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SUMMARY

Machine learning methods increasingly have social impacts for which differences in perfor-
mance for different groups can be undesirable. Many different measures of fairness have been
defined to assess these differences and guide machine learning algorithms for classification towards
better balances between unfairness and inaccuracy. Choosing which fairness measure(s) to employ
can be challenging since each resulting classifier can have very different social impact. In this
work, we avoid this choice of fairness measure(s) by reframing fair classification as an imitation
learning problem. Rather than producing a classifier that balances predictive performance
with a specific fairness measure, our approach seeks a classifier that is better than reference
decisions across a set of fairness (and performance) measures. This thesis specifically investigates
expanding the set of classifiers supported under this formulation from flat logistic regression
classifiers to multilayer neural networks. This transition to neural networks enables a more robust
and flexible model capable of handling complex datasets and achieving better performance in

terms of fairness and accuracy.



CHAPTER 1

INTRODUCTION

(This chapter is based on a paper published as “Superhuman Fairness” (Memarrast et al.,
2023b) in the International Conference on Machine Learning 40 (ICML 2023).

The social implications of algorithmic decisions driven by machine learning have pushed
the development of various fairness criteria to ensure equitable outcomes [1,2|. However, it
is impossible to meet all common group fairness criteria simultaneously [3|. This means no
decision-making process can be entirely fair to all groups and individuals under every fairness
definition. As a result, specific weightings or trade-offs between different fairness criteria are often
optimized [4]. Determining an appropriate trade-off for these fairness methods is challenging
and can lead to philosophical and ideological debates, potentially hindering the adoption of
algorithmic methods.

We focus on a scenario where well-meaning but inherently flawed human decision-makers
currently make fairness-aware decisions. Instead of striving for optimal decisions based on specific
performance-fairness trade-offs—which may be hard to define accurately—we propose a more
feasible goal: to outperform human decisions in terms of both performance and fairness as
frequently as possible. We assume that human decisions, though noisy and suboptimal, reflect
desired performance-fairness trade-offs. This enables superhuman decisions that are superior
to human decisions in terms of predictive performance and fairness metrics (Figure 1) without

needing an explicit trade-off definition.



Predictive Performance

Group Disparity

Figure 1: Trade-off between group disparity and predictive performance. The blue curve is
the Pareto frontier. Shaded regions show "superhuman" performance levels, where algorithms
outperform human decision-makers. Black dots represent specific algorithm configurations.

To our knowledge, this formulation based on minimizing the classifier’s subdominance [5] across
different fairness/performance measures is the first to establish fairness objectives for supervised
machine learning by comparing noisy human decisions rather than relying on prescriptive
trade-offs or strict constraints.

This thesis builds upon and extends this imitation learning formulation for minimizing
subdominance. Unlike the original approach, which used logistic regression to optimize the
fairness-aware classifier, this thesis employs neural networks. This transition to neural networks
allows for a more robust and flexible model capable of handling complex datasets and achieving

better performance in terms of fairness and accuracy.



We leverage the subdominance concept not to identify a target trade-off, as previous work in
inverse optimal control does to estimate a cost function, but to directly optimize our classifier. The
neural network architecture provides a significant advantage in modeling non-linear relationships
and capturing intricate patterns within the data, which logistic regression might miss. This
results in a more effective and fair decision-making process.

We perform experiments on the Adult datasets, evaluating accuracy as a measure of perfor-
mance and three conflicting fairness definitions: Demographic Parity [1], Equalized Odds [2], and
Predictive Rate Parity [6]. Our approach demonstrates high levels of superhuman performance
that improve significantly with increased reference decision noise and outperforms other methods
that focus on more limited fairness-performance objectives.

By incorporating neural networks, this thesis enhances the capability of the fairness-aware
classifier, allowing it to handle more complex decision-making tasks. This represents a significant
step forward in the development of data-driven, fair, and effective machine learning models,
moving beyond the limitations of previous methods that relied on simpler models like logistic

regression.



CHAPTER 2

RELATED WORK

(This chapter is based on a paper published as “Superhuman Fairness” (Memarrast et al.,

2023b) in the International Conference on Machine Learning 40 (ICML 2023)

2.1 Group Fairness Measures

Group fairness measures are mainly determined using confusion matrix statistics. These
statistics rely on ground truth labels y; € {0,1} and classifier predictions g; € {0, 1} generated
from inputs z; € RM for examples belonging to different protected groups (e.g., a; € {0,1}).

In this thesis, we concentrate on three widely recognized fairness properties:

e Demographic Parity (DP) requires that the rate of positive outcomes is the same across

different protected groups. This can be formally defined as:

PY=1|A=1)=P(Y =1|A=0) (2.1)

where Y represents the predicted outcome, and A represents the group membership [1].

¢ Equalized Odds (EqOdds) requires that both the true positive rates and false positive

rates are equal across groups. This is expressed as:

PY=1|Y=yA=1)=PY =1|Y =y, A=0), Vye{0,1} (2.2)



where Y is the actual outcome [2].

e Predictive Rate Parity (PRP) ensures that the positive predictive value (the probability
that a positive prediction is correct) and the negative predictive value are equal across groups.

It can be formulated as:

PY=1|A=1Y=9)=PY =1|4=0,Y =¢), Vje{0,1} (2.3)

[6].
Violations of these fairness properties can be quantified using specific difference measures:

e Demographic Parity Difference (D.DP)

(2.4)

N ~
DDP Zz 1 yl_lal_l] Zi:l{v[yizlyaizo]
aZ = 1] Zi:l I[ai = O]

e Equalized Odds Difference (D.EqOdds)

S I =Ly =y, =1 3N I = 1,4 = y,a: = 0]

D.EqOdds(y,y,a) =
SN Iai =1,y = y] SN Ia; = 0,y; = y]

m
ye{0,1}

(2.5)

e Predictive Rate Parity Difference (D.PRP)

Z£1I[yi:17@i:yaai:1] _ Zi]LI[?/i:l’?;i:%ai:m
SN Iai = 1,5 = y] SN Ia; = 0,5 = y]

D.PRP({},y,a) =
(9,y,a) hax,

(2.6)



These measures help in assessing and quantifying the extent to which a machine learning

model’s decisions are fair across different groups.

2.2 Performance-Fairness Trade-offs

Numerous algorithms for fair classification have emerged recently, focusing on one or two
fairness measures [2,/719]. Often, predictive performance and fairness are at odds, meaning
improving one can degrade the other [10]. While achieving multiple fairness objectives is
appealing, it often results in significant performance loss or infeasibility [3].

To address this, many methods aim to optimize parameters 6 of a classifier Py to balance
performance and fairness |2,/10-{14]. Hsu et al. |[15] proposed an optimization framework to
address three conflicting fairness measures—demographic parity, equalized odds, and predictive

rate parity:

I’Ilein EQNPQ [IOSS(QQ, y) + app - DDP (Q, a) + @0dds - DEqudS(@? Y, a) + apgrp - DPRP(ya Y, a)}

2.3 Preference Elicitation & Imitation Learning

Preference Elicitation
Preference elicitation, as described by [16], is a natural method for identifying desirable
performance-fairness trade-offs. This approach typically involves querying users for their pairwise

preferences on a series of option pairs to determine their utilities for various option characteristics.



This method has been adapted for fairness measure elicitation [17], enabling efficient learning of
both linear and non-linear measures from limited and noisy preference feedback.

In contexts where multiple stakeholders make decisions [18| rather than a single individual,
preference elicitation may not be very informative. While preferences from each stakeholder can
be elicited, determining how these preferences should be prioritized to achieve joint outcomes
remains unclear without strong additional assumptions about the decision-making process, such
as outcomes determined by majority vote [19).

Imitation Learning

Imitation learning [20] is a type of supervised machine learning designed to create a general-use

policy 7 based on demonstrated sequences of states and actions, £ = (81, a1, 8o, ..., 87).
Inverse reinforcement learning methods [21,22] seek to explain these demonstrated trajectories
as the result of (near-) optimal policies under an estimated cost or reward function. Feature
matching |21] is essential in these methods, ensuring that if the expected feature counts match,
the estimated policy & will have an expected cost equal to the average of the demonstrated

trajectories:

N
Eer [fe(§)] = Jifsz (é) ,Vk (2.7)
1=1 1 N )
—> Egus [oosta(€)] = - > costa (&)
=1

where f,(§) = >, c¢ fi (s1)-



[23] seeks to surpass the provided demonstrations given that the signs of the unknown cost

function are known, specifically when w; > 0, by making the inequality,

N
Bewr (€] < 1 D fe (&), 2.9

strict for at least one feature. Subdominance minimization |24] ims to create trajectories that

exceed each demonstration by a certain margin:

fk(g) +my < fk(éz)7vzv k, (2'9)

Assuming the cost weight signs are known, this method seeks to outperform demonstrations.
However, as this is often impractical, the approach instead focuses on minimizing subdominance,

which quantifies the a-weighted violation of this inequality:

subdomg (€, €) £ Z [ak (fk fk(é)) + 1Lr, (2.10)

k

where [f(x)]; £ max(f(z),0) is the hinge function, and the per-feature margin is reparameterized
as a,;l. Previous work |24] has applied subdominance minimization along with inverse optimal

control:

N K

minminzZsubdoma(f*(w),éi), (2.11)

w a
i=1 k=1



where: £*(w) = arg Ingin g wi fx(§) (2.12)

to learn the cost function parameters w for the optimal trajectory £*(w) that minimizes

subdominance.

2.3.1 Subdominance Minimization for Improved Fairness-Aware Classification

In the paper "Superhuman Fairness" [25], the authors approach fair classification from an
imitation learning perspective. The main objective is to create a fairness-aware classifier that
consistently outperforms human-provided reference decisions in both performance and fairness

on unseen data, thereby ensuring guarantees for all stakeholders.

2.3.1.1 Superhumanness and Subdominance

Consider the reference decisions y = {g; }jj\il drawn from an unknown human decision-making
process or baseline method ]5, applied to a set of M items, Xy« = {xj}j]vil, where L is the
number of attributes in each item x;. Group membership attributes a,, indicate the group to
which item m belongs.

The predictive performance and fairness of decisions y for each item are assessed using
ground truth y and group membership a with a set of predictive loss and unfairness measures
{fx(¥,y,a)}. Higher values of these measures are less favorable. Ideally, these measures should
cover all stakeholder preference functions.

Definition 3.1: A fairness-aware classifier is considered ~-superhuman if its decisions y

satisfy:

P(f(y,y,a) = f(y,y,a)) > 7.
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Maximizing 7 directly is challenging due to the discontinuity of Pareto dominance (=<). The
subdominance serves as a convex upper bound for non-dominance in each measure { f;.} and on

1 — v in aggregate:

Subdom(’;k (97 S’a Yy, a) £ [ak(fk(yv Yy, a) - fk:(ya Yy, a)) + 1]+
subdom,(y,y,y,a Zsubdom y,a).

Given N vectors of reference decisions as demonstrations Y = {y;}¥ , the subdominance

for decision vector y with respect to the set of demonstrations is:

subdom, (y,Y,y,a =N Z subdom,(y,y,y,a).
yeY

2.3.1.2 Performance-Fairness Subdominance Minimization

We consider probabilistic predictors Py : XM — AYM that generate structured predictions
over a set of items while also being capable of making conditionally independent decisions for
each item.

Definition 3.2: The minimally subdominant fairness-aware classifier Py has model parame-

ters 6 chosen by:

argrrbinmgglEﬂXNpe subdomy(y,Y,y,a)| + A|al1.
at-
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Hinge loss slopes a £ {ak}le are also learned from the data during training. For the
subdominance of the k-th measure, «y, indicates the degree of sensitivity to underperformance in
that measure. Higher a; values reduce underperformance on that measure, minimizing overall
subdominance more effectively.

The optimization of # and « differs from single-level support vector machine optimization,
which is a convex optimization problem. Instead, subdominance is a quasi-convex function,
implying no local optima in terms of realized predictive performance/fairness measures.

Theorem 3.3: The aj-minimized subdominance,

> Tu(3. Y, y.a) £ min (subdomf, (¥, Y.y, a) + e
A A=~

is a quasiconvex function in terms of the set of measures { fx(y,y,a)}.
The gradient of the expected subdominance under Py with respect to the set of reference

decisions {y;}, is:

= ]EﬂXNPe [(Z Fk(ya?ayva)> Vg log pQ(y|X)] .
k

v9Ey|x~139 [Z Fk(yv ?a Yy, a)
k

Using gradient descent, the model weights 6 are updated iteratively based on a set of sampled

predictions y € Y from the model Pp:
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The algorithm for training the model involves initializing 6, sampling model predictions,

sorting reference decisions by measure values, computing «, and iterating until convergence.

Algorithm 1: Subdominance policy gradient optimization

Draw N set of reference decisions {y;}X_; from a human decision-maker or baseline
method P. Initialize: 6 + 6g;

while 0 not converged do

Sample model predictions {y;}} ; from Pg(.|X;) for the matching items used in
reference decisions {y;}X ;;

for k € {1,..., K} do

Sort reference decisions {y;}X; in ascending order by k' measure value fx(y;):
{y) ?T: ¥

Compute a,(j) = WM,

ap = argminm such that

(m)

X

@) +r< 2311 fr (39);
B ComPUte Fk(yivyvyaa);

00+, (S Tu(5 .y, a)) Volog Pa(yilX.):

Relationship to Thesis Contributions

Building on this imitation learning formulation for fairness, this thesis extends this approach
to incorporate more complex models, such as neural networks, to enhance performance. Logistic
regression models used previously within this approach [25] are limited to linear decision
boundaries. Multi-layer neural networks allow much more complicated non-linear decision

boundaries to be learned. These have proven to be highly beneficial in many domains, ranging
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from computer vision to natural language processing. This thesis extends the imitation learning
approach for fairness in the use of neural networks. This allows for improved predictive accuracy
and fairness performance, further pushing the boundaries of what can be achieved in fairness-
aware machine learning. In addition to the neural network, I also attempt to include additional
information for the neural network, including positive and negative predictions of each sensitive
group, to improve fairness metrics.

in the International Conference on Machine Learning 40 (ICML 2023)



CHAPTER 3

APPROACH

(A portion of this chapter (3.2 Mathematical Formulation) is based on a paper published as

“Superhuman Fairness” (Memarrast et al., 2023b)

3.1 Background of Neural Networks

Neural network is a model of machine learning that have gained significant popularity due
to their ability to model complex, non-linear relationships [26]. They consist of interconnected
nodes, or neurons, arranged in layers. The fundamental building block of a neural network is
the perceptron, which computes a weighted sum of its inputs and passes the result through a

non-linear activation function [27].

3.1.1 Architecture of Neural Networks

A typical neural network architecture includes an input layer, several hidden layers, and
an output layer. Each of these layers is made up of numerous neurons, which are completely
interconnected with the neurons in the following layer. The connections between neurons are
characterized by weights, which are adjusted during training to minimize a predefined loss

function [28].
3.1.1.1 Feedforward Neural Networks
The most basic type of neural network is the feedforward neural network (FNN), where

the data flows directly from the input layer through the hidden layers to the output layer |27].

14
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The network does not have cycles or loops, making it straightforward and suitable for many
classification and regression tasks [28|.

3.1.1.2 Activation Functions

Activation functions bring non-linearity to neural networks, allowing them to capture and
represent more intricate patterns. Popular activation functions such as the sigmoid function,
hyperbolic tangent (tanh), and Rectified Linear Unit (ReLU) [29] each possess unique features
that influence the training process and the network’s overall performance.

3.1.2 Training Neural Networks

Training a neural network is the process of adjusting the weights of the parameters based on
the error between the predicted output and the actual target. This process is typically performed
using a method called backpropagation [30], which calculates the gradient of the loss function
for each weight by using the chain rule. Optimizers such as Stochastic Gradient Descent (SGD),
Adam, and RMSprop [31] are commonly used to update the weights iteratively, reducing the loss
function over time.

3.1.3 Applications of Neural Networks

Neural networks have been widely applied in different domains, including speech and image
[32], natural language processing 33|, and autonomous systems |34]. Their ability to automatically
learn features from data without manual featuring engineering has revolutionized many fields,
making them a cornerstone of modern artificial intelligence [26].

In the context of fairness-aware classification, neural networks provide a flexible and powerful

framework for modeling complex relationships between features and the target variable. By
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incorporating fairness constraints into the training process, we aim to develop classifiers that not
only perform well but also adhere to ethical standards of fairness [2].
3.2 Subdominance Minimization with Neural Networks

Our approach extends the concept of subdominance minimization for fairness-aware classifica-
tion, as proposed in [25]. While the original method utilizes logistic regression, our work leverages
neural networks to improve the flexibility and performance of the fairness-aware classifier. This
chapter details the methodology used in our implementation.

We consider probabilistic predictors, that make structured predictions over a set of items.
The fairness-aware classifier Py is parameterized by a neural network with parameters . The
objective is to minimize the subdominance measure, which serves as a convex upper bound for

non-dominance in each performance and fairness measure.

3.2.1 Mathematical Formulation

The subdominance measure for the k-th feature is defined as:
subdomz’“ (:l)v Y, 9, CL) = [Oék (fk’(gv Y, a) - fk(gv Y, (1)) + 1]4,_ ’
and the aggregate subdominance measure is:

subdoma (), 5, y,a) = »_ subdom(* (9,7, y, a).
k
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Given N vectors of reference decisions, Y = {f;})¥, the subdominance for decision vector §

with respect to the set of demonstrations is:

- 1
subdomy (9,Y,y,a) = N Z subdome (9, 9, y, a).
gey

The optimization objective is to minimize the expected subdominance under the model Py:

argmgingliigmeNpg Subdoma(ﬁayyyva)] + Allells

3.2.2 Training Procedure
The training procedure involves iterative optimization of the neural network parameters 6
and the hinge loss slopes a = {ak}szl. The algorithm follows these steps:

1. Initialize the model parameters # and hinge loss slopes a.
2. For each iteration:

(a) Extract the label vector Y and the feature matrix X from the training data.
(b) Convert X to a tensor for input into the neural network.
(c) Sample superhuman decisions and update the sample matrix.

(d) Index the samples based on the demonstration list and calculate the sample loss for each

feature.
(e) Shuffle the demonstration indices and iterate through them:

i. For each demonstration, compute the predictions g using the neural network.
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ii. Calculate the subdominance measure for each feature and update the loss.

iii. Backpropagate the loss and update the model parameters using gradient descent.

3. After convergence, compute the optimal « values.



CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 Neural Network Architecture

In our experiments, we designed a neural network using the PyTorch library to assess the
performance and fairness of our classifier. The model consists of three fully connected (FC)
layers, each followed by ReLU activation functions. Each fully connected layers is followed by a
ReLU activation function. The final layer of the network is used to compressed down to two
outputs, which correspond to the classes to be predicted. The output from this layer is directed
into a softmax function where it returns a vector of probability scores of the classes.

The figure below visualizes the structure of our neural network, illustrating the sequence of

layers and activations used to achieve classification.

19
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Figure 2: Visualization of the neural network structure

4.2 Training and Testing Dataset Construction

In my thesis, I focus exclusively on the UCI Adult dataset to investigate decision-making

processes. This dataset comprises 45,222 entries and is utilized to predict whether a household’s
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income exceeds $50K /year based on census data, with gender serving as the criterion for group
membership.

The dataset is initially partitioned into two disjoint subsets: a training set (train-all) and
a test set (test-all), both of equal size. The test set (test-all) is completely excluded from the
training process and is used exclusively for evaluation purposes. For each demonstration, which
involves generating a vector of reference decisions, the train-all set is further divided randomly
into two equal-sized, disjoint subsets: a training set (train-demo) and a test set (test-demo).

Using the data, we equip existing fairness-aware methods with labeled train-demo data and
unlabeled test-demo data to produce decisions on the test-demo data, referred to as demonstrations
g. Specifically, we apply the post-processing approach in [36]|, which aims to minimize both
prediction error and demographic disparities using the demographic parity criterion as the
fairness constraint. Demonstrations for the Adult dataset are generated using this method.

We repeat the partitioning of the train-all dataset N = 50 times to create randomized

partitions of train-demo and test-demo, subsequently generating a set of demonstrations {g; ?21.

4.3 Results

We run the experiments three times with randomization to ensure the performance of the
model. We also experiment with neural networks of different sizes. Below is a summary of the

results.
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Figure 3: Experimental results on the Adult dataset.
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TABLE I: Experimental results on noise-free datasets

Dataset Adult
Method

Prediction error ~ DP diff EqOdds diff PRP diff

original_logistic_regression 0.220370 0.018258 0.015092 0.178658
large_nn_w_counts 0.214597 0.023829 0.005396 0.176662
large_nn_wo_counts 0.213982 0.021831 0.011610 0.178390
small_nn_wo_counts 0.205124 0.031476 0.009779 0.171306
small_nn_w_counts 0.203609 0.033652 0.014163 0.169798

eval_pp_dp 0.245076 0.065161 0.178313 0.388746
eval_pp_eq_odds 0.202258 0.107372 0.012040 0.307997
eval_fairll_dp 0.281380 0.005055 0.064160 0.107310

eval_fairll_eqodds 0.255038 0.150623 0.042668 0.109555
eval_fairll_eqopp 0.223851 0.180576 0.156833 0.094255
eval _MFOpt 0.195696 0.063152 0.077549 0.209199

In the comparison of various methods on the Adult dataset, the approach of large_nn_w_counts
exhibits competitive performance across different fairness metrics, compared to alternative meth-
ods evaluated in the study. Specifically, large_nn_w_counts achieves a prediction error of
0.214597, which is slightly above the best-performing eval_MFOpt method at 0.195696, indicating
a marginally lower accuracy but still maintaining a high standard of predictive performance.

In terms of fairness metrics, the large_nn_w_counts method demonstrates a notable per-
formance in the 'EqOdds diff” metric with a value of 0.005396, which is the lowest among all
methods and highlights capability to ensure equal odds between different demographic groups.

However, the large_nn_w_counts method shows slightly higher values in "DP diff” at 0.023829

compared to the lowest eval_fairll_dp at 0.005055, indicating a minor compromise in demo-
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graphic parity. Similarly, in the 'PRP diff’ metric, while large_nn_w_counts scores 0.176662, it

is slightly outperformed by eval_fairll_eqopp which achieves the lowest value of 0.094255.

4.3.1 Comparision with Original Method

A direct comparison between large_nn_w_counts and original_logistic_regression
highlights several key differences in performance metrics. The large_nn_w_counts method
achieves a lower prediction error of 0.214597, compared to 0.220370 for the original method. For
fairness metrics, large_nn_w_counts records a 'DP diff’ of 0.023829, which is slightly higher
than the 0.018258 observed for original_logistic_regression. However, large_nn_w_counts
significantly outperforms original_logistic_regression in the 'EqOdds diff’ metric with a
notable lower score of 0.005396 versus 0.015092. This demonstrates a substantial enhancement in
maintaining equal odds between demographic groups. In the 'PRP diff’, both methods perform
similarly, with large_nn_w_counts slightly outperforming at 0.176662 compared to 0.178658
for original_logistic_regression. Overall, the metrics indicate that large_nn_w_counts
not only improves upon the accuracy of the original_logistic_regression but also offers
significant advancements in fairness, particularly in equalizing odds across demographic groups.

Below are some additional graphs for experiments:



TABLE II: Mean and Standard Deviation of Evaluation Methods
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Method ZeroOne DP Diff EO Diff PRP Diff
(m, std) (m, std) (m, std) (m, std)
small_nn_w_counts 0.203609, 0.033652, 0.014163, 0.169798,
0.000272 0.000371 0.000666 0.000239
small_nn_wo_counts 0.205124, 0.031476, 0.009779, 0.171306,
0.000047 0.000141 0.000350 0.000072
large_nn_w_counts (.214597, 0.023829, 0.005396, 0.176662,
0.000103 0.000122 0.000261 0.000055
large_nn_wo_counts (.213982, 0.021831, 0.011610, 0.178390,
0.000024 0.000036 0.000000 0.000010
eval_pp_dp 0.245076, 0.065161, 0.178313, 0.388746,
0.000681 0.002171 0.001786 0.001255
eval_pp_eq_odds 0.202258, 0.107372, 0.012040, 0.307997,
0.000925 0.001736 0.007682 0.004493
eval_fairll_dp 0.281380, 0.005055, 0.064160, 0.107310,
0.003625 0.000281 0.016658 0.004703
eval_fairll_eqodds 0.255038, 0.150623, 0.042668, 0.109555,
0.004884 0.008970 0.017071 0.005708
eval_fairll_eqopp 0.223851, 0.180576, 0.156833, 0.094255,
0.000481 0.000995 0.003135 0.000316
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Figure 4: Experimental results on the Adult dataset. EqOdds vs DP
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Figure 5: Experimental results on the Adult dataset. DP vs Error
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Figure 6: Experimental results on the Adult dataset. DP vs Error
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Figure 7: Experimental results on the Adult dataset. DP vs Error
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Figure 8: Experimental results on the Adult dataset. EqOdds vs Error
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Figure 9: Experimental results on the Adult dataset. PRP vs Error



CHAPTER 5

CONCLUSION

This project has demonstrated that the neural network model, outperforms traditional logistic
regression in key performance areas. The neural network not only achieved lower prediction
errors but also showed significant improvements in fairness metrics, especially in "EqOdds diff’.
This evidence strongly supports the adoption of neural networks to more effectively manage the
dual demands of accuracy and fairness in predictive models.

Future research should aim to further enhance neural network architectures, with a specific
focus on improving fairness metrics without sacrificing accuracy. Experimentation with different
optimizers and exploring various network structures could provide insights into optimizing model

performance and fairness.
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