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Summary 
 

Systems vaccinology involves the measurement of genome-wide expression 

(transcriptomics) in peripheral blood to identify early predictors of vaccine efficacy and 

to gain mechanistic insight into the biological actions of effective vaccines. Prediction of 

the degree and duration of immune protection conferred by vaccines is accomplished by 

identifying patterns of gene expression induced rapidly after vaccination that correlate 

with downstream antibody or T cell production. These methods were first applied to 

define molecular signatures of the yellow fever vaccine, YF-17D, and have most recently 

been applied to study the Covid-19 mRNA vaccines. These studies have demonstrated the 

value of systems vaccinology in elucidating the biological underpinnings of vaccine-

induced immune recruitment and in predicting protective immune responses. 

While traditional transcriptomic studies have utilized differential gene expression 

analyses to identify key genes that associate with immune phenotypes, there is growing 

evidence of the importance of studying the regulatory processes that govern gene 

expression. This is particularly relevant in the study of the immune system due to its vast, 

inter-connected system of activating and inhibitory loops that finely tune immunogenic 

versus tolerogenic balance. Gene networks can thus provide a more holistic 

characterization of the relationships within this system. In fact, regulatory alterations can 

define immune phenotypes, even in instances where key regulators do not exhibit 

differential gene expression levels 

Due to the dependence of gene network construction on gene expression variance 

across samples, a natural extension of this approach is to stimulate and then characterize 
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the resultant networks to enable more sensitive measurement of regulatory interactions. 

We posited that the widespread gene expression perturbations induced by vaccination 

can elucidate patterns of immune dysregulation in disease. Thus, we investigated 

immune-mediated disease using two different systems vaccinology approaches; one in 

which we characterized vaccine-conferred immune protection and identified 

transcriptomic correlates of this protection, and one in which we investigated the broader 

structure and dynamics of gene dysregulation in immune-mediated disease using 

vaccination as an in vivo stimulus. We applied these approaches to publicly available RNA 

sequencing data in children at risk for developing asthma, and peripheral blood samples 

that we collected from healthy controls and immunocompromised patient populations at 

multiple time points surrounding Covid-19 mRNA vaccination. First, we showed non-

allergen-specific immune network dysregulation in peripheral blood mononuclear cells 

(PBMCs) of children who later developed a clinical diagnosis of allergic asthma. Next, we 

characterized the BNT162b2 SARS-CoV-2 mRNA vaccine-conferred immune protection 

from Covid-19 in sarcoidosis and end stage renal disease (ESRD), two 

immunocompromised patient populations, compared to controls. Finally, we elucidated 

decreased coupling between immune system components in ESRD, and identified 

dysregulated blood transcription modules and genes that underlie these altered 

relationships.  
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1. Background 

High-throughput sequencing technologies have created enormous potential for the 

characterization of biological processes using systems biological approaches. While traditional 

biological investigation isolates a given component of a biological system such as a gene, a 

protein, or a cell and study it in isolation, high throughput data allow us to study the structure 

and dynamics of the entire system (Kitano 2002). Systems biology thus capitalizes on the -omics 

technologies including genomics to identify global differences of genetic polymorphisms, 

transcriptomics to characterize genome-wide expression, and epigenomics to profile genome-

wide methylation, DNA-protein interactions, and chromatin accessibility. These approaches 

gained traction in the early 2000s using transcriptomics and proteomics to identify diagnostic 

and prognostic biomarkers in cancer (Quackenbush 2006). Since then, systems biology has been 

applied to study of the immune system to characterize the mechanisms of innate and adaptive 

immunity (Aderem and Hood 2001), and the pathophysiology of immune-mediated diseases such 

as systemic lupus erythematosus, multiple sclerosis (Chaussabel et al. 2008), and asthma 

(Bunyavanich and Schadt 2015). 

Systems vaccinology includes the application of transcriptomics in peripheral blood to 

identify early predictors of vaccine efficacy and to gain biological insights into the mechanisms of 

action of effective vaccines. While systems biological investigation of cancer profiles gene 

expression of the cancer cells themselves for diagnosis and prognosis, systems vaccinology 

profiles gene expression of peripheral blood. This enables the investigation of many immune cell 

lineages, including recent emigrants of peripheral vaccination sites (Pulendran, Li, and Nakaya 
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2010). Furthermore, immune cells are highly sensitive to perturbation, with vaccination leading 

to differential expression of thousands of genes in circulating immune cells (Querec et al. 2009). 

Prediction of the degree and duration of immune protection conferred by vaccines is 

accomplished by identifying patterns of gene expression induced rapidly after vaccination that 

correlate with downstream antibody or T cell production. This may be useful for vaccine 

development, enabling quick iteration through different formulations to identify those that will 

induce the most protective immune response. Pulendran et al. (Pulendran, Li, and Nakaya 2010) 

envisioned the development of a vaccine chip to facilitate screening of vaccines to predict 

different facets of immunogenicity such as induction of long-lived plasma cells that produce 

highly specific antibodies, or polyfunctional T cells that produce multiple cytokines. This could be 

particularly relevant to predict immunogenicity of vaccines for various immunocompromised 

patient populations that demonstrate impairments of selective facets of the immune system. 

This is additionally valuable for identifying populations who may benefit from altered vaccine 

dosing, formulations, or adjuvants. 

The first applications of systems vaccinology identified early molecular signatures induced 

by the yellow fever vaccine YF-17D (Gaucher et al. 2008; Querec et al. 2009). YF-17D, a live 

attenuated vaccine, confers seroconversion in more than 90% of vaccinees (Gotuzzo, Yactayo, 

and Córdova 2013) with duration of protection lasting as long as 40 years in 80% of vaccinees 

(Monath et al. 2002), making it one of the most successful vaccines ever developed. It was thus 

of interest to characterize the immunological mechanisms contributing to this high efficacy. In 

response to vaccination, peripheral blood mononuclear cells (PBMCs) produced a gene 

expression signature of innate sensing of viruses and antiviral immunity (Querec et al. 2009). This 
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signature was distinct from one that was predictive of the magnitude of CD8+ T cell responses, 

which included genes involved in the integrated stress response pathway. The gene signature 

predictive of antibody response included TNFRSF17a, a receptor for the B cell growth factor BAFF 

known to play a key role in B cell differentiation. This demonstrates the potential utility of these 

different signatures for predicting various facets of immune protection and consequently for 

vaccine design. 

Systems vaccinology has recently been applied to study the COVID-19 mRNA-based 

vaccines, BNT162b2 and mRNA-1273, which were rapidly developed and disseminated in 

response to the COVID-19 pandemic. These vaccines have proven efficacious, with initial reports 

showing 95% and 94.1% reduction of COVID-19 disease in recipients (Baden et al. 2021; Polack 

et al. 2020). Bulk RNA sequencing of whole blood from healthy vaccinees demonstrated that both 

doses of the BNT162b2 stimulated antiviral and interferon responses one day after each dose, 

but the second dose additionally led to upregulation of dendritic cell activation, Toll-like receptor 

signaling, monocyte, and neutrophil modules (Arunachalam et al. 2021). Using single-cell RNA 

sequencing, Arunachalam et al. further identified a cluster of myeloid cells (monocytes and 

dendritic cells) that was uniquely induced in response to mRNA vaccination as compared to 

natural infection. They demonstrated that IFN gamma induced expression of this cluster and 

suggested a role of increased chromatin accessibility at interferon-stimulated genes. This 

demonstrates the power of systems vaccinology approaches to elucidate the mechanistic 

underpinnings of vaccine-induced immune recruitment. 

While traditional transcriptomic studies have utilized differential gene expression 

analyses to identify key genes that associate with immune phenotypes, there is growing evidence 
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of the importance of studying the regulatory processes that govern these phenotypes (Weighill 

et al. 2021). This can be accomplished through the construction of gene networks, which 

represent the relationships between genes rather than the state of individual genes themselves. 

This is particularly relevant in the study of the immune system, with its vastly complex, inter-

connected system of feedback and feed-forward loops between various subsets of innate 

immune cells, antigen presenting cells, T cells, and B cells (Rahman et al. 2018). To add further 

complexity, evidence suggests that immune cells may not differentiate into a limited number of 

discrete cell phenotypes, but rather a continuum of cell fates (Eizenberg-Magar et al. 2017). As 

the immunogenic versus tolerogenic response of the immune system depends on a complex 

interplay of these regulatory loops, gene networks can provide a more holistic characterization 

of the relationships within this system. In fact, regulatory alterations can define immune 

phenotypes, even in instances where key regulators do not exhibit differential gene expression 

levels  (Ettou et al. 2020; Carnesecchi et al. 2020; Mikhaylova et al. 2013a). For example, a prior 

study in a murine model of asthma found minimal gene expression differences in dendritic cells 

from asthma-at-risk neonates compared to control mice, despite the presence of extensive 

genome-wide methylation differences. Substantial differential gene expression became evident 

only upon allergen sensitization, primarily among transcripts that showed epigenetic alterations 

at birth (Mikhaylova et al. 2013a). 

Computational methods have been developed to capture regulatory relationships of 

genes and transcription factors (TFs). PANDA (Passing Messages between Networks for Data 

assimilation) is an algorithm for gene regulatory network construction that integrates 

information from multiple types of data (Glass et al. 2013). The three inputs to this algorithm are 
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(1) an initial transcription factor (TF)–gene adjacency matrix with edge weights calculated based 

upon sequence motif data, (2) a protein–protein interaction matrix based upon physical 

interactions between proteins, and (3) a gene expression adjacency matrix (Glass et al. 2013). 

These networks are iteratively updated using a message-passing algorithm, based upon the 

assumptions that (1) two genes that are co-expressed are more likely to be co-regulated by a 

similar set of TFs, and (2) two TFs that physically interact are more likely to co-regulate the 

expression of their target genes. PANDA has been shown to accurately predict TF binding using 

chromatin immunoprecipitation sequencing (ChIP-seq) and has been used to investigate gene 

regulatory relationships in several disease contexts, including asthma (Qiu et al. 2018), ovarian 

cancer (Glass et al. 2015), and colorectal cancer (Vargas, Quackenbush, and Glass 2016). Using 

PANDA, Qiu et al. (Qiu et al. 2018) constructed gene regulatory networks in asthma that 

differentiated treatment response of children to inhaled corticosteroids. They further identified 

and validated multiple TFs influencing differential response. Sonawana et al. (Sonawane et al. 

2017)constructed gene regulatory networks for 38 different tissues and identified tissue-specific 

targeting patterns that were largely independent of TF expression.  

Due the reliance of gene network construction on variance of gene expression, it seems 

natural to perturb the network to enable more sensitive measurement of regulatory interactions. 

We posit that the widespread gene expression perturbations induced by vaccination can 

elucidate patterns of immune dysregulation in disease. We further posit that this vaccine-induced 

network perturbation may enable the direct construction of single-subject gene networks 

through transcriptomic measurements of a given subject across multiple time points surrounding 

vaccination. Thus, this thesis applies systems vaccinology and gene network methods to (1) 
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characterize immune dysregulation that predisposes towards the allergic phenotype of asthma, 

(2) determine level of immune protection conferred by Covid-19 vaccination in two conditions of 

immunocompromise, sarcoidosis and end stage renal disease, (3) identify transcriptomic 

predictors of immune protection after Covid-19 vaccination in end stage renal disease (ESRD), 

and (4) characterize underlying immune dysregulation in ESRD utilizing the BNT162b2 mRNA 

COVID-19 vaccine as a stimulus. 
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2. Immune network dysregulation precedes clinical diagnosis of asthma 
Previously published as: Chang YS, Turturice B, Schott C, Finn P, Perkins D. Immune network 
dysregulation precedes clinical diagnosis of asthma. Sci Rep. 2020 Jul 30;10(1):12784. doi: 
10.1038/s41598-020-69494-x. PMID: 32732938; PMCID: PMC7393349. 
 

2.1. Introduction 
 

Childhood asthma is a disease of high prevalence (Akinbami, Simon, and Rossen 2016; 

Asher et al. 2006) that eludes early diagnosis (Ducharme, Tse, and Chauhan 2014). Diagnosis in 

young children is challenging due to the lack of specificity in the early clinical presentation of 

atopy and wheeze. While nearly half of the population will experience at least one wheezing 

episode in early childhood, most individuals will not go on to develop asthma (Ducharme, Tse, 

and Chauhan 2014; Martinez et al. 1995). Spirometry, which is the gold standard for asthma 

diagnosis, is typically not utilized in children under the age of 6. It is thus important to 

characterize early immune states that predispose toward clinical diagnosis of asthma in order to 

facilitate identification of individuals that are poised to develop disease.  

The prototypic immune alteration in allergic asthma is that of dominant T-helper 2 cell 

(Th2) activation without adequate counter-regulation by T-helper 1 (Th1) and regulatory (Treg) 

cells (Barnes 2008). The process of allergic sensitization involves differentiation of these effector 

T-cell populations and re-shaping of their cytokine profiles (Smale and Fisher 2002). Less is known 

regarding the differential basal immune states that predispose towards allergic sensitization and 

disease development, “asthmatic poise.” Our laboratory has previously reported altered Th2 

cytokine elaboration in response to common aeroallergens in the cord blood mononuclear cells 

of neonates with differing in utero microbial exposures (Turturice et al. 2017). These differential 

immune signatures can be probed as early as birth.  
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Genome-wide association studies (GWAS) have identified genetic polymorphisms 

associated with asthma and other atopic phenotypes, but, to date, explain only a small 

percentage of disease heritability (Ducharme, Tse, and Chauhan 2014). Explanations for the 

“missing heritability” include risk from copy number variation, gene-gene interactions, and gene-

environment interactions which are not generally assessed in GWAS (Barnes 2008). Findings of 

epigenetic alterations in asthma suggest a strong mediatory effect of epigenetic modifications to 

disease susceptibility (Ducharme, Tse, and Chauhan 2014). For example, the ratio of histone 

deacetylase (HDAC) to histone acetylase (HAT) is known to be perturbed by environmental agents 

such as tobacco smoke (Smale and Fisher 2002), and to correlate with asthmatic status and 

disease severity (Biswas and Lopez-Collazo 2009; Foster, Hargreaves, and Medzhitov 2007; 

Gunawardhana et al. 2014; Cosío et al. 2004; K. Ito et al. 2002; Su et al. 2009). The HDAC/HAT 

ratio has further been shown to influence the Th1/Th2 balance (Su et al. 2009; Gunawardhana et 

al. 2014; Cosío et al. 2004; K. Ito et al. 2002; Su et al. 2008). Genome-wide methylation changes 

have been demonstrated in response to environmental agents (Breton et al. 2009), and were 

identified in a meta-analysis of children who develop asthma (Reese et al. 2018).  

  Investigation of genome-wide expression networks and gene regulatory networks prior 

to the development of asthma may provide clues of altered gene-gene interactions and 

epigenetic effects that underlie allergic predisposition. In a prior study, German cockroach 

extract (CR) stimulation of peripheral blood mononuclear cells (PBMCs) increased natural killer 

cell-type gene expression in 2-year-olds who developed aeroallergen sensitization by age 3 and 

clinical asthma by the age of 7 (Altman et al. 2018). These differentially expressed genes were 

only found in children with both CR sensitization and asthma by the age of 7. Similar to our 
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findings in a prior study, immune signatures correlated with home allergen levels (CR) (Turturice 

et al. 2017). We posit that these differential transcriptomic responses represent early pathways 

of sensitization to CR. In order to identify non-allergen-specific biomarkers of asthma and to 

characterize underlying immune states of asthmatic predisposition, in this study we analyze the 

tetanus toxoid (TT) -stimulated PBMCs from the same study cohort using a network-centric 

approach. TT stimulation elicits an unbiased and broad immune recall response, since all the 

children received tetanus vaccination in infancy. It therefore provides a useful immune 

perturbation, allowing for characterization of more subtly altered immune networks in asthmatic 

poise prior to clinically diagnosable disease. We elucidate differences of gene expression 

networks and gene regulatory networks, and infer epigenetic changes, in children at the age of 2 

who develop asthma by age 7 compared to those who do not.  

2.2. Methods 

2.2.1. Data 

Gene expression data was downloaded from the Gene Expression Omnibus database 

(GSE96783), and consisted of RNAseq data from children enrolled in the Urban Environment and 

Childhood Asthma (URECA) study, in which subjects have parental history of allergic disease and 

live in low-income urban areas (Gern et al. 2009; Altman et al. 2018). In this prior study, RNA 

sequencing was performed on peripheral blood mononuclear cells (PBMCs) from the children at 

the age of 2, incubated with either German cockroach extract (CR) or dust mite extracts, tetanus 

toxoid (TT), or media alone (no stimulation). For this study, we utilize RNAseq data from the CR-

stimulated, TT-stimulated, and un-stimulated PBMCs, with in-depth analysis of gene expression 

networks and gene regulatory networks from TT-stimulated data. We compare TT-stimulated 
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networks of children at the age of 2 who developed aeroallergen sensitizations (including CR, 

dust mite, or both) by the age of 3 and clinical asthma by the age of 7 (asthma, n=19 with TT data) 

versus matched subjects who did not have any aeroallergen sensitizations or asthma at age 7 

(control, n=30). Asthma at 7 years of age was defined by a pre-specified algorithm including use 

of asthma medications in the previous year, spirometry with reversibility, and bronchial 

hyperresponsiveness assessed using a methacholine challenge. The case group demonstrated a 

higher incidence of wheezing illnesses and symptoms of atopic dermatitis in the first year of life 

compared to controls. More details about these subjects and samples including demographic 

data, home allergen exposure, clinical data, IgE levels, case criteria, and PBMC stimulation and 

processing are available at the URECA study (Gern et al. 2009) and Altman et al. (Altman et al. 

2018). 

2.2.2. Differential gene expression with CR and TT stimulation 

DESeq2 was used to obtain variance stabilized transformations of raw RNAseq count data 

(Love, Huber, and Anders 2014), and to perform differential expression analysis. Wald’s test was 

used to identify genes that changed expression after CR stimulation (compared to no stimulation) 

and after TT stimulation, separately for controls (n=30) and asthma (n=19). Wald’s test was also 

used to assess for interactions between group and stimulation. Significance of differential 

expression was assessed at p<0.05 with false discovery rate (FDR) correction. 

2.2.3. Gene expression modules  

For the 5667 genes that were determined to be perturbed by TT stimulation (q<0.05) in 

either asthma or controls, weighted gene correlation network analysis (WGCNA) (Langfelder and 
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Horvath 2008) was used to identify modules of highly correlated genes. WGCNA was performed 

with a soft thresholding power of 12 to produce scale-free network topology, a signed network 

and topology overlap matrix, the default minimum module size of 30 genes, and a cut height of 

0.15. Gene ontology enrichment analysis was performed using the PANTHER classification system 

(Thomas et al. 2003; Mi et al. 2010) and MsigDB (Subramanian et al. 2005; Liberzon et al. 2015) 

to characterize the biological processes captured by each gene expression module. Downstream 

analyses of gene expression modules were performed on the modules which had significant 

functional enrichments.  

Module eigengenes (first principal component) were calculated for each module for the 

control expression data with no stimulation and with TT stimulation, and for asthma expression 

data with no stimulation and with TT stimulation. Two-way ANOVAs with repeated measures 

were used to identify group x TT-stimulation interaction effects of each module eigengene. 

To identify high centrality genes in the WGCNA modules, a protein-protein interaction 

network was constructed for each module based on the STRING database (http://string-db.org). 

Default parameters were used to construct the gene interaction networks, and the igraph 

package in R was used to calculate centrality for each gene in the network. 

2.2.4. Network connectivity of gene expression modules 

Pairwise connectivity of WGCNA modules was calculated using Pearson correlations of 

module eigengenes, separately for controls and asthma. Statistically significant associations were 

assessed at p<0.05 separately for each group with FDR correction. 
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2.2.5. Regulatory network construction using PANDA 

To examine regulatory differences that might give rise to altered WGCNA module 

connectivity, PANDA (Passing Attributes between Networks for Data Assimilation) (Glass et al. 

2013) was used to construct regulatory networks separately for the control and asthma group, 

and the no-stimulation and TT stimulation condition (four networks total). For each PANDA 

model, the transcriptomic matrix included the expression data from genes that were included in 

the WGCNA analysis, as well as expression of transcription factors with binding profiles in the 

JASPAR (Sandelin et al. 2004) database (n=338). In order to obtain an initial regulatory network, 

we used a motif-based transcription factor (TF) mapping to genes included in our transcriptomic 

matrix. TF position frequency matrices (PFMs) were obtained from JASPAR, and were mapped to 

the promoter regions of each gene from 1000 base pairs upstream of the transcriptional start 

site to 200 base pairs downstream. A motif match of 80% maximum accuracy was counted as a 

TF-target “hit,” and the number of hits of each TF with each target was used an initial input 

regulatory network to PANDA. The initial protein-protein interaction network was derived from 

the STRING database interaction scores between all TFs used in our initial regulatory network. 

2.2.6. Patterns of TF regulatory shifts 

Regulatory strength (z scores outputted from PANDA in the regulatory network) of each 

TF was compared between asthma and controls. Due to the observation that most TFs 

demonstrated a combination of stronger and weaker target regulation depending upon target 

module membership, regulatory shift was calculated for each TF with each module. For example, 

the regulatory shift of GATA3 on CREM, one of its targets in the Th2 module, is simply zasthma,GATA3 
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-> CREM - zcontrol,GATA3 -> CREM. The regulatory shift of GATA3 on Th2, then, was calculated as the 

median shift of GATA3 across all of its gene targets in the Th2 module. TFs with at least one target 

in each module were then clustered using k-means based upon regulatory shift across WGCNA 

modules. A Euclidean distance metric was used, with number of clusters ranging from 2 to 10, 

each time calculating mean Silhouette score of the clustering result in order to assess clustering 

quality and to obtain the optimal number of TF clusters. The TF clusters obtained from this 

analysis are subsequently referred to as TF regulatory clusters. 

2.2.7. Binding locations of TFs in differentially methylated regions 

The proximity of binding locations between TFs (based on motif data) was assessed in 

differentially methylated regions (DMRs) identified from a separate meta-analysis. In this prior 

meta-analysis of cord blood mononuclear cells (CBMCs) from neonates who are eventually 

diagnosed with asthma, 35 DMRs were identified (Reese et al. 2018). Of these 35 DMRs, ten were 

in genes that changed expression with TT stimulation in our cohort. We assessed the similarity of 

binding locations in these 10 DMRs of TFs within the same regulatory cluster compared to TFs in 

different regulatory clusters. The specific methodology is described below. 

  For each of the 10 DMRs, binding locations of TFs on DMRs were identified in the same 

manner as described for the PANDA analysis above, with motif-based TF mapping. The similarity 

of binding location within versus between TF regulatory clusters was then assessed by computing 

a distance matrix of binding distances between every pair of TFs, and then calculating Silhouette 

score based upon TF regulatory cluster membership. This procedure was executed as described 

in the following steps: 

1. The binding level of TFi is represented as a vector of length nDMR, where nDMR = the # of bp in  
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the DMR, i = 1:mDMR, mDMR = # of TFs that bind on the DMR 

2. For each location along the DMR with the binding motif for TFi, a Gaussian distribution of 21-

bp width and 5-bp standard deviation is placed. 

3. The TFi binding vector is normalized to sum to 1. 

4. Distance between every TF that binds in the DMR is calculated as the absolute value of the 

difference between every pair of TF binding vectors. This yields a distance matrix of size mDMR x 

nDMR 

5. In order to ensure that results are not biased by TFs that share the same binding motifs or 

exact same binding locations, TFs are eliminated such that there are no pairs with distance < 0.1. 

Specifically, in an iterative process, all pairs of TFs with distance < 0.1 are identified. Then one 

pair is randomly selected, and one of the TFs in the pair is completely eliminated from the 

distance matrix. This process is repeated until no pairs of TFs have distance < 0.1. 

6. Silhouette score (SS) is computed for the distance matrix using TF regulatory cluster 

memberships. 

7. Significance of SS is determined through a permutation test. Specifically, the TF regulatory 

clustering labels are permuted 10,000 times, each time calculating the corresponding S. P value 

is determined as: [# permutations with SS > actual SS]/10,000. 

2.3. Results 

2.3.1. Stimulated gene expression with tetanus toxoid (TT) and German cockroach extract 

(CR) 

TT stimulation perturbed expression of thousands of genes, with 5051 genes perturbed 
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in the control group (n=30) and 3328 genes perturbed in the asthmatic group (n=19). The 

discrepancy between number of genes altered in controls vs asthma can be explained by 

difference in sample size. The genes perturbed in each group were largely overlapping, with 5667 

genes total perturbed in at least one group. Specifically, out of 22426 genes with non-zero read 

counts for controls, 2539 (11%) were upregulated after TT stimulation and 2512 (11%) were 

downregulated. In the asthma group (n=19), out of 22424 genes with non-zero read counts, 1845 

(8.2%) were upregulated after TT stimulation and 1483 (6.6%) were downregulated. These results 

are summarized in Figure 1. 

  

Figure 1. Stimulation of peripheral blood mononuclear cells (PBMCs) with tetanus toxoid (TT) 
perturbs expression of thousands of genes both in controls and asthma. 
The number of genes that increase expression (upper venn diagram) and decrease expression 
(lower venn diagram) with TT stimulation are shown for the controls (n=30) and asthma (n=19). 
DESeq2 was used to perform differential gene expression analysis with FDR-corrected p<0.05. 
  

Compared to TT stimulation, a much smaller set of genes changed expression with CR 

stimulation; in the control group (n=30), 184 (0.8%) were upregulated after CR stimulation and 

102 (0.5%) were downregulated. In the asthma group (n=19), 502 (2.2%) were upregulated after 
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CR stimulation and 304 (1.4%) were downregulated. As previously reported, there were extensive 

significant interaction effects of group (asthma vs controls) with CR stimulation on gene 

expression (Altman et al. 2018). However, there were no genes with significant interaction effects 

of group with TT stimulation of PBMCs at age 2. 

The genes perturbed by CR stimulation were functionally enriched for biological pathways 

involved in the allergic response; negative regulation of regulatory T cell differentiation, positive 

regulation of humoral immune response mediated by circulating immunoglobulin, negative 

regulation of T-helper Type 1 immune response, T-helper 17 cell lineage commitment. While 

there was no significant differential gene expression in the children who developed asthma 

compared to controls in response to TT, this antigen perturbed expression of a much larger set 

of genes than CR. Our downstream analysis thus aims to characterize immune network changes 

that may precede the development of asthmatic phenotypes, using TT-elicited gene expression 

patterns. 

2.3.2. Gene expression modules 

WGCNA of the 5667 genes with perturbed expression after TT stimulation in either the 

control or asthma group yielded 18 gene expression modules. Using Panther gene list analysis, 

13 of these modules demonstrate significant pathway enrichment, with a majority of these 

representing immune pathways. These include an IL1 response pathway, two MHC Class 1 

(MHC1) presentation pathways, an immunoglobulin somatic recombination and diversification 

pathway, a Th2 pathway, two myeloid-mediated immune pathways, and two interferon response 

pathways. The labels by which we refer to these modules going forward, along with some of their 

significant GO annotations and the highest centrality genes in each module, are delineated in 
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Table 1. Subsequent analysis was performed only on the 13 modules demonstrating significant 

enrichments. 

Table 1. WGCNA modules from tetanus toxoid-stimulated gene expression, with associated 
Gene Ontology (GO) annotations and high centrality genes 

Module GO annotations 

Genes with high 
centrality in STRING 
PPI network 

Mitos-1 
Mitotic nuclear division 
sister chromatid segregation 

CDC20, CDK2, BIRC5, 
PLK1, AURKA 

IL1 

Cellular response to IL-1 
IL-1-mediated signaling 
Protein modification by small protein removal 

HSP90AA1, BCL2, 
CASP3, UBE2N, CHUK  

Mitos-2 

DNA replication 
Chromosome segregation 
Cell cycle checkpoint 

CDK1 , PRKCB, PCNA, 
TOP2A, BRCA1 

Ig_rec 

Somatic recombination of immunoglobulin genes involved 
in immune response 
Somatic diversification of immunoglobulins involved in 
immune response 
DNA-dependent DNA replication 

PARP1, MCM5, 
MCM7, POLA2, H2AFX 

MHCI-1 

Antigen processing and presentation of exogenous peptide 
antigen via MHC class I 
Tumor necrosis factor-mediated signaling pathway 
Regulation of hematopoietic stem cell differentiation 

ACTA2, SF3B3, UBC, 
TUBG1, BCL3  

LPS 

Response to LPS 
Response to molecule of bacterial origin 
Positive regulation of VEGF production 

IL6, IL1B, LEP, SOCS3, 
IL1A 

MHCI-2 

Antigen processing and presentation of peptide antigen via 
MHC class I 
Positive regulation of NFkB signaling 

STAT3, RUNX3, STAP2, 
AMER1, PIM2 

Th2 

Humoral immune response mediated by circulating 
immunoglobulin 
B cell mediated immunity 
Adaptive immune response 

PDGFB , ITGB3, 
MMP1, NBEAL2, 
CCL13 

Myel-1 

Neutrophil activation involved in immune response 
Positive regulation of macrophage derived from foam cell 
differentiation 
Positive regulation of monocyte chemotaxis 
Receptor-mediated endocytosis 

CAT, LPL, TLR4, 
HSD17B4, ACSL1  
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Ifn-1 
Response to type 1 interferon 
Defense response to virus 

OAS1, ISG15, OASL, 
MX2, IRF7  

Metab Lipid catabolic process 
INSR, HSPA5, SDC2, 
PPARG, APOE  

Myel-2 

Myeloid cell activation involved in immune response 
Neutrophil degranulation 
Neutrophil activation 

TSPO, RHOA, JUN, 
RAC1, ICAM1 

Ifn-2 

Defense response to virus 
Response to interferon-beta 
Regulation of interferon-alpha production 

DDX58, IFIH1, HERC5, 
STAT1, IFIT1 

 

 

As expected, all 13 modules demonstrated statistically significant effects of stimulation 

using two-way ANOVA with repeated measures (p<0.01), with all exhibiting increased eigengene 

expression except for Myel-1, Metab, and Myel-2, which showed decreased expression with TT 

stimulation (Figure 2). None of the modules demonstrated significant interaction effects of group 

(controls vs asthma) with TT stimulation (p<0.05). 
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Figure 2. Module eigengenes change significantly with tetanus toxoid (TT) stimulation of 
peripheral blood mononuclear cells, but demonstrate no group effects.  
Eigengene expression is displayed for each WGCNA module, separately for controls and asthma, 
with no stimulation (NS) and TT stimulation of PBMCs. Every module demonstrates a significant 
effect of stimulation (p<0.01), but none demonstrate a significant group x stimulation effect 
(p<0.05). 
 

2.3.3. Network connectivity of gene expression modules 

Both the control and asthma gene expression network demonstrate extensive co-

regulation between WGCNA gene expression modules (Figure 3). The control and asthma 

networks demonstrate similar overall network structure (the majority of significant edges in each 

group are shared by both groups). However, there is extensive gain of negative co-regulation in 

the asthma network compared to the control network, and to a lesser degree, loss of positive co-

regulation (Figure 3; Figure 4).  
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Figure 3. Gene module network differences in asthma are characterized primarily by aberrant 
negative co-regulation.  
All significantly positively co-regulated modules (q<0.05, FDR corrected) are connected with blue 
edges, while negatively co-regulated modules are connected with red edges. Edge thickness 
corresponds to strength of correlation. 
 

 

Figure 4. The asthma gene module network demonstrates several aberrant negatively co-
regulated modules.  
R values from Pearson correlations between the eigengenes of every pair of modules are 
displayed for the asthma network on the y axis, and control network on the x axis. Points are 
colored by statistical significance of the correlations, with FDR correction across all pairs of tested 
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modules. The solid line is y=x, representing the line of equal edge strengths between controls 
and asthma, and the dotted line is a linear regression with 95% confidence interval shading. 

2.3.4. Regulatory Network Alterations 

Extensive regulatory differences were found between the TT-stimulated asthma and 

control networks using PANDA, with the majority of transcription factors (TFs) demonstrating 

altered regulation after FDR correction (284 out of 338) (Figure 5). Of the 284 TFs with altered 

regulation, 135 show weakened regulation, and 149 show strengthened regulation. The 

magnitude and direction of regulatory shift not only varies by TF, but also varies for a given TF by 

the WGCNA module membership of the gene targets. Examples of this are shown in Figure 5 for 

several representative TFs - GATA3, T-bet, FOXP3, STAT1, STAT4, and STAT6. Two representative 

WGCNA modules are displayed for demonstrative purposes - MHCI_1, which demonstrated 

extensive differences of co-regulation in the expression network, and IL1, which demonstrated 

stronger negative co-regulation with MHCI_1 in the asthma network. GATA3 demonstrates 

stronger regulation of its targets in the MHCI_1 module in asthma, but weaker regulation of its 

targets in the IL1 module. FOXP3 and STAT6 demonstrate a similar pattern of altered target 

regulation, with FOXP3 demonstrating an even more amplified difference between regulation of 

its targets in these two modules, and STAT6 demonstrating a more subtle difference. In 

comparison, T-bet, STAT1, and STAT4 regulation of their targets do not appear to significantly 

differ between the MHCI_1 and IL1 modules (the points lie along the y=x line). This indicates that 

certain TFs exhibit simultaneous strengthened and weakened regulation of gene targets, and that 

the direction of regulatory shift depends systematically on target WGCNA module membership. 

The two top TFs with the largest median regulatory shift across modules were KDM5B 

and ARID3A, which have been shown to be important regulators of the epigenome. 
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Figure 5. Asthma regulatory networks demonstrate extensive alterations, with both increased 
and decreased transcription factor (TF) regulation strength.  
Regulatory strengths outputted from PANDA are displayed for several example TFs in two 
representative WGCNA modules (MHCI_1 and IL1). The y axis represents regulatory strength in 
the asthma network while the x axis represents regulatory strength in the control network. Each 
individual point represents the regulatory strength of the given TF on each of its gene targets in 
the representative modules. Points above and below the y=x line respectively indicate stronger 
regulation in asthma relative to controls, and controls relative to asthma.  

2.3.5. Transcription factor clustering by patterns of regulatory shift 

Due to the recognized role of epigenetics in asthma, we hypothesized that broad 

alterations of the epigenetic landscape might drive the differential transcriptomic and regulatory 

networks that control the predisposition to disease. TFs bind to regulatory regions of their 

respective gene targets to activate or repress transcription. Thus, TFs with proximal binding sites 

on their gene targets will likely be similarly altered by epigenetic alterations of genomic 

accessibility (i.e. DNA methylation) in these regulatory regions. The presence of broad alterations 

to the epigenetic landscape could therefore cause shared patterns of “regulatory shift” of TFs 
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that bind at similar locations.  

A heatmap of median regulatory shift per TF with each WGCNA module reveals 

community structure of TFs, where communities of TFs demonstrate shared patterns of 

regulatory shift across WGCNA modules (Figure 6). For example, certain TFs show predominantly 

weaker regulation of targets in Ifn-2, Mitos-2, IL1, and Myel-1 in asthma compared to controls, 

but stronger regulation of targets in the remaining modules. In contrast, TFs labeled by the green 

bar on the y axis show an inverse pattern of dysregulation; these TFs show predominantly 

stronger regulation of targets in Ifn-2, Mitos-2, IL1, and Myel-1 in asthma compared to controls, 

but weaker regulation of targets in the remaining modules. Hierarchical clustering of TFs based 

on these median shifts per module yields an optimal cluster number of two TF groups based on 

the maximum silhouette score.  
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Figure 6. Transcription factors (TFs) cluster into groups based upon the pattern of their 
regulatory alteration across gene expression modules.  
A heatmap of the median regulatory shift of targets within each gene expression module (for a 
given TF: median value of zAsthma-zControl across targets within a module). The x axis represents 
different WGCNA modules, while TFs are represented on the y axis, with branches colored by TF 
communities from hierarchical clustering. Blue/positive values represent stronger regulatory 
control in asthma, while red/negative values represent strong regulatory control in controls. 
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2.3.6. Binding locations of transcription factor groups 

TFs that cluster into the same communities based upon regulatory shift tend to have 

proximal binding locations to one another in DMRs (Figure 7,8). Binding locations of TFs with 

motifs in a differentially methylated region of TNFSF13B (encodes B-cell activating factor (Baff)) 

are shown to illustrate the proximal binding of TFs within the same communities (Figure 7). The 

TFs are separated based upon their regulatory community. TFs within the same community bind 

more closely to one another than TFs between regulatory communities. The similarity of binding 

locations within communities suggests that shared patterns of dysregulation may be driven by 

permissive or repressive epigenetic changes at the level of the target genes.  

The mean SS from the binding location distance matrix using TF regulatory cluster 

memberships is displayed for all 10 DMRs (Figure 8). For the majority of DMRs, the mean SS is 

significantly higher (p<0.001) than the null distribution of silhouette scores (SS) generated from 

permutation of TF regulatory cluster labels. Thus, regulatory communities of TFs cluster based 

upon their binding distances within DMRs. 
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Figure 7. Transcription factors (TFs) within the same regulatory communities bind in similar 
locations on differentially methylated regions (DMRs).  
Binding locations of TFs with binding motifs (based on 80% of maximum confidence) in a DMR in 
TNFSF13B. The TFs are separated based upon their regulatory cluster memberships as defined in 
Figure 5.  
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Figure 8. Regulatory communities of transcription factors (TFs) exhibit significant clustering 
based on binding distances within differentially methylated regions (DMRs). 
The genes on the X axis represent all DMRs from the Reese et al. meta-analysis of CBMCs, which 
demonstrated perturbation of expression from tetanus toxoid (TT) stimulation. The green dot 
represents the mean silhouette score (SS) calculated from the binding location distance matrix 
with TF regulatory clusters. The gold points and density plots represent the null distribution of 
mean SS from each of 10,000 permutations of the regulatory cluster labels. Asterisks represent 
statistical significance *p<0.05, **p<0.01, ***p<0.001 
 

2.4. Discussion 

We characterize asthmatic poise by probing gene-gene interactions and inferring 

epigenetic alterations. Specifically, we identify significantly altered interactions in our gene 

expression networks. We also demonstrate that these altered expression networks can be 

explained by regulatory differences, and provide evidence that broad epigenetic alterations 

cause the downstream disruption of these networks. In summary, gene network investigation 

powered by associations of stimulated gene expression across subjects allows us to uncover 
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immune imbalances that precede clinical diagnosis of asthma.  

The differential gene networks elucidated with tetanus toxoid (TT) stimulation suggest 

that broad immune imbalances prime allergic sensitization. Prior transcriptomic studies of 

childhood asthma have investigated subjects who already have a disease diagnosis, and have 

primarily investigated differential gene expression as opposed to differential gene interactions. 

Significant differential gene expression in response to German cockroach extract (CR), but not 

TT, was previously reported in this cohort (Altman et al. 2018). However, this was only found 

in children with both CR sensitization and asthma by the age of 7, and not in children without CR 

sensitization. We posit that the differential response to CR, which perturbs a much more limited 

set of genes (~800 for asthma and ~300 for controls, versus ~5000 for TT stimulation in both 

groups), represents an allergic response to CR. In contrast, TT elicits more widespread non-

allergen-specific stimulation of immune responses in both groups, allowing us to uncover 

network states poised for allergic sensitization. Since allergic asthma can be triggered by diverse 

allergens depending on individual exposure, it is valuable to identify non-exposure-dependent 

differential immune responses (i.e. to TT) that characterize allergic predisposition. 

While we expected to find regulatory network alterations, the unexpected findings here 

are the uncovered patterns of dysregulation. It is particularly interesting that a given TF can 

exhibit strengthened regulation of some targets in the asthma group compared to controls, but 

weakened regulation of other targets. Even more striking, the direction and magnitude of change 

varies systematically depending upon the WGCNA module membership of the target gene. This 

finding, combined with the demonstrated shared patterns of dysregulation amongst 

communities of TFs (Figure 6) and proximal binding locations of TFs with the same community, 
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support the idea that broad epigenetic alterations perturb regulatory and expression networks. 

The absence of statistically detectable differential gene expression, concurrent with regulatory 

network alterations, is consistent with previously indicated epigenetic mechanisms of asthmatic 

poise. A prior study in a murine model of asthma found minimal gene expression differences in 

dendritic cells from asthma-at-risk neonates compared to control mice, despite the presence of 

extensive genome-wide methylation differences (Mikhaylova et al. 2013b). Substantial 

differential gene expression became evident only upon allergen sensitization, primarily among 

transcripts that showed epigenetic alterations at birth. Taken together, these suggest a paradigm 

in which subtle but widespread changes to the epigenetic landscape poise the immune system 

for allergic sensitization. Subsequently, allergic sensitization leads to enhanced epigenetic 

modifications, differential gene expression and cytokine elaboration, and phenotypic disease 

manifestation. 

This paradigm is further supported by the TFs that we found to demonstrate the most 

altered regulation across modules; ARID3A and KDM5B have both been implicated as important 

players in epigenetic control. ARID3A is required for hematopoietic stem cell differentiation and 

B cell development, and has been shown to suppress somatic cell reprogramming (Popowski et 

al. 2014). ARID3A also activates transcription of the immunoglobulin heavy chain (IgH) by altering 

chromatin accessibility to the IgH enhancer (Lin et al. 2007). KDM5B is a histone demethylase, a 

critical regulator of genome stability required for efficient DNA double-strand break repair, and 

has been shown to be enriched at DNA-damage sites after ionizing radiation and endonuclease 

treatment (X. Li et al. 2014). It represses expression of genes involved in immune cell proliferation 

and migration, and may cooperate with histone deacetylase in repression of gene expression 
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(Klein et al. 2014; Wu et al. 2018).  

There is evidence of epigenetic differences in asthmatics, with genome-wide methylation 

studies demonstrating predominantly permissive methylation differences as early as birth (Reese 

et al. 2018). However, results of epigenetic studies have not established robust associations with 

downstream gene expression. These prior studies have focused on DNA methylation, and thus 

do not capture the full landscape of epigenetic alterations (Vercelli 2016). Studies investigating 

histone modifications have provided more mechanistic insight into epigenetic changes in asthma. 

The ratio of histone deacetylase to histone acetylase is lower in lung samples of asthmatics, 

correlates with disease severity, and corrects with treatment (Su et al. 2009; Gunawardhana et 

al. 2014; Cosío et al. 2004; K. Ito et al. 2002). Further, HDAC inhibition in ex vivo memory T cells 

results in strongly elevated Th2 cytokine production and reduced Th1 cytokine production during 

immune recall response (Su et al. 2008). Interestingly, this shift in Th2/Th1 cytokine responses is 

driven by elevation of the master Th2 regulator GATA3, without change in the expression level 

of the corresponding Th1 regulator T-bet. These findings are consistent with our finding of strong 

regulatory differences in GATA3 but not T-bet as a function of gene module membership (Figure 

4). GATA3 interacts with HDACs and methyltransferases to produce suppressive changes at Th1 

loci, and with HAT to create permissive changes at Th2 loci (Zeng 2013; Hosokawa et al. 2013; 

Chang and Aune 2007). It binds to its own regulatory elements, positively regulating its own 

expression (Ouyang et al. 2000). These findings further expand upon epigenetic theories of early 

atopic predisposition, in which positive feedback mechanisms progressively destabilize immune 

balance, ultimately producing measurable differential gene expression and asthmatic 

phenotypes. 
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This study is limited by lack of epigenetic data to validate the inferred alterations, as well 

as by the pooled cell populations, which make it challenging to identify key cellular players in the 

altered gene interactions. Future investigation will benefit from simultaneous collection of 

transcriptomic and epigenomic data from separated cell populations or single cell analyses. 

Collection of epigenomic data using a method such as Assay for Transposase-Accessible 

Chromatin using sequencing (ATAC-Seq) will facilitate validation and complementary 

characterization of regulatory relationships. Additionally, it may allow for diagnosis or prognosis 

of individual subjects using epigenomic fingerprints of altered accessibility at regulatory regions 

of DNA. Our present transcriptomic network analyses allow us to identify group-level network 

differences. However, it would be challenging to perform individual diagnosis based upon this 

framework, since construction of subject-level networks would require several datasets per 

subject, or would rely on unstable statistical inference methods. It will also be of interest in the 

future to determine whether altered expression and regulatory networks can be discerned even 

earlier in life (e.g. by studying cord blood mononuclear cells (CBMCs)), as epigenetic influences 

begin in utero.  

In conclusion, we have described a novel framework to characterize transcriptomic 

network alterations, shown that gene network dysregulation can be detected in atopically 

predisposed individuals long before clinical asthma diagnosis, and provided evidence that these 

atopically primed networks are a result of widespread alterations of the epigenetic landscape. 

Our approach indicates the potential to identify development of allergic disease including asthma 

prior to clinical diagnosis. 
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3. Trimer IgG and Neutralizing Antibody Response to COVID-19 mRNA 
Vaccination in Individuals with Sarcoidosis 
Published as: Vagts CL, Chang YS, Ascoli C, Lee JM, Huang K, Huang Y, Cherian RA, Sarup N, 
Warpecha SR, Edafetanure-Ibeh R, Amin MR, Sultana T, Ghassemie T, Sweiss NJ, Novak R, 
Perkins DL, Finn PW. Trimer IgG and Neutralizing Antibody Response to COVID-19 mRNA 
Vaccination in Individuals with Sarcoidosis. ERJ Open Research 2022 Jan; 9(1): 00025-2022. 
 

3.1. Introduction 

Since the start of the COVID-19 pandemic, the development of effective treatments to 

diminish COVID-19 disease severity has been an international priority. Vaccines were developed 

at record speed and offer a life changing opportunity for disease mitigation and prevention. Initial 

studies demonstrated the mRNA-based COVID-19 vaccines, BNT162b2 and mRNA-1273, were 

efficacious in preventing up to 95% and 94.1% of COVID-19 disease in recipients, respectively 

(Baden et al. 2021; Polack et al. 2020). However, vaccine response in vulnerable populations 

remains ill defined.  

Sarcoidosis is a multisystem disease of unknown etiology characterized by granulomatous 

inflammation and subsequent organ dysfunction. This inflammation is believed to stem from 

maladaptive immune responses, resulting from chronic immune stimulation with subsequent risk 

of lymphocyte anergy, exhaustion, and depletion (Ascoli et al. 2018; Sweiss et al. 2010; Hawkins 

et al. 2017). Data supports sarcoidosis subjects as having increased risk of infection (Dureault et 

al. 2017; Ungprasert, Crowson, and Matteson 2017), though the overall risk of SARS-CoV-2 is 

unclear (Baughman et al. 2020). Beyond immune susceptibility conferred by underlying disease 

pathology, nearly one-fourth of all sarcoidosis patients require treatment with 

immunosuppressive agents which further contributes to infectious risk (Baughman et al. 2016). 

Primary infection prevention with vaccination in this population is therefore of great 
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importance.  

Literature regarding how individuals with sarcoidosis respond to vaccines is limited and 

indicate varying responses. A study of tetanus vaccination in sarcoidosis patients found 50% had 

an insufficient increase in antibody titers regardless of sarcoid disease state, stage, or duration, 

and independent of treatment (Seyhan et al. 2012). A separate study of a 3-dose series of the 

hepatitis B vaccine found that none of the 16 sarcoidosis subjects had detectable antibody levels 

at one month follow up (Mert et al. 2000). In contrast, a study of the 2008-2009 trivalent 

influenza vaccine showed sarcoidosis and control subjects had a comparable serological response 

(Tavana et al. 2012). In addition, existing literature explores quantitative assessment of antibody 

response through measurement of immunoglobulin titers however these titers may not assure 

conferred protective immunity. While developed antibodies may target any viral epitope, 

neutralizing antibodies (nAb) bind to the virus in such a way that it inhibits cell entry and/or viral 

replication therefore blocking infection from propagating (Payne and Ebook Central Academic 

2017). Post vaccination nAb assays provide insight into the functional protection allocated by the 

vaccine and to our knowledge there are no current studies evaluating nAb in sarcoidosis.  

In regards to immunosuppression, data assessing the effect of immunosuppressive 

medication on vaccine efficacy in sarcoidosis is limited and recommendations are extrapolated 

from studies of other immune related disoders. Use of various immunosuppressive medications 

is associated with decreased antibody response to multiple types of vaccinations, including the 

mRNA COVID vaccines (Friedman, Curtis, and Winthrop 2021; Mahil et al. 2021; Ruddy et al. 2021; 

Subesinghe et al. 2018). Regardless of a potential insufficient response, vaccination is strongly 

recommended in sarcoidosis to protect against various community acquired infections to include 
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COVID-19 (Manansala et al. 2021; Syed et al. 2020).  

We postulate that subjects with sarcoidosis will have a deficient immune response to COVID-

19 vaccination. This study aims to characterize the antibody response to COVID-19 vaccination in 

subjects with and without sarcoidosis through quantitative assessment of binding antibodies and 

correlation to functional assessment of nAb. Our findings may direct vaccination guidelines, 

inform the need for further booster vaccines, and extrapolate further information about the 

immune dysregulation underlying sarcoidosis pathology.  

3.2. Methods 

3.2.1. Study population and sample acquisition 

Study approval was obtained through the University of Illinois at Chicago (UIC) IRB Ethics 

Review Committee, Approval #2018-1038.  

Subjects with biopsy-proven sarcoidosis, diagnosed in accordance with ATS/ERS/WASOG 

criteria (Hunninghake et al. 1999), and who were undergoing vaccination with the BNT162b2 

mRNA COVID-19 vaccination were recruited. All subjects were older than 18 years of age and 

receive their sarcoidosis care in the Bernie Mac Sarcoidosis Translational Advanced Research 

(STAR) Center at UIC. Demographic and clinical data was extracted from the electronic medical 

record and included sex, race, age, body mass index (BMI), sarcoidosis organ involvement, as well 

as treatment with immunosuppressive therapy (systemic steroids and/or disease modifying anti-

sarcoid drugs i.e. DMASDs). Peripheral lymphocyte counts in the preceding 6 month were also 

recorded. Age and gender matched self-reported-immunocompetent control subjects consisted 

of University of Illinois Hospital employees who were undergoing vaccination at UIC. 
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Demographic and clinical data were collected using a questionnaire and included race, sex, age, 

height and weight, medication use, and existing medical problems. Any subject who self-reported 

a personal history of COVID-19 infection was excluded. 

Blood samples were collected at baseline (just prior to 1st vaccine dose, timepoint V1D0), 4 

weeks (i.e. 7 days after the booster dose, timepoint V2D7), and 6 months after the 1st vaccine 

dose (time point M6). Serum was extracted within two hours of sample collection and stored at 

-80°C. 

3.2.2. Anti-Spike (Trimer) IgG Titer Quantification 

The Human SARS-CoV-2 Spike Trimer IgG ELISA Kit from Invitrogen was used to quantitate 

serum IgG levels of each subject at each timepoint, per the manufacturer’s protocol. All samples 

were diluted 1:100 and assayed in duplicate with 2-fold serial dilution of the 150,000 units/mL 

standard control for relative quantification. Absorbance at 450 nm was quantified using a 

Spark® multimode microplate reader. Samples that produced signals greater than the upper limit 

of the standard curve were reassayed at 1:1000 dilution. IgG concentration was calculated by 

fitting 5-parameter logistic curves to the standard controls. The average concentration of 

duplicates was utilized for analysis. Inter-assay variability was addressed utilizing the ELISAtools 

package in R (version 4.0.4) which to account for batch-effect (Feng et al. 2019). 

3.2.3. Antibody Neutralization Assays 

Neutralization activity against SARS-2-CoV was measured in a single-round-of-infection assay 

using pseudotyped viruses (Nie et al. 2020). Briefly, 293T ACE cells were infected with modified 

vesicular stomatitis virus (VSV), which lacks a gene vital for VSV replication and instead carries a 
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firefly luciferase reporter gene that allows for chemiluminescence. The cells are also transfected 

with plasmids encoding full length SARS-CoV-2 spike (S) protein, which is a surface protein 

responsible for binding the host cell receptor, ACE2, to mediate viral entry during SARS-CoV-2 

infection (SARS-CoV-2 Spike-pseudotyped lentiviral particle kit, BEI # NR-53816). The 

pseudotyped virus therefore contains the SARS-CoV-2 S protein to simulate viral entry, and VSV, 

which provides the structural genes for viral packaging without the ability to replicate. The 50% 

tissue culture infectious dose (TCID50) of the pseudotyped virus, which indicates the amount of 

virus required to quash 50% of the inoculated cells, was calculated according to the Reed-Muench 

method. 

Serial dilutions of each subject’s serum were incubated for 1hr at 37 °C with 1000 TCID50/ mL 

of the pseudotyped virus (virus plus antibody) then added to monolayers of ACE2-overexpressing 

293T cells in quadruplicate on a 96-well plate. Controls consisted of pseudotyped virus and 293T 

cells without added serum sample (virus-only). The plate was incubated for 65-72 hours in the 

cell culture incubator at 37 °C and 5% (vol/vol) CO2 after which 50 µL of luciferase substrate was 

added to stimulate chemiluminescence. The amount of chemiluminescence, determined by a 

plate reader, directly correlates with the amount of pseudotyped virus that has entered and 

“infected” the cells. The amount of nAbs, which inhibit viral entry into the 293T cell, is therefore 

inversely correlated with the chemiluminescence signal intensity. Neutralizing antibody titers are 

reported as the 50% inhibitory dilution (ID50), calculated using the Reed-Muench method, which 

refers to the dilution fold required to achieve 50% neutralization (Nie et al. 2020; Ferrara and 

Temperton 2018). Higher ID50 correlates to increased potency of nAb within the serum sample. 
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3.2.4. Statistical Analysis 

Demographic data was tested for significance between groups utilizing the Mann-Whitney U 

(MWU) testing for nonparametric continuous data, or Fisher’s exact test for categorical data, as 

appropriate. Statistical differences between groups of time from vaccination to sample collection 

were assessed using the student's T test. The primary outcome measures were post vaccination 

Trimer IgG titers and nAb titers at both V2D7 and M6. Antibody titers for all time points were log 

transformed and z-scores were calculated to identify outliers (z score ≥2.5). Titers were tested 

for significance using the MWU test separately for each time point. Subgroup analysis was 

performed to assess the role of immunosuppressive therapy, with differences tested using the 

Kruskal-Wallis test with Dunn’s post hoc test and Benjamini-Hochberg correction for multiple 

comparisons. Univariate correlation analysis was performed by calculating Pearson’s coefficients 

for log transformed antibody titers. Multivariate regression models were then constructed 

separately for Trimer IgG and nAb to determine the relative effect of significant baseline variables 

on short term (V2D7) and long term (M6) results. P values <0.05 were considered significant. All 

analyses were performed in R version 4.0.4 (https://www.R-project.org/). Kruskal-Wallis and 

Dunn tests were implemented using the Dunn.test package. T testing, MWU, and Fisher’s exact 

testing was implemented using the stats package. Pearsons coefficients were calculated using 

the corr.test function of the psych package.  

3.3. Results 

3.3.1. Demographics 

Fourteen sarcoidosis subjects and 27 control subjects were recruited. Group characteristics 
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are highlighted in Table 2. Nearly all subjects received the BNT162b2 mRNA COVID-19 vaccine 

and booster at the recommended time interval of 21 days (mean 21.15 days; st. dev 0.57, range 

20-24 days). All subjects had blood samples collected just prior to the first vaccine dose 

administration (V1D0) and 7 days after the booster dose at time point V2D7 (mean 6.91 days; st. 

dev 0.28, range 6-7 days) . All recruited subjects had available samples for Trimer IgG analysis at 

V1D0 and V2D7; of whom, 17 control samples and all 14 sarcoidosis samples were included in 

nAb analysis. Due to attrition, 22 control subjects and 11 sarcoidosis subjects were available for 

blood samples at the 6-month time point (mean 184.8 days from first vaccine, st dev 12.2, range 

170-214 days) and included in Trimer IgG analysis at M6, of whom 11 control subjects and all 11 

sarcoidosis subjects were included in nAb analysis.  

Table 2. Demographics of control and sarcoidosis groups  
Control 
Subjects 

Subjects 
with 
Sarcoid 

P-value 

Total Subjects, n 27 14  
Age, median (years) 53.0 60.5 0.3355 
Sex, n 

Female 
Male 

 
10 
17 

 
10 
4 

0.7337 

Race, n 
Black 
White 
Asian 
Other 

 
2 
18 
1 
6 

 
9 
5 
0 
0 

0.0005 

Body Mass Index, median 
(kg/m2) 26.1 31.84 0.0319 

Days between Vaccine 
Dose, mean 21.3 20.9 0.0793 

Days Between 1st Vaccine 
and V2D7, mean 6.9 6.9 0.4939 

Days Between 1st Vaccine 
and M6, mean 180.9 192.6 0.0575 

V2D7 = 7 days after vaccine dose 2 (4 weeks after 1st dose) 
M6 = month 6 time point 

 

The sarcoidosis group was comprised of 13 subjects with pulmonary manifestations and 6 with 

extrapulmonary involvement. Six subjects were not on any treatment and 8 were treated with 
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immunosuppressive therapy. Specifics regarding sarcoidosis phenotypes and treatment 

regimens for each subject are described in Table 3. Absolute peripheral lymphocyte values were 

available for 12 sarcoidosis subjects and had a group median of 1.8 x 109 cells/liter. Four subjects 

had medication titration within this 6 month pre-vaccination time interval.  

Table 3. Clinical details regarding sarcoidosis chronicity, organ involvement, and treatment for 
each of the fourteen subjects in the sarcoidosis group.  
 

Subje
ct 

Years 
Since 
Diagnosis 

Organ 
Involvement Treatment 

Prednisone 
Equivalent 
(mg) 

Abs Lymphocyte (109 
cells / L) 

1* 26 Pulmonary Steroids, anti-metabolite, 
anti-TNF, IVIG 10 0.9 

2 2 Lymph Node Steroids, HCQ 7.5 1.2 

3 13 Pulmonary, 
Ocular Steroids, anti-metabolite 2.5 3.0 

4 8 Pulmonary, 
Neurologic Steroids 5 NA 

5* 12 Pulmonary, 
Cardiac None 0 1.2 

6 24 Pulmonary None 0 2.0 

7 41 Pulmonary None 0 1.7 

8* 11 Pulmonary Steroids, anti-TNF, IVIG 15 3.1 

9 10 
Pulmonary, 
Neurologic, 
Hepatic 

Steroids, anti-metabolite, 
anti-TNF 10 1.6 

10 6 Pulmonary HCQ 0 1.7 

11 8 Pulmonary None 0 2.9 

12 7 Pulmonary, 
Ocular 

Anti-metabolite, anti-
TNF 0 1.9 

13 30 Pulmonary None 0 NA 

14 7 Pulmonary None 0 2.0 

*6 month time point not available 

 

3.3.2. Anti-Spike Protein Trimer IgG Titer and Neutralizing Antibody Analysis 

Trimer IgG titers for each group across all three time points are illustrated in Figure 9. There 

were no outliers detected at either time point. While sarcoidosis subjects had a higher median 

baseline IgG titer than the control group (MWU p-val <0.001), both groups demonstrated a 

significant increase in IgG titers at V2D7 compared to their respective baselines (sarcoidosis: 
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MWU p-val <0.001; control: MWU p-val <0.001) with comparable titers at V2D7 between groups 

(MWU p-val =0.3680). IgG titers in both groups significantly decreased at the M6 time point from 

their respective V2D7 titers (sarcoidosis: MWU p-val <0.001; control: MWU p-val <0.001); 

however, M6 IgG titers in the sarcoidosis group fell to levels comparable to sarcoidosis V1D0 

titers (MWU p-val =0.9786) and were significantly less than M6 control IgG titers (MWU p-val 

=0.0237). M6 IgG titers in the control group remained significantly higher than baseline values 

(MWU p-val <0.001). Overall, this trend indicates a robust initial IgG response in both groups that 

diminishes over time, returning to baseline in the sarcoidosis group and raising the concern for 

more transient antibody protection.  

 

 

Figure 9. Trimer IgG titers for control and sarcoidosis groups are shown.  
(a) log transformed titers for comparison between time points for each group and (b) log 
transformed titers for comparison between groups at each time point. ns: p > 0.05; *: p <= 0.05; 
**: p <= 0.01; ***: p <= 0.001 
 

Functional nAb assays were performed to better determine protection conferred from 
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vaccination. The ID50 for each group across all three time points (V1D0, V2D7, and M6) are 

illustrated in Figure 10. Both control and sarcoidosis groups had a significant increase in nAb titers 

from baseline to V2D7 suggesting robust nAb formation after 1st and 2nd vaccination doses 

(sarcoidosis: MWU p-val <0.001; controls: MWU p-val <0.001), similar to what was observed for 

IgG trends. However, median ID50 for both groups at M6 were not significantly changed from 

their respective V2D7 values (sarcoidosis: MWU p-val =0.2250; controls: MWU p-val =0.0894) 

and remained significantly higher than baseline (sarcoidosis: MWU p-val <0.001; controls: MWU 

p-val <0.001) suggesting persistent immunity. Finally, median ID50 for sarcoidosis subjects were 

comparable to those of controls at all time points (V1D0 MWU p-val =0.5879; V2D7 MWU p-val 

=0.5740; M6 MWU p-val =0.7409) indicating similar levels of nAb present.  

 

Figure 10. Neutralizing titers (50% Inhibitory Dilution) for control and sarcoidosis groups are 
shown.  
(a) log transformed titers for comparison between time points for each group and (b) log 
transformed titers for comparison between groups at each time point. ns: p > 0.05; *: p <= 0.05; 
**: p <= 0.01; ***: p <= 0.001 
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Trends in IgG and nAb were further evaluated across sarcoidosis treatment groups (Figure 11). 

Pairwise comparisons using Dunn's test indicated sarcoidosis subjects on and off 

immunosuppression had comparable V2D7 IgG titers to controls (immunosuppression vs. control 

BH adj p val =0.3197, no treatment vs. control BH adj p-val =0.4514) as well as comparable nAb 

titers to controls (immunosuppression vs. control BH adj p val =0.4904, no treatment vs. control 

BH adj p-val =0.9333) indicating a robust initial antibody response regardless of 

immunosuppression. At M6, sarcoidosis subjects on immunosuppression had significantly 

decreased IgG titers compared to controls (BH adj p-val =0.0162), however nAb titers remained 

comparable (controls (BH adj p-val =0.3688) suggesting preserved protection.   

 

Figure 11. Antibody titers for Sarcoidosis subjects separated by treatment status and controls.  
(a) log transformed trimer spike-protein IgG titers are shown. Sarcoidosis subjects not on 
treatment had significantly higher V1D0 titers than controls and comparable titers at V2D7. M6 
IgG titers were significantly lower in the sarcoidosis group than controls. (b) log transformed 
neutralizing titers (50% inhibitory dilution). Values were comparable across all groups at each 
time point. ns: p > 0.05; *: p <= 0.05; **: p <= 0.01; ***: p <= 0.001 
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3.3.3. Regression Analysis 

Given variation in Trimer IgG and nAb trends, a univariate linear regression model was 

constructed to characterize the relationship between IgG and nAb titers across all time points. 

Correlation coefficients for control and sarcoidosis group are shown in Figure 12. IgG titers were 

significantly and directly associated with nAb titers in both groups, with a strong correlation for 

the control group (R =0.7715, p-val <0.001) and a weak correlation for sarcoidosis group (R 

=0.3905, p-val 0.0140). IgG titers in the sarcoidosis group were overall determined to be less 

predictive of nAb (R2 =0.1525) than in the control group (R2 =0.5952). With such low variance 

explained by IgG titers in the sarcoidosis group, a multivariate linear regression model was 

subsequently constructed to delineate which, if any, variables independently predict short term 

(V2D7) and long term (M6) nAb titers. Regression models for each outcome are shown in Figure 

13. The overall regression was not statistically significant for either group. Additional regression 

models for M6 for each group were constructed with the addition of V2D7 and M6 IgG titers, also 

with interdependencies accounted for, and yielded similar results. None of the additional 

independent variables were significantly predictive of nAb though analysis may be 

underpowered to detect significance. 
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Figure 12. Univariate linear regression analysis illustrating the relationship between log 
transformed Trimer IgG titers and log transformed 50% inhibitory dilution across all time 
points.  
(a) Control group showing a significant and strong correlation, and (b) Sarcoidosis group showing 
a significant yet weak correlation. 

 

Figure 13. Multivariate regression analysis to assess independent predictors of 50% inhibitory 
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dilution (ID50) by group (top row: controls; bottom row: sarcoidosis) and outcome time points 
(left column: V2D7; right column: M6).  
Axes are log transformed. (a) V2D7 ID50 for control group. Model: Log10 V2D7 ID50 ~ Log10 
V2D7 Trimer IgG * Log10 V1D0 Trimer IgG + Race + BMI. (b) M6 ID50 for the control group. Model: 
Log10 V2D7 ID50 ~ Log10 V2D7 Trimer IgG * Log10 V1D0 Trimer IgG + Log10 V2D7 Trimer IgG * 
Log10 M6 V2D7 IgG + Race + BMI. (c) V2D7 ID50 for the sarcoidosis group. Model: Log10 V2D7 
ID50 ~ Log10 V2D7 Trimer IgG * Log10 V1D0 Trimer IgG + Race + BMI + Treatment Group. (d) M6 
ID50 for the sarcoidosis group. Log10 V2D7 ID50 ~ Log10 V2D7 Trimer IgG * Log10 V1D0 Trimer 
IgG + Log10 V2D7 Trimer IgG * Log10 M6 V2D7 IgG + Race + BMI + Treatment Group. The overall 
regression was not statistically significant for either group at both time points. 

3.4. Interpretation 

We present a single center analysis of the quantitative and qualitative antibody response to 

vaccination with the BNT162b2 mRNA COVID-19 vaccine in infection naïve subjects with and 

without sarcoidosis. Our data indicates that sarcoidosis subjects mount a robust initial Trimer IgG 

antibody response to vaccination with subsequent quantitative decline by 6 months, driven by 

those on immunosuppression. Despite the decline in binding antibodies, sarcoidosis subjects 

develop and maintain functional immunity regardless of immunosuppressive treatment. With 

this discrepancy between IgG and nAb titers, it is not surprising that IgG antibodies weakly 

correlated with nAb and were not significantly predictive of nAb titers at any timepoint. While 

this study is of a single vaccine type, it sheds light on the clinical protection vaccination provides 

individuals with sarcoidosis despite IgG titers that may suggest otherwise.  

The SARS-CoV-2 is an enveloped virus with numerous structural proteins vital for the viral life 

cycle. The S protein, which is composed a S1 subunit, S2 subunit, N-terminal domain, and 

receptor-binding domain (RBD), is responsible for viral entry into the host cell specifically through 

binding of the RBD. Antibodies to SARS-CoV-2 consist of IgM, IgG, and/or IgA antibodies and may 

target any subdomain of the S protein (Klingler et al. 2020; Sterlin et al. 2021; Ma et al. 2020; 
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Salvagno et al. 2021). Upon viral binding to ACE2, conformational changes of surface 

glycoproteins result in the formation of an S protein trimer (Walls et al. 2020), which is the target 

of the IgG antibodies quantified in this study. Despite a wide array of antibodies produced, nAb 

confer protection by preventing viral entry, receptor mediated infection  and infection 

propagation. Numerous studies support a strong correlation between various antibody titers and 

neutralization; however, the strength of correlation may vary with different tested antibody 

targets as well as with time from SARS-CoV-2 exposure (Mazzini et al. 2021; Maeda et al. 2021; 

Volkova 1974). Our findings reveal a strong correlation in controls between Trimeric anti-spike 

IgG levels and neutralization, which aligns with a similar study of this antibody type in healthy 

individuals after BNT162b2 vaccine (Matusali et al. 2022). The sarcoidosis group, however, had a 

weak correlation between IgG levels and neutralization which was otherwise not explained by 

group differences. Neutralization in this group is therefore likely explained by the presence of 

non-IgG antibodies or antibodies to other spike protein subdomains not measured in our study, 

though further analyses are needed to assess this.  

Sarcoidosis is a T cell mediated disease characterized by local CD4+ T lymphocyte inflammation 

and peripheral lymphocyte depletion in severe or active disease, as well as anergy and exhaustion 

in progressive disease (Sweiss et al. 2010; Hawkins et al. 2017; Grunewald et al. 2019; Vagts et 

al. 2021). Defects within humoral immunity have also been described and include evidence of B 

cell hyperactivation, autoantibody production, decreased circulating memory B cells, as well as 

previously mentioned impaired serologic responses to Tetanus and Hepatitis vaccines (Seyhan et 

al. 2012; Mert et al. 2000; Hunninghake et al. 1999; Hashemzadeh et al. 2021; Kudryavtsev et al. 

2020; Musaelyan et al. 2018; Saussine et al. 2012). Despite these defects, vaccine induced 
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development and persistence of neutralization antibodies in sarcoidosis subjects is a particularly 

important and reassuring finding. However it is worth noting the median peripheral absolute 

lymphocyte count (1.8 x 109 cells/liter) in our cohort is greater than previously described 

thresholds of significant sarcoidosis-related lymphopenia (Vagts et al. 2021). This suggests 

lymphopenia is unlikely to be a significant disease manifestation in this cohort and therefore may 

explain the preserved nAb activity. Treatment was also uptitrated in four sarcoidosis individuals; 

despite this, neutralization was seemingly unaffected. 

Limitations of this study include heterogeneity within the sarcoidosis group, limited sample 

size, and attrition rate at 6 months. Data regarding lymphocyte subsets in the sarcoidosis group 

were largely unavailable and may have allowed further interpretation of the immunity stimulated 

by vaccination if obtained concurrently. Only IgG antibody was quantified, and despite strong 

correlation to nAb among control subjects, further assessment of preserved immunity in 

sarcoidosis was limited. Future studies in the field should focus on inclusion of specific sarcoidosis 

phenotypes as well as direct assessment of cellular and humoral activity. In addition, only one 

mRNA COVID-19 vaccine was studied, thus conclusions should be cautiously applied to other 

COVID-19 vaccines.  

Despite these limitations, we conclude that Trimer IgG levels in sarcoidosis subjects are poor 

predictors of nAb, which are an important mechanism in preventing infection  While further 

analysis is needed to determine clinical outcomes from vaccination in this vulnerable population, 

particularly among those on immunosuppression, knowledge gained from our study suggests 

that vaccination may provide at least partial protection from COVID-19 infection in sarcoidosis. 

Additional studies of immune response stimulated by the BNT162b2 vaccine, which induces 
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robust cellular and humoral immunity (Fotin-Mleczek et al. 2011), may offer mechanistic insights 

into the pathogenesis of sarcoidosis.  
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4. Altered transcriptomic immune responses of maintenance 
hemodialysis patients to the Covid-19 mRNA vaccine 
Modified from publication: Chang YS, Huang K, Lee JM, Vagts CL, Ascoli C, Huang Y, Cherian 
RA, Sarup N, Warpecha SR, Edafetanure-Ibeh R, Amin MR, Ghassemi M, Novak R, Lora CM, 
Perkins DL, Finn PW. Altered transcriptomic immune response of maintenance hemodialysis 
patients to the Covid-19 mRNA vaccine. medRxiv. Preprint. 2023 Jan 19. 
 

4.1. Introduction  

The rapid development and dissemination of coronavirus disease 2019 (COVID-19) 

vaccines in response to the COVID-19 pandemic has necessitated the characterization of immune 

protection conferred by these vaccines across various populations. The COVID-19 mRNA-based 

vaccines, BNT162b2 and mRNA-1273, have proven to be efficacious, with initial reports showing 

95% and 94.1% reduction of COVID-19 disease in recipients (Baden et al. 2021; Polack et al. 2020). 

However, certain immunosuppressed populations remain at risk of infection. Given the 

widespread transmission of COVID-19, detailed assessments of degree, duration, and 

determinants of immune protection conferred by these vaccines are vitally needed in 

immunocompromised patient populations including those with end-stage renal disease.  

End-stage renal disease (ESRD) is the most advanced stage of chronic kidney disease 

(CKD), with prevalence in the U.S. reaching 809,000 in 2019 (Johansen et al. 2022) . The most 

used form of renal replacement therapy for ESRD patients in the U.S. is hemodialysis (HD). 

Despite significant improvements in hemodialysis technology, the mortality rate in ESRD patients 

is still as high as 20% annually (Williams et al. 2004), with infections being the most common 

cause of hospitalization and mortality after cardiovascular disease (Kato et al. 2008). The 

immunocompromised state of ESRD is characterized by simultaneous immunodepression due to 

the impact of uremic milieu on immunocompetent cells and immunoactivation due to the 



50 
 

accumulation of proinflammatory cytokines (Kato et al. 2008). There are alterations to both 

innate and adaptive immunity, including elevated levels of mannose-binding lectin (Satomura et 

al. 2002), impaired maturation of monocytes and dendritic cells (Lim et al. 2007; Satomura et al. 

2002), increased B cell apoptosis (Fernández-Fresnedo et al. 2000), and decreased T-cell 

proliferation with elevated Th1/Th2 ratio (Stenvinkel et al. 2005). This immune compromise leads 

to higher susceptibility to infection and lower response to vaccination (Ghadiani et al. 2012). For 

example, while more than 90% of patients without CKD develop protective antibodies against 

HBV after vaccination, only 50-60% of patients with ESRD seroconvert. There have also been 

higher vaccination failure rates demonstrated against influenza virus, Clostridium tetani, and 

Corynebacterium diphtheriae in ESRD (Eleftheriadis et al. 2007). 

Studies of genome-wide expression (i.e. transcriptome) profiles of peripheral blood 

mononuclear cells in ESRD demonstrate a complex picture of immune alterations. One study 

found upregulation of genes involved in the complement and oxidative metabolism pathways, 

and downregulation of genes associated with the clathrin-coated vesicle endosomal pathway and 

T-cell receptor signaling (Scherer et al. 2013). Two other studies have demonstrated impaired 

expression of genes involved in oxidative phosphorylation and mitochondrial function (Granata 

et al. 2009; Liu, Fiskum, and Schubert 2002). A study identifying a group of inflammatory genes 

playing a causative role in oxidative stress in dialysis patients showed unique gene expression 

alterations in maintenance HD patients compared to un-dialyzed CKD patients and compared to 

patients undergoing peritoneal dialysis (Zaza et al. 2008). These studies indicate a range of 

immune pathways that may impair vaccination response, and further suggest that dialysis leads 

to unique immune profile alterations.  
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While recent studies of the SARS-CoV-2 BTN162b2 vaccine in HD demonstrate high levels 

of seroconversion ranging from 84-96% (Anand et al. 2021; Attias et al. 2021; Grupper et al. 2021; 

Jahn et al. 2021), they also demonstrate quantitatively reduced SARS-CoV-2 IgG antibodies. We 

posit that characterization of the transcriptomic underpinnings of antibody titer development on 

a continuous scale may identify biomarkers for weaker or less durable immune protection in this 

population. Furthermore, transcriptomic analyses may identify targets for the development of 

new, effective vaccines against other infectious diseases for this population. Thus, we 

characterized the immune response of the HD population to the COVID-19 mRNA-based 

BNT162b2 vaccine using RNA sequencing, antibody ELISA and neutralization titers across multiple 

time points. We additionally identified transcriptomic and clinical determinants of the humoral 

immune response in HD patients.  

4.2. Methods 

4.2.1. Study population and sample acquisition 

The study was approved by the University of Illinois at Chicago IRB (#2018-1038) Ethics 

Review Committee. Maintenance HD patients undergoing vaccination with the BNT162b2 mRNA 

COVID-19 vaccine in February 2021 were recruited from the outpatient HD unit at the University 

of Illinois Hospital (UIH) in Chicago, IL. Control subjects consisted of UIH employees undergoing 

BNT162b2 mRNA COVID-19 vaccination at UIH from December 2020 to January 2021 with no 

self-reported history of kidney disease or immune disorders. A subset of control subjects 

matched for age, gender, and COVID-19 history was also analyzed for this study.  Blood was 

collected at 0 – 48 hours prior to and at multiple time points after both the first (V1) and second 
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vaccination doses (V2), which were administered three weeks apart. Control samples were 

collected prior to each vaccination dose (D0) and at one day (D1) and seven days (D7) after each 

dose, corresponding to six time points: V1D0, V1D1, V1D7, V2D0, V2D1, V2D7. Blood was 

collected from HD subjects prior to each vaccination dose and at two days (D2) and seven days 

after each dose, corresponding to six time points: V1D0, V1D2, V1D7, V2D0, V2D2, V2D7. A final 

blood sample was drawn six months after initial vaccination (M6) for measurement of antibody 

titers, prior to additional vaccination doses. Serum and peripheral blood mononuclear cells 

(PBMCs) were extracted within two hours of blood collection, then stored at -80°C. PBMCs were 

extracted using density gradient centrifugation at 400g with Ficoll-Paque PLUS. The extracted 

buffy coat was stored in RNAlater (Invitrogen).  

4.2.2. Clinical and Demographic Characterization 

Demographic and clinical data was collected from the electronic health record (EHR) for 

HD subjects, including medical diagnoses, medications, and laboratory values. Laboratory values 

included monthly SARS-CoV-2 test results, as well as urea reduction ratio (URR, a measure of 

dialysis adequacy), hemoglobin (Hgb), ferritin, transferrin saturation, albumin levels, white blood 

cell (WBC) count and WBC differential counts obtained during standard of care monthly blood 

draws for the three months preceding vaccination. Within our analyses, ferritin was coded as 

either low risk (200ng/ml – 1200 ng/ml) or high risk (<200 ng/ml or >1200 ng/ml), since ferritin 

levels 200ng/ml – 1200 ng/ml have been shown to be associated with lowest all-cause mortality 

in HD patients (Kalantar-Zadeh et al., 2005). Baseline clinical lab values were calculated as the 

median of three lab values across the three months prior to vaccination. Demographic and clinical 

data was collected from a medical questionnaire at time of consent for control subjects, and 

https://www.degreesymbol.net/
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included medical history, medications, and self-reported prior SARS-CoV-2 positive test results.  

4.2.3. RNA extraction and RNA Sequencing (RNAseq) 

RNA sequencing was performed on PBMCs at all V1 and V2 time points for all subjects for 

whom RNA libraries were successfully built at > 5 time points. PBMCs stored in RNAlater were 

thawed and diluted 1:1 with 1X phosphate buffered saline. The mixture was then pelleted and 

RNA was extracted using the PureLink RNA Mini kit (Invitrogen). DNase treatment to remove 

genomic DNA contamination was performed using either the PureLink DNase kit or DNA-free kit 

DNA Removal Kit (Invitrogen).  Purified RNA in sterile water was stored at -80°C. Each RNA sample 

was quantified using the Qubit RNA High Sensitivity kit (Invitrogen) and Bioanalyzer RNA Pico kit 

(Agilent) with RIN>=8.  

For library construction, 50ng of RNA from each sample was aliquoted in 96 well plates. 

Libraries were generated using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina 

with the optional NEBNext Poly(A) mRNA Magnetic Isolation Module (New England BioLabs). 

Each individual sample library was barcoded during PCR amplification using unique dual indexed 

i5 and i7 primers from the NEBNext Multiplex Oligos for Illumina kit. Each sample library was 

quantified using the Qubit DNA High Sensitivity kit and Bioanalyzer DNA High Sensitivity kit. 

Samples were then pooled and sequenced using the MiSeq Nano V2 kit (Illumina) to check read 

proportions between samples. Samples with lower-than-expected percentage of reads detected 

were supplemented with an additional spike-in of sample library to the main pool. The 

supplemented pooled library was sequenced again using the MiSeq Nano V2 kit to verify 

adequate adjustment. The finalized library was sequenced using a NovaSeq S2 flow cell 

configured for 75bp paired end output.   

https://www.degreesymbol.net/
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4.2.4. Differential Gene Expression Analysis 

Raw demultiplexed reads were filtered using fastp to remove adapters and short reads 

(Chen et al. 2018). Trimmed reads were then quantified using the Salmon pipeline with an hg38 

reference transcriptome index (Patro et al. 2017).  Quantified data was imported into R using the 

tximeta package (Love et al. 2020) to convert Salmon quantification and index data to a count 

matrix. Transcript names were extracted and matched using Entrez IDs with the AnnotationHub 

package (Love et al. 2020). This finalized count matrix was then imported into a DESeqDataset 

object and normalized using the variance stabilizing transformation in DESeq2.  

The DESeq2 R package was used to identify genes that were differentially expressed at 

each time point after vaccination for each subject group. Specifically, we implemented a design 

incorporating group-specific condition effects with individual subjects nested within groups. We 

performed the classical Deseq2 workflow of estimation of size factors, estimation of dispersion, 

and negative binomial GLM fitting for βi and Wald statistics, increasing the maximum number of 

iterations for estimation of the negative binomial distribution to 500. We then generated 

contrasts to obtain differentially expressed genes for controls at V1D1 and V1D7 (compared to 

V1D0), and at V2D1 and V2D7 (compared to V2D0). Differentially expressed genes for HD were 

similarly obtained at V1D2 and V1D7 (compared to V1D0), and at V2D2 and V2D7 (compared to 

V2D0). We also directly compared gene expression between controls and HD at V1D7 and at 

V2D7. The significance threshold to determine differential expression was FDR-adjusted (p < 

0.05). 

4.2.5. Anti-Spike (trimer) IgG Titer Quantification 

The Human SARS-CoV-2 Spike (Trimer) IgG ELISA Kit from Invitrogen was used to 
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quantitate IgG to the SARS-CoV-2 spike protein in serum samples at V1D0, V2D7, and M6 time 

points. All samples were initially diluted 1:100 (in addition to the 1:10 assay buffer dilution on 

the 96-well plate) and assayed in duplicate, with two-fold serial dilution of the 150,000 units/mL 

standard control in duplicate for relative quantification. Absorbance at 450 nm was quantified 

using a Spark® multimode microplate reader. Samples that produced signals greater than the 

upper limit of the standard curve were diluted 1:2000 and assayed again. IgG concentration was 

calculated by fitting four-parameter logistic curves to the standard controls and taking the 

average concentrations of duplicates. 

4.2.6. Antibody Neutralization Assays 

Neutralization assays were performed on serum samples from V1D0 and V2D7 using 

SARS-CoV-2 pseudotyped virus (pseudovirus). To produce pseudoviruses, an expression plasmid 

bearing codon-optimized SARS-CoV-2 full length S plasmid was co-transfected into HEK293T cells 

using the SARS-CoV-2 Spike-pseudotyped lentiviral particle Kit (BEI # R-52948). The cell 

supernatants were collected 72h after transfection, divided into aliquots and cryopreserved at 

−80 °C. 

To titrate the pseudovirus, 5x103 293T-ACE2 cells were seeded per well in a 96-well plate 

in DMEM containing 10% FBS and 1% penicillin streptomycin. Twenty-four hours later, the 

pseudovirus was diluted 1:10, followed by five-fold serial dilutions for a total of nine dilutions, 

with each dilution performed in six replicate wells. After incubation at 37 °C and 5% (vol/vol) CO2 

for 72h, the luciferase substrate was added to the 96-well plate for chemiluminescence 

detection. The 50% tissue culture infectious dose (TCID50) of the pseudovirus was calculated 

according to the Reed-Muench method in the titration macro template (MATUMOTO 1949). 
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Neutralization activity against SARS-2-CoV was measured in a single-round-of-infection 

assay with pseudoviruses as previously described (Nie et al. 2020). 5x103 293T-ACE2 cells were 

seeded per well in a 96-well plate. Twenty-four hours later, serial dilutions of the serum samples 

were performed, incubated for one hour at 37 °C with ~1000 TCID50/ml of pseudovirus, then 

added to monolayers of ACE2-overexpressing 293T cells in quadruplicate. The cell control with 

cells alone and the virus control (VC) with pseudovirus were set up in each plate. The target cells 

were incubated for 65h-72h at 37 °C and 5% (vol/vol) CO2. Fifty µL of Bright-Glo, reconstituted 

following manufacturer’s instructions, was added to each well of the 96-well plate and incubated 

for five minutes at room temperature. The 96-well plate was read by a 96-well luminescence 

plate reader (Tecan Genius Pro plate reader) (Ferrara and Temperton 2018). Percent 

neutralization was calculated as 100*([Virus-only control] – [Virus plus serum])/[Virus-only 

control], and neutralizing titer levels are reported as the serum dilution required to achieve 50% 

neutralization (50% inhibitory dilution [ID50]) (Pegu et al. 2021). The input dilution of serum was 

1:20, thus 20 is the lower limit of quantification. 

4.2.7. BTM module enrichment analysis 

Gene set enrichment analysis was performed for each contrast generated in the DESeq2 

analysis above using blood transcription module (BTMs) gene sets (S. Li et al. 2014). BTMs with 

FDR-adjusted p < 0.05 were considered significantly enriched. Enriched BTMs were further 

characterized using the distribution of Wald statistics of membership genes from DESeq2. To 

summarize BTM analyses, BTMs were categorized into different families: B cells, cell cycle, 

dendritic cell/antigen presentation, type I interferon (IFN type I), myeloid activity/inflammation/ 

T/NK cells, and “others” (Braun et al. 2018). The percentage of BTMs in each BTM family with 
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significant enrichment at each time point was then quantified over time. 

4.2.8. Statistical analysis of antibody response  

To determine the effect of vaccination on anti-spike IgG titers at V2D7 and M6, Kruskal-

Wallis tests were performed separately for HD subjects and controls. For each group, anti-spike 

IgG titer levels were compared to assess for the significant effect of time (V1D0, V2D7, M6), and 

Wilcoxon rank sum tests were performed with FDR correction to assess significant differences 

between each pair of time points (V2D7 vs. V1D0, M6 vs. V1D0, M6 vs. V2D7). To determine the 

effect of vaccination on antibody neutralization activity (ID50) at V2D7, Wilcoxon rank sum tests 

were performed for each group to compare V2D7 vs. V1D0. 

Linear models were constructed to establish the effect of prior SARS-CoV-2 infection and 

subject group on anti-spike IgG titer development at V2D7 and M6 and neutralization activity at 

V2D7. Specifically, log-transformed V2D7 anti-spike IgG titers or V2D7 neutralization activity 

(ID50) were modeled as the dependent variable, with subject group (HD or controls), log-

transformed V1D0 anti-spike IgG titers or V1D0 neutralization activity (ID50), gender, age, race, 

and ethnicity as independent predictors. To determine predictors of anti-spike IgG at six months, 

a linear model was constructed with the log-transformed M6 anti-spike IgG titers as the 

dependent variable, and V2D7 anti-spike IgG titers, SARS-CoV-2 history, gender, age, race, and 

ethnicity as independent predictors.  

4.2.9. Identification of BTM and clinical predictors of Ab response in HD 

BTM predictors of antibody response in HD were identified by first calculating a 

representative expression level of each BTM per sample, which we will refer to as the eigengene. 
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Specifically, the first principal component of each BTM was calculated using DESeq2-derived 

variance-stabilized gene counts from each module’s member genes across the HD V1 time points, 

and then across the HD V2 time points. Signs (positive or negative) were assigned to the 

eigengenes such that samples with higher expression of member genes in a BTM would be given 

a positive sign, while those with lower overall gene expression would be given a negative sign. 

This was accomplished for each BTM by (1) computing the median gene expression level across 

membership genes in a given BTM for each sample, (2) computing the Pearson correlation 

between the eigengene of the BTM and the median gene expression level across all samples, and 

(3) multiplying the eigengene of the BTM by -1 if the correlation was negative.  

Subsequently, we constructed linear models with log-transformed anti-spike IgG at V2D7 

as the dependent variable and change in BTM eigengene expression after vaccination as the 

independent variable, controlling for SARS-CoV-2 history. Separate models were constructed for 

each BTM that was enriched at each time point after vaccination in HD (V1D2 vs V1D0, V1D7 vs 

V1D0, V2D2 vs V2D0, V2D0 V2D7). Change in BTM expression was calculated as the BTM 

eigengene after vaccination minus the BTM eigengene before vaccination. P-values were FDR-

adjusted across number of enriched BTMs per time point.  

Additionally, baseline clinical laboratory values predictive of antibody response in the HD 

subjects were identified. Linear models were separately constructed using URR, ferritin (high risk 

vs low risk), transferrin saturation, hemoglobin, and WBC count to predict log-transformed anti-

spike IgG at V2D7 and M6. 

Finally, clinical laboratory values responding to vaccination that predicted antibody titer 

response in the HD subjects were identified. Linear models were separately constructed using 
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log-fold change (LFC) from baseline measurements of ferritin (continuous instead of binarized 

low- and high-risk), transferrin saturation, and WBC count to predict log-transformed anti-spike 

IgG titers at V2D7 and M6. 

4.3. Results 

4.3.1. Demographic and Clinical Characterization  

Demographic and clinical data of the 20 maintenance hemodialysis (HD) and controls (HC) 

are summarized in Table 4. The racial distribution differed between cohorts with more 

Black/African American subjects in the HD cohort. The cohorts were otherwise demographically 

similar. The subjects within the HD cohort had significantly more comorbidities, most notable of 

which include type 2 diabetes mellitus (T2DM), hypertension (HTN), dyslipidemia, and other 

cardiovascular conditions. The most common causes of renal failure were T2DM and HTN, with 

a minority of cases attributed to anatomic defects (reflux uropathy) and autoimmune conditions 

(systemic lupus erythematous and idiopathic thrombocytopenic purpura).  

Table 4. Demographic and clinical data for maintenance hemodialysis and control subjects. 
 Hemodialysis Control P-val 
Total # of subjects 20 20  
Gender    

Male 11 10 1.0 
Female 9 10 1.0 

Age (mean (sd)) 54 (12) 54 (13) 0.98 
Race/Ethnicity    

Black/African American 10 3 0.041 
Asian/Pacific Islander 1 2 1.0 
White/Caucasian 2 8 0.067 
Hispanic/Latinx 7 6 1.0 
Other 0 1 1.0 

BMI, kg/m2 (mean (sd))            27.8 (5.1) 28.7 (6.4) 0.61 
Medical Hx    

Diabetes 11 1 0.0012  



60 
 

Hypertension 18 4 < 0.001 
Other CV disease* 9 0 0.0012 
Dyslipidemia 10 0 < 0.001 
Autoimmune disease** 3 0 0.23 
Immunosuppression*** 1 0 1.0 
Active Malignancy**** 1 0 1.0 

Positive COVID-19 Hx 8 5 0.5 
 
* includes coronary artery disease (CAD), congestive heart failure (CHF), atrial fibrillation (AF), 
peripheral vascular disease (PVD), and cerebral vascular accent (CVA) 
** includes systemic lupus erythematosus (SLE), immune thrombocytopenic purpura (ITP), 
microscopic polyangiitis (MPA) 
*** hydroxychloroquine 
**** defined as malignancy requiring treatment in the last six months; one patient with papillary 
thyroid cancer requiring thyroidectomy, no systemic treatment required 
 

There were eight HD subjects who previously tested positive for SARS-CoV-2, with positive 

test dates ranging from 7 months to four weeks preceding vaccination. Five control subjects self-

reported a prior positive SARS-CoV-2 test, with positive test dates ranging from 8 months to four 

weeks preceding vaccination. Detailed clinical characterization of HD subjects is summarized in 

Table 5. Notable laboratory data includes an elevated ferritin from normal (with high population 

variance), and anemia.  

All subjects received two BTN162b2 vaccination doses with the second dose (V2) administered 

three weeks after the first (V1).  Anti-spike IgG binding and neutralizing assay data were obtained 

for all subjects prior to V1 (V1D0) and seven days after V2 (V2D7). RNA sequencing data was 

obtained for all control subjects prior to each vaccination dose (D0), and at one day (D1) and 

seven days (D7) after each dose, corresponding to six time points: V1D0, V1D1, V1D7, V2D0, 

V2D1, V2D7. One control subject is missing V2D0 data, and one is missing V2D1 data. RNA 

sequencing data was obtained for 12 HD subjects prior to each vaccination dose, and at two days 

(D2) and seven days after each dose, corresponding to six time points: V1D0, V1D2, V1D7, V2D0, 
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V2D2, V2D7. Two HD subjects are missing V2D2 data. Sequencing data was not obtained for 

subjects with fewer than five time points of successfully constructed RNA libraries, due to time 

points without sample collection or failure to extract high quality mRNA from PBMCs. Six-month 

follow-up (M6) anti-Spike IgG binding titers were obtained for 15 HC subjects and 19 HD subjects. 

One HD subject tested positive for SARS-CoV-2 14 days after the second vaccination dose, 

demonstrating mild symptoms. None of the other subjects reported SARS-CoV-2 infection up to 

6 months follow up after the second vaccination.  

Table 5. Baseline clinical lab values for maintenance hemodialysis patients. 
 Normal 

range 
Mean (SD) 

Kidney/HD status   
Urea Reduction Ratio 
(URR) 

- 0.74 (0.052) 

Months on HD - 46 (44) 
Iron   
Ferritin (ng/ml) 10 - 259 838 (550) * 
% Transferrin saturation 25 - 50 38 (13) 
Albumin 3.4 – 5 4.1 (0.40) 
CBC   
WBCs (k/ul) 3.9 - 12 6.0 (2.1) 
Hgb (g/dl) 13.2 – 18 10.5 (1.5) * 
Lymphocytes (k/ul) 1.3 - 4.2 1.5 (0.7) 
Neutrophils (k/ul) 1.3 - 7.5 3.7 (1.5) 
Monocytes (k/ul) 0.4 - 1 0.5 (0.2) 
Eosinophils (k/ul) 0.2 - 0.5 0.2 (0.2) 

* indicates value outside of normal range 
 

4.3.2. Differential Gene Expression Analysis 

To characterize the molecular basis of immune responses to vaccination in HC and HD, 

we performed differential gene expression analyses of the PBMC RNA sequencing data. There 

are substantially more differentially expressed genes (DEGs) in response to V2 compared to V1, 

and at D1 and D2 post-vaccination compared to D7 (Figure 14). For HC, the largest number of 
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DEGs is found at V2D1, indicating the most transcriptional activity immediately after the 2nd 

vaccine dose, followed by V2D7, V1D1, and V1D7. HD follows a similar pattern, with the largest 

number of DEGs found at V2D2, followed by V2D7, V1D2, and V1D7. Notably, HD subjects with 

no SARS-CoV-2 history (n = 6) have substantially lower numbers of DEGs than HD subjects with 

positive SARS-CoV-2 history (n = 6) at each time point, and particularly at V2 time points. 

 

Figure 14. Differentially expressed genes (DEGs) increased after second vaccination dose 
compared to first, and at Day 1 and 2 (D1/D2) compared to Day 7 (D7) for both controls (HC) 
and maintenance hemodialysis (HD).  
Number of DEGs at each time point is displayed on a log scale, with DEGs for HC shown for D1 
and D7 compared to pre-vaccination time point (D0), and DEGs for HD shown for D2 and D7 
compared to D0. DEGs are shown independently of SARS-CoV-2 history (Top), for analysis of only 
subjects with no prior SARS-CoV-2 history (Middle), and for analysis of only subjects with prior 
SARS-CoV-2 history (Bottom). The DESeq2 R package was used to identify genes that were 
differentially expressed at each time point after vaccination for each subject group (p < 0.05, FDR-
adjusted). 
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Direct comparison of gene expression between HC and HD with no prior reported SARS-

CoV-2 infection at V1D7 yielded five DEGs in HD versus HC including increased expression of 

chemokine CCL19 in HD (p < 0.05, FDR-corrected). Comparison of these same groups at V2D7 

yielded 18 DEGs including increased expression in HD of TIA1, which encodes a granule-

associated protein expressed in cytolytic lymphocytes (Anderson et al. 1990) and natural killer 

cells, and BH3, a pro-apoptotic Bcl-2 family member and mediator of lymphocyte apoptosis (Labi 

et al. 2008).  

4.3.3. Blood Transcription Module (BTM) Enrichment  

BTM enrichment analysis of subjects without SARS-CoV-2 history reveals the vaccine-

induced progression of various immune processes at each time point after vaccination (Figure 2). 

Following V1, HC demonstrate early (V1D1) enrichment of 29 BTMs, with substantial 

upregulation of monocyte and antiviral IFN activity. The immune response transitions to V1D7 

enrichment of four BTMs including significant T cell activation and downregulation of monocytes. 

Following V2, HC demonstrate early (V2D1) enrichment of 82 BTMs, with substantial 

upregulation of innate antiviral activity, similarly to V1D1. The immune response transitions to 

V2D7 enrichment of ten BTMs, with significant upregulation of plasma cells and 

immunoglobulins. 

In contrast, HD demonstrate early (V1D2) enrichment of 12 BTMs after the first 

vaccination dose, most significantly involving upregulation of innate antiviral responses (Figure 

15). The immune response transitions to V1D7 enrichment of 17 BTMs, with substantial 

upregulation of myeloid modules. The V1D7 positive enrichment of monocyte/myeloid modules 
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in HD contrast the negative enrichment of these modules in HC (Figure 15, Figure 16). Following 

the second vaccination dose, HD demonstrate early (V2D2) enrichment of 27 BTMs most 

significantly involving upregulation of dendritic cell activity and proinflammatory cytokines and 

chemokines. The immune response progresses to V2D7 enrichment of one BTM: PLK signaling 

events.  

 

 
Figure 15. Controls (HC) and maintenance hemodialysis subjects (HD) with no SARS-CoV-2 
history demonstrate differing longitudinal enrichments of blood transcription modules (BTMs).  
(A) The most significantly enriched BTMs are shown (up to six) for Day 1 (D1) and Day 7 (D7) after 
each vaccination dose (V1, V2) in HC with no prior infection with SARS-CoV-2 (p < 0.05, FDR-
adjusted). Density plots for each BTM represent Wald statistics from DESeq2 analysis for each 
membership gene, thereby representing increased or decreased expression per gene at each 
time point compared to baseline (V1D0 or V2D0). (B) Similarly to (A), the most significantly 
enriched BTMs for Day 2 (D2) and Day 7 (D7) in HD are shown. 
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Figure 16. Hemodialysis patients (HD) without prior SARS-CoV-2 infection show increased 
myeloid activity at V1D7 and decreased metabolic activity at V2D7 compared to controls (HC).  
The most differentially enriched blood transcription modules (BTMs) between HC and HD with 
no prior infection with SARS-CoV-2 are shown (p < 0.05, FDR-adjusted) at V1D7 and at one week 
after second vaccination dose (V2D7). Density plots for each BTM represent Wald statistics from 
DESeq2 analysis for each membership gene per BTM, with positive Wald statistics indicating 
increased expression in HC compared to HD. 

While there were no significant BTM enrichments in HC with positive SARS-CoV-2 Hx, 

most likely due to the insufficient number of subjects, BTM enrichments for HD with positive 

SARS-CoV-2 demonstrated notable upregulation of plasma cell activity at V1D7. This contrasts 

with V1D7 for HD with negative SARS-CoV-2, which show primary enrichment of myeloid BTMs 

(Figure 15). The remainder of these enrichments are shown in Figure 17.  
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Figure 17. Hemodialysis patients (HD) with prior SARS-CoV-2 infection show increased 
expression of innate and adaptive immune blood transcription modules (BTMs) post-
vaccination.  
The most significantly enriched BTMs are shown (up to six) for Day 2 (D2) and Day 7 (D7) after 
each vaccination dose (V1, V2) in HD with prior infection with SARS-CoV-2 (p < 0.05, FDR-
adjusted). Density plots for each BTM represent Wald statistics from DESeq2 analysis for each 
membership gene, thereby representing increased or decreased expression per gene at each 
time point compared to baseline (V1D0 or V2D0). 

Summary enrichments using BTM families show many positive early V1 enrichments of 

Type 1 IFN activity that dissipate by V1D7 in both HC and HD (Figure 18). However, HC show early 

positive and negative enrichments of myeloid/inflammatory family activity that dissipate by 

V1D7, while HD show many early positive enrichments of myeloid/inflammatory family activity 

that persist and increase at V1D7. Following V2, HC show early predominance of dendritic cell 
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(DC)/antigen presenting cell (APC), IFN Type I, and myeloid/inflammatory family activity 

transitioning to B cell and cell cycle activity at V2D7, while HD show predominant early IFN type 

I family activity transitioning to just one detectable cell cycle module enrichment. 

 

 

Figure 18. Controls (HC) and maintenance hemodialysis subjects (HD) demonstrate differing 
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time courses of blood transcription module (BTM) enrichment after each vaccination dose.  
Percentage of BTMs in each BTM family with significant enrichment at each time point after each 
vaccination dose (V1, V2) for Day 1 (D1) and Day 7 (D7) in HC, and Day 2 (D2) and D7 for HD in 
subjects with no prior infection with SARS-CoV-2 (p < 0.05, FDR-adjusted). Direction of 
enrichment was determined using the median Wald statistic from DESeq2 analysis for each BTM 
membership gene, thereby representing overall increased or decreased expression of 
membership genes at each time point compared to baseline (V1D0 or V2D0). 

4.3.4. Antibody Binding and Neutralization Assay Response 

We next aimed to assess immune protection conferred by the vaccine through 

quantification of anti- spike IgG antibodies and functional assessment of neutralizing antibodies. 

All subjects demonstrated an increase in anti-spike IgG at V2D7, with titers for all subjects except 

one still elevated above baseline at six months. The exception was one HD subject with prior 

SARS-CoV-2 infection who demonstrated the highest baseline titers of all subjects prior to 

vaccination. Both HC and HD subjects demonstrated a statistically significant increase in anti-

spike IgG and neutralization activity (ID50) from V1D0 to V2D7 (p < 0.001), followed by an 

expected decrease at M6 from V2D7 levels (p < 0.001) (Figure 19). Despite this decrease, M6 

titers were still increased compared to baseline (p< 0.001).  

 

 



69 
 

 
Figure 19. Antibodies significantly increased in controls and maintenance hemodialysis (HD) 
one week after the second vaccination dose (p < 0.001) and six months after initial vaccination 
(p < 0.001) with the BNT162b2 mRNA COVID-19 vaccine.  
(A) Anti-spike IgG levels in controls and HD subjects with and without prior SARS-CoV-2 history 
before vaccination (V1D0), one week after second vaccination dose (V2D7), and six months after 
initial vaccination (M6). (B) Antibody neutralization activity (ID50) in controls and HD subjects 
with and without prior SARS-CoV-2 history at V1D0 and V2D7. 
 

Higher anti-spike IgG at V2D7 was significantly predicted by higher pre-vaccination anti-

spike IgG, control group assignment, and younger age (p <0.01, p<0.05, p<0.05, respectively), 

while gender, race, and ethnicity were not. Higher anti-spike IgG at M6 was significantly predicted 

by higher V2D7 anti-spike IgG (p < 0.001), with no additional predictive value conferred by SARS-

CoV-2 history, subject group, age, gender, race, or ethnicity. Higher neutralization activity (ID50) 

at V2D7 was significantly predicted by higher pre-vaccination ID50, with no additional predictive 

value conferred by subject group, age, gender, race, and ethnicity. 

https://uic365-my.sharepoint.com/personal/ychan32_uic_edu/Documents/FinnPerkins/CovVax/HD%20analysis/HDmanuscript2/CovVax_HDManuscriptPlusRNASeq_220627.docx#_msocom_1
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4.3.5. Transcriptomic and clinical predictors of antibody binding response in HD 

Linear models to predict anti-Spike IgG at V2D7 and at M6 in HD using enriched BTMs, 

controlling for SARS-CoV-2 history, identified BTM predictors at all time points except for V1D2. 

Of the 18 enriched BTMs at V1D7, increased expression (from V1D0) of “LI.M156.1 plasma cells, 

immunoglobulins” was predictive of higher anti-spike IgG at V2D7 (p < 0.05, FDR-corrected), 

controlling for SARS-CoV-2 history. Of the 30 enriched BTMs at V2D2, increased expression of 18 

BTMs was predictive of higher anti-Spike IgG at V2D7 (p < 0.05, FDR-corrected). These include 

innate immune, antigen presentation, and T cell pathways (Figure 20). Increased expression of 

“LI.M4.2 PLK1 signaling events” at V2D7 compared to V2D0, which was the only enriched module 

at this time point for HD subjects with no SARS-CoV-2 history, was predictive of higher anti-spike 

IgG at both V2D7 and M6 (p < 0.05). 
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Figure 20. Increased expression of multiple Blood Transcription Modules (BTMs) at V2D2 is 
predictive of higher anti-spike IgG at V2D7.  
Of 30 enriched BTMs at V2D2, increased expression of 18 BTMs is predictive of increased anti-
spike IgG at V2D7 (p< 0.05, FDR-corrected), controlling for SARS-CoV-2 history. Predictive 
pathways include innate immune, antigen presentation, and T cell pathways. Three examples are 
shown.  
 

Linear models to predict anti-Spike IgG at V2D7 and at M6 In HD using clinical predictors 

yielded significant baseline and post-vaccination predictors. Baseline ferritin levels in the 

intermediate range (200 – 2000 ng/ml) were associated with higher anti-spike IgG at V2D7 and 

M6 (p < 0.01, p < 0.05), controlling for history of SARS-CoV-2. URR, WBC counts, transferrin 

saturation, and hemoglobin were not significant predictors of antibody development. Figure 21A 
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shows anti-spike IgG at V2D7 as a function of baseline ferritin levels, identifying the intermediate 

range of ferritin which has previously been associated with lowest all-cause mortality (Kalantar-

Zadeh et al., 2005) 

The LFC of WBCs from baseline after the first vaccination dose was significantly predictive 

of antibody titer levels at both V2D7 (p <0.01) and M6 (p < 0.05), controlling for SARS-CoV-2 

history and number of days after vaccination that labs were collected (Figure 21B). The predictive 

value of LFC of WBCs is predominantly driven by increased lymphocyte counts; LFC of absolute 

lymphocyte counts was predictive of V2D7 (p < 0.01) and M6 (trend-level, p = 0.056) antibody 

titers, controlling for initial antibody titers and date of clinical labs. 

 

Figure 21. Baseline ferritin level and post-V1 white blood cell count (WBC) are clinical 
predictors of post-V2 antibody responses in maintenance hemodialysis patients (HD). 
(A) Ferritin levels associated with lowest all-cause mortality predict the development of higher 
anti-spike IgG after vaccination at V2D7 (p < 0.01) and M6 (not shown, p < 0.05) in maintenance 
HD patients. Dashed vertical lines indicate the intermediate range of ferritin (200-1200 ng/ml) 
associated with lowest all-cause mortality (Kalantar-Zadeh et al., 2005). (B) Increased WBC after 
first vaccination dose is predictive of anti-spike IgG titers after vaccination at V2D7 (p < 0.01) and 
M6 (not shown, p < 0.05) in maintenance HD patients. Points with negative log-fold change of 
white blood cell counts (LFC(WBC)) and positive LFC(WBC) represent a decrease and increase, 
respectively, in WBC from baseline labs. 
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4.4. Discussion 

Our results demonstrate differing expression of BTMs and differing time courses of 

immune responses to the BTN162b2 mRNA COVID-19 vaccination in maintenance hemodialysis 

subjects (HD) compared to controls. Controls demonstrated expected transitions from early Type 

I interferon and myeloid activity to T cell activity after the first vaccination dose (Figure 15, Figure 

18). The predominant positive enrichment of T cell modules in controls at one week after the first 

vaccination dose (V1D7) was contrasted with predominant positive enrichment of myeloid 

modules in HD at V1D7. These results support prior evidence of decreased antigen presentation 

(Lim et al. 2007; Satomura et al. 2002) and decreased T cell proliferation (Stenvinkel et al. 2005) 

in end stage renal disease (ESRD). Interestingly, HD showed prolonged upregulation of myeloid 

activity at V1D7, while controls showed downregulation of these modules at V1D7 (Figure 15, 

Figure 16). Overall, these observations indicate prolonged myeloid responses but impaired or 

delayed progression to T cell responses in the HD cohort. Prior studies have shown alterations of 

all three classes of immune system pattern recognition receptors (PRR) (Kato et al. 2008);  

increased expression of mannose-binding lectin, a secreted PRR, and increased expression of 

major macrophage scavenger receptors SR-A and CD36  (Ando et al. 1996), but decreased 

expression of toll-like receptor 4 (TLR4) (Ando et al. 2006), a signaling PRR. Because TLRs are 

important for T-cell activation by antigen presenting cells (APCs) (Kato et al. 2008), and given 

impaired APC function in dialysis patients (Eleftheriadis et al. 2007), it is plausible that the 

pattern-recognition receptor alterations of ESRD impair APC-mediated activation of T cell 

responses while driving persistent myeloid cell activity.  

Following the second vaccination dose, controls demonstrated prominent early dendritic 
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cell (DC)/antigen presentation cell (APC), myeloid, and IFN type I activity transitioning to B cell 

and cell cycle activity (Figure 18). HD demonstrated early DC/APC activity, but to a lesser degree 

than innate immune modules. At V2D7,  metabolic activity was decreased in HD compared to 

controls. Interestingly, HD demonstrated increased V2D7 expression compared to controls of 

pro-apoptotic Bcl-2 family member BH3, a mediator of lymphocyte apoptosis. A prior study 

showed accelerated in vitro apoptosis of lymphocytes in uremia, with a particularly pronounced 

effect on B cells, mediated by dysregulation of Bcl-2. This suggests a potential role of lymphocyte 

apoptosis in diminished immune responses to vaccination in HD. 

Our results demonstrate significant elevation of anti-spike IgG titers after two doses of 

BNT162b2 mRNA COVID-19 vaccination in both HD and controls. HD demonstrated only a slight 

decrease of IgG levels at V2D7 when controlling for SARS-CoV-2 history (p < 0.05) and no 

statistically significant difference at six months. Prior studies comparing short-term antibody 

response to BNT162b2 mRNA COVID-19 vaccination in HD versus controls find antibody response 

rates of 84-96% in HD  after two vaccination doses, but with lower mean IgG levels compared to 

controls (Agur et al. 2021; Anand et al. 2021; Attias et al. 2021; Drakesmith et al. 2021; Grupper 

et al. 2021; Jahn et al. 2021; Longlune et al. 2021). Notably, the HD population studied here is 

younger and more racially and ethnically diverse. The average age of HD cohorts in prior studies 

was predominantly in the 60s, compared to an average age of 54 in our study. Jahn et al. found 

in a subset analysis that HD patients under 60 years of age responded equally to healthy controls, 

suggesting an interaction between increasing age and less effective antibody response in HD 

patients (Jahn et al. 2021).  

HD subjects with documented SARS-CoV-2 infection prior to vaccination had wider 
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variance of antibody titers at all time points in this study, with two subjects demonstrating V1D0 

antibody titer levels similar to that of uninfected subjects. These two subjects consistently had 

the lowest titer levels at V2D7 and M6 within the group of previously infected subjects and 

amongst the lowest titers across all subjects. One subject is the oldest enrolled patient, and both 

are diagnosed with hyperlipidemia.  

Given previously and presently demonstrated the wider variance of protective immune 

responses in HD and altered interactions with risk factors including age, it is valuable to identify 

predictors of the strength of immune response to vaccination in this population. We identified 

both transcriptomic and clinical predictors of anti-spike IgG development at both V2D7 and six 

months after the second vaccination dose (M6). Increased gene expression of blood transcription 

modules (BTMs) including monocyte activity, dendritic cell and antigen presentation activity, IFN 

type I activity, and T cell activation two days after the second vaccination dose (V2D2) in HD were 

predictive of V2D7 anti-spike IgG. Additionally, increased expression of PLK1 signaling events, 

indicating increased cell cycle activity, at V2D7 was predictive of V2D7 and M6 anti-spike IgG. 

Clinically, serum ferritin values in the intermediate range at baseline predicted stronger anti-

spike IgG development. A prior study of 58,058 maintenance HD subjects found serum ferritin 

levels between 200 and 1200 ng/ml to be associated with lower all-cause mortality, due to ferritin 

<200 ng/ml representing low iron status, and >1200 ng/ml representing a hyper-inflammatory 

state due to ferritin’s status as an acute phase reactant (Kalantar-Zadeh et al. 2005). Iron 

deficiency has been linked to impaired immune response and vaccine efficacy in other infections, 

while inflammation induces macrophage release of the heavy chain component of ferritin, FTH, 

which has been reported to inhibit lymphocyte proliferation and function (Drakesmith et al. 2021; 
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Kernan and Carcillo 2017). Additionally, increased LFC in WBC count 1-3 weeks after vaccination 

was predictive of higher antibody titers.  

Our study is limited by different early time points between controls and HD (Day 1 vs Day 

2 after each vaccination dose) and by sample size, particularly when subdividing SARS-CoV-2 

history. The smaller sample size additionally limits our ability to characterize differential immune 

pathways in clinical subsets of the dialysis population, such as those with low, medium, and high 

baseline ferritin levels. Future studies are needed for more comprehensive characterization of 

the immune pathway recruitment in response to the Covid-19 vaccinations in this population. 

The Covid-19 mRNA vaccines are proving more efficacious than other vaccines in the ESRD 

population; for example, while more than 90% of patients without chronic kidney disease 

develop protective antibodies against hepatitis B after vaccination, only 50-60% of patients with 

ESRD seroconvert (Eleftheriadis et al., 2007). One explanation is that, in mRNA vaccines, the 

mRNA both encodes the viral antigen and acts as an adjuvant due to its innate 

immunostimulatory properties; the mRNA is recognized by endosomal and cytosolic innate 

sensors upon cell entry, resulting in cellular activation and production of type I interferons and 

other inflammatory mediators (Teijaro and Farber 2021). This elevated innate immune stimulus 

could overcome immune desensitization in ESRD, evidenced by diminished TLR4 expression on 

monocytes (Koc et al. 2011) and downregulation of activating receptors on natural killer cells in 

this population (Nagai 2021). If so, the mRNA vaccine delivery vehicle could prove particularly 

valuable in vaccine development for ESRD and HD going forward. 

Overall, we demonstrate differing time courses of immune responses to the BTN162b2 

mRNA COVID-19 vaccination in maintenance hemodialysis subjects (HD) and identify 
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transcriptomic and clinical predictors of anti-Spike IgG titers in HD. Our results warrant further 

characterization of the immune dysregulation of ESRD and of immune biomarkers that underlie 

efficacious immune responses to vaccination in this population. 
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5. Elucidation of immune dysregulation in maintenance hemodialysis 
patients using vaccine-stimulated transcriptomics 
Includes data and text from manuscript: Chang YS, Lee JM, Huang K, Vagts CL, Ascoli C, Perkins 
DL, Finn PW. Altered transcriptomic immune response of maintenance hemodialysis patients 
to the Covid-19 mRNA vaccine. medRxiv. Preprint. 2023 Jan 19. 

5.1 Introduction 
 

While the previous two chapters characterize the humoral immune response to vaccination 

and its transcriptomic correlates, this chapter investigates the broader underpinnings of immune 

dysregulation in end stage renal disease (ESRD). Examination of regulatory processes governing 

gene expression is particularly relevant in the study of the immune system in ESRD, which is 

characterized by a duality of (1) immune incompetence leading to increased susceptibility to 

infection co-existing with (2) immunoactivation which contributes to the progression of 

atherosclerotic lesions and vascular disease (Stenvinkel et al. 2005). This duality is further 

complicated by seemingly contradictory literature on ESRD. For example, one study has reported 

increased expression of toll-like receptor 4 (TLR4)  on monocytes leading to increased production 

of inflammatory cytokines with LPS stimulation in chronic kidney disease (Gollapudi et al. 2010), 

while another has shown decreased expression of TLR4 with decreased LPS-induced cytokine 

production (Ando et al. 1996). Additionally, one study demonstrated accelerated apoptosis of B 

lymphocytes in ESRD accompanied by decreased expression of Bcl-2 (Fernández-Fresnedo et al. 

2000), while another study showed no differences of B cell apoptosis, but in fact increased 

expression of two key B cell differentiation and survival factors IL-7 and BAFF (Pahl et al. 2010). 

Examination of co-expression and regulatory gene networks may thus yield insights into the 

complex immune dysregulation of ESRD. 

Due the reliance of gene network construction on variance of gene expression, network 
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perturbation using vaccination as an in vivo stimulus will allow for sensitive measurement of 

altered regulatory interactions. We posit that this vaccine-induced network perturbation will 

further enable the direct construction of single-subject gene networks through transcriptomic 

measurements of a given subject across multiple time points surrounding vaccination. Thus, in 

this study, we characterize underlying gene co-expression networks and regulatory networks in 

ESRD compared to controls utilizing the BNT162b2 mRNA COVID-19 vaccine as a stimulus. 

5.2. Methods 

5.2.1. Group-level and single-subject blood transcription module (BTM) network 
construction 

For BTM network construction, BTMs that demonstrated a significant effect of time point 

on eigengene expression were selected as candidate BTM nodes. Significance of time point was 

assessed using an ANOVA with main effects of group and time and random effect of subject. The 

p-values for the main effect of time point were FDR-corrected across BTMs. Candidate BTMs with 

significant membership gene overlap were excluded by the following criteria: if candidate BTMs 

overlapped with a Jaccard index greater than 0.2, then only the BTM with the larger number of 

membership genes was retained. Using this final set of BTMs, pairwise Pearson correlations were 

performed between all BTM eigengenes across subjects and V1D0, V1D7, V2D0, and V2D7 

samples, separately for each subject group to generate one group HC co-expression network and 

one HD co-expression network. 

To compare the HC network to the HD network, Fisher’s Z transformation was applied to 

each network, and then the Z-transformed HC network was subtracted from the Z-transformed 

HD network to obtain a Z-score difference network. P values for the Z-score difference network, 
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calculated from a Z-score to p-value transformation, were FDR-adjusted across edges. Edges that 

were not significantly different between HD and HC after FDR correction were set to 0 in the Z-

score difference network. 

Single-subject co-expression networks were constructed in a similar fashion to the group 

networks, but with only four samples per network (V1D0, V1D7, V2D0, V2D7).  

5.2.2. Group-level BTM co-expression network comparison 

BTMs were categorized into different families: B cells, cell cycle, dendritic cell/antigen 

presentation, type I interferon (IFN type I), myeloid activity/inflammation/ T/NK cells, and 

“others” (Braun et al. 2018). In order to characterize differential co-expression (edge weight) of 

BTMs within each family (intra-family co-expression), we quantified the number of differentially 

co-expressed edges from the Z difference network that were (1) positively co-expressed in both 

HD and HC but weaker (less positive) in HD, (2) positively co-expressed in both HD and HC but 

stronger in HD, (3) negatively co-expressed in both HD and HC but weaker (less negative) in HD, 

(4) negatively co-expressed in both HD and HC but stronger in HD, (5) positively co-expressed in 

HD, but negative in HC, (6) negatively co-expressed in HD, but positive in HC. 

These numbers of dysregulated edges were then divided by the total number of possible edges 

within the BTM family (n choose 2, where n is the number of nodes in the BTM family), yielding 

the percentage of edges within each family demonstrating each class of differential co-

expression. A similar approach was used to characterize differential co-expression of BTMs 

between BTM families (inter-family co-expression). For each BTM family, percentages of 

dysregulated edges between BTMs within a given a family (first node) and BTMs outside of the 

family (second node) were quantified. Finally, percentages of dysregulated edges were quantified 
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pairwise between BTM families.  

5.2.3. Single subject-level BTM co-expression network comparison 

Edge weight (Fisher Z) distributions for single subject co-expression networks were compared 

between HD and HC both globally and for each BTM family. A global statistical comparison of 

edge weights was achieved by quantifying the median positive edge weight per subject, and then 

comparing these between HD and HC using a student’s T-test. Global median negative edge 

comparisons were performed in the same way. 

To characterize differential co-expression of intra-family BTMs, the median positive edge 

weight across all edges within a BTM family was calculated on a per-subject basis. These median 

edge weights were then compared between HD and HC using a student’s T-test. Median intra-

family negative edge weight within each BTM was compared in the same fashion.  

A similar approach was used to characterize differential co-expression of inter-family BTMs. For 

each BTM family, the median positive edge weight across all edges between BTMs within a given 

family (first node) and BTMs outside of the family (second node) were quantified and then 

compared between HD and HC. Median inter-family negative co-expression was compared in the 

same fashion. 

5.2.4. Gene regulatory network comparisons 

To specifically characterize regulatory interactions underlying altered co-expression 

networks, gene regulatory networks were constructed separately for HD and HC using PANDA 

(Passing Messages between Networks for Data assimilation) analysis (Glass et al. 2013). The 

inputs to the PANDA algorithm are (1) an initial TF-gene regulatory matrix, (2) a protein-protein 
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interaction matrix, (3) a gene expression matrix. The TF-gene regulatory matrix was derived from 

the network on the Glass et al. website 

(https://sites.google.com/a/channing.harvard.edu/kimberlyglass/tools/resources), utilizing TFs 

present in our variance-stabilized gene expression matrix. The protein-protein interaction matrix 

was derived from the STRING database interaction scores between all TFs used in the initial TF-

gene regulatory matrix.  

The output regulatory network for HC was then subtracted from the output HD regulatory 

network, yielding a regulatory difference network. Gene set enrichment analysis was performed 

using the clusterProfiler R package with BTM gene sets and a list of gene targets ranked by most 

significant edge differences from the regulatory difference network. BTMs with FDR-adjusted p 

< 0.05 were considered significantly enriched. The core enrichment genes, representing those 

genes that contribute most to the enrichment signal of the BTM, were obtained for the most 

enriched BTMs.  

5.3. Results 

5.3.1. Blood Transcription Module (BTM) co-expression networks per subject group 
The HD co-expression BTM network and HC co-expression BTM network demonstrated 

similar patterns of positive and negative co-expression, or edges (Figure 22). Of 3449 statistically 

significant edges in the across-group network (p < 0.05, FDR-corrected), 3149 (91%) were 

regulated in the same direction for HC and HD (1653 positive, 1496 negative) in both. 127 edges 

were positively coregulated for HC but negatively coregulated for HD, and 173 edges were 

positively coregulated for HD but negatively coregulated for HC. Despite these concordant 

patterns of regulation between the two groups, HD generally exhibited weaker regulation 

https://sites.google.com/a/channing.harvard.edu/kimberlyglass/tools/resources
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compared to HC. Of the edges that were positively coregulated in both groups, 241 out of the 

1653 (15%) exhibited weaker regulation in HD compared to HC (p < 0.05, FDR-adjusted), while 

only 90/1653 (5%) exhibited stronger positive regulation. Similarly, of the edges that were 

negatively coregulated in both groups, 236 out of 1496 (16%) edges exhibited weaker negative 

regulation in HD (p < 0.05, FDR-adjusted), while only 21/1496 (1%) exhibited stronger negative 

regulation in HD. 
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Figure 22. Blood transcription module (BTM) co-expression networks demonstrate similar 
patterns of co-expression for controls (HC, top) and hemodialysis (HD, bottom), but with 
weaker edges in HD.  
BTM networks are constructed from pairwise Pearson correlations between pairs of BTM 
eigengenes across subjects and time points before each vaccination dose (V1D0, V2D0) and one 
week after each vaccination dose (V1D7, V2D7), separately for each group. 
 

Figure 23 displays the percentage of intra-family and inter-family edges with differential co-

expression in HD compared to HC (p < 0.05, FDR-corrected), separately for each BTM family. 

Notably, the dendritic cell/antigen presentation (DC/APC) BTM family showed the most altered 

intra-family co-expression, with 30% of intra-family edges demonstrating weakened positive co-

expression in HD. Of these, the most weakened edge was between LI.M43.0 (Myeloid, dendritic 

cell activation via NfkB (I)) and LI.S5 (DC surface signature). There was also substantial weakening 

of inter-family positive co-expression pairwise between DC/APC, IFN type I, and the 

Myeloid/Inflamm family.  
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Figure 23. Percentage of all possible edges that are significantly different between controls (HC) 
and hemodialysis subjects (HD, p < 0.05, FDR), separated by (A) intra-family edges and (B) inter-
family edges, pairwise between each set of BTM families. 
The number of differentially co-expressed edges between HC and HD that were positively co-
expressed in both groups, negatively co-expressed in both, and discordantly co-expressed 
(opposite signs) was divided by the total number of possible intra-family edges and pairwise 
inter-family edges. 

5.3.2. Single-subject BTM co-expression networks 
 

The single-subject co-expression networks for HC and HD demonstrate appreciable 
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network structure resembling coarse approximations of their respective group networks (Figure 

24). Density plots of edge weights across the entire network per subject qualitatively illustrate a 

weaker bimodal distribution in HD subjects compared to HC (Figure 25). This comparison is 

confirmed statistically with the median edge weight (Fisher Z-value) across all positively 

coregulated edges being significantly less positive in HD subjects compared to HC (p < 0.05) 

Similarly, the median edge weight across all negatively coregulated edges was significantly less 

negative in HD subjects compared to HC (p < 0.05). These comparisons maintained statistical 

significance when incorporating SARS-CoV-2 as a covariate 
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Figure 24. Single subject co-expression networks resemble respective group networks. 
Exemplar single-subject co-expression networks are shown for controls (HC, top) and 
hemodialysis subjects (HD, bottom). BTM networks are constructed from pairwise Pearson 
correlations between pairs of BTM eigengenes time points before each vaccination dose (V1D0, 
V2D0) and one week after each vaccination dose (V1D7, V2D7), separately for each subjects. 
 

 

Figure 25. Single-subject co-expression networks demonstrate weaker co-expression in 
hemodialysis subjects (HD) compared to controls (HC), both for positively and negatively co-
expressed blood transcription modules (BTMs).  
(A) Density plots of edge weights per subject demonstrating a stronger bimodal distribution in 
HC subjects compared to HD subjects. (B) Median edge weight across significantly positively co-
expressed edges and across significantly negatively co-expressed edges, separately per subject. 
 

Similarly to group-level BTM co-expression networks, the edge differences in single-

subject networks were substantially dependent on the BTM family membership of network 

nodes (BTMs) (Figure 26). The DC/APC BTM family demonstrated weaker (less positive) inter- 

and intra-family positive co-expression in HD compared to HC (p < 0.01, p < 0.05). Like the group-

level BTM co-expression networks, the inter-family differences reflected a weakening of positive 

inter-family regulation pairwise between the DC/APC, IFN type I, and Myeloid/Inflamm families 

(Figure 27). The DC/APC BTM family also showed weaker (less negative) inter-family negative co-

expression (p < 0.01) driven by a weakening of negative co-expression with the B cell, 
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Myeloid/Inflamm, and T/NK BTM families. The weakened negative co-expression with the T/NK 

family was the most significantly altered negative edge between all pairs of BTM families (p < 

0.001). These weakened negative edges are also seen in the group-level BTM co-expression 

networks (Figure 23). The most weakened negative edge between DC/APC and T/NK from the 

group network was between LI.M43.0 (Myeloid, dendritic cell activation via NfkB (I)) and LI.M7.0 

(enriched in T cells (I)).  

The Myeloid/Inflamm family demonstrated the most significantly weakened intra-family 

positive co-expression (p < 0.0001). The T/NK family was the only BTM family to demonstrate 

stronger intra-family negative co-expression in HD (p < 0.05). Overall, differential co-expression 

observed between HD and HC single-subject networks is largely reflective of differences observed 

in the group networks. 

 

 
Figure 26. Hemodialysis subjects (HD) demonstrate substantially weaker intra-family positive 
co-expression within the Dendritic Cell/Antigen Presentation (DC/APC) and 
Myeloid/Inflammation blood transcription module (BTM) families.  
Median edge strength of intra-family edges is shown for HD and controls, separately for positive 
edges and negative edges within each BTM family. See Figure S2 for pairwise inter-family median 
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edge strength between each set of BTM families. *p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 
0.0001. 
 

 

Figure 27. Hemodialysis subjects (HD) demonstrate substantially weaker inter-family positive 
and negative co-expression between several blood transcription module (BTM) families.   
Median edge strength of inter-family edges is shown for HD and controls, separately for positive 
edges and negative edges, pairwise between each BTM family. *p < 0.05, ** p < 0.01, *** p < 
0.001, **** p < 0.0001. 

5.3.3. PANDA regulatory networks 
 

PANDA analyses demonstrated significant regulatory network differences, with BTM 

enrichment analysis yielding 35 BTMs with altered signaling [p < 0.05, FDR-adjusted]. 25 BTMs 

exhibited weakened targeting in HD and 10 exhibited stronger targeting. The top three most 

differentially targeted BTMs were LI.M161.0 (enriched in NK cells (II)), LI.M43.0 (myeloid, 

dendritic cell activation via NFkB), and LI.M7.2 (growth factor induced, enriched in nuclear 

receptor subfamily), all of which exhibited weakened regulation in HD. In LI.M61.0 (enriched in 

NK cells (II)), the core enrichment genes consist of cell surface receptors on T cells and NK cells. 

In order of significance, these were TGFBR3, KIR2DS4, CD7 ,IL2RB, S1PR5, KIR2DL3, KIR3DL1, 
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CD247, and KIR2DL1.  

The top 150 most dysregulated edges involving the core enrichment genes are shown in 

Figure 28. The most enriched gene in this BTM, TGFBR3, encodes Type III TGF-beta receptor, 

which is a central co-receptor for the TGF-beta family required for high affinity binding (Blobe et 

al. 2001). While most dysregulated gene targets in this BTM exhibit altered targeting primarily by 

transcription factors (TFs) that function dually as activators and repressors, TGFBR3 

demonstrates altered (weaker) targeting predominantly by transcriptional repressors including 

MECP2 and MBD2, which bind methylated promoter regions of DNA (Lewis et al. 1992; Hendrich 

and Bird 1998). IL2RB is vital for T-cell mediated immunity and immune tolerance via T regulatory 

cells (Campbell and Bryceson 2019). Similarly to TGFBR3, IL2RB exhibits weakened regulation by 

many repressive TFs including MBD2, DNMT1, REST, E2F4, and SMAD2. Interestingly, both 

TGFBR3 and IL2RB demonstrate isolated decreased at V2D1 in HC compared to V2D0 (p < 0.001, 

FDR-adjusted), but demonstrated no fluctuation across time points for HD. CD7 is expressed by 

most peripheral T cells and has been shown to act as a costimulatory molecule as well as a trigger 

for apoptosis of T cells (Lobach et al. 1985; Stillwell and Bierer 2001; Pace et al. 2000; Rappl et al. 

2002). KIR2DS4, KIR2DL3, KIR3DL1, and KIR2DL1 encode NK cell receptors that interact with 

human leukocyte antigen class I molecules (HLA-I). While KIR2DS4 triggers NK cell degranulation 

upon binding to a conserved bacterial epitope of many human pathogens, KIR2DL3, KIR3DL1, and 

KIR2DL1 are inhibitory receptors (Sim et al. 2019; Winter et al. 1998). Weakened targeting of 

LI.M61.0 can thus be broadly characterized as dysregulation of both activating and tolerogenic 

receptors on T and NK cells 
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Figure 28. The LI.M61.0 (NK cells (II)) blood transcription module (BTM) is the most significantly 
dysregulated BTM in the hemodialysis subjects (HD).  
The top 150 most dysregulated edges involving the core enrichment genes, which contribute 
significantly to this enrichment of this BTM, are shown. Green ovals are transcription factors 
(TFs), blue rectangles are core enriched gene, orange edges are more strongly regulated in 
controls vs HD, and purple edges are stronger in HD. 

 

The dysregulation of LI.M43.0 (myeloid, dendritic cell activation via NFkB (I)) is driven by 

significantly altered targeting of core enrichment genes ICAM1, IL23A, NFKBID, VCAM1, EBI3, 

CD83, BCL3, RELB, TNF, NFKB2, and MAP3K8 (Figure 29). These genes represent various players 

in the NFkB pathway, including TNF, NFKB2, MAP3K8, BCL3, RELB, and NFkB inhibitor NFKBID, as 

well as cytokines and receptors expressed by dendritic cells including IL23A, EBI3 which 

heterodimerizes to form IL-27, and CD83. ICAM1 and TNF both exhibit decreased regulation by 
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several transcriptional repressors including decreased targeting of ICAM by MBD2, DNMT1, and 

E2Fs, decreased targeting of TNF by ZBTB4, MECP2, TGIF1, ZNF350, and SMAD2. 

 

 

Figure 29. The LI.M43.0 (myeloid, dendritic cell activation via NFkB) blood transcription module 
(BTM) is the second most significantly dysregulated BTM in the hemodialysis subjects (HD).  
The top 150 most dysregulated edges involving the core enrichment genes, which contribute 
significantly to this enrichment of this BTM, are shown. Green ovals are transcription factors 
(TFs), blue rectangles are core enriched gene, orange edges are more strongly regulated in 
controls vs HD, and purple edges are stronger in HD. 
 

The dysregulation of LI.M94.0 (growth factor induced, enriched in nuclear receptor 

subfamily 4) is driven by decreased regulation of NR4A1, PPP1R15A, ID1, CDKN1A (Figure S5), 

three of which are involved in apoptotic signaling. NR4A1 is a nuclear transcription factor whose 

translocation to the mitochondria induces apoptosis (Herring, Elison, and Tessem 2019). 

PPP1R15A is transcribed following stressful growth arrest conditions and DNA-damaging agents, 
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with protein response correlated with apoptosis (S. Ito et al. 2015). CDKN1A is cyclin-dependent 

kinase inhibitor that mediates cell cycle arrest and apoptosis (Kleinsimon et al. 2018). The final 

core enriched gene is Inhibitor of Differentiation 1 (Id1), which is responsible for a switch from 

DC differentiation to myeloid-derived suppressor cell and Treg expansion, in response to TGF-

beta (Papaspyridonos et al. 2015). All of these core enriched genes demonstrate decreased 

targeting by repressive transcription factors including ZBTB33, MECEP2, MBD2, and DNMT1. 

 

Figure 30. The LI.M94.0 (growth factor induced, enriched in nuclear receptor subfamily 4) blood 
transcription module (BTM) is the third most significantly dysregulated BTM in the 
hemodialysis subjects (HD).  
The top 150 most dysregulated edges involving the core enrichment genes, which contribute 
significantly to this enrichment of this BTM, are shown. Green ovals are transcription factors 
(TFs), blue rectangles are core enriched gene, orange edges are more strongly regulated in 



96 
 

controls vs HD, and purple edges are stronger in HD. 
 

5.4. Discussion 
 

In this study, we elucidate decreasing coupling between immune system components in 

HD and identify dysregulated blood transcription modules and genes that underlie these altered 

relationships. While our prior analyses described the time course of transcriptomic responses to 

the BNT162b2 mRNA COVID-19 vaccine, we treat the vaccination here as an in vivo stimulus 

allowing for broader elucidation of the underlying complex immune dysregulation in ESRD.  

Importantly, we demonstrate that, by acquiring longitudinal samples of the same subject 

undergoing vaccination, informative single-subject co-expression networks can be constructed. 

Our group co-expression network results demonstrate broadly weakened co-expression 

in HD compared to HC, representing weaker coupling between different components of the 

immune system. These differences manifest as both weakened positive and negative co-

expression, where strong positive co-expression indicates that when one component is activated 

the other is also likely to be activated, and strong negative co-expression indicates that when 

component is activated the other is likely to be repressed. These results were also found at the 

single-subject level, with weaker median edge weights in HD for positive edges (less positive 

Fisher-Z values) and for negative edges (less negative Fisher-Z values). These results could 

represent a global de-sensitization of immune system components due to chronic stimulation by   

Group co-expression network analyses demonstrated that the dendritic cell/antigen 

presentation (DC/APC) blood transcription module (BTM) family exhibited the largest percentage 

of intra-family edges with weakened positive co-expression (Figure 23). This indicates that many 

of the BTMs within the DC/APC family are less strongly co-activated with one another in HD. This 
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result was re-capitulated in single-subject co-expression networks, which exhibited significantly 

weaker median positive co-expression in HD compared to HC (p < 0.01) (Figure 26). The DC/APC 

family also exhibited significantly altered inter-family edges. The altered positive co-expression 

was reflective of weaker positive inter-family regulation between (each pair of) the DC/APC, IFN 

type I, and Myeloid/Inflamm families in both the group and single subject networks (Figure 23, 

Figure 27). The most significantly weakened edge in each of these inter-family relationships 

involving the DC/APC family was LI.M43.0 (myeloid, dendritic cell activation via NFkB (I)). This is 

supported by the weakened regulation of LI.M43.0 (myeloid, dendritic cell activation via NFkB 

(I)), which was the second most dysregulated BTM in our PANDA analysis, with core enrichment 

genes including NFkB pathway mediators such as TNF, NFkB2, and NFkBID. 

These results are consistent with evidence from literature showing significantly decreased 

numbers of DCs in ESRD which decline further with HD (Kim et al. 2017), as well as impaired 

maturation of monocytes and dendritic cells (Verkade et al. 2007), and decreased antigen 

presentation (Satomura et al. 2002; Lim et al. 2007). DC dysfunction in ESRD has been proposed 

to stem from alterations of pattern recognition receptors (PRRs), leading downstream to 

impaired T-cell induction (Kato et al. 2008). Various pattern recognition receptor alterations have 

been reported in the ESRD literature, including both increased and decreased expression of toll-

like receptor 4 (TLR4) (Ando et al. 2006; Gollapudi et al. 2010), increased expression of the 

secreted PRR mannose-binding lectin, and increased expression of major macrophage scavenger 

receptors SR-A and CD36 (Ando et al. 1996).  

In our analysis, tumor necrosis factor (TNF), a proinflammatory cytokine which is 

upregulated by TLR binding and which is required for activation of NFkB and maturation of DCs 
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(Hayden and Ghosh 2014; Trevejo et al. 2001), was one of the core enrichment genes in LI.M43.0. 

Furthermore, our regulatory network analysis demonstrated dysregulation of LI.M146 (MHC-

TLR7-TLR8) (p < 0.01, FDR-adjusted). Interestingly, TLR7 and TLR8 have been shown to induce 

type 1 interferons (IFNs) in DCs that synergize with the NFkB pathway to activate DCs (Gautier et 

al. 2005). Taken together, these results reinforce evidence of TLR dysfunction, with a mediating 

role of type 1 IFN induction, leading to impaired maturation and activation of DCs.  

The most significantly dysregulated BTM from our PANDA analysis was LI.M61.0 (enriched 

in NK cells (II)), with core enrichment genes comprising activating and tolerogenic receptors on T 

cells (TGFBR3, CD7 ,IL2RB, CD247) and NK cells (KIR2DS4, S1PR5, KIR2DL3, KIR3DL1, and KIR2DL1). 

Weakened regulation of TGFBR3 contributed most significantly to enrichment of this BTM, and 

encodes a central co-receptor for the TGF-beta family (Blobe et al. 2001). Interestingly, while this 

receptor is required for high affinity binding, it can also undergo ectodomain shedding, ultimately 

inhibiting downstream signaling (López-Casillas et al. 1994). In fact, blocking the receptor has 

been shown to promote TGFβ-dependent induction of Tregs (Ortega-Francisco et al. 2017). The 

gene therefore plays a dual role in immune activation and tolerance. Interleukin 2 receptor 

subunit beta (IL2RB), another core enriched gene with weakened regulation from LI.M61.0, also 

plays a critical role in the balance of activation and tolerance via Tregs (Campbell and Bryceson 

2019). Weakened regulation of these genes may thus contribute to the disturbed Treg function 

seen in ESRD (Hendrikx et al. 2009; Ren et al. 2019).  

It is of particular note that TGFBR3 and IL2RB exhibited decreased gene expression at only 

V2D1 in HC (p < 0.001, FDR-adjusted), while demonstrating no statistically significance change 

across time points for HD. Because these gene regulatory networks were constructed from D0 
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and D7 time points alone, this indicates that these networks are capturing regulatory differences 

that can predict gene expression changes in unmeasured states. 

Our regulatory network results from PANDA further identified regulators of cell survival 

and apoptosis in ESRD. ESRD literature has demonstrated accelerated apoptosis of neutrophils 

(Cendoroglo et al. 1999) as well as mixed findings of increased B cell apoptosis in one study 

(Fernández-Fresnedo et al. 2000) in contrast to increased B-cell survival factors in another study 

(Pahl et al. 2010). Our results showed weakened regulation of LI.M94.0 (growth factor induced, 

enriched in nuclear receptor subfamily 4), with differential targeting of four core enriched genes, 

three of which are involved in apoptotic signaling: nuclear transcription factor NR4A1, PPP1R15A, 

and CDKN1A. Each of these genes demonstrated weakened targeting by many repressive 

transcription factors including ZBTB33, MECEP2, MBD2, and DNMT1. It stands to reason that the 

mixed findings of B cell apoptosis in ESRD stem from context-dependence; Fernández-Fresnedo 

et al. cultured peripheral blood cells for four days prior to assessing apoptosis, while Pahl et al. 

assessed apoptosis on freshly isolated cells. It is possible that the weakened repressive regulation 

of apoptotic regulators such as PPP1R15A and CDKN1A, which are upregulated under conditions 

of stress, may drive increased B cell apoptosis specifically under conditions of increased stress in 

ESRD.  

Interestingly, many of the enriched core genes in the BTMs with most weakened 

regulation in HD were differentially targeted by MECP2 and MBD2, including TGFBR3, IL2RB, TNF 

and all of the core enriched genes in LI.M94.0 (growth factor induced, enriched in nuclear 

receptor subfamily 4). MECP2 and MBD2 are members of a family of nuclear proteins with a 

methyl-CpG binding domain (MBD) (Lewis et al. 1992; Hendrich and Bird 1998). While these TFs 
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traditionally repress transcription from methylated gene promoters, MBD2 has also been 

reported to function as a demethylase to activate transcription. Interestingly, MBD2 was shown 

to have a key role in promoting demethylation in a Treg-specific demethylation region, resulting 

in Foxp3 expression and Treg suppressive function (Wang et al. 2013). This suggests a potential 

role of altered DNA methylation of peripheral blood in the immune dysregulation of ESRD. In fact, 

a recent epigenome wide association study identified abnormal DNA methylation of whole blood 

associated with CKD development (Chu et al. 2017). 

There is a wealth of evidence demonstrating TLR-induced alterations of the epigenetic 

landscape, leading to both increased and decreased expression of TLR-induced genes (Perkins et 

al. 2016). For example, in macrophages, LPS signaling through TLR4 alters chromatin accessibility 

at TLR-responsive inflammatory genes including IL-6 (Hargreaves, Horng, and Medzhitov 2009). 

In support of a mediating role of type 1 IFN in the TLR dysfunction leading to impaired maturation 

and activation of DCs, type I IFN has also been shown to catalyze methylation of promoters of 

NF-kB responsive genes (Schliehe et al. 2015). Additionally, oxidative stress has been shown to 

alter DNA methylation profiles, including in peripheral blood. In fact, oxidative damage to a 

methyl-CpG site in a methyl binding protein recognition sequence has been shown to 

substantially reduce binding affinity of MECP2 (Valinluck et al. 2004). It is reasonable that, in 

addition to altering regulation between immune players, epigenetic mechanisms could 

independently increase susceptibility of immune subsets to apoptosis. 

Results from the single-subject co-expression networks demonstrate that informative 

single-subject co-expression networks can be directly constructed using vaccination as an in vivo 

immune perturbation. The immune perturbation leads to the high gene expression variance 
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needed to construct a co-expression network using a small number of samples. The single-subject 

network results re-capitulate co-expression network differences demonstrated in the group 

network results. While a small number of subjects are represented in this study, these results are 

a proof of principle that informative single-subject gene networks can be directly constructed 

agnostically of group networks. Single-subject networks offer the opportunity to elucidate 

subtypes of disease or to provide network biomarkers for disease diagnosis, prognosis, or 

treatment response. While methods have been developed for single-subject network analysis, 

these networks rely on statistical inference from the impact of a given sample on the aggregate 

network model (Kuijjer et al. 2019). It should be noted that our single-subject networks represent 

low resolution networks, with nodes comprised of modules of genes instead of individual genes, 

which is necessary to enable construction of reliable networks with such few samples per subject. 

Due to similar constraints, we constructed single subject co-expression networks, but not gene 

regulatory networks which enable more precise investigation of regulatory relationships. Thus, 

while single-subject gene networks could yield useful network biomarkers, any investigation into 

their utility will be necessarily paired with regulatory network methods to provide mechanistic 

insight. 

Overall, we elucidated a complex regulatory interplay in ESRD resulting in simultaneous 

dampening of immune activation as well as tolerogenic immune responses that can be 

appreciated on a single-subject level. Our results reinforce prior proposals that TLR dysfunction 

leads to impaired maturation and activation of DCs. Constitutive stimulation of TLRs may lead to 

low-grade baseline inflammation, simultaneously resulting in desensitization that impairs the 

ability of the immune system to mount immunogenic responses. Notably, we also identified 
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differential gene expression of core dysregulated genes at isolated time points that were not 

included in gene network construction, indicating that these networks capture regulatory 

differences that can predict gene expression changes in unmeasured states. These results 

highlight the importance of studying regulatory interactions to characterize dynamic regulation 

and dysregulation of the immune system. 
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6. Conclusions 
 

The overall aim of this thesis was to investigate immune-mediated disease using two 

different systems vaccinology approaches; one in which we characterized vaccine-conferred 

immune protection and identified transcriptomic correlates of this protection, and one in which 

we investigated the broader structure and dynamics of gene dysregulation in immune-mediated 

disease using vaccination as an in vivo stimulus. We applied these approaches to publicly 

available RNA sequencing data in children at risk for developing asthma, and peripheral blood 

samples that we collected from healthy controls and immunocompromised patient populations 

at multiple time points surrounding Covid-19 mRNA vaccination.  

First, we showed non-allergen-specific immune network dysregulation in peripheral 

blood mononuclear cells (PBMCs) of children who later developed a clinical diagnosis of allergic 

asthma. Using publicly available data, we characterized immune networks of asthmatic 

predisposition in children at the age of 2, prior to the diagnosis of allergic asthma, who were 

subsequently diagnosed with asthma at the age of 7. We showed extensive differences of gene 

co-expression networks and gene regulatory networks in children who developed asthma versus 

those who did not using RNA sequencing of PBMCs stimulated in vitro with tetanus toxoid to elicit 

an unbiased and broad immune recall response. Moreover, we suggested that these gene 

network differences prior to asthma diagnosis resulted from altered accessibility of gene targets. 

In summary, we demonstrated that dysregulated immune states can be appreciated prior to 

overt clinical symptom presentation using stimulated transcriptomics. 

Next, we characterized the BNT162b2 SARS-CoV-2 mRNA vaccine-conferred immune 

protection from Covid-19 in two immunocompromised patient populations. Individuals with 



104 
 

sarcoidosis demonstrated a significant increase in anti-spike IgG titers and neutralizing function 

one week after the second vaccination dose that was comparable to controls. However, IgG titers 

declined significantly back to baseline levels by 6 months. Individuals with end stage renal disease 

(ESRD) on maintenance hemodialysis (HD) demonstrated a significant increase in IgG titers and 

neutralizing function at one week after the second vaccination dose, with a small but significant 

reduction in titers in HD groups (p < 0.05). IgG titers remained elevated above baseline at six 

months in both subject groups. Transcriptomic analyses demonstrated differing time courses of 

immune response, with predominant T cell activity in controls one week after the first vaccination 

dose, compared to predominant myeloid cell activity in HD at this time point. HD demonstrated 

decreased metabolic activity and decreased antigen presentation compared to controls after the 

second vaccination dose. Additionally, we demonstrated that increased expression of myeloid 

and T cell activity at two days after the second vaccination dose was predictive of higher antibody 

development. 

We then elucidated decreased coupling between immune system components in HD, and 

identified dysregulated blood transcription modules and genes that underlie these altered 

relationships. Our results suggested a role of impaired dendritic cell (DC) activation and 

maturation through dysregulated toll-like receptor and type I interferon signaling. Our results 

further suggested altered regulatory T cell function through altered TGF-beta and IL2 receptor 

signaling. Finally, our regulatory networks suggested decreased regulation of apoptotic 

regulators NR4A1, PPP1R15A, and CDKN1A by repressive methyl-binding transcriptional 

repressors that could underlie increased susceptibility to apoptosis in ESRD. Notably, regulatory 

alterations of TGFBR3 and IL2RB were correlated with decreased gene expression only at one day 
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after the second vaccination dose in controls (V2D1), while demonstrating no statistically 

significant change across time points for HD. Because the gene regulatory networks were not 

constructed using V2D1 data, this indicates that these networks captured regulatory differences 

that can predict gene expression changes in unmeasured states. This further illustrates the 

relevance of regulatory network construction in the characterization of dynamic systems.  

Our single-subject co-expression networks demonstrated that informative low-resolution 

single-subject gene expression networks can be directly constructed using vaccination as an in 

vivo immune perturbation. The immune perturbation leads to the high gene expression variance 

needed to construct a co-expression network using a small number of samples. The single-subject 

network results re-capitulated co-regulatory network differences demonstrated by the group co-

expression network results. While a small number of subjects are represented in this study, these 

results are a proof of principle that informative single-subject gene networks can be directly 

constructed agnostically of group networks. Single-subject networks offer the opportunity to 

elucidate subtypes of disease or to provide network biomarkers for disease diagnosis, prognosis, 

or treatment response. 

The results reported here require experimental validation and extension to larger cohort 

sizes. 

Assessments of chromatin accessibility using ATAC-Seq would enable high level characterization 

of the epigenetic landscape of PBMCs to determine whether predisposition to atopic phenotypes 

may indeed be driven by feed-forward mechanisms of altered gene target accessibility. ATAC-

Seq could also be used to determine the effect of oxidative stress and repeated endotoxin 

stimulation on the epigenomic landscape of PBMCs, and whether these result in the regulatory 
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network changes that we demonstrated in ESRD. Alternatively, given the altered regulation by 

methyl-CpG binding TFs MECP2 and MBD2 in the ESRD regulatory networks, it would be 

interesting to determine whether the promoters of genes differentially targeted by these TFs are 

differentially methylated in ESRD using a DNA methylation profiling method such as Methylated 

DNA immunoprecipitation (MeDIP). Assessment of specific DNA-protein binding interactions 

using Chip-seq would offer complementary validation. For example, Chip-seq could be used to 

determine whether GATA3 demonstrates differential binding at Th1 and Th2 promoters in PBMCs 

of children that are predisposed to develop allergic phenotypes. It could also be used to validate 

altered binding of MECP2 or MBD2 at dysregulated gene targets in the PBMCs of individuals with 

ESRD, or to determine differential binding after exposure of cultured PBMCs to oxidative stress 

or endotoxins.  

It would be of particular interest to assess single-subject co-expression network 

construction in a large subject cohort to determine if these networks can offer biomarkers for 

immune-mediated disease diagnosis and prognosis, or elucidate subtypes of disease with 

heterogeneous etiologies or presentation. For example, sarcoidosis is an autoimmune disease of 

unclear etiology and heterogenous disease course ranging from acute, self-limited processes to 

chronic progressive disease with organ failure and death (Swigris et al. 2011). A prior study 

identified a gene signature including T cell/JAK-STAT pathway genes that differentiated sarcoid 

patients from controls but had poor predictive accuracy in distinguishing complicated from 

uncomplicated sarcoidosis (Zhou et al. 2017). Single-subject network characterization of this 

patient population may help illuminate subtypes of disease or identify biomarkers of outcome or 

treatment response.  
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