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SUMMARY

In this dissertation, we study the long-time behavior of the solutions of some kinetic equa-
tions arising from the studies of collective behavior. Propagation of chaos is a fundamental
question in kinetic theory which enables the reduction of an N-particle description to a single
partial differential equation. In Chapter 1, we prove the propagation of chaos for the classical
Cucker-Smale system and its variant in which the system is additionally forced with Rayleigh-
type friction and self-propulsion force. Moreover, the quantitative estimates of the rate of the
convergence in Wasserstein-2 distance are shown. In Chapter 2, a continuous model of opinion
dynamics is considered. The global well-posedness, the regularity, and asymptotic behavior of
the solution are studied. In Chapter 3, we investigate the long-time behavior of the solution
of a kinetic Fokker-Planck-type equation. The exponential relaxation of the solution to its

equilibrium is proved here.
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CHAPTER 1

PROPAGATION OF CHAOS UNDER HEAVY TAIL COMMUNICATION

(Previously published as V. Nguyen and R. Shvydkoy, Propagation of chaos for the Cucker-
Smale systems under heavy tail communication, Communications in Partial Differential Equa-

tions, 47(9):1883-1906, 2022.)

1.1 Introduction and main results

One of the fundamental questions of the mathematical theory of large systems of particles
is a derivation and formal justification of the corresponding kinetic models. Among the many
systems describing collective phenomena this question has been successfully settled for the

Cucker-Smale model describing the basic mechanism of alignment (9; 10):

xo=vi, x(0)=x)eR",

Vi N Z]N:1 dxi—xj) (v —vi), wi(0) =v) € R™

Here N is the number of particles and xi, vi denote the position and velocity of the i-th particle.
¢ is a non-negative non-increasing smooth communication kernel. The corresponding Vlasov-

Alignment equation is given by

Ouf +v- Vif + V- (fF() =0, f(0) = fo : R*™ = Ry, (12)



where

FIR00v) = | blx— )= v)fly,w, ) dy .

A formal derivation of (Equation 1.2) via the BBGKY hierarchy was performed in Ha and
Tadmor (19), and rigorously via the mean-field limit in Ha and Liu (18).

The hierarchy approach is based upon the classical idea of propagation of chaos, which
postulates that the particles (x1,v1,...,%XN,VN) Whose joint probability distribution fN is given

by the solution to the Liouville transport equation

N N
WM+ > Vi Vi N+ > v, - (YY) =0, (1.3)

i=1 i=1
would gradually decorrelate as N — oo if initially so
N0) =fEN, o :R™ o Ry, (1.4)

and their individual distributions would evolve according to (Equation 1.2). In other words,

(f,0), @€ Cy(R™). (1.5)
1

MNer1®...e0210---01) =

k
j=



The mean-field limit on the other hand, is based on the weak convergence of a sequence of

empirical measures built from solutions to (Equation 1.1),

N
1
N
nh= Z] Sxi(t) @ by — F
]:

In fact, a more detailed analysis done in (17; 31) establishes Lipschitz continuity of measure-

valued solutions to (Equation 1.2) with respect to the Wasserstein metric,

Wy (ke 1) < COWp (1o, 1g)-

It is well-known, however, that propagation of chaos and the mean-field limit (in a somewhat
more specific sense) are equivalent, see Sznitman (34). In fact, (Equation 1.5) holds if and only

if for any ¢ € Lip(R?") one has

2

N
Bw-| |y 3 ol ult) ~ (1, 0)) M Xoaks 0 (16)

R2nN

where Xy, Vp are the initial conditions for the characteristic flow {xi(t),vi(t)}{\':1. Note that
initially E¢(0) — 0 by a direct verification. Technically, since not every initial ensemble Xy, V
in the support of fgpN forms an empirical measure weakly close to fp, the limit (Equation 1.6)
does not directly follow from (17; 18; 31). However, one can restore it using similar estimates
on the deformation of the flow-map of (Equation 1.1) and coupling with the characteristics of

(Equation 1.2).



In any case, Snitzman’s general principle seems to provide little quantitative information
on the rate of propagation in (Equation 1.5) as it avoids using any specificity of the system at
hand. For stochastically forced systems, the work of Bolley, Canizo and Carrillo (3) establishes

such a quantitative estimate on the Wasserstein-2 distance:

Kk k
Wy (£ #5549 < ¢(T), /W’ V< T (1.7)

Recently, Natalini and Paul addressed the deterministic case in (24) and with additional chemo-
taxis forces in (25). For the forceless system, the estimate carries exponential dependence in

time,

K
Wy (£, £2%) < Ceét,/ﬁ. (1.8)

The estimates (Equation 1.7), (Equation 1.8) are finite-time bounds in spirit, in the sense
that they do not take into account any flocking long-time behavior of the system. A natural
question is: can one improve upon the time dependence in the deterministic case (Equation 1.8)
when the system is known to flock exponentially fast? It is the result that goes back to Cucker
and Smale (9) and improved and extended in (6; 18; 19) that the system (Equation 1.1) with

a heavy tail radial communication,



aligns with an exponential rate. Let us give a quantitative summary of this result for future

reference, see also (31) for details.

Proposition 1.1.1. Suppose ¢ satisfies (Equation 1.9). For any solution to (Equation 1.1)
with initial data in (Xo, Vo) in a compact domain Q C R*™N the following flocking estimates

hold:

sup max_[|x; —xj| =D < oo, max_ [vi —vj| < Aoe*td’(D], (1.10)
(20 bi=1yN ij=1,.oN

where Ag s the initial velocity fluctuation and D depends only on the initial diameter of the
flock and ¢.
Similarly, for any solution f to (Equation 1.2) with initial compact support one has

sup diam supp fy = D < oo, max v — V" < Age D), (1.11)
>0 (x/5v"),(x"";v"") €supp ft

With the use of this additional flocking information we will improve the estimate (Equation 1.8)

to being linear in time.

Theorem 1.1.2. Suppose ¢ satisfies (Equation 1.9), and let fo € CY(R™) be an initial distri-
bution with a compact support. Let fN be the solution to (Equation 1.3)-(Equation 1.4), while
f be the solution to (Equation 1.2). Then there exists a constant C which depends only on

diam(supp fo) and ¢ such that for allN € N, k < N, and t > 0 one has

K . t
Wy (M £8) < Cﬁmm{l,m}. (1.12)



Our general methodology relies on the same classical coupling method, which compares
characteristic flow of the original system (Equation 1.1) to N copies of the flow-map of the
kinetic transport (Equation 1.2), but it differs from (24) in two aspects. First, we run the entire
argument from the Lagrangian point of view, which gives a direct access to characteristics and
the flocking estimates. This is closer in spirit to the original mean-field approach of (18) or (3)
in stochastic settings. Second, we rely on the flocking information of Proposition 1.1.1 to extract
a crucial stabilizing exponential factor in the estimation of kinetic energy, see (Equation 1.23).
The linear time dependence here comes primarily from the growth of the potential energy, and
it seems not to be removable within the given framework.

Next, we consider the same problem in the context of systems forced with self-propulsion

and Rayleigh-type friction force with variable characteristic parameters 0:

(xiyvi,0) € R" x R" x Ry, (1.13)

<
S
I
Z| =
Mz
<
x
=
|
=
=
|
<
s
_|_
a
D
q
|
=
=
he
<
E:

where k > 0 is a coupling coefficient and p > 0. This model is relevant in the study of systems
of agents with a tendency to adhere to their preferred characteristic speeds 0;, see (16; 22).
The recent study (22) introduced a general method of Grassmannian reduction that allows to
prove flocking for solutions with velocities confined to a sector L of opening < 7, so-called

sectorial solutions, see Proposition 1.3.1 below. We give an extension of this method to the



corresponding kinetic Vlasov equation in Proposition 1.3.3 and use it to prove propagation of

chaos for the forced system (Equation 1.13). Specifically, we prove the following theorem:

Theorem 1.1.3. Suppose the kernel ¢ satisfies (Equation 1.25). Let fy € Cé(Q) be a sec-
torial initial distribution, and fN,f be the sectorial solutions to the system (Equation 1.60)
and (Equation 1.28), respectively. Then there exists a constant C which depends only on

diam(supp fo) and ¢ such that for all N € N, k <N, and t > 0 one has

k . t?
W, (19 £8k) < Cﬁmm{l,m}. (1.14)

To achieve this bound we employ monotonicity of the force to control the adverse self-
propulsion component. The ultimate effect of its presence, however, is reflected in the quadratic

dependence on time in (Equation 1.14).

1.2 Propagation of chaos for the forceless system

In this section, we focus on establishing propagation of chaos for the pure Cucker-Smale
system (Equation 1.1), Theorem 1.1.2. To fix the notation let us consider a solution fN to
the full Liouville equation (Equation 1.3) with the chaotic initial condition (Equation 1.4) on
the configuration space (X,V) € R?™. We can assume without loss of generality that fo is a

probability distribution. The forces F]i\' 's are given by the Cucker-Smale system

1 N
RGO V) = 5 D bl —x) (v — o).
j=1



Due to the symmetries of the forces, the solution will remain symmetric with respect to per-
mutations of pairs (xi,v;) for all time.

We define the k-th marginal as usual by

K
f£ N1y V1 ey Xiy Vi) :J S N (%1, V1y e ooy XNy VN dXge g1 - - - AV (1.15)
R2n(N-

Let us introduce various characteristic maps that will be used in the proof. We denote by

DN = (x1(t), V1 (t), ..., xn(t), vn(t)) : REWN — RN

the flow-map of the Liouville equation (Equation 1.3), in other words these are solutions to the

agent-based system

Xi =W,
(1.16)
Vo= X ki — %) (v — va).
Then, ftN at any time t > 0 is a push-forward of the initial distribution by ®,
il = ONEfPN. (1.17)

Now, denote by



the flow-map of the Vlasov equation (Equation 1.2), i.e.

X =V,
(1.18)
v = jRZn d)()? - U) (W - v)f(y,w, t) dy dW)
and by
OFN = (1 (1), V1 (), .., Xn(1), U (1)) : RPN — RN
the direct product of N copies of ®¢’s. Thus,
fo = Oyftfo, N = OENHIN. (1.19)
The proof of Theorem 1.1.2 can be reduced to establishing the following estimate
|| 020X, Vo) = DX, Vol 5N (X, Vo) dXa Vo < ConinfN, ). (1.20)
RZnN

Indeed, let us recall that the Wasserstein-2 distance between two probability measures p, fL on

R?™* can be defined in probabilistic sense as

Wi (w, it) = inf E[|Z — Z],

where the infimum is taken over R¥™*-valued random variables Z, Z defined on any probability

space with distributions given by p and i, respectively. To measure the distance between fik)
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and ff’k we can pick the probability space RZ™N with measure f?N (Xo, Vo) dXo dVjy, and random
variables given by any selection of k coordinates of ®} and (I)?N, respectively, because their
probability distributions relative to the chosen base space are exactly f,([k) and f?k according to
(Equation 1.17) and (Equation 1.19).

So, let us denote by Zl]i] is the set of all ordered subsets of [1,...,N] of size k. Clearly, its
cardinality is (]]\:) Then, for any o € Z‘]il,

K
k _ _
WR(FH £8%) < J Z |(Xo(i)> Voii) — Ko(i) Vo) IF £5 (Xo, Vo) dXo dVo.
i1

2nN
R 1

Summing up over all o € X, we obtain

K
N K L
<k>W§(f£ L8R < JRan EZk Z] |(Xo(i)s Voli) — (Xo(i) Vo)1 £5 (Xo, Vo) dXo dVo.

oery, =&

Observe that in the double sum inside the integral each coordinate will be repeated (]]j:]]) times.

So,
N

N Kk N—1 o
<k>sz(f£ L) < (k— : > JRan ; |(x¢,vi) — (%, V1) 2 £5 (Xo, Vo) dXo dVo.

Simplifying and using (Equation 1.20), we obtain

tZ
WA, 155 < cmm{u N},
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as desired. Let us note that an alternative argument, relating a distance between k-th marginals
to a particular realization (Equation 1.20) appeared in (15), where the authors use the original
joint-distribution definition of W,.

To establish (Equation 1.20) let us break the expression under the integral into potential

and kinetic part,

_ 1 _
P= J Xe — X FEN dXodVo, K= J Ve — V2 £5N dXo d V. (1.21)
R2nN 2 R2nN
Here, Xy, Vi and Xy, V; denote the corresponding components of @} and (T)?N, respectively. By
the Holder inequality, we have
d

Qb oapl2gls2, ‘
P <Pk (1.22)

Let us now write out the equation for the kinetic part,

N

d I ) _
EIC = JRan Z(Vi — Vi) - N ]; dxi —x5)(vj —wi) — JRZH d(xi —y)(w —vi)f(y,w,t)dydw

X ngN dXo dVp

—A+B+C,
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where
N N 1 N

A= RN Z(Vi — Vi) - N Z[q)(xi —x5) — (X — %) (v — wy) fgg)N dXo dVo,
i=1 i—1
N 1 JN

B= ;(”i iy ; b(xi — %) [(vy — ) — (vi = v FFN dXo d Vo,
. 1

C= . Z(v1 Vi) (N Z d(xi — %) (V; — Vi) — JRZn e (X —y)(w —vy)f(y, w, t) dy dw)
i=1 j=1

x PN dXo dVo.

Let us start with C. Apply the Holder inequality first

N
2 < 248N
C g(JRZnN ?_1 vy — w269 dXq dVo)

N N
2
(Jya LR 08105 =90 05— low =0y, )y
QN
x f5N dXo dVo )
1 S ) ) 2
2| YR =)= — | bl ) =)yt dy )
®N
X fO dXo dVo.
Switching back to the Eulerian coordinates, whereby Xi, v; become dummy variables, we get
N N
1 S ) ) 2
>R )59 — | bl y) w50y, ) dy dw

x fONAXAV.



13

All these terms, due to symmetry are independent of i. According to (24, Lemma 3.3), and our

flocking estimate (Equation 1.11), each can be estimated by

_ _ _ _ C
sup bR —%")(V V)P < =
(ilyvl))(ﬁllyv//)esupp ft N

Z| &

Thus,

C < ce StK1/2,

Turning back to A, we use the smoothness of the kernel and exponential flocking estimates

(Equation 1.10),

172

N
1 2
5 - = N
Al < ce VK JRM Z. D (b=l + b — 55| 15N axoave

i=1 j=1
12

N
e "I J Z le — %l + N Z % — %l } FEN dXo dVy
R2nN P

]_

N 12
ce VK (2J - D x| N axo dVo>
L



and symmetrizing,

11 ¢
> bR — %) (—lv; — Vil + 20w =) - (v —Vj) — v — vif?)

N
Z|

1

N |

=1

;N

N Z (i — %) (v — vj) — (vi — ) 0.
L1

Collecting all of the above we obtain

d—IC < Cefét(,@/er,C]/szz)
dt )

Denoting p = 1+ P2 k = K2 we obtain the system

p<k, po=T, k < ce®p, ko =0.

14

(1.23)

(1.24)

Claim 1.2.1. Any non-negative solution to (Equation 1.24) obeys an estimate p < 1+ Ct,

k < Cmin{1,t}, where C = C(c, ).

To see that let us fix an ¢ > 0 to be determined later and compute

d
a(spz + k%) < 2pk(e +ce™®) < Ve(ep? +K?) + %e’f’t(sp2 +12).

Thus,

1
Epz—i-kz < EeXp{\/Et-i- \/55}
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5t/2

Setting ¢ = 8, we can see that the growth rate of p does not exceed 6/2, p < /2. Plugging

—5t/2

this into k-equation we obtain k <e . This proves the bound on k, and then solving for p,

p <1+ Ct.

Going back to the energies, we obtain

K < Cmin{l1, t?}, P < Ct2.

Due to the global bound on the support of the flock (Equation 1.10), (Equation 1.11), we also
have P < CN. Thus,

P < Cmin{N, t*}.

Consequently, we obtain the required

K + P < Cmin{N, t*}.

1.3 Propagation of chaos for the forced system

In this section, we will prove Theorem 1.1.3. Using the basic energy estimates obtained in the
previous section, we will now extend the result to the system with friction forces (Equation 1.13)
and k > 0. It is well-known that the flocking behavior of solutions to (Equation 1.13), even with
constant 8; = 1 does not always hold even for global kernels ¢ > ¢y > 0. The example exhibited
in (16) shows misalignment dynamics when the initial configuration is symmetric x; = —x; and

velocities are aimed in the opposite directions vi = —v,. The work (22) proved that this is, in
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a sense, the only situation when no flocking occurs. As long as the initial condition is sectorial,
meaning that all vi(0) € £, where L is an open conical sector of opening less than 7, then the

solutions align exponentially fast.

Proposition 1.3.1 ((22)). Suppose that

A

(1) > (142872

A>0, B<I. (1.25)

For any sectorial solution to (Equation 1.13) there exists Voo € R™ and oo > 0 with [Veo|P = 0o,

such that one has

max ([vi —Voo| +10; — Osol) < Ce™?, (1.26)
i=1,...,

sup max_|x; —xj| =D < oo. (1.27)
0 bi=TynN

It is within the context of sectorial solutions that we will cast the propagation of chaos
result. But first we establish a similar flocking estimates for solutions of the corresponding

kinetic model.

1.3.1 Grassmannian reduction for Vlasov-alignment equation

Let us denote Q = R™ x R™ x R;. The Vlasov equation corresponding to (Equation 1.13)

is given by

o0f +v - Vif+V, - (fF(f)) + Vy - (fR) + Vg - (fO(f)) =0, (x,v,0) € Q, t>0, (1.28)
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subject to the initial condition

f(X)V,e,O) = fo(X,V,e), (129)

where

F()(x, v, 0) = ch(x—y)(w—v)f(y,w,n,t) dy dw dn,
R(x,v,0) =0(0 —|v[P)v, o>0, p>0,

() (x,v,0) = Kjﬂqa(x—y)(n — 0)f(y, w,m,t) dy dwdn.

In this section, we will prove a similar flocking result for the sectorial solutions of (Equation 1.28).

Let us define what they are in the kinetic context.

Definition 1.3.2. A solution f to (Equation 1.28) is called sectorial if there exists a conical
region X lying on one side of a hyperplane, i.e. with conical opening less than 1 such thatv € L

for any v in the velocity support of T, (x,v,0) € supp T for some x, 0.

Since the equation (Equation 1.28) is rotationally invariant, it will be convenient to assume

that our solution belong the upper-half space: there exists ¢ > 0 such that
vn = epv], V(x,v,0) € suppf, (1.30)

By the weak maximum principle discussed below in Remark 1.3.6, it follows that if f is sectorial
initially, then it will remain so for all time and the velocity support will lie in the same sector

X
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Let us state our main result now.

Proposition 1.3.3. Suppose the kernel satisfies (Equation 1.25). For any sectorial solution f

to (Equation 1.28) with initial compact support one has

sup diam supp fy < oo, (1.31)
t>0

and there exist Voo € R™, 0o € Ry, with [Voo|P = 0o such that

max (|0 — o] + [V — Veo|) < ce %t (1.32)
(x,v,0)Esupp ft

As in the discrete case the proof is based on examination of kinetic characteristics of the

equation given by

X =V, x(0) = xo,

Vo= o bx—y)w—v)f(y,w,n, t) dy dwdn + (6 — WP)v, v(0) = vp, (1.33)

é :Kde)(X—y)(ﬂ—e)f(y)WM»t)dydeTl» 9(0)290-
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Let us denote

D(t) = max x —x'],
(X,V,G),(X/,V/,e/)esupp 1:t

At) = max v —v'|,
(vave)v(xlvvlve/)esupp ft

Q(t) = max 10— 9/|,
(XvVae)»(X'»V'yel)GSupp Tt

1
M = J f(x,v,0,t)dxdvdO, 0. = J 0f(x,v,0,t)dxdvde,
Q M Jao
0.(t) = 0 0_(t) = i 0.
+(t) (X,v,(gleiﬁppft ’ ®) (x,v,er)réls?lppft
Then we have

d—D <A (1.34)
P S A .

Indeed, at time t, let £ € (RY)*, |¢] =1, (x,v,0), (x’,v',08") € supp f; such that D(t) = {(x —x’).

By Rademacher’s Lemma and the first equation in the system (Equation 1.33) we have

%D =0k —x) =Lv—) < A

For Q, we have

d
Q< xd(D)Q. (1.35)
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To prove that, at time t we choose £ € R*|{| = 1, (x,v,0), (x’,v/,0’) € supp fi which satisfy
Q(t) =£(6—0’). By Rademacher’s Lemma and the third equation in the system (Equation 1.33)

we get,

d
dtQ:KJ d>(x—y)€(n—9)f(y,w,n,t)dydwdn—KJ d(x" —y)n —0")f(y,w,n,t)dydwdn
Q Q
_ KJ d(x —y)ltn — 8") — £(6 — 0)1F(y, wym, t) dy dwdn
Q

+KJ (x’ —y)IL(O —1) — €0 — 8)]F(y, wym, t) dy dwdn.
Q

Since £(n —0') —€(0 —0’) < 0 and £(0 —n) —£(0 — 6’) < 0, the right hand side of the above

equality is nonpositive. Note that ¢(x —y) > &(D) for all x,y € supp fy. Therefore,

Cox< —Kw)j 06— 0')f(y, w,n, t) dy dwdn < —xd(D)Q.
Q

Similarly, using the third equation in (Equation 1.33) and Rademacher’s Lemma, it is not hard

to see that 0, is decreasing and 0_ is increasing. Thus,
0.(t) <0 6_(t) >0, Vt=0, (1.36)

where 8* = 0,(0) and 6, = 0_(0).
Before we proceed further let us discuss the boundedness of the velocity support of f and

the weak maximum principle.
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Lemma 1.3.4 (boundedness). There exists a constant C which depends on the initial data such

that for any (x,v,0) € supp ft, one has
v(t)] < C, vt > 0. (1.37)

Proof. Let

vil(t) =  max |l
(X,V,e ) ESUPP 1:t

At time t, let € € (RY)*, [¢] =1, (x, v,0) € supp f; such that [v.| = {(v). Then, by Rademacher’s

Lemma,

d—I\url = J d(x — z) L(w —v)f(z,w,n,t) dzdwdn + ol(v)(0 — [v]?)
dt o

< olv (67 — i P).

Hence, if 8* < [v, [P then

vil(t) < Iv4l(0) vt >0.

Otherwise, we have

d *
a|\’+\p < opvi[P(0" — vy lP).

Solving the above ODI gives

Wece*t

_ * —00*t
W = {)/9>+ O(e o ), (138)

vil(t) <



22

where ¢ is a positive constant depending on initial data. Thus, [v.|(t) is bounded for all

t>0. O

Lemma 1.3.5 (weak maximum principle). If for a given functional { € (R™)*, all velocity

vectors Vg that lie in the support of the initial flock, (xo,Vvo,00) € supp fo, satisfy
t(vo) = 0,
then at any positive time
Lv) =0, vt >0, (x,v,0) € supp f;.

Proof. At time t, let

(v) = min  £(w).
(z;wm)€supp f

By Rademacher’s Lemma,

—L(v) = J d(x —z) Uw —v)f(z,w,n,t) dzdwdn + ol (v)(0 — [v[P) = ol(v)(0, — [VIP).
dt o)

Then by Lemma 1.3.4 we get
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where c is constant. Solving this ODI we obtain the desired conclusion,
L(v) > U(vg)et >0, Vt>0.

O]

Remark 1.3.6. By the weak maximum principle we note that if the support of fy in v lies in

the convex sector defined by

Lr=[veR" (W) >0},
leF

where F is an arbitrary set of linear functionals on R™, then the wvelocity support of fy will
be confined to that sector for all time. Since the system (Equation 1.33) is invariant under
rotations, without loss of generality we can assume that the support of fy in v lies above the

hyperplane TT, = {v, = 0}, where vy, is the n-th coordinate of vector v.

Lemma 1.3.7. For any sectorial solution f to (Equation 1.28) there exists a positive constant

co depending on the initial data such that
vl > co, V(x,v,0) € supp fi. (1.39)

Proof. At time t, let (x,v,0) be a minimizer for min  vn. Then
(x,v,0)€supp ft

d
avn = J d(x — z)(wn —vn)f(z,w,m,t) dzdwdn + ovn (0 — [VP) = ovn (B, — e PVE). (1.40)
Q
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If 0, < ¢ PV then

v > € {/0..

Otherwise, solving (Equation 1.40) we get

€ E/e*ece*t

Vn =2 (C—i-epo—e*t)]/p’

where c is a positive constant which depends on the initial data. Then the lemma follows. [

Remark 1.3.8. Lemma 1.3.7 tells us that for a sectorial solution f, supp f(x,-,0) stays away
from the origin. Then, by Lemma 1.8.4, it implies that supp f(x, -, 0) is contained in a sector.

Lemma 1.3.7 also implies that for any sectorial solution f one has
v_|(t) = co, Vt>0, (1.41)

where [v_|(t) = min  |v(t)].
(x,v,0)Esupp f
Proof of Proposition 1.3.3. From now on we consider a sectorial solution f to the system (Equation 1.28).

Denoting T = — for any vector r € R™. One has

T
Ir|

1
ds_ o <1d_|" ® ) v = J Wl (x — 2)(1d—5 @ 9)W f(z, wym, £) dzdwdn.  (1.42)

vl a

Here, we used (Id —v @ v)v = 0.
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— —

Denoting by (v,u) the angle between two vectors v and u, then cos (v,u) = v -1u. Thus,

if (x,v,0), (y,u, ) are the solutions to (Equation 1.33) with respect to the initial conditions

(XO)VO) 90)) (UO)LLO) CO)v respectively, then

d — — —
—cos (v,u) = J Mcl)(x — z)[cos (u, w) — cos (v, u) cos (v, w)If(z,w,n, t) dzdwdn
dt o M
(1.43)
+ J m (y — z)[cos m — cosmcos W]f(z,w,n,t) dzdwdn.
Q

Note that if v,u, and w are three vectors lying in the same two dimenstional plane and
m=m+@<ﬂ—6 for some & > 0, (1.44)
then the followings hold:
cos (u, w) — cos (v, u) cos (v, w) = cos — cos (v, u) cos (v, w)

—_—

2
Cos m ~+ cos m = cos 250 (w,w) = v, w) <cos - 6) .
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Therefore, if the support of f in v is on a two dimensional plane and (Equation 1.44) is satisfied,
then by Lemma 1.3.4 , Lemma 1.3.7 and (Equation 1.43), one has
d — — — —
3¢ 08 (v,u) = cd(D) (cos (u, w) + cos (v,w)) (1 — cos (v,u)> f(z,w,mn,t)dzdwdn
Q

> cd(D) (1 — cos@) .

Equivalently,

d

T (1 — cos(/v,m) < —cd(D) <] - COS@) . (1.45)

Now let TT be a fixed two dimensional plane which contains the vp-axis. Denoting by v the

projection of any v € supp f onto TT. Projecting the second equation in (Equation 1.33) onto TT

we have the following equation:

T = J d(x —z2) (W =V f(z,w,m, t) dzdw dn + oV (6 — [V[P) (1.46)
Q

Therefore, we can write the equation for cos (v, ulT) as follows:

— M - - -
% cos (v, ull) = J |Ili)vﬂl| $(x — z)[cos (U, W) — cos (VIT,u'T) cos (VIT, w)]f(z, w,m, t) dzdw dn
Q
” —_ = —_ ————
" J mdD(y — z)[cos (VT, W) — cos (v, ul") cos (ulf, w)]f(z, w,n, t) dzdwdn.
Q

(1.47)
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Let us denote G(1,n—1) the space of all two dimensional subspaces of R™ which contain v,,-axis.
Since G(1,n — 1) can be identified with 1-Grassmannian manifold of R™! which is compact,

we can define

2D T
v = ma vihbu'l). 1.48
nmeg(l ,)éf]) ( ’ ) ( )
(X,V,SJ,(IJ,U,C) €supp f

We note that

yZD <mt—3& for some & > 0.

Since the n-th coordinate of any v € supp f does not change when it is projected onto TT, V| is
still bounded above and below by positive constants. Therefore, choosing a maximizing triple

T, u, v for (m ), from (Equation 1.47) we deduce that

%(1 —cosy?P) < —cd(D)((1 — cosy?P). (1.49)
Denoting
y = max ().

(%,v,0),(y,u,C) € supp f

Claim 1.3.9. We have vy < y?P.
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Proof of Claim 1.3.9. For any (x,v,0), (y,u, ) € supp f, consider the two dimensional subspace
T = span{en, 1t — v} where e, = (0,...,0,1). We have TT € G(1,n—1) and i —v = u"—¥'". By

the law of cosines, we get

o —

2(1 = cos (0, v)) = [ — 9P = [@ — 312 = 2@ (1 = cos (ulT, V1))

—

< 2(1 — cos (u;vI),

o —

It implies that for any (x,v,0), (y,u, ¢) € supp f there exists IT € G(1,n— 1) such that (u,v) <

o —

(u,vIT). Therefore, the claim is followed. O

Remark 1.3.10. Claim 1.5.9 and the inequality (Equation 1.49) imply that if D(t) < D < o0
then

T—cosy<1— cosyZD < e—cP(D)t

Now we set

2
N
R = max %
(x,9,0),(y,u,¢) €supp f [UL]
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Suppose that (x,v,0), (y,u, () maximize R at time t, we have

d 2
SR =t || 00— 2w R w1 dzawan + oivio - )
2|V|2 2 2 P
- Uﬂcb(y —2)uw— )z, wym, t) dzdwdn + olu(C — )]
= |u2|2JQd)(x—z)(v-w—Ivlz)f(z,w,n,t) dzdwdn (1.50)
2|V|2 2
+ |u|4J by —2z2) (v —uw-w)f(z,wyn, t)dzdwdn + 20R (0 — ¢ + [ulP — [vP).

Since u, v maximize R, we have v-w—|v|? < [v|(lw]—v|) < 0 for all w € supp f. Hence, the first

term on the right hand side of (Equation 1.50) is nonpositve. For the second term, we have

—_—
w2 —uw-w = |ul? — [uljw| cos (u,w) < 1—cosvy.

~

Note that R is bounded from above and below, hence,

20R(0 — ¢+ uP —[vP) =20R(0 — () + 2|uc|7§(1 ~RP?) S Q+(1-R).

Therefore, there exist positive constants cq, ¢y, c3 such that

%(R—]) <——C1(R—1)+c2(1 —cosy) + c30. (1.51)
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Firstly, we see that the flock diameter grows at most linearly in time,

D(t) <t (1.52)

since
D < A1) (1.53)

and |v| is bounded for all (x,v,0) € supp f. It is not hard to see the relation

A2 S (R—1) 4 (1 —cosy). (1.54)

Thus, to prove an exponential alignment it suffices to show that both (R — 1) and (1 — cosvy)

decay exponentially fast.

We now consider two cases for [3:

Case I: < 1. Our assumption on the kernel and (Equation 1.52) imply that

1

(1.55)

Plugging it into (Equation 1.49) and applying the Gronwall’s Lemma we get

T—cosy<1—cosy?P < e e F (1.56)
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Plugging (Equation 1.55) into (Equation 1.35) and solving for Q we also have

Q< e P (1.57)

Combining these inequalities with (Equation 1.51) and solving for R — 1 we obtain

R—1< e’ (1.58)

From (Equation 1.53), (Equation 1.54), (Equation 1.56) and (Equation 1.58), we have

d—D < ec(n-RI2
dat ™~ '

Solving this ODI gives

D(t) <D < co. (1.59)

Thus, (Equation 1.35) implies that

Q(t) < Q(0)e (D),

Hence, 0(t) aligns to 0, exponentially fast for all (x,v,0) € supp f. Due to finite flock diameter

(Equation 1.59) and Remark 1.3.10, we have

1 —cosy < e c®DIt,
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Putting the estimates for Q and (1 — cos7y) into (Equation 1.51) and solving for R — 1 where
we use the Gronwall’s Lemma, we obtain the exponential decay for R — 1 as well. Therefore,
we arrive at an alignment with an exponential rate.

Denoting by E any quantity which decays exponentially fast. So far we have |0 —0,,| = E(t),
lv—u| = E(t) for any 0, v,u € supp f. By (Equation 1.41) and Lemma 1.3.4, [v4|(t) are bounded,

hence, the following equations hold for [v4|P(t) — Boo:

CvelP — 8uc) = (PP (B0 —[vsP) HE)  ~  (—(val —O) +E)

It follows that |v4[P(t) converges to 0., exponentially fast. Therefore, from the characteristic

equation for v € supp f in (Equation 1.33) we deduce that

d
av =E, Vv € suppfo.

The existence of v, is followed then.

1

Case II: B = 1. In this case, we have ¢(D) 2,
P Y

, hence,

T—cosy<1—cosy?™® < ()%  and

Q < (1) %, for some > 0.

Therefore,

—(R-1)

N

—(R—1)+ (t)™



33

Solving this ODI we yield

R—1< )™

Here we used the fact that e ' x (t)~% ~ (t)~%. It implies that
AS ()2,

and hence,

Thus,

i, 1 _
o (D) 2 ¢(<t>1 /2) > m for some B < 1.

Now we can argue exactly as in the case 3 < 1 replacing 3 by B to reach the conclusions of the

theorem. O

1.3.2 Proof of Theorem 1.1.3

Using Proposition 1.3.3 as a key ingredient we now prove our main result for the Rayleigh-
forced system, Theorem 1.1.3. So, let us we consider the full Liouville equation for a probability
density fN on QN:

N

N N N
ath + Zvi . infN + Z vvi . (fNF]I\j) + Z vvi . (fNRI\I) + Z vei . (fNG)l\j) — 0) (160)

i=1 i=1 i=1 i=1
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subject to the initial condition

N(0) = fFN, (1.61)

where fo:.O.%]R_F and for (X,V,@) = (X],...,XN,V1,...,VN,G],...,GN),

N
ANOV0) = 3 (i — xid (v — W),
1 N
BN (X,V,0) = = > d(xi —x) (6 — 05),
RN(X, V,©) = ovy(6; — [viP).

We introduce a similar notation for the flow-maps. Denote by
O = (x1(t),vi(t), 01 (1) ..., xn(t), v (1), On(1) : QN — ON

the flow-map of the discrete system (Equation 1.13) which is also the characteristic flow of

(Equation 1.60). Then, as before, fN is the push forward of fggN under ®N,
N = oSN,

Let also
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be the characteristic map of (Equation 1.28), which consists of solutions to (Equation 1.33).

The direct product of N copies will be denoted @?N. Then we have
f = Dyftfy, N = OPNEFEN. (1.62)
By the same logic as before the theorem reduces to establishing the bound
LM DN (Xo, Vo) — OEN (Xo, Vo) £ (Xo, Vo) dXo dVo < Cmin{N, t*}. (1.63)

We split the integrand into three components:

1 _
P=5|  XXo Vo,00) — Xt (Xoy Vo, 80) 2 £EN (X, Vo, ©p) dXo dV, dBy,
Q
1 _
K = 5] Vi (Xo, Vo, @) — Vi(Xo, Vo, ©) 2 f?N(Xo,Vo,@o) dXo dV, d©y, (1.64)
JQ
1 _
C=51  10:Xo,Vo,00) — Thi(Xo, Vo, ©0) £EN (Xo, Vo, ©p) dXp d Vo dBy.
JQ

For the potential energy we will use the same inequality as before, (Equation 1.22). For I, we

obtain

d
=8+,

where S is the exact same alignment term that we handled before, but now with the use of

Proposition 1.3.1 and Proposition 1.3.3,

S < ce K21+ PV2). (1.65)
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And S; is given by
N —
52 = JQN Z(Vi — ;) - (ovi(0; — WilP) — ovi(6; — WiP)) F&N (Xo, Vo, ©o) dXo d Vo dBy.
i=1

Let us write S, as follows

N

& = UJ N Z(Vi — ;) - (Bvi — Ovy) £ (Xo, Vo, ©p) dXo dVo dOp
Q% i
N
—a | D =) ) ) £ X, Vo @0) dXo 4V 4
i
=J1 —Ja
Since
_ = _ 1 ~ _2 1 _ ~ _
(Vi — Vi) - (Bivi — Ovy) = (004 0ve = vil" 4 S (v = i) - ({0 = B) (vi + V)],
one has
o N _ _
Ji = 5 JQN ((91 +00)vi — Vil + (vi — Vi) - [(0; — 05) (v +\7i)]) 5N (Xo, Vo, @) dXo Vo dG.

i=1

For J;, since

_ _ 1 _ _ 1 _ _
(Vi = Vi) - Wilvil? =Wl = S (il” + [9ifP) v — il + §(|Vi|2 — WP (il — ),
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and
1 _ _
S (il = W) (wilP — i) > 0,
2
we get
" N
T2 <=5 | S s = PN (o, Vo, ©0) dXa dVo €.
0% g
Therefore,

N
o —_— _
S=]1—]2< ZJ N E (05 — [ilP + 0; — WP vy — wi*FFN (X0, Vo, ©p) dXo d Vo dBp
% g

N
(0} _ ~ _
+2J v (0 B0 (B v N Ko, Vo, B0) dXo dVo Ao, (1.66)
QN 1

Because |0; — [vi[P] < ce™® and [0; — [vi[P| < ce™®, the first integral on the right hand side of
(Equation 1.66) is less than or equal to ce . Then, we apply the Holder inequality and the

boundedness of [v;| and |vi| to the second integral to obtain
Sy < cle™ ™K+ K22, (1.67)

Combining (Equation 1.65) and (Equation 1.67) we get

d
TR ce SUKV(IC12 41 + PV2) 1 KV2H2, (1.68)



Let us now turn to the characteristic parameters term C:

N

d _ 1
ac = JQN ;(91 —0y) - (N % b (xp —xi) (0 — 61)
— || o =y =00y vy, ) dy dvwdn) 15 dXo dVy a0y
=1L+ L+ 15

where

N
JON o NS
N N 1 N
3 - _ 3 3 N
L= 2 B0 ; (% — %) (8 — Bic) — (0 — B1)] g™ dXo dVo dBy,
N ~ 1 N B ~
L=| > (8:—00- (5 ) & —%)(0—0y)
JON k=1

|
Lﬁ
()
<
bedl
&
|
«
=
|
D
S
=
<
=
=
o
«
oL
s
Ey
N—
—
e
z
o
>
o
o,
=
(oW
@
<
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For 1;, we obtain, using Proposition 1.3.1,

N 2

N
1 _
L <2 JQN > Ixg S0 — %) — blxi — )0 — 89| T5N dXodVo @,
i=1 k=1
N /N 2
<2IVolAC LN > (N D i = %) — (% — xa)l10r — ea) f§™N dXo dVo Oy
i=1 k=1
N1 N 2
1
< cech > N > (i — %l + e —m)) 5N dXo dVp dBy
ON T k=1

N
[xi — 7_(i|2 + Z Ixx — 7_Ck|2> f(@)@N dXo dVy dBy

Thus,

L] < ce dtC/2p1/2, (1.69)
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For I3, we have

N N 2
1 o _
L2 <2 _  — % 9 — % — —0)f(y,w,
nE<oe| OISR |, o5 = w)tn =041 (y, vy, ) dy vt
x 5™ (Xo, Vo, ©0) dXo d Vo dOy
NN 2
) i % V(0. —0.) S _A.
c| | MIOILSIREE) J, o=y —00r(y, win, Oty dwan

x fEN(X, V, 0, 1)dXdVdO
2

N
1 _ N _ _ _ _
20N 120D bl =)0 —0) = | bl —y)(n— B1)f{y, ) dy v
k=1
x fEN(X, V, 0, t)dXdVdO
4 _
< 2NS sup Ib(x —x)(0 —0")* < cCe .

(x,9,0),(x’,v",6")€supp ft

Here in the penultimate step we used again (24, Lemma 3.3). Therefore,

13| < ce™dC'/2, (1.70)

Combining the three estimates for Iy, I, I3, we obtain

%c <ce (1 PV, (1.71)
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Settingp = 1+PV2 k = K'/2,q = C'/2. By (Equation 1.22), (Equation 1.68) and (Equation 1.71)

we obtain the system of ODIs:

p <k po=1,
k <ce®(p+k)+cq, ko=0, (1.72)

q <cep, qo=0.

Claim 1.3.11. For any nonnegative solution (p,k, q) to (Equation 1.72), there exists a constant

C depending on ¢, d such that

p<1+Ct:, k<Ct z<Cmin{l,t}. (1.73)

Proof of the Claim 1.3.11. Fix ¢,7T > 0 to be chosen later. We have

4 (ep?) < 2epky < Ve(ep? + 1),
1
%kz < ce ¥ (2pk + 2K?) + 2ckq < ce %t \f(spz +K2) + 2K + \%(pz + 1q?),
cy/Te %t
4 (1q?) < 21cetpq < \(/E(epz +1q%).

It implies that

%(spz + K24+ 1q?) < (T, e)e P (ep? + K2+ 1q?) + <ﬁ + %) (ep? + K* +1q?).



Applying Gronwall’s lemma we get

ep+k2+1q? < eexp <<ﬁ+ %) t+ cle,v) (1— e_f’t)> < eexp <<\/E+ %) t+

5
Now choosing ¢ = 82/4,T = 4c?/8%, we obtain

p < eét/Z.

Plugging it into the third equation in (Equation 1.72) and solving for q we have

t
q< cJ e /2 ds < Cmin(1, t}.
0

Substituting p, q into the second equation in (Equation 1.72) we have

d
ak < ce Mk + ce®2 4+ Cmin(1,t).

It implies that

k < Ct.

Hence, by the first equation in (Equation 1.72) we get

p<1+Cth

C

(

&)
5

42
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The Claim 1.3.11 follows that

P<CtY, K<Ct), C<Cmin{l, t?.

On the other hand, in view of the global estimates on the support of the flock, P < CN. Due

to the alignment we also have KL < CN. Therefore,

P + K +C < Cmin{N, t*},

as desired. O



CHAPTER 2

CONTINUOUS MODEL OF OPINION DYNAMICS WITH

CONVICTIONS

(Previously published as V. Nguyen and R. Shvydkoy, Continuous model of opinion dynam-

ics with convictions, Discrete Continuous Dynamical Systems, 43(11):4010-4026, 2023.)

2.1 Introduction

In this chapter, we study regularity and long time behavior of solutions to the following

transport equation

Ot + Oy (u(pp) =0, (2.1)

where u = u(t,y,0) is a measure on Q = R, x R, for each t > 0, and

u(p) = 9y(Wxp+oV), (2.2)

1

1
2
p+2y

1
Wly) = —3v% V(y,0) = iﬁyz — P2, (2.3)

Here, o and p are positive parameters. The variable 0 can be thought of as a parameter as well,

however, note that the convolution W * 1 couples all the measures together across the family.

44
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The motivation for this particular model is twofold. First, it represents the kinetic counter-

part of the corresponding discrete dynamical system:

1
Ui = NZ(Uk_Ui) + 0(6; — yP)ys, (2.4)

N
k=1

where 0;’s are constant parameters. In fact, the empirical distributions

N
1
UN = N Z dg, ® 6yi(t) (2.5)

i=1

solve (Equation 2.1) in the weak sense if and only if y;’s solve (Equation 2.4), and formally the
mean-field limit pN — p yields a solution to (Equation 2.1). The discrete system (Equation 2.4)
was derived in (22) as the effective limiting dynamics of the speeds y; = [vi| of agents governed
by the corresponding alignment model with all-to-all communication and Rayleigh friction/self-

propulsion force

_ 1
N

Mz

Xi=vi, W (Vi = Vi) 4 (61 — vilP v (2.6)

-~
Il

1
When all velocities v; belong to a sector of opening less than 7, the vectors v; will dynamically
align themselves along one direction vi ~ y;9, where y; = |[vi|, and the evolution of y; is governed
by (Equation 2.4) up to an exponentially decaying force.

The system (Equation 2.6) is a very important example of a collective behavior model of
Cucker-Smale type that was introduced in (9; 10) and studied under this particular forcing

in the earlier works (16; 22; 8; 27). Kinetic limits in the context of forced systems including
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potential interaction and friction/self-propulsion were established in (6; 5; 3; 7). The first order
conservation models of type (Equation 2.1) appeared in the context of aggregation models in
the works of Topaz et al (35; 36). All these works correspond to the non-parametric case,
i.e. 0 = const, where friction force appears. The variable 0 case, beyond the work (22), was
considered more recently in (27) where propagation of chaos with quantified rate was established
for sectorial solutions, as described above, to the full Cucker-Smale system.

Our second motivation for this study comes from interpretation of the equation (Equation 2.1)
as a continuous model of opinion dynamics. To put it in prospective of a vast existing litera-
ture let us compare it to several related models. The classical Hegselmann-Krause model (20)
focuses on exchange of opinions only under local environmental averaging protocol — one that
is based on interactions of agents with close views. A more elaborate protocol of opinion up-
dates based on randomization of interaction schemes between groups were studied in works of
Galam, see (13) and references there in. Equations (Equation 2.1), (Equation 2.4) belong to a
class of models that incorporate ‘conviction’ parameter 8 whose role is to pull the opinion of an
agent to its value while remaining unchanged. As far as we can trace such models, also called
models with ‘stubborn’ agents, appeared first in the work of Friedkin and Johnsen (12) and
later became a staple in many studies on opinion dynamics, see for example (2; 14) and liter-
ature therein. In those works, however, the conviction pull is defined by a linear force, which
in our notation would correspond to a constant multiple of 8; —y;. The model proposed here
uses the most basic all-to-all communication rule, but it incorporates the nonlinear conviction

force. Phenomenologically it describes the effect of strengthening the pull towards conviction
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as the latter becomes more extreme. Such a model is necessarily not Galilean invariant and is
fully non-linear, which makes the analysis of an ‘agreement’ or even its existence a challenging
problem.

For the discrete variant (Equation 2.4) the problem was addressed in (22) where the model
was interpreted as a non-cooperative game in the sense of Nash (23). The limiting state of
opinions is characterized as a Nash equilibrium — an agreement deviation from which is of
no benefit to any player, although may not necessarily be the most optimal value to anyone.
Clearly, such an agreement is not expected to be a perfect consensus due to adherance to
convictions. The existence, uniqueness and stability of the equilibrium was proved in (22)

using the Brouwer topological degree theory.

Theorem 2.1.1. For any positive set of parameters (01,...,0n,0) € RL\L‘ X Ry there exists a

*

unique stable Nash equilibrium y* = (y7,...,yy) € RE of system (Equation 2.4) relative to
payoffs
1 1

1 ) O
mw)=0<fmﬁp+2£“>2wyf, U:NE Yj- (2.7)
j

Any solutions with positive initial data will remain positive and converge to y* as t — oo.

Moreover, if 0; = 05 then yi = y;.

The main difficulty in establishing the result is that the natural gradient structure of
(Equation 2.4)

y=-Vo(y)

involves energy @(y) = Z{L pi(y) that is not globally convex.
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The purpose of this present study is to recreate a similar result for the kinetic model
(Equation 2.1). First, we justify it as the mean-field model of (Equation 2.4) by establishing the
limit N — . Such analysis is rather standard for first-order models, which is done by proving
a general weak-Lipschitzness of the solution map py — ¢ with respect to the Wasserstein-1
metric, (1),

W] (Ht»Vt) < CeCtW1 (HO)VO)) t> O)

see Section 2.2. However, the details include a quantitative maximum principle of Lemma 2.2.2
that will be used later in the paper. So, we present the argument in full.

Our primary focus will be on the analysis of the Nash equilibrium of the continuous model
(Equation 2.1). To state the main result let us fix some notation. Let us observe that the
0-marginal given by

dﬂ(e)t) :J R dH(U,9>t)> (28)
yek+

is conserved %7{ = 0. This is a reflection of the principle that convictions do not change. By

the disintegration theorem, see (1), for m-a.e. 8 € R there is a unique family of probability

‘slicing’ measures {pLe}ee]R+ such that p = p® ® dn(0), that is,

J@(y,e)du(y,e)zj J o(y,8)du’(y)dn(0), Vo € Co(Q). (2.9)
Q R, JR,

Each measure pu® represents distribution of opinions of agents that share the same conviction

0.
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Our main result states that each of these slicing measures approaches a mono-opinion state,
i.e. a Dirac measure at a fixed point g(0) for some smooth strictly increasing function g. In
other words,

He — 8g(0) ® d7t(0), t — oo.

To put it formally we assume that our initial measure is located within a box compactly
inside Q:

supp Ho C RO = [ymin,ymax] X [Gmin) emax]) Yminy 6min > 0. (210)

Theorem 2.1.2. Let u be the measure-valued solution to (Equation 2.1) with initial data sat-
isfying (Equation 2.10). Then there exists a function g € C([Omin, Omaxl) strictly increasing
such that

sup. Wi(uf,840) < Ce ¢, t>0, (2.11)
Ocsupp

where Cyc > 0 depend only on wy and the parameters of the model. Moreover, under the

assumption
] emax
Opmin > p;r or gt <pHl. (2.12)
the map @t — g s Lipschitz,
sup  |g(8) —g(6)] < CWi (m, 7). (2.13)
ee[eminyemax]

In particular g is unique for each Tt.
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Structurally, the equation (Equation 2.1) can be considered as a fibered gradient system in

the sense of (29) where the fibers are parametrized by convictions 0 and the free energy is given

Wik —y)duly, O)dutx,m) — o | Vey,0)duly,0).

2 JRixRi

The equation can be written as a gradient dynamics
atu = _ag(u))

where 0 is understood as a fibered variant of the Fréchet subdifferential relative to a prop-
erly defined fibered Wasserstein distance. Without getting further into details one can obtain
directly the following energy dissipation law

d J P
—E&=— [u(p)~dply, 0).
dt R+XR+ y

The law demonstrates perpetual descent of the solution down the energy surface and suggests
convergence to a local minimum. The general results of this nature were established in (29)
under a properly formulated convexity condition on the energy. However, just as in the discrete
case, such convexity is not always true in our settings. Therefore, the statement of Theo-
rem 2.1.2 does not directly follow from the theory developed in (29). Our method is based on
the Lagrangian approach, which involves detailed analysis of asymptotic behavior of character-

istics of (Equation 2.1). Let us note that in the discrete case the uniqueness of the limiting
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state is unconditional. Removing assumptions (Equation 2.12) for the kinetic model remains

an open issue.

2.2  Well-posedness and mean-field limit

In this section, we will prove the existence of measure-valued solutions to the equation
(Equation 2.1). First of all, let us introduce some notations and definitions. Let Q = R% and

denote Py(Q) the set of probability measures on QO which have compact support in the interior

of Q.

Definition 2.2.1. Given 0 < T< o0, a map n: [0,T) = Po(Q), t — W, is called a measure-

valued solution to (Equation 2.1) with initial data o if it satisfies the following conditions:

i) W is weakly® continuous,

ii) For any @ € CF([0,T) x Q) and 0 <t < T,

t
J @(t,y,e)dut(y,e)zj @(o,y,e)dm(y,ewu 105 + 1 dy ol diss (y, 0) ds.
Q Q 0JQ

Let us note that we do not make any specific assumptions about the class of measures we
consider as solutions. In particular, p is purely atomic, see (Equation 2.5) then it is easy to
check that the definition of a solution is equivalent to the ODE (Equation 2.4).

To make further notation simpler let us observe that by making the change of variables

y— cr%y, 0 — o0, - O'H_%p,, (2.14)
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we can scale out the parameter o from the equation altogether. So, from now on we can assume
that 0 = 1, and be mindful that all the constants that appear later eventually depend on the
original parameter o.

If w:[0,T) = Py(Q) is a measure-valued solution to (Equation 2.1) with initial data o, by

the classical transport theory, u is a push-forward of yy along characteristics (Y, ®):

SYEU O = | (V- Vduoly,0) + YO V), YO0 =y, (21
Q
L Olty,0=0, ©(0,y,0)=0. (2.16)

Note that © is not changing in time, so in the equation (Equation 2.15) we can replace © by
its initial O and view 0 as a parameter.

The local well-posedness of the system (Equation 2.15) - (Equation 2.16) follows from the
standard fixed point argument for integro-differential equations and local Lipschitzness relative
to continuous maps (Y, ®) of the right hand side. Global well-posedness will follow as soon as
we establish a priori bounds on the support of Y.

Our standing assumption on the initial support of py will always be (Equation 2.10). Let
us denote

Ymax(t) = maXY(t) ')) Ymin(t) = l’IliIlY(t, )
Ro Ro

Note that Ymax = Ymax(0) and Ymin = Ymin(0).
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Lemma 2.2.2. For any solution Y to (Equation 2.15) on a time interval [0, T), we have for all

t<T,

emaxygnaxepemm(t (2.17)
T O max + Yhnax (ePOmaxt — 1) :
emin p epemin‘t
Yoo Yunin (2.18)

> . .
— Omin + yﬂlin(epemmt —1 )

Proof. Evaluating (Equation 2.15) at a point of maximum on Ry, using Rademacher’s lemma

(see (31)), we obtain

d _
aYElaX = pYEla)]( JQ(Y, - Ymax)duo (y/a 9/) +Yg1ax(e - Yglax)
<0
< PYhax(Omax — Yhax)

The right hand side of (Equation 2.17) solves the above equation exactly. So, by the classical
comparison principle, we obtain (Equation 2.17).

Similarly,

%erin = le?nTr] J (Y, - Ymin)dFLO(y/a 6/) +Yr€11n(e - Yglin)
Q

>0

> pYEﬂn(emin - Yrrilin)'

The comparison principle implies (Equation 2.18). O
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The lemma shows that on any finite time interval the characteristics will not leave QO and in
fact the image Y(t, supp po) will be compactly embedded in QO and remain uniformly bounded
a priori. Consequently, by extension, the system (Equation 2.15) - (Equation 2.16) is glob-
ally well-posed. By the push-forward transport, there is a global measure-valued solution to

(Equation 2.1).

Theorem 2.2.3. Given any measure Wy € Po(Q) with (Equation 2.10) there exists a unique
measure-valued solution to (Equation 2.1) with initial condition Wy and such that supp pu C Q

remains bounded and bounded away from 0Q uniformly for all times.

Let us now show continuity of the map py — ¢ in weak topology, which is the basis for

justification of the mean-field limit.

Lemma 2.2.4. Let u and v be two measure-valued solutions to (Equation 2.1) with o, Vo

satisfying (Equation 2.10). Then for any t > 0 one has

W] (H't) Vt) < CeCtWI (U'O) VO))

where C,c > 0 depend on the initial condition and the parameters of the model.

Proof. Denote L := L*°(Ry). Let us also denote by Y the characteristics of p and by Z the

characteristics of v.
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In what follows, C and c are constants which are varying line by line. By the definition of

the Wasserstein distance, we have

Wil ve) = sup ¢(y,0)dp(y,0) — R ¢(y,0)dvi(y, 9)‘

leollLip<1 VO

— s || oY, 0)duely, 0) - cp(z,e)dw(y,e)‘
lellLip<1 MO Jo

= sw || @%0)duoly,8) — | @(¥,0)dvely,0) + J [p(Y,8) — ¢(Z,8)]dvo(y, 6)
lellLip<1 1JQ Jo Q

< (14 [9Y o)W (10, Vo) +j Y — Zldve(y, 0)
Q

< (14 [[VYloo)W1 (10, Vo) + 1Y — Z]|oo- (2.19)

The proof reduces to the estimation of |VY|/s and ||Y — Z||co-
Taking the gradient

VY = (3,Y,00Y)
of (Equation 2.15) we obtain

d
VY= -VYHBVY+(0Y) — (p+ DYPVY.

Evaluating at a point where || VY| is achieved, by Rademacher’s lemma, we have

d
i VV oo < =1 =0)[[V¥]loo — (P + DYV Yoo + [[Y][co- (2.20)
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By (Equation 2.17),

d
= Yoo< Yoo )
Gt VVlleo < ClIVY]loo +C

and hence,

VY|l < Ce . (2.21)

Now let us compute the derivative of ||Y — Z||oo. We have

d !/ ! /! / ! !
Y2 = | V= Yiduoly',0) - | (2= Z)avoly', )
F(O—YP)Y—(0—2P)Z
:J Y’duo(y’,S’)—J Y'dvo(y’,ﬁ’)+J Y'dvo(y’,e’)—J Z'dvo(y’,0")
Q Q Q Q

+(0—=1)(Y—2Z)— (YPF! — zpF1),

Evaluating at a point of maximum and noting that YP+! — ZP*1 = (p +1)YP(Y — Z) for some Y

between Y and Z we obtain

d -
illY = Zlleo < VYllooWr (1o, Vo) + (10 =1+ DY = Z|loo — (p + DYPIIY = Z[|oo

< IVY oo Wi (1o, Vo) + Cl|Y — Z|| o

Combining with (Equation 2.21) and by Gronwall’s lemma, it implies that

1Y = Z||oo < Ce“Wi (10, Vo). (2.22)
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where c is a constant depending on ¢ and the supports of Wy, vy with respect to 6. Therefore,

plugging (Equation 2.22) and (Equation 2.21) into (Equation 2.19) we obtain
W] (Ht) Vt) < Cethl (HO) VO)

which concludes the lemma. O

For any N € N, if {(yj, 0;)}i—1,...N is a solution to the system (Equation 2.4) with the initial

conditions y;i(0) = y?, 0;(0) = 0y, then

N
1
N ._
He = N Z] 6yi(t) ® de;,

is a measure-valued solution to (Equation 2.1) with the initial condition

N
1
i=1

So, if uON — o weakly, then by Lemma 2.2.4, u — w, for any t > 0. Which justifies the
weak approximation by empirical measures.

This method can be used to give an alternative proof of global existence for (Equation 2.1)
without the use of general characteristics Y and simply based on the fact that the discrete

system (Equation 2.4) is globally well-posed.
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Another proof of Theorem 2.2.5. Let us pick any weak*-approximation of py by empirical mea-
sures

N
by = kafiyg ® dg,, — Ho-
k=1

Let

N
Thiss Z Mydy, (1) @ Ooy -
k=1

Since pN is a measure-valued solution to (Equation 2.1) with the initial data uoN we apply

Lemma 2.2.4 to get
W](HtN»HtM)éceTWﬂHoN»HSA)) for N)M>O) t< L

Hence {ul}n is weakly*-Cauchy in the complete metric space (P, (Q), W;), and consequently

there is a limit uN — p € P4 (Q), and moreover

Wi(uty ) < CWi (il o)y for N> 0, t<T. (2.23)
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Now we prove the weak*-continuity of the map t — ;. Note that for € C§°(Q) the
sequence {fﬂlb(y,e)dpf(y,e)}N is uniformly Lipschitz continuous on [0, T]. Indeed, for t €

[0, T) and At > 0 with t + At € [0, T] we have

[ 0000010 9,00 = [ w0100 < [ Y+ 801,00 = v (0),0)| 3,0
Q Q Q
<Pl | ¥V A1) =Y (0)]du ,0)

<CAt,

where YN denotes the characteristics of uN. For the last inequality we used the uniform Lips-

chitzness of {YN}y on [0, T]. Letting N — 400, we have

U w(y)e)dutJrAt(y)e)_J w(y)e)dut(y)e) gCAt)
Q Q

which implies the weak*-continuity of the map t — 1.
We will show that this p is a measure-valued solution to (Equation 2.1) with the given
initial .

Because pN is a measure-valued solution, for any test function ¢ € Ce([o,T) x Q),

t

J o(t,y,0)du (y, 0) =J @(o,y,e)dub“(y,ewj
Q Q

J Qs +uloyeldul (y,0)ds, (2.24)
0JO

where

ug = JQU’dusN (y',0") =y + (6 —yP)y := PN(s) + F(y,0).
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All linear terms weakly converge to the natural limits. Since F is a fixed continuous function

we also have

t t
J J Fby(pdpy(y,ﬁ)ds—>J J Foy@dus(y,0)ds as N — oo.
0Ja 0Ja

Note that the moments PN(s) is just a sequence of numbers for which we have, by (Equation 2.23),

IPN(s) = P(s)| = Uﬂy’(dus’\’(y’,e’) —dus(y'>9'))’ < (R, 1) < ST (g ko) — O.

So, PN — P uniformly on [0, T). Consequently,

t t
“ PN(s)aycpduL“(y,e)dHH P(s)0y ds (y, 0) ds.
0JQ 0JO

It follows that p satisfies (ii). O

2.3 Existence and uniqueness of the mono-opinion state

Let n be a measure-valued solution to (Equation 2.1) with the initial py. Let 7 be its
time-independent conviction marginal (Equation 2.8).

Let us derive the equation for p®. By Definition 2.2.1 and (Equation 2.9), for any ¢ €
C3°([0,T) x Q) and 0 <t < T one has

JR+ Lh olt,y, 01 y)an(e) = |

J (0, y,0)dpd (y)dn(6)
R, JR,

t
F ]| e wdyelduydn(e) ds.
0Jr, Jr,
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It implies that for m-almost every 0, the probability measure pu® is a measure-valued solution

with the initial ug to the equation
dep® + 0y [uue] =0, (2.25)

where

u(t,y,0) = JQ(z—y)du‘s(z)dn(n) -y

Note that the family of equations are all coupled through the velocity u, but otherwise represent
transport of each individual slicing measure 1®. The characteristics that transport p®, denoted
Yo are nothing but Yg(t,y) = Y(t,y,0) as defined by (Equation 2.15). We will view them,

however, as individual trajectories satisfying the coupled system

d

Yo = Jﬂh Lh (Y4, — Yo)dud (y")dre(8") + (6 — Y2)Ye. (2.26)

In particular we will derive an individual comparison bound from below as an alternative to

global (Equation 2.18).

Lemma 2.3.1. For any 0 € [Omin, Omax] such that © > 1 one has

yp(e_nep(e—wt
(0—1) +yp(er®Tt 1)’

Y8 (t,y) > vVt >0, Yy > 0. (2.27)



62

Proof. To achieve (Equation 2.27) we decouple the system (Equation 2.26) by ignoring the

entire coupling term

J J Yg,dud' (y")dm(8') > 0.
R, JR,

So,
d YP>p(0—1—-YP)YP 2.2
ae/P(__e)e- (2.28)
The lemma follows from the comparison principle. O

Let us note that in principle the statement of the lemma holds for any 0 — 1, but it is most
meaningful when the parameter is positive in view of the universal support from below for all

characteristics (Equation 2.18).

2.3.1 Mono-opinion state

In the next step we will show that for each 8 € supp 7, the slicing measure u® will converge

to a Dirac measure in Wasserstein distance with different rates depending on 0.

Lemma 2.3.2. Let u be the measure-valued solution to (Equation 2.1) satisfying (Equation 2.10)
and 1 being the conviction marginal (Equation 2.8). Then there ezists a function g € Lip[Omin, Omax]
such that

sup. Wi(nf,840) < Ce ', t>0, (2.29)
O€supp

where C,c > 0 depend only on Yy and the parameters of the model.



63

Proof. Differentiating the characteristic equation (Equation 2.26) we obtain
0¢0yYe = (0 —1)0yYe — (p + 1)Y§ 0y Ye. (2.30)

In what follows we denote L®® = L*°(Ry). By Rademacher’s lemma, at a point of maximum y

such that (y,0) € Ry, we get
d p
10y Yolloe = (6 — 1113y Yolloo — (p + 1Y 3, Yol . (2.31)

Let us first consider the stable case when 8 — 1 < ¢y, with ¢y > 0 to be determined later.
Using (Equation 2.18) we find that Y§ > co, which is determined only by the initial condition

and the parameters of the model. Plugging in (Equation 2.31), we obtain

d
19y Yolloo < €0ll3yYolloo — (p + T)colldyYolloo < —20l13y Yoll (2.32)

by setting eg = w.

For the unstable case 6 — 1 > g9, the inequality (Equation 2.27) implies that

Therefore, in this case we have

Y§ > 0—1—cre (2.33)
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where c1, ¢z > 0 depend only on the initial condition and parameters of the model. Hence,
100 Yollo < (0= 10y Yellow = (p-+ 1) O — 1 =1 21) [0y Yoo < (—peo + 167 2) [0,Yolcc
In either case we obtain, by Gronwall’s lemma,
9y Yollreo < c3e™ 4t (2.34)
Consequently,
[Yo(y,t) — Yo(y', t)] < cse ", for any (y,0), (y’,0) € Ro. (2.35)

We can see that the characteristics are squeezing as t approaches infinity. Since the trajectories

are also precompact, for each 0 € [Omin, Omax] there exists g(0) such that

sup  |Yo(y,t) — g(0)] < cse .
ye[yminyymax]
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We compute

Wil ge) = s || olyldd(v) = | owsyo )

lellLip<? ' IR+

= s [ elo)diiy) — olg(0))

llellLip<t ' IR

= s || (oY)~ @(9(68)))du(y)

lellLip<? ' JRy

The statement (Equation 2.29) follows.
It remains to show that g is a Lipschitz function on [Opin, Omax). Indeed, computing the

evolution of 0gYy we obtain
ataeYe = Ye + (9 —1— (p + ])Yg)aeYe

Note that Yg remains bounded on Ry by Lemma 2.2.2, and the remainder of the equation has

the same structure as in (Equation 2.30). So,
d —cat
a”aGYGHoo <1+ (—c2 + e300 Yo |oo-

We obtain

HaeYQHOO < C.
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Consequently,

|Y(y) e)t) - Y(ya elat” < C|9 - e/|

Letting t — co we obtain

g(0) —g(6")] < Cl6 — 07,

This finishes the proof. O

2.3.2 Uniqueness and stability

The uniqueness of the limiting state follows from the lemma below and holds under either

of the two conditions on parameters

1 eI'I‘la,X
Omin > i or

P 9min

<p+1 (2.36)

Note that under the change (Equation 2.14) this translates into condition (Equation 2.12).

Lemma 2.3.3. Let u and [ be two solutions to (Equation 2.1) starting in a box Ry and sharing
the same conviction measure 7. And suppose either of the assumptions (Equation 2.36) hold.

Then for any t € [0,T) one has

where c1,¢3 > 0 depend on the initial data and parameters of the model.
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Proof. In what follows L := L°([Ymin, Ymax]). Denoting Yo, Vé the characteristics of [i® starting
from y,y’ respectively. For fixed 6 € suppm,

Wi i) = s || et - | ety

”(p”Lipg‘l R+

= s [ oot | (p(\?e)dﬁg(y)‘

llellLip<T R,
= sup J <P(Ye)du8(y)—J @(Ye)dﬁg(yHJ [9(Ye) — @ (Yo)ldiig (y)
lollLip<T VR4 R R,

< 19y YelleWn (1S, 19) + [ Yo — Yol|roo-

We proved the uniform exponential contraction for ||dyYel[i~ in (Equation 2.34).

Let us now focus on || Yg — Ygl|rec. We have

d*We — Yo) :J

U Yé/du?)’(y’)—J %dﬁ%’(y’)} dr(6’)
dt R+ R+ IR-%—

F(0—1)(Yo—Yo) — (VI = Y21)
=J ” Yé/(dug'(y’)—dﬁg'(y’))JrJ
Ry IR,

+(0—1)(Yo —Yo) — (p + V8 (Yo — Vo),

where Ve is between Y and \?e‘ Denote

D(t)= sup  [[Yo— Yolle.
ee[emimemax}
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At a point of maximum we obtain using (Equation 2.34),

d ) , .
—D < cze ™t sup Wi(ud, i§) + 6D — (p + 1) min{Y}, Y3}D.
dt O€supp

Using (Equation 2.33),

d
—D<cze ™ sup Wi(ud, 1) +0D — (p+1)[0—1—cre 2D
dt Oc€supp

=3¢ sup Wi(ug, iQ) + [p+1—p0 +cre 2D
Ocsupp

The result follows provided 0, > ppi]. Alternatively, using the lower bound (Equation 2.18),

d 5 _
—D <cze ™ sup Wi(pd, 1) + [Omax — (p + 1)Omin + cre 2D
dt O€supp

and the result follows provided %‘:ﬁ <p+1 O

Under the stability assumption (Equation 2.36) the limiting states are also stable with re-
spect to perturbation of convictions. So, a small change even in the weak topology of conviction
marginal 7t results in a small change in the limiting mono-opinion state. This can be proved
via a minor modification of the argument above.

First, since we will be comparing slicing measures that are technically defined not on the

same set let us adopt a convention that if 0 ¢ supp7r, then p® = 0.
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Lemma 2.3.4. Let p and pt be two measure-valued solutions to (Equation 2.1) with the con-

viction marginals T and T, respectively, and parameters satisfying (Equation 2.36). Then for

any t € [0, T) one has

sup  Wi(u, i) <cre?t  sup  Wi(ug, i9) + cze” Mt + esWi (m, ),
ee[emin)emax] ee[eminyemax}

where ¢; > 0 depend only on the initial condition and parameters of the model.

By sending t — co and using that fact that

sup  [g(0) —g(@)l=  sup  Wi(84(0), 85(0)),
ee[eminyemax} ee[emin)emax]

we obtain the statement (Equation 2.13) of Theorem 2.1.2.
Proof. We only need to focus on estimation of D(t). We have

d . ) o 3
—(Yg —Yp) :J J Yo dud (y)dm(e’) —J J Y4 did (y')dm(e’)
dt R, JR, R, JR,

F(0—1)(Yo—Yo) — (VBT —¥2T)
- JRJ Y} dud (y))dn(6') — J

N R
|
Ry

]| Vo an(e) - |
R, JR, R,

R
| Vo tyanon - |
R4+
| Yoam anen
R,

+(0—1)(Yo—Yo) — (p+ 1)VE (Yo — Vo).
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Hence,

d ~
—D<cze ™ sup Wi(pd, d) + J G(0")[drt — dA] + 0D — (p + 1) min{Y}, Y5ID,
dt ee[emin)emax} R+

where

G(0) ::J

) \?e(y)dllg(y)ZJ (Yo(y) — §(0))diid(y) + §(6).

R4

Since the first term is bounded exponentially, and g € Lip, we have
|| 6O m—am < creest o+ gl .
Rt

Coming back to the D-equation and estimating the rest of the right hand side as previously we

obtain
d _ 5 _ . -
7D <ce Gt sup O Wi(pd, 1) + cre 2t + 5| g||ipWi (71, ) — ceD.
t ee[emin)emax]
The result follows. O

2.4 Properties of mono-opinion states

The results of the previous sections establish that for each conviction measure there is at
least one (and in some cases only one) limiting distributions of opinions g € Lip[0min, Omax]-

Technically it makes material sense to only consider values of g on the suppm, but to study
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analytic properties of g it will be convenience to make full use of its existence on the closed
interval [Omin, Omax].

We have the following equation for g:

JR g(m)dr(n) + (6 —1)g(0) — g**1(0) =0, VO € [Buuin Ounc- (2.37)

Although it is difficult to find the function g explicitly, solutions to (Equation 2.37) exhibit

certain universal features.

Remark 2.4.1. One instance where g is computable is when p = 1. Indeed, let
ai= | glmdnin),
R
then by (Equation 2.37) we have
g +(1-0)g—a=0.
This second order equation always has a positive solution

g= (8—1+ (1—6)2+4oc>,

N —

for any parameter o« > 0. Note that this expression is still implicit as « depends on g. But

whatever o is we can see in particular that g is strictly increasing and convex.



Let us discuss these properties more systematically.

First, let us consider the extreme values

OJmax — Max 9(9)> Jmin = min 9(6)

miny max} min)emax]

We claim that

ernin < glr)nm) gﬁlax < ernaux-

Indeed, the equation (Equation 2.37) can be rewritten as

j [g(n) — g(8)]dn(n) + 8g(8) — g1 (0) =0, 0 € [Brnin Bumasl.
Ry

Let 0 be the point such that gy, = g(0). Since

JR [9 (T]) - gmin]dn(n) = O)

by the equation (Equation 2.39), we have

égmin — gp-H < O

min X

Therefore,

DI

emin <0< gfnin-

72

(2.38)

(2.39)
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Similarly, we have

g?nax < Omax-

By (Equation 2.37), we also have that

(0—1)g(0) —gP*1(0) <O, VO € [Ormin, Omaxl-

Thus, for each 0 € [Oyin, Omax) the following estimate holds true

gv(e)=0—1. (2.40)

A more refined estimate will be obtained next.

Lemma 2.4.2. Let g be a solution to the equation (Equation 2.37). Then g € C®([Omin, Omax]),

g is strictly increasing on [Omin, Omaxl, and for each © € [Omin, Omax],

g°(0) = 0+ m([6,00)) — 1. (2.41)

Proof. Since g is Lipschitz we can conclude monotonicity from the sign of the derivative,

(2.42)

10+ (p+1)gP
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If 1 > 0, then using (Equation 2.38), it is clear that the denominator is positive, and so g’ > 0.

If 1 < © we have by the rough bound (Equation 2.40)
1—0+(p+1)g" =2pO-1)>0.

This establishes monotonicity. Also, since the denominator of (Equation 2.42) is always posi-
tive, by bootstrapping this implies g € C*([01in, Omaxl)-

Combining monotonicity with the equation (Equation 2.37) we obtain
| g(@rantn) — g(0)+ 10— gPreNg(e) <o,
{n>0}
Since g(0) > 0 for all © € [Omin, Omax] we must have
J dnt(n) —1+06—gP(0) <0.
{n>0}

The estimate (Equation 2.41) follows. O

Let us discuss convexity. The second derivative of g(0) is given by

" 9/“ —0+ (P—i— ])gp] —9[—] _|_—p(p_|_ ])gp—lg/]
T =0+ +1)g"2
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and using (Equation 2.42) to replace g’ we obtain

" __ 2(1— 6)9 + (2+p _pz)ng
a 1—0+(p+1)gPl3 . (2.43)

The denominator is always positive, and we note that in view of (Equation 2.40) the numerator
is also positive regardless of the range of 8 provided p < 1. So, g is globally convex in this case.
In other cases, the convexity may change. In fact for p = 2 we have
y_2(0—80)g
1—0+3g%3°
So, 6 =1 is an inflection point.

For p > 2, the solution has no more than one inflection point. This can be seen by solving

for g” = 0 in (Equation 2.43). We have

2(1-0) = (p*—p—2)g".

The left hand side is a decreasing function and the right hand side is increasing for p > 2. So,
the two can meet at most at one point.

The exact value of o depends on g and since the solution is in general not possible to
compute explicitly we present in the figure below solutions to (Equation 2.37) with several

‘passive’ choices of « for illustration.



76

a=0.1 a=0.2 a=0.3
9 g 4
07 08
i 0.8
06 0.7
0.7
05 06
06
04 0.5
03 0.4 05
0.2 03 0.4
P . S . . . . S
a=04 a=05 a=06
g 4 g
0.9
0.9
0.90F
0.8
08 0851
07 0.80F
0.7 0.75F
06
0.70F
06
05 0651
0.60F
) . L . . . . _ e
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a=08 a=09 a=1
g g g
1.00
0.95
0.95-
0.90 - 0.951
0.90
085 0.90
0.851
0.80
0.851
075 0.80
6 F 0 0

Figure 1: The behavior of g(0) for the case p = 6. Here 0 € (0,1] and « change in (0, 1] at

discrete steps of 0.1.



CHAPTER 3

EXPONENTIAL RELAXATION TO EQUILIBRIUM FOR A KINETIC

FOKKER-PLANCK-TYPE EQUATION

3.1 Introduction

In this chapter we consider a kinetic Fokker-Plank-alignment equation which is derived from
general environmental averaging models. More specifically, let O C R™ be a periodic domain.
An agent is featured by its position x € Q and its velocity v € R™. The density of agents
who has position x and velocity v at time t > 0, denoted by f = f(x,v,t), is governed by the

following equation:
Of +v - Vif = sp[AF+ Vy - ([(v—[ulp) + FW)]F)], (3.1)

subject to the initial condition

f(X, vV, 0) = fO(X) V)-

Here p and u are macroscopic density and macroscopic velocity defined by

p(x) = JRn f(x,v)dv, up(x)= JR vf(x,v) dv. (3.2)

n
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The family of pairs (o, [],) with dk, := s,dp satisfies the conditions for a material environmen-

tal averaging model introduced in (33). The Rayleigh-type friction and self-propulsion force F

is given by
o(fvlP —1)v
Flv)]= ——— 3.3
T 33
where 1 : Ry — R, is a smooth, positive and increasing function satisfying
n(z) =1 if z < R for some R > 0; and n(z) ~ z9 for some q > p as z — oo. (3.4)

Our goal is to show that the solution of (Equation 3.1) relaxes exponentially fast toward its
equilibrium. We utilize the Desvillettes-Villani’s method (see (11; 38)) for collisional models to
modify the entropy and establish a global hypocoercivity. Without additional force, Shvydkoy
gave the first result on global hypocoercivity for this type of model in (32). In that paper, the

averaging operator is given by

¢ * (up))

[ulp := ¢ * ( o e o

where ¢ is a radial non-negative non-increasing function satisfying

JQ d(x)dx =1, &(x) > colfyary)

Then the result was extended to a class of kinetic equations in (33). In this work, we show that
if an extra force is added then we still have a global hypocoercivity and hence, an exponential

relaxation to equilibrium provided that the force is small in the sense of assumption (iv) below.
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Before stating our result, let us give some motivation for studying the equation (Equation 3.1).
The study of collective behavior has attracted a lot of attention from the scientific community
because it has diverse applications ranging from biology, physics, computer science, social sci-
ence etc., see e.g. (4; 31; 37; 39) and the references therein.

For microscopic descriptions, many models of collective behavior can be described as follows:

Xi = Vi, (xi,vi) € Q x R™,

\‘)i:si([v]i_vi)"i_l:i) i:])-'wN)

where s, F; are respectively the communication strength and the force corresponding to the
i-th agent; v = (v1,...,vn)R™ and []; denotes the averaging operator acts on the i-th agent.

The celebrated Cucker-Smale system (9; 10) can be written in form (Equation 3.5) with

N N
i1 myd(Ixi — x50)v5

i= id(xi —x), v = = , 3.6

) j;m] e § YN myd (ki —x0) (36)

where ¢ is a smooth radial non-increasing function, m; is the communication weight of the
i—th agent. In this model F; = 0. For examples with nontrivial force Fi, the readers can see
(22; 30; 31). If we take F; in (Equation 3.5) to be the combination of a deterministic force and

a noise of the form

_ | P . .
Fi:‘er\/WBi, 0<o<1andp >0, (3.7)
i
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here 1 is given by (Equation 3.4) and B{s are independent Brownian motions in R™, then the

stochastic mean-field limit of (Equation 3.5) formally leads to the kinetic equation (Equation 3.1).

In this chapter, we will merely focus on the long-time behavior of the solution of (Equation 3.1)
provided it exists. For a rigorous derivation of (Equation 3.1) via stochastic mean-field limit
one can consult the scheme from (3; 33). For the existence of solution, we refer to (3; 21; 33).

We assume the solution f to (Equation 3.1) belongs to some weighted Sobolev space

HEQxRY =(f: Y Y J (w2 e 2 dx dv < oo p
K/ <k o=k’ T ¥R

where (v) = /1 + [v]? and « denotes a multiindex.

Next let us introduce some more notations. Letting G : Ry — R be the function defined by

_ [FoyPt —y)
G(Z)"L W W

and letting

v)?
V(v) = a + G(v]). (3.8)

Then the gradient and Hessian matrix of V can be computed explicitly,

VV =v+Fv), (3.9)

<

vzv—<1+“(|vlp—1)> WP v v (v — Dvin’(iv]) v
B V)

n MM EM T T ) MO (3.10)



where I is the identity matrix.
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Remark 3.1.1. By the assumption (Equation 3.4) and the identity (Equation 3.10) we see

that the Hessian matriz of V is bounded. Thus, there exists a positive constant A such that

(V2V)(y)l < Alyl, WYy e R™

We also note that fory € R,

o o/ ()
n(vl) n?(vl)

y (VV)y > <1

where A > 0 is a constant depending on o©.

We expect that the solution to (Equation 3.1) converges to

1
foo i= =
VA QxRn

The macroscopic field ur is defined by

pug(x) = JRR F(v)f(x,v) dv.

Denote L%(k,) := L%(dk,). The inner product in L?(k,) is denoted by (-,-),

is the following:

) Yl > AP,

e VM with Z = J e VM dv dx.

(3.11)

(3.12)

(3.13)

o Our main result
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Theorem 3.1.2. Suppose that f € H]f(()_ x R™) is a solution to (Equation 3.1) such that p(t)

satisfies the following assumptions for all t > 0:

(1) co < sp < c1 and ||Vsp|leo < €2, where co,C1, 2 are positive constants,
(11) Vx(spl]p) : L2(p) — L%(p) is uniformly bounded,

(i1i) there exists a constant 0 < ¢g < 1 such that

sup { (w, W), |w € L2(Kp), [Wlli2(e,) =1} < T —eo,

(iv) there exists a constant 0 < &1 < 1 such that

[urlli2 e,y < erllullizi,)-

Then f converges to fo, exponentially fast:

||f(t) - foo”[_l (QXRM) < Ce*{’t,

where C > 0 is a constant depending on initial data fy and given parameters; & > 0 is a constant

depending only on given parameters.

Remark 3.1.3. Observe that in the case of Cucker-Smale model, since sy = G *p and sp[ul, =

¢ * (up), condition (ii) holds automatically and condition (i) holds if *p > p for some p > 0.
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3.2 Proof of main result

In this section, we will prove Theorem 3.1.2. Firstly, let us introduce some notations and

definitions.

3.2.1 Notations and preliminaries

The relative entropy is defined by

f
H(f|[fo) :J flog — dvdx.
QxRM foo

For our convenient computation, we will derive an equation for h satisfying f = hf,,. Plugging

this f into equation (Equation 3.1), we have the following equation for h:
dth+v-Vih =s,(Avh—VV - Vyh+hiul, - VV = [ulp - Vyh). (3.14)

Letting

A::Vw B::V'vm

and A* be the adjoint of A with respect to the inner product in the weighted space L%(w):

(@1,92) = J @1@2dy,  dp = fodvdx.
OxRn

We can calculate A* explicitly,

A*=(VV-V,)-.
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Then we can write (Equation 3.14) in the abstract form:

hy = —spA*Ah — Bh + s,A*(hul,). (3.15)

Following the notations from the paper (33), let us define the partial Fisher information func-

tionals as follows:

2
Ivv(h) = J |V\)h|

du, va(h) :J ——dy, Ixx(h) :J
axgr  h QXR™ h QxRM

The full Fisher information is defined by
L=2y+ T

For our convenience we use the notation

Denote h = logh and
D,y = (Sph|v€ﬁ-|2)p.) Dyy = (Sph-|vvvxﬁ|2)u>

where V2h is the Hessian matrix with respect to v of h. We will use the notations Ja, Jg, Ju to

refer to the terms related to the operators A, B and related to u respectively. They are different
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in the proof of each lemma in the sequel. We denote by C, c positive constants which may vary

from line to line.

3.2.2 Proof of Theorem 3.1.2

By the Csiszar-Kullback inequality,
||f_f00||%1(Q><Rn) < cH. (3.16)

Therefore, it suffices to show that the entropy function H decays exponentially fast in time.

Using (Equation 3.1) and integration by parts, we have

Vf + VVf?
J s |vf| dvdx + (uy, [u]p>Kp , (3.17)
QxR™

where

uy = u+ Uur. (3.18)

Define the partial Fisher information functional Z,, by

f 4+ VVF?
Ty = J SPM dv dx.
QxRN f
By the assumption (i) we have
d
E?‘l < —COI\)\) + <uv, [‘LL]p>Kp . (319)
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We can also rewrite (Equation 3.17) in the dissipative form:

d Vof + (VV —uy)f)?
H:J 5, Vo v)fl dvdx — [[uy[[f2, + (uy, ), (3.20)
dt QxR f 0 o

By the triangle inequality and assumption (iv) we have

1
ullizie,) < ﬁHuVHLZ(Kp)' (3.21)

Then by the Cauchy-Schwarz inequality, assumptions (iii) and (iv) we have

<uV) [u']p>.< = <'LL\/, [u'VJp>Kp - <LL\/, [uF]p>Kp

[
€1
]—81

2 2
<(1—eo)llwvlfay,) + luvlizg,)

<(1 = c3)lluviizgg, ), (3.22)
where c3 > 0 depending on €y, €7. Plugging this inequality into (Equation 3.20) we obtain

d 2
M < sl - (3.23)

Combining (Equation 3.19), (Equation 3.23) and (Equation 3.22) we have

d CoC3 C% 2 2
TS eI s el < —eTw — ey, (3.24)

where ¢ > 0 depending on ¢y, €1, Co.
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By (Equation 3.12), fo, satisfies a logarithmic Sobolev inequality, see (38). Thus, we have

(3.25)

We have the following three estimates on the time derivative of partial Fisher information

functionals. Their proofs will be presented in the next subsection.

Lemma 3.2.1. We have

d
dt

where ¢ is a positive constant depending on Co,C1, A, A.

Lemma 3.2.2. We have

dt 2

where ¢ is dependent on co,C1,C2, A, A.

Lemma 3.2.3. We have

d 2
2 Do) < Ty = Dr + ez, s

where ¢ is a constant depending on A, /A and the parameters in the assumption (i), (ii).

—Tw(h) < =2Dyy — AcoZw — 2T + c[[ullf,., )

d 1
—Tw < ¢Lyy — 5 Zxx + 2Dyy + Dy, + CHU’”%Z(KP)’

(3.26)

(3.27)
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Choosing ¢ > 0 small so that if we define
~ 7\C0
IT=Tw+ el + TIXX’ (3.28)

then Z ~ Z. Combining three lemmas above and the assumption (iv) we have

d - £ 2

3

5D+ Clluvllz,)- (3.29)

From (Equation 3.24), (Equation 3.29) and (Equation 3.25) we can choose a constant y such

that

d - _
T+ YH) S T < ST +vH). (3.30)

Thus, by Gronwall’s inequality we obtain

T+vH < (o +vHo)e ® < cZpe™®t. (3.31)

Then we can conclude the theorem.

3.2.3 Proof of three technical lemmas

In this subsection, we will give the proofs of three lemmas mentioned previously.
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Proof of Lemma 3.2.1. Let us rewrite Z,, in the form

T = (Vyh - Vyh),.
By chain rule and equation (Equation 3.15) we get
d - v
azvv :z(vvht : vvh)u - (|Vvh| ht)u = JA + IB + ]u)

where

Ja = —2(spVyA*AR - V), + (s,[VyhIPA*AR),,
Jp = —2(VyBh - Vyh), + (IVyh[Bh),,

Ju = 2(s,VoA* ([ulph) - ViR — (sl VyRIPA® ([ulph) .

For notational convenience we will use the Einstein summation convention in the sequel.

We firstly consider the term Ja. Using the identity
Oy, (A*Ah) = A*Ah,, + VV,, - Vyh,
Ja equals to

—2(spA* ARy My )y — 2(5p(V Vs, - Vih)hy, )y + (5o Vyh[PA*AR), = Th + T4 + T3
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By (Equation 3.12) we have

J4 = —2(sph " (V,h) VAV, h), < —2A(sph ' Vyh - Vb)),

Then the assumption (i) in Theorem 3.1.2 implies that

Ja < —2AcoZ.

By switching A* in J}, 3 we can write
y g AV JA

I}\ + J% = Z(SpAh\,i : Aﬁvi)u + (SpA(‘vvmz) : Ah)p
=— Z(SphAﬁvi . Aﬁvi)u — Z(SpﬁviAh . Aﬁvi)ll + Z(SpﬁviAﬁvi . Ah)u

= —2(sphAhy, - Ahy, )y = —2Dy,.

Combining the above estimates we obtain

IA < —ZDW — ZACoIW. (332)

For the term Jp, plugging B =v -V, into Jg we have

Jg = —2(Vih- vvﬁ)u —2((v- Vxhvi)ﬁvi)u =+ (|VVFL|ZV : Vxh)p-



Using the identity ﬁvi = hvih_1 and integration by parts, we get

2((v- Vi )y )w = (v- Vil PR | = (e PRy Vih) | = (VR - Vi),

Substituting this into Jp we yield

IB = —2Ty.

For the last term J,, we have

Ju =2(spVoA* ([ulph) - VyR)y — (sp| VyRIPA® ([ulph),
=2(s,Vy(VV - [ulgh — [uly - Vyh) - Vyh), — (s, V[ Vyh[? - [ulph)y
=2(s,V2V([ulph) - Vyh) + 2(sp(VV - [ulp) Vyh - Vyh) = 2(s, Vah([ulp) - Vyh),
—2(s,Vah(Vyh) - [ulph),
= Ju e R+ T

Plugging

F‘-vi\)j = hf]hvivj - hizhv-lhvj
into J# we get

Ii = z(sph_]h\zivi Evj [U-i]ph)u + z(sph_zhvihvj ﬁvj [ui]ph)u
= — 2(s,V2h([ulp) - Vyh)y + 2(so| Vyh PV h - [ulp)

= I3 + 2(sp |V hPVh - [ulp) .

92

(3.33)



93

Therefore,

B T+ Tl =2(5o(VV - [ulph) Vyh - Vyh)y — 2(5,[VohPVyh - [ulp) + 273
=2(spA* ([ulph)IVyh ), + 204
=2(sphluly - A(IVyRP) + 2J8

=4(sphlul, - Veh(Vyh)), + 2J5 = 0.

Thus,

Ju =2(s,V2V([ulph) - Vyh), = 2(s,V2V([ulp) - Vyh)y
<2A0q || [uplli2 (k) VI (by (i), (Equation 3.11) and Hélder inequality)

<clfwllez e,y VI

< cHuH%z(Kp) +AcoZyw  ( by Young’s inequality). (3.34)

Here the last constant ¢ depends on cg,cy, A, A.

Combining (Equation 3.32), (Equation 3.33) and (Equation 3.34) we have the conclusion of

this lemma. ]

Proof of Lemma 3.2.2. Computing the derivative of Z,, with respect to t we get

d

alxv(h) = (vxht : vv]'_l)u + (vxﬁ : Vvht)p - (htvv]'_l' vxﬁ)u = JA + IB + Iu>
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where

Ja = — (Vi(spA*AR) - V), — (Vih - Vo (spA*AR)), + (spA* ARV R - Vb, = Jh + T4 + 13,

Jg =— (Vx(v-Vih)- vvﬁ)u - (VXE' Vy(v- vxh))u + ((v- vxh)vvﬁ‘ Vxﬁ)u = H% + IZB + J%»

Ju =(Vi(spA* (ulph)) - Vyh)y + (Vih - Vi(spA* (ulph))y — (spA" ([ulgh) Vyh - Vih),.
Let us firstly estimate Jao. Switching A* and using the identity
Vyhy, = hy, Vyh + hV,hy,
we have

I}\ = _(SPA*AhXiﬂ’Vi)IJ- - ((Sp)XiA*AhﬁVi)H = —(spVhy - v"ﬁvi)“ — ((sp)x Vih- v"ﬁ"i)“

- - - - (sp)x, Vvh 12 =
= —(sphVyhy - Vohy )y — (sphx, Vol - Vihy, )y — ( e e v

172 |i/2
Sp "

In view of assumption (i) in Theorem 3.1.2,

UK < _(Sphvvﬁxi : vvﬁvi)p - (Spﬁxivvh : vvﬁvi)u + ¢/ ZwwDyy,

where ¢ > 0 is a constant depending on cg,cy. Next let us consider ]g\. Since

oy, (A*Ah) = A*Ah,, + VV,, - Vyh and Vyh,, = hVyhy, + hy, Vyh,



we have

JA4 = — (sphx, A* ANy )y — (5phy VVa, - Vi),

=— (spVyhy, - Vihy )y — (sphw, V4, - Vih)

= — (sphVyhy, - Vil )y — (sphy, Vihy, - Vyh), — (s, Vih - (V2V)(Vyh) ..

Then

A4 T3 < —(5pVih - (VEV)(Vyh), — 2(sphVyhy, - Vohy )y — (spAh - A(Vyh- Vb)),

+Cvy ZyyDyy

< —(spVxh - (VAV) (VM) + 2/ D Dyy + ¢/ ZTiw Doy — T3

< AAVIn T + 21/ D Dxy + /Doy — T

Thus, combining all the terms of Ja and applying Young’s inequality we yield

Ja < AV T + 27/ Do Dyy + ¢/ Ty Doy

1 3
<y + ZIXX + EDW + Dxv-

Now we consider Jg. We have

]ZB =—(Vih- Vixh)y — (Hxivjhxi"i)“

= Ixx + (hxixjvjhvi)u

= I«x + (hxixjvjﬁvi)u - (HXihvathi)u = _Ixx - 1113 - ]3])3

95

(3.35)
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In the last row we used the identity

Ry =N Thayy — Mo Ny

)

It follows that

J8 = —Tx- (3.36)

Lastly let us examine J,,. We have

Ju = ((sp)x A" ([ulph) by )y + (5pA* (([wp)x )R ) + (8pA* (Wl phy Y
+ (sphu A" ([ulphy ) + (5p V- (V2V) ([ul o)y — (sphluly - Vo (VR - Vih))y
= (h(splulp)x; - Vol )u + (sphlulphy - Vil )u 4 (sphVyhy, - [ulphy )
+ (5pVxh - (V2V)([ulph)), — (sphluly - Vo(Vih - Vih)),
=JutJa+ o+t R
Since

Ji + ]i = (Sph[u]p : V\;(VXH' vvﬁ))u = _]ia

we get,

Ju=Ju+ Ju-

By the assumption (ii) in Theorem 3.1.2,

JL = ((splulp)x; - Vol )u < cllulli2(,) v/ Don
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For J} we use the assumption (i) and (Equation 3.11) to get

Ju = (spVxh - (V2V)([uloh)),

< C”u”LZ(Kp] V Lxxs

where c is a constant depending on c1,A. Hence, by Young’s inequality we obtain

1 1
Ju < ZIXX + ED\N + CHU’H%Z(KP)‘ (3'37)

Combining three estimates (Equation 3.35), (Equation 3.36) and (Equation 3.37) it implies the

conclusion of this lemma. O

Proof of Lemma 8.2.3. Computing the derivative of Z,x(h) with respect to t we get

d

az;cx(h) = Z(VXht ' vxﬁ)u - (|vxﬁ|zht)u = ]A + IB + Jua

where

Ja = — 2(Vy(spA*Ah) - Vih), + (so| ViRIPA*AR)
Jo =—2(Vx(v- Vih) - Vih)y + ([Vxhfv - Vih)y,

Ju =2(Vx(spA*([Wlph)) - Vi) — (splVxh?A*([ulph)) .
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For Ja we have

Ja = —2((sp)x,Ah - Ahy, )y — 2(spAhy, - Ahy, )y + (s,AlV R - Ah), = Th + T4 + 5.

By the assumption (i) in Theorem 3.1.2,

So)x: Vyh —

Th = —2(( g’)zl s h2Vhy ) < ev/TnDy.
Sp H

Using the identity Vyhy, = hvvﬁxi + ﬁxivvh, we have

JA = —2(sphVyhy, - Vyhy )y — 2(sphe Voh - Vyhy )y = —2Dy, — J31.

Therefore,

IA < C\/m_szv- (338)

We have Jp = 0 because

—2(Vy(v-Vih) - Vih), = =2((v- Vih Jhh )y = —((v- Vi Vih PR = —(IVh2v - Vih),.



For ], we have

Ju :z(h(sp[u]p)xi : vvﬁxi)u + Z(Sphﬁxi [U-]p : Vvﬁxi)u - (Spvvuvxﬁ‘z) : [u]ph)u

= z(h(sp[u]p)xi : Vvhxi)u

<clfulle2 k) vV Dxv (by the assumption (ii) in Theorem 3.1.2).

Combining all the estimates for Ja,Jp and J,, we get

d
G20 < VDT — 2D + w260V D

Then by Young’s inequality, the lemma is derived.
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