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Summary

Systems vaccinology involves the measurement of genome-wide expression
(transcriptomics) in peripheral blood to identify early predictors of vaccine efficacy and
to gain mechanistic insight into the biological actions of effective vaccines. Prediction of
the degree and duration of immune protection conferred by vaccines is accomplished by
identifying patterns of gene expression induced rapidly after vaccination that correlate
with downstream antibody or T cell production. These methods were first applied to
define molecular signatures of the yellow fever vaccine, YF-17D, and have most recently
been applied to study the Covid-19 mRNA vaccines. These studies have demonstrated the
value of systems vaccinology in elucidating the biological underpinnings of vaccine-
induced immune recruitment and in predicting protective immune responses.

While traditional transcriptomic studies have utilized differential gene expression
analyses to identify key genes that associate with immune phenotypes, there is growing
evidence of the importance of studying the regulatory processes that govern gene
expression. This is particularly relevant in the study of the immune system due to its vast,
inter-connected system of activating and inhibitory loops that finely tune immunogenic
versus tolerogenic balance. Gene networks can thus provide a more holistic
characterization of the relationships within this system. In fact, regulatory alterations can
define immune phenotypes, even in instances where key regulators do not exhibit
differential gene expression levels

Due to the dependence of gene network construction on gene expression variance

across samples, a natural extension of this approach is to stimulate and then characterize

Xii



the resultant networks to enable more sensitive measurement of regulatory interactions.
We posited that the widespread gene expression perturbations induced by vaccination
can elucidate patterns of immune dysregulation in disease. Thus, we investigated
immune-mediated disease using two different systems vaccinology approaches; one in
which we characterized vaccine-conferred immune protection and identified
transcriptomic correlates of this protection, and one in which we investigated the broader
structure and dynamics of gene dysregulation in immune-mediated disease using
vaccination as an in vivo stimulus. We applied these approaches to publicly available RNA
sequencing data in children at risk for developing asthma, and peripheral blood samples
that we collected from healthy controls and immunocompromised patient populations at
multiple time points surrounding Covid-19 mRNA vaccination. First, we showed non-
allergen-specific immune network dysregulation in peripheral blood mononuclear cells
(PBMCs) of children who later developed a clinical diagnosis of allergic asthma. Next, we
characterized the BNT162b2 SARS-CoV-2 mRNA vaccine-conferred immune protection
from Covid-19 in sarcoidosis and end stage renal disease (ESRD), two
immunocompromised patient populations, compared to controls. Finally, we elucidated
decreased coupling between immune system components in ESRD, and identified
dysregulated blood transcription modules and genes that underlie these altered

relationships.
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1. Background

High-throughput sequencing technologies have created enormous potential for the
characterization of biological processes using systems biological approaches. While traditional
biological investigation isolates a given component of a biological system such as a gene, a
protein, or a cell and study it in isolation, high throughput data allow us to study the structure
and dynamics of the entire system (Kitano 2002). Systems biology thus capitalizes on the -omics
technologies including genomics to identify global differences of genetic polymorphisms,
transcriptomics to characterize genome-wide expression, and epigenomics to profile genome-
wide methylation, DNA-protein interactions, and chromatin accessibility. These approaches
gained traction in the early 2000s using transcriptomics and proteomics to identify diagnostic
and prognostic biomarkers in cancer (Quackenbush 2006). Since then, systems biology has been
applied to study of the immune system to characterize the mechanisms of innate and adaptive
immunity (Aderem and Hood 2001), and the pathophysiology of immune-mediated diseases such
as systemic lupus erythematosus, multiple sclerosis (Chaussabel et al. 2008), and asthma
(Bunyavanich and Schadt 2015).

Systems vaccinology includes the application of transcriptomics in peripheral blood to
identify early predictors of vaccine efficacy and to gain biological insights into the mechanisms of
action of effective vaccines. While systems biological investigation of cancer profiles gene
expression of the cancer cells themselves for diagnosis and prognosis, systems vaccinology
profiles gene expression of peripheral blood. This enables the investigation of many immune cell

lineages, including recent emigrants of peripheral vaccination sites (Pulendran, Li, and Nakaya



2010). Furthermore, immune cells are highly sensitive to perturbation, with vaccination leading
to differential expression of thousands of genes in circulating immune cells (Querec et al. 2009).

Prediction of the degree and duration of immune protection conferred by vaccines is
accomplished by identifying patterns of gene expression induced rapidly after vaccination that
correlate with downstream antibody or T cell production. This may be useful for vaccine
development, enabling quick iteration through different formulations to identify those that will
induce the most protective immune response. Pulendran et al. (Pulendran, Li, and Nakaya 2010)
envisioned the development of a vaccine chip to facilitate screening of vaccines to predict
different facets of immunogenicity such as induction of long-lived plasma cells that produce
highly specific antibodies, or polyfunctional T cells that produce multiple cytokines. This could be
particularly relevant to predict immunogenicity of vaccines for various immunocompromised
patient populations that demonstrate impairments of selective facets of the immune system.
This is additionally valuable for identifying populations who may benefit from altered vaccine
dosing, formulations, or adjuvants.

The first applications of systems vaccinology identified early molecular signatures induced
by the yellow fever vaccine YF-17D (Gaucher et al. 2008; Querec et al. 2009). YF-17D, a live
attenuated vaccine, confers seroconversion in more than 90% of vaccinees (Gotuzzo, Yactayo,
and Cérdova 2013) with duration of protection lasting as long as 40 years in 80% of vaccinees
(Monath et al. 2002), making it one of the most successful vaccines ever developed. It was thus
of interest to characterize the immunological mechanisms contributing to this high efficacy. In
response to vaccination, peripheral blood mononuclear cells (PBMCs) produced a gene

expression signature of innate sensing of viruses and antiviral immunity (Querec et al. 2009). This



signature was distinct from one that was predictive of the magnitude of CD8+ T cell responses,
which included genes involved in the integrated stress response pathway. The gene signature
predictive of antibody response included TNFRSF17a, a receptor for the B cell growth factor BAFF
known to play a key role in B cell differentiation. This demonstrates the potential utility of these
different signatures for predicting various facets of immune protection and consequently for
vaccine design.

Systems vaccinology has recently been applied to study the COVID-19 mRNA-based
vaccines, BNT162b2 and mRNA-1273, which were rapidly developed and disseminated in
response to the COVID-19 pandemic. These vaccines have proven efficacious, with initial reports
showing 95% and 94.1% reduction of COVID-19 disease in recipients (Baden et al. 2021; Polack
et al. 2020). Bulk RNA sequencing of whole blood from healthy vaccinees demonstrated that both
doses of the BNT162b2 stimulated antiviral and interferon responses one day after each dose,
but the second dose additionally led to upregulation of dendritic cell activation, Toll-like receptor
signaling, monocyte, and neutrophil modules (Arunachalam et al. 2021). Using single-cell RNA
sequencing, Arunachalam et al. further identified a cluster of myeloid cells (monocytes and
dendritic cells) that was uniquely induced in response to mRNA vaccination as compared to
natural infection. They demonstrated that IFN gamma induced expression of this cluster and
suggested a role of increased chromatin accessibility at interferon-stimulated genes. This
demonstrates the power of systems vaccinology approaches to elucidate the mechanistic
underpinnings of vaccine-induced immune recruitment.

While traditional transcriptomic studies have utilized differential gene expression

analyses to identify key genes that associate with immune phenotypes, there is growing evidence



of the importance of studying the regulatory processes that govern these phenotypes (Weighill
et al. 2021). This can be accomplished through the construction of gene networks, which
represent the relationships between genes rather than the state of individual genes themselves.
This is particularly relevant in the study of the immune system, with its vastly complex, inter-
connected system of feedback and feed-forward loops between various subsets of innate
immune cells, antigen presenting cells, T cells, and B cells (Rahman et al. 2018). To add further
complexity, evidence suggests that immune cells may not differentiate into a limited number of
discrete cell phenotypes, but rather a continuum of cell fates (Eizenberg-Magar et al. 2017). As
the immunogenic versus tolerogenic response of the immune system depends on a complex
interplay of these regulatory loops, gene networks can provide a more holistic characterization
of the relationships within this system. In fact, regulatory alterations can define immune
phenotypes, even in instances where key regulators do not exhibit differential gene expression
levels (Ettou et al. 2020; Carnesecchi et al. 2020; Mikhaylova et al. 2013a). For example, a prior
study in a murine model of asthma found minimal gene expression differences in dendritic cells
from asthma-at-risk neonates compared to control mice, despite the presence of extensive
genome-wide methylation differences. Substantial differential gene expression became evident
only upon allergen sensitization, primarily among transcripts that showed epigenetic alterations
at birth (Mikhaylova et al. 2013a).

Computational methods have been developed to capture regulatory relationships of
genes and transcription factors (TFs). PANDA (Passing Messages between Networks for Data
assimilation) is an algorithm for gene regulatory network construction that integrates

information from multiple types of data (Glass et al. 2013). The three inputs to this algorithm are



(1) an initial transcription factor (TF)—gene adjacency matrix with edge weights calculated based
upon sequence motif data, (2) a protein—protein interaction matrix based upon physical
interactions between proteins, and (3) a gene expression adjacency matrix (Glass et al. 2013).
These networks are iteratively updated using a message-passing algorithm, based upon the
assumptions that (1) two genes that are co-expressed are more likely to be co-regulated by a
similar set of TFs, and (2) two TFs that physically interact are more likely to co-regulate the
expression of their target genes. PANDA has been shown to accurately predict TF binding using
chromatin immunoprecipitation sequencing (ChIP-seq) and has been used to investigate gene
regulatory relationships in several disease contexts, including asthma (Qiu et al. 2018), ovarian
cancer (Glass et al. 2015), and colorectal cancer (Vargas, Quackenbush, and Glass 2016). Using
PANDA, Qiu et al. (Qiu et al. 2018) constructed gene regulatory networks in asthma that
differentiated treatment response of children to inhaled corticosteroids. They further identified
and validated multiple TFs influencing differential response. Sonawana et al. (Sonawane et al.
2017)constructed gene regulatory networks for 38 different tissues and identified tissue-specific
targeting patterns that were largely independent of TF expression.

Due the reliance of gene network construction on variance of gene expression, it seems
natural to perturb the network to enable more sensitive measurement of regulatory interactions.
We posit that the widespread gene expression perturbations induced by vaccination can
elucidate patterns of immune dysregulation in disease. We further posit that this vaccine-induced
network perturbation may enable the direct construction of single-subject gene networks
through transcriptomic measurements of a given subject across multiple time points surrounding

vaccination. Thus, this thesis applies systems vaccinology and gene network methods to (1)



characterize immune dysregulation that predisposes towards the allergic phenotype of asthma,
(2) determine level of immune protection conferred by Covid-19 vaccination in two conditions of
immunocompromise, sarcoidosis and end stage renal disease, (3) identify transcriptomic
predictors of immune protection after Covid-19 vaccination in end stage renal disease (ESRD),
and (4) characterize underlying immune dysregulation in ESRD utilizing the BNT162b2 mRNA

COVID-19 vaccine as a stimulus.



2. Immune network dysregulation precedes clinical diagnosis of asthma

Previously published as: Chang YS, Turturice B, Schott C, Finn P, Perkins D. Immune network
dysregulation precedes clinical diagnosis of asthma. Sci Rep. 2020 Jul 30;10(1):12784. doi:
10.1038/s541598-020-69494-x. PMID: 32732938; PMCID: PMC7393349.

2.1. Introduction

Childhood asthma is a disease of high prevalence (Akinbami, Simon, and Rossen 2016;
Asher et al. 2006) that eludes early diagnosis (Ducharme, Tse, and Chauhan 2014). Diagnosis in
young children is challenging due to the lack of specificity in the early clinical presentation of
atopy and wheeze. While nearly half of the population will experience at least one wheezing
episode in early childhood, most individuals will not go on to develop asthma (Ducharme, Tse,
and Chauhan 2014; Martinez et al. 1995). Spirometry, which is the gold standard for asthma
diagnosis, is typically not utilized in children under the age of 6. It is thus important to
characterize early immune states that predispose toward clinical diagnosis of asthma in order to
facilitate identification of individuals that are poised to develop disease.

The prototypic immune alteration in allergic asthma is that of dominant T-helper 2 cell
(Th2) activation without adequate counter-regulation by T-helper 1 (Th1) and regulatory (Treg)
cells (Barnes 2008). The process of allergic sensitization involves differentiation of these effector
T-cell populations and re-shaping of their cytokine profiles (Smale and Fisher 2002). Less is known
regarding the differential basal immune states that predispose towards allergic sensitization and
disease development, “asthmatic poise.” Our laboratory has previously reported altered Th2
cytokine elaboration in response to common aeroallergens in the cord blood mononuclear cells
of neonates with differing in utero microbial exposures (Turturice et al. 2017). These differential

immune signatures can be probed as early as birth.



Genome-wide association studies (GWAS) have identified genetic polymorphisms
associated with asthma and other atopic phenotypes, but, to date, explain only a small
percentage of disease heritability (Ducharme, Tse, and Chauhan 2014). Explanations for the
“missing heritability” include risk from copy number variation, gene-gene interactions, and gene-
environment interactions which are not generally assessed in GWAS (Barnes 2008). Findings of
epigenetic alterations in asthma suggest a strong mediatory effect of epigenetic modifications to
disease susceptibility (Ducharme, Tse, and Chauhan 2014). For example, the ratio of histone
deacetylase (HDAC) to histone acetylase (HAT) is known to be perturbed by environmental agents
such as tobacco smoke (Smale and Fisher 2002), and to correlate with asthmatic status and
disease severity (Biswas and Lopez-Collazo 2009; Foster, Hargreaves, and Medzhitov 2007;
Gunawardhana et al. 2014; Cosio et al. 2004; K. Ito et al. 2002; Su et al. 2009). The HDAC/HAT
ratio has further been shown to influence the Th1/Th2 balance (Su et al. 2009; Gunawardhana et
al. 2014; Cosio et al. 2004; K. Ito et al. 2002; Su et al. 2008). Genome-wide methylation changes
have been demonstrated in response to environmental agents (Breton et al. 2009), and were
identified in a meta-analysis of children who develop asthma (Reese et al. 2018).

Investigation of genome-wide expression networks and gene regulatory networks prior
to the development of asthma may provide clues of altered gene-gene interactions and
epigenetic effects that underlie allergic predisposition. In a prior study, German cockroach
extract (CR) stimulation of peripheral blood mononuclear cells (PBMCs) increased natural killer
cell-type gene expression in 2-year-olds who developed aeroallergen sensitization by age 3 and
clinical asthma by the age of 7 (Altman et al. 2018). These differentially expressed genes were

only found in children with both CR sensitization and asthma by the age of 7. Similar to our



findings in a prior study, immune signatures correlated with home allergen levels (CR) (Turturice
et al. 2017). We posit that these differential transcriptomic responses represent early pathways
of sensitization to CR. In order to identify non-allergen-specific biomarkers of asthma and to
characterize underlying immune states of asthmatic predisposition, in this study we analyze the
tetanus toxoid (TT) -stimulated PBMCs from the same study cohort using a network-centric
approach. TT stimulation elicits an unbiased and broad immune recall response, since all the
children received tetanus vaccination in infancy. It therefore provides a useful immune
perturbation, allowing for characterization of more subtly altered immune networks in asthmatic
poise prior to clinically diagnosable disease. We elucidate differences of gene expression
networks and gene regulatory networks, and infer epigenetic changes, in children at the age of 2

who develop asthma by age 7 compared to those who do not.

2.2. Method's

2.2.1. Data

Gene expression data was downloaded from the Gene Expression Omnibus database
(GSE96783), and consisted of RNAseq data from children enrolled in the Urban Environment and
Childhood Asthma (URECA) study, in which subjects have parental history of allergic disease and
live in low-income urban areas (Gern et al. 2009; Altman et al. 2018). In this prior study, RNA
sequencing was performed on peripheral blood mononuclear cells (PBMCs) from the children at
the age of 2, incubated with either German cockroach extract (CR) or dust mite extracts, tetanus
toxoid (TT), or media alone (no stimulation). For this study, we utilize RNAseq data from the CR-
stimulated, TT-stimulated, and un-stimulated PBMCs, with in-depth analysis of gene expression

networks and gene regulatory networks from TT-stimulated data. We compare TT-stimulated
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networks of children at the age of 2 who developed aeroallergen sensitizations (including CR,
dust mite, or both) by the age of 3 and clinical asthma by the age of 7 (asthma, n=19 with TT data)
versus matched subjects who did not have any aeroallergen sensitizations or asthma at age 7
(control, n=30). Asthma at 7 years of age was defined by a pre-specified algorithm including use
of asthma medications in the previous year, spirometry with reversibility, and bronchial
hyperresponsiveness assessed using a methacholine challenge. The case group demonstrated a
higher incidence of wheezing ilinesses and symptoms of atopic dermatitis in the first year of life
compared to controls. More details about these subjects and samples including demographic
data, home allergen exposure, clinical data, IgE levels, case criteria, and PBMC stimulation and
processing are available at the URECA study (Gern et al. 2009) and Altman et al. (Altman et al.

2018).

2.2.2. Differential gene expression with CR and TT stimulation

DESeq2 was used to obtain variance stabilized transformations of raw RNAseq count data
(Love, Huber, and Anders 2014), and to perform differential expression analysis. Wald’s test was
used to identify genes that changed expression after CR stimulation (compared to no stimulation)
and after TT stimulation, separately for controls (n=30) and asthma (n=19). Wald’s test was also
used to assess for interactions between group and stimulation. Significance of differential

expression was assessed at p<0.05 with false discovery rate (FDR) correction.

2.2.3. Gene expression modules

For the 5667 genes that were determined to be perturbed by TT stimulation (q<0.05) in

either asthma or controls, weighted gene correlation network analysis (WGCNA) (Langfelder and
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Horvath 2008) was used to identify modules of highly correlated genes. WGCNA was performed
with a soft thresholding power of 12 to produce scale-free network topology, a signed network
and topology overlap matrix, the default minimum module size of 30 genes, and a cut height of
0.15. Gene ontology enrichment analysis was performed using the PANTHER classification system
(Thomas et al. 2003; Mi et al. 2010) and MsigDB (Subramanian et al. 2005; Liberzon et al. 2015)
to characterize the biological processes captured by each gene expression module. Downstream
analyses of gene expression modules were performed on the modules which had significant
functional enrichments.

Module eigengenes (first principal component) were calculated for each module for the
control expression data with no stimulation and with TT stimulation, and for asthma expression
data with no stimulation and with TT stimulation. Two-way ANOVAs with repeated measures
were used to identify group x TT-stimulation interaction effects of each module eigengene.

To identify high centrality genes in the WGCNA modules, a protein-protein interaction
network was constructed for each module based on the STRING database (http://string-db.org).
Default parameters were used to construct the gene interaction networks, and the igraph

package in R was used to calculate centrality for each gene in the network.

2.2.4. Network connectivity of gene expression modules

Pairwise connectivity of WGCNA modules was calculated using Pearson correlations of
module eigengenes, separately for controls and asthma. Statistically significant associations were

assessed at p<0.05 separately for each group with FDR correction.
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2.2.5. Regulatory network construction using PANDA

To examine regulatory differences that might give rise to altered WGCNA module
connectivity, PANDA (Passing Attributes between Networks for Data Assimilation) (Glass et al.
2013) was used to construct regulatory networks separately for the control and asthma group,
and the no-stimulation and TT stimulation condition (four networks total). For each PANDA
model, the transcriptomic matrix included the expression data from genes that were included in
the WGCNA analysis, as well as expression of transcription factors with binding profiles in the
JASPAR (Sandelin et al. 2004) database (n=338). In order to obtain an initial regulatory network,
we used a motif-based transcription factor (TF) mapping to genes included in our transcriptomic
matrix. TF position frequency matrices (PFMs) were obtained from JASPAR, and were mapped to
the promoter regions of each gene from 1000 base pairs upstream of the transcriptional start
site to 200 base pairs downstream. A motif match of 80% maximum accuracy was counted as a
TF-target “hit,” and the number of hits of each TF with each target was used an initial input
regulatory network to PANDA. The initial protein-protein interaction network was derived from

the STRING database interaction scores between all TFs used in our initial regulatory network.

2.2.6. Patterns of TF regulatory shifts

Regulatory strength (z scores outputted from PANDA in the regulatory network) of each
TF was compared between asthma and controls. Due to the observation that most TFs
demonstrated a combination of stronger and weaker target regulation depending upon target
module membership, regulatory shift was calculated for each TF with each module. For example,

the regulatory shift of GATA3 on CREM, one of its targets in the Th2 module, is simply Zasthma,catas
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> CREM - Zcontrol,GATA3 -> cReM. The regulatory shift of GATA3 on Th2, then, was calculated as the
median shift of GATA3 across all of its gene targets in the Th2 module. TFs with at least one target
in each module were then clustered using k-means based upon regulatory shift across WGCNA
modules. A Euclidean distance metric was used, with number of clusters ranging from 2 to 10,
each time calculating mean Silhouette score of the clustering result in order to assess clustering
quality and to obtain the optimal number of TF clusters. The TF clusters obtained from this

analysis are subsequently referred to as TF regulatory clusters.

2.2.7. Binding locations of TFs in differentially methylated regions

The proximity of binding locations between TFs (based on motif data) was assessed in
differentially methylated regions (DMRs) identified from a separate meta-analysis. In this prior
meta-analysis of cord blood mononuclear cells (CBMCs) from neonates who are eventually
diagnosed with asthma, 35 DMRs were identified (Reese et al. 2018). Of these 35 DMRs, ten were
in genes that changed expression with TT stimulation in our cohort. We assessed the similarity of
binding locations in these 10 DMRs of TFs within the same regulatory cluster compared to TFs in
different regulatory clusters. The specific methodology is described below.

For each of the 10 DMRs, binding locations of TFs on DMRs were identified in the same
manner as described for the PANDA analysis above, with motif-based TF mapping. The similarity
of binding location within versus between TF regulatory clusters was then assessed by computing
a distance matrix of binding distances between every pair of TFs, and then calculating Silhouette
score based upon TF regulatory cluster membership. This procedure was executed as described
in the following steps:

1. The binding level of TF; is represented as a vector of length npmg, where npmg = the # of bp in

13



the DMR, i = 1:mpmgr, mpwmr = # of TFs that bind on the DMR

2. For each location along the DMR with the binding motif for TF;, a Gaussian distribution of 21-
bp width and 5-bp standard deviation is placed.

3. The TF; binding vector is normalized to sum to 1.

4. Distance between every TF that binds in the DMR is calculated as the absolute value of the
difference between every pair of TF binding vectors. This yields a distance matrix of size mpmg X
NbmR

5. In order to ensure that results are not biased by TFs that share the same binding motifs or
exact same binding locations, TFs are eliminated such that there are no pairs with distance < 0.1.
Specifically, in an iterative process, all pairs of TFs with distance < 0.1 are identified. Then one
pair is randomly selected, and one of the TFs in the pair is completely eliminated from the
distance matrix. This process is repeated until no pairs of TFs have distance < 0.1.

6. Silhouette score (SS) is computed for the distance matrix using TF regulatory cluster
memberships.

7. Significance of SS is determined through a permutation test. Specifically, the TF regulatory
clustering labels are permuted 10,000 times, each time calculating the corresponding S. P value

is determined as: [# permutations with SS > actual SS]/10,000.

2.3. Results

2.3.1. Stimulated gene expression with tetanus toxoid (TT) and German cockroach extract
(CR)
TT stimulation perturbed expression of thousands of genes, with 5051 genes perturbed
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in the control group (n=30) and 3328 genes perturbed in the asthmatic group (n=19). The
discrepancy between number of genes altered in controls vs asthma can be explained by
difference in sample size. The genes perturbed in each group were largely overlapping, with 5667
genes total perturbed in at least one group. Specifically, out of 22426 genes with non-zero read
counts for controls, 2539 (11%) were upregulated after TT stimulation and 2512 (11%) were
downregulated. In the asthma group (n=19), out of 22424 genes with non-zero read counts, 1845
(8.2%) were upregulated after TT stimulation and 1483 (6.6%) were downregulated. These results

are summarized in Figure 1.

Upin
Up in Controls Asthma
1021 1518 327
S ; Down in
Down in Controls : \ DAsthma

Figure 1. Stimulation of peripheral blood mononuclear cells (PBMCs) with tetanus toxoid (TT)

perturbs expression of thousands of genes both in controls and asthma.

The number of genes that increase expression (upper venn diagram) and decrease expression

(lower venn diagram) with TT stimulation are shown for the controls (n=30) and asthma (n=19).

DESeq2 was used to perform differential gene expression analysis with FDR-corrected p<0.05.
Compared to TT stimulation, a much smaller set of genes changed expression with CR

stimulation; in the control group (n=30), 184 (0.8%) were upregulated after CR stimulation and

102 (0.5%) were downregulated. In the asthma group (n=19), 502 (2.2%) were upregulated after
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CR stimulation and 304 (1.4%) were downregulated. As previously reported, there were extensive
significant interaction effects of group (asthma vs controls) with CR stimulation on gene
expression (Altman et al. 2018). However, there were no genes with significant interaction effects
of group with TT stimulation of PBMCs at age 2.

The genes perturbed by CR stimulation were functionally enriched for biological pathways
involved in the allergic response; negative regulation of regulatory T cell differentiation, positive
regulation of humoral immune response mediated by circulating immunoglobulin, negative
regulation of T-helper Type 1 immune response, T-helper 17 cell lineage commitment. While
there was no significant differential gene expression in the children who developed asthma
compared to controls in response to TT, this antigen perturbed expression of a much larger set
of genes than CR. Our downstream analysis thus aims to characterize immune network changes
that may precede the development of asthmatic phenotypes, using TT-elicited gene expression

patterns.

2.3.2. Gene expression modules

WGCNA of the 5667 genes with perturbed expression after TT stimulation in either the
control or asthma group yielded 18 gene expression modules. Using Panther gene list analysis,
13 of these modules demonstrate significant pathway enrichment, with a majority of these
representing immune pathways. These include an IL1 response pathway, two MHC Class 1
(MHC1) presentation pathways, an immunoglobulin somatic recombination and diversification
pathway, a Th2 pathway, two myeloid-mediated immune pathways, and two interferon response
pathways. The labels by which we refer to these modules going forward, along with some of their

significant GO annotations and the highest centrality genes in each module, are delineated in
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Table 1. Subsequent analysis was performed only on the 13 modules demonstrating significant
enrichments.

Table 1. WGCNA modules from tetanus toxoid-stimulated gene expression, with associated
Gene Ontology (GO) annotations and high centrality genes
Genes with high
centrality in STRING

Module GO annotations PPI network
Mitotic nuclear division CDC20, CDK2, BIRCS5,
Mitos-1  sister chromatid segregation PLK1, AURKA
Cellular response to IL-1
IL-1-mediated signaling HSP90AA1, BCL2,
IL1 Protein modification by small protein removal CASP3, UBE2N, CHUK
DNA replication
Chromosome segregation CDK1, PRKCB, PCNA,
Mitos-2  Cell cycle checkpoint TOP2A, BRCA1

Somatic recombination of immunoglobulin genes involved
in immune response
Somatic diversification of immunoglobulins involved in
immune response PARP1, MCMS5,
Ig_rec DNA-dependent DNA replication MCM7, POLA2, H2AFX

Antigen processing and presentation of exogenous peptide
antigen via MHC class |

Tumor necrosis factor-mediated signaling pathway ACTA2, SF3B3, UBC,
MHCI-1  Regulation of hematopoietic stem cell differentiation TUBG1, BCL3

Response to LPS

Response to molecule of bacterial origin IL6, IL1B, LEP, SOCS3,
LPS Positive regulation of VEGF production IL1A

Antigen processing and presentation of peptide antigen via

MHC class | STAT3, RUNX3, STAP2,
MHCI-2  Positive regulation of NFkB signaling AMER1, PIM2

Humoral immune response mediated by circulating

immunoglobulin PDGFB, ITGB3,

B cell mediated immunity MMP1, NBEAL2,
Th2 Adaptive immune response CCL13

Neutrophil activation involved in immune response

Positive regulation of macrophage derived from foam cell

differentiation

Positive regulation of monocyte chemotaxis CAT, LPL, TLR4,
Myel-1 Receptor-mediated endocytosis HSD17B4, ACSL1
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Response to type 1 interferon OAS1, ISG15, OASL,

Ifn-1 Defense response to virus MX2, IRF7
INSR, HSPAS, SDC2,

Metab Lipid catabolic process PPARG, APOE

Myeloid cell activation involved in immune response

Neutrophil degranulation TSPO, RHOA, JUN,
Myel-2 Neutrophil activation RAC1, ICAM1

Defense response to virus

Response to interferon-beta DDX58, IFIH1, HERCS,
Ifn-2 Regulation of interferon-alpha production STATL, IFIT1

As expected, all 13 modules demonstrated statistically significant effects of stimulation
using two-way ANOVA with repeated measures (p<0.01), with all exhibiting increased eigengene
expression except for Myel-1, Metab, and Myel-2, which showed decreased expression with TT
stimulation (Figure 2). None of the modules demonstrated significant interaction effects of group

(controls vs asthma) with TT stimulation (p<0.05).
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Figure 2. Module eigengenes change significantly with tetanus toxoid (TT) stimulation of
peripheral blood mononuclear cells, but demonstrate no group effects.

Eigengene expression is displayed for each WGCNA module, separately for controls and asthma,
with no stimulation (NS) and TT stimulation of PBMCs. Every module demonstrates a significant
effect of stimulation (p<0.01), but none demonstrate a significant group x stimulation effect
(p<0.05).

2.3.3. Network connectivity of gene expression modules

Both the control and asthma gene expression network demonstrate extensive co-
regulation between WGCNA gene expression modules (Figure 3). The control and asthma
networks demonstrate similar overall network structure (the majority of significant edges in each
group are shared by both groups). However, there is extensive gain of negative co-regulation in
the asthma network compared to the control network, and to a lesser degree, loss of positive co-

regulation (Figure 3; Figure 4).
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Figure 3. Gene module network differences in asthma are characterized primarily by aberrant
negative co-regulation.

All significantly positively co-regulated modules (q<0.05, FDR corrected) are connected with blue
edges, while negatively co-regulated modules are connected with red edges. Edge thickness
corresponds to strength of correlation.
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Figure 4. The asthma gene module network demonstrates several aberrant negatively co-
regulated modules.

R values from Pearson correlations between the eigengenes of every pair of modules are
displayed for the asthma network on the y axis, and control network on the x axis. Points are
colored by statistical significance of the correlations, with FDR correction across all pairs of tested
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modules. The solid line is y=x, representing the line of equal edge strengths between controls
and asthma, and the dotted line is a linear regression with 95% confidence interval shading.

2.3.4. Regulatory Network Alterations

Extensive regulatory differences were found between the TT-stimulated asthma and
control networks using PANDA, with the majority of transcription factors (TFs) demonstrating
altered regulation after FDR correction (284 out of 338) (Figure 5). Of the 284 TFs with altered
regulation, 135 show weakened regulation, and 149 show strengthened regulation. The
magnitude and direction of regulatory shift not only varies by TF, but also varies for a given TF by
the WGCNA module membership of the gene targets. Examples of this are shown in Figure 5 for
several representative TFs - GATA3, T-bet, FOXP3, STAT1, STAT4, and STAT6. Two representative
WGCNA modules are displayed for demonstrative purposes - MHCI_1, which demonstrated
extensive differences of co-regulation in the expression network, and IL1, which demonstrated
stronger negative co-regulation with MHCI_1 in the asthma network. GATA3 demonstrates
stronger regulation of its targets in the MHCI_1 module in asthma, but weaker regulation of its
targets in the IL1 module. FOXP3 and STAT6 demonstrate a similar pattern of altered target
regulation, with FOXP3 demonstrating an even more amplified difference between regulation of
its targets in these two modules, and STAT6 demonstrating a more subtle difference. In
comparison, T-bet, STAT1, and STAT4 regulation of their targets do not appear to significantly
differ between the MHCI_1 and IL1 modules (the points lie along the y=x line). This indicates that
certain TFs exhibit simultaneous strengthened and weakened regulation of gene targets, and that
the direction of regulatory shift depends systematically on target WGCNA module membership.

The two top TFs with the largest median regulatory shift across modules were KDM5B

and ARID3A, which have been shown to be important regulators of the epigenome.

21



GATA3 TBET FOXP3

12.5 12.5 7 12.5
l‘ //
@ < @ < © -
£ 100 27 £ 100 2 £ 100 22
= ’ = ’
= e k- ‘. k7 .7
_: 75 N “(_: 75 ." E 75 ¢ Module
E= ES] s = * *  MHCI_1
g 50 2 50 & 2 50 o4 N
2 . 2 ‘.é' [ L1
n 5 7]
g 25 P 25 D 25
14 14 4
00 0o, 00
00 25 50 75 100 125 00 25 50 75 100 125 00 25 50 75 100 125
Reg Strength in Controls Reg Strength in Controls Reg Strength in Controls
STAT1 STAT4 STAT6
12.5 > 125 7 125
. .,
. .
@© 4 @ . © “
€ 10.0 7= £ 100 7~ E 100 .
£ A £~ Ad £ A4
w ’ 2] ra n r
< < <
c 75 ~ c 78 « c 75 A~ Module
@ 5.0 @ 5.0 ¢ E 5.0 K] -
— - «' - .
n ] 2] o
D 25 P 25 D 25
o o o
00 00 00
00 25 50 75 100 125 00 25 50 75 100 125 00 25 50 75 100 125
Reg Strength in Controls Reg Strength in Controls Reg Strength in Controls

Figure 5. Asthma regulatory networks demonstrate extensive alterations, with both increased
and decreased transcription factor (TF) regulation strength.

Regulatory strengths outputted from PANDA are displayed for several example TFs in two
representative WGCNA modules (MHCI_1 and IL1). The y axis represents regulatory strength in
the asthma network while the x axis represents regulatory strength in the control network. Each
individual point represents the regulatory strength of the given TF on each of its gene targets in
the representative modules. Points above and below the y=x line respectively indicate stronger
regulation in asthma relative to controls, and controls relative to asthma.

2.3.5. Transcription factor clustering by patterns of regulatory shift

Due to the recognized role of epigenetics in asthma, we hypothesized that broad
alterations of the epigenetic landscape might drive the differential transcriptomic and regulatory
networks that control the predisposition to disease. TFs bind to regulatory regions of their
respective gene targets to activate or repress transcription. Thus, TFs with proximal binding sites
on their gene targets will likely be similarly altered by epigenetic alterations of genomic
accessibility (i.e. DNA methylation) in these regulatory regions. The presence of broad alterations

to the epigenetic landscape could therefore cause shared patterns of “regulatory shift” of TFs
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that bind at similar locations.

A heatmap of median regulatory shift per TF with each WGCNA module reveals
community structure of TFs, where communities of TFs demonstrate shared patterns of
regulatory shift across WGCNA modules (Figure 6). For example, certain TFs show predominantly
weaker regulation of targets in Ifn-2, Mitos-2, IL1, and Myel-1 in asthma compared to controls,
but stronger regulation of targets in the remaining modules. In contrast, TFs labeled by the green
bar on the y axis show an inverse pattern of dysregulation; these TFs show predominantly
stronger regulation of targets in Ifn-2, Mitos-2, IL1, and Myel-1 in asthma compared to controls,
but weaker regulation of targets in the remaining modules. Hierarchical clustering of TFs based
on these median shifts per module yields an optimal cluster number of two TF groups based on

the maximum silhouette score.
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Figure 6. Transcription factors (TFs) cluster into groups based upon
regulatory alteration across gene expression modules.

A heatmap of the median regulatory shift of targets within each gene expression module (for a
given TF: median value of zasthma-Zcontrol across targets within a module). The x axis represents
different WGCNA modules, while TFs are represented on the y axis, with branches colored by TF

communities from hierarchical clustering. Blue/positive values represent stronger regulatory
control in asthma, while red/negative values represent strong regulatory control in controls.

the pattern of their
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2.3.6. Binding locations of transcription factor groups

TFs that cluster into the same communities based upon regulatory shift tend to have
proximal binding locations to one another in DMRs (Figure 7,8). Binding locations of TFs with
motifs in a differentially methylated region of TNFSF13B (encodes B-cell activating factor (Baff))
are shown to illustrate the proximal binding of TFs within the same communities (Figure 7). The
TFs are separated based upon their regulatory community. TFs within the same community bind
more closely to one another than TFs between regulatory communities. The similarity of binding
locations within communities suggests that shared patterns of dysregulation may be driven by
permissive or repressive epigenetic changes at the level of the target genes.

The mean SS from the binding location distance matrix using TF regulatory cluster
memberships is displayed for all 10 DMRs (Figure 8). For the majority of DMRs, the mean SS is
significantly higher (p<0.001) than the null distribution of silhouette scores (SS) generated from
permutation of TF regulatory cluster labels. Thus, regulatory communities of TFs cluster based

upon their binding distances within DMRs.
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Figure 7. Transcription factors (TFs) within the same regulatory communities bind in similar
locations on differentially methylated regions (DMRs).

Binding locations of TFs with binding motifs (based on 80% of maximum confidence) in a DMR in
TNFSF13B. The TFs are separated based upon their regulatory cluster memberships as defined in
Figure 5.
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Figure 8. Regulatory communities of transcription factors (TFs) exhibit significant clustering
based on binding distances within differentially methylated regions (DMRs).

The genes on the X axis represent all DMRs from the Reese et al. meta-analysis of CBMCs, which
demonstrated perturbation of expression from tetanus toxoid (TT) stimulation. The green dot
represents the mean silhouette score (SS) calculated from the binding location distance matrix
with TF regulatory clusters. The gold points and density plots represent the null distribution of
mean SS from each of 10,000 permutations of the regulatory cluster labels. Asterisks represent
statistical significance *p<0.05, **p<0.01, ***p<0.001

2.4. Discussion

We characterize asthmatic poise by probing gene-gene interactions and inferring
epigenetic alterations. Specifically, we identify significantly altered interactions in our gene
expression networks. We also demonstrate that these altered expression networks can be
explained by regulatory differences, and provide evidence that broad epigenetic alterations
cause the downstream disruption of these networks. In summary, gene network investigation

powered by associations of stimulated gene expression across subjects allows us to uncover
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immune imbalances that precede clinical diagnosis of asthma.

The differential gene networks elucidated with tetanus toxoid (TT) stimulation suggest
that broad immune imbalances prime allergic sensitization. Prior transcriptomic studies of
childhood asthma have investigated subjects who already have a disease diagnosis, and have
primarily investigated differential gene expression as opposed to differential gene interactions.
Significant differential gene expression in response to German cockroach extract (CR), but not
TT, was previously reported in this cohort (Altman et al. 2018). However, this was only found
in children with both CR sensitization and asthma by the age of 7, and not in children without CR
sensitization. We posit that the differential response to CR, which perturbs a much more limited
set of genes (~800 for asthma and ~300 for controls, versus ~5000 for TT stimulation in both
groups), represents an allergic response to CR. In contrast, TT elicits more widespread non-
allergen-specific stimulation of immune responses in both groups, allowing us to uncover
network states poised for allergic sensitization. Since allergic asthma can be triggered by diverse
allergens depending on individual exposure, it is valuable to identify non-exposure-dependent
differential immune responses (i.e. to TT) that characterize allergic predisposition.

While we expected to find regulatory network alterations, the unexpected findings here
are the uncovered patterns of dysregulation. It is particularly interesting that a given TF can
exhibit strengthened regulation of some targets in the asthma group compared to controls, but
weakened regulation of other targets. Even more striking, the direction and magnitude of change
varies systematically depending upon the WGCNA module membership of the target gene. This
finding, combined with the demonstrated shared patterns of dysregulation amongst

communities of TFs (Figure 6) and proximal binding locations of TFs with the same community,
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support the idea that broad epigenetic alterations perturb regulatory and expression networks.
The absence of statistically detectable differential gene expression, concurrent with regulatory
network alterations, is consistent with previously indicated epigenetic mechanisms of asthmatic
poise. A prior study in a murine model of asthma found minimal gene expression differences in
dendritic cells from asthma-at-risk neonates compared to control mice, despite the presence of
extensive genome-wide methylation differences (Mikhaylova et al. 2013b). Substantial
differential gene expression became evident only upon allergen sensitization, primarily among
transcripts that showed epigenetic alterations at birth. Taken together, these suggest a paradigm
in which subtle but widespread changes to the epigenetic landscape poise the immune system
for allergic sensitization. Subsequently, allergic sensitization leads to enhanced epigenetic
modifications, differential gene expression and cytokine elaboration, and phenotypic disease
manifestation.

This paradigm is further supported by the TFs that we found to demonstrate the most
altered regulation across modules; ARID3A and KDM5B have both been implicated as important
players in epigenetic control. ARID3A is required for hematopoietic stem cell differentiation and
B cell development, and has been shown to suppress somatic cell reprogramming (Popowski et
al. 2014). ARID3A also activates transcription of the immunoglobulin heavy chain (IgH) by altering
chromatin accessibility to the IgH enhancer (Lin et al. 2007). KDM5B is a histone demethylase, a
critical regulator of genome stability required for efficient DNA double-strand break repair, and
has been shown to be enriched at DNA-damage sites after ionizing radiation and endonuclease
treatment (X. Li et al. 2014). It represses expression of genes involved in immune cell proliferation

and migration, and may cooperate with histone deacetylase in repression of gene expression
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(Klein et al. 2014; Wu et al. 2018).

There is evidence of epigenetic differences in asthmatics, with genome-wide methylation
studies demonstrating predominantly permissive methylation differences as early as birth (Reese
et al. 2018). However, results of epigenetic studies have not established robust associations with
downstream gene expression. These prior studies have focused on DNA methylation, and thus
do not capture the full landscape of epigenetic alterations (Vercelli 2016). Studies investigating
histone modifications have provided more mechanistic insight into epigenetic changes in asthma.
The ratio of histone deacetylase to histone acetylase is lower in lung samples of asthmatics,
correlates with disease severity, and corrects with treatment (Su et al. 2009; Gunawardhana et
al. 2014; Cosio et al. 2004; K. Ito et al. 2002). Further, HDAC inhibition in ex vivo memory T cells
results in strongly elevated Th2 cytokine production and reduced Th1 cytokine production during
immune recall response (Su et al. 2008). Interestingly, this shift in Th2/Th1 cytokine responses is
driven by elevation of the master Th2 regulator GATA3, without change in the expression level
of the corresponding Th1 regulator T-bet. These findings are consistent with our finding of strong
regulatory differences in GATA3 but not T-bet as a function of gene module membership (Figure
4). GATA3 interacts with HDACs and methyltransferases to produce suppressive changes at Th1
loci, and with HAT to create permissive changes at Th2 loci (Zeng 2013; Hosokawa et al. 2013;
Chang and Aune 2007). It binds to its own regulatory elements, positively regulating its own
expression (Ouyang et al. 2000). These findings further expand upon epigenetic theories of early
atopic predisposition, in which positive feedback mechanisms progressively destabilize immune
balance, ultimately producing measurable differential gene expression and asthmatic
phenotypes.
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This study is limited by lack of epigenetic data to validate the inferred alterations, as well
as by the pooled cell populations, which make it challenging to identify key cellular players in the
altered gene interactions. Future investigation will benefit from simultaneous collection of
transcriptomic and epigenomic data from separated cell populations or single cell analyses.
Collection of epigenomic data using a method such as Assay for Transposase-Accessible
Chromatin using sequencing (ATAC-Seq) will facilitate validation and complementary
characterization of regulatory relationships. Additionally, it may allow for diagnosis or prognosis
of individual subjects using epigenomic fingerprints of altered accessibility at regulatory regions
of DNA. Our present transcriptomic network analyses allow us to identify group-level network
differences. However, it would be challenging to perform individual diagnosis based upon this
framework, since construction of subject-level networks would require several datasets per
subject, or would rely on unstable statistical inference methods. It will also be of interest in the
future to determine whether altered expression and regulatory networks can be discerned even
earlier in life (e.g. by studying cord blood mononuclear cells (CBMCs)), as epigenetic influences
begin in utero.

In conclusion, we have described a novel framework to characterize transcriptomic
network alterations, shown that gene network dysregulation can be detected in atopically
predisposed individuals long before clinical asthma diagnosis, and provided evidence that these
atopically primed networks are a result of widespread alterations of the epigenetic landscape.
Our approach indicates the potential to identify development of allergic disease including asthma

prior to clinical diagnosis.
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3. Trimer IgG and Neutralizing Antibody Response to COVID-19 mRNA
Vaccination in Individuals with Sarcoidosis

Published as: Vagts CL, Chang YS, Ascoli C, Lee JM, Huang K, Huang Y, Cherian RA, Sarup N,
Warpecha SR, Edafetanure-lbeh R, Amin MR, Sultana T, Ghassemie T, Sweiss NJ, Novak R,
Perkins DL, Finn PW. Trimer IgG and Neutralizing Antibody Response to COVID-19 mRNA
Vaccination in Individuals with Sarcoidosis. ERJ Open Research 2022 Jan; 9(1): 00025-2022.

3.1. Introduction

Since the start of the COVID-19 pandemic, the development of effective treatments to
diminish COVID-19 disease severity has been an international priority. Vaccines were developed
atrecord speed and offer a life changing opportunity for disease mitigation and prevention. Initial
studies demonstrated the mRNA-based COVID-19 vaccines, BNT162b2 and mRNA-1273, were
efficacious in preventing up to 95% and 94.1% of COVID-19 disease in recipients, respectively
(Baden et al. 2021; Polack et al. 2020). However, vaccine response in vulnerable populations
remains ill defined.

Sarcoidosis is a multisystem disease of unknown etiology characterized by granulomatous
inflammation and subsequent organ dysfunction. This inflammation is believed to stem from
maladaptive immune responses, resulting from chronicimmune stimulation with subsequent risk
of lymphocyte anergy, exhaustion, and depletion (Ascoli et al. 2018; Sweiss et al. 2010; Hawkins
et al. 2017). Data supports sarcoidosis subjects as having increased risk of infection (Dureault et
al. 2017; Ungprasert, Crowson, and Matteson 2017), though the overall risk of SARS-CoV-2 is
unclear (Baughman et al. 2020). Beyond immune susceptibility conferred by underlying disease
pathology, nearly one-fourth of all sarcoidosis patients require treatment with
immunosuppressive agents which further contributes to infectious risk (Baughman et al. 2016).

Primary infection prevention with vaccination in this population is therefore of great
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importance.

Literature regarding how individuals with sarcoidosis respond to vaccines is limited and
indicate varying responses. A study of tetanus vaccination in sarcoidosis patients found 50% had
an insufficient increase in antibody titers regardless of sarcoid disease state, stage, or duration,
and independent of treatment (Seyhan et al. 2012). A separate study of a 3-dose series of the
hepatitis B vaccine found that none of the 16 sarcoidosis subjects had detectable antibody levels
at one month follow up (Mert et al. 2000). In contrast, a study of the 2008-2009 trivalent
influenza vaccine showed sarcoidosis and control subjects had a comparable serological response
(Tavana et al. 2012). In addition, existing literature explores quantitative assessment of antibody
response through measurement of immunoglobulin titers however these titers may not assure
conferred protective immunity. While developed antibodies may target any viral epitope,
neutralizing antibodies (nAb) bind to the virus in such a way that it inhibits cell entry and/or viral
replication therefore blocking infection from propagating (Payne and Ebook Central Academic
2017). Post vaccination nAb assays provide insight into the functional protection allocated by the
vaccine and to our knowledge there are no current studies evaluating nAb in sarcoidosis.

In regards to immunosuppression, data assessing the effect of immunosuppressive
medication on vaccine efficacy in sarcoidosis is limited and recommendations are extrapolated
from studies of other immune related disoders. Use of various immunosuppressive medications
is associated with decreased antibody response to multiple types of vaccinations, including the
mRNA COVID vaccines (Friedman, Curtis, and Winthrop 2021; Mahil et al. 2021; Ruddy et al. 2021;
Subesinghe et al. 2018). Regardless of a potential insufficient response, vaccination is strongly

recommended in sarcoidosis to protect against various community acquired infections to include
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COVID-19 (Manansala et al. 2021; Syed et al. 2020).

We postulate that subjects with sarcoidosis will have a deficient immune response to COVID-
19 vaccination. This study aims to characterize the antibody response to COVID-19 vaccination in
subjects with and without sarcoidosis through quantitative assessment of binding antibodies and
correlation to functional assessment of nAb. Our findings may direct vaccination guidelines,
inform the need for further booster vaccines, and extrapolate further information about the

immune dysregulation underlying sarcoidosis pathology.

3.2. Method's

3.2.1. Study population and sample acquisition

Study approval was obtained through the University of lllinois at Chicago (UIC) IRB Ethics
Review Committee, Approval #2018-1038.

Subjects with biopsy-proven sarcoidosis, diagnosed in accordance with ATS/ERS/WASOG
criteria (Hunninghake et al. 1999), and who were undergoing vaccination with the BNT162b2
mRNA COVID-19 vaccination were recruited. All subjects were older than 18 years of age and
receive their sarcoidosis care in the Bernie Mac Sarcoidosis Translational Advanced Research
(STAR) Center at UIC. Demographic and clinical data was extracted from the electronic medical
record and included sex, race, age, body mass index (BMI), sarcoidosis organ involvement, as well
as treatment with immunosuppressive therapy (systemic steroids and/or disease modifying anti-
sarcoid drugs i.e. DMASDs). Peripheral lymphocyte counts in the preceding 6 month were also
recorded. Age and gender matched self-reported-immunocompetent control subjects consisted

of University of lllinois Hospital employees who were undergoing vaccination at UIC.
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Demographic and clinical data were collected using a questionnaire and included race, sex, age,
height and weight, medication use, and existing medical problems. Any subject who self-reported
a personal history of COVID-19 infection was excluded.

Blood samples were collected at baseline (just prior to 1 vaccine dose, timepoint V1D0), 4
weeks (i.e. 7 days after the booster dose, timepoint V2D7), and 6 months after the 1% vaccine
dose (time point M6). Serum was extracted within two hours of sample collection and stored at

-80°C.

3.2.2. Anti-Spike (Trimer) IgG Titer Quantification

The Human SARS-CoV-2 Spike Trimer IgG ELISA Kit from Invitrogen was used to quantitate
serum IgG levels of each subject at each timepoint, per the manufacturer’s protocol. All samples
were diluted 1:100 and assayed in duplicate with 2-fold serial dilution of the 150,000 units/mL
standard control for relative quantification. Absorbance at 450 nm was quantified using a
Spark® multimode microplate reader. Samples that produced signals greater than the upper limit
of the standard curve were reassayed at 1:1000 dilution. IgG concentration was calculated by
fitting 5-parameter logistic curves to the standard controls. The average concentration of
duplicates was utilized for analysis. Inter-assay variability was addressed utilizing the ELISAtools

package in R (version 4.0.4) which to account for batch-effect (Feng et al. 2019).

3.2.3. Antibody Neutralization Assays

Neutralization activity against SARS-2-CoV was measured in a single-round-of-infection assay
using pseudotyped viruses (Nie et al. 2020). Briefly, 293T ACE cells were infected with modified

vesicular stomatitis virus (VSV), which lacks a gene vital for VSV replication and instead carries a
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firefly luciferase reporter gene that allows for chemiluminescence. The cells are also transfected
with plasmids encoding full length SARS-CoV-2 spike (S) protein, which is a surface protein
responsible for binding the host cell receptor, ACE2, to mediate viral entry during SARS-CoV-2
infection (SARS-CoV-2 Spike-pseudotyped lentiviral particle kit, BEI # NR-53816). The
pseudotyped virus therefore contains the SARS-CoV-2 S protein to simulate viral entry, and VSV,
which provides the structural genes for viral packaging without the ability to replicate. The 50%
tissue culture infectious dose (TCID50) of the pseudotyped virus, which indicates the amount of
virus required to quash 50% of the inoculated cells, was calculated according to the Reed-Muench
method.

Serial dilutions of each subject’s serum were incubated for 1hr at 37 °C with 1000 TCID50/ mL
of the pseudotyped virus (virus plus antibody) then added to monolayers of ACE2-overexpressing
293T cells in quadruplicate on a 96-well plate. Controls consisted of pseudotyped virus and 293T
cells without added serum sample (virus-only). The plate was incubated for 65-72 hours in the
cell culture incubator at 37 °C and 5% (vol/vol) CO2 after which 50 pL of luciferase substrate was
added to stimulate chemiluminescence. The amount of chemiluminescence, determined by a
plate reader, directly correlates with the amount of pseudotyped virus that has entered and
“infected” the cells. The amount of nAbs, which inhibit viral entry into the 293T cell, is therefore
inversely correlated with the chemiluminescence signal intensity. Neutralizing antibody titers are
reported as the 50% inhibitory dilution (ID50), calculated using the Reed-Muench method, which
refers to the dilution fold required to achieve 50% neutralization (Nie et al. 2020; Ferrara and

Temperton 2018). Higher ID50 correlates to increased potency of nAb within the serum sample.
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3.2.4. Statistical Analysis

Demographic data was tested for significance between groups utilizing the Mann-Whitney U
(MWU) testing for nonparametric continuous data, or Fisher’s exact test for categorical data, as
appropriate. Statistical differences between groups of time from vaccination to sample collection
were assessed using the student's T test. The primary outcome measures were post vaccination
Trimer 1gG titers and nAb titers at both V2D7 and M6. Antibody titers for all time points were log
transformed and z-scores were calculated to identify outliers (z score 22.5). Titers were tested
for significance using the MWU test separately for each time point. Subgroup analysis was
performed to assess the role of immunosuppressive therapy, with differences tested using the
Kruskal-Wallis test with Dunn’s post hoc test and Benjamini-Hochberg correction for multiple
comparisons. Univariate correlation analysis was performed by calculating Pearson’s coefficients
for log transformed antibody titers. Multivariate regression models were then constructed
separately for Trimer IgG and nAb to determine the relative effect of significant baseline variables
on short term (V2D7) and long term (M®6) results. P values <0.05 were considered significant. All
analyses were performed in R version 4.0.4 (https://www.R-project.org/). Kruskal-Wallis and
Dunn tests were implemented using the Dunn.test package. T testing, MWU, and Fisher’s exact
testing was implemented using the stats package. Pearsons coefficients were calculated using

the corr.test function of the psych package.

3.3. Results

3.3.1. Demographics

Fourteen sarcoidosis subjects and 27 control subjects were recruited. Group characteristics
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are highlighted in Table 2. Nearly all subjects received the BNT162b2 mRNA COVID-19 vaccine
and booster at the recommended time interval of 21 days (mean 21.15 days; st. dev 0.57, range
20-24 days). All subjects had blood samples collected just prior to the first vaccine dose
administration (V1DO0) and 7 days after the booster dose at time point V2D7 (mean 6.91 days; st.
dev 0.28, range 6-7 days) . All recruited subjects had available samples for Trimer IgG analysis at
V1DO0 and V2D7; of whom, 17 control samples and all 14 sarcoidosis samples were included in
nAb analysis. Due to attrition, 22 control subjects and 11 sarcoidosis subjects were available for
blood samples at the 6-month time point (mean 184.8 days from first vaccine, st dev 12.2, range
170-214 days) and included in Trimer IgG analysis at M6, of whom 11 control subjects and all 11
sarcoidosis subjects were included in nAb analysis.

Table 2. Demographics of control and sarcoidosis groups

Subjects
gglr)ljt;z:s with _ P-value
Sarcoid
Total Subjects, n 27 14
| Age, median (years) 53.0 60.5 0.3355
Sex, n
Female 10 10 0.7337
Male 17 4
Race, n
Black 2 9
White 18 5 0.0005
Asian 1 0
Other 0
Body Mass Index, median
| (kg/m?) 26.1 31.84 0.0319
Days between Vaccine 213 20.9 0.0793
Dose, mean
Days Between 1t Vaccine
and V2D7, mean 6.9 6.9 0.4939
Days Between 15t Vaccine 180.9 1926 0.0575
and M6, mean
V2D7 = 7 days after vaccine dose 2 (4 weeks after 15t dose)
M6 = month 6 time point

The sarcoidosis group was comprised of 13 subjects with pulmonary manifestations and 6 with

extrapulmonary involvement. Six subjects were not on any treatment and 8 were treated with
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immunosuppressive therapy. Specifics regarding sarcoidosis phenotypes and treatment
regimens for each subject are described in Table 3. Absolute peripheral lymphocyte values were
available for 12 sarcoidosis subjects and had a group median of 1.8 x 10° cells/liter. Four subjects
had medication titration within this 6 month pre-vaccination time interval.

Table 3. Clinical details regarding sarcoidosis chronicity, organ involvement, and treatment for
each of the fourteen subjects in the sarcoidosis group.

Subie Years Oraan Prednisone Abs Lymphocyte (10°
) Since 9 Treatment Equivalent cells / L)
ct . . Involvement
Diagnosis (mg)
Steroids, anti-metabolite
* ) )
1 26 Pulmonary anti-TNF, IVIG 10 0.9
2 2 Lymph Node Steroids, HCQ 7.5 1.2
3 13 Pulmonary, | gteroids, anti-metabolite | 2.5 3.0
Ocular
4 8 Pulmonary, | g0 oigs 5 NA
Neurologic
5* 12 Pulmonary, | \one 0 1.2
Cardiac
6 24 Pulmonary None 0 2.0
7 41 Pulmonary None 0 1.7
8* 11 Pulmonary Steroids, anti-TNF, IVIG | 15 3.1
Pulmonary, . . .
9 10 Neurologic, Ste_r0|ds, anti-metabolite, 10 16
) anti-TNF
Hepatic
10 6 Pulmonary HCQ 0 1.7
1 8 Pulmonary None 0 29
Pulmonary, Anti-metabolite, anti-
12 ’ Ocular TNF 0 19
13 30 Pulmonary None 0 NA
14 7 Pulmonary None 0 2.0
*6 month time point not available

3.3.2. Anti-Spike Protein Trimer IgG Titer and Neutralizing Antibody Analysis

Trimer IgG titers for each group across all three time points are illustrated in Figure 9. There
were no outliers detected at either time point. While sarcoidosis subjects had a higher median
baseline IgG titer than the control group (MWU p-val <0.001), both groups demonstrated a

significant increase in 1gG titers at V2D7 compared to their respective baselines (sarcoidosis:
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MWU p-val <0.001; control: MWU p-val <0.001) with comparable titers at V2D7 between groups
(MWU p-val =0.3680). IgG titers in both groups significantly decreased at the M6 time point from
their respective V2D7 titers (sarcoidosis: MWU p-val <0.001; control: MWU p-val <0.001);
however, M6 IgG titers in the sarcoidosis group fell to levels comparable to sarcoidosis V1D0O
titers (MWU p-val =0.9786) and were significantly less than M6 control IgG titers (MWU p-val
=0.0237). M6 IgG titers in the control group remained significantly higher than baseline values
(MWU p-val <0.001). Overall, this trend indicates a robust initial IgG response in both groups that
diminishes over time, returning to baseline in the sarcoidosis group and raising the concern for

more transient antibody protection.
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Figure 9. Trimer IgG titers for control and sarcoidosis groups are shown.

(a) log transformed titers for comparison between time points for each group and (b) log
transformed titers for comparison between groups at each time point. ns: p > 0.05; *: p <= 0.05;
**:p<=0.01; ***: p<=0.001

Functional nAb assays were performed to better determine protection conferred from
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vaccination. The ID50 for each group across all three time points (V1DO, V2D7, and M6) are
illustrated in Figure 10. Both control and sarcoidosis groups had a significant increase in nAb titers
from baseline to V2D7 suggesting robust nAb formation after 15t and 2" vaccination doses
(sarcoidosis: MWU p-val <0.001; controls: MWU p-val <0.001), similar to what was observed for
IgG trends. However, median ID50 for both groups at M6 were not significantly changed from
their respective V2D7 values (sarcoidosis: MWU p-val =0.2250; controls: MWU p-val =0.0894)
and remained significantly higher than baseline (sarcoidosis: MWU p-val <0.001; controls: MWU
p-val <0.001) suggesting persistent immunity. Finally, median ID50 for sarcoidosis subjects were
comparable to those of controls at all time points (V1D0 MWU p-val =0.5879; V2D7 MWU p-val

=0.5740; M6 MWU p-val =0.7409) indicating similar levels of nAb present.
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Figure 10. Neutralizing titers (50% Inhibitory Dilution) for control and sarcoidosis groups are
shown.

(a) log transformed titers for comparison between time points for each group and (b) log
transformed titers for comparison between groups at each time point. ns: p > 0.05; *: p <= 0.05;
**.p<=0.01; ***: p<=0.001
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Trends in IgG and nAb were further evaluated across sarcoidosis treatment groups (Figure 11).
Pairwise comparisons using Dunn's test indicated sarcoidosis subjects on and off
immunosuppression had comparable V2D7 IgG titers to controls (immunosuppression vs. control
BH adj p val =0.3197, no treatment vs. control BH adj p-val =0.4514) as well as comparable nAb
titers to controls (immunosuppression vs. control BH adj p val =0.4904, no treatment vs. control
BH adj p-val =0.9333) indicating a robust initial antibody response regardless of
immunosuppression. At M6, sarcoidosis subjects on immunosuppression had significantly
decreased IgG titers compared to controls (BH adj p-val =0.0162), however nAb titers remained

comparable (controls (BH adj p-val =0.3688) suggesting preserved protection.
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Figure 11. Antibody titers for Sarcoidosis subjects separated by treatment status and controls.
(a) log transformed trimer spike-protein IgG titers are shown. Sarcoidosis subjects not on
treatment had significantly higher V1DO titers than controls and comparable titers at V2D7. M6
IgG titers were significantly lower in the sarcoidosis group than controls. (b) log transformed
neutralizing titers (50% inhibitory dilution). Values were comparable across all groups at each
time point. ns: p > 0.05; *: p <= 0.05; **: p <= 0.01; ***. p <=0.001
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3.3.3. Regression Analysis

Given variation in Trimer IgG and nAb trends, a univariate linear regression model was
constructed to characterize the relationship between IgG and nAb titers across all time points.
Correlation coefficients for control and sarcoidosis group are shown in Figure 12. I1gG titers were
significantly and directly associated with nAb titers in both groups, with a strong correlation for
the control group (R =0.7715, p-val <0.001) and a weak correlation for sarcoidosis group (R
=0.3905, p-val 0.0140). IgG titers in the sarcoidosis group were overall determined to be less
predictive of nAb (R? =0.1525) than in the control group (R? =0.5952). With such low variance
explained by IgG titers in the sarcoidosis group, a multivariate linear regression model was
subsequently constructed to delineate which, if any, variables independently predict short term
(V2D7) and long term (M6) nAb titers. Regression models for each outcome are shown in Figure
13. The overall regression was not statistically significant for either group. Additional regression
models for M6 for each group were constructed with the addition of V2D7 and M6 IgG titers, also
with interdependencies accounted for, and yielded similar results. None of the additional
independent variables were significantly predictive of nAb though analysis may be

underpowered to detect significance.
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Figure 12. Univariate linear regression analysis illustrating the relationship between log
transformed Trimer IgG titers and log transformed 50% inhibitory dilution across all time

points.

(a) Control group showing a significant and strong correlation, and (b) Sarcoidosis group showing

a significant yet weak correlation.
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Figure 13. Multivariate regression analysis to assess independent predictors of 50% inhibitory
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dilution (ID50) by group (top row: controls; bottom row: sarcoidosis) and outcome time points
(left column: V2D7; right column: M6).

Axes are log transformed. (a) V2D7 ID50 for control group. Model: Logl10 V2D7 ID50 ~ Logl0
V2D7 Trimer IgG * Log10 V1DO Trimer IgG + Race + BMI. (b) M6 ID50 for the control group. Model:
Log10 V2D7 ID50 ~ Log10 V2D7 Trimer IgG * Log10 V1DO Trimer IgG + Log10 V2D7 Trimer IgG *
Log10 M6 V2D7 IgG + Race + BMI. (c) V2D7 ID50 for the sarcoidosis group. Model: Logl0 V2D7
ID50 ~ Log10 V2D7 Trimer IgG * Log10 V1DO Trimer IgG + Race + BMI + Treatment Group. (d) M6
ID50 for the sarcoidosis group. Log10 V2D7 ID50 ~ Log10 V2D7 Trimer IgG * Log10 V1DO Trimer
IgG + Log10 V2D7 Trimer I1gG * Log10 M6 V2D7 IgG + Race + BMI + Treatment Group. The overall
regression was not statistically significant for either group at both time points.

3.4. Interpretation

We present a single center analysis of the quantitative and qualitative antibody response to
vaccination with the BNT162b2 mRNA COVID-19 vaccine in infection naive subjects with and
without sarcoidosis. Our data indicates that sarcoidosis subjects mount a robust initial Trimer IgG
antibody response to vaccination with subsequent quantitative decline by 6 months, driven by
those on immunosuppression. Despite the decline in binding antibodies, sarcoidosis subjects
develop and maintain functional immunity regardless of immunosuppressive treatment. With
this discrepancy between IgG and nAb titers, it is not surprising that IgG antibodies weakly
correlated with nAb and were not significantly predictive of nAb titers at any timepoint. While
this study is of a single vaccine type, it sheds light on the clinical protection vaccination provides
individuals with sarcoidosis despite IgG titers that may suggest otherwise.

The SARS-CoV-2 is an enveloped virus with numerous structural proteins vital for the viral life
cycle. The S protein, which is composed a S1 subunit, S2 subunit, N-terminal domain, and
receptor-binding domain (RBD), is responsible for viral entry into the host cell specifically through
binding of the RBD. Antibodies to SARS-CoV-2 consist of IgM, IgG, and/or IgA antibodies and may

target any subdomain of the S protein (Klingler et al. 2020; Sterlin et al. 2021; Ma et al. 2020;
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Salvagno et al. 2021). Upon viral binding to ACE2, conformational changes of surface
glycoproteins result in the formation of an S protein trimer (Walls et al. 2020), which is the target
of the IgG antibodies quantified in this study. Despite a wide array of antibodies produced, nAb
confer protection by preventing viral entry, receptor mediated infection and infection
propagation. Numerous studies support a strong correlation between various antibody titers and
neutralization; however, the strength of correlation may vary with different tested antibody
targets as well as with time from SARS-CoV-2 exposure (Mazzini et al. 2021; Maeda et al. 2021;
Volkova 1974). Our findings reveal a strong correlation in controls between Trimeric anti-spike
IgG levels and neutralization, which aligns with a similar study of this antibody type in healthy
individuals after BNT162b2 vaccine (Matusali et al. 2022). The sarcoidosis group, however, had a
weak correlation between IgG levels and neutralization which was otherwise not explained by
group differences. Neutralization in this group is therefore likely explained by the presence of
non-lgG antibodies or antibodies to other spike protein subdomains not measured in our study,
though further analyses are needed to assess this.

Sarcoidosisis a T cell mediated disease characterized by local CD4+ T lymphocyte inflammation
and peripheral lymphocyte depletion in severe or active disease, as well as anergy and exhaustion
in progressive disease (Sweiss et al. 2010; Hawkins et al. 2017; Grunewald et al. 2019; Vagts et
al. 2021). Defects within humoral immunity have also been described and include evidence of B
cell hyperactivation, autoantibody production, decreased circulating memory B cells, as well as
previously mentioned impaired serologic responses to Tetanus and Hepatitis vaccines (Seyhan et
al. 2012; Mert et al. 2000; Hunninghake et al. 1999; Hashemzadeh et al. 2021; Kudryavtsev et al.

2020; Musaelyan et al. 2018; Saussine et al. 2012). Despite these defects, vaccine induced
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development and persistence of neutralization antibodies in sarcoidosis subjects is a particularly
important and reassuring finding. However it is worth noting the median peripheral absolute
lymphocyte count (1.8 x 10° cells/liter) in our cohort is greater than previously described
thresholds of significant sarcoidosis-related lymphopenia (Vagts et al. 2021). This suggests
lymphopenia is unlikely to be a significant disease manifestation in this cohort and therefore may
explain the preserved nAb activity. Treatment was also uptitrated in four sarcoidosis individuals;
despite this, neutralization was seemingly unaffected.

Limitations of this study include heterogeneity within the sarcoidosis group, limited sample
size, and attrition rate at 6 months. Data regarding lymphocyte subsets in the sarcoidosis group
were largely unavailable and may have allowed further interpretation of the immunity stimulated
by vaccination if obtained concurrently. Only IgG antibody was quantified, and despite strong
correlation to nAb among control subjects, further assessment of preserved immunity in
sarcoidosis was limited. Future studies in the field should focus on inclusion of specific sarcoidosis
phenotypes as well as direct assessment of cellular and humoral activity. In addition, only one
mRNA COVID-19 vaccine was studied, thus conclusions should be cautiously applied to other
COVID-19 vaccines.

Despite these limitations, we conclude that Trimer IgG levels in sarcoidosis subjects are poor
predictors of nAb, which are an important mechanism in preventing infection While further
analysis is needed to determine clinical outcomes from vaccination in this vulnerable population,
particularly among those on immunosuppression, knowledge gained from our study suggests
that vaccination may provide at least partial protection from COVID-19 infection in sarcoidosis.

Additional studies of immune response stimulated by the BNT162b2 vaccine, which induces
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robust cellular and humoral immunity (Fotin-Mleczek et al. 2011), may offer mechanistic insights

into the pathogenesis of sarcoidosis.
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4. Altered transcriptomic immune responses of maintenance
hemodialysis patients to the Covid-19 mRNA vaccine

Modified from publication: Chang YS, Huang K, Lee JM, Vagts CL, Ascoli C, Huang Y, Cherian
RA, Sarup N, Warpecha SR, Edafetanure-lbeh R, Amin MR, Ghassemi M, Novak R, Lora CM,
Perkins DL, Finn PW. Altered transcriptomic immune response of maintenance hemodialysis
patients to the Covid-19 mRNA vaccine. medRxiv. Preprint. 2023 Jan 19.

4.1. Introduction

The rapid development and dissemination of coronavirus disease 2019 (COVID-19)
vaccines in response to the COVID-19 pandemic has necessitated the characterization of immune
protection conferred by these vaccines across various populations. The COVID-19 mRNA-based
vaccines, BNT162b2 and mRNA-1273, have proven to be efficacious, with initial reports showing
95% and 94.1% reduction of COVID-19 disease in recipients (Baden et al. 2021; Polack et al. 2020).
However, certain immunosuppressed populations remain at risk of infection. Given the
widespread transmission of COVID-19, detailed assessments of degree, duration, and
determinants of immune protection conferred by these vaccines are vitally needed in
immunocompromised patient populations including those with end-stage renal disease.

End-stage renal disease (ESRD) is the most advanced stage of chronic kidney disease
(CKD), with prevalence in the U.S. reaching 809,000 in 2019 (Johansen et al. 2022) . The most
used form of renal replacement therapy for ESRD patients in the U.S. is hemodialysis (HD).
Despite significant improvements in hemodialysis technology, the mortality rate in ESRD patients
is still as high as 20% annually (Williams et al. 2004), with infections being the most common
cause of hospitalization and mortality after cardiovascular disease (Kato et al. 2008). The
immunocompromised state of ESRD is characterized by simultaneous immunodepression due to

the impact of uremic milieu on immunocompetent cells and immunoactivation due to the
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accumulation of proinflammatory cytokines (Kato et al. 2008). There are alterations to both
innate and adaptive immunity, including elevated levels of mannose-binding lectin (Satomura et
al. 2002), impaired maturation of monocytes and dendritic cells (Lim et al. 2007; Satomura et al.
2002), increased B cell apoptosis (Fernandez-Fresnedo et al. 2000), and decreased T-cell
proliferation with elevated Th1/Th2 ratio (Stenvinkel et al. 2005). Thisimmune compromise leads
to higher susceptibility to infection and lower response to vaccination (Ghadiani et al. 2012). For
example, while more than 90% of patients without CKD develop protective antibodies against
HBV after vaccination, only 50-60% of patients with ESRD seroconvert. There have also been
higher vaccination failure rates demonstrated against influenza virus, Clostridium tetani, and
Corynebacterium diphtheriae in ESRD (Eleftheriadis et al. 2007).

Studies of genome-wide expression (i.e. transcriptome) profiles of peripheral blood
mononuclear cells in ESRD demonstrate a complex picture of immune alterations. One study
found upregulation of genes involved in the complement and oxidative metabolism pathways,
and downregulation of genes associated with the clathrin-coated vesicle endosomal pathway and
T-cell receptor signaling (Scherer et al. 2013). Two other studies have demonstrated impaired
expression of genes involved in oxidative phosphorylation and mitochondrial function (Granata
et al. 2009; Liu, Fiskum, and Schubert 2002). A study identifying a group of inflammatory genes
playing a causative role in oxidative stress in dialysis patients showed unique gene expression
alterations in maintenance HD patients compared to un-dialyzed CKD patients and compared to
patients undergoing peritoneal dialysis (Zaza et al. 2008). These studies indicate a range of
immune pathways that may impair vaccination response, and further suggest that dialysis leads

to unique immune profile alterations.
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While recent studies of the SARS-CoV-2 BTN162b2 vaccine in HD demonstrate high levels
of seroconversion ranging from 84-96% (Anand et al. 2021; Attias et al. 2021; Grupper et al. 2021;
Jahn et al. 2021), they also demonstrate quantitatively reduced SARS-CoV-2 IgG antibodies. We
posit that characterization of the transcriptomic underpinnings of antibody titer development on
a continuous scale may identify biomarkers for weaker or less durable immune protection in this
population. Furthermore, transcriptomic analyses may identify targets for the development of
new, effective vaccines against other infectious diseases for this population. Thus, we
characterized the immune response of the HD population to the COVID-19 mRNA-based
BNT162b2 vaccine using RNA sequencing, antibody ELISA and neutralization titers across multiple
time points. We additionally identified transcriptomic and clinical determinants of the humoral

immune response in HD patients.

4.2. Method's

4.2.1. Study population and sample acquisition

The study was approved by the University of lllinois at Chicago IRB (#2018-1038) Ethics
Review Committee. Maintenance HD patients undergoing vaccination with the BNT162b2 mRNA
COVID-19 vaccine in February 2021 were recruited from the outpatient HD unit at the University
of Illinois Hospital (UIH) in Chicago, IL. Control subjects consisted of UIH employees undergoing
BNT162b2 mRNA COVID-19 vaccination at UIH from December 2020 to January 2021 with no
self-reported history of kidney disease or immune disorders. A subset of control subjects
matched for age, gender, and COVID-19 history was also analyzed for this study. Blood was

collected at 0 — 48 hours prior to and at multiple time points after both the first (V1) and second
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vaccination doses (V2), which were administered three weeks apart. Control samples were
collected prior to each vaccination dose (D0) and at one day (D1) and seven days (D7) after each
dose, corresponding to six time points: V1D0O, V1D1, V1D7, V2DO0, V2D1, V2D7. Blood was
collected from HD subjects prior to each vaccination dose and at two days (D2) and seven days
after each dose, corresponding to six time points: V1DO0, V1D2, V1D7, V2D0, V2D2, V2D7. A final
blood sample was drawn six months after initial vaccination (M6) for measurement of antibody
titers, prior to additional vaccination doses. Serum and peripheral blood mononuclear cells
(PBMCs) were extracted within two hours of blood collection, then stored at -80°C. PBMCs were
extracted using density gradient centrifugation at 400g with Ficoll-Paque PLUS. The extracted
buffy coat was stored in RNAlater (Invitrogen).
4.2.2. Clinical and Demographic Characterization

Demographic and clinical data was collected from the electronic health record (EHR) for
HD subjects, including medical diagnoses, medications, and laboratory values. Laboratory values
included monthly SARS-CoV-2 test results, as well as urea reduction ratio (URR, a measure of
dialysis adequacy), hemoglobin (Hgb), ferritin, transferrin saturation, albumin levels, white blood
cell (WBC) count and WBC differential counts obtained during standard of care monthly blood
draws for the three months preceding vaccination. Within our analyses, ferritin was coded as
either low risk (200ng/ml — 1200 ng/ml) or high risk (<200 ng/ml or >1200 ng/ml), since ferritin
levels 200ng/ml — 1200 ng/ml have been shown to be associated with lowest all-cause mortality
in HD patients (Kalantar-Zadeh et al., 2005). Baseline clinical lab values were calculated as the
median of three lab values across the three months prior to vaccination. Demographic and clinical

data was collected from a medical questionnaire at time of consent for control subjects, and

52


https://www.degreesymbol.net/

included medical history, medications, and self-reported prior SARS-CoV-2 positive test results.

4.2.3. RNA extraction and RNA Sequencing (RNAseq)

RNA sequencing was performed on PBMCs at all V1 and V2 time points for all subjects for
whom RNA libraries were successfully built at > 5 time points. PBMCs stored in RNAlater were
thawed and diluted 1:1 with 1X phosphate buffered saline. The mixture was then pelleted and
RNA was extracted using the PureLink RNA Mini kit (Invitrogen). DNase treatment to remove
genomic DNA contamination was performed using either the PureLink DNase kit or DNA-free kit
DNA Removal Kit (Invitrogen). Purified RNA in sterile water was stored at -80°C. Each RNA sample
was quantified using the Qubit RNA High Sensitivity kit (Invitrogen) and Bioanalyzer RNA Pico kit
(Agilent) with RIN>=8.

For library construction, 50ng of RNA from each sample was aliquoted in 96 well plates.
Libraries were generated using the NEBNext Ultra Il Directional RNA Library Prep Kit for lllumina
with the optional NEBNext Poly(A) mRNA Magnetic Isolation Module (New England Biolabs).
Each individual sample library was barcoded during PCR amplification using unique dual indexed
i5 and i7 primers from the NEBNext Multiplex Oligos for Illumina kit. Each sample library was
quantified using the Qubit DNA High Sensitivity kit and Bioanalyzer DNA High Sensitivity kit.
Samples were then pooled and sequenced using the MiSeq Nano V2 kit (lllumina) to check read
proportions between samples. Samples with lower-than-expected percentage of reads detected
were supplemented with an additional spike-in of sample library to the main pool. The
supplemented pooled library was sequenced again using the MiSeq Nano V2 kit to verify
adequate adjustment. The finalized library was sequenced using a NovaSeq S2 flow cell

configured for 75bp paired end output.
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4.2.4. Differential Gene Expression Analysis

Raw demultiplexed reads were filtered using fastp to remove adapters and short reads
(Chen et al. 2018). Trimmed reads were then quantified using the Salmon pipeline with an hg38
reference transcriptome index (Patro et al. 2017). Quantified data was imported into R using the
tximeta package (Love et al. 2020) to convert Salmon quantification and index data to a count
matrix. Transcript names were extracted and matched using Entrez IDs with the AnnotationHub
package (Love et al. 2020). This finalized count matrix was then imported into a DESeqDataset
object and normalized using the variance stabilizing transformation in DESeq?2.

The DESeq2 R package was used to identify genes that were differentially expressed at
each time point after vaccination for each subject group. Specifically, we implemented a design
incorporating group-specific condition effects with individual subjects nested within groups. We
performed the classical Deseq2 workflow of estimation of size factors, estimation of dispersion,
and negative binomial GLM fitting for i and Wald statistics, increasing the maximum number of
iterations for estimation of the negative binomial distribution to 500. We then generated
contrasts to obtain differentially expressed genes for controls at V1D1 and V1D7 (compared to
V1DO0), and at V2D1 and V2D7 (compared to V2DO0). Differentially expressed genes for HD were
similarly obtained at V1D2 and V1D7 (compared to V1DO0), and at V2D2 and V2D7 (compared to
V2D0). We also directly compared gene expression between controls and HD at V1D7 and at
V2D7. The significance threshold to determine differential expression was FDR-adjusted (p <
0.05).

4.2.5. Anti-Spike (trimer) IgG Titer Quantification

The Human SARS-CoV-2 Spike (Trimer) IgG ELISA Kit from Invitrogen was used to
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guantitate IgG to the SARS-CoV-2 spike protein in serum samples at V1DO0, V2D7, and M6 time
points. All samples were initially diluted 1:100 (in addition to the 1:10 assay buffer dilution on
the 96-well plate) and assayed in duplicate, with two-fold serial dilution of the 150,000 units/mL
standard control in duplicate for relative quantification. Absorbance at 450 nm was quantified
using a Spark® multimode microplate reader. Samples that produced signals greater than the
upper limit of the standard curve were diluted 1:2000 and assayed again. IgG concentration was
calculated by fitting four-parameter logistic curves to the standard controls and taking the
average concentrations of duplicates.

4.2.6. Antibody Neutralization Assays

Neutralization assays were performed on serum samples from V1D0 and V2D7 using
SARS-CoV-2 pseudotyped virus (pseudovirus). To produce pseudoviruses, an expression plasmid
bearing codon-optimized SARS-CoV-2 full length S plasmid was co-transfected into HEK293T cells
using the SARS-CoV-2 Spike-pseudotyped lentiviral particle Kit (BEI # R-52948). The cell
supernatants were collected 72h after transfection, divided into aliquots and cryopreserved at
-80 °C.

To titrate the pseudovirus, 5x10° 293T-ACE2 cells were seeded per well in a 96-well plate
in DMEM containing 10% FBS and 1% penicillin streptomycin. Twenty-four hours later, the
pseudovirus was diluted 1:10, followed by five-fold serial dilutions for a total of nine dilutions,
with each dilution performed in six replicate wells. After incubation at 37 °C and 5% (vol/vol) CO2
for 72h, the luciferase substrate was added to the 96-well plate for chemiluminescence
detection. The 50% tissue culture infectious dose (TCID50) of the pseudovirus was calculated

according to the Reed-Muench method in the titration macro template (MATUMOTO 1949).
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Neutralization activity against SARS-2-CoV was measured in a single-round-of-infection
assay with pseudoviruses as previously described (Nie et al. 2020). 5x103 293T-ACE?2 cells were
seeded per well in a 96-well plate. Twenty-four hours later, serial dilutions of the serum samples
were performed, incubated for one hour at 37 °C with ~1000 TCID50/ml of pseudovirus, then
added to monolayers of ACE2-overexpressing 293T cells in quadruplicate. The cell control with
cells alone and the virus control (VC) with pseudovirus were set up in each plate. The target cells
were incubated for 65h-72h at 37 °C and 5% (vol/vol) CO2. Fifty uL of Bright-Glo, reconstituted
following manufacturer’s instructions, was added to each well of the 96-well plate and incubated
for five minutes at room temperature. The 96-well plate was read by a 96-well luminescence
plate reader (Tecan Genius Pro plate reader) (Ferrara and Temperton 2018). Percent
neutralization was calculated as 100*([Virus-only control] — [Virus plus serum])/[Virus-only
control], and neutralizing titer levels are reported as the serum dilution required to achieve 50%
neutralization (50% inhibitory dilution [ID50]) (Pegu et al. 2021). The input dilution of serum was

1:20, thus 20 is the lower limit of quantification.

4.2.7. BTM module enrichment analysis

Gene set enrichment analysis was performed for each contrast generated in the DESeq2
analysis above using blood transcription module (BTMs) gene sets (S. Li et al. 2014). BTMs with
FDR-adjusted p < 0.05 were considered significantly enriched. Enriched BTMs were further
characterized using the distribution of Wald statistics of membership genes from DESeq2. To
summarize BTM analyses, BTMs were categorized into different families: B cells, cell cycle,
dendritic cell/antigen presentation, type | interferon (IFN type 1), myeloid activity/inflammation/

T/NK cells, and “others” (Braun et al. 2018). The percentage of BTMs in each BTM family with
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significant enrichment at each time point was then quantified over time.

4.2.8. Statistical analysis of antibody response

To determine the effect of vaccination on anti-spike 1gG titers at V2D7 and M6, Kruskal-
Wallis tests were performed separately for HD subjects and controls. For each group, anti-spike
IgG titer levels were compared to assess for the significant effect of time (V1DO0, V2D7, M6), and
Wilcoxon rank sum tests were performed with FDR correction to assess significant differences
between each pair of time points (V2D7 vs. V1D0O, M6 vs. V1D0, M6 vs. V2D7). To determine the
effect of vaccination on antibody neutralization activity (ID50) at V2D7, Wilcoxon rank sum tests
were performed for each group to compare V2D7 vs. V1DO.

Linear models were constructed to establish the effect of prior SARS-CoV-2 infection and
subject group on anti-spike IgG titer development at V2D7 and M6 and neutralization activity at
V2D7. Specifically, log-transformed V2D7 anti-spike 1gG titers or V2D7 neutralization activity
(ID50) were modeled as the dependent variable, with subject group (HD or controls), log-
transformed V1DO anti-spike IgG titers or V1DO neutralization activity (ID50), gender, age, race,
and ethnicity as independent predictors. To determine predictors of anti-spike IgG at six months,
a linear model was constructed with the log-transformed M6 anti-spike IgG titers as the
dependent variable, and V2D7 anti-spike IgG titers, SARS-CoV-2 history, gender, age, race, and

ethnicity as independent predictors.

4.2.9. Identification of BTM and clinical predictors of Ab response in HD

BTM predictors of antibody response in HD were identified by first calculating a

representative expression level of each BTM per sample, which we will refer to as the eigengene.
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Specifically, the first principal component of each BTM was calculated using DESeqg2-derived
variance-stabilized gene counts from each module’s member genes across the HD V1 time points,
and then across the HD V2 time points. Signs (positive or negative) were assigned to the
eigengenes such that samples with higher expression of member genes in a BTM would be given
a positive sign, while those with lower overall gene expression would be given a negative sign.
This was accomplished for each BTM by (1) computing the median gene expression level across
membership genes in a given BTM for each sample, (2) computing the Pearson correlation
between the eigengene of the BTM and the median gene expression level across all samples, and
(3) multiplying the eigengene of the BTM by -1 if the correlation was negative.

Subsequently, we constructed linear models with log-transformed anti-spike 1gG at V2D7
as the dependent variable and change in BTM eigengene expression after vaccination as the
independent variable, controlling for SARS-CoV-2 history. Separate models were constructed for
each BTM that was enriched at each time point after vaccination in HD (V1D2 vs V1DO, V1D7 vs
V1DO0, V2D2 vs V2DO0, V2D0 V2D7). Change in BTM expression was calculated as the BTM
eigengene after vaccination minus the BTM eigengene before vaccination. P-values were FDR-
adjusted across number of enriched BTMs per time point.

Additionally, baseline clinical laboratory values predictive of antibody response in the HD
subjects were identified. Linear models were separately constructed using URR, ferritin (high risk
vs low risk), transferrin saturation, hemoglobin, and WBC count to predict log-transformed anti-
spike IgG at V2D7 and M6.

Finally, clinical laboratory values responding to vaccination that predicted antibody titer

response in the HD subjects were identified. Linear models were separately constructed using
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log-fold change (LFC) from baseline measurements of ferritin (continuous instead of binarized
low- and high-risk), transferrin saturation, and WBC count to predict log-transformed anti-spike

IgG titers at V2D7 and M6.

4.3. Results

4.3.1. Demographic and Clinical Characterization

Demographic and clinical data of the 20 maintenance hemodialysis (HD) and controls (HC)
are summarized in Table 4. The racial distribution differed between cohorts with more
Black/African American subjects in the HD cohort. The cohorts were otherwise demographically
similar. The subjects within the HD cohort had significantly more comorbidities, most notable of
which include type 2 diabetes mellitus (T2DM), hypertension (HTN), dyslipidemia, and other
cardiovascular conditions. The most common causes of renal failure were T2DM and HTN, with
a minority of cases attributed to anatomic defects (reflux uropathy) and autoimmune conditions
(systemic lupus erythematous and idiopathic thrombocytopenic purpura).

Table 4. Demographic and clinical data for maintenance hemodialysis and control subjects.

Total # of subjects 20 20
Gender
Male 11 10 1.0
Female 9 10 1.0
Age (mean (sd)) 54 (12) 54 (13) 0.98

Race/Ethnicity

Black/African American 10 3 0.041

Asian/Pacific Islander 1 2 1.0

White/Caucasian 2 8 0.067

Hispanic/Latinx 7 6 1.0

Other 0 1 1.0
BMI, kg/m? (mean (sd)) 27.8 (5.1) 28.7 (6.4) 0.61
Medical Hx

Diabetes 11 1 0.0012
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Hypertension 18 4 < 0.001
Other CV disease* 9 0 0.0012
Dyslipidemia 10 0 < 0.001
Autoimmune disease** 3 0 0.23
Immunosuppression*** 1 0 1.0
Active Malignancy**** 1 0 1.0
Positive COVID-19 Hx 8 5 0.5

* includes coronary artery disease (CAD), congestive heart failure (CHF), atrial fibrillation (AF),
peripheral  vascular  disease  (PVD), and cerebral wvascular accent (CVA)
** includes systemic lupus erythematosus (SLE), immune thrombocytopenic purpura (ITP),
microscopic polyangiitis (MPA)
ok hydroxychloroquine
**** defined as malignancy requiring treatment in the last six months; one patient with papillary
thyroid cancer requiring thyroidectomy, no systemic treatment required

There were eight HD subjects who previously tested positive for SARS-CoV-2, with positive
test dates ranging from 7 months to four weeks preceding vaccination. Five control subjects self-
reported a prior positive SARS-CoV-2 test, with positive test dates ranging from 8 months to four
weeks preceding vaccination. Detailed clinical characterization of HD subjects is summarized in
Table 5. Notable laboratory data includes an elevated ferritin from normal (with high population
variance), and anemia.
All subjects received two BTN162b2 vaccination doses with the second dose (V2) administered
three weeks after the first (V1). Anti-spike IgG binding and neutralizing assay data were obtained
for all subjects prior to V1 (V1DO0) and seven days after V2 (V2D7). RNA sequencing data was
obtained for all control subjects prior to each vaccination dose (D0), and at one day (D1) and
seven days (D7) after each dose, corresponding to six time points: V1D0, V1D1, ViD7, V2DO,
V2D1, V2D7. One control subject is missing V2D0O data, and one is missing V2D1 data. RNA
sequencing data was obtained for 12 HD subjects prior to each vaccination dose, and at two days

(D2) and seven days after each dose, corresponding to six time points: V1D0, V1D2, V1D7, V2DO0,
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V2D2, V2D7. Two HD subjects are missing V2D2 data. Sequencing data was not obtained for
subjects with fewer than five time points of successfully constructed RNA libraries, due to time
points without sample collection or failure to extract high quality mRNA from PBMCs. Six-month
follow-up (M6) anti-Spike 1gG binding titers were obtained for 15 HC subjects and 19 HD subjects.
One HD subject tested positive for SARS-CoV-2 14 days after the second vaccination dose,
demonstrating mild symptoms. None of the other subjects reported SARS-CoV-2 infection up to
6 months follow up after the second vaccination.

Table 5. Baseline clinical lab values for maintenance hemodialysis patients.

Kidney/HD status
Urea Reduction Ratio - 0.74 (0.052)
(URR)
Months on HD - 46 (44)
Iron
Ferritin (ng/ml) 10 - 259 838 (550) *
% Transferrin saturation 25 - 50 38 (13)
Albumin 3.4-5 4.1 (0.40)
CBC
WBCs (k/ul) 3.9-12 6.0 (2.1)
Hgb (g/dl) 13.2-18 10.5 (1.5) *
Lymphocytes (k/ul) 1.3-4.2 1.5 (0.7)
Neutrophils (k/ul) 1.3-75 3.7 (1.5)
Monocytes (k/ul) 04-1 0.5 (0.2)
Eosinophils (k/ul) 0.2-0.5 0.2 (0.2)

¥ indicates value outside of normal range

4.3.2. Differential Gene Expression Analysis

To characterize the molecular basis of immune responses to vaccination in HC and HD,
we performed differential gene expression analyses of the PBMC RNA sequencing data. There
are substantially more differentially expressed genes (DEGs) in response to V2 compared to V1,

and at D1 and D2 post-vaccination compared to D7 (Figure 14). For HC, the largest number of
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DEGs is found at V2D1, indicating the most transcriptional activity immediately after the 2"
vaccine dose, followed by V2D7, V1D1, and V1D7. HD follows a similar pattern, with the largest
number of DEGs found at V2D2, followed by V2D7, V1D2, and V1D7. Notably, HD subjects with
no SARS-CoV-2 history (n = 6) have substantially lower numbers of DEGs than HD subjects with

positive SARS-CoV-2 history (n = 6) at each time point, and particularly at V2 time points.
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Figure 14. Differentially expressed genes (DEGs) increased after second vaccination dose
compared to first, and at Day 1 and 2 (D1/D2) compared to Day 7 (D7) for both controls (HC)
and maintenance hemodialysis (HD).

Number of DEGs at each time point is displayed on a log scale, with DEGs for HC shown for D1
and D7 compared to pre-vaccination time point (D0), and DEGs for HD shown for D2 and D7
compared to DO. DEGs are shown independently of SARS-CoV-2 history (Top), for analysis of only
subjects with no prior SARS-CoV-2 history (Middle), and for analysis of only subjects with prior
SARS-CoV-2 history (Bottom). The DESeq2 R package was used to identify genes that were
differentially expressed at each time point after vaccination for each subject group (p < 0.05, FDR-
adjusted).
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Direct comparison of gene expression between HC and HD with no prior reported SARS-
CoV-2 infection at V1D7 yielded five DEGs in HD versus HC including increased expression of
chemokine CCL19 in HD (p < 0.05, FDR-corrected). Comparison of these same groups at V2D7
yielded 18 DEGs including increased expression in HD of TIAl, which encodes a granule-
associated protein expressed in cytolytic lymphocytes (Anderson et al. 1990) and natural killer
cells, and BH3, a pro-apoptotic Bcl-2 family member and mediator of lymphocyte apoptosis (Labi

et al. 2008).

4.3.3. Blood Transcription Module (BTM) Enrichment

BTM enrichment analysis of subjects without SARS-CoV-2 history reveals the vaccine-
induced progression of various immune processes at each time point after vaccination (Figure 2).
Following V1, HC demonstrate early (V1D1) enrichment of 29 BTMs, with substantial
upregulation of monocyte and antiviral IFN activity. The immune response transitions to V1D7
enrichment of four BTMs including significant T cell activation and downregulation of monocytes.
Following V2, HC demonstrate early (V2D1) enrichment of 82 BTMs, with substantial
upregulation of innate antiviral activity, similarly to V1D1. The immune response transitions to
V2D7 enrichment of ten BTMs, with significant upregulation of plasma cells and

immunoglobulins.

In contrast, HD demonstrate early (V1D2) enrichment of 12 BTMs after the first
vaccination dose, most significantly involving upregulation of innate antiviral responses (Figure
15). The immune response transitions to V1D7 enrichment of 17 BTMs, with substantial

upregulation of myeloid modules. The V1D7 positive enrichment of monocyte/myeloid modules

63



in HD contrast the negative enrichment of these modules in HC (Figure 15, Figure 16). Following
the second vaccination dose, HD demonstrate early (V2D2) enrichment of 27 BTMs most
significantly involving upregulation of dendritic cell activity and proinflammatory cytokines and
chemokines. The immune response progresses to V2D7 enrichment of one BTM: PLK signaling

events.
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Figure 15. Controls (HC) and maintenance hemodialysis subjects (HD) with no SARS-CoV-2
history demonstrate differing longitudinal enrichments of blood transcription modules (BTMs).
(A) The most significantly enriched BTMs are shown (up to six) for Day 1 (D1) and Day 7 (D7) after
each vaccination dose (V1, V2) in HC with no prior infection with SARS-CoV-2 (p < 0.05, FDR-
adjusted). Density plots for each BTM represent Wald statistics from DESeqg2 analysis for each
membership gene, thereby representing increased or decreased expression per gene at each
time point compared to baseline (V1D0 or V2DO0). (B) Similarly to (A), the most significantly
enriched BTMs for Day 2 (D2) and Day 7 (D7) in HD are shown.

64



LLMS37.1 enriched in neutrophils (1)
LI.M11.0 enriched in monocytes (Il)

LI.M37.0 immune activation - generic cluster
Adjusted P (BTM enrichment)
0.05

0.04
0.03

0.02
0.00

LI.M4.0 cell cycle and transcription

BTM

LI.M16 TLR and inflammatory signaling

LI.M132 recruitment of neutrophils

LI.M219 respiratory electron transport chain (mitochondrion)

LI.M250 spliceosome

'
-5.0 -25 0.

0 25 5.0
Membership gene Wald statistics

Figure 16. Hemodialysis patients (HD) without prior SARS-CoV-2 infection show increased
myeloid activity at V1D7 and decreased metabolic activity at V2D7 compared to controls (HC).
The most differentially enriched blood transcription modules (BTMs) between HC and HD with
no prior infection with SARS-CoV-2 are shown (p < 0.05, FDR-adjusted) at V1D7 and at one week
after second vaccination dose (V2D7). Density plots for each BTM represent Wald statistics from
DESeq2 analysis for each membership gene per BTM, with positive Wald statistics indicating
increased expression in HC compared to HD.

While there were no significant BTM enrichments in HC with positive SARS-CoV-2 Hx,
most likely due to the insufficient number of subjects, BTM enrichments for HD with positive
SARS-CoV-2 demonstrated notable upregulation of plasma cell activity at V1D7. This contrasts
with V1D7 for HD with negative SARS-CoV-2, which show primary enrichment of myeloid BTMs

(Figure 15). The remainder of these enrichments are shown in Figure 17.
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Figure 17. Hemodialysis patients (HD) with prior SARS-CoV-2 infection show increased
expression of innate and adaptive immune blood transcription modules (BTMs) post-
vaccination.

The most significantly enriched BTMs are shown (up to six) for Day 2 (D2) and Day 7 (D7) after
each vaccination dose (V1, V2) in HD with prior infection with SARS-CoV-2 (p < 0.05, FDR-
adjusted). Density plots for each BTM represent Wald statistics from DESeq2 analysis for each
membership gene, thereby representing increased or decreased expression per gene at each
time point compared to baseline (V1D0 or V2DO0).

Summary enrichments using BTM families show many positive early V1 enrichments of
Type 1 IFN activity that dissipate by V1D7 in both HC and HD (Figure 18). However, HC show early
positive and negative enrichments of myeloid/inflammatory family activity that dissipate by
V1D7, while HD show many early positive enrichments of myeloid/inflammatory family activity

that persist and increase at V1D7. Following V2, HC show early predominance of dendritic cell
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(DC)/antigen presenting cell (APC), IFN Type |, and myeloid/inflammatory family activity
transitioning to B cell and cell cycle activity at V2D7, while HD show predominant early IFN type

| family activity transitioning to just one detectable cell cycle module enrichment.
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Figure 18. Controls (HC) and maintenance hemodialysis subjects (HD) demonstrate differing
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time courses of blood transcription module (BTM) enrichment after each vaccination dose.
Percentage of BTMs in each BTM family with significant enrichment at each time point after each
vaccination dose (V1, V2) for Day 1 (D1) and Day 7 (D7) in HC, and Day 2 (D2) and D7 for HD in
subjects with no prior infection with SARS-CoV-2 (p < 0.05, FDR-adjusted). Direction of
enrichment was determined using the median Wald statistic from DESeq2 analysis for each BTM
membership gene, thereby representing overall increased or decreased expression of
membership genes at each time point compared to baseline (V1DO0 or V2DO0).

4.3.4. Antibody Binding and Neutralization Assay Response

We next aimed to assess immune protection conferred by the vaccine through
guantification of anti- spike 1gG antibodies and functional assessment of neutralizing antibodies.
All subjects demonstrated an increase in anti-spike IgG at V2D7, with titers for all subjects except
one still elevated above baseline at six months. The exception was one HD subject with prior
SARS-CoV-2 infection who demonstrated the highest baseline titers of all subjects prior to
vaccination. Both HC and HD subjects demonstrated a statistically significant increase in anti-
spike 1gG and neutralization activity (ID50) from V1DO to V2D7 (p < 0.001), followed by an
expected decrease at M6 from V2D7 levels (p < 0.001) (Figure 19). Despite this decrease, M6

titers were still increased compared to baseline (p< 0.001).
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Figure 19. Antibodies significantly increased in controls and maintenance hemodialysis (HD)
one week after the second vaccination dose (p < 0.001) and six months after initial vaccination
(p < 0.001) with the BNT162b2 mRNA COVID-19 vaccine.

(A) Anti-spike 1gG levels in controls and HD subjects with and without prior SARS-CoV-2 history
before vaccination (V1DO0), one week after second vaccination dose (V2D7), and six months after
initial vaccination (M6). (B) Antibody neutralization activity (ID50) in controls and HD subjects
with and without prior SARS-CoV-2 history at V1DO0 and V2D7.

Higher anti-spike IgG at V2D7 was significantly predicted by higher pre-vaccination anti-
spike 1gG, control group assignment, and younger age (p <0.01, p<0.05, p<0.05, respectively),
while gender, race, and ethnicity were not. Higher anti-spike IgG at M6 was significantly predicted
by higher V2D7 anti-spike IgG (p < 0.001), with no additional predictive value conferred by SARS-
CoV-2 history, subject group, age, gender, race, or ethnicity. Higher neutralization activity (ID50)

at V2D7 was significantly predicted by higher pre-vaccination ID50, with no additional predictive

value conferred by subject group, age, gender, race, and ethnicity.
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4.3.5. Transcriptomic and clinical predictors of antibody binding response in HD

Linear models to predict anti-Spike IgG at V2D7 and at M6 in HD using enriched BTMs,
controlling for SARS-CoV-2 history, identified BTM predictors at all time points except for V1D2.
Of the 18 enriched BTMs at V1D7, increased expression (from V1DO0) of “LI.M156.1 plasma cells,
immunoglobulins” was predictive of higher anti-spike 1gG at V2D7 (p < 0.05, FDR-corrected),
controlling for SARS-CoV-2 history. Of the 30 enriched BTMs at V2D2, increased expression of 18
BTMs was predictive of higher anti-Spike IgG at V2D7 (p < 0.05, FDR-corrected). These include
innate immune, antigen presentation, and T cell pathways (Figure 20). Increased expression of
“LI.M4.2 PLK1 signaling events” at V2D7 compared to V2DO0, which was the only enriched module
at this time point for HD subjects with no SARS-CoV-2 history, was predictive of higher anti-spike

IgG at both V2D7 and M6 (p < 0.05).
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Figure 20. Increased expression of multiple Blood Transcription Modules (BTMs) at V2D2 is
predictive of higher anti-spike I1gG at V2D7.

Of 30 enriched BTMs at V2D2, increased expression of 18 BTMs is predictive of increased anti-
spike 1gG at V2D7 (p< 0.05, FDR-corrected), controlling for SARS-CoV-2 history. Predictive
pathways include innate immune, antigen presentation, and T cell pathways. Three examples are
shown.

Linear models to predict anti-Spike IgG at V2D7 and at M6 In HD using clinical predictors
yielded significant baseline and post-vaccination predictors. Baseline ferritin levels in the
intermediate range (200 — 2000 ng/ml) were associated with higher anti-spike IgG at V2D7 and
M6 (p < 0.01, p < 0.05), controlling for history of SARS-CoV-2. URR, WBC counts, transferrin

saturation, and hemoglobin were not significant predictors of antibody development. Figure 21A

71



shows anti-spike IgG at V2D7 as a function of baseline ferritin levels, identifying the intermediate
range of ferritin which has previously been associated with lowest all-cause mortality (Kalantar-
Zadeh et al., 2005)

The LFC of WBCs from baseline after the first vaccination dose was significantly predictive
of antibody titer levels at both V2D7 (p <0.01) and M6 (p < 0.05), controlling for SARS-CoV-2
history and number of days after vaccination that labs were collected (Figure 21B). The predictive
value of LFC of WBCs is predominantly driven by increased lymphocyte counts; LFC of absolute
lymphocyte counts was predictive of V2D7 (p < 0.01) and M6 (trend-level, p = 0.056) antibody

titers, controlling for initial antibody titers and date of clinical labs.
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Figure 21. Baseline ferritin level and post-V1 white blood cell count (WBC) are clinical
predictors of post-V2 antibody responses in maintenance hemodialysis patients (HD).

(A) Ferritin levels associated with lowest all-cause mortality predict the development of higher
anti-spike IgG after vaccination at V2D7 (p < 0.01) and M6 (not shown, p < 0.05) in maintenance
HD patients. Dashed vertical lines indicate the intermediate range of ferritin (200-1200 ng/ml)
associated with lowest all-cause mortality (Kalantar-Zadeh et al., 2005). (B) Increased WBC after
first vaccination dose is predictive of anti-spike IgG titers after vaccination at V2D7 (p < 0.01) and
M6 (not shown, p < 0.05) in maintenance HD patients. Points with negative log-fold change of
white blood cell counts (LFC(WBC)) and positive LFC(WBC) represent a decrease and increase,
respectively, in WBC from baseline labs.
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4.4. Discussion

Our results demonstrate differing expression of BTMs and differing time courses of
immune responses to the BTN162b2 mRNA COVID-19 vaccination in maintenance hemodialysis
subjects (HD) compared to controls. Controls demonstrated expected transitions from early Type
linterferon and myeloid activity to T cell activity after the first vaccination dose (Figure 15, Figure
18). The predominant positive enrichment of T cell modules in controls at one week after the first
vaccination dose (V1D7) was contrasted with predominant positive enrichment of myeloid
modules in HD at V1D7. These results support prior evidence of decreased antigen presentation
(Lim et al. 2007; Satomura et al. 2002) and decreased T cell proliferation (Stenvinkel et al. 2005)
in end stage renal disease (ESRD). Interestingly, HD showed prolonged upregulation of myeloid
activity at V1D7, while controls showed downregulation of these modules at V1D7 (Figure 15,
Figure 16). Overall, these observations indicate prolonged myeloid responses but impaired or
delayed progression to T cell responses in the HD cohort. Prior studies have shown alterations of
all three classes of immune system pattern recognition receptors (PRR) (Kato et al. 2008);
increased expression of mannose-binding lectin, a secreted PRR, and increased expression of
major macrophage scavenger receptors SR-A and CD36 (Ando et al. 1996), but decreased
expression of toll-like receptor 4 (TLR4) (Ando et al. 2006), a signaling PRR. Because TLRs are
important for T-cell activation by antigen presenting cells (APCs) (Kato et al. 2008), and given
impaired APC function in dialysis patients (Eleftheriadis et al. 2007), it is plausible that the
pattern-recognition receptor alterations of ESRD impair APC-mediated activation of T cell
responses while driving persistent myeloid cell activity.

Following the second vaccination dose, controls demonstrated prominent early dendritic

73



cell (DC)/antigen presentation cell (APC), myeloid, and IFN type | activity transitioning to B cell
and cell cycle activity (Figure 18). HD demonstrated early DC/APC activity, but to a lesser degree
than innate immune modules. At V2D7, metabolic activity was decreased in HD compared to
controls. Interestingly, HD demonstrated increased V2D7 expression compared to controls of
pro-apoptotic Bcl-2 family member BH3, a mediator of lymphocyte apoptosis. A prior study
showed accelerated in vitro apoptosis of lymphocytes in uremia, with a particularly pronounced
effect on B cells, mediated by dysregulation of Bcl-2. This suggests a potential role of lymphocyte
apoptosis in diminished immune responses to vaccination in HD.

Our results demonstrate significant elevation of anti-spike IgG titers after two doses of
BNT162b2 mRNA COVID-19 vaccination in both HD and controls. HD demonstrated only a slight
decrease of IgG levels at V2D7 when controlling for SARS-CoV-2 history (p < 0.05) and no
statistically significant difference at six months. Prior studies comparing short-term antibody
response to BNT162b2 mRNA COVID-19 vaccination in HD versus controls find antibody response
rates of 84-96% in HD after two vaccination doses, but with lower mean IgG levels compared to
controls (Agur et al. 2021; Anand et al. 2021; Attias et al. 2021; Drakesmith et al. 2021; Grupper
et al. 2021; Jahn et al. 2021; Longlune et al. 2021). Notably, the HD population studied here is
younger and more racially and ethnically diverse. The average age of HD cohorts in prior studies
was predominantly in the 60s, compared to an average age of 54 in our study. Jahn et al. found
in a subset analysis that HD patients under 60 years of age responded equally to healthy controls,
suggesting an interaction between increasing age and less effective antibody response in HD
patients (Jahn et al. 2021).

HD subjects with documented SARS-CoV-2 infection prior to vaccination had wider
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variance of antibody titers at all time points in this study, with two subjects demonstrating V1D0
antibody titer levels similar to that of uninfected subjects. These two subjects consistently had
the lowest titer levels at V2D7 and M6 within the group of previously infected subjects and
amongst the lowest titers across all subjects. One subject is the oldest enrolled patient, and both
are diagnosed with hyperlipidemia.

Given previously and presently demonstrated the wider variance of protective immune
responses in HD and altered interactions with risk factors including age, it is valuable to identify
predictors of the strength of immune response to vaccination in this population. We identified
both transcriptomic and clinical predictors of anti-spike IgG development at both V2D7 and six
months after the second vaccination dose (M6). Increased gene expression of blood transcription
modules (BTMs) including monocyte activity, dendritic cell and antigen presentation activity, IFN
type | activity, and T cell activation two days after the second vaccination dose (V2D2) in HD were
predictive of V2D7 anti-spike IgG. Additionally, increased expression of PLK1 signaling events,
indicating increased cell cycle activity, at V2D7 was predictive of V2D7 and M6 anti-spike I1gG.
Clinically, serum ferritin values in the intermediate range at baseline predicted stronger anti-
spike 1gG development. A prior study of 58,058 maintenance HD subjects found serum ferritin
levels between 200 and 1200 ng/ml to be associated with lower all-cause mortality, due to ferritin
<200 ng/ml representing low iron status, and >1200 ng/ml representing a hyper-inflammatory
state due to ferritin’s status as an acute phase reactant (Kalantar-Zadeh et al. 2005). Iron
deficiency has been linked to impaired immune response and vaccine efficacy in other infections,
while inflammation induces macrophage release of the heavy chain component of ferritin, FTH,

which has been reported to inhibit lymphocyte proliferation and function (Drakesmith et al. 2021;
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Kernan and Carcillo 2017). Additionally, increased LFC in WBC count 1-3 weeks after vaccination
was predictive of higher antibody titers.

Our study is limited by different early time points between controls and HD (Day 1 vs Day
2 after each vaccination dose) and by sample size, particularly when subdividing SARS-CoV-2
history. The smaller sample size additionally limits our ability to characterize differential immune
pathways in clinical subsets of the dialysis population, such as those with low, medium, and high
baseline ferritin levels. Future studies are needed for more comprehensive characterization of
the immune pathway recruitment in response to the Covid-19 vaccinations in this population.
The Covid-19 mRNA vaccines are proving more efficacious than other vaccines in the ESRD
population; for example, while more than 90% of patients without chronic kidney disease
develop protective antibodies against hepatitis B after vaccination, only 50-60% of patients with
ESRD seroconvert (Eleftheriadis et al., 2007). One explanation is that, in mRNA vaccines, the
MmRNA both encodes the viral antigen and acts as an adjuvant due to its innate
immunostimulatory properties; the mRNA is recognized by endosomal and cytosolic innate
sensors upon cell entry, resulting in cellular activation and production of type | interferons and
other inflammatory mediators (Teijaro and Farber 2021). This elevated innate immune stimulus
could overcome immune desensitization in ESRD, evidenced by diminished TLR4 expression on
monocytes (Koc et al. 2011) and downregulation of activating receptors on natural killer cells in
this population (Nagai 2021). If so, the mRNA vaccine delivery vehicle could prove particularly
valuable in vaccine development for ESRD and HD going forward.

Overall, we demonstrate differing time courses of immune responses to the BTN162b2

mRNA COVID-19 vaccination in maintenance hemodialysis subjects (HD) and identify
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transcriptomic and clinical predictors of anti-Spike IgG titers in HD. Our results warrant further
characterization of the immune dysregulation of ESRD and of immune biomarkers that underlie

efficacious immune responses to vaccination in this population.
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5. Elucidation of immune dysregulation in maintenance hemodialysis

patients using vaccine-stimulated transcriptomics

Includes data and text from manuscript: Chang YS, Lee JM, Huang K, Vagts CL, Ascoli C, Perkins
DL, Finn PW. Altered transcriptomic immune response of maintenance hemodialysis patients
to the Covid-19 mRNA vaccine. medRxiv. Preprint. 2023 Jan 19.

5.1 Introduction

While the previous two chapters characterize the humoral immune response to vaccination
and its transcriptomic correlates, this chapter investigates the broader underpinnings of immune
dysregulation in end stage renal disease (ESRD). Examination of regulatory processes governing
gene expression is particularly relevant in the study of the immune system in ESRD, which is
characterized by a duality of (1) immune incompetence leading to increased susceptibility to
infection co-existing with (2) immunoactivation which contributes to the progression of
atherosclerotic lesions and vascular disease (Stenvinkel et al. 2005). This duality is further
complicated by seemingly contradictory literature on ESRD. For example, one study has reported
increased expression of toll-like receptor 4 (TLR4) on monocytes leading to increased production
of inflammatory cytokines with LPS stimulation in chronic kidney disease (Gollapudi et al. 2010),
while another has shown decreased expression of TLR4 with decreased LPS-induced cytokine
production (Ando et al. 1996). Additionally, one study demonstrated accelerated apoptosis of B
lymphocytes in ESRD accompanied by decreased expression of Bcl-2 (Fernandez-Fresnedo et al.
2000), while another study showed no differences of B cell apoptosis, but in fact increased
expression of two key B cell differentiation and survival factors IL-7 and BAFF (Pahl et al. 2010).
Examination of co-expression and regulatory gene networks may thus yield insights into the
complex immune dysregulation of ESRD.

Due the reliance of gene network construction on variance of gene expression, network
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perturbation using vaccination as an in vivo stimulus will allow for sensitive measurement of
altered regulatory interactions. We posit that this vaccine-induced network perturbation will
further enable the direct construction of single-subject gene networks through transcriptomic
measurements of a given subject across multiple time points surrounding vaccination. Thus, in
this study, we characterize underlying gene co-expression networks and regulatory networks in

ESRD compared to controls utilizing the BNT162b2 mRNA COVID-19 vaccine as a stimulus.

5.2. Methods

5.2.1. Group-level and single-subject blood transcription module (BTM) network
construction

For BTM network construction, BTMs that demonstrated a significant effect of time point
on eigengene expression were selected as candidate BTM nodes. Significance of time point was
assessed using an ANOVA with main effects of group and time and random effect of subject. The
p-values for the main effect of time point were FDR-corrected across BTMs. Candidate BTMs with
significant membership gene overlap were excluded by the following criteria: if candidate BTMs
overlapped with a Jaccard index greater than 0.2, then only the BTM with the larger number of
membership genes was retained. Using this final set of BTMs, pairwise Pearson correlations were
performed between all BTM eigengenes across subjects and V1DO, V1D7, V2DO, and V2D7
samples, separately for each subject group to generate one group HC co-expression network and

one HD co-expression network.

To compare the HC network to the HD network, Fisher’s Z transformation was applied to
each network, and then the Z-transformed HC network was subtracted from the Z-transformed

HD network to obtain a Z-score difference network. P values for the Z-score difference network,
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calculated from a Z-score to p-value transformation, were FDR-adjusted across edges. Edges that
were not significantly different between HD and HC after FDR correction were set to 0 in the Z-
score difference network.

Single-subject co-expression networks were constructed in a similar fashion to the group

networks, but with only four samples per network (V1D0, V1D7, V2DO, V2D7).

5.2.2. Group-level BTM co-expression network comparison

BTMs were categorized into different families: B cells, cell cycle, dendritic cell/antigen
presentation, type | interferon (IFN type 1), myeloid activity/inflammation/ T/NK cells, and
“others” (Braun et al. 2018). In order to characterize differential co-expression (edge weight) of
BTMs within each family (intra-family co-expression), we quantified the number of differentially
co-expressed edges from the Z difference network that were (1) positively co-expressed in both
HD and HC but weaker (less positive) in HD, (2) positively co-expressed in both HD and HC but
stronger in HD, (3) negatively co-expressed in both HD and HC but weaker (less negative) in HD,
(4) negatively co-expressed in both HD and HC but stronger in HD, (5) positively co-expressed in
HD, but negative in HC, (6) negatively co-expressed in HD, but positive in HC.

These numbers of dysregulated edges were then divided by the total number of possible edges
within the BTM family (n choose 2, where n is the number of nodes in the BTM family), yielding
the percentage of edges within each family demonstrating each class of differential co-
expression. A similar approach was used to characterize differential co-expression of BTMs
between BTM families (inter-family co-expression). For each BTM family, percentages of
dysregulated edges between BTMs within a given a family (first node) and BTMs outside of the
family (second node) were quantified. Finally, percentages of dysregulated edges were quantified
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pairwise between BTM families.

5.2.3. Single subject-level BTM co-expression network comparison

Edge weight (Fisher Z) distributions for single subject co-expression networks were compared
between HD and HC both globally and for each BTM family. A global statistical comparison of
edge weights was achieved by quantifying the median positive edge weight per subject, and then
comparing these between HD and HC using a student’s T-test. Global median negative edge

comparisons were performed in the same way.

To characterize differential co-expression of intra-family BTMs, the median positive edge
weight across all edges within a BTM family was calculated on a per-subject basis. These median
edge weights were then compared between HD and HC using a student’s T-test. Median intra-
family negative edge weight within each BTM was compared in the same fashion.

A similar approach was used to characterize differential co-expression of inter-family BTMs. For
each BTM family, the median positive edge weight across all edges between BTMs within a given
family (first node) and BTMs outside of the family (second node) were quantified and then
compared between HD and HC. Median inter-family negative co-expression was compared in the

same fashion.

5.2.4. Gene regulatory network comparisons

To specifically characterize regulatory interactions underlying altered co-expression
networks, gene regulatory networks were constructed separately for HD and HC using PANDA
(Passing Messages between Networks for Data assimilation) analysis (Glass et al. 2013). The

inputs to the PANDA algorithm are (1) an initial TF-gene regulatory matrix, (2) a protein-protein
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interaction matrix, (3) a gene expression matrix. The TF-gene regulatory matrix was derived from
the network on the Glass et al. website

(https://sites.google.com/a/channing.harvard.edu/kimberlyglass/tools/resources), utilizing TFs

present in our variance-stabilized gene expression matrix. The protein-protein interaction matrix
was derived from the STRING database interaction scores between all TFs used in the initial TF-

gene regulatory matrix.

The output regulatory network for HC was then subtracted from the output HD regulatory
network, yielding a regulatory difference network. Gene set enrichment analysis was performed
using the clusterProfiler R package with BTM gene sets and a list of gene targets ranked by most
significant edge differences from the regulatory difference network. BTMs with FDR-adjusted p
< 0.05 were considered significantly enriched. The core enrichment genes, representing those
genes that contribute most to the enrichment signal of the BTM, were obtained for the most

enriched BTMs.

5.3. Results

5.3.1. Blood Transcription Module (BTM) co-expression networks per subject group
The HD co-expression BTM network and HC co-expression BTM network demonstrated

similar patterns of positive and negative co-expression, or edges (Figure 22). Of 3449 statistically
significant edges in the across-group network (p < 0.05, FDR-corrected), 3149 (91%) were
regulated in the same direction for HC and HD (1653 positive, 1496 negative) in both. 127 edges
were positively coregulated for HC but negatively coregulated for HD, and 173 edges were
positively coregulated for HD but negatively coregulated for HC. Despite these concordant

patterns of regulation between the two groups, HD generally exhibited weaker regulation
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compared to HC. Of the edges that were positively coregulated in both groups, 241 out of the
1653 (15%) exhibited weaker regulation in HD compared to HC (p < 0.05, FDR-adjusted), while
only 90/1653 (5%) exhibited stronger positive regulation. Similarly, of the edges that were
negatively coregulated in both groups, 236 out of 1496 (16%) edges exhibited weaker negative
regulation in HD (p < 0.05, FDR-adjusted), while only 21/1496 (1%) exhibited stronger negative

regulation in HD.
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Figure 22. Blood transcription module (BTM) co-expression networks demonstrate similar
patterns of co-expression for controls (HC, top) and hemodialysis (HD, bottom), but with
weaker edges in HD.

BTM networks are constructed from pairwise Pearson correlations between pairs of BTM
eigengenes across subjects and time points before each vaccination dose (V1D0, V2D0) and one
week after each vaccination dose (V1D7, V2D7), separately for each group.

Figure 23 displays the percentage of intra-family and inter-family edges with differential co-
expression in HD compared to HC (p < 0.05, FDR-corrected), separately for each BTM family.
Notably, the dendritic cell/antigen presentation (DC/APC) BTM family showed the most altered
intra-family co-expression, with 30% of intra-family edges demonstrating weakened positive co-
expression in HD. Of these, the most weakened edge was between LI.M43.0 (Myeloid, dendritic
cell activation via NfkB (1)) and LI.S5 (DC surface signature). There was also substantial weakening

of inter-family positive co-expression pairwise between DC/APC, IFN type I, and the

Myeloid/Inflamm family.
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Figure 23. Percentage of all possible edges that are significantly different between controls (HC)
and hemodialysis subjects (HD, p < 0.05, FDR), separated by (A) intra-family edges and (B) inter-
family edges, pairwise between each set of BTM families.

The number of differentially co-expressed edges between HC and HD that were positively co-
expressed in both groups, negatively co-expressed in both, and discordantly co-expressed
(opposite signs) was divided by the total number of possible intra-family edges and pairwise
inter-family edges.

5.3.2. Single-subject BTM co-expression networks

The single-subject co-expression networks for HC and HD demonstrate appreciable
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network structure resembling coarse approximations of their respective group networks (Figure
24). Density plots of edge weights across the entire network per subject qualitatively illustrate a
weaker bimodal distribution in HD subjects compared to HC (Figure 25). This comparison is
confirmed statistically with the median edge weight (Fisher Z-value) across all positively
coregulated edges being significantly less positive in HD subjects compared to HC (p < 0.05)

Similarly, the median edge weight across all negatively coregulated edges was significantly less
negative in HD subjects compared to HC (p < 0.05). These comparisons maintained statistical

significance when incorporating SARS-CoV-2 as a covariate
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Figure 24. Single subject co-expression networks resemble respective group networks.
Exemplar single-subject co-expression networks are shown for controls (HC, top) and
hemodialysis subjects (HD, bottom). BTM networks are constructed from pairwise Pearson
correlations between pairs of BTM eigengenes time points before each vaccination dose (V1DO,
V2DO0) and one week after each vaccination dose (V1D7, V2D7), separately for each subjects.
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Figure 25. Single-subject co-expression networks demonstrate weaker co-expression in
hemodialysis subjects (HD) compared to controls (HC), both for positively and negatively co-
expressed blood transcription modules (BTMs).
(A) Density plots of edge weights per subject demonstrating a stronger bimodal distribution in
HC subjects compared to HD subjects. (B) Median edge weight across significantly positively co-
expressed edges and across significantly negatively co-expressed edges, separately per subject.
Similarly to group-level BTM co-expression networks, the edge differences in single-
subject networks were substantially dependent on the BTM family membership of network
nodes (BTMs) (Figure 26). The DC/APC BTM family demonstrated weaker (less positive) inter-
and intra-family positive co-expression in HD compared to HC (p < 0.01, p < 0.05). Like the group-
level BTM co-expression networks, the inter-family differences reflected a weakening of positive
inter-family regulation pairwise between the DC/APC, IFN type |, and Myeloid/Inflamm families

(Figure 27). The DC/APC BTM family also showed weaker (less negative) inter-family negative co-

expression (p < 0.01) driven by a weakening of negative co-expression with the B cell,
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Myeloid/Inflamm, and T/NK BTM families. The weakened negative co-expression with the T/NK
family was the most significantly altered negative edge between all pairs of BTM families (p <
0.001). These weakened negative edges are also seen in the group-level BTM co-expression
networks (Figure 23). The most weakened negative edge between DC/APC and T/NK from the
group network was between LI.M43.0 (Myeloid, dendritic cell activation via NfkB (1)) and LI.M7.0
(enriched in T cells (1)).

The Myeloid/Inflamm family demonstrated the most significantly weakened intra-family
positive co-expression (p < 0.0001). The T/NK family was the only BTM family to demonstrate
stronger intra-family negative co-expression in HD (p < 0.05). Overall, differential co-expression
observed between HD and HC single-subject networks is largely reflective of differences observed

in the group networks.
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Figure 26. Hemodialysis subjects (HD) demonstrate substantially weaker intra-family positive
co-expression within the Dendritic Cell/Antigen Presentation (DC/APC) and
Myeloid/Inflammation blood transcription module (BTM) families.

Median edge strength of intra-family edges is shown for HD and controls, separately for positive
edges and negative edges within each BTM family. See Figure S2 for pairwise inter-family median
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edge strength between each set of BTM families. *p < 0.05, ** p < 0.01, *** p < 0.001, **** p <
0.0001.
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Figure 27. Hemodialysis subjects (HD) demonstrate substantially weaker inter-family positive
and negative co-expression between several blood transcription module (BTM) families.
Median edge strength of inter-family edges is shown for HD and controls, separately for positive
edges and negative edges, pairwise between each BTM family. *p < 0.05, ** p < 0.01, *** p <
0.001, **** p < 0.0001.

5.3.3. PANDA regulatory networks

PANDA analyses demonstrated significant regulatory network differences, with BTM
enrichment analysis yielding 35 BTMs with altered signaling [p < 0.05, FDR-adjusted]. 25 BTMs
exhibited weakened targeting in HD and 10 exhibited stronger targeting. The top three most
differentially targeted BTMs were LI.M161.0 (enriched in NK cells (l)), L.M43.0 (myeloid,
dendritic cell activation via NFkB), and LI.M7.2 (growth factor induced, enriched in nuclear
receptor subfamily), all of which exhibited weakened regulation in HD. In LI.M61.0 (enriched in
NK cells (I1)), the core enrichment genes consist of cell surface receptors on T cells and NK cells.

In order of significance, these were TGFBR3, KIR2DS4, CD7 ,IL2RB, S1PR5, KIR2DL3, KIR3DL1,
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CD247, and KIR2DL1.

The top 150 most dysregulated edges involving the core enrichment genes are shown in
Figure 28. The most enriched gene in this BTM, TGFBR3, encodes Type |ll TGF-beta receptor,
which is a central co-receptor for the TGF-beta family required for high affinity binding (Blobe et
al. 2001). While most dysregulated gene targets in this BTM exhibit altered targeting primarily by
transcription factors (TFs) that function dually as activators and repressors, TGFBR3
demonstrates altered (weaker) targeting predominantly by transcriptional repressors including
MECP2 and MBD2, which bind methylated promoter regions of DNA (Lewis et al. 1992; Hendrich
and Bird 1998). IL2RB is vital for T-cell mediated immunity and immune tolerance via T regulatory
cells (Campbell and Bryceson 2019). Similarly to TGFBR3, IL2RB exhibits weakened regulation by
many repressive TFs including MBD2, DNMT1, REST, E2F4, and SMAD?2. Interestingly, both
TGFBR3 and IL2RB demonstrate isolated decreased at V2D1 in HC compared to V2DO0 (p < 0.001,
FDR-adjusted), but demonstrated no fluctuation across time points for HD. CD7 is expressed by
most peripheral T cells and has been shown to act as a costimulatory molecule as well as a trigger
for apoptosis of T cells (Lobach et al. 1985; Stillwell and Bierer 2001; Pace et al. 2000; Rappl et al.
2002). KIR2DS4, KIR2DL3, KIR3DL1, and KIR2DL1 encode NK cell receptors that interact with
human leukocyte antigen class | molecules (HLA-I). While KIR2DS4 triggers NK cell degranulation
upon binding to a conserved bacterial epitope of many human pathogens, KIR2DL3, KIR3DL1, and
KIR2DL1 are inhibitory receptors (Sim et al. 2019; Winter et al. 1998). Weakened targeting of
LI.M61.0 can thus be broadly characterized as dysregulation of both activating and tolerogenic

receptors on T and NK cells
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Figure 28. The LI.M61.0 (NK cells (1)) blood transcription module (BTM) is the most significantly
dysregulated BTM in the hemodialysis subjects (HD).

The top 150 most dysregulated edges involving the core enrichment genes, which contribute
significantly to this enrichment of this BTM, are shown. Green ovals are transcription factors
(TFs), blue rectangles are core enriched gene, orange edges are more strongly regulated in
controls vs HD, and purple edges are stronger in HD.

The dysregulation of LI.M43.0 (myeloid, dendritic cell activation via NFkB (l)) is driven by
significantly altered targeting of core enrichment genes ICAM1, IL23A, NFKBID, VCAM1, EBI3,
CD83, BCL3, RELB, TNF, NFKB2, and MAP3K8 (Figure 29). These genes represent various players
in the NFkB pathway, including TNF, NFKB2, MAP3K8, BCL3, RELB, and NFkB inhibitor NFKBID, as

well as cytokines and receptors expressed by dendritic cells including IL23A, EBI3 which

heterodimerizes to form IL-27, and CD83. ICAM1 and TNF both exhibit decreased regulation by
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several transcriptional repressors including decreased targeting of ICAM by MBD2, DNMT1, and

E2Fs, decreased targeting of TNF by ZBTB4, MECP2, TGIF1, ZNF350, and SMAD2.
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Figure 29. The L1.M43.0 (myeloid, dendritic cell activation via NFkB) blood transcription module
(BTM) is the second most significantly dysregulated BTM in the hemodialysis subjects (HD).
The top 150 most dysregulated edges involving the core enrichment genes, which contribute
significantly to this enrichment of this BTM, are shown. Green ovals are transcription factors
(TFs), blue rectangles are core enriched gene, orange edges are more strongly regulated in
controls vs HD, and purple edges are stronger in HD.

The dysregulation of LI.M94.0 (growth factor induced, enriched in nuclear receptor
subfamily 4) is driven by decreased regulation of NR4A1, PPP1R15A, ID1, CDKN1A (Figure S5),
three of which are involved in apoptotic signaling. NR4A1 is a nuclear transcription factor whose

translocation to the mitochondria induces apoptosis (Herring, Elison, and Tessem 2019).

PPP1R15A is transcribed following stressful growth arrest conditions and DNA-damaging agents,
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with protein response correlated with apoptosis (S. Ito et al. 2015). CDKN1A is cyclin-dependent
kinase inhibitor that mediates cell cycle arrest and apoptosis (Kleinsimon et al. 2018). The final
core enriched gene is Inhibitor of Differentiation 1 (Id1), which is responsible for a switch from
DC differentiation to myeloid-derived suppressor cell and Treg expansion, in response to TGF-
beta (Papaspyridonos et al. 2015). All of these core enriched genes demonstrate decreased

targeting by repressive transcription factors including ZBTB33, MECEP2, MBD2, and DNMT1.
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Figure 30. The LI1.M94.0 (growth factor induced, enriched in nuclear receptor subfamily 4) blood
transcription module (BTM) is the third most significantly dysregulated BTM in the
hemodialysis subjects (HD).

The top 150 most dysregulated edges involving the core enrichment genes, which contribute

significantly to this enrichment of this BTM, are shown. Green ovals are transcription factors
(TFs), blue rectangles are core enriched gene, orange edges are more strongly regulated in
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controls vs HD, and purple edges are stronger in HD.

5.4. Discussion

In this study, we elucidate decreasing coupling between immune system components in
HD and identify dysregulated blood transcription modules and genes that underlie these altered
relationships. While our prior analyses described the time course of transcriptomic responses to
the BNT162b2 mRNA COVID-19 vaccine, we treat the vaccination here as an in vivo stimulus
allowing for broader elucidation of the underlying complex immune dysregulation in ESRD.
Importantly, we demonstrate that, by acquiring longitudinal samples of the same subject
undergoing vaccination, informative single-subject co-expression networks can be constructed.

Our group co-expression network results demonstrate broadly weakened co-expression
in HD compared to HC, representing weaker coupling between different components of the
immune system. These differences manifest as both weakened positive and negative co-
expression, where strong positive co-expression indicates that when one component is activated
the other is also likely to be activated, and strong negative co-expression indicates that when
component is activated the other is likely to be repressed. These results were also found at the
single-subject level, with weaker median edge weights in HD for positive edges (less positive
Fisher-Z values) and for negative edges (less negative Fisher-Z values). These results could
represent a global de-sensitization of immune system components due to chronic stimulation by

Group co-expression network analyses demonstrated that the dendritic cell/antigen
presentation (DC/APC) blood transcription module (BTM) family exhibited the largest percentage
of intra-family edges with weakened positive co-expression (Figure 23). This indicates that many

of the BTMs within the DC/APC family are less strongly co-activated with one another in HD. This
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result was re-capitulated in single-subject co-expression networks, which exhibited significantly
weaker median positive co-expression in HD compared to HC (p < 0.01) (Figure 26). The DC/APC
family also exhibited significantly altered inter-family edges. The altered positive co-expression
was reflective of weaker positive inter-family regulation between (each pair of) the DC/APC, IFN
type I, and Myeloid/Inflamm families in both the group and single subject networks (Figure 23,
Figure 27). The most significantly weakened edge in each of these inter-family relationships
involving the DC/APC family was LI.M43.0 (myeloid, dendritic cell activation via NFkB (1)). This is
supported by the weakened regulation of LI1.M43.0 (myeloid, dendritic cell activation via NFkB
(1)), which was the second most dysregulated BTM in our PANDA analysis, with core enrichment
genes including NFkB pathway mediators such as TNF, NFkB2, and NFkBID.

These results are consistent with evidence from literature showing significantly decreased
numbers of DCs in ESRD which decline further with HD (Kim et al. 2017), as well as impaired
maturation of monocytes and dendritic cells (Verkade et al. 2007), and decreased antigen
presentation (Satomura et al. 2002; Lim et al. 2007). DC dysfunction in ESRD has been proposed
to stem from alterations of pattern recognition receptors (PRRs), leading downstream to
impaired T-cell induction (Kato et al. 2008). Various pattern recognition receptor alterations have
been reported in the ESRD literature, including both increased and decreased expression of toll-
like receptor 4 (TLR4) (Ando et al. 2006; Gollapudi et al. 2010), increased expression of the
secreted PRR mannose-binding lectin, and increased expression of major macrophage scavenger
receptors SR-A and CD36 (Ando et al. 1996).

In our analysis, tumor necrosis factor (TNF), a proinflammatory cytokine which is

upregulated by TLR binding and which is required for activation of NFkB and maturation of DCs
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(Hayden and Ghosh 2014; Trevejo et al. 2001), was one of the core enrichment genes in LI1.M43.0.
Furthermore, our regulatory network analysis demonstrated dysregulation of LI.M146 (MHC-
TLR7-TLR8) (p < 0.01, FDR-adjusted). Interestingly, TLR7 and TLR8 have been shown to induce
type 1 interferons (IFNs) in DCs that synergize with the NFkB pathway to activate DCs (Gautier et
al. 2005). Taken together, these results reinforce evidence of TLR dysfunction, with a mediating
role of type 1 IFN induction, leading to impaired maturation and activation of DCs.

The most significantly dysregulated BTM from our PANDA analysis was LI.M61.0 (enriched
in NK cells (11)), with core enrichment genes comprising activating and tolerogenic receptorson T
cells (TGFBR3, CD7,IL2RB, CD247) and NK cells (KIR2DS4, S1PR5, KIR2DL3, KIR3DL1, and KIR2DL1).
Weakened regulation of TGFBR3 contributed most significantly to enrichment of this BTM, and
encodes a central co-receptor for the TGF-beta family (Blobe et al. 2001). Interestingly, while this
receptor is required for high affinity binding, it can also undergo ectodomain shedding, ultimately
inhibiting downstream signaling (Lopez-Casillas et al. 1994). In fact, blocking the receptor has
been shown to promote TGFB-dependent induction of Tregs (Ortega-Francisco et al. 2017). The
gene therefore plays a dual role in immune activation and tolerance. Interleukin 2 receptor
subunit beta (IL2RB), another core enriched gene with weakened regulation from LI.M61.0, also
plays a critical role in the balance of activation and tolerance via Tregs (Campbell and Bryceson
2019). Weakened regulation of these genes may thus contribute to the disturbed Treg function
seen in ESRD (Hendrikx et al. 2009; Ren et al. 2019).

It is of particular note that TGFBR3 and IL2RB exhibited decreased gene expression at only
V2D1 in HC (p < 0.001, FDR-adjusted), while demonstrating no statistically significance change

across time points for HD. Because these gene regulatory networks were constructed from DO

98



and D7 time points alone, this indicates that these networks are capturing regulatory differences
that can predict gene expression changes in unmeasured states.

Our regulatory network results from PANDA further identified regulators of cell survival
and apoptosis in ESRD. ESRD literature has demonstrated accelerated apoptosis of neutrophils
(Cendoroglo et al. 1999) as well as mixed findings of increased B cell apoptosis in one study
(Fernandez-Fresnedo et al. 2000) in contrast to increased B-cell survival factors in another study
(Pahl et al. 2010). Our results showed weakened regulation of LI1.M94.0 (growth factor induced,
enriched in nuclear receptor subfamily 4), with differential targeting of four core enriched genes,
three of which are involved in apoptotic signaling: nuclear transcription factor NR4A1, PPP1R15A,
and CDKN1A. Each of these genes demonstrated weakened targeting by many repressive
transcription factors including ZBTB33, MECEP2, MBD2, and DNMT1. It stands to reason that the
mixed findings of B cell apoptosis in ESRD stem from context-dependence; Fernandez-Fresnedo
et al. cultured peripheral blood cells for four days prior to assessing apoptosis, while Pahl et al.
assessed apoptosis on freshly isolated cells. It is possible that the weakened repressive regulation
of apoptotic regulators such as PPP1R15A and CDKN1A, which are upregulated under conditions
of stress, may drive increased B cell apoptosis specifically under conditions of increased stress in
ESRD.

Interestingly, many of the enriched core genes in the BTMs with most weakened
regulation in HD were differentially targeted by MECP2 and MBD2, including TGFBR3, IL2RB, TNF
and all of the core enriched genes in LI.M94.0 (growth factor induced, enriched in nuclear
receptor subfamily 4). MECP2 and MBD2 are members of a family of nuclear proteins with a

methyl-CpG binding domain (MBD) (Lewis et al. 1992; Hendrich and Bird 1998). While these TFs

99



traditionally repress transcription from methylated gene promoters, MBD2 has also been
reported to function as a demethylase to activate transcription. Interestingly, MBD2 was shown
to have a key role in promoting demethylation in a Treg-specific demethylation region, resulting
in Foxp3 expression and Treg suppressive function (Wang et al. 2013). This suggests a potential
role of altered DNA methylation of peripheral blood in the immune dysregulation of ESRD. In fact,
a recent epigenome wide association study identified abnormal DNA methylation of whole blood
associated with CKD development (Chu et al. 2017).

There is a wealth of evidence demonstrating TLR-induced alterations of the epigenetic
landscape, leading to both increased and decreased expression of TLR-induced genes (Perkins et
al. 2016). For example, in macrophages, LPS signaling through TLR4 alters chromatin accessibility
at TLR-responsive inflammatory genes including IL-6 (Hargreaves, Horng, and Medzhitov 2009).
In support of a mediating role of type 1 IFN in the TLR dysfunction leading to impaired maturation
and activation of DCs, type | IFN has also been shown to catalyze methylation of promoters of
NF-kB responsive genes (Schliehe et al. 2015). Additionally, oxidative stress has been shown to
alter DNA methylation profiles, including in peripheral blood. In fact, oxidative damage to a
methyl-CpG site in a methyl binding protein recognition sequence has been shown to
substantially reduce binding affinity of MECP2 (Valinluck et al. 2004). It is reasonable that, in
addition to altering regulation between immune players, epigenetic mechanisms could
independently increase susceptibility of immune subsets to apoptosis.

Results from the single-subject co-expression networks demonstrate that informative
single-subject co-expression networks can be directly constructed using vaccination as an in vivo

immune perturbation. The immune perturbation leads to the high gene expression variance
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needed to construct a co-expression network using a small number of samples. The single-subject
network results re-capitulate co-expression network differences demonstrated in the group
network results. While a small number of subjects are represented in this study, these results are
a proof of principle that informative single-subject gene networks can be directly constructed
agnostically of group networks. Single-subject networks offer the opportunity to elucidate
subtypes of disease or to provide network biomarkers for disease diagnosis, prognosis, or
treatment response. While methods have been developed for single-subject network analysis,
these networks rely on statistical inference from the impact of a given sample on the aggregate
network model (Kuijjer et al. 2019). It should be noted that our single-subject networks represent
low resolution networks, with nodes comprised of modules of genes instead of individual genes,
which is necessary to enable construction of reliable networks with such few samples per subject.
Due to similar constraints, we constructed single subject co-expression networks, but not gene
regulatory networks which enable more precise investigation of regulatory relationships. Thus,
while single-subject gene networks could yield useful network biomarkers, any investigation into
their utility will be necessarily paired with regulatory network methods to provide mechanistic
insight.

Overall, we elucidated a complex regulatory interplay in ESRD resulting in simultaneous
dampening of immune activation as well as tolerogenic immune responses that can be
appreciated on a single-subject level. Our results reinforce prior proposals that TLR dysfunction
leads to impaired maturation and activation of DCs. Constitutive stimulation of TLRs may lead to
low-grade baseline inflammation, simultaneously resulting in desensitization that impairs the

ability of the immune system to mount immunogenic responses. Notably, we also identified
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differential gene expression of core dysregulated genes at isolated time points that were not
included in gene network construction, indicating that these networks capture regulatory
differences that can predict gene expression changes in unmeasured states. These results
highlight the importance of studying regulatory interactions to characterize dynamic regulation

and dysregulation of the immune system.
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6. Conclusions

The overall aim of this thesis was to investigate immune-mediated disease using two
different systems vaccinology approaches; one in which we characterized vaccine-conferred
immune protection and identified transcriptomic correlates of this protection, and one in which
we investigated the broader structure and dynamics of gene dysregulation in immune-mediated
disease using vaccination as an in vivo stimulus. We applied these approaches to publicly
available RNA sequencing data in children at risk for developing asthma, and peripheral blood
samples that we collected from healthy controls and immunocompromised patient populations
at multiple time points surrounding Covid-19 mRNA vaccination.

First, we showed non-allergen-specific immune network dysregulation in peripheral
blood mononuclear cells (PBMCs) of children who later developed a clinical diagnosis of allergic
asthma. Using publicly available data, we characterized immune networks of asthmatic
predisposition in children at the age of 2, prior to the diagnosis of allergic asthma, who were
subsequently diagnosed with asthma at the age of 7. We showed extensive differences of gene
co-expression networks and gene regulatory networks in children who developed asthma versus
those who did not using RNA sequencing of PBMCs stimulated in vitro with tetanus toxoid to elicit
an unbiased and broad immune recall response. Moreover, we suggested that these gene
network differences prior to asthma diagnosis resulted from altered accessibility of gene targets.
In summary, we demonstrated that dysregulated immune states can be appreciated prior to
overt clinical symptom presentation using stimulated transcriptomics.

Next, we characterized the BNT162b2 SARS-CoV-2 mRNA vaccine-conferred immune

protection from Covid-19 in two immunocompromised patient populations. Individuals with
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sarcoidosis demonstrated a significant increase in anti-spike IgG titers and neutralizing function
one week after the second vaccination dose that was comparable to controls. However, IgG titers
declined significantly back to baseline levels by 6 months. Individuals with end stage renal disease
(ESRD) on maintenance hemodialysis (HD) demonstrated a significant increase in IgG titers and
neutralizing function at one week after the second vaccination dose, with a small but significant
reduction in titers in HD groups (p < 0.05). IgG titers remained elevated above baseline at six
months in both subject groups. Transcriptomic analyses demonstrated differing time courses of
immune response, with predominant T cell activity in controls one week after the first vaccination
dose, compared to predominant myeloid cell activity in HD at this time point. HD demonstrated
decreased metabolic activity and decreased antigen presentation compared to controls after the
second vaccination dose. Additionally, we demonstrated that increased expression of myeloid
and T cell activity at two days after the second vaccination dose was predictive of higher antibody
development.

We then elucidated decreased coupling between immune system components in HD, and
identified dysregulated blood transcription modules and genes that underlie these altered
relationships. Our results suggested a role of impaired dendritic cell (DC) activation and
maturation through dysregulated toll-like receptor and type | interferon signaling. Our results
further suggested altered regulatory T cell function through altered TGF-beta and IL2 receptor
signaling. Finally, our regulatory networks suggested decreased regulation of apoptotic
regulators NR4A1, PPP1R15A, and CDKN1A by repressive methyl-binding transcriptional
repressors that could underlie increased susceptibility to apoptosis in ESRD. Notably, regulatory

alterations of TGFBR3 and IL2RB were correlated with decreased gene expression only at one day
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after the second vaccination dose in controls (V2D1), while demonstrating no statistically
significant change across time points for HD. Because the gene regulatory networks were not
constructed using V2D1 data, this indicates that these networks captured regulatory differences
that can predict gene expression changes in unmeasured states. This further illustrates the
relevance of regulatory network construction in the characterization of dynamic systems.

Our single-subject co-expression networks demonstrated that informative low-resolution
single-subject gene expression networks can be directly constructed using vaccination as an in
vivo immune perturbation. The immune perturbation leads to the high gene expression variance
needed to construct a co-expression network using a small number of samples. The single-subject
network results re-capitulated co-regulatory network differences demonstrated by the group co-
expression network results. While a small number of subjects are represented in this study, these
results are a proof of principle that informative single-subject gene networks can be directly
constructed agnostically of group networks. Single-subject networks offer the opportunity to
elucidate subtypes of disease or to provide network biomarkers for disease diagnosis, prognosis,
or treatment response.

The results reported here require experimental validation and extension to larger cohort
sizes.

Assessments of chromatin accessibility using ATAC-Seq would enable high level characterization
of the epigenetic landscape of PBMCs to determine whether predisposition to atopic phenotypes
may indeed be driven by feed-forward mechanisms of altered gene target accessibility. ATAC-
Seq could also be used to determine the effect of oxidative stress and repeated endotoxin

stimulation on the epigenomic landscape of PBMCs, and whether these result in the regulatory
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network changes that we demonstrated in ESRD. Alternatively, given the altered regulation by
methyl-CpG binding TFs MECP2 and MBD2 in the ESRD regulatory networks, it would be
interesting to determine whether the promoters of genes differentially targeted by these TFs are
differentially methylated in ESRD using a DNA methylation profiling method such as Methylated
DNA immunoprecipitation (MeDIP). Assessment of specific DNA-protein binding interactions
using Chip-seq would offer complementary validation. For example, Chip-seq could be used to
determine whether GATA3 demonstrates differential binding at Thl and Th2 promoters in PBMCs
of children that are predisposed to develop allergic phenotypes. It could also be used to validate
altered binding of MECP2 or MBD?2 at dysregulated gene targets in the PBMCs of individuals with
ESRD, or to determine differential binding after exposure of cultured PBMCs to oxidative stress
or endotoxins.

It would be of particular interest to assess single-subject co-expression network
construction in a large subject cohort to determine if these networks can offer biomarkers for
immune-mediated disease diagnosis and prognosis, or elucidate subtypes of disease with
heterogeneous etiologies or presentation. For example, sarcoidosis is an autoimmune disease of
unclear etiology and heterogenous disease course ranging from acute, self-limited processes to
chronic progressive disease with organ failure and death (Swigris et al. 2011). A prior study
identified a gene signature including T cell/JAK-STAT pathway genes that differentiated sarcoid
patients from controls but had poor predictive accuracy in distinguishing complicated from
uncomplicated sarcoidosis (Zhou et al. 2017). Single-subject network characterization of this
patient population may help illuminate subtypes of disease or identify biomarkers of outcome or

treatment response.
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