

7 TP, Sols(i));

Sort Sols ascending based on C(Sols) and set Sols to the first NParents of Sols;

CrossoverSols < {};

for i < 1 to NP@e"s do
for j «+ 1 to NPaenis do
L if ¢ # j, then

L CrossoverSols(i) < CROSSOVER(Sols, i, j);

MutationSols < {};
for i «+ 1 to NPen's do
L MutationSols(i) < MUTATION(Sols(i), Pmutate);

for i < 1 to NP "s do

C(CrossoverSols(i)) < EVALUATOR(C,, F, K, R, T, B, B., B¥, C°, C’,E,

Cy, CY N, N, Ry, T}, . . T&

CirCjr? Cir?

TéTf, TY, CrossoverSols(i));

C(MutationSols(i)) + EVALUATOR(C,, F, K, R, T, B, B%, B¥, C?, Cﬁ,

cy, Cj?, N, N, Ry, T7, ., T, T2 o, Tf, MutationSols(i));
Merge Sols, CrossoverSols, and MutationSols to form newSols;
Sort newSols ascending based on C(newSols);

Replace Sols with first NP°P of newSols;
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2.4.4 A hybrid solution approach supported by the genetic algorithm

The GA initializes with estimating values for ¢, s, variables. A hybrid solution approach
can be formed by feeding these GA-generated qc,, rx solutions into an MILP solver as a constraint
set. Therefore, the hybrid approach finds optimal solutions for fixed g, s decisions. This is
especially useful because many solutions can be investigated in parallel. In the following section,

the performance of this solution approach will be compared with that of the GA.

2.5 Case studies

This section describes the details of our experimental design and data in Section 2.5.1,
demonstrates the performance and limitations of the GA and the hybrid methods in Table XIV,
illustrates the impact of the time step duration on system cost in Section 2.5.3, and provides
key managerial and policy insights along with extensive sensitivity analyses aiming to identify

crucial parametric levers in Section 2.5.4—-Section 2.5.7.

2.5.1 Design of experiments

We conduct numerical experiments using the Chicago metropolitan area. E-commerce daily
demand and road network data are obtained from POLARIS (Auld et al. 2016). We utilize
the framework developed by Cokyasar et al. (2022) to form parcel delivery truck routes. For
a given set of customer and depot locations and other parameters (e.g., the operational time
during a day and vehicle capacity) the framework yields vehicle routes that are the sequences
of customers to be visited. Customers in these routes are aggregated at clusters using the RCP

solution model in Cokyasar, Davatgari, and Mohammadian (2023).
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Figure 2: Illustrative EVSELCA problem instance in the Chicago metropolitan area. The main
figure shows traffic analysis zones and depots used for e-commerce delivery in the area as well
as candidate charging facility locations. The inset depicts the study region including links of
routes and a depot of those routes. Links in the inset are color-coded, and each color indicates
a specific route.

Figure 2 depicts an example problem layout. In this figure, the centroids of traffic analysis
zones (TAZs), defined by metropolitan area organizations, represent candidate charging facility
locations. In the experiments we use 20 routes depicted and their feeder depot, called depot
1. The depot serves 4,580 customers, and customers are aggregated at 89 clusters. Unless
otherwise noted, in our experiments we consider four candidate locations, namely, the depot

and the three closest centroids to the depot.
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The problem parameters used, based on the literature (Electrify America 2022, Williams
2020, Ellis 2017, Davatgari 2021, Lightning eMotors 2022, Smith and Castellano 2015), are

summarized in Table XIII. Aside from these parameters, we estimate 77 Tr , and T(i of

rCir?
using Manhattan distances and assuming a constant truck speed of 30 mph (Illinois State
Police 2022). As with most studies in the literature, we consider three charger types with
varying powers (Liu and Wang 2017, Yilmaz and Krein 2013). The average time required
to power up a battery for 100 miles of range gain and charger installation costs are shown in
Table VII, which are derived from the literature (Bennett et al. 2021). All costs in the objective

function are converted to USD per day. To do so, the lifespans of chargers and facilities are set

to 10 and 40 years, respectively (Bennett et al. 2021).

TABLE VI: Parametric values used.

c? TE. T B Bt BY s cr
(USD/day) (minute) (hour) (minute) (minute) (minute) (USD/kWh) (USD/mile)
35 2 14 200 200 160 0.43 1.377

2.5.2 Computational performance of the GA and the hybrid methods

We analyze the computational performance of the GA and the hybrid methods and compare
them with the MILP solved by Gurobi using |R| and |F| as problem size determinant levers.

The three solution approaches are given the same clusters as an input to make the solutions
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TABLE VII: Charger configuration.

Added driving

Charger Power Added driving charging Cost
type (kW) range (mile) time (minute) (USDx1000)
Basic 50 100 265 73

Moderate 180 100 88 157

Fast 360 100 29 228

comparable. A testbed of instances was generated utilizing simulated data from a depot in the
Chicago metropolitan area serving e-commerce deliveries. As a baseline, the parametric design
provided in Section 2.5.1 was utilized, and we selected three candidate charging facility locations
closest to the depot and three random routes out of 20 that the depot serves. While keeping
the three charging facility locations and the depot as candidates, a subset of routes |R| €
{3,6,10,15,20} were randomly (following a uniform distribution for the selection probability)
selected to generate 20 problem instances for each number of routes. Another 20 instances for
each of |F| € {3,6,10,15,20} were generated such that the closest charging facility locations
to the depot were chosen as candidates, and the three routes in the baseline were used. These
200 instances were then solved by using the three methods with a limit of 600 seconds of
computational time per instance. Some of the instances were initially solved without a time
limit to observe the impact of the time limit choice. After many compute hours, we did not
observe considerable improvement in the solution quality compared to the solutions obtained
at the time limit. In the GA, we solved each instance five times and provide statistics of the

performances. All computations were carried out on an Intel® Xeon® Gold 6138 CPU @2.0
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GHz workstation with 128 GB of RAM and 40 cores. Problem instances were solved by using
the Python 3.8.8 interface to the commercial solver Gurobi 10.0 (Gurobi Optimization, LLC
2020).

Table VIII reports the computational performance of the MILP model solved via Gurobi,
the GA, and the hybrid solution approaches. The first columns specify the scenario. The MILP
columns denote the number of instances that could be solved (i.e., built and reported a feasible
solution within 600 seconds) and the number of instances for which optimality was reached,
respectively. In the GA, since each instance was solved five times, the maximum number of
instances that could be possibly solved was 100 for each scenario. We see that all approaches
were unable to produce a feasible solution within the time limit in some runs. GA columns
indicate the minimum, maximum, average, and standard deviation of the percent gap between
the best objective of the Gurobi-reported solution and the best solution found in the five GA
runs. A negative average percent indicates that the GA’s best solutions were better than that
of the MILP. Hybrid columns follow a similar presentation approach for the hybrid approach.

In Table VIII, we observe that an increase in |R| impacts the problem difficulty more than
does an increase in |F|. Using the MILP through a solver can address only small problems.
The GA performs better than the hybrid approach. Note that large gap percentages in the GA
and the hybrid should not be a sign of poor performance because these percentages are based
mostly on nonoptimal solutions obtained from the optimizer.

Figure 3 shows the solution time to the best solution per scenario and solution approach.

The hybrid approach is the fastest in finding a solution in most scenarios. The time-to-solution
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TABLE VIII: Summary of computational performance of the three solution approaches.

MILP GA Hybrid
Scenario # 4 # A Gap (%) 4 A Gap (%)
Solved  Opt  Solved Min Max Avg Std Solved Min Max Avg Std
“ 3 20 19 92 0 19.9 2.1 5.3 17 7 30 19 9.7
% 6 20 0 99 -0.5 30 6.6 7.6 12 4.1 18 9.7 4.8
Cg 10 16 0 95 -6.7 6.7 0.8 3.7 3 -3 2.5 0.1 2.3
+* 15 6 0 94 -10 3.8 -3.5 4.5 1 -5.8 -5.8 -5.8 0
20 4 0 89 -5.2 -3.2 -3.8 0.8 0 - - - -
@ 3 20 19 88 0 19.8 1.3 4.5 17 8.5 29 21 7.3
-g 6 20 17 91 0 19.8 3.2 6.1 17 0 31 24 7.9
g 10 20 8 90 -0.1 25 3.9 7.8 17 0 27 13 9.4
.3 15 20 1 94 0 11 1.1 2.5 17 0 10 5.9 2.9
I 20 20 1 89 -1.4 15.5 1.9 3.4 17 0 26 5.4 5.6

Note: A Gap is calculated by one minus the division of the best solution obtained by the corresponding method
to the best objective reported by the MILP solver.

comparison between an increasing number of routes and an increasing number of depots sup-
ports the claim that |R| is a key metric in problem difficulty. In Figure 3a supported by
Table VIII, we can observe that 6-20 routes scenarios were not solved to optimality within 600
seconds. Figure 3a and Figure 3b show that the GA provides quick solutions that are indeed

not far off from the MILP (see Table VIII for a quality comparison).

2.5.3 Impact of time step duration on system cost

The duration of the time step, T2, discretizes the time and control charger availability.
Understandably, it can have a considerable impact on the solution quality. It is clear that a
large T2 could lead to a higher system cost as more chargers would be needed if an idle charger
is shown to be occupied. For instance, T2 = 60 minutes will label a charger unavailable for an

hour even if a vehicle uses the charger for a portion of this time. To assess the impact of T2
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Figure 3: Time-to-best-solution statistics for the three solution approaches.
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on C, we consider 1, 5, 10, 15, 30, and 60 minutes as values for the time step duration, and we
use the data from depot 1 and its 20 routes. Using the GA method with a time limit of 600
seconds, we solve each instance 20 times and retrieve the minimum C. We assume T2 = 60
as our baseline scenario by setting its C = 100 and normalize C of other scenarios accordingly.
The resulting comparison is demonstrated in Figure 4. We can observe that T2 = 1 yields 12%

lower C compared to that of T2 = 60.

2.5.4 Impact of charger costs on system cost components

Because electrification is a relatively novel technology, charger costs are expected to decrease
in the future. Therefore, we analyze the impact of C} on the cost components of the objective
function (3.4) and the number of chargers allocated by type. To this end, we define facility

costs by
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Five percentages of decrease in C} are considered: 0%, 20%, 40%, 60%, and 80%. We consider

depot 1 and the 20 routes it serves by sampling |R| € {10,12,14,16, 18,20} and |F| € {100}.
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We use the GA method, limit the solution time per instance by 600 seconds, and solve each
instance 20 times to obtain the best solution. We conducted 600 (6 x 5 x 20) runs for this
analysis, and we report the statistics of the best solutions out of 20 GA runs by aggregating
over |R| in Figure 5.

Figure 5a shows that the contribution of charger costs into (3.4) drops from 26% to 8%
parallel to C}, while facility and energy costs substantially increase by 8% (from 24 to 32).
Note that five tiers, i.e., -80, -60, -40, -20, and 0, indicate the percent change in charger costs,
and these tiered representation is adopted for following subsections.

Figure 5b shows the decrease percent in C} versus the normalized cost. The normalized cost
assumes C = 100 when the decrease in C} is 0 and is calculated accordingly for other instances.
In this figure we observe that a large decrease in C}/ increases the number of moderate and fast
chargers, although there are fluctuations. The spikes can be a result of finding nonoptimal
solutions through the GA and finding a better solution by swapping types of chargers along
with a drop in C}. An example of the latter can be observed by seeing the number of chargers
for basic and fast moving from 40% to 60%: that is, fewer fast chargers are equipped, while
more basic chargers are utilized at 60% compared with 40%.

We note that an 80% decrease in C} results in a 25% drop in C. This percentage will

indicate the importance of C}/ compared with others analyzed in the following sections.

2.5.5 Impact of energy costs on system cost components

It is not certain how the wider adoption of EVs will impact energy prices. To analyze the

impact of energy costs, we consider a percent change of -50, -25, 0, 25, 50, 75, and 100 in Cﬁ.
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Figure 5: Impact of percent decrease in charger costs.

The same settings as in the previous analysis are followed here and will be used in the upcoming
sections. Therefore, 840 (6 x 7 x 20) runs were conducted, and Figure 6 provides the summary
statistics.

Figure 6a shows a substantial jump in VOT costs along with an increase in C’,E. In Figure 6b,
moving from 0 to 100% increase in C’Ig, the number of fast chargers rises, while the numbers of

other charger types reduce.

2.5.6 Impact of time value costs on system cost components

In some industries, VOT may be more important than others. Consumers may be willing

to pay more for faster delivery. To analyze how a percent increase of 0, 20, 40, 60, 80, and 100
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Figure 6: Impact of percent change in energy costs.

in C? impact the decisions, we conducted 720 (6 x 6 x 20) runs and report summary statistics

in Figure 7.

Figure 7a illustrates how VOT costs can become dominant (by 40%) in Objective func-

tion (3.4) when C” is doubled. From Figure 7b, we observe that the number of moderate and

fast chargers increases as C” doubles.

2.5.7

Impact of battery capacity on system cost components

EV technology is continuously improving, and advancements in battery technology enable

longer vehicle ranges. In all analyses, we considered the low end of a 60-130 EV range reported

(Lightning eMotors 2022) to be conservative. We now analyze EV ranges of 60, 90, 110, 130,
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Figure 7: Impact of percent increase in VOT costs.

and 250 miles. We conducted 600 (6 x 5 x 20) runs for this analysis, and the findings are
illustrated in Figure 8.

Increasing the EV range reduces facility costs by enabling vehicles to recharge at more
central locations, as shown in Figure 8a. Figure 8b demonstrates that a longer EV range
decreases C up to a point. A similar finding was observed in a previous study (Cokyasar et al.

2022).

2.6 Conclusion

This research addresses some challenges in electrifying trucks, particularly in designing the

necessary charging infrastructure. Indeed, infrastructure planning for large-scale electrification
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Figure 8: Impact of battery capacity (in miles range).

projects can be complex because of factors including the placement of charging stations and
the scheduling of recharging activities. While previous studies have focused on solving the
EVLRP to address this issue, the freight industry has a different approach, where they make
electrification decisions based on the characteristics of existing routes. However, by prioritizing
routes shorter than the EV range and installing chargers only at depots, typically one charger
for each EV, they forego the potential for cost savings that can be achieved by optimizing the
charging activities. Exploiting and studying the limits of the associated economic opportunities

is crucial, given the long-term impacts of strategic location-allocation decisions on short-term

routing activities. Our paper seeks to address this gap by providing decision-making models
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that combine the best of existing studies while also respecting the freight industry’s philosophy
of electrifying existing routes.

To that end, we formally describe the EVSELCA problem and construct an MILP model
that focuses on fixed routes. The MILP model, solved through commercially available solvers
that often use branch and bound as a solution method, faces scalability issues, making it imprac-
tical for larger-scale problems. To overcome this challenge, we propose a clustering approach
that simplifies the problem by grouping customers into clusters and allowing recharging only
upon completion of service at these clusters. Clustering is shown to partially address computa-
tional difficulties for small-scale problems, yet it is not adequate to fully address the issue. For
this reason we develop a metaheuristic solution method using a GA. This approach generates
near-optimal solutions within a reasonable time frame, making it possible to apply the model at
a large scale. Combining the GA and MILP solvers, we introduce a hybrid solution approach.

We compare the computational performance of the GA and hybrid methods with the MILP
model solved through Gurobi, using the number of routes and charging facility locations as
problem-size-determinant levers. The results indicate that the GA outperforms the hybrid
method in terms of solution quality, but the hybrid method is faster in finding solutions in
most scenarios. The MILP model is suitable for small-scale problems. Overall, the GA provides
quick solutions that are close in quality to the optimal solution. Moreover, the findings show
that an increase in the number of routes has a greater impact on problem difficulty than does

an increase in the number of charging facility locations.
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We investigate the impact of four factors on the EVSELCA problem through a sensitivity
analysis. These are charger costs (C}), energy costs (C,E), VOT (C?), and battery capacity
(B). Our key findings are summarized as follows. An 80% decrease in CY results in a 25%
cost reduction. A substantial reduction in VOT cost shares is observed as C,f increases. The
number of moderate and fast chargers increases as C* doubles. Longer EV ranges are beneficial
in decreasing the overall cost up to a certain point. Beyond this threshold, longer EV ranges
result in only a negligible decrease in the total cost. Our findings indicate that the objective
function is the most sensitive to charger costs compared with other factors, while energy and
VOT costs are less vital.

The proposed model is intricate and addresses critical concerns of determining the opti-
mal time for EVs to visit charging facilities, selecting suitable facilities, allocating appropriate
charging infrastructure, scheduling recharging activities to minimize wait times, and satisfying
operational constraints. The strength of the MILP developed in this study is that it addresses
all of these concerns. However, the model’s dependency on the candidate locations for charging
facility placement presents a challenge: that is, changing one candidate location may substan-
tially alter the solutions and their interpretation. To address this, we plan to develop a tool
that can mimic the MILP model to quickly find near-optimal solutions for any given set of

candidate locations, reducing the time required to solve the problem.



CHAPTER 3

SINGLE DEPOT ELECTRIC VEHICLE SCHEDULING PROBLEM

3.1 Introduction

Public transportation plays a crucial role in cities by providing accessible, affordable, effi-
cient, and equitable mobility options for travelers while helping to alleviate congestion. How-
ever, the use of conventional diesel vehicles (DVs) contributes to air pollution and carbon
emissions, influencing air quality and public health (FTA 2010). Electrification of transit buses
has emerged as a solution to address these environmental challenges. By transitioning to elec-
tric vehicles (EVs), cities can significantly reduce harmful emissions and improve air quality
(Munoz et al. 2022). (Note that the terms wvehicle and bus are used interchangeably in this
paper). Nevertheless, the adoption of electric buses comes with its own set of challenges. One
major concern is the higher upfront cost of EVs compared to conventional DVs (Mufioz et al.
2022). This cost disparity can impose financial barriers, particularly when there is a need to
replace a large number of buses in existing fleets. Driving range, long charging time, and elec-
tricity grid impact of EVs are other issues to be tackled. Although technological advancements
have improved battery capacity and charging speeds, EVs still have a shorter range and longer
downtime compared to DVs. This can pose operational challenges, especially for longer routes
that require long periods of operation. To overcome these challenges, one potential solution is

to increase the number of buses in operation. However, the high cost of electric buses can be

44
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a hindrance. Therefore, optimizing EV scheduling becomes essential to minimize the bus fleet
size and idle time, while ensuring sufficient recharging during idle periods.

The vehicle scheduling problem (VSP) involves the creation of vehicle runs (hereafter called
runs) based on a set of timetabled service or revenue trips, called trips. These trips come with
essential spatio-temporal information, including their origin (first stop), destination (last stop),
start time, and end time. The objective of the VSP is to strategically organize these trips into
bus runs that optimize the utilization of vehicles and ensure efficient transit operations. The
Electric Vehicle Scheduling Problem (EVSP) extends beyond the VSP by not only strategically
organizing these trips into bus runs but also facilitating the vehicle to recharge at the depot.
This involves recharging during the day to serve the trips and also during the night to ensure
the vehicle can serve runs in the upcoming planning horizons (often measured in days).

Figure 9 illustrates an example of an electric bus run. In this example, the bus run starts
6 AM on the current day and ends at 6 AM next day, with a planning horizon of 1 day. The
nighttime recharging ends ~ 7 AM. Subsequently, the bus remains at the depot until ~ 9 AM
and then deadheads to trip 1 (deadheading time refers to the duration spent traveling either
from the final stop of one trip or from the depot to the initial stop of another trip, or back to
the depot). In this example, after serving trip 4, the bus deadheads to trip 3 and arrives earlier
than the trip start time. Consequently, it stays at the first stop of trip 3 for a while, defined as
intertrip layover. Following the completion of trip 3, the bus deadheads to the depot. The bus

uses depot layover time for daytime recharging. After daytime recharging at the depot, the bus
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continues to serve the remaining scheduled trips. Upon completing the last trip, it returns to

the depot for nighttime recharging.

Bus run (vehicle schedule)

Block 1 Block 2
| — — ~
Run 1 1 TN | 3 p) I8 (11
i t t t f f f
6AM 10 AM 2PM 6PM 10 PM 2AM 6AM
@ Depot layover @ Deadheading Nighttime charging
@ TripX O Intertrip layover B Daytime charging

Figure 9: An example of a bus run.

The VSP has been extensively studied for many years, and various solution approaches have
been proposed to address its complexity. See Bunte and Kliewer (2009) and Freling, Wagelmans,
and Paixao (2001) for comprehensive reviews. However, with the emergence and early adoption
of electric vehicles (EVs), there is a need to revisit the problem and adapt it to accommodate
the unique characteristics and requirements of EVs. The EVSP can be classified into two main
types based on the number of depots involved: single-depot EVSP (SDEVSP) and multi-depot
EVSP (MDEVSP). In this study, we consider the SDEVSP. We develop an optimization-based
scheduling framework using mixed-integer linear programming (MILP) that can generate bus

runs with given trips. The framework ensures that each trip can be successfully completed
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using DVs or EVs, and schedules recharging (when necessary). Moreover, we consider next day
operability. Next day operability ensures each bus can serve at least one bus run the next day,
and every scheduled bus run can be served by at least one bus. This means that during the
night, when the buses are not in use, they recharge enough so they can serve bus runs the next
day.

In this study, we propose a two-step solution approach for the SDEVSP. In the first step,
solving an integer programming (IP) model, we generate blocks using the SDVSP model pre-
sented in Cokyasar, Verbas, and Auld (2023a). Each block is defined as a sequence of con-
secutive trips and has a designated depot as its starting and ending location. Blocks with a
length shorter than EV range are considered electrifiable. Given the target EV deployment level
(which is the ratio of number of electrifiable block to the total number of blocks), we adjust
control parameters in the SDVSP model, allowing us to generate shorter or longer blocks to
reach the target level. As the SDVSP with time or distance constraints is NP-hard (Bodin
1983), we do not impose hard constraints on block length or time to maintain computational
feasiblity. This approach does not guarantee that all blocks are within the EV range since we
do not have hard constraints. However, an acceptable or targeted share of within-range blocks
can be obtained using this soft approach.

Once the blocks are generated, the subsequent step involves chaining them together to form
a DV or EV schedules. This defines another set of problems: the block chaining problem
(BCP) for DVs and EVs. The former problem chains diesel blocks while adhering to spatio-

temporal conditions, while the latter adheres to both spatio-temporal and state-of-charge (SOC)
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conditions. Additionally, the generated electric bus runs must satisfy the next day operability
constraints, ensuring continuity of operations.

Figure 10 provides a visual representation of the study layout and the framework adopted for
our solution approach. The reason behind designing this heuristic solution approach is two-fold.
First, it aligns with the conventional practice employed by transit agencies, where bus blocks
are initially created, followed by the utilization of these blocks to create DV schedules and crew
schedules. Our approach is designed to resonate with this established method, facilitating its
adoption within transit agencies. Transit agencies acknowledge that shorter blocks than that
of DVs are needed to be created to electrify bus fleets, and these blocks can be chained to form
EV schedules. Second, The SDEVSP is known to be NP-hard due to the presence of time or
distance limitations (Bodin 1983). This implies that finding optimal solutions to large-scale
problems is computationally infeasible within a reasonable time. Our solution approach adopts
a two-step heuristic methodology, providing a practical and efficient means of resolving the
complexity associated with the SDEVSP.

The motivation behind this study is threefold. First, our approach builds upon the widely
adopted SDVSP modeling used by transit agencies to create schedules for conventional DVs.
By leveraging this well-established method, we facilitate the adoption and implementation of
our proposed solution framework, enabling transit agencies to seamlessly transition to electric
bus fleets. Transit agencies acknowledge the necessity of creating shorter blocks to electrify bus
fleets, and our approach allows for creating these blocks to form efficient electric vehicle (EV)

schedules. Second, the SDEVSP is recognized as an NP-hard problem, making it analytically
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Figure 10: Study layout - SDEVSP framework. The left figure is adopted from Perumal, Lusby,
and Larsen (2022a).

challenging to solve at a large-scale. By breaking down the SDEVSP into the SDVSP and the
BCP, we effectively manage the challenges associated with large-scale instances of the SDEVSP.
Third, our model incorporates next day operability constraints. This consideration ensures that
the scheduling of bus blocks allows for their repetition on the following day, promoting efficient
and reliable schedules. Our study considerably advances the SDEVSP literature by providing
these contributions. Our practical and scalable solution approach enhances the feasibility and
effectiveness of electric bus scheduling, supporting the transition towards more sustainable and
environmentally friendlier public transportation systems.

In this study, we assume that we are given a predefined set of timetabled bus trips, with
known start and end times as well as locations. Charging and discharging processes are as-

sumed to follow linear profiles, simplifying the representation of energy transfer dynamics.
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Furthermore, we assume that each depot is sufficiently large to accommodate new buses and
the charging equipment. Moreover, there are as many slow and fast chargers as needed, result-
ing in zero waiting times for recharging. Moreover, We assume that during the day, vehicles
use fast chargers because they need to recharge quickly and get back into service promptly.
Slow chargers are not used during the day because the time between two bus blocks is limited,
making slow charging impractical. For nighttime recharging, we assume slow chargers are used
since they can recharge buses effectively during the night when buses are not in service. We
assume fast chargers are not used at night to avoid overusing them as they are more expensive.
This way, we balance the quick recharge needs during the day with the cost considerations,
making sure the chargers are used efficiently.

In Section 3.2, we begin with providing a literature review on the SDEVSP. Section 3.3
formally describes the problem, the next day operability constraints, and the formulation of
the MILP model. Section 3.4 outlines a heuristic approach to address the scalability concern in
the BCP model. In Section 3.5, we detail the experimental design and the parametric choices,
and demonstrate the results of numerical experiments conducted to evaluate the performance
of the proposed solution approaches. Finally, Section 3.6 concludes the study by summarizing

the key findings and discussing potential future research directions.

3.2 Literature review

Transit service design can be summarized as a sequence of five systematic decisions: Network
design, frequency setting, timetabling, vehicle scheduling, and crew scheduling (Ceder and

Wilson 1986). While many studies in the literature focus on solving these problems separately,
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some select a subset and solve that selection jointly. See Guihaire and Hao (2008) for a thorough
review on these problems. This study solely focuses on the vehicle scheduling problem, i.e. the
route alignments, frequencies, and timetables are given and fixed. Similarly, crew scheduling
that is solved either after or jointly with vehicle scheduling is also beyond the scope of this
study. Table IX gives an overview of the existing relevant literature on the EVSP.

The existing literature on the electric VSP (EVSP) can be viewed in two main categories
based on the number of depots included: SDEVSP and multi-depot EVSP (MDEVSP). While
both variants are significant, recent studies have shown a growing interest in the MDEVSP (Wu
et al. 2022, Liu and (Avi) Ceder 2020, Zhang et al. 2021, Yao et al. 2020, Diefenbach, Emde,
and Glock 2023, Wen et al. 2016, Li et al. 2020). For instance, Wu et al. (2022) proposed
a branch-and-price method for addressing the MDEVSP, incorporating time-of-use electricity
tariffs and peak load risk. Similarly, Diefenbach, Emde, and Glock (2023) employed a branch-
and-check method, considering non-linear charging and partial charging to minimize the electric
vehicle fleet size in the MDEVSP context. However, in our research, we specifically concentrate
on the single depot aspect of the EVSP. This decision is motivated by our understanding of
the needs and requirements of large-scale transit agencies. Those agencies that operate out of
multiple depots already have their blocks and runs assigned to certain depots by either solving
an MDVSP, or by pre-assigning routes or trips to certain depots and solving multiple SDVSPs.
In this study, we treat the existing assignment of trips to depots as initial conditions. By
focusing on the SDEVSP, we aim to provide practical and applicable solutions that align with

the operational context of these agencies. While the MDEVSP is undoubtedly an important
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area of research, addressing the complexities associated with multiple depots falls beyond the

scope and considerations of our study.

TABLE IX: Summary of the existing relevant literature.

Study Objective Model (i) () @) (Gv)  (v) vy (vil)  (vill)  (ix)  (x)
Wu et al. (2022) Minimize the total operation cost. ~ MILP v - - - v - - - - -
Liu and (Avi) Minimize the number of vehicles. 1P v - - - - - - v v -
Ceder (2020)
Zhang et al. Minimize the vehicle purchasing MILP v - - v - - - v v -
(2021) cost and operation cost.
Yao et al. (2020) Minimize the vehicle purchasing IP v - v - - - - v - -
cost and operation cost.
Diefenbach, Minimize the number of vehicles. MILP v - - - - - - v v -
Emde, and Glock
(2023)
Wen et al. (2016) Minimize the number of buses and ~ MILP v - - - - - - v - -
the total traveling distance.
Li et al. (2020) Minimize the total cost of con- MILP v - - - - - - v - -
structing and operating the elec-
tric bus system.
Xu, Yu, and Long  Maximize the difference between IP - v - - - - - - - -
(2023) the profit from the bus fare and
the operational cost.
Sistig and Sauer Minimize the investment costs for =~ MILP - - v - - - - - - -
(2023) vehicles and operational costs.
Rinaldi et al. Minimize the total operational MILP - - - v - - v - - -
(2020) cost.
Alwesabi et al. Minimize the battery cost and MIQCP - - - - - v - - - -
(2020) charging infrastructure costs.
Chao and Minimize the capital investment MILP - - - - - - - - - -
Xiaohong (2013) for the electric fleet and the total
charging demand.
Perumal et al. Minimize the investment costs for =~ MILP - - v - - - - - - -
(2021) vehicles and operational costs.
This study Minimize the number of vehicles MILP - - - - - - - v - v

and deadheading time.

(i) Multiple depots, (ii) Timetabling, (iii) Crew scheduling, (iv) Mixed fleet, (v) Power grid, (vi) Placement of charging
infrastructure, (vii) Number of chargers, (viii) Partial charging, (ix) Non-linear charging, (x) Operational continuity,
MIQCP: Mixed-integer quadratically-constrained program.
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The SDEVSP has received limited attention in the existing literature, with a few studies ded-
icated to exploring its various aspects (Xu, Yu, and Long 2023, Sistig and Sauer 2023, Perumal,
Lusby, and Larsen 2022a, Rinaldi et al. 2020, Alwesabi et al. 2020, Chao and Xiaohong 2013).
For instance, Xu, Yu, and Long (2023) focused on jointly solving the electric bus timetabling
and scheduling problem. They tackled this problem by employing the Lagrangian relaxation
heuristic method as their solution approach. It should be noted that including timetabling in-
troduced scalability challenges to their solution method. In our study, timetables are given and
fixed, and we ensure that all the revenue trips are served by a vehicle. This deliberate choice
ensures that our model is applicable to large-scale problems and can be effectively solved. An-
other related study conducted by Sistig and Sauer (2023) explored the integrated problem of
electric vehicle and crew scheduling. To solve this problem, they employed a metaheuristic
based on adaptive large neighborhood search (ALNS). Similarly, Perumal et al. (2021) also
addressed the integrated electric vehicle and crew scheduling problem and utilized an ALNS
as their solution approach. Our study does not consider the crew scheduling but considers the
operational continuity. By focusing on operational continuity, our research aims to contribute
to the field of sustainable electric vehicle scheduling. We recognize the importance of maintain-
ing a consistent and efficient electric vehicle fleet, thereby enabling smoother and more reliable

transportation services.

3.3 Problem definition

In this section, we provide a formal description of the SDVSP model as presented by

Cokyasar, Verbas, and Auld (2023a). Next, we develop an MILP formulation to solve the
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BCP. To ease reading, we adopt a specific notation convention where calligraphic letters denote
sets, uppercase Roman letters represent parameters, lowercase Roman letters represent variables
and indices, and lowercase Greek letters as superscripts modify parameters and variables.

3.3.1 Single Depot Vehicle Scheduling Problem (SDVSP)

The objective of SDVSP is to find optimal creation of bus blocks based on the given
timetabled trips. Figure 11 illustrates an example solution for SDVSP. In this particular sce-
nario, the SDVSP solution establishes three blocks based on the given trips. The connections
between trips are decision variables for SDVSP, aiming to minimize the total intertrip layover

time, deadheading time, and the number of blocks.

A

‘ . Service trip X
v e

— Deadhead and/or layover

Figure 11: An example solution of SDVSP.

Let T represent set of timetabled bus trips with given origin O; (first stop) and destination
D; (last stop). The tuple set .L* denotes all feasible arcs that connect bus trips, allowing them to

be performed sequentially. Additionally, R = L |J (s x T)|J(T x t) denotes set of all feasible
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arcs, where s and t indices denote. We denote the deadheading time by T7%.. The idle time spent
between two consecutive trips is called layover time, denoted by Tg Note that the layover time
does not include the deadheading time but is the time spent after a bus finishes deadheading
to the first stop O; of trip j until the beginning of trip j. The block generation cost in time
units is defined by K, and a unitless weight parameter W adjusts the balance between vehicle
costs and layover time. The binary decision variable [;; = 1 represents whether trip j € 7 is
served after trip i € , and 0 otherwise. Table X denotes sets, parameters, and variables used

in this section, and the mathematical model is as follows:

min > (T, + WD+ (K + T;Oj)zsj + 5 Th e (3.1)
(i,5)eL JET i€y
subject to,
Y ly=1 Vied (3.2)
7:(4,5)ER
Y ly=1 Vjeg (3.3)
i:(4,7)ER

lij €{0,1}  V(i,j) € R.

The objective function 3.1 is to minimize the weighted summation of the total non-revenue
time (deadheading and weighted layover times) and the fleet size by adding an artificial time
K to depot-to-trip travels. Constraints 3.2 and 3.3 guarantee that each trip follows exactly
one preceding trip and is subsequently followed by exactly one subsequent trip. Adjusting the
parameters K and W affect the block length. Increasing the value of K leads to longer blocks

as the block generation cost becomes more significant, while increasing W results in shorter
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blocks since the importance of layover time increases in relation to deadheading time and block

generation cost.

TABLE X: Sets, parameters, and variables used in the SDVSP.

Set Definition

T set of timetabled bus trips

L set of arcs connecting two consecutive trips

R set of all feasible arcs connecting two consecutive trips, R = JLJ(s x T)J (T x t), where s
and t indices denote the depot

Parameter Definition

D; last stop of trip i € T

K a big number representing the block generation cost in time units

O; first stop of tripi € T

T; start time of trip i €

T? end time of trip i € T

T deadheading time, the travel time from the last stop D; of trip ¢ € I to the first stop O; of
tripj €T

Tf]‘» layover time, the idle time spent between two consecutive trips ¢ € I and j € T at the first
stop O; of trip j € T

w weight factor for layover time between two consecutive trips

Variable Definition

1 if trip j € T is served after trip i € 7, i # j
0 otherwise

3.3.2 Block Chaining Problem (BCP)

The BCP is to find the optimal combination of bus blocks to be served consecutively by

EVs that minimize the total depot layover time and the number of EVs, while making use of

the depot layover time between blocks for recharging. Figure 12 illustrates an example solution
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of the BCP. In this instance, the BCP solution combines two blocks into a single bus run and
maintains the third block as an individual bus run. In the BCP, the connections between
trips serve as decision variables determining whether to connect two blocks. This connection
is contingent upon the layover time being sufficient for recharging the vehicle and preparing it
for the next block. Additionally, the BCP ensures that the nighttime layover time is adequate
for nighttime recharging, ensuring the vehicle’s readiness to serve a bus run the next day.
While adhering to these constraints, the BCP model aims to minimize both the total depot
layover time and the number of bus runs (i.e., fleet size). Now, we formally describe an MILP

formulation to solve the BCP, building upon the block results obtained from solving the SDVSP.

X Service trip X | | Block @ Depot — Deadhead and/or layover

_____

— Daytime layover and/or charging — Nighttime layover and/or charging

Figure 12: An example solution for the BCP.
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The set of blocks that can be run by EVs (i.e., blocks meeting the range constraints)
is denoted by B. The tuple set & denotes all feasible arcs that connect bus blocks within
the planning horizon. The tuple set C denotes all feasible arcs that connect bus blocks of
consecutive horizons, that is each pair consists of a bus block from the current planning horizon
and a bus block from the next planning horizon, and they can be combined in a sequential order.
Furthermore, A = &J (s x B) |J (B x t) denotes set of all feasible arcs within a given horizon.
Similar to the SDVSP, the indices s and ¢ indicate the depot from which buses are dispatched
and the depot to which they return, respectively. Table XV provides sets and parameters used
in the MILP to solve the BCP.

The energy consumption required to operate block i € @B; is represented by B; and is
measured in units of time. This energy consumption is assumed to be a linear function of the
travel time for the block. The start and end times of block i € B, which are obtained by
solving the SDVSP, are denoted by T* and Ti’B , respectively. A recharging between consecutive
blocks in the same planning horizon is considered to occur during the day, while recharging
between consecutive blocks, one in the current and the other in the next planning horizon, is
assumed to be overnight. The rate of recharge during the day is denoted by R?, while the rate
of recharge overnight is denoted by R”. These recharge rates indicate the quantity of energy
gained through recharging, measured in units of time per unit of time. The battery capacity,
measured in units of time, is denoted by B. This parameter represents the maximum amount
of energy that the EV’s battery can store, determining the maximum duration the vehicle can

travel without recharging. The end time of the planning horizon, denoted by T, establishes the
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time limit or deadline for the scheduling of blocks. This parameter sets the boundary for the
scheduling process, ensuring that all blocks are scheduled within the specified time frame. To
control the layover time between consecutive blocks, we introduce the maximum and minimum
layover time limits that are denoted by U and L, respectively. Weight parameters K’ (in time
units) and W’ (unitless) represent the vehicle cost and importance of layover time against fleet
size in the objective function, respectively. Lastly, M; and My are adequately big numbers,
where M; > B + max {(T + max;eq T)RY, max;cq R‘sTf‘} and My > B + 2M;.

Binary decision variable y;; = 1 if block j € B is served after block i € B, and y;; = 0,
otherwise. Binary decision variable z;; takes a value of 1 if block j € B on the next day can
be served after block i € B in the current day, and 0 otherwise. Decision variable v;; € Rx
represents the state of charge (SOC) in time units at the beginning of block j € B after serving
block i € B. Decision variable v/ ; € Rrepresents the SOC in time units at the beginning of block
j € B on the next planning horizon after serving block i € @B in the current horizon. Decision
variable b; € R>¢ denotes the SOC in time units at the beginning of block i € B. Decision
variable u;; € R>q represents the amount of energy gained measured in time units during
the layover time between two consecutive blocks. Additionally, we introduce two auxiliary
binary variables: z;; and n;;. These variables are used to linearize the max and min functions,
respectively. Table XVI provides variables and variable definitions used in the MILP. The
mathematical model to solve the BCP is as follows:

min 3 W (T = T7) gy + Y Ky (3.4)
(i,5)e8 i€B
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subject to,
Z Yij = 1 Vie®B (35)
j:(3,7)eA
Z vij=1 Vje®B (3.6)
i:(i,))EA
vij = max {bi — By — My (1— i) + uij, 0} (i, j) € A (3.7)
bj = Z Vij Vje®B (3.8)
i:(4,7)EA
uij < (Tf‘ - Tf) Ryi;  V(i.j) €8 (3.10)
u =0 Vi € B (3.11)
vgj = min {E, Vit + (T—f— Tja — Tf) R" — M (2 — ysj — Yit) } V(i,j) €C (3.12)
vij 2 b —Ma(1—z5)  V(i,j)eC (3.13)
S zj=uy Vi€®B (3.14)
HNNEE
> zi=yx Vie® (3.15)
j:(i,5)ec

Yij, Rij € {0, 1},bi, Uij, Vij € Rzo,vgj e R.

The objective function 3.4 minimizes the total layover time between blocks and the number

of vehicles. Constraints 3.5 and 3.6 guarantee that each block follows exactly one preceding
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block or a depot block and is followed by exactly one subsequent block or a depot block,
respectively. Constraints 3.7 and 3.8 determine the SOC at the start of block j € B based on
the SOC at the beginning of the preceding block i € B, the energy consumption during block i,
and the energy gained between the blocks i and j. Note that vs; = bs + us; when yg; = 1 (that
is for each run) in 3.7. Then, we know from 3.8 that b; = by + us;. Therefore, initial SOC of
each run can vary by artificially charging from s to the first block in the current horizon, and
we can ensure that the initial SOC for each run is a variable. Constraints 3.9 ensure that the
SOC does not exceed the maximum battery capacity, and EVs have adequate SOC to complete
each block ¢ € B without running out of energy. Constraints 3.10 guarantee that the energy
gained between two consecutive blocks does not exceed the maximum amount of energy that
can be gained during the layover time between those blocks. Constraints 3.11 enforce that no
daytime charging takes place if block ¢ is the last block of the horizon.

The set of constraints 3.12 - 3.15 account for the feasibility of the next horizon’s operations.
Constraints 3.12 calculate the SOC at the beginning of block j € B on the next horizon, after
serving block i € B on the current horizon. This calculation takes into account the SOC at
the end of block ¢ and considers the amount of energy gained between blocks ¢ and j, where
(i,7) € C. To establish the connection between block j € B on the next horizon and block
i € B on the current horizon, we introduce constraint 3.13. This constraint ensures that if
zij = 1, the SOC vgj at the beginning of block j is sufficient to serve that block. Constraints

3.14 ensure that each block j that start from the depot on the next horizon is preceded only
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by one block ¢. Similarly, constraints 3.15 ensure that each block ¢ that ends at the depot on
the current horizon is succeeded by only one block in the next horizon.

Constraints 3.7 and 3.12 in their current form involve min and max functions with variables,
which is quite straightforward to deal with by many commercial solvers without the need for
linearization. However, it can still be useful to remove the non-linearity to possibly accelerate
the solution. To this end, we replace constraints 3.7 with the set of constraints 3.16 - 3.18 and

constraints 3.12 with the set of constraints 3.19 - 3.22.

vij > by — B +uij — My (1 — y5) v(i,j) € A (3.16)

vij < by — By +ugy — My (1 — i — 45) V(i,j) € A (3.17)

v <M1 (l—azy)  ¥(,j) €A (3.18)

v, <B Y(i,j)ec (3.19)

vy Sva+ (T+TP = TPV R~ My 2=y —ya)  V(ij)eC (3.20)

vi; > B — Many; V(i,j) el (3.21)

vl > v+ <T+Tj“ —Tf) R =My (3—yoj —yit —mij)  V(i,j) €C (3.22)

Tij, Yij, nij € {0,1}, b5, wij, vij € Rxo,v;; € R.



63

TABLE XI: Sets and parameters used in the MILP for the BCP.

Set Definition

A set of all feasible arcs connecting two consecutive blocks within the horizon, A =

EU (s x B)J (B x t), where s and t indices denote the depot

set of timetabled bus blocks

set of arcs connecting two consecutive blocks over night 4 (first, current horizon) and j (second,

next horizon), C = { (i,7)i,j € BAL < (T+ e — Tf) < U}

& set of arcs connecting two consecutive blocks ¢ (first, current horizon) and j (second, current
horizon), 8 = {(z’,j)|i,j EBANiIAFAL< (Tf —Tf) < U}

QR

Parameter Definition

B battery capacity measured in time units

B; energy consumption of block i € B U {s} measured in time units, and Bs =0

K’ a big number representing the vehicle cost measured in time units

L minimum admitted recharging time between two consecutive blocks

M, big number, that is M; > B + max {(T + max;eqg TY ) RY, max;eq R‘;Tf‘}

M big number, that is My > B+ 2M;

R? rate of recharge during day, i.e., energy (in time units) gained by recharging in one unit of
time, e.g., R® minutes of driving range is gained by recharging a bus for one minute

R” rate of recharge during night, i.e., energy (in time units) gained by recharging in one unit of
time, e.g., R minutes of driving range is gained by recharging a bus for one minute

T end of planning horizon in time units

T start time of block i € B

T? end time of block i € B

U maximum admitted recharging time between two consecutive blocks

w’ weight factor for recharging time between two consecutive blocks

3.4 Heuristic solution approaches

The SDEVSP is a known NP-hard problem, presenting a computational challenge for finding
an optimal solution. To tackle this problem, we propose a two-step heuristic solution approach.
In the first step, our objective is to identify suitable values for K and W that enable the
generation of blocks where the service time for each block does not exceed the vehicle range.
We use the method proposed by Cokyasar et al. (2023) to determine the suitable values for K

and W, then we use the resulting blocks generated in the previous step and solve the BCP. The
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TABLE XII: Variables used in the MILP for the BCP.

Variable Definition

b; state of charge at the beginning of block ¢ € B U {s} measured in time units, b; € R>g

Nij auxiliary binary variable used to linearize the min function, (i, j) € C

Wij energy gained between blocks ¢ and j measured in time units on current horizon, wu;; €
R>o, (4,j) € A

Vij state of charge at the beginning of block j on current horizon after serving block ¢ on current

horizon measured in time units, vi; € R>q, (4,j) € A

Uy state of charge at the beginning of block j on next horizon after serving block ¢ on current horizon
measured in time units, vj; € R, (4,5) € C
Tij auxiliary binary variable used to linearize the max function, (4,5) € A
1 if block j on current horizon is served after block i on current horizon, (i,5) € A
Yis 0 otherwise
1 if block j on next horizon can be served after block i on current horizon, (i,j) € C
i 0 otherwise

BCP aims to generate an optimal schedule for electric vehicles based on the given blocks and
their associated start and end times, taking into account charging requirements. Since the BCP
is a variant of the SDVSP model with resource constraints, it is NP-hard. We introduce two
solution algorithms to solve large-scale instances: A divide-and-conquer (DaC) algorithm and
a greedy heuristic algorithm. In the following Sections 3.4.1 and 3.4.2, we elaborate on these
solution algorithms in detail. Additionally, we present a computational analysis in Section 3.5.2,
where we evaluate and compare the performance of the DaC and the greedy heuristic algorithm

with an MILP solver.

3.4.1 Divide-and-conquer (DaC) algorithm

Divide and conquer (DaC) is well-known algorithm (Blahut 2010). The idea behind the

DaC algorithm is to break down the large-scale BCP into smaller and manageable subproblems.
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The subproblems at adequately small size (e.g., 20 blocks) can be solved independently using
commercial solvers. Once the subproblems are solved, the solutions are combined to form
an overall solution for the master problem. This combination step ensures that the solution

obtained is feasible as Lemma 3 (see Appendix for proof) denotes.

Lemma 3. Let M be the master problem and &P be a set of subproblems, that M = Upe@ p. If

each subproblem p € ®P has a feasible solution X, then X = |J Xp 15 a feasible solution

pEP

for M.

In order to break down the large-scale BCP into smaller subproblems, we employ the
Kernighan-Lin (K-L) bisection algorithm, as introduced by Kernighan and Lin (1970). The
Kernighan-Lin algorithm is a graph partitioning technique that optimizes the division of ver-
tices into two sets, aiming to minimize the number of edges (cut size) connecting the sets.
By iteratively swapping pairs of nodes between sets based on gain calculations, the algorithm
efficiently refines the partition until reaching a locally optimal solution.

To apply the K-L bisection algorithm in the context of the BCP, we begin with representing
the problem as a graph. Each block is represented as a vertex, based on the set B, and the
relationships between the blocks are captured as edges, based on the tuple set & The K-
L bisection algorithm then aims to partition this graph into two subgraphs with the goal of
minimizing the number of edges between the partitions while ensuring approximately equal
number of vertices in each partition. This partitioning is achieved through an iterative process

that involves swapping vertices between the two partitions to maximize the reduction in the
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number of edges between them. Using this method, we attempt to minimize the optimality
deviation caused by partitioning.

While the K-L algorithm is originally designed to partition a problem into two subproblems,
we aim to divide the problem into a larger number of subproblems. To do this, we can repeat
the K-L algorithm multiple times. In each iteration, the algorithm partitions a subproblem
into two subproblems by dividing the corresponding graph representation. The first iteration
applies the K-L algorithm to the original problem, resulting in two subproblems. Subsequent
iterations apply the K-L algorithm to each subproblem from the previous iteration, dividing
them into two subproblems each.

Let | M| represent the number of blocks in the master problem and [p| represent the maxi-

mum number of blocks that can be solved using commercial solvers within a reasonable time-

frame. The target number of subproblems is then m = %. This would require n = [log5"|
iterations, and in each iteration k = 1,...,n the number of partitionings is 2¥~! resulting in

a total of 2™ — 1 partitionings. The final number of subproblems would then be 2". Figure 13
illustrates an example of partitioning results. In this case, there are 12 blocks (]JM| = 12), and
let’s assume the largest problem size solvable by commercial solvers is 3 blocks, i.e., [p| = 3.
Consequently, we need to divide the problem into m = 1—32 = 4 subproblems. This requires
n = [logy4] = 2 iterations and results in 22 — 1 = 3 partitionings. Note that, ideally, we
divide the problem into a reasonably large number of subproblems to fully exploit the potential

for parallelism and solution efficiency. However, dividing the problem into a larger number of
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subproblems leads to a natural decrease in solution quality. Therefore, we carefully consider

this trade-off to determine an appropriate value for m.
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Figure 13: An example of partitioning a problem into subproblems.

3.4.2 Greedy algorithm

The greedy algorithm in Algorithm 2 iteratively assigns blocks to vehicles in a way that

minimizes the number of vehicles needed. The algorithm follows a greedy strategy, making
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locally optimal decisions at each step. It is one of the traditional methods to solve scheduling
problems and is similar to the earliest due date rule presented in (Sule 2007, pp. 152). The
algorithm begins with sorting the set of blocks B, based on their start times 7;*. We initialize
various variables, including b;, u;;, and u;j, to zero. Additionally, we set bgg) = B.

Next, we define bf as the net energy consumption until the end of block 4. It is computed
by summing the consumption of all preceding blocks in the chain up to the previous block,
and subtracting the sum of all charging values u;; that occurred between those blocks. All bf
values are initially set to zero. To begin, the algorithm generates the first vehicle {4y by adding
the first block B(0) to the itinerary. The net energy consumption for this vehicle is set to the
consumption of the first block, Bg ). After removing the first block B(0) from B, we initialize
the vehicle counter, denoted as v, and the block counter, denoted as k, to zero.

The algorithm runs until all blocks are assigned to vehicles. Within the while loop, the first
condition checks if a vehicle has at least one block already inserted. If not, the first block in
the current set of blocks is inserted. For a given block ¢, which represents the last block in the
current vehicle, and a block j currently under consideration for insertion, temporal conditions
are evaluated. These conditions compare the start time of block j with the start time of block
i to ensure chronological feasibility for both during the current horizon and also for the next
horizon. Temporary variables u, b, v/, and b?, are calculated. If the SOC conditions are met
for these variables, indicating sufficient energy levels, the evaluated block is inserted into the

current vehicle.
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The first condition checks if the overnight charging v’ is greater than or equal to the net
energy consumption if the current block is inserted into the itinerary. This guarantees that there
will be enough battery capacity for the next time period to continue the sequence of blocks.
The second condition verifies that the SOC b; of the last block in the vehicle is greater than
or equal to the energy consumption B; of that block. Lastly, the SOC level after completing
block i (i.e., b; — B;) and charging the vehicle with w is checked to determine if it is sufficient to
execute block j. If any of the SOC conditions are not satisfied, the block counter k or the vehicle
counter v is incremented accordingly. When a block is successfully inserted, it is removed from

the set of blocks ®.

3.5 Numerical Experiments

In this section, we provide an overview of our experimental design and data in Section 3.5.1,
compare the performance and limitations of the Greedy, DaC, and the MILP solver methods in
Section 3.5.2, and conduct case studies in Section 3.5.3 to reveal key takeaways on large-scale,

real-world transit services.

3.5.1 Design of experiments

We conducted numerical experiments in Austin, TX and the Chicago Metropolitan Area
transit networks. We utilized Capital Metropolitan Transportation Authority (CapMetro) net-
work for Austin, and the Chicago Transit Authority (CTA) and the PACE Suburban Bus net-
works for Chicago through General Transit Feed Specification (GTFS) data (General Transit
Feed Specification 2022). CapMetro operates 75 bus routes, and Chicago agencies collectively

operate a total of 325 bus routes (Auld et al. 2016). The locations of these routes and depots
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Algorithm 2: Greedy algorithm pseudocode

Input : B, B;, B, C, RS, R*, T®, T’ T
Output: ¢ > A set storing blocks of vehicles.
Function GREEDY():
SORT(B, T*);
bi, b = 0 Vi € B; uij 0 ¥(i,j) € A;uf; + 0Y(i,]) € C; byo) < B; b§ + Baoy;
Yo+ {}
Vo Yo U{B(0)};
B+ B\ B(0); > Delete first block.
v <+ 0; > Index of vehicle id.
k <+ 0; > Counter for block indices of 3.
while 8 # {}, do
if |Vy] # 0, then
i+ Uu(|W); > Last block in ¢, is 4.
J — B(k); > The k' block in B is j.
if ¢ # j and temporal conditions hold, then
u e min (B = b, + By, (Tp — T)R);
b« b; — B; +u;
W + min (E—b—i—Bj,(T-i—TS)(O) _Tf)RV);
b — bd + B; —u';
if v/ > b® Ab; > B; Ab> Bj, then
Vo <~ VU {‘]}, Uj < U;
bj < b; u’l7 —u'; bf — b?;
B B\ {5}
else
if k41 < |8|, then
| k<« k+1;
else
| vev+1; U« {}; k< 0;

else

if k+1 < |8|, then

| k<« k+1;

else

| vev+1; 0« {}; k0

else
Vy Y U{B(0)};
| b@(o) <~ E; bf — BQ?(O); B+ B \ @(0),

V= Uweqon,...,or %'

used by these agencies are indicated in Figure 14. With the data provided, we identified 17 bus
depots in Chicago and verified the number and locations through official websites of the agen-

cies; however, we could locate four bus depots in Austin but could not verify neither the number
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(a) Austin, TX. (b) Chicago metropolitan area.

Figure 14: Maps showing the case study regions and depot locations and routes of the three
transit agencies.

nor the locations from other sources. To obtain the necessary trip schedule data, we referred
to the GTFS. For CTA trips, we utilized the route-to-depot mapping information available in
(ChicagoBus 2023) to assign trips to their respective depots. For CapMetro and PACE routes,
we did not find any mapping information. Therefore, we computed the mid-point of each trip
and assigned it to the closest depot.

The battery capacity B = 120 minutes. The cost parameter K’ = 50,000 seconds. The
values of M; = 10% and My = 3 x 10%. The planning horizon T' = 86,400 seconds, i.e., 24
hours. The weight factor for recharging time between consecutive blocks W’ = 1. The revenue

trip information, i.e. start and end times, and locations, are obtained from the GTFS data
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(General Transit Feed Specification 2022). However, data for deadhead travel times is not
available, so we assumed an average speed of 30 mph and used Manhattan distances as a basis
for estimating deadheading travel times. The battery consumption B;’s are calculated as a
summation of revenue trip and deadhead trip travel times within a block. For the parameters
L and U, we set L = 0 and left the upper bound U unrestricted. For our analysis, we consider a
40-foot bus for both DVs and EVs. The assumed vehicle energy consumption rate £ = 220 kW
(Chicago Transit Authority 2022). To determine the EV battery capacity, we use the equation
R* = EB, which yields a battery capacity of 440 kWh for an EV range of two hours. The
parameters are summarized in Table XIII.

Regarding the charging infrastructure, we considered both fast charging and slow charging.
Overnight charging utilizes slow charging, while daytime charging utilizes fast charging. The
power for fast charging is represented by P°® = 450 kW, while slow charging is represented by
PY = 125 kW. To determine the rates of recharge, we can apply the formulas R’ = %6 and
RY = %. These calculations yield recharge rates of R’ = 2.045 and R” = 0.568, respectively.

In words, charging a bus for one minute overnight or during the day increases the SOC by 0.568

minutes or by 2.045 minutes, respectively.

TABLE XIII: Parametric values used.

B (minute) K (%) My Mo R? Jind T (minute) W' ()
120 50000 10° 3 x 108 0.568 2.045 86400 1
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3.5.2 Computational performance of the heuristic methods

We conduct an analysis to reveal the computational performance of the Greedy and DaC
methods, comparing them to the MILP solved by Gurobi using |B| as a problem size determinant
lever. We utilized data from a depot located in the Chicago metropolitan area. The parametric
design outlined in the previous section served as the baseline. We randomly selected a subset of
trips from the available trips of this depot with |B| € [10, 20, 30, 40, 50, 100, 200, 300] following
a uniform distribution for the selection probability. A total of 2,230 instances were solved using
the three methods, with a computational time limit of 1,200 seconds per instance.

In the Greedy method, it is assumed that all buses begin their daily trips with a fully
charged battery. However, in the proposed MILP model, we allow the model to determine the
required initial battery level dynamically. This assumption is made in the Greedy algorithm
to simplify the model and enable it to handle large-scale problems more efficiently. To ensure
a fair comparison between the Greedy, DaC methods, and the MILP solver, we change the
proposed MILP model by incorporating an additional constraint. Constraint (3.23) ensures

that the initial battery level of the buses is equal to their battery capacity.

Vgj = Fysi Vie®B (323)

All computations were performed on a workstation equipped with an Intel® Xeon® Gold
6138 CPU @2.0 GHz, 128 GB of RAM, and 64 cores. The Python 3.8.8 interface to the
commercial solver Gurobi 10.0 (Gurobi Optimization, LLC 2020) was employed to solve the

problem instances.
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The computational performance of the MILP model solved with Gurobi, as well as the
Greedy and DaC solution approaches, are reported in Table XIV. The first column specifies
the number of trips, while the second column indicates the number of instances solved for a
given number of trips. For the MILP approach, the first column represents the number of
instances where optimality was achieved. The second column for the MILP shows the average
MIP gap percentage, which measures the difference between the objective value of the best-
known feasible solution found and the best lower-bound found. The Greedy column displays the
average percentage A gap, indicating the difference between the solution reported by the solver
and the solution found by the Greedy method. The DaC columns provide information on the
number of times each scenario is divided into subproblems, m, as well as the average percentage
A gap between the solution reported by the solver and the solution found by the DaC method.
A negative average percentage indicates that the solutions obtained by the Greedy or DaC
methods were superior to those achieved by the MILP approach. Note that in these instances,
MILP actually did not reach an optimal solution.

In the analysis presented in Figure 15, it is evident that utilizing the MILP approach through
a solver is only effective for handling small-scale problems. Comparatively, the DaC demon-
strates slightly better performance compared to the Greedy approach with some exceptions
reported on Table XIV. Furthermore, the results shown in Figure 15a indicate that as the num-
ber of subproblems (i.e., the number of times a problem is divided) increases, the quality of
the solutions decreases. However, despite the increase in the number of subproblems, there is

an improvement in solution quality for larger cases (e.g., 100, 200, and 300 trips) as shown in
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TABLE XIV: Computational performance of the heuristic methods

4 Tyips  # Solved MILP Greedy DaC
# OPTS Avg. MIP gap (%) Avg. A gap (%) m  Avg. A gap (%)
10 1000 999 7.51E-06 11.69 2 9.13
20 500 497 4.69E-05 12.52 2 6.97
30 500 493 1.55E-04 13.35 4 17.76
40 100 98 1.97E-04 15.02 2 7.49
50 100 94 5.60E-04 16.20 4 15.81
100 10 8 0.035 15.39 2 8.00
200 10 0 15.5 3.65 4 -1.01
300 10 0 37.6 -21.74 4 -25.87

Figure 15b. This is because the solution quality of the Greedy and DaC approaches is compared

to sub-optimal solutions obtained from the MILP solver.
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DaC
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Number of trips Number of trips
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Figure 15: Gap statistics for the three solution approaches.
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The solution times for the different approaches are visually represented in Figure 16a and
16b. These figures clearly demonstrate that the Greedy method consistently outperforms the
other approaches in terms of solution time. The DaC method also shows a faster performance
compared to the MILP solver, although it is slightly slower than the Greedy method. However,
it is important to note that as the problem size, measured by the number of trips, increases,
the solution time for the DaC method experiences a substantial increase.

Taking the problem size variability into account, each method exhibits its own strengths.
The MILP solver performs well for small cases, where its optimal solutions can be effectively
utilized. The DaC method proves to be effective for medium-sized cases, offering a balance
between solution quality and computational efficiency. The Greedy method, on the other hand,
excels in handling large cases by providing rapid solutions that are reasonably close to the
solutions obtained by the MILP solver, for solution quality refer to Table XIV and Figure 15.
This demonstrates the efficiency of the Greedy method in terms of both speed and solution
quality. As the Greedy is the fastest approach for very large-scale instances and finds reasonable

solutions, it is utilized in Section 3.5.3.

3.5.3 Large-scale case studies

Case studies were conducted to provide insights for key metrics, such as share of EVs,
number of EVs per each DV replaced, and share of revenue trip time over the day. These
studies also demonstrate the applicability of the proposed approach at large-scale problem
instances. We adopted the CTA, PACE, and CapMetro data as explained previously. The

number of revenue trips for CTA, PACE, and CapMetro are nearly 18,700, 7,300, and 5,400,
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Figure 16: Time-to-best-solution statistics for the three solution approaches.

respectively. We consider three vehicle range lever: 60, 120, and 150 miles and three EV
deployment target lever: Low, medium, and high. The deployment target is controlled through
parameters K and W, which are described in the Section 3.3. We also ran a DV only scenario
for each agency by solving the SDVSP allowing longer blocks followed by a version of the BCP
without electrification constraints. Similarly, the leftover, longer than EV range, blocks in each
electrification scenario are also chained into DVs using that version of the BCP.

Figure 17 presents the percent share of EVs and DVs (i.e., the fleet decomposition) on
the left y-axis, and the total number of buses on the right one. Since our method does not
implement hard constraints on the block length, 100% electrification is not guaranteed but as
the results reveal, a near 100% electrification is possible at the expense of a substantial fleet

size increase. These are 54%, 59%, and 58% for CTA, PACE, and CapMetro, respectively, in
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the case of high deployment and 150-mile range compared to DV only. Note that “DV” on

x-axis of Figure 17 and figures to be presented hereafter denotes the DV only scenario.
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Figure 17: Percent share and number of buses.

Figure 18 presents the number of EVs replacing one DV. This metric is of particular interest

to transit agencies as it informs on an expected fleet size with EV deployment targets. Number

of EVs in a given scenario is divided by the difference of DVs in the DV only and the given
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scenario to obtain this ratio. The ratio decreases as the EV range increases. This is intuitive
because EVs become similar to DVs with increasing EV range. We do not observe such a strong
relationship between deployment target and replacement ratio for a given EV range with the

exception of 60-mile range, where there is a substantial decrease moving from low to medium.
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Figure 18: EV per DV replaced by deployment target.
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The block efficiency is demonstrated in Figure 19 and is simply the ratio of revenue trip time
to the entire block time. Comparing the high-deployment, 150-mile scenario to DV only, one
observes an 18% reduction in the share of revenue trip time for CTA and CapMetro, whereas a
20% reduction is observed for PACE. Since blocks become shorter with higher EV deployment,
there are more deadheading trips to and from the depot, which explains this change. Moreover,
with higher EV deployment, there is more layover at the depots due to recharging, which is
demonstrated in Figure 20. The vehicle schedule efficiency is calculated by dividing the revenue
trip time to the entire horizon. In this case the efficiency decrease is by 35% for CTA, and 37%
for PACE and CapMetro. Compared to the block efficiency, the drops are even more dramatic

because there is also time loss due to recharging, and not only extra deadheading.

3.6 Conclusion

In this study, we proposed a two-stage solution framework to solve the SDEVSP. We solve
the SDVSP to generate blocks in the first stage and then solve the BCP to form vehicle schedules.
While we utilized traditional solution methods to solve the SDVSP, three solution approaches,
namely MILP, DaC, and Greedy, were developed. An extensive computational experiments
conducted to compare these methods revealed solution quality and computational time trade-
off. We observed that the Greedy method can solve large-scale instances considerably fast, and
its solution quality is comparable to that of the MILP within reasonable solution time limits.

Utilizing the greedy method, we conducted case studies for three transit agencies: CTA,
PACE, and CapMetro. Near 100% electrification is possible with a replacement ratio of ~1.6

EVs per DV and a 150-mile range. However, vehicle schedule efficiency would decrease by
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~35%. These results can be considered optimistic given our assumptions on depot size and
charger availability. On the other hand, we do not consider opportunistic charging at the
terminal stops, which would increase the schedule efficiency.

The SDEVSP is quite complex, and there are yet more aspects that are not considered
in this study. Some of these are i) charger availability, ii) charger choice, e.g., pantograph or
traditional, iii) charger level selection, e.g., 150 kW and 450 kW, iv) charger location including
en-route charging, v) non-linear charge and discharge profiles, and vi) vehicle sizes, e.g., 40 ft
and 60 ft. The readily difficult problem can easily become intractable considering a combination
of these aspects. Therefore, we may tackle these problems in stages. The proposed two-step
solution approach only finds a solution to the dauntingly challenging problem, and it can be
enhanced. The greedy solution method is flexible to incorporate charger availability, charger
level selection, and non-linear charge profiles. Future studies will improve the greedy algorithm

and propose methods to address a subset of these aspects.



CHAPTER 4

ELECTRIC BUS SCHEDULING AND CHARGER LOCATION

4.1 Introduction and Background

Transit bus electrification holds significant importance in the broader context of sustainable
urban transportation. The transition from traditional fossil fuel-powered buses to battery
electric buses (BEBs) offers a range of benefits, encompassing environmental, economic, and
social aspects The White House (2021). Some of these are reduced greenhouse gas emissions,
energy efficiency, lower operating costs, and noise reduction. Yet, electrification in the transit
bus context revives essential infrastructural and operational problems as well.

One such challenge is the need to reassign buses for revenue-generating service trips, re-
ferred to as the vehicle scheduling problem (VSP), due to the limited driving range of BEBs.
Additionally, there is the task of strategically placing charging locations to accommodate charg-
ing activities. The use of pantograph chargers, which supply power from the top of the bus
through scissor-like arms, introduces issues related to space occupancy and cost Daliah (2023).
A growing concern is the optimal placement of these chargers across the transit service network,
including terminal garages, to ensure seamless BEB operations.

A service trip, or simply a trip, is defined as a series of stop visits along a bus route
that generates revenue. While bus garages are primary locations for housing chargers, placing

chargers at trip end locations could facilitate charging activities. Regular recharging at these

84
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locations could make BEBs function similarly to conventional diesel-powered buses. Resolving
this necessitates solving a facility location problem (FLP) to identify optimal locations from
a candidate set for housing these chargers. FLP decisions often have strategic implications,
as altering or retracting them can be challenging and costly. Identifying the candidate facility
set requires consideration of vehicle schedules as well. Perumal, Lusby, and Larsen (2022b)
approached the VSP as a tactical planning problem, recognizing the need to address it whenever
changes occur in the transit system, such as alterations in driving schedules, bus maintenance
requirements, and spatial or temporal adjustments to bus routes. To address both concerns
concurrently, we introduce the electric bus scheduling and charger location (EBSCL) problem.

In the existing literature, numerous studies have extensively explored the planning of charg-
ing facilities for BEBs. For instance, Liu, Song, and He (2018) presented a robust optimization
model aimed at minimizing the total investment costs associated with deploying charging in-
frastructure for BEBs. Expanding on this work, Liu, Qu, and Ma (2021) broadened the scope
by incorporating seasonality and power matching into charger deployment. This extension
highlighted the significant impact of BEB energy consumption characteristics on the optimal
selection of charging station locations. A comprehensive approach was adopted in An (2020) by
integrating charging facility planning and fleet scheduling, addressing uncertainties in charging
demand through a stochastic integer optimization model. Meanwhile, Uslu and Kaya (2021)
proposed a model that focuses on determining optimal charging station locations and capacities,

with an assumption of limited waiting time. Lin et al. (2019) and Li et al. (2022) approached
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BEB charger deployment as a multi-stage planning problem, optimizing station locations at
various stages of the planning process.

In addition to determining optimal charger locations, the scheduling of the BEB fleet
emerges as a critical concern. Niekerk, Akker, and Hoogeveen (2017) made significant con-
tributions by incorporating BEBs into the classical VSP, taking into account driving range
limitations and linear charging. A more recent study by Cokyasar, Verbas, and Auld (2023b)
has further delved into BEB fleet scheduling, addressing the single depot VSP and proposing
a heuristic solution approach. This innovative approach involves generating short tours that
a BEB can serve, employing a mixed-integer non-linear program to combine tour tuples and
ultimately generate bus runs. Various aspects of BEB fleet scheduling, such as charging event
time, uncertainty in travel time, and energy consumption, have also been addressed by other
studies Bie et al. (2021), Wen et al. (2016), Xiong et al. (2022), Yildirim and Yildiz (2021).

Existing optimization approaches often fall short by either assuming predetermined charging
facility locations or neglecting the intricacies of the BEB scheduling. This gap in the literature
underscores the need for more comprehensive models that consider both charger location and
fleet scheduling in an integrated manner. Recognizing this critical interdependence, certain
studies have introduced integrated models to address this synergy effectively Alwesabi et al.
(2021), Liu and (Avi) Ceder (2020), Wang, Liao, and Lu (2022). Nonetheless, limited attention
has been given to EBSCL problem. Our research seeks to bridge this gap by focusing on
optimizing the scheduling of BEBs and strategically determining charging locations, taking into

account the dynamic nature of routes. By acknowledging and addressing the EBSCL problem,
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our study aims to contribute novel insights and pave the way for more comprehensive and
effective solutions, thereby advancing the current understanding of sustainable urban transit
systems.

In the subsequent sections of the paper, Section 4.2 formally describes the EBSCL prob-
lem and presents the mixed-integer linear programming (MILP) model formulation. Next, we
provide details about the data used for numerical experiments in Section 4.3. Following that,
we present a comprehensive overview of the case study design and discuss parametric choices
to evaluate the performance of our proposed solution algorithm in Section 4.4. Finally, Sec-
tion 4.5 concludes the study by summarizing the key findings and contributions of our work

and discussing potential future research directions.

4.2 Problem definition

We now formally describe the EBSCL problem, which we model as an MILP. To ease
reading, we use calligraphic letters to represent sets (e.g., A ), uppercase Roman letters for
parameters (e.g., B), lowercase Roman letters for variables and indices (e.g., y;;), and Greek
letters (e.g., a) as superscripts to modify parameters. Let 7 represent the set of timetabled
bus trips, and let & denote the set of all feasible arcs connecting consecutive trips. The binary
variable y;; takes the value 1 if trip j is scheduled to follow trip 4, forming valid sequences of
bus trips. Chargers can be located at a set of candidate facilities, denoted by F that includes
the garage denoted by d. This set is further partitioned into a subset F;; C F representing the
candidate facilities which could be used in connection of trips ¢ and j, and U jyerFij = F.

The binary variable e;;; indicates whether recharging occurs between trips ¢ and j at facility
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f- We symbolize the single garage with two indices s and t, that is every bus run starts from
s and ends at t. Table XV and Table XVI provide definition of sets, parameters, and variables

used in the MILP model. The model to solve the EBSCL problem is formulated as follows.

min Y- g+ Cyu+ Y O (T =T )y (4.1)
fEF €T (i,7)€8
subject to,
Z Yij = 1 ViedJ (4.2)
j:(i,5)EA
Y wy=1 Vjed (4.3)
i:(4,7)EA
Do e <y V(i) ea (4.4)
f€Fi;
wijp < Beyjy  V(i,5) € A, f € Fy (4.5)
Y ejy<Mzy VfeF (4.6)
(4,4)€A

Vj; = mMax {bz — Bi — Eijyij — Z (Ez'f + Efj — Eij) €ijf + Z Uij f
ngij foTij (47)

—M(l—yi]‘),O} V(’l,j)e.ﬂ

b= > w; VjeT (4.8)
4:(4,7)EA
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bi—Bi— Y. Eyy;>-M Y ey Vied (4.9)
bi—Bi— Y. Eiep>0 Vied (4.10)

b, — B; — Z Eireijr + Z Uij f <B Vied (4.11)
bs—Bs— Y Byeqjp >0  Vjed (4.12)
fegsj
be—Bs— > Eyegjp+ Y uy<B  Vjied (4.13)
fegisj fe‘q}sj
by < B (4.14)

Z Fij uijf
0< (Tﬁ — Tiﬁ) Yij — | Bijyij + Z (Eif + Efj — Eij) eijr + feRig
1€% (4.15)

<D+ Meijd V(Z,j) €é

The objective function (4.1) minimizes the weighted total cost, including the cost of overall
time between two consecutive trips, the vehicle costs associated with each scheduled run, and
the charger facility costs. Constraints (4.2) and (4.3) ensure that each trip is both preceded
and succeeded by exactly one other trip, forming a valid sequence. Constraints (4.4) guarantee
that a BEB can recharge between trips ¢ € 7 and j € J if they are connected. Constraints
(4.5) ensure that the charging amount between consecutive trips does not exceed the battery

capacity. Constraints (4.6) enforce that a charging facility must be located at f € F if it is used
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TABLE XV: Sets and parameters used in the MILP for the EBSCL.

Set Definition

A set of all feasible arcs connecting two consecutive trips within the horizon, A =
EU s} x T)U (T x {t}), where s and ¢ indices denote the garage buses are dispatched from
and return to, respectively

& set of arcs connecting consecutive trips ¢ € J (first) and j € T (second), § = {(i,j) li,7 €
TANi#£jAL< (Tj"‘—Tf—Eij) < U}

F set of candidate charging facilities f € &, and F includes d, that represents the garage charging

Fij subset of candidate charging facilities that provide reasonable deflection between trips i € T
and ] S fT, U(iyj)eﬂ.%j =

T set of timetabled bus trips

Parameter Definition

B battery capacity in time units

B; energy consumption of trip ¢ € 7 U {s} measured in time units, and Bs = 0

cr vehicle cost in time units

c’ weight for time spent between service trips

C}L charging facility cost at candidate location f € F in time units

D maximum duration a BEB is allowed to spend in layover between two trips, anywhere other
than garage, measured in time units

E;; energy consumption of traveling from last stop of trip i € T U F U {s,t} to first stop of trip

j €T UFU{s,t} measured in time units, e.g., for every minute a bus drives, it consumes one
minute of energy

L minimum admitted recharging and/or layover time between two consecutive trips

M big number

R’ rate of recharge, i.e., energy (in time units) gained by recharging in one unit of time, e.g., R®
minutes of driving range is gained by recharging a bus for one minute

T start time of trip i €

T’ end time of trip ¢ € T

U maximum admitted recharging and/or layover time between two consecutive trips

by at least one BEB. Constraints (4.7) and (4.8) calculate the state of charge (SOC) before
each trip, while constraints (4.9) — (4.11) maintain the SOC within feasible bounds. Constraints
(4.12) — (4.14) regulate the SOC at the beginning of each run. Constraints (4.15) set bounds
on the layover time between two consecutive trips. Here, layover time is defined as the time

that a BEB is not serving a trip, not deadheading between two trips, and not charging. To
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TABLE XVI: Variables used in the MILP for the EBSCL.

Variable Definition
bi state of charge (SOC) at the beginning of trip ¢ € 7 U {s} measured in time units, b; € R>
{1 if BEB recharges between trips i € 7 and 7 € I at facility f € %, (1,5) € A
“iaf 0 otherwise
Wijf energy gained between trips 7 and j at facility f € F;; measured in time units, u;j; € R>o, (4,]) €
A, [ ey
Vij SOC at the beginning of trip j after serving trip ¢ measured in time units, v;; € R>o, (4,7) € A
1 if a charging facility is placed at candidate location f € F
o 0 otherwise
1 if trip j is served after trip ¢, (4,j) € A
Yis 0 otherwise
Zij auxiliary binary variable used to linearize the max function, (i,j) € A

linearize constraint (4.7), involving a non-linear term with the max function, we introduce an

auxiliary binary variable, z;;. The linearization is achieved through the following constraints

(4.16) — (4.18).

vij 2 b — Bi = Eyjyij — Y (Big + Egj — Eyj) eijg + ) iy
feFi; fe%ij (4.16)

-M(1—yi) V() eA

vij < bi— Bi = Eyjyij =y (Eip + Epj — Eij) eijp + ) wijg
fEf?ij fegij (417)
=M (1 = yij — 2ij) v(i,j) € A

vij SM(1—zy)  V(i,j) e A (4.18)

€ijfs Yij, Tf, Zij € {0, 1}, b, wijr, vij € Rxg
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TABLE XVII: Parametric values used.

C¥(s) C” V (mph) R (kWh/mile) P (kW) D(s) M L(s) Us)
1,000 1 20 7.33 450 6,000 10° 0 10,800

4.3 Data

Our experiments use Chicago metropolitan region as a testbed. We randomly select a bus
garage of the transit agency Pace Suburban Bus that serves 60 trips. The trip information, i.e.
T and Ti’B are obtained from the General Transit Feed Specification (GTFS) data (General
Transit Feed Specification 2022). Figure 21 shows the location of the garage, the roadway links
used in these trips, and five candidate charging facilities. The parameters used are summarized
in Table XVII. We assumed an average speed of 20 mph and used Manhattan distances as a basis
for estimating deadheading energy consumption E;; in time units. The energy consumption
B; is calculated as the time difference between Tf and T7*. We consider a bus with battery
capacity B® = [60,90, 120] miles. To determine the BEB capacity in time units, we calculate
B= %, which yields a battery capacity of three hours for B = 60 miles.

Regarding the charging infrastructure, we consider fast charging. The power for fast charg-
ing is P = 450 kW. To determine the rates of recharge, we calculate R% = %, where R" is bus
energy consumption rate in kWh/mile. These calculations yield recharge rates of R% = 3.068,

that is charging a bus for one unit of time increases the SOC by 3.068 time unit.
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Figure 21: Candidate facility, garage, and trip locations in the case study.

4.4 Case study

In the case study, we run 15 instances of the problem considering B" = [60, 90, 120] miles
and C¥ = [1,1K,10K,50K,100K], where K denotes a thousand. The instances are solved

using the Python 3.6.9 interface to interface with the commercial solver Gurobi 10.0 (Gurobi
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Optimization, LLC 2020). Number of open facilities and the number of bus runs found by the
optimization shown in Figure 22 are key performance indicators. In Figure 22a, we observe
that the number of bus runs considerably decreases as vehicle cost C* increases. On the other
hand, the bus range B" does not always impact the number of bus runs.

Figure 22b demonstrates the change in number of open facilities for different B and C”.
A strong correlation between C¥ and the number of open facilities is not found, however the
number of facilities often increases as C¥ moves up. We observe that the number of facilities
can decrease when the range increases. When B" changes from 60 to 90 and 120 miles at
C” =1, we observe that the number of open facilities drops from two to one. In the case when
it is one, the only open facility is the garage, while an additional candidate facility is chosen in
the other case. We observe two open facilities in many cases because the combined travel time
from garage to a trip’s origin, servicing the trip, and from trip’s destination to the garage is
larger than B. This finding shows that more facilities can be needed when trip times are close
to the vehicle range.

In these results, we also analyze the magnitude of times spent for service, deadhead, charg-
ing, and layover. Figure 23 shows the percent share of a day spent for these four activities in
these 15 scenarios. As C" increases, we observe a larger service share indicating a higher vehicle

utilization.

4.5 Conclusion

The electrification trend, aimed at fostering a cleaner and sustainable environment, places

particular emphasis on transitioning from diesel buses due to their significant contribution to
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emissions. However, the conversion of these buses is a challenge owing to their long ranges
and fast refueling times. In this research, we tackle the EBSCL problem by formulating an
MILP model. Our objective is to optimize BEB schedules and strategically identify charging
facilities, especially at trip end locations. We illustrate the linearization process of the model,
offer comprehensive insights into the utilized data, and present case studies to showcase the
practicality of our proposed model.

The case study specifically examines a bus garage of Pace Suburban Bus in Chicago region,
encompassing 60 trips and considering five potential charging locations that coincide with the
terminal stops of the analyzed trips. While we can achieve optimality for this scenario, it is
evident that the problem scale is not merely substantial but reaches a magnitude that exceeds
the capabilities of off-the-shelf solvers. Addressing the scalability of the problem necessitates
the incorporation of heuristic or metaheuristic solution methods.

This investigation concentrates exclusively on the location aspect, assuming that each iden-
tified site has the capacity to accommodate sufficient charging infrastructure. In essence, the
study does not determine the charging capacity or schedule. Even with these simplifications,
we highlight the inherent complexity of the problem, and introducing these factors would only
amplify its intricacy. Moreover, the decision-making process for locations could be aggregated
across different garages within a single transit service agency, allowing vehicles from various
garages to recharge at locations overlapping with another garage’s service area. In conclusion,
our study marks an initial step in modeling and solving a substantial and intricate electrification

problem, leaving numerous avenues for future research and exploration.



CHAPTER 5

CONCLUSION AND POLICY IMPLICATIONS

5.1 Summary

The dissertation comprises three comprehensive papers addressing critical challenges in the
electrification of trucks and buses, offering insights into optimizing charging infrastructure,
vehicle scheduling, and electrification strategies.

The first paper introduces the Electric Vehicle Shortest Electric Charging Location-Allocation
(EVSELCA) problem, focusing on optimizing the charging infrastructure for electrified trucks.
By proposing a Mixed-Integer Linear Programming (MILP) model and innovative solution ap-
proaches such as clustering and Genetic Algorithms, the study provides a versatile framework
for strategically planning charging facilities. The paper emphasizes the significance of balancing
economic opportunities with the freight industry’s operational philosophy, addressing scalability
challenges and uncovering key factors influencing the electrification decision-making process.

The second paper addresses the Stochastic Electric Demand Vehicle Scheduling Problem
(SDEVSP), presenting a two-stage solution framework. Utilizing traditional methods like MILP
alongside dynamic and greedy approaches, the study compares solution quality and computa-
tional time trade-offs. The research reveals that the Greedy method offers efficient solutions

for large-scale instances, presenting a viable alternative to traditional methods. The paper’s
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findings underscore the importance of considering both electrification rates and vehicle schedule
efficiency in achieving optimal transit fleet electrification.

The third paper tackles the Electrification of Bus Scheduling and Charging Location (EB-
SCL) problem, formulating an MILP model to optimize Battery Electric Bus (BEB) schedules
and strategically identify charging facilities. While presenting a case study focused on a bus
garage in the Chicago region, the paper delves into the inherent complexity of the problem, ne-
cessitating the incorporation of heuristic or metaheuristic solution methods for scalability. The
study’s insights highlight the need for strategic charging infrastructure planning, considering
factors such as charger locations, capacities, and types, and serves as an initial step in modeling

and solving intricate electrification challenges for buses.

5.2  Policy Implacations

The government’s commitment to electrification is crucial for fostering sustainable trans-
portation, with a particular emphasis on the planning and development of electric bus and truck
infrastructure. A key policy initiative involves the establishment of a dedicated fund to strate-
gically invest in charging infrastructure planning for both trucks and buses. This fund aims
to address the intricate challenges associated with the electrification process by incentivizing
the adoption of innovative technologies, especially in the realm of charging infrastructure. For
instance, transit agencies and freight companies that strategically plan their charging infrastruc-
ture, considering factors such as optimal locations, charger types, and capacities, could qualify
for financial incentives. These incentives may encompass grants for fast-charging infrastructure,

allowing for the efficient electrification of both buses and trucks.
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In recognizing the pivotal role of charger costs in determining the feasibility of electrification
projects, policymakers are urged to prioritize measures that reduce financial barriers hindering
the widespread adoption of electric vehicles. Financial incentives, subsidies, and tax credits will
be introduced to alleviate upfront costs for charger installation, fostering public-private part-
nerships to share financial burdens and encourage collaboration between government entities
and private enterprises. Additionally, the policymakers should allocate funds for research and
development initiatives aimed at advancing charger technologies, seeking to reduce manufac-
turing costs and enhance charging efficiency. Standardization and interoperability guidelines
will be promoted to ensure compatibility with various electric vehicles, fostering accessibility
and reducing overall costs.

Balancing electrification goals with operational efficiency is a crucial consideration for pol-
icymakers, especially in the context of the SDEVSP. As the study reveals trade-offs between
high electrification rates and vehicle schedule efficiency, policy frameworks should emphasize
a harmonious blend of environmental and operational considerations when establishing elec-
trification targets for transit agencies. This requires a nuanced approach that appreciates the
multifaceted challenges posed by electrification and strives to strike a delicate balance.

Strategic charging infrastructure planning, specifically for battery electric buses, is a tar-
geted policy initiative that can significantly impact the efficiency of electrification. Policymakers
are urged to develop comprehensive policies that encourage transit agencies to optimize charg-
ing locations, considering factors such as terminal stops, charger types, and capacities. The

proposed Electrification of EBSCL model provides a foundation for such strategies. Finan-
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cial incentives and supportive frameworks can motivate transit agencies to strategically plan

charging infrastructure, leading to more efficient electrification outcomes for bus fleets.

5.3 Limitations

While the dissertation makes significant contributions to the electrification discourse, it
is essential to acknowledge certain limitations that provide avenues for future research and
refinement. Firstly, the exclusion of stochastic demand in the analysis constitutes a notable
limitation. Real-world transportation systems often face uncertain and dynamic demand pat-
terns, and the absence of stochastic considerations may impact the models’ ability to accurately
reflect the complexities associated with fluctuating charging needs. Future research endeavors
could explore stochastic demand models to provide a more comprehensive understanding of the
electrification challenges in the face of unpredictable usage patterns.

Secondly, the dissertation relies on linear profiles for charge and discharge, overlooking
the potential nonlinearity inherent in electric vehicle charging and discharging processes. The
simplification to linear profiles may not fully capture the intricacies of real-world charging
behaviors and could impact the precision of optimization outcomes. Future studies could delve
into nonlinear charge and discharge profiles to refine models and enhance their applicability,
accounting for variations in charging rates and battery behaviors that linear approximations
might overlook.

It is crucial to recognize the specific limitations related to charger allocation, particularly
in the context of electric buses. While the EVSELCA chapter successfully determines optimal

charger allocation for electric trucks, the subsequent chapters (SDEVSP and EBSCL) focus
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on charger location optimization without explicitly addressing the charger allocation aspect
for electric buses. In these chapters, the assumption that a sufficient number of chargers
are available leads to zero waiting times for buses during the charging process. While this
assumption facilitates a simplified modeling approach, it introduces a limitation by not delving
into the critical aspect of charger allocation for electric buses. Charger allocation, determining
how many buses each charger serves and the optimal distribution of charging resources, is a
crucial consideration to ensure efficient and realistic electrification planning. This limitation
signals an opportunity for future research to build upon the existing foundation and extend the

optimization framework to explicitly address charger allocation for electric buses.
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Appendix Proofs

Proof of Lemma 1. We divide the proof of Lemma 1 into two parts: first we prove z;‘ik <

Zc”ecrft,rem Qe > then 23, > 1. To prove 2}, < ZCiTECTft,TG‘CR e, fk» We use proof by contra-

diction. We suppose 2}, > req Qein k- From Constraint (2.10) we have 2, rxe < qe;, fks

cir€Cyfes
which if we aggregate both sides of inequality on ¢;,., Y cir€C, pore® Leir fht <> cir€C prre® deir fh
holds. Then, we can conclude that z}"ck > Ecirecrftﬂ’em Z¢,, fkt» Which indicates that for a given
feFand ke K, atallt € T, s there exist unused chargers. This is in contradiction with the

optimality of the z}k, and therefore our assumption that z}k > > @ eir fi 18 false, so

cir€C1¢,mE
z}ik < Zcire(),«fhrefk qe;, tx holds. To prove z}"ck > 1, from the condition of the Lemma 1, we have
chec,«ft,rem e, re > 1 and from Constraint (2.10) we know ¢, i < Zte%”f T, fkt, Which if
we aggregate both sides of inequality on ¢;;, ZCirecrft,'f’Em Zteffcirf Tey it = quecﬁﬂem Qeir
holds. Then, we can conclude that Zcirecrft,’f'em Zte% T fh > 1. This indicates at least
for one t € 7, ¢, Zci,«ecm,rem Te, kit > 1. So from Constraints (2.3), we can conclude
that for a given f € F and k € K, if Zcirecrft,”’em Geirfk = 1, then z;k > 1; otherwise,
chec;ft,reﬂe e;r fk = 0, and from first part of the proof we know z;‘ck < ch,recrfﬁem eiy fl> SO
z;ik =0. O

Proof of Lemma 2. To prove Lemma 2, we aggregate Constraint (2.10) on ¢;,., and we get

Z Leirflt = Z wfirfkt_ Z Te, fht-

Cir Eo'rft Cir EC’r'ft Cir eCvai,‘
reR reR reR
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If we suppose that all routes recharge at charger k in facility f at time ¢, then we have

Z czrfkt Z e, fht = Z deir fk-

cir€Ch ¢ cir€Chr ¢ cir€Chr ¢
reR reR reR

Based on the definition of 7, Fht and xfir Fht if a route recharges at charger k in facility f at time
t after serving customer c¢;,, a:?ir fht = 0 and xfjr flt = 1. Therefore, in the case that all routes
are recharging at the same charger and time, ZcmeCm e flit =0 and Zc“»eCrft xf frt = 1.

J E T

reR
If we aggregate Constraints (2.22) and Constraints (2.23) on ¢;,, we get

Yo odet D Togdensrt Y, Wen< Y b+ Y TH— Y e

Czrecrft Czrecrft Czrecrft Czrecrft Clrecrft Cirec'rft
relR relR reR relR reR relR
«
MY (1= gk + 72 i)
cir€C 1y
reR

and
A
D HTY-M D> = tesk =T ) S D eyt > TE plen s
Cirecrft Cirec'rft Czrecrft Czrecrft
reR reR reR reR
+) o Weghs
CiT‘ECTft
reR

where > ¢, ec,;, T8y = 0. If we assume T is small (T® — 0), then we can eliminate
reR

a'nd €. Based on Zczrecrft dczr + Zczrecrft wcz'rfk + Zcmﬂecrft Tcwchzrfk < Zczrecrft ¢t and
reER reR reR

Zczrecrft dczr + Zczrecrft wczrfk + Zczrecrft TCZquczrfk > ZCZT‘GC’!‘ft -M we can CODClude that
reR reR ER reR
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ZC'LTECTft wcirfk: S Zcirecrft t— Zcirecrft dcir - ZC'LTECTft Tg;,,-chlek Since t iS a nOn—negatiVe
reiR reR reiR reiR

variable and the model minimizes the we,, rx, we,, fx = 0. [

Proof of Lemma 3. If each subproblem p € & has a feasible solution X, then it means

that blocks in B, form one or more feasible bus runs. Each run in a given subproblem p € &

on the current horizon is connected to at least one run in the next horizon within the same

subproblem p € #. Since there are no constraints on charging capacity or garage space, merging

the solutions X, into X4 is analogous to solving separate problems for separate garages. [J
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Appendix Pseudocodes

Algorithm A.1: Preliminary functions (see e.g., NumPy (2022) for details)

Function ABs(a):

/* finds absolute value of a. */

return absolute value of a

Function ENUMERATE (A):
‘ /* returns index and item of 4. */

return index and item of A

Function InT(a):

/* finds integer part of a. */

return integer part of a

Function Ranp(a, b):
‘ /* finds a pseudo-random real number c between a and b. */

return c, such that a <ceR <b

Function RanDCHOICE(A, B (optional), n):

/* choose n elements from list (or set) A given a list of weights B. */

return Z, that is Z C A and |Z| =n

Function SorTGIVEN(A, B, R (optional)):
‘ /* sorts A descending given B if R = T'rue, otherwise sorts A ascending given B. */

return A sorted
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Algorithm A.2: Pseudocode for INITIALIZATION

Input : G, F,,., K, R, B, B, B¥, c~=0 T}k, Tci,,f
Output: I?CW, g?cir
Function INITIALIZATION():
/* Parameter C*=0 is the probability that a recharging will not occur after servicing a given
cluster, and Tf is the travel time for route r excluding service and recharging times. */
felosest o {3 §Cir —{}
/* f,}f\cir stores the facility that will be visited after serving c;.; visiting O denotes no
recharging. */
for r € R, do
for ¢;, € Cr, do
W <—; // a list of weights in [0, 1] based on F,,
fetosest(c;y) +~RANDCHOICE(SORTGIVEN(Fe,,., T2 ), W, 1);

Fe,, +RANDCHOICE([0, felosest (¢;,.)], [C*=0, 1 — C=0], 1);

for r € R, do

if F.,. =0 Vi € Gy, then

eseleet + RANDCHOICE(Cy, [(ABS((BL — BY —TF)/B))]);

/* [(ABs((BL — BY —T#)/B)))] denotes the minimum number of charging facilities need to

be visited. */

for ¢/ € Cselect do

f}d\c”, (C/) P fclosest(cl);

ﬁﬂir A {},
/* g?cir stores the charger type that will be used after c¢;r; 0 refers to not visiting a
recharging station. */
W <—; // a list of weights in [0,1] based on charger type
for r € R, do
for ¢; € Cr, do
if ., # 0, then
‘ (7?%“ +RANDCHOICE(K, W, 1);

else

L K, < 0
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Algorithm A.3: Pseudocode for CROSSOVER

Input : Sols, i, j
Output: newSols
Function CrossovErR():
newSols + {};
for element < 1 to |Sols(t)|, do
if RANDCHOICE([, ], 1) = ¢, then
‘ newSols(element) < Sols(i)(element);
else

L newSols(element) < Sols(j)(element);

Algorithm A.4: Pseudocode for MUTATION

Input : Sols, Pmutate
Output: newSols
Function MutaTion():

Nmutate «— INT(|SOZS|Pmutute);

elements to mutate.

newSols + {};

for i ERANDCHOICE(Sols, N™utate) do

else

incremented by 1

/* The percent of solution to be mutated is denoted by P™ut¢te  anq N™utate jg the number of

if Sols(i) indicates not recharging after visiting ¢, then

newSols(i) <—; // Closest facility in terms of travel time and charger type 1

newSols(i) <—; // Next closest facility in terms of travel time and charger type
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Algorithm A.5: Pseudocode for EVALUATOR

Input : C,, %, K, R, 7, B, B, BY,C?, Cf, C¥, CF, N, N, Ry, TZ, o, TE T2 o T, e, g
Output: C
Function EvaLuaTor():
Zfk 4 s eCpnp, deinf
for f € &, do
for k € K, do

if Zc,;re(%T,ft de;, sk 2 0, then

(b, b fvQv@cw»@c,”,,fkvw(:irfk»@ciT,szvyf) <+ LOWERLEVELEVALUATOR(C,, ¥, K, R, T, B, B., B¥,

=Cir’ =Cip

ce, Cg: CZv C?: Ry, T'l?7 TcTich7,7 Tcﬁhn Tgirf’ e fks gfk)a

(Ecir7Bi”f?C7Jcir7ﬂcirfk7mcirfk’jcirfkt7gf) <+ LOWERLEVELEVALUATOR(C,, ¥, K, R, T, B, B., B¥,

Cr, Cy, CY, CF, Ry, T8, T2, . TE

1 5 .
CirCir? T Cip? Tcirf’ e, fk> ka)7
Zfk 4= 2es€Cp gy teT Tein fhts

while C is infeasible, do
L {h

for f € &, do
for k € K, do
if 24, > 0, then

| s soum

SorT(L, cheewpt we, pk, B =True);
N «+ RaND (N, N);

for (f,k) € L, do
| zZpre <z + 1
N« 1/2(N+N);

if C < C, then
zfx = 2UUPDATER(Cr, &, K, R, T, B, B, B, C?, C¢, C¥, C, N, N, Ry, TF, T7, . T& TS

Qejr Pl Zfkr ZE);

else

zp1, +2ZLUPDATER(Cr, F, K, R, T, B, BL, BY, CP, C%, C¥, C}f’, N, N, Ry, TF, T2, o, TE TS o,

Qeipfls Zfks k)3

(bci,,,,b’cl_rf,C,ucirfk,dcl.,,,,w,zm‘fk,a:cwfm,yf) <+ LOWERLEVELEVALUATOR(C,, &, K, R, T, B, B:, B¥,

CP, Cf, O CF, Ry T, T2, e, TE, T iy s 2007
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Algorithm A.6: Pseudocode for LOWERLEVELEVALUATOR

Input : Cr, &, K R, 7,B, By, By, C°, Cf, O, CF, R, T8 T2 o T8 T2 b ey, fhs 2

CirCjr? ~ Cir
Output: Out
Function LoweERLEVELEVALUATOR():
ys + YCALCULATION(F, K, zfy);

(,ka,bgwf,ucirfg + UCALCULATION(C,, &, K, R, B, B, B®, Ry, Tf, TT TE | desrfis

CirCjr? T C

(bcirvdcz‘w d,Cirfdi‘«lirf’ wcirfk) — WCALCULATION(GT, F, K, o[,‘fk, R, waf, T Tcﬂ,,rv A, fk> uc”.fk);

CirCjp?

T, fht <—XCALCULATION(GT, F, K, T, d’%f, d’c’wf, Qe;r fho UCirfk)?

C Xejrelrren, [Cp (Tfﬂ‘ch“\fk + wcq‘rfk) +(Cr + Cﬁ)ucwfk] + X rer CFus + X e wen CLzsns
FETey, hEX '

if ?27-?7? hold, then
‘ Out < (bc,;T: b/C”fv 07 dcir» Uc,, fky Weyp fks Loy, fkts yf)7

else
L Out < None;
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Algorithm A.7: Pseudocode for calculating Zy,

Input : Cp, %, K, R, 7, B, B BY,CP, Cp, CY, CF, N, N, R, TE, TF, o TE TS o ey, s Zpks 2k
Output: =z
Function zuUPpATER():
while True, do
L {}
for f € &, do
for k € K, do

if zZpp, —zpp 21 and 24,20, then

| sy

SORT(L, Zfi, R = True);
N « RaAND(N, N);
sz — Zfks

for (f, k) € £, do
L gfk — Zfk -1

N« 1/2(N + N);
(bes, , lzJ’cirf, C,de,,, e, fls ey, fhs Tegy fots Uf)  LOWERLEVELEVALUATOR(Cr, F, K, R, T, B, BL,

By, CF, Cf, CF, CF, Ry, T, T7, o) TE TS 1 ey ios 251
T k k f CirCjr Cir cirf irf S

(@l

if C < C, then
Zfg Efk;

else

Zfk < Zfk;

Break;
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Algorithm A.8: Pseudocode for calculating z

Input : Cr, 7, K, R, 7, B, B, BY,C,C, Cy, Cy, N, N, TF, T, Tr

circirr Loz Tfirp Ris Gy, fhy Zpky Zfk
Output: =z
Function zLUPDATER():
while True, do
L=}
for f € &, do
for k € K, do

if Zfpp — 24, > 1 and 24, > 0, then

s som)

SORT(L, Zcire(’rﬂ we, pk, B = True);
N < RaND (N, N);
Zrk < Zfks

for (f, k) € L, do

L Zop 2t L
N+ 1/2(N + N);

(. Cd ,u ) + LOWERLEVELEVALUATOR(C,, ¥, K, R, T, B, B%,

Ze 0 Zc. Ff1 =20
=cip’ Zcip f7 =7 Zcip

cirfk Yepn b Logre Yy

By, CP, Cy, CY, Cf, Ry, TF, T, o, TE

CirCir? T Cip?

Tfirf’ e, fk> Efk)y
if € < G, then

2k S Zp
else

Zfk < Zfk;

Break;
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Algorithm A.9: Pseudocode for calculating y

Input : F, XK, zp;

Output: yy

Function YCALCULATION():

for f € ¥, do

if 3 pcx 2fk > 0, then
‘ yr 1

else

L yr < 0;
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Algorithm A.10: Pseudocode for calculating u.,, s

Input : C., 5, K, R, B, B, By, TF, T7, ...

Output: Lyy, b;wf’ Ue,, fk

Function uCaLcuLaTION():

for r € R, do
for f € &, do
for k € K, do
L Lk —{}

er < INT (ABs (B: — BY — TF) + 1);
Lk
for ¢; € Cr, do
for f € ¥, do
for k € K, do
if gc,, sx = 1 then
LU{(cirfR)}

cffk @] {(T‘CZ’T)};

m <+ 1;
while e, > 0, do
if m =1, then

(cirfk) < L{m};

Cir<Ci—1,r 1

Uy, fl min{e,, B — b’Cin};
else
(cirfk) < L{m};

(ch f1E") + L{m —1};

Ue,, sk < minf{e,, B — V., ;b

m <+ m+1;

€r < er — Ug,, fk;

/ L o__ _
bcirf < By zcjrecw CirCit1,r

Cjr$Ci—1,r

/ /
bcwf = bc;Tf’ + Ue! frk ZCJ‘M—CUr
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Algorithm A.11: Pseudocode for calculating w,, tx

IHPUt : GT: ‘77 ‘7(7 "ffkn L(R7 Tcaw,fz Rk:7 7 Tcﬂ y ey fly Yein fk

CirCjr? " Cir
Output: bcir,dcir,d’cirfdgwf,wci,y.f;C
Function wCALcULATION():
for iter <— 1 to |Lyy|, do
for r € R, do
deg,. < 05 beg,. < By
for ¢; € Cr, do
if 3 req kex dein, ok =1, then
dej 4 degy o + T2 p Wy, i+ tey, o+

beg, <= be;_y, — Tpi,l T Ryucy, fk 3

else
deg, < de; . + Ty e Y18,
| e < beiyp =T, 50 5
for f € #, do
for k € X, do
if q¢;,.fx = 1, then
L oy g dei + T2 5
for f € &, do
for k € K, do

SORT(Lfk, d/cwfv R = True);

for j, (r,cir) € ENUMERATE (L), do
if 5 =0, then

We,, fk < 0;

dlclwf — d/c”,f + Uc,, fi;

else

(r'sch) < Lrlits

We,, fk maX{d,c/;T/f - dg”f, 0};

dy s di ¢+ Wey, fk + ey, 1k

ir

TE -

Cip?
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Algorithm A.12: Pseudocode for calculating x;, i

Input : G, F, K, T, d’cﬂf7 d’c’”f7 Qi fl> Yegp f
Output: =z, e

Function xCaLcuraTion():

for ¢;r € Cr, do

for f € &, do

for k € K, do

fort € 7, do

if t>d, . andt<d’ . then

irf?
‘ Tesnfht < 15

else

L Te,, fkt < 05
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