
Asymptotic Analysis of Kinetic Models of Collective Behavior

by

Vinh T. Nguyen
B.A., Thai Nguyen University of Education, Vietnam, 2010

M.S., Hanoi Institute of Mathematics, Vietnam, 2012
M.A., Indiana University Bloomington, 2019

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the
University of Illinois at Chicago, 2024

Chicago, Illinois

Defense Committee:
Roman Shvydkoy, Chair and Advisor
Jerry Bona
Mimi Dai
Christof Sparber
Changhui Tan, University of South Carolina



Copyright by

Vinh T. Nguyen

2024



Dedicated to my parents and my sons.

iii



ACKNOWLEDGMENT

First and foremost, I would like to thank my advisor, Professor Roman Shvydkoy, for his

great guidance and support during my studies at UIC.

I would also like to thank other members in my defense committee: Professors Jerry Bona,

Christof Sparber, Mimi Dai and Changhui Tan.

I am thankful to all the professors and staff in the Department of Mathematics, Statistics,

and Computer Science who made my stay enjoyable.

I would like to thank my previous advisors, teachers as well as everyone who encouraged

and guided me in my early stages.

Finally, I am grateful to my parents for their unconditional love and constant support. A

special thanks goes to my family.

VN

iv



CONTRIBUTIONS OF AUTHORS

Chapter 1 and Chapter 2 represent the papers (27) and (28), respectively, that I jointly

worked with my advisor, Professor Roman Shvydkoy.

Chapter 3 is from the preprint (26) that I am the sole author.

v



TABLE OF CONTENTS

CHAPTER PAGE

1 PROPAGATION OF CHAOS UNDER HEAVY TAIL COMMU-
NICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction and main results . . . . . . . . . . . . . . . . . . . 1
1.2 Propagation of chaos for the forceless system . . . . . . . . . . 7
1.3 Propagation of chaos for the forced system . . . . . . . . . . . 15
1.3.1 Grassmannian reduction for Vlasov-alignment equation . . . . 16
1.3.2 Proof of Theorem 1.1.3 . . . . . . . . . . . . . . . . . . . . . . . 33

2 CONTINUOUS MODEL OF OPINION DYNAMICS WITH CON-
VICTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2 Well-posedness and mean-field limit . . . . . . . . . . . . . . . . 51
2.3 Existence and uniqueness of the mono-opinion state . . . . . . 60
2.3.1 Mono-opinion state . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.2 Uniqueness and stability . . . . . . . . . . . . . . . . . . . . . . 66
2.4 Properties of mono-opinion states . . . . . . . . . . . . . . . . . 70

3 EXPONENTIAL RELAXATION TO EQUILIBRIUM FOR A
KINETIC FOKKER-PLANCK-TYPE EQUATION . . . . . . . . . 78
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2 Proof of main result . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2.1 Notations and preliminaries . . . . . . . . . . . . . . . . . . . . 84
3.2.2 Proof of Theorem 3.1.2 . . . . . . . . . . . . . . . . . . . . . . . 86
3.2.3 Proof of three technical lemmas . . . . . . . . . . . . . . . . . . 89

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

CITED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

vi



LIST OF FIGURES

FIGURE PAGE
1 The behavior of g(θ) for the case p = 6. Here θ ∈ (0, 1] and α change

in (0, 1] at discrete steps of 0.1. . . . . . . . . . . . . . . . . . . . . . . . . 77

vii



SUMMARY

In this dissertation, we study the long-time behavior of the solutions of some kinetic equa-

tions arising from the studies of collective behavior. Propagation of chaos is a fundamental

question in kinetic theory which enables the reduction of an N-particle description to a single

partial differential equation. In Chapter 1, we prove the propagation of chaos for the classical

Cucker-Smale system and its variant in which the system is additionally forced with Rayleigh-

type friction and self-propulsion force. Moreover, the quantitative estimates of the rate of the

convergence in Wasserstein-2 distance are shown. In Chapter 2, a continuous model of opinion

dynamics is considered. The global well-posedness, the regularity, and asymptotic behavior of

the solution are studied. In Chapter 3, we investigate the long-time behavior of the solution

of a kinetic Fokker-Planck-type equation. The exponential relaxation of the solution to its

equilibrium is proved here.
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CHAPTER 1

PROPAGATION OF CHAOS UNDER HEAVY TAIL COMMUNICATION

(Previously published as V. Nguyen and R. Shvydkoy, Propagation of chaos for the Cucker-

Smale systems under heavy tail communication, Communications in Partial Differential Equa-

tions, 47(9):1883–1906, 2022.)

1.1 Introduction and main results

One of the fundamental questions of the mathematical theory of large systems of particles

is a derivation and formal justification of the corresponding kinetic models. Among the many

systems describing collective phenomena this question has been successfully settled for the

Cucker-Smale model describing the basic mechanism of alignment (9; 10):


ẋi = vi, xi(0) = x

0
i ∈ Rn,

v̇i = 1
N

∑N
j=1ϕ(xi − xj)(vj − vi), vi(0) = v

0
i ∈ Rn.

(1.1)

Here N is the number of particles and xi, vi denote the position and velocity of the i-th particle.

ϕ is a non-negative non-increasing smooth communication kernel. The corresponding Vlasov-

Alignment equation is given by

∂tf+ v · ∇xf+∇v · (fF(f)) = 0, f(0) = f0 : R2n → R+, (1.2)

1
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where

F(f)(x, v) =

∫
R2n

ϕ(x− y)(w− v)f(y,w, t) dydw.

A formal derivation of (Equation 1.2) via the BBGKY hierarchy was performed in Ha and

Tadmor (19), and rigorously via the mean-field limit in Ha and Liu (18).

The hierarchy approach is based upon the classical idea of propagation of chaos, which

postulates that the particles (x1, v1, . . . , xN, vN) whose joint probability distribution fN is given

by the solution to the Liouville transport equation

∂tf
N +

N∑
i=1

vi · ∇xif
N +

N∑
i=1

∇vi · (f
NFNi ) = 0, (1.3)

would gradually decorrelate as N→ ∞ if initially so

fN(0) = f⊗N0 , f0 : R2n → R+, (1.4)

and their individual distributions would evolve according to (Equation 1.2). In other words,

⟨fN, φ1 ⊗ . . .⊗φk ⊗ 1⊗ · · · ⊗ 1⟩ → k∏
j=1

⟨f, φj⟩, φ ∈ Cb(R2nk). (1.5)
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The mean-field limit on the other hand, is based on the weak convergence of a sequence of

empirical measures built from solutions to (Equation 1.1),

µN =
1

N

N∑
j=1

δxi(t) ⊗ δvi(t) → f.

In fact, a more detailed analysis done in (17; 31) establishes Lipschitz continuity of measure-

valued solutions to (Equation 1.2) with respect to the Wasserstein metric,

Wp(µ
′
t, µ

′′
t ) ⩽ C(t)Wp(µ

′
0, µ

′′
0 ).

It is well-known, however, that propagation of chaos and the mean-field limit (in a somewhat

more specific sense) are equivalent, see Sznitman (34). In fact, (Equation 1.5) holds if and only

if for any φ ∈ Lip(R2n) one has

Eφ(t) =

∫
R2nN

∣∣∣∣∣∣ 1N
N∑
j=1

φ(xi(t), vi(t)) − ⟨ft, φ⟩

∣∣∣∣∣∣
2

f⊗N0 dX0 dV0 → 0, (1.6)

where X0, V0 are the initial conditions for the characteristic flow {xi(t), vi(t)}
N
i=1. Note that

initially Eφ(0) → 0 by a direct verification. Technically, since not every initial ensemble X0, V0

in the support of f⊗N0 forms an empirical measure weakly close to f0, the limit (Equation 1.6)

does not directly follow from (17; 18; 31). However, one can restore it using similar estimates

on the deformation of the flow-map of (Equation 1.1) and coupling with the characteristics of

(Equation 1.2).
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In any case, Snitzman’s general principle seems to provide little quantitative information

on the rate of propagation in (Equation 1.5) as it avoids using any specificity of the system at

hand. For stochastically forced systems, the work of Bolley, Cañizo and Carrillo (3) establishes

such a quantitative estimate on the Wasserstein-2 distance:

W2(f
(k)
t , f

⊗k
t ) ⩽ C(T)

√
k

Ne
−Ct
, ∀t ⩽ T. (1.7)

Recently, Natalini and Paul addressed the deterministic case in (24) and with additional chemo-

taxis forces in (25). For the forceless system, the estimate carries exponential dependence in

time,

W2(f
(k)
t , f

⊗k
t ) ⩽ Ceδt

√
k

N
. (1.8)

The estimates (Equation 1.7), (Equation 1.8) are finite-time bounds in spirit, in the sense

that they do not take into account any flocking long-time behavior of the system. A natural

question is: can one improve upon the time dependence in the deterministic case (Equation 1.8)

when the system is known to flock exponentially fast? It is the result that goes back to Cucker

and Smale (9) and improved and extended in (6; 18; 19) that the system (Equation 1.1) with

a heavy tail radial communication,

∫∞
0

ϕ(r) dr = ∞ (1.9)
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aligns with an exponential rate. Let us give a quantitative summary of this result for future

reference, see also (31) for details.

Proposition 1.1.1. Suppose ϕ satisfies (Equation 1.9). For any solution to (Equation 1.1)

with initial data in (X0, V0) in a compact domain Ω ⊂ R2nN the following flocking estimates

hold:

sup
t>0

max
i,j=1,...,N

|xi − xj| = D <∞, max
i,j=1,...,N

|vi − vj| ⩽ A0e
−tϕ(D), (1.10)

where A0 is the initial velocity fluctuation and D depends only on the initial diameter of the

flock and ϕ.

Similarly, for any solution f to (Equation 1.2) with initial compact support one has

sup
t>0

diam supp ft = D <∞, max
(x ′,v ′),(x ′′,v ′′)∈supp ft

|v ′ − v ′′| ⩽ A0e
−tϕ(D). (1.11)

With the use of this additional flocking information we will improve the estimate (Equation 1.8)

to being linear in time.

Theorem 1.1.2. Suppose ϕ satisfies (Equation 1.9), and let f0 ∈ C10(R2n) be an initial distri-

bution with a compact support. Let fN be the solution to (Equation 1.3)-(Equation 1.4), while

f be the solution to (Equation 1.2). Then there exists a constant C which depends only on

diam(supp f0) and ϕ such that for all N ∈ N, k < N, and t ⩾ 0 one has

W2(f
(k)
t , f

⊗k
t ) ⩽ C

√
kmin

{
1,

t√
N

}
. (1.12)
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Our general methodology relies on the same classical coupling method, which compares

characteristic flow of the original system (Equation 1.1) to N copies of the flow-map of the

kinetic transport (Equation 1.2), but it differs from (24) in two aspects. First, we run the entire

argument from the Lagrangian point of view, which gives a direct access to characteristics and

the flocking estimates. This is closer in spirit to the original mean-field approach of (18) or (3)

in stochastic settings. Second, we rely on the flocking information of Proposition 1.1.1 to extract

a crucial stabilizing exponential factor in the estimation of kinetic energy, see (Equation 1.23).

The linear time dependence here comes primarily from the growth of the potential energy, and

it seems not to be removable within the given framework.

Next, we consider the same problem in the context of systems forced with self-propulsion

and Rayleigh-type friction force with variable characteristic parameters θ:



ẋi = vi,

v̇i =
1

N

N∑
j=1

ϕ(xi − xj)(vj − vi) + σ(θi − |vi|
p)vi,

θ̇i =
κ

N

N∑
j=1

ϕ(xi − xj)(θj − θi),

(xi, vi, θi) ∈ Rn × Rn × R+, (1.13)

where κ > 0 is a coupling coefficient and p > 0. This model is relevant in the study of systems

of agents with a tendency to adhere to their preferred characteristic speeds θi, see (16; 22).

The recent study (22) introduced a general method of Grassmannian reduction that allows to

prove flocking for solutions with velocities confined to a sector Σ of opening < π, so-called

sectorial solutions, see Proposition 1.3.1 below. We give an extension of this method to the
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corresponding kinetic Vlasov equation in Proposition 1.3.3 and use it to prove propagation of

chaos for the forced system (Equation 1.13). Specifically, we prove the following theorem:

Theorem 1.1.3. Suppose the kernel ϕ satisfies (Equation 1.25). Let f0 ∈ C10(Ω) be a sec-

torial initial distribution, and fN, f be the sectorial solutions to the system (Equation 1.60)

and (Equation 1.28), respectively. Then there exists a constant C which depends only on

diam(supp f0) and ϕ such that for all N ∈ N, k < N, and t ⩾ 0 one has

W2(f
(k)
t , f

⊗k
t ) ⩽ C

√
kmin

{
1,
t2√
N

}
. (1.14)

To achieve this bound we employ monotonicity of the force to control the adverse self-

propulsion component. The ultimate effect of its presence, however, is reflected in the quadratic

dependence on time in (Equation 1.14).

1.2 Propagation of chaos for the forceless system

In this section, we focus on establishing propagation of chaos for the pure Cucker-Smale

system (Equation 1.1), Theorem 1.1.2. To fix the notation let us consider a solution fN to

the full Liouville equation (Equation 1.3) with the chaotic initial condition (Equation 1.4) on

the configuration space (X,V) ∈ R2nN. We can assume without loss of generality that f0 is a

probability distribution. The forces FNi ’s are given by the Cucker-Smale system

FNi (X,V) =
1

N

N∑
j=1

ϕ(xi − xj)(vj − vi).
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Due to the symmetries of the forces, the solution will remain symmetric with respect to per-

mutations of pairs (xi, vi) for all time.

We define the k-th marginal as usual by

f
(k)
t (x1, v1, . . . , xk, vk) =

∫
R2n(N−k)

fNt (x1, v1, . . . , xN, vN) dxk+1 . . . dvN. (1.15)

Let us introduce various characteristic maps that will be used in the proof. We denote by

ΦNt = (x1(t), v1(t), . . . , xN(t), vN(t)) : R2nN → R2nN

the flow-map of the Liouville equation (Equation 1.3), in other words these are solutions to the

agent-based system 
ẋi = vi,

v̇i = 1
N

∑N
j=1ϕ(xi − xj)(vj − vi).

(1.16)

Then, fNt at any time t > 0 is a push-forward of the initial distribution by ΦNt ,

fNt = ΦNt ♯f
⊗N
0 . (1.17)

Now, denote by

Φ̄t = (x̄(t), v̄(t)) : R2n → R2n
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the flow-map of the Vlasov equation (Equation 1.2), i.e.


˙̄x = v̄,

˙̄v =
∫
R2n ϕ(x̄− y)(w− v̄)f(y,w, t) dydw,

(1.18)

and by

Φ̄⊗N
t = (x̄1(t), v̄1(t), . . . , x̄N(t), v̄N(t)) : R2nN → R2nN

the direct product of N copies of Φ̄t’s. Thus,

ft = Φ̄t♯f0, f⊗Nt = Φ̄⊗N
t ♯f⊗N0 . (1.19)

The proof of Theorem 1.1.2 can be reduced to establishing the following estimate

∫
R2nN

|ΦNt (X0, V0) − Φ̄
⊗N
t (X0, V0)|

2 f⊗N0 (X0, V0) dX0 dV0 ⩽ Cmin{N, t2}. (1.20)

Indeed, let us recall that the Wasserstein-2 distance between two probability measures µ, µ̄ on

R2nk can be defined in probabilistic sense as

W2
2 (µ, µ̄) = inf E[|Z− Z̄|2],

where the infimum is taken over R2nk-valued random variables Z, Z̄ defined on any probability

space with distributions given by µ and µ̄, respectively. To measure the distance between f
(k)
t
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and f⊗kt we can pick the probability space R2nN with measure f⊗N0 (X0, V0) dX0 dV0, and random

variables given by any selection of k coordinates of ΦNt and Φ̄⊗N
t , respectively, because their

probability distributions relative to the chosen base space are exactly f
(k)
t and f⊗kt according to

(Equation 1.17) and (Equation 1.19).

So, let us denote by ΣkN is the set of all ordered subsets of [1, . . . ,N] of size k. Clearly, its

cardinality is
(
N
k

)
. Then, for any σ ∈ ΣkN,

W2
2 (f

(k)
t , f

⊗k
t ) ⩽

∫
R2nN

k∑
i=1

|(xσ(i), vσ(i)) − (x̄σ(i), v̄σ(i))|
2 f⊗N0 (X0, V0) dX0 dV0.

Summing up over all σ ∈ ΣkN, we obtain

(
N

k

)
W2
2 (f

(k)
t , f

⊗k
t ) ⩽

∫
R2nN

∑
σ∈ΣkN

k∑
i=1

|(xσ(i), vσ(i)) − (x̄σ(i), v̄σ(i))|
2 f⊗N0 (X0, V0) dX0 dV0.

Observe that in the double sum inside the integral each coordinate will be repeated
(
N−1
k−1

)
times.

So, (
N

k

)
W2
2 (f

(k)
t , f

⊗k
t ) ⩽

(
N− 1

k− 1

) ∫
R2nN

N∑
i=1

|(xi, vi) − (x̄i, v̄i)|
2 f⊗N0 (X0, V0) dX0 dV0.

Simplifying and using (Equation 1.20), we obtain

W2
2 (f

(k)
t , f

⊗k
t ) ⩽ Ckmin

{
1,
t2

N

}
,
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as desired. Let us note that an alternative argument, relating a distance between k-th marginals

to a particular realization (Equation 1.20) appeared in (15), where the authors use the original

joint-distribution definition of W2.

To establish (Equation 1.20) let us break the expression under the integral into potential

and kinetic part,

P =
1

2

∫
R2nN

|Xt − X̄t|
2 f⊗N0 dX0 dV0, K =

1

2

∫
R2nN

|Vt − V̄t|
2 f⊗N0 dX0 dV0. (1.21)

Here, Xt, Vt and X̄t, V̄t denote the corresponding components of ΦNt and Φ̄⊗N
t , respectively. By

the Hölder inequality, we have

d

dt
P ⩽ 2P1/2K1/2. (1.22)

Let us now write out the equation for the kinetic part,

d

dt
K =

∫
R2nN

N∑
i=1

(vi − v̄i) ·

 1

N

N∑
j=1

ϕ(xi − xj)(vj − vi) −

∫
R2n

ϕ(x̄i − y)(w− v̄i)f(y,w, t) dy dw


× f⊗N0 dX0 dV0

= A+ B+ C,
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where

A =

∫
R2nN

N∑
i=1

(vi − v̄i) ·
1

N

N∑
j=1

[ϕ(xi − xj) − ϕ(x̄i − x̄j)](vk − vi) f
⊗N
0 dX0 dV0,

B =

∫
R2nN

N∑
i=1

(vi − v̄i) ·
1

N

N∑
j=1

ϕ(x̄i − x̄j)[(vj − v̄j) − (vi − v̄i)] f
⊗N
0 dX0 dV0,

C =

∫
R2nN

N∑
i=1

(vi − v̄i) ·
( 1
N

N∑
j=1

ϕ(x̄i − x̄j)(v̄j − v̄i) −

∫
R2n

ϕ(x̄i − y)(w− v̄i)f(y,w, t) dydw
)

× f⊗N0 dX0 dV0.

Let us start with C. Apply the Hölder inequality first

C2 ⩽
( ∫

R2nN

N∑
i=1

|vi − v̄i|
2f⊗N0 dX0 dV0

)
×
( ∫

R2nN

N∑
i=1

∣∣∣ 1
N

N∑
j=1

ϕ(x̄i − x̄j)(v̄j − v̄i) −

∫
R2n

ϕ(x̄i − y)(w− v̄i)f(y,w, t) dydw
∣∣∣2

× f⊗N0 dX0 dV0

)
= 2K

∫
R2nN

N∑
i=1

∣∣∣ 1
N

N∑
j=1

ϕ(x̄i − x̄j)(v̄j − v̄i) −

∫
R2n

ϕ(x̄i − y)(w− v̄i)f(y,w, t) dydw
∣∣∣2

× f⊗N0 dX0 dV0.

Switching back to the Eulerian coordinates, whereby x̄i, v̄i become dummy variables, we get

C2 ⩽2K
∫
R2nN

N∑
i=1

∣∣∣ 1
N

N∑
j=1

ϕ(x̄i − x̄j)(v̄j − v̄i) −

∫
R2n

ϕ(x̄i − y)(w− v̄i)f(y,w, t) dydw
∣∣∣2

× f⊗Nt dX̄dV̄.
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All these terms, due to symmetry are independent of i. According to (24, Lemma 3.3), and our

flocking estimate (Equation 1.11), each can be estimated by

4

N
sup

(x̄ ′,v̄ ′),(x̄ ′′,v̄ ′′)∈supp ft
|ϕ(x̄ ′ − x̄ ′′)(v̄ ′ − v̄ ′′)|2 ⩽

c

N
e−δt.

Thus,

C ⩽ ce−δtK1/2.

Turning back to A, we use the smoothness of the kernel and exponential flocking estimates

(Equation 1.10),

|A| ⩽ ce−δt
√
K

∫
R2nN

N∑
i=1

[ 1
N

N∑
j=1

(|xi − x̄i|+ |xj − x̄j|)
]2
f⊗N0 dX0 dV0

1/2

⩽ ce−δt
√
K

∫
R2nN

N∑
i=1

[
|xi − x̄i|

2 +
1

N

N∑
j=1

|xj − x̄j|
2
]
f⊗N0 dX0 dV0

1/2

⩽ ce−δt
√
K

(
2

∫
R2nN

[ N∑
i=1

|xi − x̄i|
2
]
f⊗N0 dX0 dV0

)1/2

= ce−δt
√
K
√
P.

Finally, one can see that B contributes a negative term,

N∑
i=1

(vi− v̄i) ·
1

N

N∑
j=1

ϕ(x̄i− x̄j)[(vj− v̄j)−(vi− v̄i)] =
1

N

N∑
i,j=1

ϕ(x̄i− x̄j)((vi− v̄i) ·(vj− v̄j)− |vi− v̄i|
2)
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and symmetrizing,

=
1

2

1

N

N∑
i,j=1

ϕ(x̄i − x̄j)(−|vj − v̄j|
2 + 2(vi − v̄i) · (vj − v̄j) − |vi − v̄i|

2)

= −
1

2

1

N

N∑
i,j=1

ϕ(x̄i − x̄j)|(vj − v̄j) − (vi − v̄i)|
2 ⩽ 0.

Collecting all of the above we obtain

d

dt
K ⩽ ce−δt(K1/2 +K1/2P1/2). (1.23)

Denoting p = 1+ P1/2, k = K1/2 we obtain the system

ṗ ⩽ k, p0 = 1; k̇ ⩽ ce−δtp, k0 = 0. (1.24)

Claim 1.2.1. Any non-negative solution to (Equation 1.24) obeys an estimate p ⩽ 1 + Ct,

k ⩽ Cmin{1, t}, where C = C(c, δ).

To see that let us fix an ε > 0 to be determined later and compute

d

dt
(εp2 + k2) ⩽ 2pk(ε+ ce−δt) ⩽

√
ε(εp2 + k2) +

c√
ε
e−δt(εp2 + k2).

Thus,

εp2 + k2 ⩽ ε exp

{√
εt+

1√
εδ

}
.
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Setting ε = δ2, we can see that the growth rate of p does not exceed δ/2, p ≲ eδt/2. Plugging

this into k-equation we obtain k̇ ≲ e−δt/2. This proves the bound on k, and then solving for p,

p ⩽ 1+ Ct.

Going back to the energies, we obtain

K ⩽ Cmin{1, t2}, P ⩽ Ct2.

Due to the global bound on the support of the flock (Equation 1.10), (Equation 1.11), we also

have P ⩽ CN. Thus,

P ⩽ Cmin{N, t2}.

Consequently, we obtain the required

K + P ⩽ Cmin{N, t2}.

1.3 Propagation of chaos for the forced system

In this section, we will prove Theorem 1.1.3. Using the basic energy estimates obtained in the

previous section, we will now extend the result to the system with friction forces (Equation 1.13)

and κ > 0. It is well-known that the flocking behavior of solutions to (Equation 1.13), even with

constant θi = 1 does not always hold even for global kernels ϕ ⩾ c0 > 0. The example exhibited

in (16) shows misalignment dynamics when the initial configuration is symmetric x1 = −x2 and

velocities are aimed in the opposite directions v1 = −v2. The work (22) proved that this is, in
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a sense, the only situation when no flocking occurs. As long as the initial condition is sectorial,

meaning that all vi(0) ∈ Σ, where Σ is an open conical sector of opening less than π, then the

solutions align exponentially fast.

Proposition 1.3.1 ((22)). Suppose that

ϕ(r) ⩾
λ

(1+ r2)β/2
, λ > 0, β ⩽ 1. (1.25)

For any sectorial solution to (Equation 1.13) there exists v∞ ∈ Rn and θ∞ > 0 with |v∞|p = θ∞,

such that one has

max
i=1,...,N

(|vi − v∞|+ |θi − θ∞|) ⩽ Ce−δt, (1.26)

sup
t>0

max
i,j=1,...,N

|xi − xj| = D <∞. (1.27)

It is within the context of sectorial solutions that we will cast the propagation of chaos

result. But first we establish a similar flocking estimates for solutions of the corresponding

kinetic model.

1.3.1 Grassmannian reduction for Vlasov-alignment equation

Let us denote Ω = Rn × Rn × R+. The Vlasov equation corresponding to (Equation 1.13)

is given by

∂tf+ v · ∇xf+∇v · (fF(f)) +∇v · (fR) +∇θ · (fΘ(f)) = 0, (x, v, θ) ∈ Ω, t > 0, (1.28)
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subject to the initial condition

f(x, v, θ, 0) = f0(x, v, θ), (1.29)

where

F(f)(x, v, θ) =

∫
Ω

ϕ(x− y)(w− v)f(y,w, η, t) dydwdη,

R(x, v, θ) = σ(θ− |v|p)v, σ > 0, p > 0,

Θ(f)(x, v, θ) = κ

∫
Ω

ϕ(x− y)(η− θ)f(y,w, η, t)dydw dη.

In this section, we will prove a similar flocking result for the sectorial solutions of (Equation 1.28).

Let us define what they are in the kinetic context.

Definition 1.3.2. A solution f to (Equation 1.28) is called sectorial if there exists a conical

region Σ lying on one side of a hyperplane, i.e. with conical opening less than π such that v ∈ Σ

for any v in the velocity support of f, (x, v, θ) ∈ supp f for some x, θ.

Since the equation (Equation 1.28) is rotationally invariant, it will be convenient to assume

that our solution belong the upper-half space: there exists ε > 0 such that

vn ⩾ ε|v|, ∀(x, v, θ) ∈ supp f, (1.30)

By the weak maximum principle discussed below in Remark 1.3.6, it follows that if f is sectorial

initially, then it will remain so for all time and the velocity support will lie in the same sector

Σ.
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Let us state our main result now.

Proposition 1.3.3. Suppose the kernel satisfies (Equation 1.25). For any sectorial solution f

to (Equation 1.28) with initial compact support one has

sup
t>0

diam supp ft <∞, (1.31)

and there exist v∞ ∈ Rn, θ∞ ∈ R+, with |v∞|p = θ∞ such that

max
(x,v,θ)∈supp ft

(|θ− θ∞|+ |v− v∞|) ⩽ ce−δt. (1.32)

As in the discrete case the proof is based on examination of kinetic characteristics of the

equation given by



ẋ = v, x(0) = x0,

v̇ =
∫
Ωϕ(x− y)(w− v)f(y,w, η, t) dydw dη+ σ(θ− |v|p)v, v(0) = v0,

θ̇ = κ
∫
Ωϕ(x− y)(η− θ)f(y,w, η, t) dydw dη, θ(0) = θ0.

(1.33)
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Let us denote

D(t) = max
(x,v,θ),(x ′,v ′,θ ′)∈supp ft

|x− x ′|,

A(t) = max
(x,v,θ),(x ′,v ′,θ ′)∈supp ft

|v− v ′|,

Q(t) = max
(x,v,θ),(x ′,v ′,θ ′)∈supp ft

|θ− θ ′|,

M =

∫
Ω

f(x, v, θ, t) dxdv dθ, θ∞ =
1

M

∫
Ω

θf(x, v, θ, t) dx dvdθ,

θ+(t) = max
(x,v,θ)∈supp ft

θ, θ−(t) = min
(x,v,θ)∈supp ft

θ.

Then we have

d

dt
D ⩽ A. (1.34)

Indeed, at time t, let ℓ ∈ (Rd)∗, |ℓ| = 1, (x, v, θ), (x ′, v ′, θ ′) ∈ supp ft such that D(t) = ℓ(x− x ′).

By Rademacher’s Lemma and the first equation in the system (Equation 1.33) we have

d

dt
D = ℓ(ẋ− ẋ ′) = ℓ(v− v ′) ⩽ A.

For Q, we have

d

dt
Q ⩽ −κϕ(D)Q. (1.35)
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To prove that, at time t we choose ℓ ∈ R∗, |ℓ| = 1, (x, v, θ), (x ′, v ′, θ ′) ∈ supp ft which satisfy

Q(t) = ℓ(θ−θ ′). By Rademacher’s Lemma and the third equation in the system (Equation 1.33)

we get

d

dt
Q = κ

∫
Ω

ϕ(x− y)ℓ(η− θ)f(y,w, η, t)dydw dη− κ

∫
Ω

ϕ(x ′ − y)ℓ(η− θ ′)f(y,w, η, t) dydwdη

= κ

∫
Ω

ϕ(x− y)[ℓ(η− θ ′) − ℓ(θ− θ ′)]f(y,w, η, t) dydwdη

+ κ

∫
Ω

ϕ(x ′ − y)[ℓ(θ− η) − ℓ(θ− θ ′)]f(y,w, η, t) dydwdη.

Since ℓ(η − θ ′) − ℓ(θ − θ ′) ⩽ 0 and ℓ(θ − η) − ℓ(θ − θ ′) ⩽ 0, the right hand side of the above

equality is nonpositive. Note that ϕ(x− y) ⩾ ϕ(D) for all x, y ∈ supp ft. Therefore,

d

dt
Q ⩽ −κϕ(D)

∫
Ω

ℓ(θ− θ ′)f(y,w, η, t) dydw dη ⩽ −κϕ(D)Q.

Similarly, using the third equation in (Equation 1.33) and Rademacher’s Lemma, it is not hard

to see that θ+ is decreasing and θ− is increasing. Thus,

θ+(t) ⩽ θ
∗, θ−(t) ⩾ θ∗ ∀t ⩾ 0, (1.36)

where θ∗ = θ+(0) and θ∗ = θ−(0).

Before we proceed further let us discuss the boundedness of the velocity support of f and

the weak maximum principle.
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Lemma 1.3.4 (boundedness). There exists a constant C which depends on the initial data such

that for any (x, v, θ) ∈ supp ft, one has

|v(t)| ⩽ C, ∀t > 0. (1.37)

Proof. Let

|v+|(t) = max
(x,v,θ)∈supp ft

|v|.

At time t, let ℓ ∈ (Rd)∗, |ℓ| = 1, (x, v, θ) ∈ supp ft such that |v+| = ℓ(v). Then, by Rademacher’s

Lemma,

d

dt
|v+| =

∫
Ω

ϕ(x− z) ℓ(w− v)f(z,w, η, t) dz dwdη+ σℓ(v)(θ− |v|p)

⩽ σ|v+|(θ
∗ − |v+|

p).

Hence, if θ∗ ⩽ |v+|
p then

|v+|(t) ⩽ |v+|(0) ∀t > 0.

Otherwise, we have

d

dt
|v+|

p ⩽ σp|v+|
p(θ∗ − |v+|

p).

Solving the above ODI gives

|v+|(t) ⩽
p
√
θ∗eσθ

∗t

(c+ eσpθ∗t)1/p
=

p
√
θ∗ +O(e−σθ

∗t), (1.38)
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where c is a positive constant depending on initial data. Thus, |v+|(t) is bounded for all

t > 0.

Lemma 1.3.5 (weak maximum principle). If for a given functional ℓ ∈ (Rn)∗, all velocity

vectors v0 that lie in the support of the initial flock, (x0, v0, θ0) ∈ supp f0, satisfy

ℓ(v0) ⩾ 0,

then at any positive time

ℓ(v) ⩾ 0, ∀t > 0, (x, v, θ) ∈ supp ft.

Proof. At time t, let

ℓ(v) = min
(z,w,η)∈supp f

ℓ(w).

By Rademacher’s Lemma,

d

dt
ℓ(v) =

∫
Ω

ϕ(x− z) ℓ(w− v)f(z,w, η, t) dz dw dη+ σℓ(v)(θ− |v|p) ⩾ σℓ(v)(θ∗ − |v|p).

Then by Lemma 1.3.4 we get

d

dt
ℓ(v) ⩾ c ℓ(v),
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where c is constant. Solving this ODI we obtain the desired conclusion,

ℓ(v) ⩾ ℓ(v0)e
ct ⩾ 0, ∀t > 0.

Remark 1.3.6. By the weak maximum principle we note that if the support of f0 in v lies in

the convex sector defined by

ΣF =
⋂
ℓ∈F

{v ∈ Rn : ℓ(v) ⩾ 0} ,

where F is an arbitrary set of linear functionals on Rn, then the velocity support of ft will

be confined to that sector for all time. Since the system (Equation 1.33) is invariant under

rotations, without loss of generality we can assume that the support of f0 in v lies above the

hyperplane Πn = {vn = 0}, where vn is the n-th coordinate of vector v.

Lemma 1.3.7. For any sectorial solution f to (Equation 1.28) there exists a positive constant

c0 depending on the initial data such that

|v| ⩾ c0, ∀(x, v, θ) ∈ supp ft. (1.39)

Proof. At time t, let (x, v, θ) be a minimizer for min
(x,v,θ)∈supp ft

vn. Then

d

dt
vn =

∫
Ω

ϕ(x− z)(wn − vn)f(z,w, η, t) dz dw dη+ σvn(θ− |v|p) ⩾ σvn(θ∗ − ε
−pvpn). (1.40)



24

If θ∗ ⩽ ε−pv
p
n then

|v| ⩾ ε p
√
θ∗.

Otherwise, solving (Equation 1.40) we get

vn ⩾
ε p
√
θ∗e

σθ∗t

(c+ epσθ∗t)1/p
,

where c is a positive constant which depends on the initial data. Then the lemma follows.

Remark 1.3.8. Lemma 1.3.7 tells us that for a sectorial solution f, supp f(x, ·, θ) stays away

from the origin. Then, by Lemma 1.3.4, it implies that supp f(x, ·, θ) is contained in a sector.

Lemma 1.3.7 also implies that for any sectorial solution f one has

|v−|(t) ⩾ c0, ∀t > 0, (1.41)

where |v−|(t) = min
(x,v,θ)∈supp f

|v(t)|.

Proof of Proposition 1.3.3. From now on we consider a sectorial solution f to the system (Equation 1.28).

Denoting r̃ =
r

|r|
for any vector r ∈ Rn. One has

d

dt
ṽ =

1

|v|

(
Id−

v

|v|
⊗ v

|v|

)
v̇ =

∫
Ω

|w|

|v|
ϕ(x− z)(Id−ṽ⊗ ṽ)w̃ f(z,w, η, t) dz dw dη. (1.42)

Here, we used (Id−ṽ⊗ ṽ)v = 0.
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Denoting by (̂v, u) the angle between two vectors v and u, then cos (̂v, u) = ṽ · ũ. Thus,

if (x, v, θ), (y, u, ζ) are the solutions to (Equation 1.33) with respect to the initial conditions

(x0, v0, θ0), (y0, u0, ζ0), respectively, then

d

dt
cos (̂v, u) =

∫
Ω

|w|

|v|
ϕ(x− z)[cos (̂u,w) − cos (̂v, u) cos (̂v,w)]f(z,w, η, t)dz dw dη

+

∫
Ω

|w|

|u|
ϕ(y− z)[cos (̂v,w) − cos (̂v, u) cos (̂u,w)]f(z,w, η, t) dzdw dη.

(1.43)

Note that if v, u, and w are three vectors lying in the same two dimenstional plane and

(̂v, u) = (̂v,w) + (̂w,u) < π− δ for some δ > 0, (1.44)

then the followings hold:

cos (̂u,w) − cos (̂v, u) cos (̂v,w) = cos
(
(̂v, u) − (̂v,w)

)
− cos (̂v, u) cos (̂v,w)

= sin (̂v, u) sin (̂v,w) ⩾ 0,

cos (̂v,w) cos (̂v, u) cos (̂u,w) ⩾ 0,

cos (̂u,w) + cos (̂v,w) = cos
(̂v, u)

2
cos

(̂u,w) − (̂v,w)

2
⩾

(
cos

π− δ

2

)2
.
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Therefore, if the support of f in v is on a two dimensional plane and (Equation 1.44) is satisfied,

then by Lemma 1.3.4 , Lemma 1.3.7 and (Equation 1.43), one has

d

dt
cos (̂v, u) ⩾ cϕ(D)

∫
Ω

(
cos (̂u,w) + cos (̂v,w)

)(
1− cos (̂v, u)

)
f(z,w, η, t) dzdw dη

⩾ cϕ(D)
(
1− cos (̂v, u)

)
.

Equivalently,

d

dt

(
1− cos (̂v, u)

)
⩽ −cϕ(D)

(
1− cos (̂v, u)

)
. (1.45)

Now let Π be a fixed two dimensional plane which contains the vn-axis. Denoting by vΠ the

projection of any v ∈ supp f onto Π. Projecting the second equation in (Equation 1.33) onto Π

we have the following equation:

v̇Π =

∫
Ω

ϕ(x− z)(wΠ − vΠ)f(z,w, η, t) dz dw dη+ σvΠ(θ− |v|p) (1.46)

Therefore, we can write the equation for cos ̂(vΠ, uΠ) as follows:

d

dt
cos ̂(vΠ, uΠ) =

∫
Ω

|wΠ|

|vΠ|
ϕ(x− z)[cos ̂(uΠ, wΠ) − cos ̂(vΠ, uΠ) cos ̂(vΠ, wΠ)]f(z,w, η, t) dzdw dη

+

∫
Ω

|wΠ|

|uΠ|
ϕ(y− z)[cos ̂(vΠ, wΠ) − cos ̂(vΠ, uΠ) cos ̂(uΠ, wΠ)]f(z,w, η, t) dz dw dη.

(1.47)
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Let us denote G(1, n−1) the space of all two dimensional subspaces of Rn which contain vn-axis.

Since G(1, n − 1) can be identified with 1-Grassmannian manifold of Rn−1 which is compact,

we can define

γ2D = max
Π∈G(1,n−1)

(x,v,θ),(y,u,ζ)∈ supp f

̂(vΠ, uΠ). (1.48)

We note that

γ2D ⩽ π− δ for some δ > 0.

Since the n-th coordinate of any v ∈ supp f does not change when it is projected onto Π, |vΠ| is

still bounded above and below by positive constants. Therefore, choosing a maximizing triple

Π,u, v for ̂(vΠ, uΠ), from (Equation 1.47) we deduce that

d

dt
(1− cosγ2D) ⩽ −cϕ(D)((1− cosγ2D). (1.49)

Denoting

γ = max
(x,v,θ),(y,u,ζ)∈ supp f

(̂u, v).

Claim 1.3.9. We have γ ⩽ γ2D.
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Proof of Claim 1.3.9. For any (x, v, θ), (y, u, ζ) ∈ supp f, consider the two dimensional subspace

Π = span{en, ũ− ṽ} where en = (0, . . . , 0, 1). We have Π ∈ G(1, n− 1) and ũ− ṽ = ũΠ− ṽΠ. By

the law of cosines, we get

2(1− cos (̂u, v)) = |ũ− ṽ|2 = |ũΠ − ṽΠ|2 = 2|ũΠ|2(1− cos ̂(uΠ, vΠ))

⩽ 2(1− cos ̂(uΠ, vΠ)).

It implies that for any (x, v, θ), (y, u, ζ) ∈ supp f there exists Π ∈ G(1, n− 1) such that (̂u, v) ⩽

̂(uΠ, vΠ). Therefore, the claim is followed.

Remark 1.3.10. Claim 1.3.9 and the inequality (Equation 1.49) imply that if D(t) ⩽ D <∞
then

1− cosγ ⩽ 1− cosγ2D ≲ e−cϕ(D)t.

Now we set

R = max
(x,v,θ),(y,u,ζ)∈supp f

|v|2

|u|2
.
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Suppose that (x, v, θ), (y, u, ζ) maximize R at time t, we have

d

dt
R =

2

|u|2

[∫
Ω

ϕ(x− z)(v ·w− |v|2)f(z,w, η, t) dz dw dη+ σ|v|2(θ− |v|p)

]
−
2|v|2

|u|4

[∫
Ω

ϕ(y− z)(u ·w− |u|2)f(z,w, η, t) dz dwdη+ σ|u|2(ζ− |u|p)

]
=

2

|u|2

∫
Ω

ϕ(x− z)(v ·w− |v|2)f(z,w, η, t) dzdw dη (1.50)

+
2|v|2

|u|4

∫
R2d

ϕ(y− z)(|u|2 − u ·w)f(z,w, η, t) dzdw dη+ 2σR(θ− ζ+ |u|p − |v|p).

Since u, v maximize R, we have v ·w− |v|2 ⩽ |v|(|w|− |v|) ⩽ 0 for all w ∈ supp f. Hence, the first

term on the right hand side of (Equation 1.50) is nonpositve. For the second term, we have

|u|2 − u ·w = |u|2 − |u||w| cos (̂u,w) ≲ 1− cosγ.

Note that R is bounded from above and below, hence,

2σR(θ− ζ+ |u|p − |v|p) = 2σR(θ− ζ) +
2σR
|u|p

(1−Rp/2) ≲ Q+ (1−R).

Therefore, there exist positive constants c1, c2, c3 such that

d

dt
(R− 1) ⩽ −c1(R− 1) + c2(1− cosγ) + c3Q. (1.51)
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Firstly, we see that the flock diameter grows at most linearly in time,

D(t) ≲ t (1.52)

since

d

dt
D(t) ⩽ A(t) (1.53)

and |v| is bounded for all (x, v, θ) ∈ supp f. It is not hard to see the relation

A2 ≲ (R− 1) + (1− cosγ). (1.54)

Thus, to prove an exponential alignment it suffices to show that both (R − 1) and (1 − cosγ)

decay exponentially fast.

We now consider two cases for β:

Case I: β < 1. Our assumption on the kernel and (Equation 1.52) imply that

ϕ(D) ≳
1

(1+ t2)β/2
. (1.55)

Plugging it into (Equation 1.49) and applying the Grönwall’s Lemma we get

1− cosγ ⩽ 1− cosγ2D ≲ e−c⟨t⟩
1−β

. (1.56)
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Plugging (Equation 1.55) into (Equation 1.35) and solving for Q we also have

Q ≲ e−c⟨t⟩
1−β

. (1.57)

Combining these inequalities with (Equation 1.51) and solving for R− 1 we obtain

R− 1 ≲ e−c⟨t⟩
1−β

. (1.58)

From (Equation 1.53), (Equation 1.54), (Equation 1.56) and (Equation 1.58), we have

d

dt
D ≲ e−c⟨t⟩

(1−β)/2
.

Solving this ODI gives

D(t) ⩽ D <∞. (1.59)

Thus, (Equation 1.35) implies that

Q(t) ⩽ Q(0)e−tϕ(D).

Hence, θ(t) aligns to θ∞ exponentially fast for all (x, v, θ) ∈ supp f. Due to finite flock diameter

(Equation 1.59) and Remark 1.3.10, we have

1− cosγ ≲ e−cϕ(D)t.
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Putting the estimates for Q and (1 − cosγ) into (Equation 1.51) and solving for R − 1 where

we use the Grönwall’s Lemma, we obtain the exponential decay for R − 1 as well. Therefore,

we arrive at an alignment with an exponential rate.

Denoting by E any quantity which decays exponentially fast. So far we have |θ−θ∞| = E(t),

|v−u| = E(t) for any θ, v, u ∈ supp f. By (Equation 1.41) and Lemma 1.3.4, |v±|(t) are bounded,

hence, the following equations hold for |v±|
p(t) − θ∞:

d

dt
(|v±|

p − θ∞) = (σp|v±|
p(θ∞ − |v±|

p) + E) ∼ (−(|v±|
p − θ∞) + E).

It follows that |v±|
p(t) converges to θ∞ exponentially fast. Therefore, from the characteristic

equation for v ∈ supp f in (Equation 1.33) we deduce that

d

dt
v = E, ∀v0 ∈ supp f0.

The existence of v∞ is followed then.

Case II: β = 1. In this case, we have ϕ(D) ≳
1√
1+ t2

, hence,

1− cosγ ⩽ 1− cosγ2D ≲ ⟨t⟩−α, and

Q ≲ ⟨t⟩−α, for some α > 0.

Therefore,

d

dt
(R− 1) ≲ −(R− 1) + ⟨t⟩−α.
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Solving this ODI we yield

R− 1 ≲ ⟨t⟩−α.

Here we used the fact that e−ct ∗ ⟨t⟩−α ∼ ⟨t⟩−α. It implies that

A ≲ ⟨t⟩−α/2,

and hence,

D ≲ ⟨t⟩1−α/2.

Thus,

ϕ(D) ≳ ϕ(⟨t⟩1−α/2) ≳ 1

(1+ t2)β̃/2
for some β̃ < 1.

Now we can argue exactly as in the case β < 1 replacing β by β̃ to reach the conclusions of the

theorem.

1.3.2 Proof of Theorem 1.1.3

Using Proposition 1.3.3 as a key ingredient we now prove our main result for the Rayleigh-

forced system, Theorem 1.1.3. So, let us we consider the full Liouville equation for a probability

density fN on ΩN:

∂tf
N +

N∑
i=1

vi · ∇xif
N +

N∑
i=1

∇vi · (f
NFNi ) +

N∑
i=1

∇vi · (f
NRNi ) +

N∑
i=1

∇θi · (f
NΘNi ) = 0, (1.60)
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subject to the initial condition

fN(0) = f⊗N0 , (1.61)

where f0 : Ω→ R+ and for (X,V,Θ) = (x1, . . . , xN, v1, . . . , vN, θ1, . . . , θN),

FNi (X,V,Θ) =
1

N

N∑
k=1

ϕ(xi − xk)(vk − vi),

ΘNi (X,V,Θ) =
1

N

N∑
k=1

ϕ(xi − xk)(θk − θi),

RNi (X,V,Θ) = σvi(θi − |vi|
p).

We introduce a similar notation for the flow-maps. Denote by

ΦNt = (x1(t), v1(t), θ1(t) . . . , xN(t), vN(t), θN(t)) : Ω
N → ΩN

the flow-map of the discrete system (Equation 1.13) which is also the characteristic flow of

(Equation 1.60). Then, as before, fN is the push forward of f⊗N0 under ΦNt ,

fN = ΦNt ♯f
⊗N
0 .

Let also

Φ̄t = (x̄(t), v̄(t), θ̄(t)) : Ω→ Ω
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be the characteristic map of (Equation 1.28), which consists of solutions to (Equation 1.33).

The direct product of N copies will be denoted Φ̄⊗N
t . Then we have

f = Φ̄t♯f0, f⊗N = Φ̄⊗N
t ♯f⊗N0 . (1.62)

By the same logic as before the theorem reduces to establishing the bound

∫
R2nN

|ΦNt (X0, V0) − Φ̄
⊗N
t (X0, V0)|

2 f⊗N0 (X0, V0) dX0 dV0 ⩽ Cmin{N, t4}. (1.63)

We split the integrand into three components:

P =
1

2

∫
ΩN

|Xt(X0, V0, Θ0) − X̄t(X0, V0, Θ0)|
2 f⊗N0 (X0, V0, Θ0) dX0 dV0 dΘ0,

K =
1

2

∫
ΩN

|Vt(X0, V0, Θ0) − V̄t(X0, V0, Θ0)|
2 f⊗N0 (X0, V0, Θ0) dX0 dV0 dΘ0,

C =
1

2

∫
ΩN

|Θt(X0, V0, Θ0) − T̄ht(X0, V0, Θ0)|
2 f⊗N0 (X0, V0, Θ0) dX0 dV0 dΘ0.

(1.64)

For the potential energy we will use the same inequality as before, (Equation 1.22). For K, we

obtain

d

dt
K = S1 + S2,

where S1 is the exact same alignment term that we handled before, but now with the use of

Proposition 1.3.1 and Proposition 1.3.3,

S1 ⩽ ce−δtK1/2(1+ P1/2). (1.65)
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And S2 is given by

S2 =
∫
ΩN

N∑
i=1

(vi − v̄i) ·
(
σvi(θi − |vi|

p) − σv̄i(θ̄i − |v̄i|
p)
)
f⊗N0 (X0, V0, Θ0) dX0 dV0 dΘ0.

Let us write S2 as follows

S2 = σ
∫
ΩN

N∑
i=1

(vi − v̄i) ·
(
θivi − θ̄iv̄i

)
f⊗N0 (X0, V0, Θ0) dX0 dV0 dΘ0

− σ

∫
ΩN

N∑
i=1

(vi − v̄i) · (vi|vi|p) − v̄i|v̄i|p) f⊗N0 (X0, V0, Θ0) dX0 dV0 dΘ0

:= J1 − J2.

Since

(vi − v̄i) ·
(
θivi − θ̄iv̄i

)
=
1

2
(θi + θ̄i)|vi − v̄i|

2 +
1

2
(vi − v̄i) · [(θi − θ̄i)(vi + v̄i)],

one has

J1 =
σ

2

∫
ΩN

N∑
i=1

(
(θi + θ̄i)|vi − v̄i|

2 + (vi − v̄i) · [(θi − θ̄i)(vi + v̄i)]
)
f⊗N0 (X0, V0, Θ0) dX0 dV0 dΘ0.

For J2, since

(vi − v̄i) · (vi|vi|p − v̄i|v̄i|p) =
1

2
(|vi|

p + |v̄i|
p)|vi − v̄i|

2 +
1

2
(|vi|

2 − |v̄i|
2)(|vi|

p − |v̄i|
p),
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and

1

2
(|vi|

2 − |v̄i|
2)(|vi|

p − |v̄i|
p) ⩾ 0,

we get

−J2 ⩽ −
σ

2

∫
ΩN

N∑
i=1

(|v̄i|
p + |vi|

p)|vi − v̄i|
2f⊗N0 (X0, V0, Θ0) dX0 dV0 dΘ0.

Therefore,

S2 = J1 − J2 ⩽
σ

2

∫
ΩN

N∑
i=1

(θi − |vi|
p + θ̄i − |v̄i|

p)|vi − v̄i|
2f⊗N0 (X0, V0, Θ0) dX0 dV0 dΘ0

+
σ

2

∫
ΩN

N∑
i=1

(vi − v̄i) · (θi − θ̄i)(v̄i + vi)f⊗N0 (X0, V0, Θ0) dX0 dV0 dΘ0. (1.66)

Because |θi − |vi|
p| ⩽ ce−δt and |θ̄i − |v̄i|

p| ⩽ ce−δt, the first integral on the right hand side of

(Equation 1.66) is less than or equal to ce−δtK. Then, we apply the Hölder inequality and the

boundedness of |v̄i| and |vi| to the second integral to obtain

S2 ⩽ c(e−δtK +K1/2H1/2). (1.67)

Combining (Equation 1.65) and (Equation 1.67) we get

d

dt
K ⩽ ce−δtK1/2(K1/2 + 1+ P1/2) +K1/2H1/2. (1.68)
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Let us now turn to the characteristic parameters term C:

d

dt
C =

∫
ΩN

N∑
i=1

(θi − θ̄i) ·
( 1
N

N∑
k=1

ϕ(xi − xk)(θk − θi)

−

∫
Ω

ϕ(x̄i − y)(η− θ̄i)f(y,w, η, t) dy dw dη
)
f⊗N0 dX0 dV0 dΘ0

:= I1 + I2 + I3,

where

I1 =

∫
ΩN

N∑
i=1

(θi − θ̄i) ·
1

N

N∑
k=1

[
ϕ(xi − xk) − ϕ(x̄i − x̄k)

]
(θk − θi) f

⊗N
0 dX0 dV0 dΘ0,

I2 =

∫
ΩN

N∑
i=1

(θi − θ̄i) ·
1

N

N∑
k=1

ϕ(x̄i − x̄k)
[
(θk − θ̄k) − (θi − θ̄i)

]
f⊗N0 dX0 dV0 dΘ0,

I3 =

∫
ΩN

N∑
i=1

(θi − θ̄i) ·
( 1
N

N∑
k=1

ϕ(x̄i − x̄k)(θ̄k − θ̄i)

−

∫
Ω

ϕ(x̄i − y)(η− θ̄i)f(y,w, t) dydwdη
)
f⊗N0 dX0 dV0 dΘ0.

We have I2 ⩽ 0 because

I2 =

∫
ΩN

1

N

N∑
i,k=1

ϕ(x̄i − x̄k)[(θi − θ̄i) · (θk − θ̄k) − |θi − θ̄i|
2] f⊗N0 dX0 dV0 dΘ0

= −

∫
ΩN

1

2N

N∑
i,k=1

ϕ(x̄i − x̄k)|(θi − θ̄i) − (θk − θ̄k)|
2 f⊗N0 dX0 dV0 dΘ0.
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For I1, we obtain, using Proposition 1.3.1,

|I1|
2 ⩽ 2C

∫
ΩN

N∑
i=1

∣∣∣∣∣ 1N
N∑
k=1

[ϕ(xi − xk) − ϕ(x̄i − x̄k)](θk − θi)

∣∣∣∣∣
2

f⊗N0 dX0 dV0 dΘ0

⩽ 2|∇ϕ|2∞C
∫
ΩN

N∑
i=1

(
1

N

N∑
k=1

|(xi − xk) − (x̄i − x̄k)||θk − θi|

)2
f⊗N0 dX0 dV0 dΘ0

⩽ ce−2δtC
∫
ΩN

N∑
i=1

(
1

N

N∑
k=1

(|xi − x̄i|+ |xk − x̄k|)

)2
f⊗N0 dX0 dV0 dΘ0

⩽ ce−2δtC
∫
ΩN

N∑
i=1

(
|xi − x̄i|

2 +
1

N

N∑
k=1

|xk − x̄k|
2

)
f⊗N0 dX0 dV0 dΘ0

= ce−2δtCP.

Thus,

|I1| ⩽ ce
−δtC1/2P1/2. (1.69)
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For I3, we have

|I3|
2 ⩽ 2C

∫
ΩN

N∑
i=1

∣∣∣∣∣ 1N
N∑
k=1

ϕ(x̄i − x̄k)(θ̄k − θ̄i) −

∫
Ω

ϕ(x̄i − y)(η− θ̄i)f(y,w, η, t)dydw dη

∣∣∣∣∣
2

× f⊗N0 (X0, V0, Θ0)dX0 dV0 dΘ0

= 2C
∫
ΩN

N∑
i=1

∣∣∣∣∣ 1N
N∑
k=1

ϕ(x̄i − x̄k)(θ̄k − θ̄i) −

∫
Ω

ϕ(x̄i − y)(η− θ̄i)f(y,w, η, t) dydwdη

∣∣∣∣∣
2

× f⊗N(X̄, V̄, Θ̄, t)dX̄dV̄dΘ̄

= 2CN
∫
ΩN

∣∣∣∣∣ 1N
N∑
k=1

ϕ(x̄1 − x̄k)(θ̄k − θ̄1) −

∫
Ω

ϕ(x̄1 − y)(η− θ̄1)f(y,w, η, t) dydw dη

∣∣∣∣∣
2

× f⊗N(X̄, V̄, Θ̄, t)dX̄dV̄dΘ̄

⩽ 2CN 4
N

sup
(x̄,v̄,θ̄),(x̄ ′,v̄ ′,θ̄ ′)∈supp ft

|ϕ(x̄− x̄ ′)(θ̄− θ̄ ′)|2 ⩽ cCe−2δt.

Here in the penultimate step we used again (24, Lemma 3.3). Therefore,

|I3| ⩽ ce
−δtC1/2. (1.70)

Combining the three estimates for I1, I2, I3, we obtain

d

dt
C ⩽ ce−δt(1+ P1/2)C1/2. (1.71)
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Setting p = 1+P1/2, k = K1/2, q = C1/2. By (Equation 1.22), (Equation 1.68) and (Equation 1.71)

we obtain the system of ODIs:



ṗ ⩽ k, p0 = 1,

k̇ ⩽ ce−δt(p+ k) + cq, k0 = 0,

q̇ ⩽ ce−δtp, q0 = 0.

(1.72)

Claim 1.3.11. For any nonnegative solution (p, k, q) to (Equation 1.72), there exists a constant

C depending on c, δ such that

p ⩽ 1+ Ct2, k ⩽ Ct, z ⩽ Cmin{1, t}. (1.73)

Proof of the Claim 1.3.11. Fix ε, τ > 0 to be chosen later. We have



d
dt
(εp2) ⩽ 2εpky ⩽

√
ε(εp2 + k2),

d
dt
k2 ⩽ ce−δt(2pk+ 2k2) + 2ckq ⩽ ce−δt

[
1√
ε
(εp2 + k2) + 2k2

]
+

c√
τ
(p2 + τq2),

d
dt
(τq2) ⩽ 2τce−δtpq ⩽

c
√
τe−δt√
ε

(εp2 + τq2).

It implies that

d

dt
(εp2 + k2 + τq2) ⩽ c(τ, ε)e−δt(εp2 + k2 + τq2) +

(√
ε+

c√
τ

)
(εp2 + k2 + τq2).
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Applying Grönwall’s lemma we get

εp2+k2+τq2 ⩽ ε exp

((√
ε+

c√
τ

)
t+

c(ε, τ)

δ
(1− e−δt)

)
⩽ ε exp

((√
ε+

c√
τ

)
t+

c(ε, τ)

δ

)
.

Now choosing ε = δ2/4, τ = 4c2/δ2, we obtain

p ≲ eδt/2.

Plugging it into the third equation in (Equation 1.72) and solving for q we have

q ⩽ c
∫ t
0

e−δs/2 ds ⩽ Cmin{1, t}.

Substituting p, q into the second equation in (Equation 1.72) we have

d

dt
k ⩽ ce−δtk+ ce−δt/2 + Cmin(1, t).

It implies that

k ⩽ Ct.

Hence, by the first equation in (Equation 1.72) we get

p ⩽ 1+ Ct2.
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The Claim 1.3.11 follows that

P ⩽ Ct4, K ⩽ Ct2, C ⩽ Cmin{1, t2}.

On the other hand, in view of the global estimates on the support of the flock, P ⩽ CN. Due

to the alignment we also have K ⩽ CN. Therefore,

P +K + C ⩽ Cmin{N, t4},

as desired.



CHAPTER 2

CONTINUOUS MODEL OF OPINION DYNAMICS WITH

CONVICTIONS

(Previously published as V. Nguyen and R. Shvydkoy, Continuous model of opinion dynam-

ics with convictions, Discrete Continuous Dynamical Systems, 43(11):4010–4026, 2023.)

2.1 Introduction

In this chapter, we study regularity and long time behavior of solutions to the following

transport equation

∂tµ+ ∂y(u(µ)µ) = 0, (2.1)

where µ = µ(t, y, θ) is a measure on Ω = R+ × R+ for each t ⩾ 0, and

u(µ) = ∂y(W ∗ µ+ σV), (2.2)

W(y) = −
1

2
y2, V(y, θ) =

1

2
θy2 −

1

p+ 2
yp+2. (2.3)

Here, σ and p are positive parameters. The variable θ can be thought of as a parameter as well,

however, note that the convolution W ∗ µ couples all the measures together across the family.

44
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The motivation for this particular model is twofold. First, it represents the kinetic counter-

part of the corresponding discrete dynamical system:

ẏi =
1

N

N∑
k=1

(yk − yi) + σ(θi − y
p
i )yi, (2.4)

where θi’s are constant parameters. In fact, the empirical distributions

µN =
1

N

N∑
i=1

δθi ⊗ δyi(t) (2.5)

solve (Equation 2.1) in the weak sense if and only if yi’s solve (Equation 2.4), and formally the

mean-field limit µN → µ yields a solution to (Equation 2.1). The discrete system (Equation 2.4)

was derived in (22) as the effective limiting dynamics of the speeds yi = |vi| of agents governed

by the corresponding alignment model with all-to-all communication and Rayleigh friction/self-

propulsion force

ẋi = vi, v̇i =
1

N

N∑
k=1

(vk − vi) + σ(θi − |vi|
p)vi. (2.6)

When all velocities vi belong to a sector of opening less than π, the vectors vi will dynamically

align themselves along one direction vi ∼ yiv̂, where yi = |vi|, and the evolution of yi is governed

by (Equation 2.4) up to an exponentially decaying force.

The system (Equation 2.6) is a very important example of a collective behavior model of

Cucker-Smale type that was introduced in (9; 10) and studied under this particular forcing

in the earlier works (16; 22; 8; 27). Kinetic limits in the context of forced systems including
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potential interaction and friction/self-propulsion were established in (6; 5; 3; 7). The first order

conservation models of type (Equation 2.1) appeared in the context of aggregation models in

the works of Topaz et al (35; 36). All these works correspond to the non-parametric case,

i.e. θ = const, where friction force appears. The variable θ case, beyond the work (22), was

considered more recently in (27) where propagation of chaos with quantified rate was established

for sectorial solutions, as described above, to the full Cucker-Smale system.

Our second motivation for this study comes from interpretation of the equation (Equation 2.1)

as a continuous model of opinion dynamics. To put it in prospective of a vast existing litera-

ture let us compare it to several related models. The classical Hegselmann-Krause model (20)

focuses on exchange of opinions only under local environmental averaging protocol – one that

is based on interactions of agents with close views. A more elaborate protocol of opinion up-

dates based on randomization of interaction schemes between groups were studied in works of

Galam, see (13) and references there in. Equations (Equation 2.1), (Equation 2.4) belong to a

class of models that incorporate ‘conviction’ parameter θ whose role is to pull the opinion of an

agent to its value while remaining unchanged. As far as we can trace such models, also called

models with ‘stubborn’ agents, appeared first in the work of Friedkin and Johnsen (12) and

later became a staple in many studies on opinion dynamics, see for example (2; 14) and liter-

ature therein. In those works, however, the conviction pull is defined by a linear force, which

in our notation would correspond to a constant multiple of θi − yi. The model proposed here

uses the most basic all-to-all communication rule, but it incorporates the nonlinear conviction

force. Phenomenologically it describes the effect of strengthening the pull towards conviction
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as the latter becomes more extreme. Such a model is necessarily not Galilean invariant and is

fully non-linear, which makes the analysis of an ‘agreement’ or even its existence a challenging

problem.

For the discrete variant (Equation 2.4) the problem was addressed in (22) where the model

was interpreted as a non-cooperative game in the sense of Nash (23). The limiting state of

opinions is characterized as a Nash equilibrium – an agreement deviation from which is of

no benefit to any player, although may not necessarily be the most optimal value to anyone.

Clearly, such an agreement is not expected to be a perfect consensus due to adherance to

convictions. The existence, uniqueness and stability of the equilibrium was proved in (22)

using the Brouwer topological degree theory.

Theorem 2.1.1. For any positive set of parameters (θ1, . . . , θN, σ) ∈ RN+ × R+ there exists a

unique stable Nash equilibrium y∗ = (y∗1, . . . , y
∗
N) ∈ RN+ of system (Equation 2.4) relative to

payoffs

pi(y) = σ

(
1

2
θiy

2
i −

1

p+ 2
y
p+2
i

)
−
1

2
(ȳ− yi)

2 , ȳ =
1

N

∑
j

yj. (2.7)

Any solutions with positive initial data will remain positive and converge to y∗ as t → ∞.

Moreover, if θi = θj then yi = yj.

The main difficulty in establishing the result is that the natural gradient structure of

(Equation 2.4)

ẏ = −∇Φ(y)

involves energy Φ(y) =
∑N
i=1 pi(y) that is not globally convex.
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The purpose of this present study is to recreate a similar result for the kinetic model

(Equation 2.1). First, we justify it as the mean-field model of (Equation 2.4) by establishing the

limit µN → µ. Such analysis is rather standard for first-order models, which is done by proving

a general weak-Lipschitzness of the solution map µ0 → µt with respect to the Wasserstein-1

metric, (1),

W1(µt, νt) ⩽ Ce
ctW1(µ0, ν0), t > 0,

see Section 2.2. However, the details include a quantitative maximum principle of Lemma 2.2.2

that will be used later in the paper. So, we present the argument in full.

Our primary focus will be on the analysis of the Nash equilibrium of the continuous model

(Equation 2.1). To state the main result let us fix some notation. Let us observe that the

θ-marginal given by

dπ(θ, t) =

∫
y∈R+

dµ(y, θ, t), (2.8)

is conserved d
dt
π = 0. This is a reflection of the principle that convictions do not change. By

the disintegration theorem, see (1), for π-a.e. θ ∈ R+ there is a unique family of probability

‘slicing’ measures {µθ}θ∈R+ such that µ = µθ ⊗ dπ(θ), that is,

∫
Ω

φ(y, θ)dµ(y, θ) =

∫
R+

∫
R+

φ(y, θ)dµθ(y)dπ(θ), ∀φ ∈ C0(Ω). (2.9)

Each measure µθ represents distribution of opinions of agents that share the same conviction

θ.
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Our main result states that each of these slicing measures approaches a mono-opinion state,

i.e. a Dirac measure at a fixed point g(θ) for some smooth strictly increasing function g. In

other words,

µt → δg(θ) ⊗ dπ(θ), t→ ∞.
To put it formally we assume that our initial measure is located within a box compactly

inside Ω:

suppµ0 ⊂ R0 := [ymin, ymax]× [θmin, θmax], ymin, θmin > 0. (2.10)

Theorem 2.1.2. Let µ be the measure-valued solution to (Equation 2.1) with initial data sat-

isfying (Equation 2.10). Then there exists a function g ∈ C∞([θmin, θmax]) strictly increasing

such that

sup
θ∈suppπ

W1(µ
θ
t , δg(θ)) ⩽ Ce

−ct, t > 0, (2.11)

where C, c > 0 depend only on µ0 and the parameters of the model. Moreover, under the

assumption

σθmin >
p+ 1

p
or

θmax

θmin
< p+ 1. (2.12)

the map π→ g is Lipschitz,

sup
θ∈[θmin,θmax]

|g(θ) − g̃(θ)| ⩽ CW1(π, π̃). (2.13)

In particular g is unique for each π.
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Structurally, the equation (Equation 2.1) can be considered as a fibered gradient system in

the sense of (29) where the fibers are parametrized by convictions θ and the free energy is given

by

E(µ) = 1

2

∫
R2
+×R2

+

W(x− y)dµ(y, θ)dµ(x, η) − σ

∫
R2
+

V(y, θ)dµ(y, θ).

The equation can be written as a gradient dynamics

∂tµ = −∂E(µ),

where ∂ is understood as a fibered variant of the Fréchet subdifferential relative to a prop-

erly defined fibered Wasserstein distance. Without getting further into details one can obtain

directly the following energy dissipation law

d

dt
E = −

∫
R+×R+

|u(µ)|2dµ(y, θ).

The law demonstrates perpetual descent of the solution down the energy surface and suggests

convergence to a local minimum. The general results of this nature were established in (29)

under a properly formulated convexity condition on the energy. However, just as in the discrete

case, such convexity is not always true in our settings. Therefore, the statement of Theo-

rem 2.1.2 does not directly follow from the theory developed in (29). Our method is based on

the Lagrangian approach, which involves detailed analysis of asymptotic behavior of character-

istics of (Equation 2.1). Let us note that in the discrete case the uniqueness of the limiting
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state is unconditional. Removing assumptions (Equation 2.12) for the kinetic model remains

an open issue.

2.2 Well-posedness and mean-field limit

In this section, we will prove the existence of measure-valued solutions to the equation

(Equation 2.1). First of all, let us introduce some notations and definitions. Let Ω = R2+ and

denote P0(Ω) the set of probability measures on Ω which have compact support in the interior

of Ω.

Definition 2.2.1. Given 0 ⩽ T < ∞, a map µ : [0, T) → P0(Ω), t 7→ µt, is called a measure-

valued solution to (Equation 2.1) with initial data µ0 if it satisfies the following conditions:

i) µ is weakly* continuous,

ii) For any φ ∈ C∞
0 ([0, T)×Ω) and 0 < t < T ,

∫
Ω

φ(t, y, θ)dµt(y, θ) =

∫
Ω

φ(0, y, θ)dµ0(y, θ) +

∫ t
0

∫
Ω

[∂sφ+ u∂yφ]dµs(y, θ) ds.

Let us note that we do not make any specific assumptions about the class of measures we

consider as solutions. In particular, µ is purely atomic, see (Equation 2.5) then it is easy to

check that the definition of a solution is equivalent to the ODE (Equation 2.4).

To make further notation simpler let us observe that by making the change of variables

y→ σ
1
py, θ→ σθ, µ→ σ

1+ 1
pµ, (2.14)
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we can scale out the parameter σ from the equation altogether. So, from now on we can assume

that σ = 1, and be mindful that all the constants that appear later eventually depend on the

original parameter σ.

If µ : [0, T) → P0(Ω) is a measure-valued solution to (Equation 2.1) with initial data µ0, by

the classical transport theory, µ is a push-forward of µ0 along characteristics (Y,Θ):

d

dt
Y(t, y, θ) =

∫
Ω

(Y ′ − Y)dµ0(y
′, θ ′) + Y(Θ− Yp), Y(0, y, θ) = y, (2.15)

d

dt
Θ(t, y, θ) = 0, Θ(0, y, θ) = θ. (2.16)

Note that Θ is not changing in time, so in the equation (Equation 2.15) we can replace Θ by

its initial θ and view θ as a parameter.

The local well-posedness of the system (Equation 2.15) - (Equation 2.16) follows from the

standard fixed point argument for integro-differential equations and local Lipschitzness relative

to continuous maps (Y,Θ) of the right hand side. Global well-posedness will follow as soon as

we establish a priori bounds on the support of Y.

Our standing assumption on the initial support of µ0 will always be (Equation 2.10). Let

us denote

Ymax(t) = max
R0

Y(t, ·), Ymin(t) = min
R0
Y(t, ·).

Note that ymax = Ymax(0) and ymin = Ymin(0).
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Lemma 2.2.2. For any solution Y to (Equation 2.15) on a time interval [0, T), we have for all

t < T ,

Ypmax ⩽
θmaxy

p
maxe

pθmaxt

θmax + y
p
max(epθmaxt − 1)

, (2.17)

Y
p
min ⩾

θminy
p
mine

pθmint

θmin + y
p
min(e

pθmint − 1)
. (2.18)

Proof. Evaluating (Equation 2.15) at a point of maximum on R0, using Rademacher’s lemma

(see (31)), we obtain

d

dt
Ypmax = pYp−1max

∫
Ω

(Y ′ − Ymax)dµ0(y
′, θ ′)︸ ︷︷ ︸

⩽0

+Ypmax(θ− Y
p
max)

⩽ pYpmax(θmax − Y
p
max).

The right hand side of (Equation 2.17) solves the above equation exactly. So, by the classical

comparison principle, we obtain (Equation 2.17).

Similarly,

d

dt
Y
p
min = pYp−1min

∫
Ω

(Y ′ − Ymin)dµ0(y
′, θ ′)︸ ︷︷ ︸

⩾0

+Ypmin(θ− Y
p
min)

⩾ pYpmin(θmin − Y
p
min).

The comparison principle implies (Equation 2.18).
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The lemma shows that on any finite time interval the characteristics will not leave Ω and in

fact the image Y(t, suppµ0) will be compactly embedded in Ω and remain uniformly bounded

a priori. Consequently, by extension, the system (Equation 2.15) - (Equation 2.16) is glob-

ally well-posed. By the push-forward transport, there is a global measure-valued solution to

(Equation 2.1).

Theorem 2.2.3. Given any measure µ0 ∈ P0(Ω) with (Equation 2.10) there exists a unique

measure-valued solution to (Equation 2.1) with initial condition µ0 and such that suppµt ⊂ Ω

remains bounded and bounded away from ∂Ω uniformly for all times.

Let us now show continuity of the map µ0 → µt in weak topology, which is the basis for

justification of the mean-field limit.

Lemma 2.2.4. Let µ and ν be two measure-valued solutions to (Equation 2.1) with µ0, ν0

satisfying (Equation 2.10). Then for any t > 0 one has

W1(µt, νt) ⩽ Ce
ctW1(µ0, ν0),

where C, c > 0 depend on the initial condition and the parameters of the model.

Proof. Denote L∞ := L∞(R0). Let us also denote by Y the characteristics of µ and by Z the

characteristics of ν.
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In what follows, C and c are constants which are varying line by line. By the definition of

the Wasserstein distance, we have

W1(µt, νt) = sup
∥φ∥Lip⩽1

∣∣∣∣∫
Ω

φ(y, θ)dµt(y, θ) −

∫
Ω

φ(y, θ)dνt(y, θ)

∣∣∣∣
= sup

∥φ∥Lip⩽1

∣∣∣∣∫
Ω

φ(Y, θ)dµ0(y, θ) −

∫
Ω

φ(Z, θ)dν0(y, θ)

∣∣∣∣
= sup

∥φ∥Lip⩽1

∣∣∣∣∫
Ω

φ(Y, θ)dµ0(y, θ) −

∫
Ω

φ(Y, θ)dν0(y, θ) +

∫
Ω

[φ(Y, θ) −φ(Z, θ)]dν0(y, θ)

∣∣∣∣
⩽ (1+ ∥∇Y∥∞)W1(µ0, ν0) +

∫
Ω

|Y − Z|dν0(y, θ)

⩽ (1+ ∥∇Y∥∞)W1(µ0, ν0) + ∥Y − Z∥∞. (2.19)

The proof reduces to the estimation of ∥∇Y∥∞ and ∥Y − Z∥∞.

Taking the gradient

∇Y = (∂yY, ∂θY)

of (Equation 2.15) we obtain

d

dt
∇Y = −∇Y + θ∇Y + (0, Y) − (p+ 1)Yp∇Y.

Evaluating at a point where ∥∇Y∥∞ is achieved, by Rademacher’s lemma, we have

d

dt
∥∇Y∥∞ ⩽ −(1− θ)∥∇Y∥∞ − (p+ 1)Yp∥∇Y∥∞ + ∥Y∥∞. (2.20)
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By (Equation 2.17),

d

dt
∥∇Y∥∞ ⩽ C∥∇Y∥∞ + C,

and hence,

∥∇Y∥L∞ ⩽ Cect. (2.21)

Now let us compute the derivative of ∥Y − Z∥∞. We have

d

dt
(Y − Z) =

∫
Ω

(Y ′ − Y)dµ0(y
′, θ ′) −

∫
Ω

(Z ′ − Z)dν0(y
′, θ ′)

+ (θ− Yp)Y − (θ− Zp)Z

=

∫
Ω

Y ′dµ0(y
′, θ ′) −

∫
Ω

Y ′dν0(y
′, θ ′) +

∫
Ω

Y ′dν0(y
′, θ ′) −

∫
Ω

Z ′dν0(y
′, θ ′)

+ (θ− 1)(Y − Z) − (Yp+1 − Zp+1).

Evaluating at a point of maximum and noting that Yp+1 −Zp+1 = (p+ 1)Ỹp(Y −Z) for some Ỹ

between Y and Z we obtain

d

dt
∥Y − Z∥∞ ⩽ ∥∇Y∥∞W1(µ0, ν0) + (|θ− 1|+ 1)∥Y − Z∥∞ − (p+ 1)Ỹp∥Y − Z∥∞

⩽ ∥∇Y∥∞W1(µ0, ν0) + C∥Y − Z∥∞.

Combining with (Equation 2.21) and by Grönwall’s lemma, it implies that

∥Y − Z∥∞ ⩽ CectW1(µ0, ν0). (2.22)
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where c is a constant depending on σ and the supports of µ0, ν0 with respect to θ. Therefore,

plugging (Equation 2.22) and (Equation 2.21) into (Equation 2.19) we obtain

W1(µt, νt) ⩽ Ce
ctW1(µ0, ν0)

which concludes the lemma.

For any N ∈ N, if {(yi, θi)}i=1,...,N is a solution to the system (Equation 2.4) with the initial

conditions yi(0) = y
0
i , θi(0) = θi, then

µNt :=
1

N

N∑
i=1

δyi(t) ⊗ δθi ,

is a measure-valued solution to (Equation 2.1) with the initial condition

µN0 =
1

N

N∑
i=1

δy0i
⊗ δθi .

So, if µN0 → µ0 weakly, then by Lemma 2.2.4, µNt → µt, for any t > 0. Which justifies the

weak approximation by empirical measures.

This method can be used to give an alternative proof of global existence for (Equation 2.1)

without the use of general characteristics Y and simply based on the fact that the discrete

system (Equation 2.4) is globally well-posed.
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Another proof of Theorem 2.2.3. Let us pick any weak∗-approximation of µ0 by empirical mea-

sures

µN0 =

N∑
k=1

mkδy0k
⊗ δθk → µ0.

Let

µNt :=

N∑
k=1

mkδyk(t) ⊗ δθk .

Since µN is a measure-valued solution to (Equation 2.1) with the initial data µN0 we apply

Lemma 2.2.4 to get

W1(µ
N
t , µ

M
t ) ⩽ CeTW1(µ

N
0 , µ

M
0 ), for N,M > 0, t ⩽ T.

Hence {µNt }N is weakly∗-Cauchy in the complete metric space (P+(Ω),W1), and consequently

there is a limit µNt → µt ∈ P+(Ω), and moreover

W1(µ
N
t , µt) ⩽ CTW1(µ

N
0 , µ0), for N > 0, t ⩽ T. (2.23)
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Now we prove the weak∗-continuity of the map t → µt. Note that for ψ ∈ C∞
0 (Ω) the

sequence {
∫
Ωψ(y, θ)dµ

N
t (y, θ)}N is uniformly Lipschitz continuous on [0, T ]. Indeed, for t ∈

[0, T) and ∆t > 0 with t+ ∆t ∈ [0, T ] we have

∣∣∣∣∫
Ω

ψ(y, θ)dµNt+∆t(y, θ) −

∫
Ω

ψ(y, θ)dµNt (y, θ)

∣∣∣∣ ⩽ ∫
Ω

∣∣∣ψ(YN(t+ ∆t), θ) −ψ(YN(t), θ)∣∣∣dµN0 (y, θ)
⩽|∇ψ|∞

∫
Ω

∣∣YN(t+ ∆t) − YN(t)∣∣dµN0 (y, θ)
⩽C∆t,

where YN denotes the characteristics of µN. For the last inequality we used the uniform Lips-

chitzness of {YN}N on [0, T ]. Letting N→ +∞, we have

∣∣∣∣∫
Ω

ψ(y, θ)dµt+∆t(y, θ) −

∫
Ω

ψ(y, θ)dµt(y, θ)

∣∣∣∣ ⩽ C∆t,
which implies the weak∗-continuity of the map t→ µt.

We will show that this µ is a measure-valued solution to (Equation 2.1) with the given

initial µ0.

Because µN is a measure-valued solution, for any test function φ ∈ C∞
0 ([0, T)×Ω),

∫
Ω

φ(t, y, θ)dµNt (y, θ) =

∫
Ω

φ(0, y, θ)dµN0 (y, θ) +

∫ t
0

∫
Ω

[∂sφ+ uNs ∂yφ]dµ
N
s (y, θ) ds, (2.24)

where

uNs =

∫
Ω

y ′dµNs (y
′, θ ′) − y+ (θ− yp)y := PN(s) + F(y, θ).
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All linear terms weakly converge to the natural limits. Since F is a fixed continuous function

we also have

∫ t
0

∫
Ω

F∂yφdµ
N
s (y, θ) ds −→ ∫ t

0

∫
Ω

F∂yφdµs(y, θ) ds as N→ ∞.
Note that the moments PN(s) is just a sequence of numbers for which we have, by (Equation 2.23),

|PN(s) − P(s)| =

∣∣∣∣∫
Ω

y ′(dµNs (y
′, θ ′) − dµs(y

′, θ ′))

∣∣∣∣ ⩽ W1(µ
N
s , µs) ⩽ CTW1(µ

N
0 , µ0) → 0.

So, PN → P uniformly on [0, T). Consequently,

∫ t
0

∫
Ω

PN(s)∂yφdµ
N
s (y, θ) ds→ ∫ t

0

∫
Ω

P(s)∂yφdµs(y, θ) ds.

It follows that µ satisfies (ii).

2.3 Existence and uniqueness of the mono-opinion state

Let µ be a measure-valued solution to (Equation 2.1) with the initial µ0. Let π be its

time-independent conviction marginal (Equation 2.8).

Let us derive the equation for µθ. By Definition 2.2.1 and (Equation 2.9), for any φ ∈

C∞
0 ([0, T)×Ω) and 0 < t < T one has

∫
R+

∫
R+

φ(t, y, θ)dµθt (y)dπ(θ) =

∫
R+

∫
R+

φ(0, y, θ)dµθ0(y)dπ(θ)

+

∫ t
0

∫
R+

∫
R+

[∂sφ+ us∂yφ]dµ
θ
s (y)dπ(θ) ds.
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It implies that for π-almost every θ, the probability measure µθ is a measure-valued solution

with the initial µθ0 to the equation

∂tµ
θ + ∂y

[
uµθ

]
= 0, (2.25)

where

u(t, y, θ) =

∫
Ω

(z− y)dµηt (z)dπ(η) + (θ− yp)y.

Note that the family of equations are all coupled through the velocity u, but otherwise represent

transport of each individual slicing measure µθ. The characteristics that transport µθ, denoted

Yθ are nothing but Yθ(t, y) = Y(t, y, θ) as defined by (Equation 2.15). We will view them,

however, as individual trajectories satisfying the coupled system

d

dt
Yθ =

∫
R+

∫
R+

(Y ′
θ ′ − Yθ)dµ

θ ′
0 (y ′)dπ(θ ′) + (θ− Ypθ )Yθ. (2.26)

In particular we will derive an individual comparison bound from below as an alternative to

global (Equation 2.18).

Lemma 2.3.1. For any θ ∈ [θmin, θmax] such that θ > 1 one has

Y
p
θ (t, y) ⩾

yp(θ− 1)ep(θ−1)t

(θ− 1) + yp(ep(θ−1)t − 1)
, ∀t ⩾ 0, ∀y > 0. (2.27)
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Proof. To achieve (Equation 2.27) we decouple the system (Equation 2.26) by ignoring the

entire coupling term ∫
R+

∫
R+

Y ′
θ ′dµθ

′
0 (y ′)dπ(θ ′) ⩾ 0.

So,

d

dt
Y
p
θ ⩾ p

(
θ− 1− Ypθ

)
Y
p
θ . (2.28)

The lemma follows from the comparison principle.

Let us note that in principle the statement of the lemma holds for any θ− 1, but it is most

meaningful when the parameter is positive in view of the universal support from below for all

characteristics (Equation 2.18).

2.3.1 Mono-opinion state

In the next step we will show that for each θ ∈ suppπ, the slicing measure µθ will converge

to a Dirac measure in Wasserstein distance with different rates depending on θ.

Lemma 2.3.2. Let µ be the measure-valued solution to (Equation 2.1) satisfying (Equation 2.10)

and π being the conviction marginal (Equation 2.8). Then there exists a function g ∈ Lip[θmin, θmax]

such that

sup
θ∈suppπ

W1(µ
θ
t , δg(θ)) ⩽ Ce

−ct, t > 0, (2.29)

where C, c > 0 depend only on µ0 and the parameters of the model.
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Proof. Differentiating the characteristic equation (Equation 2.26) we obtain

∂t∂yYθ = (θ− 1)∂yYθ − (p+ 1)Ypθ∂yYθ. (2.30)

In what follows we denote L∞ = L∞(R0). By Rademacher’s lemma, at a point of maximum y

such that (y, θ) ∈ R0, we get

d

dt
∥∂yYθ∥∞ = (θ− 1)∥∂yYθ∥∞ − (p+ 1)Ypθ∥∂yYθ∥∞. (2.31)

Let us first consider the stable case when θ − 1 ⩽ ε0, with ε0 > 0 to be determined later.

Using (Equation 2.18) we find that Ypθ ⩾ c0, which is determined only by the initial condition

and the parameters of the model. Plugging in (Equation 2.31), we obtain

d

dt
∥∂yYθ∥∞ ⩽ ε0∥∂yYθ∥∞ − (p+ 1)c0∥∂yYθ∥∞ ⩽ −ε0∥∂yYθ∥∞ (2.32)

by setting ε0 =
(p+1)c0

2 .

For the unstable case θ− 1 ⩾ ε0, the inequality (Equation 2.27) implies that

Y
p
θ ⩾

yp(θ− 1)ep(θ−1)t

(θ− 1) + ypep(θ−1)t
= θ− 1−

(θ− 1)2

(θ− 1) + ypep(θ−1)t

⩾ θ− 1− (θ− 1)2y−pe−p(θ−1)t.

Therefore, in this case we have

Y
p
θ ⩾ θ− 1− c1e

−c2t, (2.33)
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where c1, c2 > 0 depend only on the initial condition and parameters of the model. Hence,

d

dt
∥∂yYθ∥∞ ⩽ (θ− 1)∥∂yYθ∥∞ − (p+ 1)(θ− 1− c1e

−c2t)∥∂yYθ∥∞ ⩽
(
−pε0 + c1e

−c2t
)
∥∂yYθ∥∞.

In either case we obtain, by Grönwall’s lemma,

∥∂yYθ∥L∞ ⩽ c3e
−c4t. (2.34)

Consequently,

|Yθ(y, t) − Yθ(y
′, t)| ⩽ c5e

−c4t, for any (y, θ), (y ′, θ) ∈ R0. (2.35)

We can see that the characteristics are squeezing as t approaches infinity. Since the trajectories

are also precompact, for each θ ∈ [θmin, θmax] there exists g(θ) such that

sup
y∈[ymin,ymax]

|Yθ(y, t) − g(θ)| ⩽ c5e
−c4t.
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We compute

W1(µ
θ
t , δg(θ)) = sup

∥φ∥Lip⩽1

∣∣∣ ∫
R+

φ(y)dµθt (y) −

∫
R+

φ(y)δg(θ)(y)
∣∣∣

= sup
∥φ∥Lip⩽1

∣∣∣ ∫
R+

φ(Yθ)dµ
θ
0(y) −φ(g(θ))

∣∣∣
= sup

∥φ∥Lip⩽1

∣∣∣ ∫
R+

(
φ(Yθ) −φ(g(θ))

)
dµθ0(y)

∣∣∣
⩽ ∥Yθ − g(θ)∥∞.

The statement (Equation 2.29) follows.

It remains to show that g is a Lipschitz function on [θmin, θmax]. Indeed, computing the

evolution of ∂θYθ we obtain

∂t∂θYθ = Yθ +
(
θ− 1− (p+ 1)Ypθ

)
∂θYθ.

Note that Yθ remains bounded on R0 by Lemma 2.2.2, and the remainder of the equation has

the same structure as in (Equation 2.30). So,

d

dt
∥∂θYθ∥∞ ⩽ c1 + (−c2 + c3e

−c4t)∥∂θYθ∥∞.

We obtain

∥∂θYθ∥∞ < C.
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Consequently,

|Y(y, θ, t) − Y(y, θ ′, t)| ⩽ C|θ− θ ′|.

Letting t→ ∞ we obtain

|g(θ) − g(θ ′)| ⩽ C|θ− θ ′|.

This finishes the proof.

2.3.2 Uniqueness and stability

The uniqueness of the limiting state follows from the lemma below and holds under either

of the two conditions on parameters

θmin >
p+ 1

p
or

θmax

θmin
< p+ 1. (2.36)

Note that under the change (Equation 2.14) this translates into condition (Equation 2.12).

Lemma 2.3.3. Let µ and µ̃ be two solutions to (Equation 2.1) starting in a box R0 and sharing

the same conviction measure π. And suppose either of the assumptions (Equation 2.36) hold.

Then for any t ∈ [0, T) one has

sup
θ∈suppπ

W1(µ
θ
t , µ̃

θ
t ) ⩽ c1e

−c2t sup
θ∈suppπ

W1(µ
θ
0 , µ̃

θ
0),

where c1, c2 > 0 depend on the initial data and parameters of the model.
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Proof. In what follows L∞ := L∞([ymin, ymax]). Denoting Ỹθ, Ỹ
′
θ the characteristics of µ̃

θ starting

from y, y ′ respectively. For fixed θ ∈ suppπ,

W1(µ
θ
t , µ̃

θ
t ) = sup

∥φ∥Lip⩽1

∣∣∣ ∫
R+

φ(y)dµθt (y) −

∫
R+

φ(y)dµ̃θt (y)
∣∣∣

= sup
∥φ∥Lip⩽1

∣∣∣∣∫
R+

φ(Yθ)dµ
θ
0(y) −

∫
R+

φ(Ỹθ)dµ̃
θ
0(y)

∣∣∣∣
= sup

∥φ∥Lip⩽1

∣∣∣∣∫
R+

φ(Yθ)dµ
θ
0(y) −

∫
R+

φ(Yθ)dµ̃
θ
0(y) +

∫
R+

[φ(Yθ) −φ(Ỹθ)]dµ̃
θ
0(y)

∣∣∣∣
⩽ ∥∂yYθ∥L∞W1(µ

θ
0 , µ̃

θ
0) + ∥Yθ − Ỹθ∥L∞ .

We proved the uniform exponential contraction for ∥∂yYθ∥L∞ in (Equation 2.34).

Let us now focus on ∥Yθ − Ỹθ∥L∞ . We have

d

dt
(Yθ − Ỹθ) =

∫
R+

[∫
R+

Y ′
θ ′dµθ

′
0 (y ′) −

∫
R+

Ỹ ′
θ ′dµ̃θ

′
0 (y ′)

]
dπ(θ ′)

+ (θ− 1)(Yθ − Ỹθ) − (Yp+1θ − Ỹp+1θ )

=

∫
R+

[ ∫
R+

Y ′
θ ′(dµθ

′
0 (y ′) − dµ̃θ

′
0 (y ′)) +

∫
R+

(Y ′
θ ′ − Ỹ ′

θ ′)dµ̃θ
′
0 (y ′)

]
dπ(θ ′)

+ (θ− 1)(Yθ − Ỹθ) − (p+ 1)Ŷpθ (Yθ − Ỹθ),

where Ŷθ is between Yθ and Ỹθ. Denote

D(t) = sup
θ∈[θmin,θmax]

∥Yθ − Ỹθ∥L∞ .
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At a point of maximum we obtain using (Equation 2.34),

d

dt
D ⩽ c3e

−c4t sup
θ∈suppπ

W1(µ
θ
0 , µ̃

θ
0) + θD − (p+ 1)min{Ypθ , Ỹ

p
θ }D.

Using (Equation 2.33),

d

dt
D ⩽ c3e

−c4t sup
θ∈suppπ

W1(µ
θ
0 , µ̃

θ
0) + θD − (p+ 1)[θ− 1− c1e

−c2t]D

= c3e
−c4t sup

θ∈suppπ
W1(µ

θ
0 , µ̃

θ
0) + [p+ 1− pθ+ c1e

−c2t]D

The result follows provided θmin >
p+1
p . Alternatively, using the lower bound (Equation 2.18),

d

dt
D ⩽ c3e

−c4t sup
θ∈suppπ

W1(µ
θ
0 , µ̃

θ
0) + [θmax − (p+ 1)θmin + c1e

−c2t]D

and the result follows provided θmax
θmin

< p+ 1.

Under the stability assumption (Equation 2.36) the limiting states are also stable with re-

spect to perturbation of convictions. So, a small change even in the weak topology of conviction

marginal π results in a small change in the limiting mono-opinion state. This can be proved

via a minor modification of the argument above.

First, since we will be comparing slicing measures that are technically defined not on the

same set let us adopt a convention that if θ ̸∈ suppπ, then µθ = 0.
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Lemma 2.3.4. Let µ and µ̃ be two measure-valued solutions to (Equation 2.1) with the con-

viction marginals π and π̃, respectively, and parameters satisfying (Equation 2.36). Then for

any t ∈ [0, T) one has

sup
θ∈[θmin,θmax]

W1(µ
θ
t , µ̃

θ
t ) ⩽ c1e

−c2t sup
θ∈[θmin,θmax]

W1(µ
θ
0 , µ̃

θ
0) + c3e

−c4t + c5W1(π, π̃),

where ci > 0 depend only on the initial condition and parameters of the model.

By sending t→ ∞ and using that fact that

sup
θ∈[θmin,θmax]

|g(θ) − g̃(θ)| = sup
θ∈[θmin,θmax]

W1(δg(θ), δg̃(θ)),

we obtain the statement (Equation 2.13) of Theorem 2.1.2.

Proof. We only need to focus on estimation of D(t). We have

d

dt
(Yθ − Ỹθ) =

∫
R+

∫
R+

Y ′
θ ′dµθ

′
0 (y ′)dπ(θ ′) −

∫
R+

∫
R+

Ỹ ′
θ ′dµ̃θ

′
0 (y ′)dπ̃(θ ′)

+ (θ− 1)(Yθ − Ỹθ) − (Yp+1θ − Ỹp+1θ )

=

∫
R+

∫
R+

Y ′
θ ′dµθ

′
0 (y ′)dπ(θ ′) −

∫
R+

∫
R+

Ỹ ′
θ ′dµθ

′
0 (y ′)dπ(θ ′)

+

∫
R+

∫
R+

Ỹ ′
θ ′dµθ

′
0 (y ′)dπ(θ ′) −

∫
R+

∫
R+

Ỹ ′
θ ′dµ̃θ

′
0 (y ′)dπ(θ ′)

+

∫
R+

∫
R+

Ỹ ′
θ ′dµ̃θ

′
0 (y ′)dπ(θ ′) −

∫
R+

∫
R+

Ỹ ′
θ ′dµ̃θ

′
0 (y ′)dπ̃(θ ′)

+ (θ− 1)(Yθ − Ỹθ) − (p+ 1)Ŷpθ (Yθ − Ỹθ).
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Hence,

d

dt
D ⩽ c3e

−c4t sup
θ∈[θmin,θmax]

W1(µ
θ
0 , µ̃

θ
0) +

∫
R+

G(θ ′)[dπ− dπ̃] + θD − (p+ 1)min{Ypθ , Ỹ
p
θ }D,

where

G(θ) :=

∫
R+

Ỹθ(y)dµ̃
θ
0(y) =

∫
R+

(Ỹθ(y) − g̃(θ))dµ̃
θ
0(y) + g̃(θ).

Since the first term is bounded exponentially, and g̃ ∈ Lip, we have

∫
R+

G(θ ′)[dπ− dπ̃] ⩽ c1e
−c2t + ∥g̃∥LipW1(π, π̃).

Coming back to the D-equation and estimating the rest of the right hand side as previously we

obtain

d

dt
D ⩽ c3e

−c4t sup
θ∈[θmin,θmax]

W1(µ
θ
0 , µ̃

θ
0) + c1e

−c2t + c5∥g̃∥LipW1(π, π̃) − c6D.

The result follows.

2.4 Properties of mono-opinion states

The results of the previous sections establish that for each conviction measure there is at

least one (and in some cases only one) limiting distributions of opinions g ∈ Lip[θmin, θmax].

Technically it makes material sense to only consider values of g on the suppπ, but to study
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analytic properties of g it will be convenience to make full use of its existence on the closed

interval [θmin, θmax].

We have the following equation for g:

∫
R+

g(η)dπ(η) + (θ− 1)g(θ) − gp+1(θ) = 0, ∀θ ∈ [θmin, θmax]. (2.37)

Although it is difficult to find the function g explicitly, solutions to (Equation 2.37) exhibit

certain universal features.

Remark 2.4.1. One instance where g is computable is when p = 1. Indeed, let

α :=

∫
R+

g(η)dπ(η),

then by (Equation 2.37) we have

g2 + (1− θ)g− α = 0.

This second order equation always has a positive solution

g =
1

2

(
θ− 1+

√
(1− θ)2 + 4α

)
,

for any parameter α > 0. Note that this expression is still implicit as α depends on g. But

whatever α is we can see in particular that g is strictly increasing and convex.
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Let us discuss these properties more systematically.

First, let us consider the extreme values

gmax = max
[θmin,θmax]

g(θ), gmin = min
[θmin,θmax]

g(θ).

We claim that

θmin ⩽ gpmin, gpmax ⩽ θmax. (2.38)

Indeed, the equation (Equation 2.37) can be rewritten as

∫
R+

[g(η) − g(θ)]dπ(η) + θg(θ) − gp+1(θ) = 0, ∀θ ∈ [θmin, θmax]. (2.39)

Let θ̄ be the point such that gmin = g(θ̄). Since

∫
R+

[g(η) − gmin]dπ(η) ⩾ 0,

by the equation (Equation 2.39), we have

θ̄gmin − g
p+1
min ⩽ 0.

Therefore,

θmin ⩽ θ̄ ⩽ gpmin.
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Similarly, we have

gpmax ⩽ θmax.

By (Equation 2.37), we also have that

(θ− 1)g(θ) − gp+1(θ) ⩽ 0, ∀θ ∈ [θmin, θmax].

Thus, for each θ ∈ [θmin, θmax] the following estimate holds true

gp(θ) ⩾ θ− 1. (2.40)

A more refined estimate will be obtained next.

Lemma 2.4.2. Let g be a solution to the equation (Equation 2.37). Then g ∈ C∞([θmin, θmax]),

g is strictly increasing on [θmin, θmax], and for each θ ∈ [θmin, θmax],

gp(θ) ⩾ θ+ π([θ,∞)) − 1. (2.41)

Proof. Since g is Lipschitz we can conclude monotonicity from the sign of the derivative,

g ′ =
g

1− θ+ (p+ 1)gp
. (2.42)



74

If 1 ⩾ θ, then using (Equation 2.38), it is clear that the denominator is positive, and so g ′ > 0.

If 1 < θ we have by the rough bound (Equation 2.40)

1− θ+ (p+ 1)gp ⩾ p(θ− 1) > 0.

This establishes monotonicity. Also, since the denominator of (Equation 2.42) is always posi-

tive, by bootstrapping this implies g ∈ C∞([θmin, θmax]).

Combining monotonicity with the equation (Equation 2.37) we obtain

∫
{η⩾θ}

g(θ)dπ(η) − g(θ) + [θ− gp(θ)]g(θ) ⩽ 0.

Since g(θ) ⩾ 0 for all θ ∈ [θmin, θmax] we must have

∫
{η⩾θ}

dπ(η) − 1+ θ− gp(θ) ⩽ 0.

The estimate (Equation 2.41) follows.

Let us discuss convexity. The second derivative of g(θ) is given by

g ′′ =
g ′[1− θ+ (p+ 1)gp] − g[−1+ p(p+ 1)gp−1g ′]

[1− θ+ (p+ 1)gp]2
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and using (Equation 2.42) to replace g ′ we obtain

g ′′ =
2(1− θ)g+ (2+ p− p2)gp+1

[1− θ+ (p+ 1)gp]3
. (2.43)

The denominator is always positive, and we note that in view of (Equation 2.40) the numerator

is also positive regardless of the range of θ provided p ⩽ 1. So, g is globally convex in this case.

In other cases, the convexity may change. In fact for p = 2 we have

g ′′ =
2(1− θ)g

[1− θ+ 3g2]3
.

So, θ = 1 is an inflection point.

For p > 2, the solution has no more than one inflection point. This can be seen by solving

for g ′′ = 0 in (Equation 2.43). We have

2(1− θ) = (p2 − p− 2)gp.

The left hand side is a decreasing function and the right hand side is increasing for p > 2. So,

the two can meet at most at one point.

The exact value of α depends on g and since the solution is in general not possible to

compute explicitly we present in the figure below solutions to (Equation 2.37) with several

‘passive’ choices of α for illustration.
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Figure 1: The behavior of g(θ) for the case p = 6. Here θ ∈ (0, 1] and α change in (0, 1] at

discrete steps of 0.1.



CHAPTER 3

EXPONENTIAL RELAXATION TO EQUILIBRIUM FOR A KINETIC

FOKKER-PLANCK-TYPE EQUATION

3.1 Introduction

In this chapter we consider a kinetic Fokker-Plank-alignment equation which is derived from

general environmental averaging models. More specifically, let Ω ⊂ Rn be a periodic domain.

An agent is featured by its position x ∈ Ω and its velocity v ∈ Rn. The density of agents

who has position x and velocity v at time t ⩾ 0, denoted by f = f(x, v, t), is governed by the

following equation:

∂tf+ v · ∇xf = sρ
[
∆vf+∇v ·

([
(v− [u]ρ) + F(v)

]
f
)]
, (3.1)

subject to the initial condition

f(x, v, 0) = f0(x, v).

Here ρ and u are macroscopic density and macroscopic velocity defined by

ρ(x) =

∫
Rn

f(x, v) dv, uρ(x) =

∫
Rn

vf(x, v) dv. (3.2)

78
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The family of pairs (κρ, [·]ρ) with dκρ := sρdρ satisfies the conditions for a material environmen-

tal averaging model introduced in (33). The Rayleigh-type friction and self-propulsion force F

is given by

F(v) =
σ(|v|p − 1)v

η(|v|)
, (3.3)

where η : R+ → R+ is a smooth, positive and increasing function satisfying

η(z) = 1 if z ⩽ R for some R > 0; and η(z) ∼ zq for some q > p as z→ ∞. (3.4)

Our goal is to show that the solution of (Equation 3.1) relaxes exponentially fast toward its

equilibrium. We utilize the Desvillettes-Villani’s method (see (11; 38)) for collisional models to

modify the entropy and establish a global hypocoercivity. Without additional force, Shvydkoy

gave the first result on global hypocoercivity for this type of model in (32). In that paper, the

averaging operator is given by

[u]ρ := ϕ ∗
(ϕ ∗ (uρ)
ϕ ∗ ρ

)
,

where ϕ is a radial non-negative non-increasing function satisfying

∫
Ω

ϕ(x) dx = 1, ϕ(x) ⩾ c01{|x|<r0}.

Then the result was extended to a class of kinetic equations in (33). In this work, we show that

if an extra force is added then we still have a global hypocoercivity and hence, an exponential

relaxation to equilibrium provided that the force is small in the sense of assumption (iv) below.
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Before stating our result, let us give some motivation for studying the equation (Equation 3.1).

The study of collective behavior has attracted a lot of attention from the scientific community

because it has diverse applications ranging from biology, physics, computer science, social sci-

ence etc., see e.g. (4; 31; 37; 39) and the references therein.

For microscopic descriptions, many models of collective behavior can be described as follows:


ẋi = vi, (xi, vi) ∈ Ω× Rn,

v̇i = si([v]i − vi) + Fi, i = 1, . . . ,N,

(3.5)

where si, Fi are respectively the communication strength and the force corresponding to the

i-th agent; v = (v1, . . . , vN)RnN and [v]i denotes the averaging operator acts on the i-th agent.

The celebrated Cucker-Smale system (9; 10) can be written in form (Equation 3.5) with

si =

N∑
j=1

mjϕ(|xi − xj|), [v]i =

∑N
j=1mjϕ(|xi − xj|)vj∑N
j=1mjϕ(|xi − xj|)

, (3.6)

where ϕ is a smooth radial non-increasing function, mi is the communication weight of the

i−th agent. In this model Fi = 0. For examples with nontrivial force Fi, the readers can see

(22; 30; 31). If we take Fi in (Equation 3.5) to be the combination of a deterministic force and

a noise of the form

Fi =
σ(1− |vi|

p)vi
η(|vi|)

+
√
2si(x)Ḃi, 0 < σ < 1 and p > 0, (3.7)
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here η is given by (Equation 3.4) and B ′
is are independent Brownian motions in Rn, then the

stochastic mean-field limit of (Equation 3.5) formally leads to the kinetic equation (Equation 3.1).

In this chapter, we will merely focus on the long-time behavior of the solution of (Equation 3.1)

provided it exists. For a rigorous derivation of (Equation 3.1) via stochastic mean-field limit

one can consult the scheme from (3; 33). For the existence of solution, we refer to (3; 21; 33).

We assume the solution f to (Equation 3.1) belongs to some weighted Sobolev space

Hkl (Ω× Rn) :=

f : ∑
k ′⩽k

∑
|α|=k ′

∫
Ω×Rn

⟨v⟩l+2(k−k
′) |∂αx,vf|

2 dxdv <∞
 ,

where ⟨v⟩ =
√
1+ |v|2 and α denotes a multiindex.

Next let us introduce some more notations. Letting G : R+ → R be the function defined by

G(z) :=

∫ z
0

σ(yp+1 − y)

η(y)
dy,

and letting

V(v) =
|v|2

2
+G(|v|). (3.8)

Then the gradient and Hessian matrix of V can be computed explicitly,

∇V = v+ F(v), (3.9)

∇2V =

(
1+

σ(|v|p − 1)

η(|v|)

)
I+

σ|v|p

η(|v|)

v

|v|
⊗ v

|v|
−
σ(|v|p − 1)|v|η ′(|v|)

η2(|v|)

v

|v|
⊗ v

|v|
, (3.10)
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where I is the identity matrix.

Remark 3.1.1. By the assumption (Equation 3.4) and the identity (Equation 3.10) we see

that the Hessian matrix of V is bounded. Thus, there exists a positive constant Λ such that

|(∇2V)(y)| ⩽ Λ|y|, ∀y ∈ Rn. (3.11)

We also note that for y ∈ Rn,

yT (∇2V)y ⩾

(
1−

σ

η(|v|)
−
σ|v|p+1η ′(|v|)

η2(|v|)

)
|y|2 ⩾ λ|y|2, (3.12)

where λ > 0 is a constant depending on σ.

We expect that the solution to (Equation 3.1) converges to

f∞ :=
1

Z
e−V(v) with Z =

∫
Ω×Rn

e−V(v) dv dx. (3.13)

The macroscopic field uF is defined by

ρuF(x) =

∫
Rn

F(v)f(x, v) dv.

Denote L2(κρ) := L
2(dκρ). The inner product in L2(κρ) is denoted by ⟨·, ·⟩κρ . Our main result

is the following:
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Theorem 3.1.2. Suppose that f ∈ Hkl (Ω× Rn) is a solution to (Equation 3.1) such that ρ(t)

satisfies the following assumptions for all t ⩾ 0:

(i) c0 ⩽ sρ ⩽ c1 and ∥∇sρ∥∞ ⩽ c2, where c0, c1, c2 are positive constants,

(ii) ∇x(sρ[·]ρ) : L2(ρ) → L2(ρ) is uniformly bounded,

(iii) there exists a constant 0 < ε0 < 1 such that

sup
{
⟨w, [w]ρ⟩κρ | w ∈ L2(κρ), ∥w∥L2(κρ) = 1

}
⩽ 1− ε0,

(iv) there exists a constant 0 < ε1 < 1 such that

∥uF∥L2(κρ) ⩽ ε1∥u∥L2(κρ).

Then f converges to f∞ exponentially fast:

∥f(t) − f∞∥L1(Ω×Rn) ⩽ Ce
−δt,

where C > 0 is a constant depending on initial data f0 and given parameters; δ > 0 is a constant

depending only on given parameters.

Remark 3.1.3. Observe that in the case of Cucker-Smale model, since sρ = ϕ∗ρ and sρ[u]ρ =

ϕ ∗ (uρ), condition (ii) holds automatically and condition (i) holds if ϕ ∗ ρ ⩾ ρ for some ρ > 0.
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3.2 Proof of main result

In this section, we will prove Theorem 3.1.2. Firstly, let us introduce some notations and

definitions.

3.2.1 Notations and preliminaries

The relative entropy is defined by

H(f|f∞) =

∫
Ω×Rn

f log
f

f∞ dv dx.

For our convenient computation, we will derive an equation for h satisfying f = hf∞. Plugging

this f into equation (Equation 3.1), we have the following equation for h:

∂th+ v · ∇xh = sρ
(
∆vh−∇V · ∇vh+ h[u]ρ · ∇V − [u]ρ · ∇vh

)
. (3.14)

Letting

A = ∇v, B = v · ∇x,

and A∗ be the adjoint of A with respect to the inner product in the weighted space L2(µ):

⟨φ1, φ2⟩ =
∫
Ω×Rn

φ1φ2dµ, dµ = f∞ dv dx.

We can calculate A∗ explicitly,

A∗ = (∇V −∇v) · .



85

Then we can write (Equation 3.14) in the abstract form:

ht = −sρA
∗Ah− Bh+ sρA

∗(h[u]ρ). (3.15)

Following the notations from the paper (33), let us define the partial Fisher information func-

tionals as follows:

Ivv(h) =
∫
Ω×Rn

|∇vh|
2

h
dµ, Ixv(h) =

∫
Ω×Rn

∇xh · ∇vh

h
dµ, Ixx(h) =

∫
Ω×Rn

|∇xh|
2

h
dµ.

The full Fisher information is defined by

I = Ivv + Ixx.

For our convenience we use the notation

(φ)µ :=

∫
Ω×Rn

φdµ.

Denote h̄ = logh and

Dvv = (sρh|∇2
vh̄|

2)µ, Dxv = (sρh|∇v∇xh̄|
2)µ,

where ∇2
vh̄ is the Hessian matrix with respect to v of h̄. We will use the notations JA, JB, Ju to

refer to the terms related to the operators A,B and related to u respectively. They are different
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in the proof of each lemma in the sequel. We denote by C, c positive constants which may vary

from line to line.

3.2.2 Proof of Theorem 3.1.2

By the Csiszár-Kullback inequality,

∥f− f∞∥2L1(Ω×Rn) ⩽ cH. (3.16)

Therefore, it suffices to show that the entropy function H decays exponentially fast in time.

Using (Equation 3.1) and integration by parts, we have

d

dt
H = −

∫
Ω×Rn

sρ
|∇vf+∇Vf|2

f
dv dx+ ⟨uV , [u]ρ⟩κρ , (3.17)

where

uV = u+ uF. (3.18)

Define the partial Fisher information functional Ivv by

Ivv =
∫
Ω×Rn

sρ
|∇vf+∇Vf|2

f
dv dx.

By the assumption (i) we have

d

dt
H ⩽ −c0Ivv + ⟨uV , [u]ρ⟩κρ . (3.19)
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We can also rewrite (Equation 3.17) in the dissipative form:

d

dt
H = −

∫
Ω×Rn

sρ
|∇vf+ (∇V − uV)f|

2

f
dvdx− ∥uV∥2L2(κρ) + ⟨uV , [u]ρ⟩κρ . (3.20)

By the triangle inequality and assumption (iv) we have

∥u∥L2(κρ) ⩽
1

1− ε1
∥uV∥L2(κρ). (3.21)

Then by the Cauchy-Schwarz inequality, assumptions (iii) and (iv) we have

⟨uV , [u]ρ⟩κρ = ⟨uV , [uV ]ρ⟩κρ − ⟨uV , [uF]ρ⟩κρ

⩽(1− ε0)∥uV∥2L2(κρ) +
ε1

1− ε1
∥uV∥2L2(κρ)

⩽(1− c3)∥uV∥2L2(κρ), (3.22)

where c3 > 0 depending on ε0, ε1. Plugging this inequality into (Equation 3.20) we obtain

d

dt
H ⩽ −c3∥uV∥2L2(κρ). (3.23)

Combining (Equation 3.19), (Equation 3.23) and (Equation 3.22) we have

d

dt
H ⩽ −

c0c3
1+ c3

Ivv −
c23

1+ c3
∥uV∥2L2(κρ) ⩽ −cIvv − c∥uV∥2L2(κρ), (3.24)

where c > 0 depending on ε0, ε1, c0.
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By (Equation 3.12), f∞ satisfies a logarithmic Sobolev inequality, see (38). Thus, we have

H ⩽ cI. (3.25)

We have the following three estimates on the time derivative of partial Fisher information

functionals. Their proofs will be presented in the next subsection.

Lemma 3.2.1. We have

d

dt
Ivv(h) ⩽ −2Dvv − λc0Ivv − 2Ixv + c∥u∥2L2(κρ), (3.26)

where c is a positive constant depending on c0, c1, λ,Λ.

Lemma 3.2.2. We have

d

dt
Ixv ⩽ cIvv −

1

2
Ixx + 2Dvv +Dxv + c∥u∥2L2(κρ), (3.27)

where c is dependent on c0, c1, c2, λ,Λ.

Lemma 3.2.3. We have

d

dt
Ixx(h) ⩽ cIvv −Dxv + c∥u∥2L2(κρ),

where c is a constant depending on λ,Λ and the parameters in the assumption (i), (ii).
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Choosing ε > 0 small so that if we define

Ĩ = Ivv + εIxv +
λc0
c

Ixx, (3.28)

then I ∼ Ĩ. Combining three lemmas above and the assumption (iv) we have

d

dt
Ĩ ⩽ −λc0Ivv −

ε

2
Ixx + C∥u∥2L2(κρ) ⩽ −λc0Ivv −

ε

2
Ixx + C∥uV∥2L2(κρ). (3.29)

From (Equation 3.24), (Equation 3.29) and (Equation 3.25) we can choose a constant γ such

that

d

dt
(Ĩ + γH) ≲ −I ⩽ −δ(Ĩ + γH). (3.30)

Thus, by Grönwall’s inequality we obtain

Ĩ + γH ⩽ (Ĩ0 + γH0)e
−δt ⩽ cI0e−δt. (3.31)

Then we can conclude the theorem.

3.2.3 Proof of three technical lemmas

In this subsection, we will give the proofs of three lemmas mentioned previously.
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Proof of Lemma 3.2.1. Let us rewrite Ivv in the form

Ivv = (∇vh · ∇vh̄)µ.

By chain rule and equation (Equation 3.15) we get

d

dt
Ivv = 2(∇vht · ∇vh̄)µ − (|∇vh̄|

2ht)µ := JA + JB + Ju,

where

JA = −2(sρ∇vA
∗Ah · ∇vh̄)µ + (sρ|∇vh̄|

2A∗Ah)µ,

JB = −2(∇vBh · ∇vh̄)µ + (|∇vh̄|
2Bh)µ,

Ju = 2(sρ∇vA
∗([u]ρh) · ∇vh̄)µ − (sρ|∇vh̄|

2A∗([u]ρh))µ.

For notational convenience we will use the Einstein summation convention in the sequel.

We firstly consider the term JA. Using the identity

∂vi(A
∗Ah) = A∗Ahvi +∇Vvi · ∇vh,

JA equals to

−2(sρA
∗Ahvih̄vi)µ − 2(sρ(∇Vvi · ∇vh)h̄vi)µ + (sρ|∇vh̄|

2A∗Ah)µ =: J1A + J2A + J3A.
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By (Equation 3.12) we have

J2A = −2(sρh
−1(∇vh)

T∇2V∇vh)µ ⩽ −2λ(sρh
−1∇vh · ∇vh)µ.

Then the assumption (i) in Theorem 3.1.2 implies that

J2A ⩽ −2λc0Ivv.

By switching A∗ in J1A, J
3
A we can write

J1A + J3A =− 2(sρAhvi ·Ah̄vi)µ + (sρA(|∇vh̄|
2) ·Ah)µ

=− 2(sρhAh̄vi ·Ah̄vi)µ − 2(sρh̄viAh ·Ah̄vi)µ + 2(sρh̄viAh̄vi ·Ah)µ

=− 2(sρhAh̄vi ·Ah̄vi)µ = −2Dvv.

Combining the above estimates we obtain

JA ⩽ −2Dvv − 2λc0Ivv. (3.32)

For the term JB, plugging B = v · ∇x into JB we have

JB = −2(∇xh · ∇vh̄)µ − 2((v · ∇xhvi)h̄vi)µ + (|∇vh̄|
2v · ∇xh)µ.
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Using the identity h̄vi = hvih
−1 and integration by parts, we get

2((v · ∇xhvi)h̄vi)µ =
(
v · ∇x|hvi |

2h−1
)
µ
=
(
|hvi |

2h−2v · ∇xh
)
µ
= (|∇vh̄|

2v · ∇xh)µ.

Substituting this into JB we yield

JB = −2Ixv. (3.33)

For the last term Ju, we have

Ju = 2(sρ∇vA
∗([u]ρh) · ∇vh̄)µ − (sρ|∇vh̄|

2A∗([u]ρh))µ

= 2(sρ∇v(∇V · [u]ρh− [u]ρ · ∇vh) · ∇vh̄)µ − (sρ∇v|∇vh̄|
2 · [u]ρh)µ

= 2(sρ∇2V([u]ρh) · ∇vh̄)µ + 2(sρ(∇V · [u]ρ)∇vh · ∇vh̄)µ − 2(sρ∇2
vh([u]ρ) · ∇vh̄)µ

− 2(sρ∇2
vh̄(∇vh̄) · [u]ρh)µ

= : J1u + J
2
u + J

3
u + J

4
u.

Plugging

h̄vivj = h
−1hvivj − h

−2hvihvj

into J4u we get

J4u =− 2(sρh
−1hvivjh̄vj [ui]ρh)µ + 2(sρh

−2hvihvjh̄vj [ui]ρh)µ

=− 2(sρ∇2
vh([u]ρ) · ∇vh̄)µ + 2(sρ|∇vh̄|

2∇vh · [u]ρ)µ

= J3u + 2(sρ|∇vh̄|
2∇vh · [u]ρ)µ.
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Therefore,

J2u + J
3
u + J

4
u = 2(sρ(∇V · [u]ρh)∇vh̄ · ∇vh̄)µ − 2(sρ|∇vh̄|

2∇vh · [u]ρ)µ + 2J4u

= 2(sρA
∗([u]ρh)|∇vh̄|

2)µ + 2J
4
u

= 2(sρh[u]ρ ·A(|∇vh̄|
2))µ + 2J

4
u

= 4(sρh[u]ρ · ∇2
vh̄(∇vh̄))µ + 2J

4
u = 0.

Thus,

Ju = 2(sρ∇2V([u]ρh) · ∇vh̄)µ = 2(sρ∇2V([u]ρ) · ∇vh)µ

⩽ 2Λc1∥[u]ρ∥L2(κρ)
√
Ivv (by (i), (Equation 3.11) and Hölder inequality)

⩽ c∥u∥L2(κρ)
√

Ivv

⩽ c∥u∥2L2(κρ) + λc0Ivv ( by Young’s inequality). (3.34)

Here the last constant c depends on c0, c1, λ,Λ.

Combining (Equation 3.32), (Equation 3.33) and (Equation 3.34) we have the conclusion of

this lemma.

Proof of Lemma 3.2.2. Computing the derivative of Ixv with respect to t we get

d

dt
Ixv(h) = (∇xht · ∇vh̄)µ + (∇xh̄ · ∇vht)µ − (ht∇vh̄ · ∇xh̄)µ =: JA + JB + Ju,
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where

JA =− (∇x(sρA
∗Ah) · ∇vh̄)µ − (∇xh̄ · ∇v(sρA

∗Ah))µ + (sρA
∗Ah∇vh̄ · ∇xh̄)µ =: J1A + J2A + J3A,

JB =− (∇x(v · ∇xh) · ∇vh̄)µ − (∇xh̄ · ∇v(v · ∇xh))µ + ((v · ∇xh)∇vh̄ · ∇xh̄)µ := J1B + J
2
B + J

3
B,

Ju =(∇x(sρA
∗([u]ρh)) · ∇vh̄)µ + (∇xh̄ · ∇v(sρA

∗([u]ρh)))µ − (sρA
∗([u]ρh)∇vh̄ · ∇xh̄)µ.

Let us firstly estimate JA. Switching A
∗ and using the identity

∇vhxi = h̄xi∇vh+ h∇vh̄xi

we have

J1A = −(sρA
∗Ahxih̄vi)µ − ((sρ)xiA

∗Ahh̄vi)µ = −(sρ∇vhxi · ∇vh̄vi)µ − ((sρ)xi∇vh · ∇vh̄vi)µ

= −(sρh∇vh̄xi · ∇vh̄vi)µ − (sρh̄xi∇vh · ∇vh̄vi)µ −

(
(sρ)xi

s
1/2
ρ

∇vh

h1/2
· s1/2ρ h1/2∇vh̄vi

)
µ

.

In view of assumption (i) in Theorem 3.1.2,

J1A ⩽ −(sρh∇vh̄xi · ∇vh̄vi)µ − (sρh̄xi∇vh · ∇vh̄vi)µ + c
√
IvvDvv,

where c > 0 is a constant depending on c0, c2. Next let us consider J
2
A. Since

∂vi(A
∗Ah) = A∗Ahvi +∇Vvi · ∇vh and ∇vhvi = h∇vh̄vi + h̄vi∇vh,
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we have

J2A =− (sρh̄xiA
∗Ahvi)µ − (sρh̄xi∇Vvi · ∇vh)µ

=− (sρ∇vh̄xi · ∇vhvi)µ − (sρh̄xi∇Vvi · ∇vh)µ

=− (sρh∇vh̄xi · ∇vh̄vi)µ − (sρh̄vi∇vh̄xi · ∇vh)µ − (sρ∇xh̄ · (∇2V)(∇vh))µ.

Then

J1A + J2A ⩽ −(sρ∇xh̄ · (∇2V)(∇vh))µ − 2(sρh∇vh̄xi · ∇vh̄vi)µ − (sρAh ·A(∇vh̄ · ∇xh̄))µ

+ c
√

IvvDvv

⩽ −(sρ∇xh̄ · (∇2V)(∇vh))µ + 2
√

DvvDxv + c
√

IvvDvv − J3A

⩽ c1Λ
√
IvvIxx + 2

√
DvvDxv + c

√
IvvDvv − J3A.

Thus, combining all the terms of JA and applying Young’s inequality we yield

JA ⩽ c1Λ
√
IvvIxx + 2

√
DvvDxv + c

√
IvvDvv,

⩽ cIvv +
1

4
Ixx +

3

2
Dvv +Dxv. (3.35)

Now we consider JB. We have

J2B =− (∇xh̄ · ∇xh)µ − (h̄xivjhxjvi)µ

=− Ixx + (h̄xixjvjhvi)µ

=− Ixx + (hxixjvjh̄vi)µ − (h̄xih̄xjvjhvi)µ = −Ixx − J1B − J3B.
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In the last row we used the identity

h̄xixj = h
−1hxixj − h̄xih̄xj .

It follows that

JB = −Ixx. (3.36)

Lastly let us examine Ju. We have

Ju =((sρ)xiA
∗([u]ρh)h̄vi)µ + (sρA

∗(([u]ρ)xih)h̄vi)µ + (sρA
∗([u]ρhxi)h̄vi)µ

+ (sρh̄xiA
∗([u]ρhvi))µ + (sρ∇xh̄ · (∇2V)([u]ρh))µ − (sρh[u]ρ · ∇v(∇vh̄ · ∇xh̄))µ

=(h(sρ[u]ρ)xi · ∇vh̄vi)µ + (sρh[u]ρh̄xi · ∇vh̄vi)µ + (sρh∇vh̄xi · [u]ρh̄vi)µ

+ (sρ∇xh̄ · (∇2V)([u]ρh))µ − (sρh[u]ρ · ∇v(∇vh̄ · ∇xh̄))µ

=: J1u + J
2
u + J

3
u + J

4
u + J

5
u.

Since

J2u + J
3
u = (sρh[u]ρ · ∇v(∇xh̄ · ∇vh̄))µ = −J5u,

we get

Ju = J1u + J
4
u.

By the assumption (ii) in Theorem 3.1.2,

J1u = (h(sρ[u]ρ)xi · ∇vh̄vi)µ ⩽ c∥u∥L2(κρ)
√
Dvv.
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For J4u we use the assumption (i) and (Equation 3.11) to get

J4u = (sρ∇xh̄ · (∇2V)([u]ρh))µ

⩽ c∥u∥L2(κρ)
√
Ixx,

where c is a constant depending on c1, Λ. Hence, by Young’s inequality we obtain

Ju ⩽
1

4
Ixx +

1

2
Dvv + c∥u∥2L2(κρ). (3.37)

Combining three estimates (Equation 3.35), (Equation 3.36) and (Equation 3.37) it implies the

conclusion of this lemma.

Proof of Lemma 3.2.3. Computing the derivative of Ixx(h) with respect to t we get

d

dt
Ixx(h) = 2(∇xht · ∇xh̄)µ − (|∇xh̄|

2ht)µ =: JA + JB + Ju,

where

JA =− 2(∇x(sρA
∗Ah) · ∇xh̄)µ + (sρ|∇xh̄|

2A∗Ah)µ,

JB =− 2(∇x(v · ∇xh) · ∇xh̄)µ + (|∇xh̄|
2v · ∇xh)µ,

Ju =2(∇x(sρA
∗([u]ρh)) · ∇xh̄)µ − (sρ|∇xh̄|

2A∗([u]ρh))µ.
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For JA we have

JA = −2((sρ)xiAh ·Ah̄xi)µ − 2(sρAhxi ·Ah̄xi)µ + (sρA|∇xh̄|
2 ·Ah)µ =: J1A + J2A + J3A.

By the assumption (i) in Theorem 3.1.2,

J1A = −2
((sρ)xi
s
1/2
ρ

∇vh

h1/2
· s1/2ρ h1/2∇vh̄xi

)
µ
⩽ c
√
IvvDxv.

Using the identity ∇vhxi = h∇vh̄xi + h̄xi∇vh, we have

J2A = −2(sρh∇vh̄xi · ∇vh̄xi)µ − 2(sρh̄xi∇vh · ∇vh̄xi)µ = −2Dxv − J3A.

Therefore,

JA ⩽ c
√
IvvDxv − 2Dxv. (3.38)

We have JB = 0 because

−2(∇x(v · ∇xh) · ∇xh̄)µ = −2((v · ∇xhxi)hxih
−1)µ = −((v · ∇x|∇xh|

2h−1)µ = −(|∇xh̄|
2v · ∇xh)µ.
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For Ju, we have

Ju = 2(h(sρ[u]ρ)xi · ∇vh̄xi)µ + 2(sρhh̄xi [u]ρ · ∇vh̄xi)µ − (sρ∇v(|∇xh̄|
2) · [u]ρh)µ

= 2(h(sρ[u]ρ)xi · ∇vh̄xi)µ

⩽ c∥u∥L2(κρ)
√

Dxv (by the assumption (ii) in Theorem 3.1.2).

Combining all the estimates for JA, JB and Ju we get

d

dt
Ixx(h) ⩽ c

√
DxvIvv − 2Dxv + c∥u∥L2(κρ)

√
Dxv.

Then by Young’s inequality, the lemma is derived.
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