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SUMMARY

Large language models have recently have become pervasively used for automatically gener-

ated summaries. However, large language models often generate summarized text not found in

the source or text that is factually incorrect. The goal of this research is to discover new meth-

ods to ground automatic summaries using language-based graphics and deep learning models.

The medical domain is of particular importance in creating factual summaries. Specifically,

this work focuses on generating discharge summaries, which are narrative reports written by

physicians. These medical notes summarize a hospital in-patient visit including historical infor-

mation about the patient and what happened during the hospital stay. These summaries should

not only be faithful to the source electronic health record data, but also allow for traceability of

the summarized text back to the source. The method explored in this dissertation is one that

uses abstract meaning representation graphs to model the source data and the summarization,

which allows for more transparency and grounding as they are human readable and aligned

with their source text.

This work reframes discharge summaries as multi-document multi-summarization since the

output consists of more than one medical section’s summary, and specifically, all human au-

thored sections of the discharge summary. This is necessary since recent literature frames their

automatic generation as a multi-document summarization task that includes only a single sec-

tion. However, little work has been accomplished to summarize medical notes into sections of

the discharge summary as these sections are highly diverse in content and contain formatted
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SUMMARY (Continued)

structured data. This will be the first work that generates multiple sections discharge summaries

framed as a multi-document summarization task using a novel graph alignment method.

The hypothesis this dissertation explores is that abstract meaning representation graphs

are not only performant, but also provide summarization that is both faithful and traceable,

and thus, meets the requirements of a discharge summary usable by hospitals and other clinical

settings. In this dissertation, I explore this hypothesis by generating non-structured sections of

discharge summaries.
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CHAPTER 1

INTRODUCTION

Automatic summarization is the task of using machines to summarize natural language

text (Luhn, 1958; Kupiec et al., 1995; Li et al., 2014; Ranjitha and Kallimani, 2017; Maynez

et al., 2020). Automatic summarization is broadly classified as either extractive or abstractive:

the extractive method copies selected sentences from the source text verbatim to the summary

while abstractive methods generate unique text not always found in the source text. Generally,

abstractive summaries have shown to be higher quality more readable (See et al., 2017).

However, extractive summarization provides text that is more faithful (how accurate the

summary is) to the source text and traceable (if the summary can be traced back to its source

content) since each sentence is appended as is to the summary (Dang and Owczarzak, 2008; Liu

et al., 2015). Even though extractive summaries are at times choppy, lack coherence and are

generally hard to read as surrounding context varies from the source (Knight and Marcu, 2000),

they are a faithful representation of the source text.

Automatic summarization has developed across many areas in computational linguistics for

more than six decades (Luhn, 1958). Recently LLMs have been influential and shown to achieve

state of the art performance in summarization. However, these models can not summarize a

large number of long documents given memory constraints. Hallucination, which is erroneous

and nonfactual text automatically generated by a model, presents additional challenges to

automatic summarization when using LLMs.

1
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I address faithfulness and traceability by utilizing AMR (abstract meaning representation),

which is a semantic representation language that describes the abstract meaning of a sentence.

My method uses AMR in a novel algorithm to align the graph representation of the source

and summary text. This strategy combines a deterministic algorithm to create the alignment

with deep learning as input to a neural network supervised algorithm. This method provides

traceable summaries since each graph represents a specific sentence with nodes aligned to source

tokens from the source text (Lyu and Titov, 2018) that are faithful as a “linguistically-grounded

semantic formalism” (Liao et al., 2018).

These alignments are then used by an extractive summarization method for the summariza-

tion. The choice of an extractive summarization method aids in generating both faithful and

traceable summaries, which is of paramount importance, since this work’s domain is clinical

medical notes. The summaries are implicitly faithful as they are copied from the source text.

They are traceable because selected sentences are aligned via the AMR graphs, which are in

turn aligned to the source text.

All methods provided in this dissertation are compatible with summarization in any domain.

In fact, the only difference in methodology across any domain is the structure of the data such

as placeholders for document and section types.

1.1 Clinical Summarization

Automatic summarization is becoming as important for personal decision-making as it is for

academic and professional communities that face issues of “information overload” (Habernal and

Gurevych, 2016). The medical field is no exception as the volume of data continues to increase
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with the adoption of electronic health records (EHRs), which require constant updating, and

can impede a clinician’s ability to carry out their basic duties and often leads to “physician

burnout” (Hirsch et al., 2015). Sifting through the data needed to author a discharge summary

is time consuming for a physician who could otherwise spend this time with the patient (Sinsky

et al., 2016).

A discharge summary is written by physicians when a patient is discharged from the hospital

and documents previous medical history, what happened during the hospital stay, and follow

up instructions. These documents must be written by a physician 48 hours within the time the

patient is discharged. An example of a discharge summary is given in Figure 1.

The motivation for my work is to create a system that obviates, or greatly reduces, the

work on the part of the physician to write discharge summaries. Generating patient oriented

discharge summaries is another motivation for this work as they are often synthesized from

discharge notes (Acharya, 2019). Furthermore, automatically generated summaries could be

provided to the patient upon leaving the hospital rather than up to 48 hours afterward when

the physician completes chart notation.

The specific needs of clinical summarization differ from that of most other domains. Medical

professionals need summarizations that are faithful to previously authored documents. They

must also be traceable when cross-referencing additional detail. In terms of performance met-

rics, recall is key to clinical summarization because the most minor of details in a patient’s

record can lead to improper future care. However, precision is equally important in the clinical

setting as physicians have little time to search through irrelevant and redundant information.
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Admission Date: [**2126-2-7**] Discharge Date: [**2126-2-20**]
Date of Birth: [**2069-4-1**] Sex: M

history-of-present-illness

HISTORY OF PRESENT ILLNESS: Mr. [**Known lastname **] is a 56-

year-old male who experienced chest. . .

past-medical-history

PAST MEDICAL HISTORY: Hypertension, former smoker with a 4- pack

per day history for which he. . .

social-history

SOCIAL HISTORY: He lives alone, and he works at [**Hospital3 2576**]

as a cargo transporter.

medication-history

MEDICATIONS ON ADMISSION: Aspirin 325 mg p.o. once a day, Toprol-

XL 50 mg p.o. once a day.

allergies

ALLERGIES: He had no known drug allergies.

labs-imaging

PREOPERATIVE LABORATORY DATA: White count 6.0, hematocrit

33.3, platelet count 329,000.. . .

He was discharged to home with VNA services in good condition on [**2126-

2-20**]...

Figure 1: Discharge Summary. A MIMIC-III discharge summary note with the section type
in bold; omitted text is indicated with ellipses.

To this end, the importance of faithful and traceable summaries takes priority for clinical doc-

umentation.

The benefits of clinical automatic summarization are as numerous as are the challenges to

generate them. These challenges include condensing the vast amount of data taken from a pa-

tient during a hospital stay while eliminating redundancy, errors, and data incoherence (Cohen

et al., 2013). A large corpus of copious medical notes paired with a discharge summary for each

patient is necessary to sufficiently train a summarizer. One such corpus is Medical Information
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Mart for Intensive Care III (MIMIC-III) (Johnson et al., 2016), a large freely accessible hospital

database of ICU data from the Beth Israel Deaconess Medical Center in Boston, Massachusetts.

However, this corpus is incomplete across some medical note categories adding to the difficulty

of the task (Landes et al., 2022). In addition, this corpus is not unlike most discharge summaries

in that up to 46% is copied and pasted from previous notes making meaningful summaries less

useful (Adams et al., 2021). Creating faithful and traceable summaries, given the need for

factual information, is the primary challenge with respect to the needs of medical professionals.

1.2 Contributions

The contributions of my work include:

• Clinical section identification annotations, deep learning methods and a pretrained model (see

Chapter 3) for sectioning medical notes. This is an automatic method to identify and

demarcate the lexical boundaries of clinical medical notes.

• A summarization feasibility study and annotations for the provenance of data from previ-

ously written clinical medical notes to discharge summaries (see Chapter 4). This study

uses the section identification annotations for analysis and better section accuracy. The

addition of the provenance annotations serves to create a richer dataset for summarization.

• A novel unsupervised method using the infrequently used word mover algorithm (Kusner

et al., 2015). This method uses clustering to assist in automatically matching semantically

similar, or copied and pasted text, as lexical spans between EHR notes and discharge

summaries (see Section 4.3).
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• A novel method utilizing the max flow algorithm (a rarely used algorithm in natural

language processing) for graph bipartite matching (see Chapter 5) between the source

component with the summary component to create more faithful summaries (see Sec-

tion 6.2)

• Use of AMR graphs for summarization (see Chapter 5). While this summarization algo-

rithm is inspired by the work of Liu et al. (2015) and Liao et al. (2018), it differs in the

following ways:

– Uses the aforementioned max flow based alignment method to find summarized con-

tent rather than graph reduction to classify edges for deletion,

– Partitions the source and summary into sections, which is necessary for the discharge

summary application,

– Utilizes deep learning in place of integer linear programming.

• Summarization using AMR in the medical domain (see Chapter 6). This method adds

intermediate nodes that are used as placeholders for document and section types. An

additional paragraph node groups AMR sentences.

• A NLP deep learning framework extended to facilitate all of the contributions above (see

Chapter 7). This includes models to train and classify section identification, to align

graphs for summarized overlap, and to classify sentences for extractive summarization.

1.2.1 Summarization Approach

The end-to-end process used to summarize includes two steps as shown in Figure 2:
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1. Preprocessing: Human annotated summaries are preprocessed in an intermediate data

format (aligned graphs) to be used as training examples for supervised learning.

2. Summarization: The training examples created in the preprocessing step are used to

train and evaluate a summarization model.

Preprocessing

The preprocessing step takes documents with sentence annotations indicating whether they

are members of the source or summary. For this work, the document store is the EHR and

the system knows summary sentences only come from discharge summary notes. Preprocessing

includes:

1. Section Documents: Each document is sectioned. This is an optional step and not ap-

plicable to all domains. However, my work on sectioning clinical notes as explained in

Chapter 3.

2. Parse Documents into Graphs: Each document is parsed into connected AMR graphs.

After this step, the source component and summary component are created. The graph

construction process is detailed in Chapter 5 and clinical constructed graph is given

in Chapter 6.

3. Align Source and Summary: The source component and summary component are aligned

to create a bipartite graph. The alignment method is explained in Section 5.3.
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SummarizationPreprocessing

Match Sentences

Learn Sections Assignments

BiLSTM

E1 E2 S1

S 2

Sentence Extraction

Section Documents(1)

Parse Documents into Graphs(2)

Align Source and Summary(3)

(4)

(5)

(6)

Figure 2: Process Overview. The process overview for summarization. The preprocessing
step on the left depicts documents that are loaded from a repository, sectioned, parsed into
AMR graphs, and aligned. The summarization step on the right shows how alignments are
used to match sentences between the source and summary. A BiLSTM is then used to select
sentences and classify in which summary section they belong. During inference time, summaries
are generated by using the model to select sentences from the source documents.
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Summarization

As with preprocessing, the extractive summarization method works with any domain data

and not just clinical notes1. The summarization method follows (see Chapter 6):

4. Match Sentences: The alignments are used to match sentences in the source compo-

nent with sentences in the summary component based on the information gain between

them (see Figure 2).

5. Learn Sections Assignments: Learn which section to slot each sentence, or to not include

the sentence at all (see Figure 2). This uses a bi-directional long-short term memory

(BiLSTM) neural network model (Graves and Schmidhuber, 2005) to classify sections

from sentences.

6. Sentence Extraction: This is done at inference time to generate the summary using the

classifications from the section assignment model (see Figure 2). In this work, the gener-

ated text is the discharge summary.

1.2.2 Methods

My work presents a novel algorithm to create training examples that provide faithful and

traceable discharge summaries using previously human authored medical notes in an EHR. This

is done by first creating an alignment between the EHR source text and the discharge summary

1Documents must have at least one section, in which case, extraction becomes a “yes add the sentence”
or “no do not add the sentence” boolean classification.
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text. This alignment is then used as training data for a machine learning (ML) algorithm that

summarizes free text medical source notes into discharge summaries.

1.2.2.1 Medical Note Section Identification

The process by which sections in a document are demarcated and labeled is known as

section identification. Such sections are helpful to the reader when searching for information

and contextualizing specific topics. Examples of sections include a patient’s family history or

the patient’s recent illness. Because sections are structured and pertinent to some aspect of

care, discharge summaries have been generated on a per section basis (Adams et al., 2021).

The pipeline for this work uses the section identification annotations and trained model from

MedSecId corpus (Landes et al., 2022) for the summarization process. The section identification

module identifies section types and demarcates their lexical spans. These sections are added

as document nodes to the source component and summary component to allow a per section

summarization. Section identification is also important to identify sections to omit since many

of them lack quality summarizable material or have formatted structured data rather than

human written notes.

1.2.2.2 Graph Alignment

Flow networks have been used for applications such as matching medical students to insti-

tutions (Hopcroft and Karp, 1973), baseball team competition elimination (Schwartz, 1966),

and airline scheduling (Cormen et al., 2001). The use of flow networks has been shown to solve

many complex problems efficiently, which has led to its sustained interest over the decades.
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It is surprising that despite the longevity of AMR and other similar graph models, that flow

networks have yet to be exploited to solve problems in the NLP domain1.

The alignment graph algorithm leverages the max flow algorithm using AMR as a linguistic

semantic data structure. It takes a source text to be summarized, and the summary text for

the given source text as input. It then produces an alignment of their AMR graph forms as an

output. Each AMR graph has a root node, which is then made a child to a root node: one for

the source text and another for the summary text.

The result is two separate disconnected graph components that represent the described

source and summary in AMR having concepts as nodes and the relationship between each con-

cept node pair as role edges. The algorithm then connects the source and summary components

into one bipartite graph with alignment edges, which are pruned using max flow. The details

of the algorithm are further explained in Chapter 5.

1.2.2.3 Learning to Summarize

Once the alignment graph algorithm has completed, the neural network is trained with the

aligned source and summary components of the bipartite graph in a supervised fashion. The

summarization algorithm is the algorithm that uses the alignment graph algorithm output to

learn to summarize an AMR summary component by selecting sentences from the EHR notes

to add to the discharge summary.

1Guo et al., 2016 used a flow network for semantic matching information retrieval but not in the
context of language graphical models. See flow network related work in Section 2.3.1.
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Because the summarization algorithm uses AMR component alignment’s non-stochastic

deterministic method of creating unsupervised training examples, it produces a summary com-

ponent with antecedent nodes from the source that provides a traceable summarization. While

previous work have used information retrieval (IR) methods with LLMs (Xu et al., 2024), I have

found no other work that generates traceable summaries in any state of the art deep learning

models. The closed form prediction provides the kind of faithful summaries that eliminate hal-

lucinations present in any deep learning models such as BART. This summarization method is

described further in Section 6.2.

1.2.2.4 Natural Language Generation

In the general summarization case, we simply iterate through each sentence level subgraph

of the summary component converting each in turn. One strength of the alignment graph

algorithm and summarization algorithm is that they allow us to add an arbitrary organization

of document nodes that represent the nodes between the component roots and the sentence

level. Specifically, this structural flexibility is useful in adding clinical section, which have a

large breadth in clinical medical notes. This structural flexibility is the reason why the use

of the alignment graph algorithm is well suited for summarizing EHR medical notes into the

discharge summary.

1.3 Corpora

My work utilizes two publicly available corpora, a new dataset I created based on MIMIC-

III, and one private corpus for training and testing models. They include general summarization

and medical domain specific corpora:
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• The LDC2020T02 AMR Annotation Release 3.0 (Knight et al., 2021) is a semantic

treebank of English natural language sentences from broadcast conversations, newswire,

weblogs, web discussion forums, fiction and web text. The corpus contains over 59,255

AMR sentences in Penman format annotated for sentence coreference, named entity an-

notation, modality, negation, questions, quantities, and represents the semantic structure

of a sentence largely independent of its syntax.

• MIMIC-III Version 1.4 (Johnson et al., 2016) is a freely available accessible de-identified

critical care database of patients admitted to Beth Israel Deaconess Medical Center in

Boston, Massachusetts. The corpus has 46,520 distinct patients, 58,976 hospital admis-

sions and 2,083,180 free form notes (59,652 of which are discharge summaries).

• MedSecId (Landes et al., 2022) is my contribution of a publicly available set of 2,002

fully annotated clinical medical notes from the MIMIC-III corpus annotated for section

boundaries and identifiers. Annotations cover 50 section types over five medical note

categories including discharge summary, physician notes, radiology, echo, and consult

notes.

• The UI Health dataset is an IRB approved (protocol #2024-0109) private dataset of

11,001 admissions and 607,872 notes, which include daily progress, radiology, ECG and a

variety of other notes from the University of Illinois Chicago hospital.

1.4 Outline

This dissertation has the following outline:
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• Prior work in AMR, flow networks, cross domain summarization, and medical summa-

rization is given in Chapter 2.

• An algorithm and methodology to segment and identify clinical notes is explained in

Chapter 3. It also lists the statistics of the annotated dataset and the model results

trained on the annotations.

• Chapter 4 details the discharge summary provenance of data study. The span-match

method and results are also reported.

• The AMR graph alignment method is provided in Chapter 5. The chapter explains the

method and its use as a summarization score.

• The summarization method is described in Chapter 6. This chapter demonstrates the use

of the alignments for extractive summarization.

• The natural language processing oriented framework that was used facilitate the pipeline

is presented in Chapter 7.

• Chapter 8 summarizes the goals of my dissertation, how they were achieved, and the

contributions of each. It ends with a list of future research directions.



CHAPTER 2

RELATED WORK

This chapter is divided into four sections covering general summarization (see Section 2.1),

biomedical and clinical specific domain summarization (see Section 2.2), graph alignment (see

Section 2.3), and frameworks (see Section 2.4). The previous work in this chapter is bifurcated

into clinical domain summarization, and summarization methods such as AMR (abstract mean-

ing representation) and neural network (NN). However, there is cross-over in Section 2.1.2 with

NNs for the medical domain.

2.1 Summarization

The task of summarization is defined as reducing the length of natural language source

text to a shorter summary text. The general approach to summarization is categorized as

either extractive or abstractive. The extractive approach selects text chunks verbatim, usually

sentences, to add to the summary. The abstractive approach generates a distinctly different

summary. The former creates a summary that is more faithful (how accurate the summary is)

to the source, whereas the latter creates summaries that typically flow better and have stronger

coherence, which increases readability. My work is best described as an extractive method.

2.1.1 A Brief Chronology

Summarization is a well established area in natural language processing (NLP) stretching

back decades and involved statistical linguistic analysis for extractive summarization. The early

15
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work of Luhn (1958) relied on statistical methods with word counts to create a “significance

factor” for ranking sentences, which then were used to compose abstracts. Similarly, Salton

et al. (1994) constructed simple graphs composed of token nodes and term frequency/inverse

document frequency (TF/IDF) statistics to weight edges derived from term/document matri-

ces (Sparck Jones, 1972). Statistical methods persisted for decades with such work as Bayesian

classification for sentence matching in academic journals using an interesting set of heuristic

features (Kupiec et al., 1995). Such features includes cue word lists and indicator phrases,

which are token sequences likely to inform the summary.

Efforts in summarization transitioned to parse tree reduction with probabilistic models for

the task of abstractive summarization and includes the seminal work of Knight et al. (2000).

Their approach used a noisy channel and decision-based history model for sentence compression

of parse trees for the generation step of news articles. The smaller compressed parse trees make

up the abstractive generated summary. An example of this tree reduction algorithm is given in

Figure 3 having the following operations:

1. Shift operations move words to a stack.

2. Reduce operations pop syntax trees to the top of the stack, then are combined and stacked

again.

3. Drop the tokens that form the input that correspond to syntactic constituents.

Other tree editing approaches include syntax and grammar for sentence compression to

rewrite the source text by Cohn and Lapata (2008). The authors compare supervised, semi-

supervised and supervised learning with integer linear programming (ILP) using the Ziff-Davis
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Figure 3: Incremental Tree Compression. An example of the tree reduction algorithm
using letters as place holders for subtrees (such as verb and noun phrases). The parse tree is
reduced into a smaller tree, which is a compressed version of the original.

corpus for analysis (Knight and Marcu, 2002), which is a corpus of newspaper articles about

computer products automatically paired with human abstracts. These tree methods were even-

tually reframed as graph reduction problems as the syntactic representation became richer. One

such graph based model incorporated expanding-constituent parse trees (Li et al., 2014) who

use ILP with features consisting of tree node data such as distance to other nodes and depth.

Later, hybrid approaches across fields of research enhanced parse tree based methods and

became more common. For example, models for multi-document summarization (MDS) also
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began to leverage graphs via methods of extractive selection and reduction as a global opti-

mization task (Ranjitha and Kallimani, 2017). Another multi-document summarization (MDS)

solution included spectral methods by embedding eigenvector decompositions of their similarity

matrices based on TF/IDF, and then clustering for sentence selection (Gupta et al., 2019).

Eventually, a shift from parse trees to graphs became dominant using various editing and

reduction strategies. This work involves AMR graph reduction techniques seen in previous

work for both single-document summarization (SDS) (Liu et al., 2015) and MDS (Liao et

al., 2018). However, the focus shifted to NN methods after breakthrough performance gains

were discovered for upstream NLP tasks in part of speech (POS) and named entity recognition

(NER) tagging. The work of Rush et al. (2015) made use of a neural machine translation (NML)

language model’s attention layer to generate abstractive summarizations. See Section 2.1.4 for

more related work on AMR summarization.

2.1.2 Neural Network Summarization Methods

The trend toward deep learning (DL) models continued given the promising results of Rush

et al. (2015). In this work, the authors increase readability by producing text that transitions

between topics using sequence to sequence neural models. This is one of the first efforts using

NNs for abstractive summarization. Nallapati et al. (2016) built on this work by adding an

attention encoder-decoder to a recurrent neural network (RNN) model.

Until this point, only the source document was sampled and used to create the summary.

This changed when word embeddings were used to supplement out-of-vocabulary words (See et

al., 2017), or “generate” them from the embedding vocabulary. An indicator specifying whether
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to use the source text or the vocabulary was jointly learned with a probability distribution over

the source text, called the “pointer”, to the next word in the generated summary.

However, these models suffer by producing factually incorrect details or information missing

from source (Maynez et al., 2020), and ultimately fail to generate human-like summaries (Wise-

man et al., 2017). Cao et al. (2018) brought attention to the lack of faithfulness in NN models

and used sequence-to-sequence models experimenting with several network topologies, such as

GRUs with dual attention, in an attempt to ameliorate these issues. Nonetheless, like most

summarization work, their success was predicated on the reliability and usefulness of Rouge,

which is a measure that assesses the quality of generated summaries1 (Lin and Hovy, 2003; Lin,

2004).

2.1.3 Summarization Scoring Methods

Maynez et al. (2020) conclude that these scoring metrics, such as Rouge, do not sufficiently

evaluate the quality of the generated summaries since they do not correlate well to summaries

that are faithful given their high degree of hallucination (erroneous and nonfactual text auto-

matically generated by a model). They group the more contemporary BERTScore2 (Zhang

et al., 2020a), with Rouge in the way the metric provides some measure of information, but

1This quality is assessed by comparing to summaries generated by humans using overlapping n-grams
counts or word pairs.

2This quality is assessed by comparing reference and generated tokens’ similarity based on the con-
textual embeddings of a BERT family model.
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still fails to assess quality. The work’s qualitative analysis is detailed and successfully argues

the issues of scoring summaries, but provides no recommendation on how to address them.

Source

Reference System

A

B

F

E

D

C

G

Figure 4: Summarized Text Overlap. Shared information between source text, the reference
summary, and the system generated summary.

Only the recent work of Shing et al. (2021) has attempted to address these scoring procedures

by introducing two new measures, faithfulness-adjusted and hallucination rate, and then used

them to evaluate automatically generated discharge summaries. Faithfulness-adjusted precision

is the amount of relevant and faithful information in the discharge summary, and is defined as

the quotient of the intersection of content in the source text, reference summary and system

summary divided by the content of the system (see Figure 4), or more precisely C
G . Faithfulness-

adjusted recall is the relevant and faithful information found in the discharge summary, and
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defined as C
B+C . Given that discharge summaries often include information not found in any

clinical note (Shing et al., 2021; Adams et al., 2021; Alsentzer and Kim, 2018), these metrics

provide a much better summary qualitative assessment.

2.1.4 Summarization using Graphs and Abstract Meaning Representation

AMR (abstract meaning representation), which is a semantic representation language that

describes the abstract meaning of a sentence as an acyclic graph, has seen a decade of interest

across many tasks (Liu et al., 2015; Bonial et al., 2020a; Naseem et al., 2022). AMR cap-

tures “who is doing what to whom” in a sentence (Banarescu et al., 2013) and can also be

represented in the context free notation of Penman (Kasper, 1989). AMR (abstract meaning

representation) graphs were later enriched with PropBank frames, which greatly enhanced their

expressiveness (Palmer et al., 2005). Recent achievements that use AMR models as the pri-

mary data representation include work in natural language generation (NLG) (Manning et al.,

2020; Gu et al., 2020), automatic machine translation (Blloshmi et al., 2020), question/answer

systems (Lim et al., 2020), and building logical forms (Galitsky, 2020).

AMR models have also shown promise for automatic summarization with recent work rem-

iniscent of the early related-map graph reductions of Salton et al. (1994) in the way source

component nodes and edges are deleted. Later, Liu et al. (2015) used the same graph reduction

methods with AMR graphs. In this work, the authors created a fully connected graph and

modeled edge inclusion with ILP, which was then used to heuristically generate abstractive

text for SDS. This was later broadened by with a more comprehensive and robust AMR graph

based realization algorithm for MDS (Liao et al., 2018).
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My thesis is inspired by the work of Liu et al. (2015) and Liao et al. (2018) with regard to

AMR graph reduction methods. However, my method is different in how it uses flow networks

to induce or predict a new graph, whereas their work builds on the graph reduction methods

of Thadani and McKeown (2013) For sentence comprehension, which re-frames the concept of

commodity flow (Magnanti and Wolsey, 1995) as indicator flow constraints for edge inclusion.

Furthermore, Liao et al. (2018) used extractive methods for sentence selection where my

work has no extraction phase. Their extractive method selects the top ranked sentences using

spectral clustering on an eigen vector decomposition (Blei et al., 2003), which are then abstrac-

tive summarized using AMR. Unsupervised clustering models still dominate the state of the

art (SoTA) to subset the source text (Gupta et al., 2019; Jin and Wan, 2020) for abstractive

summarization. Many of these models cluster using contextual sentence embeddings (Miller,

2019; Chaturvedi et al., 2020). While the utility of these models is potentially successful in

choosing a salient topic helpful to a summary, they implicitly are not faithful as they do not

learn those same topics given in the reference summary with any rigor or presentation order.

To my understanding, mine is one of the first works that addresses this issue of faithful sum-

marization by using a flow network connected from the source component to the summary

component.

Heterogeneous graphs exploiting the relationships of language part granularities, such as

word, sentence and topic, have been used in document summarization (Wei, 2012). During the

early 2010s sentence compression was still a popular method for summarization using depen-

dency tree graph and semantic role labeling (SRL) (Thadani and McKeown, 2013; Ranjitha
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and Kallimani, 2017). A concept graph constructed using AMR and refined with the PageRank

algorithm was used as an abstractive method. The SimpleNLG library (Gatt and Reiter, 2009)

was then used for NLG for summarization (Vilca and Cabezudo, 2017). Recent work, once

again, uses heterogeneous graphs as graph neural network (GNN) for extractive summarization

using AMR (Wang et al., 2020).

2.2 Relevant Clinical Applications and Summarization

Much in the medical domain has been accomplished from visually summarizing clinical

patient data (Powsner and Tufte, 1997) to hybrid neural methods (Adams et al., 2021) with

multi-level RNNs for extraction (Zhou et al., 2018) and BART (Lewis et al., 2020) to ab-

stractively condense and smooth the summaries. My work is similar to comprehensive clinical

summarization systems, such as BabyTalk, as a comprehensive end-to-end pipeline (Reiter,

2007; Portet et al., 2009). Most of this work focuses on patient summarizations or only par-

tial discharge summary generation. However, my work accomplishes a multi-section automatic

summarization of the discharge summary for clinical physicians.

2.2.1 Abstract Meaning Representation in Medical Research

AMR subgraphs representing events for modeling molecular events and interactions were

learned with long-short term memory (LSTM) neural networks (Rao et al., 2017). Drug inter-

actions were also modeled using AMR while utilizing word and PropBank embeddings in the

graph (Wang et al., 2017). My work is similar in that it also uses PropBank, but theirs does not

use role embeddings in the same way or edge embeddings at all. In biomedical research litera-

ture, AMR was used to model the meaning of a question used in a semantic search for providing
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answers related to ultraviolet light in COVID-19 (Bonial et al., 2020b). Biomedical research

literature information extraction was also used to narrow large texts to scientific entities by

enriching an AMR graph with a biomedical and chemical interaction knowledge graph (Zhang

et al., 2021).

2.2.2 Medical Note Section Identification

Most work in section identification (SI) has been applied in academic papers and clin-

ical medical notes. Sectioning MedLINE abstracts was explored by McKnight and Srini-

vasan (2003) using a support vector machine (SVM). This classifier was used to label sentences

as Introduction, Method, Result, or Conclusion and showed promising results using a bag-of-

words approach. Sequence based approaches (Hirohata et al., 2008) were also used to section

scientific abstracts into Objective, Methods, Results, and Conclusion labels using a conditional

random field (CRF) model producing a sentence level accuracy of 95.5%.

While academic abstract segmentation was a well explored area (Hirohata et al., 2008),

Tepper et al. (2012) were the first to apply statistical methods to the medical domain to

automatically classify sections of clinical free text into sections. Their method used in, out,

begin (IOB) annotation (Ramshaw and Marcus, 1995) with labels to mark named sections. For

example, B-HPI indicates a beginning token for the history of present illness (HPI) section.

Their dataset consisted of annotating the 2010 i2b2 corpus with a section header and medical

ontology label, and obtained an F-measure of 0.92 for the concept extraction task (Uzuner et

al., 2011; de Bruijn et al., 2010). A Maximum Entropy (MaxEnt) model (Berger et al., 1996)

and beam search were used for classification to produce the IOB sequence for token tagging.
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Along with MaxEnt, other non-neural network methods, such as SVM and CRF models

continue to be popular with few exceptions as detailed in the comprehensive survey of Pomares-

Quimbaya et al. (2019). One such exception (Sadoughi et al., 2018) used a LSTM model with

word-to-vector (word2vec) embeddings (Mikolov et al., 2013a; Mikolov et al., 2013b) for a

binary classification of section boundaries. Even though the corpus consists of dictated and

transcribed notes, they show that neural methods work for the section segmentation task.

Other notable NN text segmentation works use convolutional neural networks (CNNs) over

sentence embeddings with a softmax over the output of a bi-directional long-short term memory

(BiLSTM) layer to demarcate sections as a binary classification across both medical and non-

medical datasets (Badjatiya et al., 2018). Barrow et al. (2020) also used a LSTM in a network

that aggregates features across fastText word embeddings using a concatenated segment pooling

LSTM (S-LSTM) for non-medical Wikipeda articles (Bojanowski et al., 2017).

2.2.3 Provenance of Data

Clinical notes are riddled with redundant information in the form of copied and pasted

text and embedded structured data as templates from large electronic health record (EHR)

systems. Because this has been a recognized issue for decades, efforts such as redundant text

detection in same-category EHR notes using latent Dirichlet allocation (Blei et al., 2003) has

been explored (Cohen et al., 2013). Duplication in medical EHR notes was studied in recent

work to find root causes of copied text using 10-gram token spans, which found that 58% of a

physician note is copied from previous notes (Steinkamp et al., 2022).
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Provenance of data as it relates to the task of summarization has included multi-level RNNs

used for extractive summarization (Zhou et al., 2018). Soon after, BART (Lewis et al., 2020)

was used to abstractively condense and smooth the summaries. A large corpus was analyzed

and a hybrid extractive/abstractive neural method was used to summarize the Brief Hospital

Course section (Adams et al., 2021).

2.2.4 Medical and Discharge Note Summarization

The literature is rich with examples of medical note summarization that include both lon-

gitudinal (Hirsch et al., 2015), and non-longitudinal (Pivovarov and Elhadad, 2015) note types,

which are just two examples of mutual discipline interest. Furthermore, the shared understand-

ing, agreement, and acknowledgment that faithful summarization is necessary, but lacking, has

been thoroughly reviewed (Zhang et al., 2020b). Another example highlighting the interest in

summarization across the clinical and NLP communities is exemplified by the effort of corpora

publishing such as the Evidence Based Medicine Summarisation corpus (Molla and Santiago-

Martinez, 2011) and large text datasets such as MIMIC-III (Johnson et al., 2016).

Doctor-patient SOAP (Subjective, Objective, Assessment and Plan) note generation (a

type of physician note) is another example of areas of mutual interest as a NLP work in the

medical domain (Krishna et al., 2021). More recently, cross discipline interest has become

collaboration (Acharya et al., 2018; Boyd et al., 2018). This thesis includes the multi-discipline

research with medical academics, and most closely resembles the discharge summarization work

of Adams et al. (2021).
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Adams et al. (2021) showed promising results in summarizing the Brief Hospital Course

section. However, for single section summarization, the summarization of Medical Information

Mart for Intensive Care III (MIMIC-III) physician notes is perhaps the most interesting com-

parison and potentially most impactful (Gao et al., 2022a). Clinical notes were summarized

by fine-tuning the T5 (Raffel et al., 2020) and BART (Lewis et al., 2020) state of the art

seq2seq models and evaluated using the BERTScore (Zhang et al., 2020a) and Rouge (Lin,

2004) scoring methods. In addition, co-occurring extracted Unified Medical Language System

(UMLS) medical concepts (Bodenreider, 2004) were also reported. Bodenreider concludes with

their intention of providing a foundation for future summarization work and acknowledgment

of the challenges facing the clinical note summarization, which echoes the motivation of this

work.

2.3 Graph Alignment

Flow networks and graph alignment prior work is presented in this section. While there is

no known work using a flow network with AMR graphs (as noted in Section 1.2.2.2), they have

been used to align bipartite graphs for the matching problem for decades.

2.3.1 Flow Networks

A flow network is a graph that models material through a network with two weighted values

for each edge: a capacity and a flow. Both are non-negative values and the flow is constrained

by the capacity. The study and optimization of a graph as a flow network has been evolv-

ing for more than eight decades since the publication of a 1930 article by A. N. Tolstŏı on

Soviet railroad planning (Schrijver, 2002). Several decades later, the max flow problem was
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formalized in a declassified military report (Harris and Ross, 1955), which became the foun-

dation of the seminal Ford-Fulkerson max-cut min-flow algorithm (Ford and Fulkerson, 1962).

Figure 5 gives an example of the application to the Soviet railway system. Since, numerous

applications of the max-cut min-flow algorithm have been devised including maximum cardi-

nality matching (Hopcroft and Karp, 1973; Irving et al., 1987), baseball elimination (Schwartz,

1966; Kleinberg and Tardos, 2005), airline scheduling (Cormen et al., 2001; Bazaraa et al.,

2010); the algorithm has been addressed in the quantum computing field (Krauss et al., 2020).

Figure 5: Soviet Rail Network, 1955. A diagram of the railway network of the Western
Soviet Union and Eastern European countries with a description of the cut “bottleneck” (Harris
and Ross, 1955; Ford and Fulkerson, 1962).
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The max flow algorithm has seen many optimization improvements over the years, with some

specific to graph topologies such as bipartite graphs, that run in Õ(m+n1.5) time on an n-vertex,

m-edge graph. Other more general algorithms include the push-relabel algorithm (Goldberg

and Tarjan, 1988), which has a running time of O(nm log n2

m ). The fastest algorithm runs in

almost linear time m1+o(1) in m edges (Chen et al., 2022).

Flow networks have also been used in NLP for the task of MT framed as a bipartite flow

matching task (Gaussier, 1998), and for information retrieval (IR) to semantically match doc-

uments to queries (Guo et al., 2016). However, they have not been used with any language

based graphical model, AMR or knowledge graphs to my knowledge.

2.3.2 Alignment

This section covers graph alignment in how it relates to the NLP field. A semantic web

is an ontology graph with edges that describe relationships between nodes that describe con-

cepts. Semantic web graph alignment has an extensive history of work that includes ontology

matching (Fossati et al., 2006) and data aggregation (Faria et al., 2013). There has been work

using a flow network to align a semantic web graph for data discovery (Heidary et al., 2010),

which is very similar to the general summarization case for this work. However, no node or

edge embeddings were used, nor were there any aspects of AMR utilized.

In many cases, a semantic web ontology is domain specific while the alignment algorithm

is not. However, domain specific graph alignment is prevalent in the biomedical area. Pro-

tein–protein interaction networks have been automatically sequenced and aligned (Kuchaiev et

al., 2010; Malod-Dognin and Pržulj, 2015). Genome graphs have been aligned with minimal
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edit distance paths using an A-star-like algorithm (Ivanov et al., 2020), and have been a focus

of algorithmic optimization (Rautiainen and Marschall, 2020).

As in many domains such as computer vision, graph bipartite alignment transitioned from

non-neural methods that employ graph algorithms (Koutra et al., 2013; Zhang and Tong, 2016;

Ni et al., 2018) to predominantly neural methods (Goyal and Ferrara, 2018; Trung et al., 2020)

that combine graph algorithms with DL. These neural methods typically involve creating node

and edge embeddings based on features and graph topology (Chu et al., 2019; Pei et al., 2022).

In addition to specific applications, alignment has been used as a measure of similarity. The

most common metric used for such tasks on text-to-graph models use Smatch (Cai and Knight,

2013), which measures the likeness of two AMR graphs. More recent AMR similarity measures

involve local network neighborhood matching using distributed probability distributions (Opitz

et al., 2021).

2.4 Frameworks

An additional contribution of my thesis a NLP deep learning framework, DeepZensols (Lan-

des et al., 2023). A framework is a set of software advanced programming interfaces (APIs)

used to facilitate complex processing pipelines common in NLP tasks. These frameworks are

typically specialized for a specific purpose or domain and typically implement behavior that is

used often and in many places in the pipeline. A well written framework allows the researcher

to concentrate on the task at hand rather than rewriting common software modules pervasive

in NLP pipelines.
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Popular DL frameworks such as TensorFlow1 have a dashboard that provides metrics, such

as training and validation loss. However, these general purpose frameworks offer basic perfor-

mance metrics and do not provide a means of producing higher abstraction level NLP specific

models. More specifically, frameworks such as Keras, supply a very coarse API allowing solely

for cookie-cutter models. They lack the ability to easily create and evaluate models past this

surface interface.

Frameworks such as PyTorch2, which are more common in academia, provide a more

straightforward simple API that is similar to the core TensorFlow libraries, and thus have

the same shortcomings as a tool to bridge the gap between pure research and reproducibility.

AllenNLP (Gardner et al., 2018) is a flexible configuration driven framework that provides

construction of NLP NN architectures and is the closest framework to mine. However, it does

not have fast feature swapping (see Section 7.5) and batch creation capability, and lacks most

of the components necessary to consistently reproduce results.

Popular packages providing support for transformer architectures such as BERT (Devlin et

al., 2019) include HuggingFace3. However, this framework only provides transformer models

for contextual word embeddings. Compared to the HuggingFace API DeepZensols provides

1https://www.tensorflow.org

2https://pytorch.org

3https://huggingface.co
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comprehensive access to not only contextual embeddings, but many of the non-contextual em-

beddings still used such as fastText (Bojanowski et al., 2017).



CHAPTER 3

MEDICAL SECTION IDENTIFICATION

(This chapter expands on the paper “A New Public Corpus for Clinical Section Identifica-

tion: MedSecId” by Landes et al. (2022) in the Proceedings of the 29th International Conference

on Computational Linguistics.)

The alignment methods for AMR (abstract meaning representation) graphs I presented

in Chapter 5 are designed for sectioned medical documents for the task of summarization.

One important and innovative application is discharge summary generation. We turn now

to the work on section identification (SI), which grounds generation of discharge summaries.

This chapter introduces MedSecId, a contribution of this thesis and a publicly available set of

2,002 fully annotated medical notes from the Medical Information Mart for Intensive Care III

(MIMIC-III) corpus.

3.1 Motivation

While discharge summary sectioning helps a physician locate specific information, the pri-

mary impetus for the structure and content stems from the ongoing dispute between providers

and healthcare insurance companies in the United States. Providers are limited by how much

they can bill for relatively simple medical procedures, but increasingly complex procedures gar-

ner more revenue with proper documentation. Specifically, medical billing staff and insurance

companies use relative value units (RVUs), which is a monetary unit updated annually and

33
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currently set at $34.30. The number of RVUs billed is based on the composition and number

of sections included in the medical notes per guidelines set by the Centers for Medicare and

Medicaid Services1.

For this reason, providers are encouraged to write medical notes to maximize RVUs out

of necessity (Barnes et al., 2008) even though physician training lacks such emphasis. In

contrast, medical residents and students are evaluated with the objective structured clinical

examination (OSCE), which is a student examination that evaluates students based on direct

observation (Zayyan, 2011). However, the exam’s evaluation with respect to medical note au-

thoring and structure uses very different criteria and omits RVUs (Gallagher et al., 2020). The

necessity of a particular structure in medical notes, for the purpose of patient care and unfor-

tunately more important insurance billing requirements, highlights the need for understanding

sectioning.

Most unstructured medical text found in electronic health records (EHRs) written by med-

ical staff have conceptually well defined sections. For example, the discharge summaries consists

of named sections, typically in a specific sequence, such as the History of Present Illness; this

type of section appears both in discharge summaries and in physician notes that describe a

chronology of an illness that begins with the admission of the patient.

Since each section contains specific information, SI is often the first step in a medical natural

language processing (NLP) pipeline and can lead to downstream propagation errors causing

1https://www.cms.gov/Regulations-and-Guidance
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poor task specific results if not properly executed. Examples of downstream tasks that benefit

from SI include medical summarization, entity linking and natural language understanding and

extraction.

Even though sections usually start with header text, SI is more challenging than simply

parsing the first several leading header tokens of the respective section (underlined in Figure 6).

While the first several tokens can be helpful in identifying a section, their naming often varies.

For example, the 6th section in Figure 6 starts with header tokens Preoperative Laboratory

Data, but the section type is labs-imaging. There are also cases where the header tokens are

missing, as shown in the 7th section (hospital-course) in the same figure, or where sections

have several header text spans placed throughout the section. Adding to this challenge is the

non-uniformity of the text, lack of section boundary syntax, and copy-pasted text from other

notes or from structured data such as patient vital signs.

Summarization methods for structured text documentation has been accomplished by pro-

cessing each section separately (Adams et al., 2021). The highly structured nature of medical

notes can be exploited by splitting sections in to groups as document nodes in the source compo-

nent graph to create the corresponding summary component, thereby learning structure of the

discharge summaries (see Section 5.6.1). Since the MIMIC-III corpus was used for summariza-

tion in this thesis, sectioning was done using the MedSecId annotations (Landes et al., 2022).

A pretrained model trained on the MedSecId annotations was used for inferencing sections for

notes that have not been annotated.
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Admission Date: [**2126-2-7**] Discharge Date: [**2126-2-20**]
Date of Birth: [**2069-4-1**] Sex: M

history-of-present-illness

HISTORY OF PRESENT ILLNESS: Mr. [**Known lastname **] is a 56-

year-old male who experienced chest. . .

past-medical-history

PAST MEDICAL HISTORY: Hypertension, former smoker with a 4- pack

per day history for which he. . .

social-history

SOCIAL HISTORY: He lives alone, and he works at [**Hospital3 2576**]

as a cargo transporter.

medication-history

MEDICATIONS ON ADMISSION: Aspirin 325 mg p.o. once a day, Toprol-

XL 50 mg p.o. once a day.

allergies

ALLERGIES: He had no known drug allergies.

labs-imaging

PREOPERATIVE LABORATORY DATA: White count 6.0, hematocrit

33.3, platelet count 329,000.. . .

He was discharged to home with VNA services in good condition on [**2126-

2-20**]...

Figure 6: Discharge Summary. (Repeated from Section 1.1.) A MIMIC-III discharge sum-
mary note with the section type in bold; omitted text is indicated with ellipses.

3.2 Dataset

MedSecId is a subset of the MIMIC-III Version 1.4 (Johnson et al., 2016) corpus (Johnson

et al., 2016) that we annotated; MIMIC-III is publicly available and consists of critical care unit

EHR records from the Beth Israel Deaconess Medical Center in Boston, Massachusetts. The

dataset contains 58,976 hospital admissions across 46,520 patients who were admitted to the

intensive care unit (ICU) surgical, medical, and neonatal departments. It includes 2,083,180
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unstructured medical text notes handwritten by medical professionals across several disciplines

and contains 15 categories, such as discharge summaries and radiology notes.

We created a curated annotation set consisting of text spans taken from a random sample

across five categories of MIMIC-III medical notes1, including discharge summaries, Radiology,

Echo , Physician, and Consult progress notes (see Table I). Radiology clinical notes provide

the diagnosis of images such as X-rays; similarly Echo notes provide diagnoses based on an

ultrasound of the heart. Physician notes have the updated progress of a patient and are written

on a daily basis, whereas Consult notes are written by an outside consultant physician. Each

text span annotation contains the type of the section in MedSecId, such as History of Present

Illness, with zero-index character offsets of where the span starts and ends in the note.

Category Count Proportion
Discharge summary 1,254 62.64%
Physician 288 14.39%
Radiology 205 10.24%
Echo 198 9.89%
Consult 57 2.85%
Total 2,002 100%

TABLE I: Annotated Medical Note Categories. Annotated medical notes by category and
their distribution in the annotation set.

1The unstructured medical note data was taken from the NOTEEVENTS table.
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While each section contains a single type, sections have zero or more overlapping header

text spans (see Figure 6). In most cases, there is a single header span, but vital signs sections

can “float” without a physical exam header. These header spans consist of text that identify

the section such as History Of Present Illness, an alternate spelling or abbreviation such as

HPI. Even though single header spans usually appear at the beginning of a section, additional

section headers are found later in the body indicating subsections in some cases. Since section

type inclusion highly varies based on the patient’s age, notes were annotated with an age type

(adult, pediatric or neonatal patient), based on the content of the note by the annotator.

3.2.1 Annotation Process

Our annotation process consisted of several preliminary rounds of annotation, that led to

our final annotation guidelines and final annotation.

Before annotation began, a custom set of regular expressions were used to pre-annotate,

similar to previous work (Shivade et al., 2015); mine were medical note specific and captured

header tokens along with the section spans. The application of the regular expressions was

only a means to reduce the work of the annotators, who followed the annotation guide regard-

less of any rule based pre-annotations. The initial rule based automatic annotation process

was amended by the work of Alsentzer et al. (2018), who generously shared their History of

Present Illness annotations to better identify and segment the initial dataset used by my col-

laborator annotators. These automatic annotations were edited by the annotators after they

were imported into INCEpTION (Klie et al., 2018) and saved to later compute an inter-coder

agreement between the physicians and rule-based output (see Section 3.2.2).
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An attending physician (designated as a primary annotator) co-wrote a preliminary anno-

tation guide with input from a secondary physician annotator. These two annotators engaged

in a process of annotation, discussion and revision of the guidelines: they annotated a first set

of one hundred notes, revised the guidelines, annotated a second set of one hundred notes, and

finalized the guidelines after this second round.

Here we summarize the issues that the annotators faced during these preliminary rounds of

annotation. This process was useful for the physicians to reach a consensus on what sections

should be annotated and agreed on section types given their experience writing such notes

themselves. A set of sections and their relation to notes began to coalesce during this process,

which provided the motivation to create an ontology for the purpose of a meta documentation

about the annotations and the utilitarian purpose to assist in annotation by importing it as a

“knowledge base” in INCEpTION. The ontology consisted of a one-to-many mapping from notes

to 50 section types using each section’s header tokens captured by the regular expressions by

string massaging. For example, History of Present Illness became history-of-present-illness.

Among the categories, 29 sections were shared across more than one note, such as History of

Present Illness shared between notes Discharge summary, Consult, and Physician (see Table II

for annotated sections).

Each section type was then agreed on by the physicians with many re-typed and regrouped.

For example, Echo notes contained internal subsections for each chamber of the heart; this was

resolved by grouping the entire section as Findings to match section types in Radiology notes.

Other subsections implicitly resulted by physicians copying radiology findings in discharge sum-
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Type Tokens Spans Notes
physical-examination 203K (8%) 1,385 (6%) Consult, Physician
history-of-present-illness 239K (9%) 1,348 (6%) Consult, Discharge summary, Physician
allergies 9,221 (0%) 1,205 (5%) Consult, Discharge summary, Physician
hospital-course 692K (26%) 1,165 (5%) Discharge summary
labs-imaging 416K (16%) 1,155 (5%) Consult, Discharge summary, Physician
past-medical-history 60K (2%) 1,141 (5%) Consult, Discharge summary, Physician
discharge-condition 14K (1%) 1,132 (5%) Discharge summary
discharge-instructions 183K (7%) 1,077 (5%) Discharge summary
discharge-diagnosis 34K (1%) 1,040 (5%) Discharge summary
chief-complaint 9,622 (0%) 996 (4%) Consult, Discharge summary, Physician
discharge-medications 196K (7%) 914 (4%) Discharge summary
social-history 28K (1%) 912 (4%) Consult, Discharge summary, Physician
medication-history 49K (2%) 867 (4%) Consult, Discharge summary, Physician
family-history 11K (0%) 802 (4%) Consult, Discharge summary, Physician
discharge-disposition 5,602 (0%) 754 (3%) Discharge summary
major-surg-or-inv-proc 16K (1%) 704 (3%) Discharge summary
facility 2,668 (0%) 502 (2%) Discharge summary
reason 5,588 (0%) 458 (2%) Consult, Radiology
findings 58K (2%) 395 (2%) Echo, Radiology
assessment-and-plan 131K (5%) 381 (2%) Consult, Physician
review-of-systems 7,422 (0%) 329 (1%) Consult, Discharge summary, Physician
image-type 1,820 (0%) 328 (1%) Radiology
last-dose-of-antibiotics 3,689 (0%) 293 (1%) Consult, Physician
24-hour-events 16K (1%) 250 (1%) Physician
code-status 1,879 (0%) 237 (1%) Physician
impression 8,233 (0%) 224 (1%) Echo, Radiology
disposition 1,161 (0%) 210 (1%) Physician
conclusions 28K (1%) 206 (1%) Echo
communication 1,304 (0%) 199 (1%) Physician
patient-test-information 13K (1%) 198 (1%) Echo

TABLE II: Most Frequently Annotated Medical Sections. The top 30 most frequently
annotated sections.

maries. In an effort to reduce complexity, a flat note-to-section hierarchy without creating a

second section level was kept. In some cases this was achieved by combining laboratory results

data with radiology findings/diagnosis as a single section by simply re-casting Labs to Labs/Ra-
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diology for sections that included imaging studies. Other sections needed to be combined as

not all notes had a clean separation.

To accommodate for a significant variation in how physicians labeled sections in these situa-

tions, Labs and Radiology was combined into a Labs/Radiology section. Labs and Imaging were

also combined into Labs/Imaging. Since discharge summaries typically incorporate instructions

for the patient and follow up information, we categorized these together broadly as Discharge

instructions. The MIMIC-III pseudo tokens, such as [**First Name**] were not annotated

unless they were included in the body of the section.

The primary and secondary annotators finished revising the annotation guidelines and then

trained the third annotator. A subset of 80 medical notes, chosen from the second batch of

100 that the primary and secondary annotator had annotated and discussed, was used to train

the third annotator. Because these first two batches were only used for creating guidelines

and training, they were not added in the final annotation set. During this process, the well

known Krippendorff’s α coefficient (Krippendorff, 2011), was used to compute inter-annotator

agreement (IAA) between this last annotator and the other two, until α became higher than

0.8.

3.2.2 Final Annotation and IAA Computation

Once the guidelines were finalized the final annotation process started. A set of 100 notes

(different than the sets discussed in Section 3.2.1) was held out to compute the inter-annotator

agreement (IAA) on the final guidelines. The remaining 1,902 notes were divvied up among

the three annotators, as customary.
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Inter-annotator agreement was calculated on the 100 held out notes as exact section char-

acter offsets and section types—both the offsets and the section type had to match to be

considered correct. This agreement was calculated among the human annotators, and subse-

quently between each annotator and the regular expressions that were initially used to segment

the notes.

Among humans, Krippendorff’s α yielded more than acceptable values of 0.84 to 0.87 on

the final set held out for this IAA calculation (see Table III). At this point, these annotations

were added to the final dataset by selecting notes with the fewest issues1 using the primary

annotator as the tie-breaker.

A1 A2 A3 R
A1 1.0 0.81 0.87 0.73
A2 1.0 0.84 0.49
A3 1.0 0.53
R 1.0

TABLE III: MedSecId Inter-annotator Agreement. Krippendorff’s α coefficient of inter-
annotator agreement between the annotators and the regular expressions. A1 is the primary
annotator, A2 is the secondary annotator and A3 is the third annotator, and R represents the
regular expressions.

1Annotation issues included placement of header tokens and missing sections. For example, an
annotation with a defined section would win over another’s annotation having a missing section header
annotation.
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While we achieved a high inter-coder agreement among human annotators, we found trou-

bling data in terms of the performance of the regular expression annotation approach. We

computed an aggregate Krippendorff’s α=0.54 between the human physician annotators and

my custom regular expressions (see Section 3.2.1) on the final annotated data, which falls more

than 14 points shy of the “lowest conceivable limit” of 0.68 (Krippendorff, 2004). This shows

how regular expression’s performance to segment notes falls short of that by human annota-

tors (see Table III), yet regular expressions continue to be the most common methods used for

section identification (Pomares-Quimbaya et al., 2019; Shivade et al., 2015).

In part, the regular expressions often failed to demarcate the entire section, especially in

text with irregular formatting toward the end. Furthermore, additional analysis shows the α

scores between individual annotators and the regular expressions are low as well, albeit with

a fairly high variance. Krippendorff suggests that acceptable scores that are “customary to

require” have α > 0.8 (Krippendorff, 2004). On one hand, an α of 0.73 between physician A1

and the automatic regular expression annotator R clears the minimal limit threshold. However,

this metric falls well below the “aimed” score of 0.8. The larger issue is with physician A2 ’s

and A3 ’s scores of 0.49 and 0.53, which fall short of the minimum limit by a large margin.

From these scores (see Table III) and the low overall α, I conclude regular expressions do not

sufficiently segment medical notes, therefore the annotation set I provide should be considered

the gold standard for medical note identification and segmentation.
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3.2.3 Data Analysis

An interesting discovery concerned projections of medical conditions across sections in em-

bedded space. Concept unique identifiers (CUIs), which are entity links to Unified Medical Lan-

guage System (a large medical concept ontology) were extracted (Bodenreider, 2004). The CUIs

were linked using MedCAT (Kraljevic et al., 2021) and weighted by TF/IDF (Sparck Jones,

1972) across sections. Each CUI was mapped to a vector from cui2vec1, and then reduced

to three dimensions using principal component analysis (PCA), shown in Figure 7. The plot

was generated without normalizing or standardizing the data so CUI vector magnitudes were

retained for analysis. Figure 7 (a) shows the past-medical-history section (purple) CUIs on

the horizontal axis with past-surgical-history (blue) CUIs only on the vertical axis with size

proportional to TF/IDF.

The past surgical and medical history sections in discharge summary notes project many

medical disease CUIs as orthogonal to surgical CUIs. The medical disease CUIs on the vertical

axis are those that do not have surgery as a treatment option, such as hypertension. How-

ever, a CUI representing coronary artery disease that plots along the surgical history vertical

axis does require surgery. Most of the data points that share the vertical axis along with

past-medical-history are those that require both medication and surgery, such as cancer.

Not only does this show cui2vec being used in practice for the first time, as far as I know, it

illustrates an application of how groupings of concepts can be visualized and analyzed to gain

1A unique concept identifier embedding trained from biomedical text.
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a) b)

Figure 7: Concept Unique Identifier Plots. a) Plot of past-medical-history (purple) and
past-surgical-history (blue) reduced to 3D together as one data set with the first principal
component (red line) with data point size as the TF/IDF score, b) Plot of the same sections
but reduced to 3D as separate data points with respective first principal components.

intuition and insight in complex medical data. In my data, this includes not only a semantic

relationship between concepts, but how those concepts represent the treatments involved based

on the section from which they originate. Given this data relationship, I hypothesize that

utilization of cui2vec embeddings, such as concatenating them to word vectors, will increase

performance of task specific models including SI.

3.3 Limitations

MedSecId is limited to notes of patients admitted to an ICU from the MIMIC-III corpus

for several note categories with no data included after the patient leaves to a lower severity
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Figure 8: MedSecId Baseline Models. a) BiLSTM-CRFtok BiLSTM model with non-
contextual token input embeddings, b) BERT-CRFtok BiLSTM model with BERT word piece
token fixed input embeddings, c) BERTsent BiLSTM model with [CLS] sentence embeddings
using the per sentence majority label.

department1. Notes written afterward are an essential source of data that provides an aspect

of the patients’ stay that is otherwise lacking in the corpus, such as daily progress Physician

notes. However, Radiology and Echo notes from the MIMIC-III corpus apply to all hospital

departments since they are uniform for all patients, regardless of their location, outpatient or

inpatient. In addition, discharge summaries entail the entire hospital visit, including the ICU

1Only five note categories are available (see Table I).
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and the remainder of the admission. Since discharge summaries are included in the MIMIC-III

dataset, they are also included in the MedSecId annotation set.

3.4 Baseline Models

With this data, we can now build some strong baseline models on MedSecId. Because the

section text spans do not break on tokens, we cast our task as a named entity recognition

(NER) using in, out (IO) encoding1 on a 50 way classification including <none> for text with

no sections (see Table VI). Using this encoding, I created several baselines across two BiLSTM

models2 for the purpose of future work benchmarking. These baselines include majority label

metrics, a token BiLSTM with a CRF output layer (BiLSTM-CRF), and a sentinel BERT

embedding (Devlin et al., 2019) long-short term memory (LSTM) model (see Figure 8). Aside

from adjusting the LSTM hidden size, gradient clipping, and number of epochs, all parameters

were held constant across all experiments.

BiLSTM-CRFtok

The token model consists of a simple non-contextual input word embeddings, a LSTM layer

and fully connected linear layer using a conditional random field (CRF) output with labels

assigned by the Viterbi algorithm. Several embeddings were used with this model, including

word-to-vector (word2vec) (Mikolov et al., 2013a; Mikolov et al., 2013b), Global Vectors for

1in, out, begin (IOB) encoding was not used as there are no transitions from one section to another
and to reduce the label count.

2No models use a BERT transformer, only BERT token and sentinel ([CLS]) embeddings.



48

Word Representation (GloVe) (Pennington et al., 2014) and fastText (Bojanowski et al., 2017)

(Crawl) embeddings.

BERTsent

To address the issue of exploding gradients, I created a sentence-based model using static

BERT sentinel embeddings to lower the input length to the LSTM layer. The model assumes

sections rarely break mid-sentence since every sentence is assigned one section. Sentences with

more than one section annotation will lower end-to-end performance. However, 97.6% of the

annotation set contains sentences with a single section for all tokens of the respective sentence

as shown in Table IV. The output of the final layer of the first time step was used as the input

to a LSTM. The LSTM output forwarded to a dense layer with one output neuron for each

label and an output max over the label.

Unique Sections Count Proportion
1 253025 97.59%
2 5589 2.16%
3 589 0.23%
4 72 0.03%
5 11 0.00%

TABLE IV: MedSecId Sentence Distribution. Distribution of sentences having a single
section label across all tokens of the respective sentence.
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Both the standard small BERT model and BioBERT embeddings (Lee et al., 2020) are

included in the baseline results (see Section 3.5). A ClinicalBioBERT baseline model (Alsentzer

et al., 2019) would not provide a fair baseline metric for comparison with future works since it

trained on the MIMIC-III corpus so it was excluded.

BERT-CRFsent

Like BERTsent, but adds a CRF layer with Viterbi assigned labels.

3.4.1 Implementation Details

The annotation set was randomly sampled per note and divided as a stratified dataset

into training (80%), validation (10%) and test (10%) datasets. The medical note structure

ontology (see Section 3.2.1) is distributed as both a RDF Turtle file and a CSV file along with

the annotations. The publicly available1 code to train, validate, and test the model also includes

additional APIs to access the annotated data, perform inference with the pretrained model or

train a new model. This codebase includes functionality to use the pretrained model or utilize

the annotations for experimentation and is ready to easily be installed.2 This codebase also

references a related project useful for parsing MIMIC-III text, pseudo token replacement, and

Postgres database to Python object relational mapping.

1https://github.com/uic-nlp-lab/medsecid

2All that is required in a pip install. See the GitHub repo for details.
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3.5 Results

The baseline models described in Section 3.4 were each trained until the validation loss

converged, then early stopped. The results are summarized in Table V with label specific

results in Table VI. I report performance metrics by counting correct predictions when the

character span boundaries match exactly and the sections type match. If either do not match,

it is counted as an incorrect prediction.

Id Name mF1 mP mR MF1 MP MR
1 Majority Label 0.023 0.023 0.023 0.0 0 0.005
2 BERTsent 0.925 0.925 0.925 0.589 0.616 0.6
3 BiLSTM-CRFtok (word2vec) 0.927 0.927 0.927 0.778 0.78 0.801
4 BERT-CRFsent 0.929 0.929 0.929 0.689 0.734 0.7
5 BERTsent BioBERT 0.94 0.94 0.94 0.687 0.73 0.679
6 BERT-CRFsent BioBERT 0.94 0.94 0.94 0.705 0.757 0.704
7 BiLSTM-CRFtok (GloVE 50D) 0.954 0.954 0.954 0.76 0.783 0.765
8 BiLSTM-CRFtok fastText 0.954 0.954 0.954 0.796 0.806 0.806
9 BiLSTM-CRFtok (GloVE 300D) 0.955 0.955 0.955 0.787 0.801 0.788

TABLE V: MedSecId Performance. Summarization of performance metrics where mF1 is
the micro F1, mP is the micro precision, mR is the micro recall, MF1 is the macro F1, MP is
the macro precision, MR is the macro recall.

From the majority label, it is clear the models perform comparatively well as shown in the

summary results in Table V. The highest performing GloVe model has a micro F1 of 0.96 and

the highest performing fastText model has a macro F1 of 0.8. This 16 point spread is evident

from how performance drops off for the bottom 13 section types. Many of these low performers
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are those that were re-casted or re-grouped (see Section 3.2.1), and could be regrouped to

an umbrella section type like Labs/Imaging/Radiology if such a rigorous delineation was not

necessary.

The BERTsent does not lag far behind, but its performance using sentinel embeddings does

not capture sections as well as the token level models despite long document length. Perfor-

mance significantly improved and models converged faster with the use of gradient clipping to

alleviate issues of LSTM exploding gradients (Bengio et al., 1994).

3.6 Conclusion

MedSecId is a comprehensive dataset of medical annotations from the MIMIC-III corpus

across five note types and 50 sections. The dataset contains section types, headers and patient

age annotations. My dataset shows promising baseline results from simple models such as

BiLSTMs with diverse inputs, but still leaves room for improvement by more sophisticated

models.

These models improve pipelines that use rule based methods for SI as mentioned in Sec-

tion 3.2.2. These pipelines include discharge note summarization Chapter 6, and other down-

stream tasks that would benefit from having header and non-section text removed such as

training word embeddings such as ClinicalBioBERT.

The MedSecId model has been used in other discharge summary generation (Damm et al.,

2024), and shown to improve performance for the summarization pipeline (see Chapter 6) for

this work. In addition, it was also used to assist and supplement the DSProv annotations as

explained in the next chapter.
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Id Label mF1 mP mR MF1 MP MR Acc Count

1 procedure 0 0 0 0 0 0 0 156
2 labs 0 0 0 0 0 0 0 436
3 prenatal-screens 0.276 0.276 0.276 0.216 0.5 0.138 0.276 105
4 imaging 0.357 0.357 0.357 0.263 0.5 0.178 0.357 990
5 comparison 0.414 0.414 0.414 0.195 0.333 0.138 0.414 222
6 code-status 0.513 0.513 0.513 0.226 0.333 0.171 0.513 150
7 wet-read 0.521 0.521 0.521 0.342 0.5 0.26 0.521 121
8 communication 0.556 0.556 0.556 0.179 0.25 0.139 0.556 133
9 impression 0.563 0.563 0.563 0.18 0.25 0.141 0.563 920
10 disposition 0.647 0.647 0.647 0.262 0.333 0.216 0.647 68
11 history 0.688 0.688 0.688 0.272 0.333 0.229 0.688 170
12 past-surgical-history 0.745 0.745 0.745 0.427 0.5 0.372 0.745 145
13 current-medications 0.746 0.746 0.746 0.142 0.167 0.124 0.746 1406
14 contrast 0.8 0.8 0.8 0.444 0.5 0.4 0.8 25
15 none 0.816 0.816 0.816 0.03 0.033 0.027 0.816 6378
16 discharge-disposition 0.83 0.83 0.83 0.151 0.167 0.138 0.83 513
17 addendum 0.833 0.833 0.833 0.151 0.167 0.139 0.833 3106
18 last-dose-of-antibiotics 0.872 0.872 0.872 0.466 0.5 0.436 0.872 397
19 indication 0.88 0.88 0.88 0.468 0.5 0.44 0.88 117
20 physical-examination 0.881 0.881 0.881 0.156 0.167 0.147 0.881 22113
21 image-type 0.884 0.884 0.884 0.313 0.333 0.295 0.884 181
22 discharge-condition 0.904 0.904 0.904 0.317 0.333 0.301 0.904 1490
23 infusions 0.909 0.909 0.909 0.476 0.5 0.455 0.909 99
24 history-of-present-illness 0.924 0.924 0.924 0.137 0.143 0.132 0.924 24950
25 discharge-medications 0.925 0.925 0.925 0.192 0.2 0.185 0.925 25088
26 flowsheet-data-vitals 0.932 0.932 0.932 0.482 0.5 0.466 0.932 2128
27 24-hour-events 0.954 0.954 0.954 0.244 0.25 0.238 0.954 1765
28 past-medical-history 0.959 0.959 0.959 0.163 0.167 0.16 0.959 5990
29 discharge-diagnosis 0.959 0.959 0.959 0.196 0.2 0.192 0.959 3578
30 family-history 0.968 0.968 0.968 0.328 0.333 0.323 0.968 1171
31 chief-complaint 0.968 0.968 0.968 0.492 0.5 0.484 0.968 1142
32 medical-condition 0.971 0.971 0.971 0.328 0.333 0.324 0.971 409
33 review-of-systems 0.977 0.977 0.977 0.494 0.5 0.488 0.977 724
34 labs-imaging 0.981 0.981 0.981 0.142 0.143 0.14 0.981 45855
35 discharge-instructions 0.986 0.986 0.986 0.166 0.167 0.164 0.986 23208
36 social-history 0.988 0.988 0.988 0.249 0.25 0.247 0.988 3114
37 allergies 0.989 0.989 0.989 0.331 0.333 0.33 0.989 891
38 assessment-and-plan 0.99 0.99 0.99 0.199 0.2 0.198 0.99 12728
39 reason 0.992 0.992 0.992 0.332 0.333 0.331 0.992 646
40 conclusions 0.994 0.994 0.994 0.498 0.5 0.497 0.994 2814
41 findings 0.998 0.998 0.998 0.333 0.333 0.333 0.998 6053
42 hospital-course 0.998 0.998 0.998 0.2 0.2 0.2 0.998 78321
43 social-and-family-history 1 1 1 1 1 1 1 52
44 technique 1 1 1 1 1 1 1 22
45 clinical-implications 1 1 1 1 1 1 1 36

TABLE VI: MedSecId BiLSTM-CRFtok Performance. By label BiLSTM-CRFtok perfor-
mance (top 45 sections) where mF1 is the micro F1, mP is the micro precision, mR is the micro
recall, MF1 is the macro F1, MP is the macro precision, MR is the macro recall, Acc is the
accuracy, count is the the number of tokens encountered in the test set. The <none> label is for
tokens with no section annotated.



CHAPTER 4

DISCHARGE SUMMARY PROVENANCE OF DATA

(This chapter expands on the paper “Hospital Discharge Summarization Data Provenance”

by Landes et al. (2023) in the 22nd Workshop on Biomedical Natural Language Processing and

BioNLP Shared Tasks of the Association for Computational Linguistics (ACL) conference.)

The MedSecId annotations were a useful dataset to train a model for the summarization

pipeline as described in (see Chapter 6). They were also useful in an automatic discharge

summary generation feasibility study, which was motivated by attention this task has seen in

recent years. I believe this effort is warranted given the notes’ length and complexity, and

that they are often riddled with poorly formatted structured data and redundancy in copy and

pasted text. In this chapter, I investigate the feasibility of the summarization task by finding

the origin, or data provenance, of the discharge summary’s source text. As a motivation to

understanding the data challenges of the summarization task, I collaborated in the creation

of a new dataset of 51 hospital admissions annotated by clinical informatics physicians. The

dataset is analyzed for semantics and the extent of copied text from human authored electronic

health record (EHR) notes.

Physicians often reference or copy EHR notes to the discharge summary. These copied notes

include progress notes, consult notes, and test results. I call these previously written medical

documents note antecedents since they are written prior to the discharge summary and can be

used as source text as input to an automatic summarization system. The flow of information

53
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from the note antecedent to the discharge summary is traced by annotating semantically similar

content and copied text across notes and sections (such as Brief Hospital Course), which can be

copied or paraphrased text. These annotations, called note matches, “tie” the notes’ discrete

lexical spans of text. Each annotation is a text span in the discharge summary that carries

a similar or identical meaning to its matching note antecedent as a span, which is a clinical

medical note containing the original information that contributed to the discharge summary.

In many cases, the text annotated by the note antecedents is later paraphrased or copied into

the discharge summary.

Discharge Summary

History of Present Illness:
The patient is a 49 year old female who had a left femur 
fracture approximately 25 years ago which was treated 
with traction.  She was left with a left leg deformity.  She 
now presents for treatment.

Past Medical History:
L femur fracture 25years ago treated by traction…

Physician Note (antecedent)

HPI:
49 year old woman with hx of asthma, obesity, left 
femoral fracture presenting for elective re-alignment of 
the femoral fracture compicated by intra-op hypotension 
and hypoxia and transient PEA arrest.  The patient had 
left femoral fracture approximately 20 years ago 
secondary to a car accident.  The fracture was treated 
with splinting and traction.  She developed progressive…

(a)

(b)

Figure 9: A Note Match Annotation. The annotation ties a physician note antecedent to
a discharge summary with the matching text spans in blue and their coupling represented with
the red arrow.
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Figure 9a shows a note match annotation of a physician note and the linked text in the

discharge summary given in Figure 9b. In this example, the patient’s encounter is documented

in the History of Present Illness section of the note antecedent and later paraphrased in the

summary at the time of the patient’s discharge. The red arrow represents the connection

between these two lexical spans within an admission. This connection always starts from the

original text in any clinical note and terminates in the discharge summary for the respective

admission. For this work, both ends of the link are text spans written by physicians (see

Section 4.2 for more detail on the annotation process).

4.1 Motivation

Understanding the extent of meaningful structured data is key in determining the feasibility

and choice of methods needed to generate discharge summaries. In many instances, the copied

text comes from high quality sources such as the History of Present Illness section of the

physician note. However, redundancy, errors and data incoherence is pervasive in the vast

amounts of medical data taken from patients during a hospital stay (Cohen et al., 2013). As

much as 46% of the discharge summary is copied and pasted, 36% imported from structured

data sources, leaving only 18% manually entered (Adams et al., 2021).

The extent of copied text in notes is well known, but the origins of discharge summary

text is not. Since it is unclear how concepts arrive into the summary, extrapolating anything

more than the measure of copied text and their semantics would necessitate understanding the

decisions made by the physician while writing the summary. However, we can infer what is

missing from a summarization by subtracting the portion represented by the note antecedents
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of existing discharge summaries statistically. Knowing what is missing from the summary, in

a probabilistic sense, and unique to the physician’s direct individual experience is fundamental

for gauging the summarization performance upper bound.

For this reason, my primary goal for this work is to find and analyze the flow of data from

notes written prior to the discharge summary, as shown in Figure 9. It is my position that

a better understanding of the provenance of data, by note and section, is a crucial first step

before automatic summarization can be successfully applied to discharge summarization future

work. A secondary goal is to produce an unsupervised baseline and model for the research

community.

To accomplish these goals three clinicians annotated admission records from the freely avail-

able MIMIC-III Version 1.4 (Johnson et al., 2016) corpus. These annotations uncovered where

notes overlap and offer high quality human examples for supervised learning methods. My

contributions are the annotated dataset (see Section 4.2), its analysis (see Section 4.2.2), and a

novel unsupervised method using the word mover algorithm (Kusner et al., 2015) with clustering

to assist in the annotation process (see Section 4.3).

4.2 Dataset

Three clinical informatics physicians annotated 51 admissions from the MIMIC-III Version

1.4 (Johnson et al., 2016) corpus for overlap with the EHR note antecedents to create a new

annotation set called the DSProv dataset. The overlap was annotated by selecting the semanti-

cally similar portions of text from the discharge summary as shown in Figure 9. This provides

statistics of overlap both at a note and a section level. To find the section overlap, the Med-
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SecId corpus was used in most notes. In the few cases where note section annotations were

not available, the pretrained MedSecId model was used to automatically section notes. Such

sections are helpful to medical clinicians when finding topical information and useful for billing

insurance companies. See Chapter 3 for the function and utility of sections in medical notes.

DSProv dataset admission candidates were selected from admissions annotated for sections

in MedSecId to curate a richer combined dataset. More specifically, selection SC for admission A

was chosen as SC = arg maxA
∑
A∈C |A|, where C is the Medical Information Mart for Intensive

Care III (MIMIC-III) corpus and |A| are the number of notes in the admission. My early findings

showed very little overlap of data with the exception of Consult (documentation by consulting

physicians across departments) and Physician (typically written daily by the physician) notes.

For this reason, admissions with these notes took priority in my annotation process to maximize

note match overlap. While it could be argued that these notes’ statistics may be combined given

their likeness in purpose, it was decided to keep them separate for summarization.

Admissions were annotated with note matches using the following process:

1. Extract SC admissions from MIMIC-III.

2. For each admission A ∈ SC :

(a) Read A’s discharge summary.

(b) For each note antecedent of the admission A, semantically similar or verbatim copied

text was identified and each annotated note match annotated as:

i. A single span as character offsets tuples in the note antecedent (call it n).
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ii. A single span as character offsets tuples in the discharge summary (call it d).

iii. A link between n and d.

Each note antecedent may have several note matches (as can a discharge summary), but each

has a single link across both note documents.

An annotation guide was created by the lead physician annotator, who then trained the

other two physician annotators. Agreement on the criteria for note matches was decided on

after each annotator completed one admission. The first admission annotations were then

updated per the consensus agreed upon by all annotators. The same process of annotation,

discovery, and agreement repeated for three additional admissions; one for each annotator. The

remaining 39 were then split among the three annotators.

The 51 admission count might give the mistaken impression of a small dataset. However,

as shown in Table VII, the extent of the annotation set is comprehensive with a total of 569

note matches from 291 notes that encompassed a little over 3 million tokens and 11.7 million

characters (11.65MB). The number of admissions annotated was an aspect of the time con-

suming nature of the task. Each admission took an average 20 minutes for the physician to

review and annotate as some admissions contained up to 494 notes. However, admissions had

an average of 11.16 (σ = 7.3) notes and one admission had a single note antecedent. Statistics

across discharge summaries and note antecedents are separate and independent; for example

the 240 note antecedent count in Table VII does not include other information from discharge

summaries.
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Description Count

Admissions 51
Match pairs 569

Discharge summary notes 51
Antecedent notes 240
Total Notes 291

Discharge summary tokens 1,695,466
Antecedent note tokens 1,323,422
Total tokens 3,018,888

Discharge summary characters 7,872,052
Antecedent characters 3,780,025
Total characters 11,652,077

TABLE VII: DSProv Corpus Statistics. The annotation statistics include discharge sum-
mary and note antecedent span, token and character counts.

4.2.1 Limitations

The MIMIC-III corpus includes a discharge summary for each admission. However, it is

limited to patient’s time in the intensive care unit (ICU), meaning that the patient’s history

for any time after transfer from the department is lost. Given most patients progress to lower

severity departments as they recover from intensive care, a large cross section of the patient’s

notes are missing from my analysis. In Section 4.2.2 I discuss the statistics that justify this

conclusion.

4.2.2 Data Analysis

The DSProv annotation dataset was motivated by the summarization task. However, the

dataset also provides insight into how EHR note antecedents are used by physicians to write

discharge summaries and for the practicality of automatically summarizing them. This analysis
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provides a quantitative justification for qualitative hypotheses based on clinician’s experience

writing notes with data observed during annotation.

The human annotated note match text spans were tokenized to compute overlap using

RougeL, which a longest common sequence n-gram metric that assesses the quality of generated

summaries (Lin and Hovy, 2003; Lin, 2004). Bleu (a measure that assess the quality of machine

generated translations) and BERTScore (an evaluation metric for scoring generated text) were

also used in my quantitative analysis (Papineni et al., 2002; Zhang et al., 2020a). Each note

match annotation includes the unique MIMIC-III note antecedent and discharge summary note

identifier, absolute character offset in both notes, and the section they span. An additional set

of annotations were automatically generated that break spans that overlap sections.

A normalized Levenshtein edit distance (Levenshtein, 1966) was used to measure the extent

of copied and pasted text. Since the distance counts the minimum number of edits, rather than

a relative measure to the note match span character length, it was normalized with:

levsim(w1,w2) = 1−
lev(w1,w2)

max |w1|, |w2|
(4.1)

where lev is the Levenshtein edit distance, and |w1| and |w2| are lengths of the words in char-

acters.

The statistical results by note categories (i.e. Radiology vs. Echo) and by note section. The

section statistics are reported by grouping on the discharge summary section type, and the note

antecedent section type.
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4.2.2.1 Note Category

Table VIII provides statistics and similarity measures on the DSProv annotation set. The

portion columns show the token overlap between each category of note antecedent (“Ant”) with

the discharge summary (“DS”). The “LS” is the Levenshtein edit similarity as computed with

Equation Equation 4.1. All similarity scores (“LS”, “BERTScore”, “Rouge” and “Bleu”)

are computed between the note antecedent and discharge summary span for each match.

Note Category DS Portion Ant Portion Count LS BERTScore RougeL Bleu
Physician 28% 4% 310 49.50 68.14 44.10 19.34
Radiology 8% 14% 148 70.10 80.75 64.63 41.03
Echo 6% 29% 48 65.72 85.11 66.30 43.65
General 5% 4% 27 50.14 67.71 45.12 19.81
Consult 5% 4% 17 60.24 70.44 54.33 22.36
Nursing 2% 7% 8 23.43 44.56 15.25 0.91
ECG 1% 93% 5 80.94 79.07 74.08 52.33
Nursing/other 19% 5% 3 11.38 54.62 7.02 0.00
Rehab Services 2% 2% 2 26.31 60.04 21.26 0.00
Case Management 0% 4% 1 14.29 53.22 18.18 0.00

TABLE VIII: Statistics by MIMIC Note Category. The ratio of (D)ischarge (S)ummary
tokens to total discharge summary tokens and the ratio of note (Ant)ecedent tokens to total
note antecedent tokens. The Count column gives the number of notes annotated.

The highest discharge summary token overlap is with physician notes (28%), which I consider

surprisingly high considering the MIMIC-III corpus only includes ICU notes1 as mentioned in

1Daily progress notes are recorded in the ICU as well.



62

Section 4.2.1. I expect the other discharge summary overlap statistics to be underrepresented

for the same reason. This high token overlap supports the conjecture that daily progress notes

are highly summarized with little copied text. The relatively low edit distance with a high

BERTScore further supports this conclusion as surface similarity of copied text is low but

the semantic similarity is high.

ECG (electrocardiogram notes), Radiology and Echo (echocardiogram data and analysis)

notes show a higher similarity (80.94, 70.1, and 65.72 respectively) with the discharge summary

since they are frequently copied and pasted. However, these statistics should be higher than

presented since some spans include page breaks that result in counting superfluous header and

footer tokens. Also note that ECG has the highest note antecedent portion, implying that most

of these short reports make it into the discharge summary.

4.2.2.2 Section by Discharge Summary

Statistics by discharge summary section are given in Table IX. Labs and Imaging (71.55%)

is a highly copied and pasted section from Radiology and Echo notes. This section takes into

account cultures, blood results, and lab tests, and is copied and pasted as structured data.

Hospital Course has the highest discharge summary (14%) section representation. There

is a high likelihood that this section has a high overlap due to transfer notes that describe

patients moving between departments. These notes have an impact on summarization as they

describe what happened to the patient during the hospital visit, including time of death. Gen-

erally speaking, good sections for summarization are those that have a low edit score (minimal

copying and pasting) but a high similarity. In this case the comparatively low Levenshtein edit
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Section Type DS Ant Count LS BERTScore RougeL Bleu
Hospital course 14% 4% 125 41.13 63.39 33.35 11.54
Labs imaging 14% 14% 194 71.55 82.59 67.60 44.08
History of present illness 10% 7% 57 58.51 70.94 51.97 30.22
Physical examination 5% 3% 16 66.23 67.50 56.27 36.50
Addendum 5% 10% 2 54.89 74.53 43.05 19.00
Past medical history 4% 4% 64 44.60 68.54 40.22 20.32
Medication history 4% 4% 11 90.64 84.25 80.47 55.35
Imaging 2% 10% 1 97.92 86.99 88.06 54.16
Review of systems 2% 14% 1 24.84 58.46 21.08 2.41
Social history 1% 1% 15 59.55 71.79 49.95 22.66
Major surgical or invasive proc. 1% 0% 7 23.95 55.65 24.13 0.00
Family history 1% 1% 9 56.25 72.34 61.59 35.45
Default 0% 24% 1 25.00 28.58 14.29 0.00
Chief complaint 0% 0% 26 55.65 74.68 51.56 9.25
Discharge diagnosis 0% 1% 1 31.87 57.74 10.26 0.00

TABLE IX: Statistics Grouped by Discharge Summary Section Type. The (D)ischarge
(S)ummary tokens to total discharge summary tokens and the ratio of note (Ant)ecedent tokens
to total note antecedent tokens. The Count column gives the number of notes annotated. Only
the top 15 sections with the highest discharge summary overlap are reported.

similarity (41.13) and somewhat high BERTScore (63.39) implies this section is a good target

for automatic summarization as previously investigated in prior work (Adams et al., 2021).

4.2.2.3 Section by Note Antecedent

Table X shows the overlap from the perspective of the note antecedent. The Assessment

and Plan section (the overall impression of the patient and how to treat them) has a high (15%)

antecedent overlap. I found that the majority of the discharge summary content comes from

the Brief Hospital Course section. The Echo note’s Conclusions section has a high portion

of text that is summarized from note antecedents. This section’s echocardiogram information

only consists of 8% on average of the notes annotated.
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Section Type DS Ant Count LS BERTScore RougeL Bleu
Indication 3% 28% 1 84.88 83.83 81.00 53.58
Conclusions 8% 26% 33 79.49 87.21 78.73 57.31
Findings 9% 15% 78 81.53 83.11 74.51 48.53
Technique 10% 9% 1 18.38 84.84 29.91 1.15
Impression 5% 8% 54 65.47 81.30 61.70 36.75
Review of systems 5% 8% 2 20.74 57.12 16.31 1.21
Wet read 4% 6% 2 98.28 91.18 76.19 52.69
Addendum 3% 6% 3 25.77 56.82 14.41 0.00
History 7% 5% 2 12.63 82.96 20.55 0.09
Hospital course 6% 5% 12 40.37 61.23 31.60 16.25
History of present illness 11% 5% 58 59.68 71.75 51.03 29.06
Comparison 5% 5% 8 13.79 80.72 21.58 0.55
Labs imaging 10% 4% 10 85.37 79.32 73.21 44.22
Assessment and plan 15% 4% 86 44.90 65.01 38.94 14.06
Discharge instructions 0% 4% 1 14.29 53.22 18.18 0.00

TABLE X: Statistics Grouped by Note Antecedent Section Type. (DS) is the ratio of
discharge summary tokens to total discharge summary tokens and (Ant) is the ratio of note
antecedent tokens to total note antecedent tokens. The Count column gives the number of notes
annotated. Only the top 15 sections with the highest discharge summary overlap are reported.

4.3 Methods

Automatic methods to assist in bootstrapping the corpus were considered given the large

amount of data the physician needs to sift through to find note matches1. However, the task

is challenging given the pages long document lengths, and precludes transformer pre-training

methods. While the task has much in common with paraphrase matching and information

retrieval tasks, it is fundamentally different in the way sections of text are matched. For example

in question/answer systems, a query matches to an answer in the source text. However, my

1The highest note count for an admission in MIMIC-III corpus is 1,233 notes.
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task requires the correct text span in both note documents. Both the discharge summary and

the note antecedent predicted text spans for the respective linked note matches are used when

evaluating.

4.3.1 Evaluation

The human annotations were used for comparison since there is no previous baseline for

this task. The unsupervised methods were then used to estimate the overlap portion to trace

the origins of the discharge summary to the note antecedent, and then compared against the

human annotations. The task is framed as a token classification task (without a label) since

spans are token boundary demarcated.

My methods were evaluated using the SemEval 2013 Task 9.1 (Segura-Bedmar et al., 2013)

entity extraction scoring method since it is flexible in its strictness as a score. Given the novelty

and difficulty of the task, I used the partial boundary matching, which evaluates spans based

on whether the they overlap rather than on exact matches. Even though the SemEval measure

is flexible for partial token matching, it is not ideal since this task aims to classify single token

spans on a match-by-match basis, which is why the Rouge metric was used as an additional

reference point.

4.3.2 Word Mover

The word mover algorithm (Kusner et al., 2015) was used in the first step of my method. My

method frames the task as a transportation problem by using the earth mover algorithm (Pele

and Werman, 2009). The intuition follows from modeling probability distributions as piles of

dirt that are moved from one location to another. The algorithm treats high dimensional word
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embeddings of a source document as the probability distribution that “moves” words to the

target document embedded distribution. The optimization algorithm minimizes the objective

on words wt, . . . ,wT :

1

T

T∑
t=1

∑
j∈N (t)

log p(wj|wt) (4.2)

where N (n) are the neighboring words, and p(wj|wt) is the word vector’s hierarchical softmax

values. Word embeddings are made unit vectors and distance measures are euclidean. My

experiments include non-contextual word embeddings (Mikolov et al., 2013a; Mikolov et al.,

2013b) and static contextual embeddings from transformer architectures (Devlin et al., 2019).

Because document word frequencies are used as the histogram weight to the earth mover algo-

rithm, each surface word form was associated with its constituent wordpiece1 (Wu et al., 2016).

The centroid of the constituent wordpiece token(s) for each respective word was used for the

embeddings.

4.3.3 Hybrid Semantic Positional Token Clustering

The word mover algorithm maps words from the discharge summary onto the note an-

tecedent efficiently, but it does not help us link the note matches. A näıve approach would be

to chunk tokens based on a metric such as cosine similarity. However, words with little similarity

would frequently result in too many span breaks. We still need to cluster the word embeddings

to group concepts in each document separately. However, this still does not address the “Swiss

1Wordpieces are token sub-units with associated vectors and provided by the model’s tokenizer.
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cheese” problem of note matches with too many “holes” (span breaks). I propose to simply

add a component with a normalized scaled value to the word embedding. More specifically, I

defined the concatenated position vector with:

posemb(w) ,

[
emb(w);

(
αt · i
|T |

)]
(4.3)

where embi(w)s the word embedding as an application of the language model; αt is the token

position component scaler; i is the index the ith word wi, and |T | is the document token length.

The higher the token position component scaler (αt) value is set, the more the word position

is prioritized. This means that high values of the hyperparameter will create longer contiguous

token spans, but at the cost of semantic similarity. This effect can be visually explained as

a simple 2D word embedding with an additional token position axis. Figure 10 shows such a

coordinate system with an example of an embedded span. On the positional axis, each token

is spaced at even intervals. Because the positional components are proportionally scaled up for

higher values of αt, their relative distances shrink. On the other hand, if this value is lowered,

their positional components diminish, effectively reverting the word points (word location in

the embedded space) to their pre-trained vectors.

Once clustering of each document’s word points is complete, each cluster’s points are as-

signed to note matches. For each iteration over the Cartesian product, each document’s points

are added to matches by associated cluster (see Algorithm 1). The source and target docu-
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A
x
is

 2

Axis 1

Position Axis

“The patient noticed headahce in the back and top of her head that”

Cluster 1

Cluster 2

Figure 10: Hybrid Semantic Positional Token Clustering. Position embeddings on a third
axis shows data blue word embeddings moving from cluster 1 to cluster 2. Cluster spans the
discharge summaries (orange), the note antecedent (green) and arrows connecting the tokens
to word points. (The example, and misspelling of “headahce”, is taken verbatim from the
MIMIC-III corpus.)

ments are swapped and Algorithm 1 is run again to create flows1 from the target to the source.

1These are earth mover flows, which is calculated from the transportation plan, and not to be confused
with the flow from the Calamr max flow algorithm in Chapter 5.
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Lexical overlapping matches are combined and their flows added together and sorted to create

a ranking of matches.

Since each note match is assigned a flow (as a function of work to transport the word

embedding) in both directions, they are combined as a single flow, which represents the highest

similarities having the most information between the notes. Finally, matches are sorted in

descending order by their flow values, so those with the maximum amount of information gain

are ranked first.

4.4 Results

The DSProv dataset was provided to the unsupervised algorithm described in Section 4.3

and evaluated against the human annotated note matches. The match spans with the highest

flow (see Section 4.3.3) were compared and scored using the measures listed in Section 4.3.1.

Before the evaluation, Bayesian hyperparameter optimization (Bergstra et al., 2013) was used

on the human annotated dataset on a subset of the data. The model’s hyperparameters were

set to the Bayesian optimized values and evaluated. Of the 569 note matches annotated, an

additional 359 were optimized on 500 iterations. This process was repeated on each word

embedding for each note match.

While the hybrid method explained in Section 4.3.3 had a relatively high SemEval partial

recall of 69.06 for matching discharge summaries spans, it suffered a low precision score. This

implies finding spans is not an issue, but finding correct span boundaries as more difficult. I

report both the good recall but poor precision in Table XI to help explain the kinds of challenges

in matching spans between discharge summaries with note antecedents.
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Input: Documents source A and target B
Output: N note match spans

1 Function MatchNoteSpans(A, B)
2 // assign word vectors and normalize to unit

3 Va ← emb(w)
||emb(w)||2

; ∀w ∈ A ;

4 Vb ← emb(w)
||emb(w)||2

;∀w ∈ B ;

5 // assign position embeddings

6 Pa ← posemb(Va) ;
7 Pb ← posemb(Vb) ;
8 // assign word flows

9 (Fa,Fb)← WordMover(Va, Vb) ;
10 // cluster word points

11 Ca ← Cluster(Pa) ;
12 Cb ← Cluster(Pb) ;
13 // add matches

14 M← {∅} ;
15 for fa ∈ Fa do
16 for fb ∈ Fb do
17 // get cluster from flow

18 ca ← Ca[fa] ;
19 cb ← Cb[fb] ;
20 // add the match and

21 // token points

22 if {(ca, cb)}not ∈M then
23 M←M∪ {(ca, cb)} ;
24 end

25 end

26 end
27 return M ;

28 end
29 Function BiMatchNoteSpans(A, B)
30 Ma→b ← MatchNoteSpans(A, B) ;
31 Mb→a ← MatchNoteSpans(B, A) ;
32 Mbi ← Sort(Ma→b, Mb→a) ;

33 end

Algorithm 1: Matching Algorithm. The algorithm that matches text spans between
documents. Word mover is used to map tokens to an embedded space as flows, positional
embeddings are concatenated to word vectors, and documents are clustered. Then spans
are created from spacial proximate words, and the top-K match spans are ranked by flow.
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Table XI also shows how the performance for the note antecedents matching tells a better

story. We see a similar pattern with a low precision, but a high recall with both netting a

higher SemEval partial match harmonic mean of 15.85, which indicates that many matches

are missed. Surprisingly SapBERT (Liu et al., 2021), which models semantic relationships of

biomedical domain entities, performed worse than Sentence-BERT (Reimers and Gurevych,

2019). This suggests models trained for embedding and clustering provide better embeddings

for my task. The non-contextual word embeddings do not perform as well with the exception

of GloVE (Pennington et al., 2014) having the best Rouge1 for discharge summaries.

Model Se P Se R Se F1 Se Co Rouge1 Rouge2 RougeL EM
BioBERT 7.82 2.05 2.62 168.75 8.43 3.38 7.60 0.000
ClinicalBERT 8.61 2.89 3.91 330.60 10.76 5.07 9.39 0.216
Glove 300D 7.80 5.16 4.88 460.78 12.59 5.99 10.62 0.000
word2vec 9.76 34.15 12.30 3277.37 17.04 13.14 15.43 0.216
SapBERT 10.74 35.90 13.44 3316.16 19.36 14.69 16.95 0.216
SBERT 11.79 50.04 15.85 4635.78 19.62 16.48 18.03 0.216

TABLE XI: Note Antecedent Score. Performance of the unsupervised method for each
word embedding model. Score methods include (Se)meval-2013 (P)recision, (R)ecall, F1 and
(Co)rrect mean. Rouge1, Rouge2, and RougeL F1 scores also provided with an (E)xact
(M)atch score.

As mentioned in Section 4.2.1, only ICU notes and discharge summaries are provided in

MIMIC-III. This has the effect of decreasing available information to potentially summarize

and also has a negative impact on results as there are fewer examples to match between note
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documents. However, it has an even greater impact on summarization since the machine cannot

generate what is not available in the EHR.

4.5 Conclusion

DSProv is a new freely available dataset of 569 textual span matches between discharge

summaries and note antecedents annotated by clinical informatics physicians. The analysis of

my dataset presents new qualitative and quantitative findings of EHR notes. I have also pre-

sented a novel unsupervised method for annotating note matches using models tuned on human

examples from my dataset. This dataset analysis provided insights necessary for assessing the

feasibility of generating traceable and faithful summaries used in Chapter 6. The dataset can

also be used to verify and tune the alignment method for medical text as described in the next

chapter.



CHAPTER 5

AMR GRAPH ALIGNMENT

(This chapter expands on the paper “CALAMR: Component ALignment for Abstract Mean-

ing Representation” by Landes et al. (2024) in the Proceedings of the 2024 Joint Interna-

tional Conference on Computational Linguistics, Language Resources and Evaluation (LREC-

COLING 2024).

The MedSecId annotations and model described in Chapter 3 provide a way to divide notes

into smaller chunks of text to summarize and the DSProv annotations from Chapter 4 provide

ground truth in how information flows from note antecedents to the discharge summary. These

datasets were used to inform and facilitate discharge summarization explained in Chapter 6

using the alignment method explained in this chapter. This chapter gives a high level overview

of AMR (abstract meaning representation) and flow networks (see Section 5.1). The motivation

to use the alignment method for summarization is described (see Section 5.2) and explains how

they were used to find overlap between the source text and the summary (see Section 5.3).

5.1 Introduction

The graph alignment method uses graphs to represent natural language with a graph al-

gorithms not typically used in natural language processing (NLP). The output of the these

algorithms are used in subsequent summarization components.

73
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5.1.1 Abstract Meaning Representation

AMR is a semantic representation language that captures “who is doing what to whom” in

a sentence (Banarescu et al., 2013). AMR graphs differ from parse trees as represent meaning

rather than grammatical structure. For this reason, their representations are conducive to tasks

such as summarization since they are balanced in their level of abstraction. AMR represents

the abstract meaning of a sentence as a directed acyclic graph (DAG) as shown in Figure 11.

Each node of an AMR graph represents a concept (an idea grounded by natural language)

or abstract placeholder (i.e. person for names). A concept node is often a predicating element

(verb or “verb-like” main event or action core to an AMR or AMR subtree). Examples include

verbs (chase-01), adjectives (attract-01) and nominalizations (the root destroy-01 is used

in place of “destruction”). Concept nominalizations (using the root verb form of a noun in place

of a noun) may apply to entire event as the children nodes, or may only refer to the role player

of an event. Attribute nodes are “constants” such as cardinals, date parts, and other named

entity text (Banarescu et al., 2024).

PropBank (Kingsbury and Palmer, 2002) is a proposition lexicon database consisting of word

senses and their arguments as “frames” (Loper et al., 2007). In AMR, predicating elements

are modeled as rolesets in PropBank. The children of predicating element concept nodes are

concept or attribute role nodes because they “play a role” in a specific way relative to the

“sense” of the roleset. Each role is a member of a roleset, semantically labeled with a function

tag and an enumerated index used as the edge label that connects it with its parent predicating
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element concept node. Edges are also labeled with relationships between nodes that are not

roleset concepts such as possessive, conjunction, location, etc.

chase-01 dog

garden

cat

location

person name “Joe”
name op1ARG0

ARG1

poss

Figure 11: Parsed Abstract Meaning Graph. The AMR graph of sentence, “Joe’s dog was
chasing a cat in the garden.” Example from Liu et al. (2015).

Figure 11 presents the AMR graph of the sentence “Joe’s dog was chasing a cat in the

garden.”. In this example, chase-01 is the roleset concept node having the form <verb

infinitive>-DD where DD is a two digit that indexes the roleset. The chase-01 node’s pred-

icate is chase and 01 is predicating element index. AMR is also represented as a context free

notation of Penman, which is a a flat text representation widely used for abstract meaning

representation graphs (Kasper, 1989). Figure 12 gives the example AMR in Penman format.
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1 # ::snt Joe's dog was chasing a cat in the garden.

2 (c / chase-01~e.4

3 :ARG0 (d /dog~e.2

4 :poss (p /person

5 :name (n /name

6 :op1 "Joe")))

7 :ARG1 (c2 /cat~e.6)

8 :location~e.7 (g /garden~e.9))

Figure 12: Penman Example. The Penman notation of the sentence, “Joe’s dog was chasing
a cat in the garden.” Example from Liu et al. (2015).

5.1.2 Flow Networks

A flow network (a.k.a. capacitance network) is a graph with two values associated with each

edge: a capacity and a flow1. They can be conceptualized as a network of pipes carrying water

from node to node where the capacity is the maximum amount of water allowed to flow, and

the flow is the amount of water traversing a pipe, which is an edge in the graph. While this

example is water flowing through a pipe, it can be any material or grouping of objects such as

traffic on a road network traversing an edge.

Every flow network has both a source s that produces an infinite amount of flow, and a

sink t that accepts an infinite amount of flow. The flow that enters the system from t must be

1The term “flows” is not to be confused with the earth mover flows that were calculated from the
transportation plan in Chapter 4.
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the same amount that exits through to the sink node t. Figure 13 shows an example of a flow

network.

Figure 13: Flow Network. An flow network with the flow as the number on top and the
capacity on the bottom labeled on each edge. In this example flow network the flow from the
source node “s” has values 3 and 2 with capacities 5 and 2. The sink node “t” has incoming
flow 1 and 4.

5.2 Motivation

The AMR graph alignments are used as input to the summarization model (see Chapter 6).

These alignments are generated using an unsupervised algorithm using AMR graphs with edge

and node embeddings. Node level (Cai and Knight, 2013) or network neighborhood (Opitz et

al., 2021) alignments appear to perform well in small connected subgraph locales. However,

when considering larger contexts, there are cases where we find similarity, but for the wrong
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reasons. For example, “the dog chases the cat” has lexical similarity to “the cat chases the

dog”, but their meanings are quite different.

This is most apparent with same surface text words in close lexical proximity across sen-

tences that have high similarity but very different meaning. Such an observation highlights why

n-gram measures such as Rouge, which is a measure that assesses the quality of generated sum-

maries (Lin, 2004), provide a poor method of scoring1 (Schluter, 2017). Furthermore, Rouge

inadequately judges the faithfulness or hallucination rate of generated summaries (Maynez et al.,

2020). The newer large language model (LLM) based semantic similarity BERTScore (Zhang

et al., 2020a) has recently been proposed, but also falls short of quality generated summa-

rized text assessments (Maynez et al., 2020) and lacks an element of transparency that inspires

confidence in a scoring method.

My method addresses these issues by evaluating summarized or generated text for faith-

fulness and traceability using transparent methods by providing clear statistics of AMR graph

alignments. The method aligns nodes that are semantically similar using PropBank roleset

node, edge and token embeddings locally, and globally with the max flow algorithm. It pro-

vides not only a general AMR similarity score, but also a scoring method for summarized text.

The method also produces a full node alignment essential to many down stream NLP tasks

such as summarization. This alignment output is then later used to generate unsupervised

1See page 60 for definitions of metrics.
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training data for a supervised model. Section 5.13 presents renderings of the output graphs of

the method.

5.3 Alignment Method

Sentence A: I saw Joe’s dog, which was running in the garden.

Sentence B: The dog was chasing a cat.

chase-01

dog cat

ARG1ARG0

see-01

i dog

person

name

“Joe”

run-02

garden

locationname

op1

ARG1ARG0

ARG0-ofposs

Summary: Joe’s dog was chasing a cat in the garden.

chase-01

dog garden cat

location

person

name

“Joe”

name

op1

ARG0 ARG1

poss

(a) (b)

Figure 14: AMR Graph Components. Left (a) the source graph. Right (b) the summary
graph. The aligned tokens shown as arrows. Example from Liu et al. (2015).

My method uses AMR sentence graphs as building blocks that are are iteratively constructed

into larger graphs that represent any arbitrary language structure such as paragraphs or docu-

ments. Each iteration of this process connects one or more graphs from the previous step; the

input are AMR graphs that represent a sentence from human annotations (Figure 15a):
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1. Source and summary components (see Figure 14) are each one or more sentence AMR

graphs combined with a root node to form the document’s source or summary (see Fig-

ure 15b).

2. The alignment graph is a bipartite graph of the source and summary components (see

Figure 15c).

3. The flow network models the flow of information through a graph using two weighted

edge values: capacities and flow (see Figure 15d).

source component

chase-01

doggarden

source

sentence 1 sentence n

summary

sentence 1 sentence n

(a) (b)

(c)

summary component source component

(d)

summary component

0.8

0.5

0.9

0.2
0.7

s

t

Figure 15: Graph Construction. The graph construction process starting with AMR graphs.
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In this work, the flow material is information through the connected flow network con-

structed in Step 3. The direction of the flow goes from the source flow network node1 to the

leaf nodes of the summary component, over the bipartite alignment edges to the source com-

ponent, and then to the source root. The amount of information flow through each alignment

edge provides local scores of the strength of each source to summary node alignment pair and

globally for the document.

Two kinds of alignments are described a) text-to-graph aligned tokens (TATs) associate

AMR nodes to tokens (see Figure 14), and b) graph alignment edges connect nodes across the

flow network. Embeddings generated from the source text of the TATs are attached to AMR

graph nodes at inference time. However, static PropBank roleset embeddings (see Section 5.4)

are computed before the method begins. The end-to-end pipeline includes:

1. Preprocessing PropBank embeddings (5.4).

2. Constructing the flow network (5.6.1).

3. Attaching graph embeddings from TATs and PropBank to predicating element nodes (5.6.1).

4. Computing alignment edge capacities (5.6.2). Capacity computation is described in Sec-

tion 5.5.

5. Reducing the alignment (5.7).

(a) Run max flow algorithm (5.7.1).

1The terminology difference between the source node s (flow network) and the source component
(AMR graph) is explicitly differentiated since the source node can be connected to the source component.
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(b) Normalize flow-per-node.

(c) Remove low flow alignment edges (5.7).

(d) Go to step 5a until convergence.

5.4 AMR Graph Embedding

When the bipartite graph is created (see Section 5.6.1), contextual word embeddings are

provided to every node and edge of the bipartite graph and used as input to the similarity

measure. Additional embeddings are then computed and combined for local the network neigh-

borhood of the bipartite graph. The process described in this section is used as the input to

computing the capacities described in Section 5.5, so we only need compute the embeddings

for those nodes that are aligned. Only alignments of the same type of node for each node pair

is created, meaning no concept to sentence node alignment edges, for example. This reduces

the number of capacities we have to calculate since it reduces the types of node symmetric

pairings of: document (Section 5.4.3), sentence (Section 5.4.4), concept (Section 5.4.5), and

attribute (Section 5.4.6). But before each of the node’s embeddings are calculated, a prepro-

cessing step is necessary.

5.4.1 PropBank

The frame files are parsed and the hierarchical structured data added to an SQLite nor-

malized database. The embeddings are generated from Sentence-BERT (SBERT), a siamese
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network model that captures semantic similarity (Reimers and Gurevych, 2019) of sentences.

The input text to the model is taken from the following description text:1

• A roleset uses the name (i.e. “follow, pursue” from chase-012).

• A role uses the name (i.e. “follower”, which is the description of the first roleset role of

chase-01).

• A function tag uses the semantic tag of the role (i.e. “PAG” for “prototypical agent” for

the first roleset role of chase-01).

• A role edge uses the AMR role descriptions (i.e. “argument frame” for :ARG0 or “posses-

sive” for :poss).

The PropBank frames and embeddings are provided as a freely available3 library in Python

with object oriented access via a SQLite database. The large model (768D) SBERT embeddings

output are compiled along with the database into a large compressed file that is downloaded

and then indexed on first use. These embeddings are then used for computing the capacities of

the alignment edges of the bipartite graph as described in Section 5.4.

1Even though much of this text is short (even a single word long), they are treated as full sentence
text with respect to model input.

2PropBank uses a dot (.) index delimiter for roleset identifiers (i.e. chase.01), but AMR syntax is
used for simplicity.

3https://github.com/plandes/propbankdb
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5.4.2 Node to Text Embeddings

Each type of node has one or more strings used as input to SBERT. Since document nodes

are placeholders for sentences and other aggregated node collections, only sentence, concept and

attribute nodes have text to extract. Extracting text is straight forward from sentence nodes

since the node has the chunked sentence text parsed from when the graph was constructed.

Concept and attribute nodes use the text from the text-to-graph aligned tokens (TATs) if there

are any (see Section 5.6.1). If not, the role ID lemma or label text (i.e. “chase” from chase-01

or “dog”) for concept nodes, or the constant (i.e. “Joe”) for attribute notes (see Figure 11) is

extracted.

Once the text is extracted from the node, embeddings are produced by inferencing with

a forward pass using the SBERT model. The method of creating embeddings is different for

each node. However, the following notation defines an application of the transformer model to

generate the embeddings from the text of all nodes:

Sm : S → X ,X ∈ R|S |×d, s ∈ S embedding mapping (5.1)

where:

• Sm is the mapping from input sentences to embeddings using model m

• m is the SBERT large model (all-mpnet-base-v2)1

1https://www.sbert.net/docs/pretrained models.html
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• S is the list of sentences provided to the model

• X is the output embedding with dimension d

• d is the SBERT model output dimension (768)

Equation Equation 5.1 represents an inference as a mapping from sentences to embeddings

of dimension d. Equations for each node use this notation to better explain how their content

is used to create or combine (average, add or max) embeddings.

5.4.3 Document Nodes

The embeddings for document nodes (see Section 5.6.1) are computed as the mean of their

constituent subgraph children node embeddings:

embd(n) ,
1

|C(n)|

∑
u∈C(n)

emb(u)

For paragraph nodes, this is the mean of the sentence nodes (children nodes C(n) are defined

in Section 5.7.2) that compose that paragraph. Similarly, the mean of all electronic health record

(EHR) medical notes for a patient’s admission at the root level for the discharge summaries

case. The emb(u) notation is used to get the node embeddings of node u. Each node has their

own embedding definition including sentence node embeddings defined in Section 5.4.4
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5.4.4 Sentence Nodes

The embeddings of sentence nodes are taken directly from the SBERT [CLS] token model

output, and defined as:

embs(n) , Sm(sn) ∈ Rd

where:

• embs(n) is a sentence embedding for sentence s

• n is a sentence node in the graph

• Sm is the mapping from input sentences to embeddings using model m

• sn is the sentence text for node n

• Sm(sn) is the sentence to embedding mapping given in Equation Equation 5.1

In addition to sentence embs(n), node embeddings include document nodes (embd(n)),

concept nodes (embc(n)), and attribute nodes (emba(n)). These embeddings are used in later

definitions.

5.4.5 Concept Nodes

Concept nodes have a rich set of information at their disposal, which is leveraged to better

contextualize and embed them. As mentioned in Section 5.4.2, their embeddings are created

from the graph-to-text token alignments. All predicating element concepts contain PropBank

information and embeddings generated from the preprocessing step described in Section 5.4.1.
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Aligned Tokens

The TAT embeddings are defined as:

embt(n) ,


sn∑
w

|w|∑
i

Sm(sn)i if nodenhas alignments

1d otherwise, 1-vector of size d

token (5.2)

where:

• n is the concept node

• sn is the sentence text of the sentence node of which concept node n is a member

• Sm(sn)i is the SBERT embedding of ith wordpiece1 of word w of sentence text sn

• w is an aligned token, which contains one or more word pieces

• d is the SBERT embedding dimension, which is 768

Equation Equation 5.2 applies to nodes with TATs, which include both concept and attribute

nodes. Each aligned token’s embeddings are used, but each token can be represented by more

than one wordpiece (Wu et al., 2016). Instead of the [CLS] token embedding, the last output

layer embedding of the model at position i of word token w is used. Figure 16 shows an example

AMR graph with TAT garden at index 9 in the sentence, which gives the 9th index in to the

SBERT embedding output, which in this case has dimensionality 10× 768 for the model’s last

output layer assuming each token maps to a single wordpiece.

1See page 66 for definition of wordpiece.
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chase-01

dog gardencat

location

person

name “Joe”

name

op1

ARG0 ARG1

poss

1 2 3 4 5 6 7 98 10

Joe’s dog was chasing a cat in the garden.

Joe's dog was chasing a cat in the garden.

sent0
768

embs(n) = S(Joe’s dog…)

768

embt(n) = S(Joe’s dog…)

>10

embt(garden) = 

S(Joe’s…)9

function

description

prototypical agent

follower

embrs(chase-01) = S(follow, …)

768

name follow, pursue

embc(name) = S(name)

embr(ARG0) =

+

S(follower) + S(proto…) +

+

embr(dog)

Figure 16: Graph Embeddings. An AMR graph of the sentence, “Joe’s dog was chasing
a cat in the garden.”. The embedding node definitions with the model output are given for
TAT garden at index 9, the roleset (chase-01), the role (ARG0) with description “follower”
and the function tag “prototypical agent”. Each token is represented as one word piece for
simplicity. Example from Liu et al. (2015).

Role

A roleset is a grouping of roles for a verb concept node. It, and all other PropBank entries

used for embeddings, are preprocessed (see Section 5.4.1). A concept’s role embedding on edge

e are defined as:

embr(e) , emb(C(e)) · ρc + [Sm(sr) + Sm(sf)] · ρr (5.3)

where:
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• e is the role edge

• sr is the name of the role (i.e. “follower” from the first role of chase-01)

• sf semantic tag of the role (i.e. “prototypical agent” from the first role of chase-01)

• emb(C(e)) is the embedding of role edge node child (see Section 5.7.2)

• role child weight (ρc) and role weight (ρr) are hyperparameters that allow for assigning

importance to the specific terms

The ARG0 role embedding of chase-01 is shown in Figure 16 as the component-wise sum of

the child node dog’s embedding, and the edge’s description and function embedding.

Node

The information that comes from the PropBank roleset can be thought of as “metadata”

attached to verb concept nodes and static across all concept verb nodes of the same verb roleset.

For example, if chase-01 is found in two sentences, as in the case of the graph in Figure 20,

they will share the same roleset and its embedding. In addition to the roleset, most concept

nodes have TATs regardless of verb or non-verb concept node, which are also factored into the

node’s embedding. The embedding for a concept verb node n is defined as the weighted mean

of the TATs, the roleset, and the role edges:

embrs(n) , 1v[n] · Sm(srs) + (1− 1v[n]) · Sm(sn) (5.4)

embc(n) , embt(n) ·ωt + embrs(n) ·ωrs + 1v[n]

 ∑
e∈N (n)

embr(e) ·ωr

 (5.5)
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where:

• n is the concept node

• embt(n) is the TAT embedding produced from Equation Equation 5.2

• Sm(srs) is the SBERT embedding created from the roleset the name text srs(i.e. “follow,

pursue” from chase-01)

• Sm(sn) is the SBERT embedding created from the text of the non-predicating element

node (see Section 5.1.1) text sn (i.e. a noun instance might have “dog” or abstract meaning

“person”)

• embrs(n) is the roleset node embedding definition in Equation Equation 5.4

• 1v[n] is the indicator function yielding 1 when n is a predicating element node and 0

when it is a noun and other abstract meaning node

• e ∈ N (n) are the outgoing role edges of node n that connect to its children

• embr(e) is the role embedding defined by Equation Equation 5.3

• ωt, ωrs and ωr are hyperparameters that allow for assigning importance to the specific

terms

1v[n] is the indicator function yielding 1 when n is a predicating element node and 0 when it is

a noun and other abstract meaning node. This “toggles” the use of the roleset embedding for

predicating element nodes. Otherwise, it uses the text of the node itself, which could be “dog”

for a noun node or “person” for an abstract node. Figure 16 shows the constituent parts of the

embc(n) embeddings.
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5.4.6 Attribute Nodes

If models that assigned TATs were completely accurate, attribute nodes would always have

at least one token alignment. Instead, they leave some attributes with only the surface text

given to the node by the text-to-graph model. From what we know about concept nodes, the

attribute’s embeddings definition looks much like equations Equation 5.4 and Equation 5.5:

emba(n) , min(1, |T |) embt(n) + (1− min(1, |T |)) Sm(sn)

where:

• n is the attribute node

• T is the set of TATs

• embt(n) is the TAT embedding produced from Equation Equation 5.2

• Sm(sn) is the SBERT embedding created from the text of the attribute (i.e. an attribute

might have a name constant such as “Joe”)

5.4.7 Network Neighborhood

The nodes adjacent to a target node are traversed to create a local network neighborhood

embedding. This local context embedding better contextualizes node alignments. Figure 17

shows the network neighborhood around the target node run-02. The dark blue nodes are the

kth order neighbor set that are at exactly k hops away from the target node. They are colored

according to how much they influence the embeddings scaled by the hyperparameter network

neighborhood weights (Λ). This hyperparameter is an array of real values for each concentric
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kth order neighbor set. The higher the k the lower the weight, and influence their embeddings

have on the target node.

see-01

i

dog

person

name

“Joe”

run-02

garden

location

name

op1

ARG1ARG0

ARG0-ofposs

fast

ARG1-of

mod

small

target node  (Λ0 = 0)

1st order neighbors (Λ1 = 1)

2nd order neighbors (Λ2 = 0.5)

Figure 17: Network Neighborhood Weights. The AMR graph for the sentence, “I saw
Joe’s dog, which was running fast in the small garden.”, with the network neighborhoods of verb
concept node run-02 and their weights. TheΛ weights are shown with default hyperparameters.
Example from Liu et al. (2015).
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Let the selection of the kth order neighbor set from node n be U(n, k), then the network

neighborhood embedding is defined as:

embn(n) =

k∑
i

∑
u∈U(n,i)

emb(u) ·Λi network neighborhood embedding

∀x ∈ Λ : x > 0 hyperparameter weight constraint

where:

• k is the maximum order kth order neighbor set.

• U(n, i) is the kth order neighbor set i hops from n

• emb(u) node n’s embedding

• Λi is the iit’s weight hyperparameter that dampens the node n’s embedding

• Λ0 = 0 so that the target node’s embedding is not added to embn(n), which is why the

target node is not colored in Figure 17
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5.5 Capacity Calculation

The flow network capacities of the alignment edges are calculated using the semantic cosine

similarity of the node pairings as explained in Section 5.4, which derived from an exponentiated

cosine similarity:

cossim(n1,n2) =

[
emb(n1) · emb(n2)

||emb(n1)|| ||emb(n2)||

]
cosine similarity definition

sim(n1,n2, µ) = cossim(n1,n2)
µ similarity measure (5.6)

µ > 0 hyperparameter constraint

where:

• n1 and n2 are the bipartite node pair

• embs1(n) and embs2(n) are the embeddings of the node pair

• µ is the hyperparameter that non-linearly adjusts the similarity down (µ > 1) or up

(µ < 1)

Equation Equation 5.6 defines the sim(n1,n2, µ) as the alignment edge capacity for a node

pair. The µ hyperparameter is used to penalize certain node pairs for over-zealous similarities.

As mentioned in Section 5.2, some nodes or network neighborhoods might be similar only

locally. This is addressed globally by the max flow algorithm (see Section 5.7) and locally with

combined network neighborhood embeddings (see Section 5.4.7). The µ hyperparameter is used
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to adjust node neighborhoods (µn) and each node type: document (µd), sentence (µs), concept

(µc), attribute (µa).

The method of obtaining the embedding emb(n) is done by: a) averaging over child nodes

for document nodes (Section 5.4.3), b) pooled sentence embeddings for sentence nodes (Sec-

tion 5.4.4), c) predicating element text, TATs, role, roleset, and surrounding nodes’ embeddings

for concept nodes (Section 5.4.5), and d) literal text for attribute nodes (Section 5.4.6).

Capacity Definition

The capacity value assigned to the alignment edges added to the graph described in Sec-

tion 5.6 are defined as:

σ(x) =
(
1+ exp

(
(τx − x

)
· τc)

)−1
+ τy sigmoid

cap(n1,n2, µ) , min
(

max
(
sim(n1,n2, µ) + σ(sim(n1,n2, µ)), 0

)
, 1
)

capacity (5.7)

where:

• σ(x) is the translated and compressed sigmoid function used to adjust the similarity

measure

• sim(n1,n2, µ) is the similarity function (see Equation Equation 5.6)

• τx, τy are the transition hyperparameters and τc is the compression hyperparameter.

The sigmoid network neighborhood skew (τ) hyperparameter defaults are τx = 0.5, τy −

0.5, and τc = 1 so that network neighborhood similarities values are “pushed” away in both
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directions from 1. The τc hyperparameter “squeezes” the curve along the x-axis so capacity

values are adjusted at different rates.

Document Node Capacities

The capacities of the document node alignment edges are computed using the document

node embeddings (see Section 5.4.3) as capd(n1,n2, µd) defined in Equation Equation 5.7.

Sentence Node Capacities

Similar to document node capacities, the sentence node alignment edge capacities are com-

puted using the sentence node embeddings (see Section 5.4.4) as caps(n1,n2, µs) defined in

Equation Equation 5.7. However, a sentence skew is also computed for each sentence pair using

the hyperparameter sentence dampen (γ), which is used to scale the concept (Section 5.4.5)

and attribute (Section 5.4.6) capacities. The sentence skew of two sentences is defined as:

sentskew(s1, s2) , caps(n1,n2, µs) · γ + (1− γ) sentence skew (5.8)

γ ∈ [0, 1] hyperparameter constraint

The hyperparameter γ is the slope for the linear dampening of nodes under a sentence by

sentence cosine similarity. The higher the value the lower the sentence similarity, which leads

to lower concept and attribute node similarities.

Concept Node Capacities

Similar to document nodes and sentence nodes, concept node alignment edge capacities

are computed using concept node embeddings (see Section 5.4.5) as input to capc(n1,n2, µc)
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defined in Equation Equation 5.7. However, the capacities of the sentence node descendants

are scaled by their sentence skew produced in the sentence capacity calculation step defined in

Sentence Node Capacities. Concept node capacity assignments are defined as:

{(n1,n2) ∈ Ea, (s1, s2) ∈ Ea | n1 ∈ D(s1)∧ n2 ∈ D(s2)},

capc(n1,n2, µc) ,


1 if node variable match

cap(n1,n2, µc) · sentskew(s1, s2) otherwise

(5.9)

where:

• Ea is the set of alignment edges

• (s1, ss) is a bipartite aligned sentence node pair

• (n1,ns) is a bipartite aligned node descendant pair of their respective sentence nodes

• sentskew(s1, s2) is the sentence skew (see Equation Equation 5.8)

The capacity in Equation Equation 5.9 is set to the max value 1 when the variable name

is the same for both concept nodes (i.e. “c” in “c / chase-01”). This is an example of an

AMR reference between the source component and summary component. Otherwise, it is scaled

as a function of the sentence embedding to which it belongs using the sentence skew defined

in Equation Equation 5.7. Figure 18 shows a strongly semantic similarity with capacity 0.9,

and weakly semantically similar sentence with capacity 0.5, between the bipartite components.

The strongly similar sentence uses blue to denote the sentence alignment and that sentence

alignment’s effect on the concept and attribute alignment edges. For example, the strongly
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similar sentence’s person only loses a flow value of 0.02 after applying the sentence skew, while

the weakly similar sentence’s cat loses half its capacity (0.4)1.

ARG0 ARG1location

poss

ARG0 ARG1ARG0 ARG1

poss ARG0-of

location

locationlocation

name

op1

name

op1

0.9

0.5

0.9→ 0.45

0.8→ 0.4

0.7→ 0.35

0.9→ 0.88

0.8→ 0.72

0.7→ 0.63

chase-01

dog garden cat

chase-01see-01

i dog

run-02

garden

cat

person

name

“Joe”

person

name

“Joe”

t

s

source

I saw Joe’s dog, which 

was running in the garden.

The dog was 

chasing a cat.

Joe’s dog was chasing a 

cat in the garden.

summary

Figure 18: Sentence Scaled Capacities. The scaled capacities with alignment edges colored
by related sentence with bold red capacities. The concept and attribute node capacity updates
are in red with the initial capacity on the left and the sentence skew updated on the right. All
capacity values were created to illustrate the concept of sentence dampening and not the real
values using these sentences. Example from Liu et al. (2015).

1All capacity values were created to illustrate the concept of sentence dampening and not the real
values using these sentences.
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Attribute Node Capacities

Attribute node capacities are calculated in the same way as concept nodes defined in Equa-

tion Equation 5.9. However, they have no variable, so the capacity definition given in Equa-

tion Equation 5.7 is used directly with the attribute’s sentence skew scaled embeddings:

{(n1,n2) ∈ Ea, (s1, s2) ∈ Ea | n1 ∈ D(s1)∧ n2 ∈ D(s2)},

capa(n1,n2, µ) , cap(n1,n2, µa) · sentskew(s1, s2)

5.6 Alignment Graph Construction

As described in Section 2.3.1, a flow network models the flow of material through a graph

using two values: capacities and flow. More formally, for flow network G:

G = (V, E) a flow network is a graph (5.10)

f : E → R a s-t flow that assigns a flow

∀e ∈ E , 0 ≤ f(e) ≤ ce capacity constraint (5.11)

∀v ∈ V
∑

e into v

f(e) =
∑

e leaving v

f(e) conservation of flow constraint (5.12)

where:

• V is the set of vertexes

• E the set of edges

• f(e) is the amount of material flowing through edge e and ce is a capacity
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Conceptually, the capacity is the limit of water pumped through a pipe before it breaks from

the pressure. The maximum amount of material (ce) that can flow through edge e is formalized

with the capacity constraint inequality Equation 5.11. Equation Equation 5.12 states that all

material going into a node must have the same amount of material leaving that node. This

conservation of flow holds at a global level since material flows from source s through the

network to t:

fin(v) =
∑

e into v

f(e) a node’s input flow

fout(v) =
∑

e leaving v

f(e) a node’s output flow (5.13)

∀v /∈ {s, t}, fin(v) = fout(v) node flow balance constraint (5.14)∑
e out of s

f(es) = f
out(s) =

∑
e into t

f(et) = f
in(t) s-t conservation of flow (5.15)

v(f) , fout(s) value of flow definition (5.16)

where:

• es are the edges connected to the flow network source node s

• et are the edges connected to the flow network terminal sink node t

• v(f) the value of flow

The value of flow provided in the graph is given in Equation Equation 5.14, which is the sum of

flow leaving the source s constrained by the capacities (ce) of edges connected to it. Since the

amount of material that starts at s is equal to what arrives at t their values of flow must also
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be equal per Equation Equation 5.15. The value of flow capable of flowing through the graph

G from source s to sink t is defined in Equation Equation 5.16. Finding the flow value across

all edges of the graph to satisfy facilitating the movement of the material is known as the max

flow problem (Ford and Fulkerson, 1962), which is a well known problem that has been solved

with many well known, tried, and proven methods that have seen great performance increases

over the last six decades (Gao et al., 2022b).

In this work, the flow material is information through AMR graphs that have been parsed

and constructed from sentences. The AMR sentence graphs are connected with a root node

into a graph, one for the source and another for the summary. These two initially disconnected

graphs are called the source component and summary component, but then are connected as

a bipartite graph. This connected graph is called the alignment graph, and the process of

creating it (as a flow network) is called the alignment graph construction phase. Note that

the alignment edges of the alignment graph are not to be confused with the text-to-graph

aligned tokens (TATs), which align a token’s index in the sentence to a node in the AMR

graph. Figure 14 shows two example AMR graphs with their TATs as blue arrows before the

alignment graph is constructed.

5.6.1 Graph Component Construction

The first step to creating the graph is to perform Coreference Resolution, which is the

task of finding all mentions referring to the same named entity. This is done by identifying

the antecedent tokens of a mention, then clustering them by entities they reference. The
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Coreference Resolution method uses the amr coref1 library, which uses the general approach

followed by neuralcoref2 as in previous work (Blodgett and Schneider, 2021; Szubert et al.,

2020).

In AMR, coreferenced mentions are clustered across the source and summary components

so each entity reference is associated with the set of nodes to the entity referred. This has

the effect of connecting and renaming the variables to be identical for those referred nodes to

create reentrancies. It is important to note the surface name of the context node and aligned

textual tokens might be different in cases of pronominal reference such as “Obama was the 44th

president. . . he served as. . . ”. A sentence node for each AMR graph and a root node that ties

all sentences together are also created as shown in Figure 19. Additional nodes between the

sentence and root node are added for more complex summarization scenarios, which include

paragraphs, document sections3, and documents as nodes. All nodes from the sentence to the

root node are referred to as document nodes.

During graph construction, parsed sentences are associated with sentence nodes, and TATs

are associated with concept and attribute nodes (see Figure 14). Concept nodes are also popu-

lated with their PropBank rolesets (see Section 5.1.1). Outgoing role edges are populated with

their connected concepts using the database generated from the preprocessing step described

1https://github.com/bjascob/amr coref

2https://github.com/huggingface/neuralcoref

3Medical documents are highly sectioned having, for example “History of Present Illness”
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Figure 19: Graph Construction. The construction of the summary AMR graph with the
changes shown in red. Example from Liu et al. (2015).

in Section 5.4.1. At this point in the construction, all nodes and edges have at least one data

structure with embeddings including sentences from their sentence SBERT embedding (Reimers

and Gurevych, 2019), concept nodes and edges with their roleset embeddings, and attribute

nodes with their text-to-graph aligned token embeddings. An SBERT sentinel embeddings is

generated from the label of nodes that have no textual alignments.

Sentence embeddings use the [CLS] token’s “pooled output”, which represents the entire

sentence’s embedding. On the other hand, the concept and attribute node embeddings are
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computed as the mean of the model’s final output layer of all the wordpieces (Wu et al., 2016)

of all TATs1. This sentence vs. token strategy is conducive to SBERT since the model was

trained for clustering and semantic similarity. See Section 5.4 for more detail.

5.6.2 Graph Component Connection

The source and summary components are then connected with the alignment edges to create

the bipartite graph. They are created as the Cartesian product of the concept nodes across the

components with their capacity (the upper bound constraint on the flow of material through

an edge of a flow network graph) values set to the semantic similarity for each bipartite node

pair (see Section 5.6). All document nodes across the components are also connected, which are

just the root source and summary nodes in the examples provided in this section. Capacities for

all alignment edges are assigned as described in Section 5.5 with edges discarded for those that

fall under the similarity threshold (τδ) hyperparameter. The edges are then reversed to allow

the flow network configuration necessary for alignment assignments as described in Section 5.7.

The resulting graph is shown in Figure 20.

5.6.3 Complete Flow Network

The last step of the alignment graph construction phase is to add the source and sink nodes

and connect them to the graph. The source node2 (s) is connected to the summary’s AMR

graph leaf nodes and the sink t is connected to the source component root node. The role edges

1An AMR node may represent zero, one, or many tokens.

2The terminology difference between the source node s (flow network) and the source component
(AMR graph) is explicitly differentiated since the source node can be connected to the source component.
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Figure 20: Bipartite Graph Connection. The alignment edges added to the bipartite source
and summary components with the changes shown in red. The width of the edge represents
the value of its capacity as a function of its similarity. Example from Liu et al. (2015).

of the AMR graph that relate the roles of concept nodes also become capacitated edges with

values set to infinity. The resulting flow network graph, shown in Figure 21, can be described

and constrained by equations Equation 5.10 through Equation 5.12 and used with the max flow

algorithm to compute the flow through all edges.
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Figure 21: Flow Network Construction. The source (s) and sink (t) nodes and connected
edges added to the bipartite graph with the changes shown in red. The addition of the terminal
nodes completes the flow network. Example from Liu et al. (2015).

5.7 Alignment Graph Algorithm

After the graph is created, the alignment graph algorithm is used to modify the alignment

capacities between the concept nodes of source and summary components. A byproduct of

the algorithm is a score assigned to each role edge of how well the respective branch of the

component is aligned across the bipartite graph. The initial capacities that are set on the
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constructed alignment edges (see Section 5.6.2) provide an initial estimate of concept node pair

alignments. However, these capacity values only take in to account the local node neighborhood

at the sentence, or even document level. Instead, the flow values assigned by the max flow

algorithm provide a global representation with a better estimate of the alignment strength.

The algorithm goes a step further and iteratively updates capacities informed by flow changes

by re-running the max flow algorithm until convergence.

5.7.1 Max Flow

The algorithm starts by computing the max flow, which pushes flow from the flow network’s

source s node to AMR summary component. It then flows to the alignment edges from the

summary to the source component, up toward the root of the source component, and out to

the flow network’s sink node t. Since the role edges of both graphs are set to infinity, flow

goes through to every node and edges of the graph1 as shown in Figure 20. I used the igraph2

implementation of the push-relabel max flow algorithm (Goldberg and Tarjan, 1988) for my

experiments. While not mathematically proven for the non-integral case, the algorithm works

on experiments with 100+ test graphs.

1Complete flow saturation occurs in some instances with nodes that have more than one parent. See
Section 5.11.

2https://igraph.org
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5.7.2 Flow Normalization

The algorithm’s graph at this point has flow values on each edge, which are then normalized

for each node based on the descendants of that node. First, terminology regarding graph

semantics must be defined.

Let :

• The edge node parent P (e) be the node at the source end of a directed edge e in the

alignment graph. For example, in Figure 22 (a), the edge node parent of edge poss is

dog.

• The edge node child C(e) be the node at the target end of a directed edge e.

• The node descendants D(v) of v be all paths to the terminal leaf nodes (grandchildren).

For example, in Figure 22 (a), the D(dog) are the nodes person, name, and attribute Joe.

• The flow per node f̃(e) be the flow at an edge divided by all its source node’s descendants:

f̃(e) =
f(e)

|D(P (e))|

where f(e) is the amount of flow of material through edge e.

Figure 22 (b) shows the values from a run of the algorithm on the example from Figure 20

with flows (left of arrow) and flow per node values (right of arrow). For example, a query of

the flow that leaves person, which is one of the role edges labeled :poss, starts with traversing

node P (poss) = dog with D(P (dog)) = {dog, name, Joe}. Note we use the forward flow graph
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for gathering descendants and fetching the edge node parent. The flow on :poss is 2.41 so our

flow per node = 2.41
3 = 0.8.

P (poss) = dog

ARG0 ARG1

possARG0

location name

op1

(a) (b)

0.63 → 0.63

0.63 → 0.32

0.8 → 0.8

1.6 → 0.8

2.41→ 0.8

3.66 → 0.61 0

0.8

0.81

0.62

0.81

0

0.8

0

3.66 → 0.46

D (dog) = 

{person,  

name, “Joe”}

C (poss) = person

see-01

dog

run-02

garden

cat

person

name

“Joe”

see-01

dog

run-02

garden

i0/i

person

name

“Joe”

summary 

component

Figure 22: Network Flow. Left (a): the edge node parent of edge poss is dog and its edge
node child is person. Right (b): example flow from the summary to the source component
with flows (left of arrow) and normalized flow per node values (right of arrow) with constricted
edges as dotted lines. Example from Liu et al. (2015).

5.7.3 Capacity Constriction

After normalizing the max flow, the next step is to “squeeze” capacities of the alignment

edges in the network that will affect the next iteration, which is detailed in Section 5.7.4. The

edge capacities are set to zero if they fall under an alignment edge minimum capacity cutoff
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(τα), which is tuned as a hyperparameter of the model.1 In addition, all of the edge node

parent’s descendant’s role edge capacities that fall under the role edge minimum capacity cutoff

(τρ) are set to zero. More specifically,

{∀e ∈ E : f(e) < τρ} D(P (e))← 0

where:

• e is the component role edge

• f(e) edge e’s flow value

• P (e) is the edge node parent

• D(P (e)) are the descendant nodes of the edge node parent (see Section 5.7.2 for defini-

tions)

For example, if the τρ is set to 0.4, the role edge that connects run-02 and dog in Figure 22

(b) would meet the criteria for its edge node parent and descendants to be set to zero. The

path of role edges affected in the figure are represented with dotted lines. Since P (e) = dog,

and D(dog) = {run-02, garden} then the capacities of the alignment edges between the summary

component and run-02 (already set to 0) and garden (from 0.8) will be set to 0 (represented

with dotted lines). Note that even though there are capacity edges well over the value of the

1This is not to be confused with edge creation cutoff (τδ) for creating component alignment edges
during graph creation used in Section 5.6.2.



111

τρ, we still set them to zero since each edge is evaluated by the flow per node value that takes

into account all flows of descendants at that level.

5.7.4 Summary Max Flow

The non-zero alignment edges remaining after finishing the steps described in sections 5.7.1

– 5.7.3 explain how much (and what part of) the source is included in the summary. Likewise,

these steps are repeated on a second graph with its output explaining how much of the source

is summarized. This second graph has shared capacities with the first, and alignment edges

reversed so it flows from the summary component to the source component. The source flow

node s is connected to all of the leaf nodes of the source component and the sink t node is

moved to the summary root node.

Before the max flow algorithm is run on the second graph instance, the flow values on

all role edges are tracked, and if any change, the steps described in Section 5.7.1 through

Section 5.7.3 are run again. The algorithm’s execution is alternated across both graph instances

until it converges when no flow value changes. Given the symmetry of the algorithm across

both components, there is no need to distinguish them as the source and summary. A harmonic

mean of their flow values is useful for measuring semantic similarity for text-to-graph evaluation

and individually for summarization scoring and matching. This harmonic mean can not only

be used as a scoring method for two AMR graphs, but also provides flow values both globally

and locally that inform where the summarized content is found in the source text.



112

5.7.5 Final Alignment Graph

In summary, the alignment graph is made up of the source and summary components

composed of AMR graphs, which are then connected to create the flow network. The alignment

edges are then deleted by clamping shared capacities across two flow network instances (each

with a reversed flow). Low flow edges result in minimized or deleted alignment edges for

iteration of the algorithm.

The final alignment graph looks similar to Figure 21 before the alignment edges are deleted.

For example, chase-01 to run-02 nodes for τδ = 0.3.

5.8 Scoring Method

My scoring method, Component ALignment for Abstract Meaning Representation (Calamr),

measures AMR graph semantic similarity. This scoring method can be used as a similarity

metric similar to Smatch, which is an evaluation metric for abstract meaning representation

similarity that uses a greedy feature overlap method (Cai and Knight, 2013). However, Calamr

includes metrics for summarization overlap. We define the value of flow exiting the source node

to the sink as the source root flow using Equation Equation 5.16 with Cfc , fout(ssource).

This metric applies for every subgraph or globally as the source component’s root node

connected edge. For example, this value is 0.46 in Figure 22b for the subgraph from the see-01

node to the leaf nodes. Likewise, the value of flow exiting the summary node to the sink is

defined as the summary root flow with Cfy , fout(ssummary). Additional Calamr scoring

methods include the portion of nodes in the source component that have at least one alignment

with the summary, defined as the source aligned portion (C̃c) and the portion of nodes in the
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summary component that have at least one alignment with the source defined as the summary

aligned portion (C̃y).

Given the symmetry of the algorithm as detailed in Section 5.7.4, we can treat the source

as any sentence (and likewise the summary) if we wish to score them in like fashion to previous

baseline scoring methods (Cai and Knight, 2013; Opitz et al., 2021); meaning we can score the

similarity of two AMRs.

Unlike previous methods, we can also score AMR graphs as multi-sentence graphs by the

summarization overlap as a non-negative real value called the aggregate flow :

Cf = 2
Cfc · Cfy
Cfc + Cfy

, (5.17)

which results in higher values for graphs with multiple node alignments. This score is useful for

subgraphs but not globally, so we define the aggregate alignment portion score as the harmonic

mean of the aligned node portion across components:

C̃ = 2
C̃c · C̃y

C̃c + C̃y

, (5.18)

which is also a real value but has range [0, 1], and is advantageous as it has the same range as

established AMR scores such as Smatch.

5.9 Experiment Design and Setup

We report two kinds of experiments with the first concerning summarization (see Sec-

tion 5.9.1) and the second similarity scoring (see Section 5.9.2) between human annotated AMRs
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and the output of three popular parsers. We run these evaluations to assess how Calamr (my

score) compares to other methods of finding summarized content and judging alignment as a

similarity measure. Given the results reported in Section 5.10, I believe Calamr is a more

perspicuous score as it judges semantic similarity both locally and globally. The second set of

experiments use the overlap of two multi-sentence AMR graphs as a measure of summarization.

5.9.1 Summarization

The human annotated “Proxy Report” LDC2020T02 AMR Annotation Release 3.0 (Knight

et al., 2021) corpus contains news articles with sentences tagged as a date, country, topic,

summary and body. Only sentences tagged with summary or body are used in our experiments.

The corpus development set has 35 articles and 826 sentences, and its test set has 33 articles

and 823 sentences. The alignment graph algorithm was first used to find summarized text

through text-to-graph alignments. It was then used to score summarizations in development

and test sets.

After scoring, sentences of the source and summary for 33 articles of the two data sets were

swapped and scored a second time (we call this the “Mismatch set”). This was accomplished by

switching the source sentences from the test set with the summary sentences in the development

set. Source sentences in the Proxy Report corpus resulted in 14,108 role edges, 660 concept

nodes and the summary totaled 1,153 role edges and 802 concept nodes.

5.9.2 Similarity Scoring

In addition to summarization experiment using the Proxy Report corpus, an AMR graph

similarity experiment used parser output to compare Calamr with previous scoring meth-
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ods. JAMR (Flanigan et al., 2014) and two other popular and peer-reviewed parsers were

used to generate AMR graphs from natural language sentences. They were then scored with

Smatch (Cai and Knight, 2013), Wlk (Opitz et al., 2021)1 and the my scoring method.

The parsers’ output was scored against the first 20 sentences of the AMR 3.0 Proxy Re-

port corpus and two Information Science Institute2 corpora, which include Little Prince (1,562

sentences) and Biomedical (6,952 sentences). These corpora were selected based on their avail-

ability and variety of domain. The amrlib3 library was used with the SPRING (Bevilacqua et

al., 2021) and Gsii (Cai and Lam, 2020) parsers as it has been shown to produce good results on

text-to-graph tasks (Heinecke and Shimorina, 2022; Opitz and Frank, 2022; Opitz et al., 2021).

5.9.3 Baselines

My primary baseline uses the Liu et al. (2015) graph source-to-summary reduction method

of comparing the text-to-graph aligned words from the source to the summary as a bag of

words. Rouge, which is a measure that assesses the quality of generated summaries, is used on

the unigrams to evaluate the aligned overlap to gauge how well Calamr “finds” summarized

content.

I also compare the resulting Calamr edge coverage of alignment outputs with the document-

level AMR graph heuristic method that links based on exact match of Liu et al. (2015) on the

1All experiments used Wlk settings of K = 2 iterations with “all directional communication”.

2https://amr.isi.edu/download.html

3https://github.com/bjascob/amrlib
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LDC2014T12 AMR Annotation Release 1.0 corpus as a baseline1. We cannot directly compare

coverage as their method is a graph reduction into the summary and mine is an alignment

method. Instead, I compare Calamr positive value flow role edges to their sentence level

graph expansion since both methods’ goal is to identify AMR subgraphs used for alignment.

Both of my metrics are taken as a quotient of the total number of summary component role

edges.

5.10 Results

Section 5.10.1 pertains to Calamr as a summarization method with respect to scoring,

Section 5.10.2 explains the measure of summarization between two AMR graphs, and my results

are given in Section 5.10.3.

5.10.1 Summarization

The differences in alignment across the corpora is significant and strongly indicates the

method’s effectiveness. The scoring method captures the rate of summarization as evidenced

with 86.6% average aligned AMR nodes in the unaltered document set (Proxy Report) com-

pared to the 35.1% in the development and test switched (Mismatch) set shown in Table XII.

The source component aligned portion also reveals the difference between the unaltered and

Mismatch document set as the portion of the summary is represented in the source (43.2%

vs. 14.6%). The high summary root flow (Cfy) of 7.21 (see Table XII) in the unaltered set

indicates the source graph is strongly aligned compared to the low summary root flow of 2.61

1The AMR 3.0 corpus was used for other experiments.



117

in the Mismatch set. These flow metrics represent the degree to which each graph is aligned

with the other.

Corpus C̃y C̃c Cfy Cfc
Proxy report 86.6% 43.2% 7.21 0.67
Mismatch 35.1% 14.6% 2.61 0.20

TABLE XII: Document Summarization Scores. Scoring matched vs. mismatch corpus.
See Section 5.8 for Calamr scoring notation.

5.10.2 Alignment

As explained in Section 5.8, the particularity of the source and summary becomes moot

given the symmetry of the algorithm across the components, which motivates the semantic

similarity scoring method. We hypothesize that the aggregate alignment portion Calamr C̃

score reflects the similarity between any two AMR graphs, and thus, is an indicator of the

effectiveness of the score for summarization.

To estimate this effectiveness we compared the text-to-graph parser output of AMR sentence

metrics with previous methods as a reference point. This was done by comparing the scoring

methods with the aggregate alignment portion (C̃ from Equation Equation 5.18) using Pearson

(ρ) correlations. Table XIII lists the scores between the human annotated AMR sentences and
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parser output. We find highly correlated scores between Wlk (69.2) and Smatch (67.7) using

JAMR on the Little Prince corpus.

To that end, JAMR produces the highest correlations for the other corpora as well. In fact,

this trend extends to SPRING (second most correlated) and Gsii (least correlated). Because

the parser is a consistent indicator of highly positively correlated results, regardless of corpus,

I conclude that Calamr is an effective scoring method.

Corpus Parser Sent ρ C̃,S ρ C̃,W

Biomedical Gsii 6,644 0.412 0.318
Biomedical Jamr 5,612 0.662 0.652
Biomedical Spring 6,617 0.501 0.413

Little prince Gsii 1,464 0.388 0.357
Little prince Jamr 1,501 0.677 0.692
Little prince Spring 1,497 0.413 0.471

Proxy report Gsii 8,042 0.229 0.308
Proxy report Jamr 7,781 0.532 0.562
Proxy report Spring 8,120 0.373 0.482

TABLE XIII: Parser Alignment Scoring. AMR Sentence Pearson correlations (ρ) between
aggregate alignment portion (C̃)alamr (see Equation Equation 5.18) and previous scoring
methods (S)match and (W)lk. Metrics are reported only for successfully parsed (Sent)ences.

5.10.3 Previous Methods

Even though Calamr is not a summarizer, previous AMR summarization methods’ edge

coverage were compared with alignment edge counts. Table XIV shows the alignment results on



119

the LDC2014T12 corpus using the same methodology as Liu et al. (2015). The high Rouge1

score (F1 of 17.5 over the baseline), shows that Calamr is effective at finding summarized

content.

Method Precision Recall F1

Liu et al., 2015 51.9% 39.0% 44.3%
Dohare et al., 2017 52.4% 55.7% 51.3%
Fu et al., 2021 - - 49.1%
Calamr 69.0% 68.6% 68.8%

TABLE XIV: Aligned Node Text Comparison. Unigram (bag of words) aligned source to
summary overlap of text-to-graph tokens.

The Liu et al. (2015) method is compared with role and alignment edge coverage in Table XV

as explained in Section 5.9.3. The results show a significantly higher coverage of edges from

the expanded sentence-level edges to Calamr component role edges. Calamr also has a much

higher coverage of summary component alignment with the source compared to the previous

method’s document-level expanded edges. This is a strong indicator that my method is a better

comparatively.

5.11 Reentrancies

AMR nodes with multiple parents (reentrancies) lead to catastrophic alignment failure.

Because the role edge’s capacities are set to infinity, the max flow algorithm redirects all flow
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Split Sent Doc C̃ Role C̃ Alignment

Train 75.5% 84.6% 84.3% 94.8%
Dev. 85.4% 91.8% 83.1% 92.5%
Test 75.0% 83.3% 84.3% 96.3%

TABLE XV: Summary Alignment Coverage. Edge coverage as a portion within (Sent)ences
and (Doc)uments (Liu et al., 2015), and the portion of non-zero flow Role and Alignment edges
using the (C̃)alamr method.

through only one of the parent’s incoming edges starving the other paths from the reentrancy

to the root as shown in Figure 23.
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I saw Joe’s dog, 

which was running in 

the garden.

The dog was 

chasing a cat.

t

summary 

component

poss

Figure 23: Reentrancies Alignment Failure. An example of a catastrophic alignment failure
due to a reentrancy (dog) that has two parents (see-01 and chase-01).
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I observed 2.6% of the source graphs nodes and 2.18% of the summary graphs nodes to be

reentrancies. To address this issue I clamped the capacities of all incoming edges of reentrancy

nodes to the normalized sum of the incoming flow so that:

∀e ∈ P (n), ce ← 1

|P (n)|

∑
u∈P (n)

f(u) (5.19)

where:

• ce is the capacity value

• P (n) are incoming edges to n

• f(u) is the flow through e into n

This resulted in all of the summary graphs being repaired (all reentrancy positive edge flows) and

80.3% repaired in the source graphs. This method fixed three catastrophic alignment failures

of the 366 Proxy Report documents, but one (2.7%) remained unchanged (see Table XVI).

Component Total Repaired Portion Fixed

source 151,625 4,205 2.8%
summary 14,213 365 2.6%

TABLE XVI: Reentrancy Repair Statistics. The statistics on reentrancies that were re-
paired across components.
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5.12 Conclusion

Calamr is an alignment method that supports scoring metrics that provide a semantic

similarity metric for multi-sentence AMR graphs and subgraph level summarization metrics.

The method is suitable as both a scoring method capable of determining the portion of over-

lapping content through alignment and flow metrics. The utilization of determining the overlap

provides a method of creating faithful and traceable summaries as demonstrated in the next

chapter.

5.13 Alignment Graph Examples

Graphs were exported using the reference implementation of the alignment method (see

Section 5.3). A rendering of the graph after each phase of the alignment method is given in the

subsequent figures.
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Figure 24: Disconnected Source and Summary AMR Graphs. Left: the source com-
ponent (purple nodes) including the sentences: a) “I saw Joe’s dog, which was running in the
garden.”, b) “The dog was chasing a cat.”, c) “A boy threw a ball.”, and d) “A plane flew
over.”. Examples b) and c) from Liu et al., 2015. Right: the summary component (green
nodes) including the sentence “Joe’s dog was chasing a cat in the garden.” Each AMR is tied
with sentence, then root notes (see Section 5.6.1). Note that the sentence “A plane flew over.”
was added to show how the method finds content in the summary not found in the source. This
illustrates how the method finds hallucination in LLMs.
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Figure 25: Source Component Alignment. The flow from the summary component (green
nodes) to the source component (purple nodes) after capacity constriction (see Section 5.7.3).
The role edges are in blue and the alignment edges are in red with all edges’ width representing
the capacity. The flow is represented by the darkness of the edges’ color. The capacity and
flow is shown in parenthesis.
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Figure 26: Summary Component Alignment. The alternated graph with flow from the
summary to the source. Like Figure 27, this is taken after the capacity constriction step in
Section 5.7.3.
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Figure 27: Final Flow. The final flow of both components rendered without the capacity edges
in the same format as the disconnected components in Figure 24. The sentence “A boy threw
a ball.” has zero flow, and thus indicates this entire sentence is not summarized. Similarly, the
i0/i node has no flow so it will also not be summarized. The light blue role edge incoming to
r0/run-02 node has less flow, so its partial summarization follows from the “garden” mention in
the summary, but “running” is missing. The solid blue in all edges of the summary component
indicates the entire summarization is represented in the source. The fact that the c1/cat has
a higher flow value than one means it has higher presentation in the source and has more than
one alignment.



CHAPTER 6

SUMMARIZATION

The MedSecId model given in Chapter 3 gives a way of separating topical sections of medical

notes and the DSProv feasibility study from Chapter 4 gives the upper bound of discharge

summarization performance. With the alignment graph algorithm from Chapter 5, we now have

an informed strategy, section identification model, and alignment method to match complex

clinical sectioned note antecedents with discharge summaries to formulate a summarization

method.

Clinical summarizations must be both faithful (how accurate the summary is) and traceable

(if the summary can be traced back to its source content). Generating discharge summaries

with these requirements highlights the difficulty of the task for large admissions with electronic

health record (EHR) notes that number in the hundreds1. Contemporary state of the art (SoTA)

methods, such as fine-tuning large language models (LLMs), render the task nearly impossible

with the volume of information for patients with prolonged hospitalizations. In some cases

LLMs might feasibly summarize clinical documentation on a per section basis. However, many

of these sections easily extend past the limit of large input text open source LLMs, such as the

1The largest admission has 1,233 notes in the Medical Information Mart for Intensive Care III
(MIMIC-III) corpus.
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4K limit of Longformer (Beltagy et al., 2020) tokens and the 8K limit of LLaMa 3 (Touvron et

al., 2023)1.

Because of these memory constraints, other solutions are needed for the large multi-document

automatic summarization task of generating the discharge summary. Most abstractive methods

inherently have a tendency to create less faithful summaries because they typically formulate

text as a probability distribution over the vocabulary. They also provide no traceable means

of cross-referencing the text of summarized documents. The chosen method for this work is

extractive since it is both faithful and traceable, and thus, acceptable for the clinical domain.

While previous methods have shown success at summarizing a single section (Adams et al.,

2021), to my knowledge, there is no peer-reviewed work that attempts to generate a complete

discharge summary using EHR notes. This motivates the extractive methods formulated in this

work and provides a baseline for future abstractive summarization.

This extractive method leverages Component ALignment for Abstract Meaning Represen-

tation (Calamr), described in Chapter 5, to create supervised training examples for a new

model: the source section model. The alignment graph is used to match note antecedent source

sentences to discharge summary sentences. Each note antecedent source sentence is then as-

signed to the section of the matched discharge summary sentence. This is then used as the

label in a classification neural network (NN) model.

1One Labs and Imaging MedSecId annotated section contains 2,178 tokens.
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In addition to utilizing the Calamr alignments, this summarization method uses the Med-

SecId (see Chapter 3) model to section notes and the DeepZensols framework (see Chapter 7)

for the pipeline automation. However, the utilization of the DSProv dataset and span matching

methods for summarization is left as a future work as discussed in Section 8.2.

An overview of the discharge summary automatic summarization end-to-end pipeline fol-

lows:

1. Construct an admission graph from a subset of MIMIC-III Version 1.4 (Johnson et al.,

2016) admissions (see Section 6.2.1).

2. Relabel concept variables to be unique (see Section 6.2.2).

3. Use Calamr to create an alignment graph for each admission (see Section 5.3).

4. Use the admission alignment graphs to create a corpus of matches of note antecedent with

discharge summary sentences (see Section 6.2.4).

5. Train the source section model using the corpus created in step 4 (see Section 6.3.1).

6.1 Datasets

The MIMIC-III Version 1.4 (Johnson et al., 2016) corpus and the UI Health dataset (see

Section 1.3) were used for all experimentation using the summarization methods described.

Admissions from the MIMIC-III dataset were selected starting with those having the lowest

note count. The UI Health dataset was also processed in order of the lowest count of notes on

a per admission basis from admissions that had at least one of each note category.
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Even though the MIMIC-III admission selection totaled 11,957 admissions, a smaller subset

of 113 admissions was processed through the entire pipeline due to a variety of factors such as

memory limitations, processing latency and runtime errors1. Admissions were aligned starting

with those having the lowest note antecedent count to ameliorate processing failures caused

by computational and memory factors. Two of these admissions contained at least one note

annotated from the MedSecId (see Section 3.2) dataset. Figure 28 shows a rendering of an

aligned admission (see Section 6.2.1) with a single radiology clinical note.

Despite these factors a total of 3,520 of the 11,957 MIMIC-III admissions were aligned using

Calamr, and then used to create the source section dataset (see Section 6.2.4). Table XVII

(left) shows the average number of alignments across note antecedent and discharge summary

components and the average number of reentrancies per admission. The “alignable” statistics

are nodes that are alignment candidates, such as concept and attribute notes. The “aligned”

statistics are those nodes with alignment edges.

Aligning the UI Health dataset resulted in additional challenges as shown in Table XVII

(right). The dataset has more notes across category types compared to MIMIC-III because the

latter has only intensive care unit (ICU) notes available (see Section 4.2.1). The consequence

of this more robust note variety is that admission note counts are much higher, and therefore,

take much longer to align. There is also a higher risk of missed alignments since there is more

risk of multiple reentrancies (more than one in a path from the reentrancy to the root), which

1Some admissions failed to align due to data issues, such as missing discharge summaries.
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Figure 28: Aligned Admission Graph. A rendering of a Calamr aligned admission graph
with a single radiology node.

lead to flow issues (see Section 5.11). Even though the MIMIC-III alignments far outnumber

the UI Health dataset, the UI Health dataset have many more reentrancies.

6.2 Methods

The unsupervised method described in Chapter 5 was leveraged to create supervised training

examples using the flow data of the alignment graphs to match note antecedent source sentences
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Description Value

Average alignable in source 827
Average aligned in source 570
Average reentrancies in source 17

Average alignable in summary 819
Average aligned in summary 482
Average reentrancies in summary 34

Total of graphs aligned 3,520

Description Value

Average alignable in source 1,228
Average aligned in source 975
Average reentrancies in source 30

Average alignable in summary 768
Average aligned in summary 632
Average reentrancies in summary 20

Total of graphs aligned 494

TABLE XVII: Graph Alignment Statistics. Alignment and reentrancy averages by admis-
sion with the number of nodes aligned by component in the admission graph. The MIMIC-III
statistics are given on the left and the UI Health dataset on the right.

to discharge summary sentences. The source section model then used the matches to learn what

to add to the summary. Each note antecedent source sentence was then assigned the section

of the matched discharge summary sentence, which was used as the label in the source section

model (see Section 6.2.3).

6.2.1 Admission Graph

The admission graph is a semantic representation of a patient’s hospital stay. It is composed

of two disconnected components: the note antecedent source graph and the sections of the

discharge summary. These two disconnected components follow the structure of the source and

summary components of the bipartite graph described in Chapter 5. However, document nodes

that represent note categories, note sections and clinical text paragraphs are used between

the roots and their respective AMR (abstract meaning representation) subgraphs as shown

in Figure 29. The note antecedent source has a note category level, whereas the summary

component’s root represents the discharge summary.
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Figure 29: Admission Graph. An admission graph of the note antecedents (a), and the
discharge summary (b).

The spaCy1 library was used to tokenize, sentence chunk and tag biomedical and non-

biomedical named entities, which are available as graph aligned features in downstream models.

MedCAT (Kraljevic et al., 2021) was used to link token spans to concept unique identifiers

(CUIs) (see page 44 for a definition), which were used to aid in graph aligning their text-to-

graph concept nodes in the Calamr alignment capacity calculation (see Section 5.5).

A heuristic method was used to chunk sentences into paragraphs. These paragraphs were

then used as input to the clinically trained Temporal Histories of Your Medical Events (THYME)

parser (Cai et al., 2024) to create AMR graphs2. Each AMR sentence root was connected to

1https://spacy.io

2The THYME parser was generously made available by Jon Cai and Martha Palmer at the University
of Colorado Boulder.
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its corresponding paragraph node in the alignment graph. Edges were added to connect each

paragraph with its parent section node, which was classified using the MedSecId model (see

Section 3.4). Once both graph components were built, Coreference Resolution alignment edges

were added (see Section 5.6.1).

6.2.2 Concept Variable Renaming

Concept variables (i.e. “c” in c/chase-01) must be unique because multiple references

(represented as multiple incoming edges to a referred concept in a graph) have no equivalent

representation in the textual Penman format (see Chapter 5). All AMR parsers enforce this

constraint so that concept variables are unique in the context of each sentence they parse.

However, this unique assumption across joined graphs is often violated. Because Coreference

Resolution across sentences uses the same representation of referring across concepts of a single

node to nodes across sentences, concept variables must be unique1.

A simple algorithm was used to make all concept variables unique. The algorithm indexes

all concepts across all sentences of bipartite graph (note antecedent source and the discharge

summary components) as shown in Figure 30. The algorithm keeps the convention of using the

first letter of the concept followed by a 1-based index. Every concept of every sentence ordered

by paragraph and section is enumerated and then replaced. Updated variables are also replaced

in referring nodes to maintain referential integrity of the entire graph.

1An additional reason for the unique concept variable constraint is graph reconstruction from Penman
formatted sentences.
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assessdisease-discorder

disease h1/heart h2/heart chest

Figure 30: Admission Graph Variable Renaming. Once the sentence on the left is joined
in the same graph with the sentence on the right, the name collision h1/heart is resolved by
incriminating the variable index of the concept node in the second sentence.

6.2.3 Sentence Matching Algorithm

The sentence matching algorithm uses the Calamr alignments to identify the sentences that

best represent what is found in the summary. Figure 31 shows how the source sentence, “Pre-

cardiac catheterization assessment.” matches with the discharge summary sentence “Coronary

artery disease, status post coronary artery bypass grafting,”1 by creating paths through the

graph from a source sentence to a summary sentence. Each sentence that is connected in this

way then becomes a candidate.

The sentence matching algorithm follows:

1In this example, “catheterization” does not refer to the urinary track—rather it refers to to a heart
artery and grafting is an additional treatment.



136

source
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Figure 31: Sentence Matching Algorithm. The path (red) of alignment flow from the source
to the summary for sentence. The enlarged box shows two incoming alignment flows from the
source into the heart concept with a combined flow of 0.905. The green arrow represents a
match candidate as a result of this alignment flow and the path to their respective sentences.

1. For each discharge summary sentence in the reduced graph (see Section 6.2) with an

alignment, use a depth-first search to index all aligned nodes (Figure 31a).

2. For each node indexed in step 1, traverse the alignment edge over to source nodes in the

note antecedent component (Figure 31b).

3. Annotate each aligned source node indexed in step 2 with alignment flows from the edges

originating from the discharge summary component (Figure 31c).

4. Associate the aligned node summary annotations for each respective sentence in the source

component (Figure 31d).
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5. Create a sentence match candidate between the source and summary sentences (Fig-

ure 31e).

6. Sort the source sentences by the sum of the flow from each summary sentence.

7. Match sentences based on the flow from each summary to source sentence.

8. All remaining unmatched note antecedent sentences are given the no-section label.

Once the source sentences are pared with distributions of summary sentences by flow in

step 6 each source sentence is matched with zero or more summary sentences. In step 7, a source

sentence is matched with the summary sentence that has the maximum flow determined by the

minimum sent flow (µs) hyperparameter. The matched summary sentence is then eliminated

as a candidate for matching with any other source sentence. Finally, the source sentences are

tagged with the section of the matched summary sentence.

6.2.4 Source Section Dataset

The set of notes that were successfully aligned, as described in Section 6.1, is referred to

as the source section dataset. The sentence matching algorithm described in Section 6.2.3 was

used to match the sentences of this dataset. The source section dataset includes only the notes

with categories that were selected by clinical informatics physicians for the MedSecId (see

Section 3.2) project. However, there were no Consult notes with enough alignment to have

made it into the dataset. The note counts by categories are given in Table XVIII.

The selected discharge summary sections were based on what were considered most necessary

and beneficial for summarization by a physician authoring the note by a clinical informatics
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Note Cateogry Count

Discharge summary 1,434
Echo 483
Physician 70
Radiology 3,652

Total 5,639

TABLE XVIII: MIMIC-III Matched Sentence Notes. Counts of notes per admission in
the source section dataset.

fellow and a 4th year medical student. The physician-selected discharge summary sections and

their counts are given in Table XIX. Most notable is the imbalance between the section labels

and no-section label. This high disparity leads to a terse generated discharge summary, which

is explained further in Section 6.4. The same process was used when selecting sections in the

UI Health dataset. The sections and their counts are given in Table XX.

Figure 32 shows the number of matched sentence candidates in a contingency table based

source sentences with their associated distribution (in terms of alignment graph flow) of sum-

mary sentences (see Section 6.2.3) for the MIMIC-III corpus. We see the largest flow from

the discharge summary’s Hospital Course section1 to radiology notes, which is understandable

given the importance of the section (see Section 4.2.2.2). The Hospital Course section is the

first to be read by physicians when reviewing a patient’s history. To my knowledge, it is the

only discharge summary section generated using automatic summarization that has been peer

1The reversed summary to source flow graph was used (see Section 5.7.5).
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Section Train Split Test Split Validation Split

no-section 63,558 7,709 7,816
Hospital course 4,585 590 562
History of present illness 2,131 272 297
Discharge instructions 1,267 195 147
Past medical history 1,123 139 137
Discharge diagnosis 459 44 60
Discharge condition 147 21 17
Discharge disposition 128 22 18
Addendum 68 6 9
Facility 58 9 11

Total 73,524 9,007 9,074

TABLE XIX: MIMIC-III Matched Sentence Sections. Counts of notes per admission in
the source section dataset across splits.

reviewed (Adams et al., 2021). The second highest flow is from the History Of Present Illness

section to radiology notes, which is not surprising given that this section is often copied and

pasted into the discharge summary.

Figure 33 provides the UI Health dataset match sentence candidate contingency tables. This

table has many more sections because of the note diversity in the dataset. Once again, we see a

lot of History Of Present Illness and Hospital Course to the H & P note (History and Physical

Examination).

6.3 Discharge Summary Generation

The discharge summaries were generated using the source section model (see Section 6.3.1)

trained on the source section dataset (see Section 6.2.4), after which, the MIMIC-III aligned test

set of admissions were compared with the machine generated summaries. The note antecedents
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Section Train Split Test Split Validation Split

no-section 14,422 2,053 1,203
Physical examination 959 102 116
History of present illness 883 104 92
Hospital course 734 97 71
Addendum 555 66 57
Discharge medications 548 65 84
Discharge instructions 503 48 56
Labs imaging 270 16 17
Assessment and plan 84 5 44
Discharge diagnosis 70 4 12
Discharge disposition 26 6 6
Chief complaint 23 2 1
Discharge condition 8 1 1

Total 19,085 2,569 1,760

TABLE XX: UI Health Matched Sentence Sections. Counts of notes per admission in the
source section dataset across splits.

of the source section dataset’s test set were used as input to the source section model. Sentences

were added to the predicted section in the generated discharge summary, or they were discarded

if the special no-section label was predicted.

The UI Health dataset was also used to align and match and generate discharge summaries.

However, this performance was poor as text output consisted of five or fewer sentences. In

an effort to improve performance the process was repeated by tuning the Calamr kth order

neighbor set hyperparameter to include more network neighborhood semantic information. The

minimum sent flow (µs) hyperparameter was also adjusted down to include more sentence
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Figure 32: MIMIC-III Note to Section Alignment Contingency. The contingency table
shows Calamr alignment flow of data from the note antecedents to the sections of the discharge
summary.

matches. These changes yielded 248 aligned admissions and better results and longer generated

text on a second run.

The MIMIC-III trained summarization model yielded 133 automatically generated discharge

summaries and the UI Health dataset model generated five. The alignment challenges described

Section 6.1, such as missing discharge summaries and GPU memory constraints, show the

difficulty of hospitalization summarization. Further analysis and discussion of these challenges

are described in Section 6.4.
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6.3.1 Source Section Model

Once the sentence matching algorithm was used to assign labels to source sentences (see

Section 6.2.3) a bi-directional long-short term memory (BiLSTM) was trained to learn the

discharge summary section type of each note antecedent source sentence, such as Hospital

Course, or no-section. The full set of MIMIC-III discharge summary section type classes

are listed on the x-axis of Figure 32, and UI Health dataset classes are listed in Figure 33.

The memory network BiLSTM (Graves and Schmidhuber, 2005) was selected with the goal

of remembering what sentences had been assigned to sections, and thus, reduce or eliminate

redundancy in the summary.

The features to the model are the GatorTron embeddings1 (Yang et al., 2022), the note an-

tecedent’s note category, and section. Because of the very large input data size (see Section 6.1)

the embedding model cannot be fine-tuned. Instead the static (frozen) model’s embeddings are

used as input to the BiLSTM layer. A fully connected feed forward linear was added between

the BiLSTM and output layers. The output layer is the set of neurons, each of which represents

a the discharge summary section. Figure 34 shows the model with example sentences feeding

into the layer from the bottom and forward propagating to the output layer at the top. The

BiLSTM layer had a hidden size of 500 parameters, a dropout of p = 0.15, a learning rate of

5× 104 and used gradient clipping. The model was set to train for 30 epochs and converged at

24 epochs.

1A pretrained embedding model trained on more than 90 billion words de-identified clinical note text.
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6.3.2 Experimental Setup

The standard set of quantitative machine learning (ML) performance classification metrics

were used to evaluate the source section model. While this provides insights into how well the

model performs, it does not inform as to how well Calamr creates the training data for the

source section model.

To bridge this gap, a human quantitative and qualitative evaluation was performed to

better understand the effectiveness of the generated summaries. This informal evaluation of

generated discharge summaries on the source section dataset’s test set was evaluated by a

clinical informatics fellow and a 4th year medical student. Each generated discharge summary

was ranked using a Likert scale (Likert, 1932) as an integer value ranking in the range 1 — 5

with five as the highest. Table XXI lists the questions asked for the informal evaluation.

Question Category Question Text

Preference Whether you prefer the generated summary?
Readability Of the data in the generated summary, how readable is it?
Correctness Of the data that is in the generated summary, how correct is it?
Complete How complete is the generated summary?
Sections Of the data in the summary, how well is it sectioned?

TABLE XXI: Informal Evaluation Questions. Questions given to medical domain experts
for the human feedback informal evaluation of the generated discharge summaries.
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6.4 Results

This section reports and provides an analysis of the performance of the source section

model (see Section 6.4.2). It also documents the work done in choosing the AMR parser used

for the project.

6.4.1 Parser Evaluation

The flow alignments of admissions with low note counts were manually analyzed for content

overlap to make hyperparameter adjustments. The models were further tuned based on the

generated summary output as described in (see Section 6.3). Prior to this analysis and training

and tuning, AMR parsers were evaluated with the goal of finding the best parser for the clinical

domain.

The AMR graphs were created from Physician notes, and then judged for correctness. An

informatics fellow physician was asked to evaluate each AMR on a scale of 1 to 5 for correctness

(5 as the most correct) for each AMR. I collaborated with the physician to provide the linguistic

understanding for each graph.

Two AMR parsers fine-tuned on the Information Science Institute1 Biomedical corpus (see

Section 5.9.2) were evaluated. Eighteen graphs were scored including nine scored by the T5

amrlib2 trained parser and nine scored by the Gsii (Cai and Lam, 2020) parser. The T5 parser

scored an average 4.1 and the Gsii parser scored 2.9. However, the qualitative analysis of the

1https://amr.isi.edu/download.html

2https://github.com/bjascob/amrlib
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graphs by the physician showed fundamental flaws, such as products misclassified as molecules,

misclassified roles, and added spurious nodes.

This analysis presented sufficient motivation to compare performance with the THYME

parser, which was used in an informal evaluation with a clinical informatics physician and a 4th

year medical student. Sentences from MIMIC-III discharge summaries were parsed into AMRs

by the THYME and then translated back into sentences by a AMR graph-to-text model that

was trained on the Biomedical corpus.

The physician and medical student were asked the following questions1:

• How well did the physician write the original text?

• What is the quality of the generated text?

• How correct is medical terminology in the generated text?

Generated sentences for the THYME model were observed with a mean score of 3.42 on

91 sentences. However, for sentences with quality physician authored sentences, this mean

increased to 3.7 on 75 sentences. An additional question on the correctness of the medical

terms used in the generated output, which received a mean score of 3.5 for all 91 sentences and

improved to 3.8 on the 75 originally authored sentences.

In addition to this quantitative analysis, a qualitative review of AMR graphs created from

the parser on clinical text with a physician was also used to inform the evaluation on ten graphs.

1All scores were reported on the Likert scale (Likert, 1932) in the range 1 – 5 where 5 is the best.
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Each of these graphs were reviewed for completeness, correctness and CUI attachment (see

Section 6.2.1).

The criteria of the parser selection was based on:

• the qualitative assessment that produced high quality AMR graphs by the THYME,

• the graph-to-text model used in the quantitative analysis was trained on out-of-domain

Pubmed articles (Biomedical corpus) rather than clinical text, and,

• the quality of text and medical terminology of the quantitative study’s scores.

Based on this criteria the decision was made to use the THYME for the alignment of all training

and test data (see Section 6.1).

6.4.2 Source Section Model Performance

The source section model results are summarized in Table XXII (left). The weighted F1

score of 88.72 on the MIMIC-III trained corpus shows good results for the sentences’ discharge

summary section classification. However, we see a low macro F1 of 20.41, which shows the

classification performing poorly on some labels. Another reason for a high weighted and micro

F1 but low macro F1 is that the majority label, the no-section label, dominated as shown

in Table XVIII.

The model trained on the UI Health dataset show lower results shown in Table XXII (right).

This might be partly due to smaller dataset or the higher rate of reentrancies as shown in Ta-

ble XVII (right) and discussed in Section 6.1. The fact that MIMIC-III is a curated dataset is

the most likely reason the results are higher compared to UI Health dataset, which is unmodified

and contains protected health information (PHI).
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Metric Value

Weighted F1 88.72
Weighted Precision 88.99
Weighted Recall 89.52

Micro F1 89.52
Micro Precision 89.52
Micro Recall 89.52

Macro F1 20.41
Macro Precision 29.07
Macro Recall 21.27

Metric Value

Weighted F1 83.52
Weighted Precision 84.23
Weighted Recall 84.3

Micro F1 84.3
Micro Precision 84.3
Micro Recall 84.3

Macro F1 19.63
Macro Precision 23.11
Macro Recall 19.87

TABLE XXII: Source Section Model Results. The results as weighted, micro and macro
scores of the source section model. The results of the model trained on the MIMIC-III corpus
are given on the left and the UI Health dataset on the right.

The informal evaluation of the 133 generated discharge summaries trained on the MIMIC-III

corpus is given in Table XXIII (left). The evaluation clearly shows the difficulty of the task and

room for growth. The preference for the generated notes is low (1), the summaries are shown

to not be complete (1) and the sectioning is incorrect (1). However, the generated summaries

provide a readability of just over 3 and a perfect correctness score (5), which is what we expect

from a faithful summary.

6.4.3 Discussion

The label imbalance in the source section dataset might be attributed to the sparsity of

Calamr’s alignments. If this were the case, we could adjust the hyperparameters of Calamr

to produce more sentence matches. However, the lack of alignment could be justified by the

lack of notes (other than those from the ICU department) present in the MIMIC-III corpus (see
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Question Category Score

Preference 1
Readability 3.05
Correctness 5
Complete 1
Sections 1

Question Category Score

Preference 1
Readability 2.4
Correctness 5
Complete 1.6
Sections 1.6

TABLE XXIII: Informal Evaluation. The average likert scale scores of 133 MIMIC-III
generated summaries are given on the left and five generated summaries UI Health dataset on
the right.

Section 4.2.1). The misalignment could also be attributed in cases where the physician writes

from personal experience with the patient that is otherwise lacking from the EHR notes.

The five discharge summaries produced by the model trained on the UI Health dataset,

shown in Table XXIII (right) show better completeness but slightly lower readability. A some-

what strange and interesting statistic is the higher sectioning of the UI Health dataset over the

MIMIC-III despite the fact that the MedSecId model was trained on the latter. This implies

the MedSecId is able to section the UI Health dataset notes or the source section model is able

to predict sections based on other factors such as better alignments. See (see Figure 35) for

an example of a de-identified automatically generated discharge summary. The gold discharge

summary for this admission is given in Appendix C.

6.5 Conclusion

I have presented a new extractive method of multi-section automatic summarization; a

significant step forward in generating faithful and traceable for clinical documentation. Short-

comings of the data used to train the models led to challenges that affected performance and
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exposed limitations in the summarization process. In the case of the MIMIC-III data, the issue

of missing notes (other than ICU as described in Section 4.2.1) lead to worse summarizations

from missing hospitalization notes. The analysis of the impact of this is detailed in (see Sec-

tion 4.4). A key findings of the DSProv study was that only 28% of Physician daily progress

nodes overlapped with discharge summaries (see Section 4.2.2). Because the Physician notes are

used for manually summarized content in the discharge summary, the marginal representation

reveals the challenge in using this corpus, or any partial dataset for training.

Summarization with the UI Health dataset trained model have shown to be as challeng-

ing to the MIMIC-III corpus, but for different reasons. Performance suffered due to memory

constraints of the size of data in the UI Health dataset data, and specifically the number of

notes compared to the procured MIMIC-III corpus. The poor sectioning of the data on the

MIMIC-III trained MedSecId model is another reminder of how “real” EHR data can negatively

impact the performance of the summarization task.

Despite these challenges, the source section model show promising results, which show that

the generated training data from the Calamr alignments produces a model that learns how

to classify for extractive summarization. This is further qualified by the informal evaluation

with high correctness scores and reasonable readability scores. These summaries are faithful

in that only content for the source text is added to the summary. They are traceable in how

each sentence can be traced back via the Calamr alignments. Recommendations with respect

to recent SoTA breakthroughs also inspire hope to bridging the gap of the difficulty of the

summarization task.
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Figure 33: UI Health Note to Section Alignment Contingency. The contingency table
shows Calamr alignment flow of data from the note antecedents to the sections of the discharge
summary.
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Figure 34: Source Section Model. The model classifies sentences’ pooled [CLS] token, which
is used in a BiLSTM across all sentences of all notes. Each prediction from each sentence is a
section in the discharge summary.
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History of present illness:

9:36 AM Status: Attested Editor: [**Doctor First Name**] [**Doctor Last Name**], MD

(Resident) Related Notes: Original Note by [**Doctor First Name**] [**Doctor Last

Name**], MD (Resident) filed at [**Date**] 4:01 PM Cosigner: [**Doctor First Name**]

[**Doctor Last Name**], MD at [**Date**] 12:46 PM Consult Orders 1. Inpatient consult

to General Neurology [[**Correspondence ID**]] ordered by [**Doctor Last Name**]

[**Doctor Last Name**], MD at [**Date**] 0754 Attestation signed by [**Doctor First

Name**] [**Doctor Last Name**], MD at [**Date**] 12:46 PM Stroke Attending: Pt eloped

prior to being seen. Blurred Vision and Extremity Weakness [**First Name**] [**Last

Name**] is a 47 y.o. male with PMH HTN, HLD, previous stroke [**Year**] (R ACA-MCA

watershed), presenting to ED with L sided weakness, LLE numbness, and blurry vision

b/ l. Patient reports symptoms started acutely on Friday [**Date**] around 4 pm while

driving causing him to have to pull over. He decided to try to sleep it off. After

waking up the following morning with no improvement, he went to [**Hospital Name**]

ED where he was seen by neurology, but left AMA as he felt he was being asked the

same questions repeatedly and nothing was getting done. CTH at [**Hospital Name**]

was without ICH, reportedly showed wedge shaped hypodensity in frontal lobe likely

from chronic infarct. The patient reports that the left sided weakness has improved

somewhat today, but he still endorses b/ l blurry vision with constant white

floaters, as well as numbness/ tingling in his LLE. CTA Hwith multifocal narrowing of

b/ l ACAs as well as R M1 focal narrowing. MRI B w/o showing acute ischemia in medial

R temporal lobe involving the posterior limb of R internal capsule as well as

possibly the thalamus, and redemonstrating old R frontal ACA-MCA watershed infarct

and old L occipital cortical infarct. Patient to be admitted to stepdown under stroke

service. Patient with poorly controlled HTN and HLD, not taking any medications for

the past 5 months as he says he had trouble getting primary care appointment for

prescription renewals.

Physical examination:

NIHSS is 2 (LUQ quadrantopia, LLE numbness). SBP gets up to 200s per patient. Labs

today significant for Troponin of 0.77. EKG showing T inversions in V5 and V6.

Cardiology consulted. Patient denying CP at this time. Prior stroke/ TIAs (date,

description): R ACA-MCA waterhsed stroke in [**Year**] per ED, worked up at

[**Hospital Name**], on DAPT Vascular risk factors: HTN, HLD, prior stroke Past

Medical/ Surgical history: Past Medical History: Diagnosis Date Hypertension

Figure 35: Generated Discharge Summary. A UI Health de-identified automatically gen-
erated discharge summary.



CHAPTER 7

SOFTWARE FRAMEWORK

(This chapter expands on the paper “DeepZensols: A Deep Learning Natural Language

Processing Framework for Experimentation and Reproducibility” by Landes et al. (2023) in the

Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software of

the Empirical Methods in Natural Language Processing (EMNLP) conference.)

Summarization was implemented as an end-to-end pipeline with an admission’s electronic

health record (EHR) clinical notes as input with a discharge summary as output. The pipeline

first prepared the corpus by parsing the text and organizing it into data structures usable by

the summarization algorithm.

The task of summarization requires natural language processing (NLP) and deep learning

(DL) advanced programming interfaces (APIs) as clinical medical note summarization includes

extra tooling and specialized models. To accomplish this task, the pipeline’s framework used the

DeepZensols framework, which I wrote specifically for DL NLP applications. This framework

reproduces consistent results, allows hot-swapping features and embeddings without further

processing and re-vectorizing the dataset, and provides a means of easily creating training and

evaluating natural language processing deep learning models with little to no code changes. In

addition, it has been extended to include: medical domain specific tasks, such as concept unique

identifier (CUI) extraction using the zensols.mednlp API, and PropBank database that include

153
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embeddings for alignment and learning with neural networks (NNs) and alignment using the

zensols.propbankdb API (see Section 5.4.1).

7.1 Motivation

Given the criticality and difficulty of reproducing machine learning experiments, there have

been significant efforts in reducing the variance of these results. The ability to consistently

reproduce results effectively strengthens the underlying hypothesis of the work and should be

regarded as important as a novel aspect of the research itself. The proof of concept imple-

mentation used in this work utilizes DeepZensols, a new framework I developed, for not only

reproducibility but also because of its NLP and medical domain extensions.

A key feature that sets this framework apart from others is a novel method to rapidly and

easily swap features sets and compare performance across models (see Section 7.5). Other

systems must re-parse and re-vectorize each mini-batch over each epoch. While there exist

similar frameworks to ours (Gardner et al., 2018; Paszke et al., 2019; Ning et al., 2020; Alberti

et al., 2018), none of these provides this batch strategy, vectorization of natural language text

features and reproducibility of results across APIs and datasets in one framework. Popular

NN architectures are available out of the box and easily configurable with little to no coding

necessary (see Section 7.3 for NLP specific framework details) and the framework is freely

available1.

1https://github.com/plandes/deepnlp
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7.2 Library Design

DeepZensols is a combination of Python APIs built on top of PyTorch that provide a means

of easily and quickly creating NLP task specific pipelines. The framework’s source code and

installable libraries are released under the MIT License1, which is available both on GitHub and

as Python pip packages along with extensive and in depth overview and API documentation,

tutorials, Jupyter Notebook examples and class diagrams for three NLP reference models and

datasets. The framework is validated with 274 unit tests and six integration tests, most of which

are automated using continuous integration testing for both functionality and reproducibility.

Reproducibility

All random state, including utility libraries, scientific libraries, PyTorch, and GPU state, is

consistent across each run of the interpreter execution of the model’s training, evaluation and

testing when using the framework. Results are consistent by saving this random state with the

model, then retrieving and resetting it before using the model.

The order of mini-batches, and their constituent data can affect the model performance

as an aspect of training or the results of validation and testing (Pham et al., 2020). This

performance inconsistency is addressed by recording the order of all data2 and tracking the

training, validation and test data splits. Not only are mini-batches given in the same order,

the ordering in each mini-batch is also preserved. These dataset partitions and their order are

1https://opensource.org/licenses/MIT

2Regardless of any given data pre-processing or shuffling.
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saved to the file system so the community has the option of distributing it along with the source

code for later experiment duplication.

The framework also saves the configuration used to recreate the same in-memory state along

with the model. This duplicates the model structure, parameters, hyper-parameters and all

other train-time memory during testing. Reproducibility is built in to unit tests for individual

components and integration tests by comparing the validation and training loss across six data

sets1.

7.3 NLP-Focused Abstractions and Features

The framework provides many APIs for natural language tasks, including concatenation

of vectorized language features to input embedding (see Figure 36). Vectorization of contex-

tual embeddings such as BERT (Devlin et al., 2019) and non-contextual embeddings such as

word2vec (Mikolov et al., 2013b), GLoVE (Pennington et al., 2014) and fastText (Bojanowski

et al., 2017) are available.

The framework includes many layer implementations, which are compatible with the Py-

Torch API as module classes. Examples of layers provided include BiLSTM CRF, BERT trans-

former models, 1D convolution NN, expanding or contracting DL feed forward linear networks

with repeats with input and output feature calculation, word embedding layer for concatenating

1Data sets include the MNIST, Adult, Iris datasets and those mentioned in Section 7.8.
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Figure 36: Network Architecture. Word embeddings concatenated to vectorized linguistic
features, and then joined with vectorized document features constructed using configuration
with no coding.

features (see Section 7.4), TF/IDF frequency weighting (Sparck Jones, 1972), and an adaption

module for the pytorch-crf1 CRF implementation.

HuggingFace transformer layers are available as embeddings, document, sentence and token

features. The framework also provides direct access to these models’ data and utilizes it in

a variety of tasks such as text classification, token classification, language generation, latent

semantic analysis, etc. A linguistic feature mapper that translates spaCy2 to wordpieces, which

are token sub-units with associated vectors and provided by the model’s tokenizer (Wu et al.,

2016), is also accessible as an easy to configure module.

1https://github.com/kmkurn/pytorch-crf

2https://spacy.io
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7.4 Vectorization

The DeepZensols framework allows for easily configurable components that provide a higher

level abstraction that tokenizes, sentence chunks, and vectorizes linguistic features. These

vectorizers have a class taxonomy based on data they vectorize so their output data can be

automatically constructed in various off-the-shelf architectures. For NLP tasks, vectorizers

include:

token: spaCy token features such as part of speech (POS) tags, named entity recognition (NER)

tags, dependency head relations and depth.

document: Features taken from the document level, typically added to a join layer such as count

sums of spaCy parsed features.

embedding: Vectorizes text into word embeddings, such as sentence or document text.

multi-document: Aggregating and shared features between more than one document, such as

overlapping POS or NER tags.

See Section 7.3 for more information on NLP specific feature generation.

7.5 Batching

We provide a novel method to vectorize and batch data without wasteful pre-processing

of each feature and embedding combination. Other similar frameworks pre-process data in an

intermediate form only once before training. However, this leads to a brittle and difficult to

reproduce dataset of ad-hoc text processing scripts that are challenging to re-execute, and thus,

reproduce performance metrics.
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Our framework addresses this with an organized intermediate file scheme and partitioned

feature set so the input data is vectorized only once efficiently using a multi-processing pipeline.

The output format of this process allows for quick feature swapping and hyper-parameter tuning

for re-training. It leverages the fact that mini-batches are independent and fit nicely as indepen-

dent units of work by segmenting datasets into smaller chunks, vectorizing each chunk in parallel

sub-processes, and creating one or more batches independently across each sub processes.

This process by which data is written to the file system in a format that is fast to reassemble

is called batch encoding (see Figure 37), and accomplished by a) splitting sentences and/or

tokens into equal size “chunks” units of work, b) parsing natural language features from chunks

across multiple processes, and c) vectorizing each chunk as tensor data in separate files by

feature.

Dataset

Features A

Disk

Vectorizer A Vectorizer B

Subprocess 1

Chunker

Features B

Batch 1 Batch 2

Features A

Vectorizer A Vectorizer B

Features B

Batch N Batch N+M

Subprocess N

Figure 37: Batch Process. The mini-batch creation process splits the work done by vectorizers
(two in this example) and writes constituent feature files to disk in sub processes.
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After batch encoding is complete, the model is ready to be trained from data obtained from

a batch decoding step, which is accomplished by: a) choosing a feature set for a training run,

b) reassembling features by mini-batch (see Figure 38), c) decode each mini-batch into a tensor

(see Figure 39), and d) load, cache and copy tensors to the GPU.

Batch 1

Batch 1 

Features A

Batch 1 

Features B

Disk

Batch 1 

Features Z

optional feature B

Figure 38: Batch Reassembly. Batch reassembly loads mini-batch tensors from only files
containing features for the current run.

Reassembling mini-batches by feature greatly reduces load time and memory space, which

speeds up model training (see Section 7.8) and ameliorates issues of complex models. This

speedup is most apparent when comparing the time taken to fine-tune BERT with using the

transformer’s static embeddings (see Section 7.8). In the case of the former, large data files

with output tensors are read as wordpieces embeddings (Wu et al., 2016). The train, validation

and test cycle is faster for other vectorized linguistic data such as spaCy features as well.
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Figure 39: Batch Decoding. Batch decoding “stitches” mini-batches together from only files
containing features for the current run.

7.6 Technology Stack

Each “layer” of the stack builds on more general libraries to reduce the installation footprint

based on the needs of each use case. Each library contains the requirements for dependent third-

party and lower tier packages. The framework consists of the following libraries (see Figure 40):

• zensols.deepnlp: Contains language vectorization, such as word embeddings (see Sec-

tion 7.3), part of speech tags, named entity recognition, and head dependencies (McDon-

ald et al., 2005).
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• zensols.deeplearn: General purpose DL API that provides mini-batching, vectorization,

and training, validation and testing of a model. The package provides general layers,

many of which, are utilized as sub layers by zensols.deepnlp.

• zensols.nlparse: Parses natural language text using spaCy, generates and vectorizes fea-

tures in an object graph that is easy to use and fast to serialize.

• zensols.install: An API to download, install and uncompress online web resources such

as models and datasets. File system paths are then provided to the project in the same

configuration set.

• zensols.util: Utility library command line parsing, persistence and a Java Spring like

inversion of control (Mattsson, 1996) configuration system.

7.7 Execution

The framework provides both a command line and a Jupyter notebook interface to train,

test and predict. A “glue” API is used to make a Python dataclass1 class a dynamically

generated command line with help usage message documentation. A set of default application

classes are available with the framework, but they can be extended to include project specific

workflows. The default application set provides interactive early stopping or epoch resetting

during training.

The command line and Jupyter notebook use a common interface to the model itself, which

is conducive as an entry point to larger projects or simple run scripts. Both interfaces provide

1https://docs.python.org/3/library/dataclasses.html
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Figure 40: Framework Library Stack. The Python Library Stack

evaluation metrics such as recall, precision, F1, ROC, accuracy and several others and training

and validation loss plots (see Figure 41). The command line writes the loss plot for each epoch

and Jupyter notebook renders it in an inline cell.

A debugging mode that outputs a step of the model training with batch composition, layer

names, dimension calculations, using the logging system, which is filterable by module or com-

ponent is also available.

Results are organized by each run and carry a common file system structured named by

either what is provided in the configuration or by model name. This directory structure con-

tains the full model with all configuration, the PyTorch model, and results provided as human

readable indented text, JSON and binary formats.
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Figure 41: Validation and Training Loss. Plot from the NER Token Classification Ap-
plication using RoBERTa embeddings. (Graph selected for illustrative purposes rather than
performance.)

7.8 Runtime Analysis

Runtime analysis was performed for parsing, feature vectorization (see Section 7.4), batching

(see Section 7.5), training and testing three different types of models using a Nvidia TITAN

RTX graphics processor on an Intel 3.6GHz CPU summarized in Table XXIV. The time to

train, validate and test was measured using the following criteria:

• Model: the model trained and evaluated.

• New Batch: whether or not the mini-batches were (re)created (see Section 7.5).
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• Cached: whether or not the mini-batches were cached in GPU memory.1

Since obtaining fast results allows for more experimentation with a variety of feature sets, em-

beddings, and NN architectures, the table shows each dataset’s quickest end-to-end completion

with all time duration in hours, minutes and seconds.

The datasets used in the runtime analysis include: the CoNNL 2003 (Tjong Kim Sang

and De Meulder, 2003) for named entity recognition, the movie review corpus (Pang and Lee,

2005; Socher et al., 2013) for sentiment classification, and the clickbate corpus (Chakraborty

et al., 2016) for text classification. Batched feature sets were uniform for each dataset and

included:

token: spaCy POS and named entity type

embedding: BERT, GloVE 50D, GloVE 300D, word2vec 300D

document: spaCy named entity counts, head depth, and statistics (such as sentence, token,

character counts and averages)

Not surprisingly the GloVE model shows the best improvements since the word embeddings

are non-contextual, and thus, need not be recomputed per sentence. The framework shows

significant processing time improvements in the movie review sentiment dataset with a 2.6X

speedup using only batching (see Section 7.5), and 3X using GPU caching. Interesting, the

clickbate dataset shows a converse relationship with a 1.5X batching speed up, but a 4.7X

1The framework offers GPU caching, CPU caching, and iterative buffering of mini-batches.
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Data Model New Batch Cached Duration

N BERT 01:00:20
N BERT X 01:00:15
N BERT X 01:04:43
N BERT X X 01:04:31
N GLoVE 00:29:45
N GLoVE X 00:24:15
N GLoVE X 00:34:04
N GLoVE X X 00:28:23

M BERT 00:19:11
M BERT X 00:19:10
M BERT X 00:21:14
M BERT X X 00:21:41
M GLoVE 00:01:55
M GLoVE X 00:00:38
M GLoVE X 00:05:01
M GLoVE X X 00:03:41

C BERT 00:03:54
C BERT X 00:03:54
C BERT X 00:05:44
C BERT X X 00:05:45
C GLoVE 00:03:52
C GLoVE X 00:00:49
C GLoVE X 00:05:43
C GLoVE X X 00:02:40

TABLE XXIV: DeepZensols Efficiency Benchmarks. Efficiency benchmarks showing each
dataset with N=named entity recoginition, M=movie review sentiment, and C=clickbate.

speed up with scenario GPU caching. While BERT saw a less drastic speed up, it did finish

almost 10 minutes faster under the NER model.

The framework shows significant processing time improvements in the clickbate corpus,

which was achieved by reusing the vectorized feature batch tensors on disk and by caching

those tensors in the GPU. Furthermore, the novel batching approach (see Section 7.5) saves
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one minute and 40 seconds (3X faster) with a total five minutes and 40 seconds (28X faster)

when buffering mini-batches in the GPU.

7.9 Conclusion

The DeepZensols framework is a viable solution to easily create NLP specific models with

APIs and analysis tools to produce consistent results. Such frameworks create the types of

models that give confidence and legitimacy by providing a way to produce reliable reproducible

results, which is ideal for the summarization pipeline (see Chapter 1) Runtime analysis shows

the framework offers significant processing time savings compared to systems that do not provide

feature caching with stable results.



CHAPTER 8

CONCLUSIONS AND FUTURE WORK

The goal of this work is to find new ways to ground summaries using state of the art deep

learning (DL) methods. The output of this work is several methods and annotation datasets

that have been shown to successfully generate faithful and traceable discharge summaries.

8.1 Contributions

The contributions of this work include annotated datasets and summarization methods. One

dataset is 2,002 annotated medical notes from the Medical Information Mart for Intensive Care

III (MIMIC-III) corpus for clinical sections in both lexical demarcations and section type (see

Chapter 3). This project also includes a model that automatically sections clinical text with

an F1 metric of 96%, and an analysis by section that shows the orthogonality of medicine vs.

surgical medical concepts.

Another contributed dataset includes 51 fully physician-annotated MIMIC-III admissions

of semantically similar, or copy and pasted text spans, between electronic health record (EHR)

notes and respective (per admission) discharge summaries. This work also includes a provenance

of data study that explores how data flows from previously written EHR note spans of text

(by note category and section type) to the discharge summary (see Chapter 4). This work also

includes a novel unsupervised span-matching method to automatically create match spans in

any domain (see Section 4.3).

168
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The alignment method has shown to be successful for finding summarized content in news

articles (see Chapter 5) and leverages the performant and well-established max flow algorithm,

which has been seldom used in natural language processing. This work provides a method

for aligning graphs useful for explainable summarization and uncovering the extent of overlap

between source and summarized text. The work gives a new summarization specialized score to

measure the summarized overlap and a metric for calculating similarity between multi-sentence

AMR (abstract meaning representation) graphs, which were not previously available.

A general purpose NLP framework (see Chapter 7) with extensions for each module pre-

sented is another contribution. This framework provides a mechanism for parsing and vec-

torizing natural language text into features, then provides a method of creating reproducible

results for DL NLP models. The clinical domain, alignment and summarization modules were

implemented as extensions of this framework, and then automated as an end-to-end pipeline.

The most important contribution of this work is the method and implementation of a

pipeline to automatically generate discharge summaries (see Chapter 6). The summarization

pipeline takes previously written discharge summaries written by physicians and uses it as

training data. This model is trained by first using the MedSecId model to section the notes,

then uses Component ALignment for Abstract Meaning Representation (Calamr) to align

parsed AMR graphs. Finally, Calamr alignments are used to train the source section model

model to copy sentences from the note antecedents to the discharge summary as an extractive

summarization task. Given the lack of any other peer-reviewed work on this topic, I believe this
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is a beneficial first implementation of a complete end-to-end discharge summarization. However,

more work is needed to improve the efficiency and performance of the results.

8.2 Future Work

The summarizer is able to generate is comprehensive list of sections when generating dis-

charge summariesṪhese sections are listed (see Table XIX). However, certain sections have a

sparse representation in the discharge summaries reviewed in the informal analysis. Additional

error analysis in Calamr alignments could be helpful in finding where and why more of these

sections are not aligned. Loosening the sentence matching algorithm constraints might be help-

ful in generating more data. The most salient and important discharge summary section to

summarize is the Brief Hospital Course (Adams et al., 2021). This section was also summa-

rized by Damm et al. (2024), which used the MedSecId (see Chapter 3) model in their pipeline.

Other important sections that are important and useful in a generated summary include (in or-

der) History of Previous Illness, Assessment and Plan, Past Medical History and Past Surgical

History.

Perhaps a more straightforward effort to include more summarized sections would be to

adjust the sentence matching algorithm minimum sent flow (µs) hyperparameter (see Sec-

tion 8.2.2). There is work left to be done to other models in the pipeline as well. Hyper-

parameter tuning the MedSecId models to improve how clinical notes are sectioned may help

in reducing propagation error in the pipeline. Another obvious opportunity to improve perfor-

mance is to concatenate cui2vec embeddings in the input layer as described in Section 3.2.3.

Using pseudo or synthetic tokens in place of the MIMIC-III training data could improve perfor-
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mance and shed light on how models learn with more realistic data. Implementation changes

to increase the performance of Calamr is definitely necessary given the time it takes to align

large admissions in the UI Health dataset corpus.

To improve the current extractive summarization, the DSProv (see Chapter 4) annotations

could be used as a validation and test set for the extractive method. One of the original

goals of the data was to use it tune the Calamr hyperparameters to maximize the alignments

via the note matches. In terms of admissions, the dataset is relatively small (51), but the

dataset’s 569 note matches could be used for training a supervised model to help in additional

human annotation. However, the most important future work is an abstractive graph-based

summarization method.

8.2.1 Abstractive Summarization

Switching from extractive to abstractive summarization using graph neural networks (GNNs)

is the largest of the recommendations, but has the greatest potential. True abstractive sum-

marization could be accomplished using the Calamr alignments in combination with a GNN.

A modified version of a deep auto-regressive model that generates graphs (GraphRNN) would

be used with a model to predict the summary graph (You et al., 2018). However, this would

require modifications to the published algorithm and would require more training examples

than those used in the experiments described in Chapter 6. The need for more alignment data

motivates the recommended optimizations of the Calamr method (see Section 8.2.2).

Leveraging the source component might mitigate the need for a large training dataset since

the model would have more prior data from which to draw. The modifications to the GraphRNN
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would exploit the source component rather than just sampling new graphs from a probability

distribution over the training data per the GraphRNN method. The neural network (NN)

architecture would also need to be expanded to accommodate local network neighborhood

embeddings (in addition to the adjacency matrix). However, the strategy of utilizing a recurrent

neural network (RNN) cell for each iteration of the learning algorithm as a node traversal, and

then growing the summary component for each iteration during testing, remains the same. A

long-short term memory (LSTM) (Hochreiter and Schmidhuber, 1997) would be a good choice

for the RNN for its ability to remember long node distances across the graph. Gradient clipping

should be considered to alleviate issues of LSTM exploding gradients (Bengio et al., 1994).

8.2.1.1 Training

The model would learn network neighborhoods in the source as a prior to predict the

summary graph across the alignments of the bipartite graph. The sequence based model’s

final layer model output (called the prediction head) would be used to classify the next AMR

concept or attribute node based on previously predicted nodes. Another model would add edges

between the new predicted node and existing nodes that were previously added to the graph.

As with the GraphRNN, the edge predictions are folded into each step of the node prediction

step as shown in Figure 42.

Each concept or attribute node embedding formulated in Section 5.4, and shown in Fig-

ure 16, is used as input layers to the GraphRNN node model (see Figure 43b). Similarly,

each role edge’s embeddings are used as input to the GraphRNN edge model. Before training

begins alignment graphs are created (see Chapter 5) and given to the summarizer for each
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Figure 42: Summarization Iteration. Two iterations first classifying node chase-01 and
then dog with role ARG0 with updates in red.

admission (or document) as input. The model would take minibatches of node or edge features

and a label in typical GNN fashion, and the training algorithm closely resembles that of the

GraphRNN (You et al., 2018).

The training algorithm identifies a target node that iterates as a breadth-first search through

the source component. The GNN prediction head identifies a node in the summary component

to learn or predict with the node model. The GNN prediction head identifies two nodes to

connect for the edge model.

The training algorithm follows:

1. Configure the GNN models. Note that both models use node and edge embeddings.

(a) The node model’s local network neighborhood embeddings of the source component

and aligned edges to the summary component are added as successive layers of the

NN from the current prediction head.
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Each lth layer has embeddings of the kth order neighbor set nodes k hops from

the predicted node n such that layer L = U(n, l). See Figure 43 for the network

neighborhood with a three layer (k = 3) GNN. The layer and network neighborhood

depth is set with hyperparameter graph neural network layer depth (δ) a priori.

(b) The edge model’s model is created in the same was as the node model in step 1a.

2. The node model’s RNN is initialized the start state per the GraphRNN training algo-

rithm. The same is done for the edge model’s RNN cell.

3. Set the target node to the root node of the source component.

4. Train the models using the following steps for a single back propagation.

(a) Set input layer of the GNN to the network neighborhood embeddings. The node

embedding is used as the prediction head’s output layer. Type of node (concept

vs. attribute) could be modeled another output neuron. Regardless, the prediction

would have to be a multilabel classification.

A classification over all PropBank role entries could be used for predicating element

concept nodes (see Section 5.1.1). However, a vocabulary prediction would be needed

for attribute nodes, light verbs, etc.

(b) Add the node to the adjacency matrix. Because the graph could be large, only the

last N previously traversed target nodes are tracked (You et al., 2018).

(c) Update the node model’s parameters.
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(d) Populate the edge model’s input layer with the edge embeddings of the network

neighborhood with the same hyperparameters for network size as done in step 4a.

The label of the edge model is the role edge edge and two nodes to connect as

sequence identifiers of nodes for the preview N nodes. Add the sequence identifiers

to the adjacency matrix to be used as parameters of the model.

(e) Repeat step 4d for all nodes in the summary component.

(f) Update the edge model’s parameters.

5. Traverse to the next node in the breadth-first-search and set the target node to it.

6. Repeat steps 4 – 5 across all nodes in the source component.

7. Add the end state to the node model’s LSTM (You et al., 2018).

8.2.1.2 Testing

Testing follows a similar pattern as the training process:

1. Set the target node to the root of the source component.

2. Populate the node model’s input GNN layer to the network neighborhood of the target

node in the source component. This network neighborhood includes some portion of the

summary component (after the root node is created). An example of this prediction is

the red chase-01 concept node shown in (see Figure 42a).

3. Given the network neighborhood, use the node model to predict a new node in the sum-

mary component.
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Figure 43: Prediction with the Summarization Network. Left (a) the AMR graph
predicting the next node dog. Right (b) the GNN created from the AMR graph in (a). The
source component nodes are shown in light gray, the predicted node in red, alignment edge and
embedding in blue, and dark gray boxes are pooling operators.

4. Do the same input layer population as in step 2, but on the edge model.

5. Given the network neighborhood and the adjacency matrix, predict a role edge and two

nodes in the summary component to connect. Add the new edge to the adjacency matrix.

An example of this prediction is the red alignment edge shown in (see Figure 42b).

6. Repeat step 5 for all nodes in the summary component.

7. Repeat steps 2 — 6 until the node model’s LSTM end state is reached.
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8.2.1.3 Generation

After the summary component is created, the discharge summary is generated. This is done

by iterating over each section node in order (retained by the LSTM), which are children nodes

of the summary component root. For each sentence node in each section use the sentence AMR

root as input to a AMR graph-to-text model to generate the natural language sentence.

Tense can be added to the output by including part of speech (POS) tags in the nodes

using the text-to-graph aligned tokens (TATs). Attaching the POS tags as nodes is currently

supported by the framework that creates the admission graphs. However, the AMR graph-to-

text model would need to be retrained with the POS nodes added for each training instance.

8.2.2 Model Tuning and Optimization

Currently, the process takes too long and too much computing power. The larger admissions

take hours just to align in the ACER (covered entity) environment. Optimizing the code will

speed things up. But to really improve performance, it would be ideal to find an implementation

of the max flow algorithm that runs on the GPU rather than the CPU as the C/C++ library

can take up to 20 minutes on a single iteration for larger admissions.

Adjusting the Calamr hyperparameters could be even more impactful as shown in Sec-

tion 6.3.1. Tuning these hyperparameters has the potential to create better aligned content and

would improve training data for the source section model. Bayesian hyperparameter optimiza-

tion (Bergstra et al., 2013) could be used to find the best alignment with the physician-annotated

admissions in the DSProv dataset (see Section 4.2), and would very likely also produce better

results.
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To facilitate a faster alignment for a tighter hyperparameter update, align, and test loop,

the alignment capacity calculation would need to be optimized as a matrix multiplication oper-

ation on the GPU from its current per node and node neighborhood CPU computation. There

are many nonlinearities, such as the sigmoid sentence skew, for sentence dampening calcula-

tions (see Section 5.5). Optimizing over network neighborhoods further complicate this parallel

computation since kth order neighbor set nodes would have to be indexed (see Section 5.4.7).

In addition to more hyperparameter tuning in the source section model, a new model to

predict sentence order would likely improve the quality of summarization output given that the

medical professional feedback noted sentences out of order.

8.2.3 Application to Large Language Models

There is a strong likelihood that the alignment module (Calamr) of this dissertation can

be used to detect and reduce (or eliminate) hallucination in large language models (LLMs). For

example, Figure 27 shows the final flow of a summary graph on the right (green graph). The

sentence node “A plane flew over.” has no flow via the role edges because the method found

no matching or overlapping content in the source.

As explained in Chapter 6, clinical notes can number in the hundreds per admission. For

such large amounts of data, utilization of LLMs for summarization is currently not feasibly

given text length and GPU memory constraints. However, for smaller admissions or other

less memory-demanding clinical tasks, such as that of radiology report summarization, there is

potential to use LLMs for summarization, and then “smooth” out the summary using Calamr.
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Specifically, this process would involve sectioning the text and then summarizing each section

in turn. The summarized output of this step, along with the source, would then be aligned

with Calamr. As discussed in Section 8.2.1, the zero flow role edges would then be removed

from the source graph, then a AMR graph-to-text is used to generate the text of the summary.

Because none of these processes are specific to the clinical domain, any domain source could be

summarized using LLMs with hallucination removed in this fashion. As explained in Chapter 6,

these summaries would be faithful to the source and traceable through the Calamr alignments.
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Appendix A

DEFINITIONS

abstractive A method that generates unique text not always found in the source text. p. 1

admission graph A graph that forms the semantic meaning of a hospital admission. p. 129

alignment graph A flow network bipartite graph whose component connecting edges serve
to align nodes for the purpose of calculating a match score or to create training data for
summarization. p. 80

alignment graph algorithm The algorithm that uses the alignment graph construction as a
flow network to reduce the capacities. p. 11

alignment edge An edge that joins a concept node pair across the source and summary
components. p. 11

alignment graph construction The portion of the graph alignment algorithm that con-
structs a flow network from the source and summary abstract meaning representation
graphs. p. 101

AMR abstract meaning representation: A semantic representation language that describes the
abstract meaning of a sentence as an acyclic graph. AMR captures “who is doing what to
whom” in a sentence (Banarescu et al., 2013) and can also be represented in the context
free notation of Penman (Kasper, 1989). p. 2

AMR graph-to-text A model that generates natural language from abstract meaning repre-
sentation Penman notation. p. 145

automatic summarization A computational process to shorten natural language text by
reproducing only the salient information from the source text. p. 1

BERTScore Bidirectional Encoder Representations from Transformers Score: An evaluation
metric for scoring generated text. This quality is assessed by comparing reference and
generated tokens’ similarity based on the contextual embeddings of a BERT family model.
p. 19

Bleu Bilingual Evaluation Understudy: A measure that assess the quality of machine generated
translations. This quality is assessed by comparing human translated text. p. 60

Calamr (Component ALignment for Abstract Meaning Representation) An Abstract Meaning
Representation Alignment Method p. 68

aggregate alignment portion Harmonic mean of the alignment node portion across both
components. p. 113

aggregate flow Harmonic mean of the flow across both components. p. 113

summary aligned portion The portion of nodes in the summary component that have at
least one alignment. p. 113
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summary root flow The value of flow exiting the summary node to the sink. p. 112

source aligned portion The portion of nodes in the source component that have at least one
alignment. p. 112

source root flow The value of flow exiting the source node to the sink. p. 112

edge node child The node at the target end of a directed edge e in the alignment graph. p. 89

Coreference Resolution The task of finding all mentions referring to the same named entity.
p. 101

CUI (concept unique identifier) a unique identifier within the SNOMED-CT subset of the
UMLS p. 44

cui2vec A unique concept identifier embedding trained from biomedical text. p. 44

node descendant The descendants of v is defined as all paths from that node (grandchildren)
to the terminal leaf nodes. p. 97

document node A node in the alignment graph that represent some aspect of the document
rather than AMR such as paragraphs, sections, documents etc. p. 10

discharge summary A clinical note that describes a patient’s medical history, stay at a hos-
pital, and the care they received. p. xv

DSProv A automatic discharge summarization feasibility study. p. 51

DSProv dataset A dataset of annotations that associates note antecedents with discharge
summaries for the DSProv study. p. 56

encoder-decoder A deep learning architecture that encodes state in an intermediate network
layer and useful when inputs and outputs have varying sizes. p. 18

extractive A method that copies selected sentences from the source text verbatim to the
summary. p. 1

faithful How accurate the summary is. Refers to how accurate the summary is with respect
to the source text whence it originates. p. 1

flow network A graph, or capacitance network, that associates a capacity and a flow with
each edge of a graph. p. 10

capacity The upper bound constraint on the flow of material through an edge of a flow network
graph. p. 27

flow A value of the amount of flow through a flow network. p. 76

max flow The maximum amount of flow available to traverse an s-t flow network given the
capacities of the network. p. 6

flow per node The flow through an edge divided by the number descendants starting the
node incident that’s closer to the leafs to the terminal leaf nodes. p. 108

GatorTron A pretrained embedding model trained on more than 90 billion words de-identified
clinical note text. p. 142
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GNN (graph neural network) A deep neural network representing data as graphs. p. 23

hallucination Erroneous and nonfactual text automatically generated by a model. p. 12

hallucination rate The rate at which the output generates hallucinated text. p. 20

hyperparameter Any setting, or a “knob for tweaking”, that remains constant during both
training and testing of the machine learning algorithm whose purpose is to increase better
performance. p. 67

2010 i2b2 An i2b2 (Informatics for Integrating Biology and the Bedside) challenge on con-
cepts, assertions, and relations in clinical text. p. 24

knowledge graph A graph representing a knowledge base of related entities. p. 29

kth order neighbor set The subgraph induced as a set of vertexes that are at exactly k hops
from a node. p. 91

Levenshtein edit distance A metric for measuring the sequence of characters in strings. p. 60

MDS (multi-document summarization) A task consisting of automatically generating a sum-
mary from multiple documents instead of one. p. 17

MedLINE An online life sciences bibliographic database containing journal references. p. 24

MedSecId A publicly available set of 2,002 fully annotated medical notes from the MIMIC-III.
p. v

MIMIC-III (Medical Information Mart for Intensive Care III) a large freely accessible hos-
pital database of ICU data from the Beth Israel Deaconess Medical Center in Boston,
Massachusetts p. 4

note antecedent A clinical medical note containing the original information that contributed
to the discharge summary. p. 53

NER (named entity recognition) Named entities are proper nouns or anything that can be
named, such as organizations, a person’s name, locations, etc. p. 18

network neighborhood The subgraph induced as a set of vertexes adjacent to, and within
N hops from the target node. p. 82

n-gram A sequence of words or symbols. p. 19

note match A “tie” between two spans of semantically similar or copied text segments between
a note antecedent and a discharge summary. p. 54

nominalization Using the root verb form of a noun in place of a noun. p. 74

edge node parent The node at the source end of a directed edge e in the alignment graph.
p. 108

function tag The identifier of a semantic function of a role, such as location, cause, time,
purpose. p. 74

predicate A PropBank entry of a verb and its syntactic arguments that describes an event.
p. 75
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role The role played by a sense of a predicate’s verb’s grammatical subject or object. p. 74

roleset A grouping of roles that make up a particular sense of a verb belonging to a predicate.
p. 74

Penman A flat text representation widely used for abstract meaning representation graphs.
p. 13

predicating element Verb or “verb-like” main event or action core to an AMR or AMR sub-
tree. Examples include verbs (chase-01), adjectives (attract-01) and nominalizations
(the root destroy-01 is used in place of “destruction”). p. 74

PropBank Is a verb-oriented lexicon database consisting of its word sense as a “frame”. p. 21

reentrancy Nodes with more than one parent, or duplicate variable name in Penman notation.
p. 102

reference summary The human written summary from which to learn. p. 20

reduced graph The summary to source aligned graph with 0-flow edges (and their orphaned
nodes) removed. p. 136

role edge The edge that connects each abstract meaning representation graph (source and
summary) as a disconnected component. p. 11

Rouge Recall-Oriented Understudy for Gisting Evaluation: A measure that assesses the qual-
ity of generated summaries. This quality is assessed by comparing to summaries generated
by humans using overlapping n-grams counts or word pairs. p. 19

SBERT (Sentence-BERT) A siamese network model that captures sentinel semantic similarity.
p. 71

SDS (single-document summarization) A task consisting of automatically generated a sum-
mary from a single document. p. 18

section type The identifier of a clinical note section, such as History of Present Illness. p. 2

sentence matching algorithm An algorithm that matches source with summary sentence
candidates. p. 135

sentence skew Scales a sentence node and attribute semantic similarity by the linear factor
sentence dampen (γ). p. 96

Smatch An evaluation metric for abstract meaning representation similarity that uses a greedy
feature overlap method. p. 30

summarization algorithm The algorithm that uses the alignment graph algorithm output
to learn to summarize using a graph neural network. p. 11

summary component The abstract meaning representation graph generated from the refer-
ence summary. p. 6

summarizer The algorithm and trained model used to summarize AMR graphs. p. 172

SimpleNLG Alibrary used to generate natural language using a realizer. p. 23



185

Appendix A (Continued)

SOAP Subjective, Objective, Assessment and Plan. A structured format for healthcare work-
ers to document encounters and a clinical cogniative framework. p. 26

source component The abstract meaning representation graph generated from the source
text. p. 6

source section dataset The dataset used by the source section model created by aligning
admissions. p. 130

source section model The model that classifies note antecedent sentences with a discharge
summary section, or no section. p. 128

source text The document or text to be summarized. p. 1

system summary The machine generated summary. p. 20

traceable If the summary can be traced back to its source content. A summary is traceable
if every sentence in it can be traced back from the source it was responsible. p. 1

TAT (text-to-graph aligned token) an alignment from a token’s index in the sentence to a node
in the abstract meaning representation graph p. 81

UI Health dataset An IRB approved (protocol #2024-0109) private dataset of 11,001 ad-
missions and 607,872 notes, which include daily progress, radiology, ECG and a variety
of other notes from the University of Illinois Chicago hospital. p. 13

Wlk Weisfeiler-Leman Bamboo. p. 115

wordpiece Token sub-units with associated vectors and provided by the model’s tokenizer.
p. 66
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HYPERPARAMETERS

τα The lowest value threshold an alignment capacity can be before being set to zero. (alignment.align-
min capacity cutoff in the configuration.) p. 109

δ The number of layers or node depth used in the GNN. (graph network.layer depth in the
configuration.) p. 174

Λ an array of weights, each of which is used to scale the embeddings of the kth kth order neigh-
bor set neighbors (capacity calculator.neighbor embedding weights in the configu-
ration.) p. 91

τ transition and compression parameters to sigmoid function that adjusts the capacity values
of alignment edges up or down (capacity calculator.neighbor skew in the configura-
tion.) p. 95

αt This is used to scale the document positional embedding component. (document matcher.position-

scale in the configuration.) p. 67

ρc The embedding weight of a role node’s embedding. (capacity calculator.concept embedding-

role weights.neighbor in the configuration.) p. 89

ρr The embedding weight of a role embedding. (capacity calculator.concept embedding-

role weights.role in the configuration.) p. 89

τρ The lowest value an alignment capacity can be before its parent node’s descendants role
edges are set to zero. (align.role min flow cutoff in the configuration.) p. 110

γ The slope for the linear dampening of nodes under a sentence by sentence cosine similarity,
a number in range [0, 1]. The higher the value the lower the sentence similarity, which
leads to lower concept and attribute node similarities. (capacity calculator.sentence-

dampen in the configuration.) p. 96

µs The summary sentence flow distribution threshold cut-off for adding sentence matches in the
source/summary match algorithm. (calsum sent matcher.min sent flow in the config-
uration.) p. 137

τδ The threshold cut-off for creating component alignment edges during graph creation. (graph-
attrib context.similarity threshold in the configuration.) p. 104
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GOLD DISCHARGE SUMMARY

Discharge Summary by [**Doctor First Name**] [**Doctor Last Name**], MD at [**Date**]

6:00 AM

Author: [**Doctor First Name**] [**Doctor Last Name**], MD Service: Neuro Critical

Care Author Type: Resident

Filed: [**Date**] 6:09 PM Date of Service: [**Date**] 6:00 AM Status: Attested

Editor: [**Doctor First Name**] [**Doctor Last Name**], MD (Resident) Cosigner:

[**Doctor First Name**] [**Doctor Last Name**], MD at [**Date**] 12:45 PM

Attestation signed by [**Doctor First Name**] [**Doctor Last Name**], MD at

[**Date**] 12:45 PM Stroke attending: I have reviewed the above discharge summary and

agree with the assessment.

Pt eloped before I could staff the pt.

UNIVERSITY OF ILLINOIS HOSPITAL AND CLINICS

Discharge Summary

Patient: [**First Name**] [**Last Name**]

Admission Date: [**Date**]

Discharge Date: [**Date**]

Discharge Disposition: Left Against Medical Advice

Discharge Service: Stroke

Discharge Attending: [**Doctor First Name**] [**Doctor Last Name**], MD

Primary Diagnosis: Acute R medial temporal and internal capsule/thalamic stroke

Other Active Diagnoses

Diagnosis Date Noted POA

- Troponin level elevated [**Date**] Yes

Priority: High

- Stroke (CMS/HCC) [**Date**] Yes

Hospital Course

HPI:[**First Name**] [**Last Name**] 47 y.o.PMH HTN, HLD, previous stroke [**Date**]

(R-MCA watershed), presenting to ED with L sided weakness, LLE numbness, and blurry

vision b/l. Patient reports symptoms started acutely on Friday [**Date**] around 4pm

while driving causing him to have to pull over. He decided to try to sleep it off.

After waking up the following morning with no improvement, he went to [**Hospital

Name**] ED where he was seen by neurology, but left AMA as he felt he was being asked

the same questions repeatedly and nothing was getting done. CTH at [**Hospital

Name**] was without ICH, reportedly showed wedge shaped hypodensity in frontal lobe
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likely from chronic infarct. The patient reports that the left sided weakness has

improved somewhat today, but he still endorses b/l blurry vision with constant white

floaters, as well as numbness/tingling in his LLE. NIHSS is 2 (LUQ quadrantopia, LLE

numbness). CTA Hmultifocal narrowing of b/l ACAs as well as R M1 focal narrowing.B

w/oacute ischemia in medial R temporal lobe involving the posterior limb of R

internal capsule as well as possibly the thalamus, and redemonstrating old R frontal

ACA-MCA watershed infarct and old L occipital cortical infarct. Patient to be

admitted to stepdown under stroke service.

Patient with poorly controlled HTN and HLD, not takingthe past 5 monthshe says he had

trouble getting primary care appointmentprescription renewals. SBP gets up to 200s

per patient. Labs today significant for Troponin of 0.77-0.62. EKG showing T

inversions in V5 and V6. Cardiology consulted. Patient denying CP at this time.

Cardio recommending trending EKG/trop until downtrend and ordering Echo.

Patient appeared to have left before he was evaluated [**Date**] AM.

Pertinent Physical Exam At Time of Discharge

Physical Exam

PATIENT NOT EXAMINED PRIOR TO DISCHARGE

Test Results Pending At Discharge

Discharge Medications

No medications have been prescribed.

Issues Requiring Follow-Up

- Patient not evaluated prior to discharge

Outpatient Follow-Up Appointments

No future appointments.

Referrals

No orders of the defined types were placed in this encounter.

Completed Consults:

Consults Ordered This Encounter

Procedures

- Inpatient consult to General Neurology

- Inpatient consult to Cardiology

Figure 44: Gold Discharge Summary. The physician hand written gold UI Health de-
identified discharge summary. White space that spanned longer than three lines was reduced
to two.
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NOTATION

The mathematical notation follows that of “Short Guide to Typesetting Math in NLP
Papers” (Dyer et al., 2017):

G, E : upper case for graphs and sets.

P (v): upper case curly letters select nodes or edges in a graph.

e as in e ∈ E: lower case letters for variables (edge e is in the set of edges E).

e: lower case bold for vectors.

s: lower case bold italic letter for structured elements such as sentences.

α: lower case bold Greek letters for hyperparameters.

count: functions in lowercase latex characters.

, : a definition
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Rao, S., Marcu, D., Knight, K., and Daumé III, H.: Biomedical Event Extraction using Abstract
Meaning Representation. In BioNLP 2017, pages 126–135. Association for Computational
Linguistics, 2017.

Rautiainen, M. and Marschall, T.: GraphAligner: Rapid and versatile sequence-to-graph align-
ment. Genome Biology, 21(1):253, 2020.

Reimers, N. and Gurevych, I.: Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on

Natural Language Processing (EMNLP-IJCNLP), pages 3982–3992. Association for
Computational Linguistics, 2019.

Reiter, E.: An Architecture for Data-to-Text Systems. In Proceedings of the
Eleventh European Workshop on Natural Language Generation (ENLG 07), ed. S. Buse-
mann, pages 97–104. DFKI GmbH, 2007.

Sadoughi, N., Finley, G. P., Edwards, E., Robinson, A., Korenevsky, M., Brenndoerfer, M.,
Axtmann, N., Miller, M., and Suendermann-Oeft, D.: Detecting Section Boundaries
in Medical Dictations: Toward Real-Time Conversion of Medical Dictations to Clinical
Reports. In Proceedings of the 20th International Conference On Speech And Computer,



206

eds. A. Karpov, O. Jokisch, and R. Potapova, Lecture Notes in Computer Science, pages
563–573. Springer International Publishing, 2018.

Schluter, N.: The limits of automatic summarisation according to ROUGE. In
Proceedings of the 15th Conference of the European Chapter of the Association for
Computational Linguistics: Volume 2, Short Papers, pages 41–45. Association for Com-
putational Linguistics, 2017.

Schrijver, A.: On the history of the transportation and maximum flow problems. Mathematical
Programming, 91(3):437–445, 2002.

Schwartz, B. L.: Possible winners in partially completed tournaments. SIAM Review, 8(3):302–
308, 1966.

See, A., Liu, P. J., and Manning, C. D.: Get To The Point: Summarization with Pointer-
Generator Networks. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1073–1083. Association for

Computational Linguistics, 2017.

Segura-Bedmar, I., Mart́ınez, P., and Herrero-Zazo, M.: SemEval-2013 Task 9 : Ex-
traction of Drug-Drug Interactions from Biomedical Texts (DDIExtraction 2013). In
Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2:
Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval
2013), pages 341–350. Association for Computational Linguistics, 2013.

Shing, H.-C., Shivade, C., Pourdamghani, N., Resnik, P., Oard, D., and Bhatia, P.: Towards
Clinical Encounter Summarization: Learning to Compose Discharge Summaries from Prior
Notes. arXiv: 2104.13498 (Only available as arXiv preprint), 2021.

Shivade, C., Malewadkar, P., Fosler-Lussier, E., and Lai, A. M.: Comparison of UMLS ter-
minologies to identify risk of heart disease using clinical notes. Journal of Biomedical
Informatics, 58 Suppl:S103–S110, 2015.

Sinsky, C., Colligan, L., Li, L., Prgomet, M., Reynolds, S., Goeders, L., Westbrook, J., Tutty,
M., and Blike, G.: Allocation of Physician Time in Ambulatory Practice: A Time and
Motion Study in 4 Specialties. Annals of Internal Medicine, 165(11):753, 2016.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts, C.: Recursive
Deep Models for Semantic Compositionality Over a Sentiment Treebank. In Proceedings of



207

the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1631–
1642. Association for Computational Linguistics, 2013.

Sparck Jones, K.: A statistical interpretation of term specificity and its application in retrieval.
Journal of documentation, 28(1):11–21, 1972.

Steinkamp, J., Kantrowitz, J. J., and Airan-Javia, S.: Prevalence and Sources of Duplicate
Information in the Electronic Medical Record. JAMA Network Open, 5(9):e2233348, 2022.

Szubert, I., Damonte, M., Cohen, S. B., and Steedman, M.: The Role of Reentran-
cies in Abstract Meaning Representation Parsing. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 2198–2207. Association for Computa-

tional Linguistics, 2020.

Thadani, K. and McKeown, K.: Sentence Compression with Joint
Structural Inference. In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning, pages 65–74. Association for Computa-
tional Linguistics, 2013.

Tjong Kim Sang, E. F. and De Meulder, F.: Introduction to the CoNLL-2003
Shared Task: Language-Independent Named Entity Recognition. In Proceedings of the
Seventh Conference on Natural Language Learning at HLT-NAACL 2003, pages 142–147,
2003.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B.,
Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lample,
G.: LLaMA: Open and Efficient Foundation Language Models. arXiv: 2302.13971 (Only
available as arXiv preprint), 2023.

Trung, H. T., Toan, N. T., Vinh, T. V., Dat, H. T., Thang, D. C., Hung, N. Q. V., and
Sattar, A.: A comparative study on network alignment techniques. Expert Systems with
Applications, 140:112883, 2020.

Uzuner, O., South, B. R., Shen, S., and DuVall, S. L.: 2010 i2b2/VA challenge on concepts,
assertions, and relations in clinical text. Journal of the American Medical Informatics
Association : JAMIA, 18(5):552–556, 2011.

Vilca, G. C. V. and Cabezudo, M. A. S.: A Study of Abstractive Summarization Using Semantic
Representations and Discourse Level Information. In Text, Speech, and Dialogue, eds. K.



208
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