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Estimating Network Structure via Random Sampling: Cognitive Social Structures 

and the Adaptive Threshold Method 

 

“For the last thirty years, empirical social research has been dominated by the sample survey.  But as usually practiced, 

…, the survey is a sociological meat grinder, tearing the individual from his social context and guaranteeing that nobody in 

the study interacts with anyone else in it.”   

  Allen Barton, 1968 (Quoted in Freeman 2004) 

1. Introduction 
Most cross-group or cross-organizational research studies rely on random sampling for the collection of data on economic 

and organizational variables.  Such an approach precludes the measurement of the network within each organization as 

complete or near complete participation rates are needed (Wasserman and Faust, 1994).  We offer advances in data 

collection methods to enable researchers to maintain a random sample framework while also collecting network data on 

the relationships among the individuals in the organizations under study.  Our method begins by randomly sampling a 

portion of individuals in the network and then estimates the complete network based on the sampled individuals’ 

perceptions of all possible ties, which are referred to as cognitive slices.  Thus, rather than collecting data from each actor 

in the organization to observe the network in full, which is typically costly or impossible in a cross-organizational setting 

involving multiple networks, we provide a methodology to aggregate sampled individuals’ perceptions of the full network.    

There are two interrelated areas of methodological research on networks associated with our current agenda: network 

sampling (Butts 2003; Frank 2005; and Heckathorn 1997) and network measurement under conditions of missing data 

(see for instance Butts 2003; Costenbader and Valent 2003; and Borgatti et al. 2006).  This study speaks to these 

ongoing research areas but addresses them from a distinctly different angle as our goal is to recreate an accurate network 

representation from a small sample of network members. 

The following section will offer a brief justification of our methods.  Section 3 provides an overview of cognitive social 

structures and combination methods to deal with three-way data.  Section 4 will discuss our estimation and aggregation 

methods for sampling and combining cognitive slices to produce accurate representations of the “true” network.  Section 5 

will introduce the datasets we analyze and provide the results of our analysis involving a comparison of our methodology’s 

performance against the standard roster approach and the ego network approach.  Section 6 offers thoughts on 

implementation and potential limitations. 

2. Rationale 
Perhaps the most challenging step for researchers wishing to measure a network is data collection. The data collection 

phase is especially difficult  in a cross-network study as one has to measure a number of networks. Typically network 

researchers employ one of  two approaches to data collection. The first is to attempt to sample every individual in the 

organization and collect data on the direct network ties.  The second is to sample a subset of individuals and collect ego 

network data (i.e. direct ties as well as the ties among the alters).  Each method presents a different set of problems. 

The first method, utilizing a standard roster survey, requires the questionnaire to be distributed to each actor in each 

network.  This is a time consuming process for the researcher and one reason why network studies with a comparative or 

cross-network framework tend to incorporate only a few networks.  The traditional roster method also requires high 

participation rates in order to produce valid network data (Wasserman and Faust 1994).  Recent meta-analyses on survey 

response rates indicate organizational research achieves an average response rate of just over 50% (Baruch and Holtom 

2008; Anseel et al. 2010).  Issues of missing data potentially create statistical power issues by reducing the total sample 

size as some organizations with low response rates will be unsuitable for analysis given concerns over the validity of the 

network structure.  For instance, Sparrowe et al. (2001) had to eliminate nearly 20% of the groups in their analysis due to 

low response rates within those groups.  In terms of the accuracy of the network for a single group, Stork and Richards 
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(1992) note that in network of 60 actors a 75% response rate provides complete data for only 55% of the relationships in 

the network.  The remaining relationships have only partial data or no data at all and therefore determining the existence 

or inexistence of a social tie becomes problematic. The accuracy of both the whole network and individual level measures 

in the roster method are completely dependent on the response rate.  As the response rate increases the accuracy and 

validity of the measures increase. Therefore, researchers employing this method must expel additional time and 

resources in sending reminders, offering participation incentives, and following up with participants to improve response 

rates. 

While the roster method is more suited to organizational research given the bounded network, a second approach, using 

ego network data,  could be employed.  For example, one could estimate a network variable, such as density, in each 

ego-net and average across the values of the egos sampled to produce an estimate of the global density measure in a 

particular network.  The reliance on averaging across individuals alleviates some of the problems associated with time 

and response rates.  If one is randomly sampling ego networks within an organization, then demand for a high response 

rate is reduced and therefore the need for multiple follow-ups or additional incentives for organizational actors to 

participate is lessened.  However, the capability of ego network data to produce accurate whole network or global 

measures is uncertain, as a random sample of ego-networks may not result in information concerning all areas of the 

network under study.  Consequently, an ego network approach does not allow for the estimation of the overall network 

structure as it does not attempt to gather information on all actors.  That said, in an organizational research setting, one 

could employ a personal network strategy to capture global properties and therefore we include the ego network approach 

as another point of comparison with the novel methodology we present in this paper.  

The method we propose requires only a small random sample to produce accurate estimates of both network structure 

and global network measures.  The powerful combination of random sampling and network data collection provide a 

researcher with the opportunity to fruitfully explore not only economic and organizational factors related to an outcome of 

interest, but also the social structure of the human associations under study. Because our methodology relies, in part, on 

perceptions of ties in a network, we begin with a discussion of cognitive social structures. 

3. Network Data and Cognitive Social Structures 
Our methods utilize cognitive social structures (defined below) as an alternative means of data collection to address 

issues of time, response rate, and accurate measurement that arise when collecting network data for a large number of 

groups or organizations.  Specifically we ask, can we randomly sample a small subset of individual perceptions of the 

network to produce an accurate representation of the overall network those individuals are embedded in?  If accurate 

network representations can be produced from only a few individuals, then data collection can be more easily conducted 

by interviewing only a handful of randomly selected actors within an organization, and, under any research settings, 

issues of response rate can be minimized.   

3.1. Cognitive Social Structures 

Cognitive social structures (CSS) are three dimensional network structures, which represent each individual actor’s 

perception of the entire network (Krackhardt 1987).  Thus, unlike traditional data collection methods asking an actor to 

indicate only his/her ties with other actors in the network, when collecting CSS data the actor needs to provide information 

on all of the possible ties in the network.  These structures are represented as Ri,j,m, where i is the sender of the relation, j 

is the receiver of the relation, and m is the perceiver of the relation (Krackhardt 1987). Here Ri,j,m = 1 means that person m 

perceives a relation to exist from actor i to actor j.  If  Ri,j,m = 0 then person m perceives the relation to not exist.  

Therefore, a full CSS network of size N, would be an NxNxN array containing 0 or 1 entries representing the existence of 

possible ties.
1
   

In a directed network consisting of 5 actors, CSS data collection would require each actor to make a judgment about 20 

possible ties.  So in any CSS matrix, say for actor A, there are two types of data.  The first type involves information 

concerning the ties that involve actor A, which we call knowledge.  The second type involves actor A’s opinion of the ties 

                                                            
1 It is possible to have valued CSS, but for our current purposes we are only interested in binary networks. 
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between the other actors in the network, which we call perception.  For example, Figure 1 below represents a cognitive 

social structure for actor A in a 5 actor network, also referred to as A’s cognitive slice.  As noted, the knowledge data 

provided by A is in the shaded row and column and the perception data is in the non-shaded areas. 

 

Figure 1:  Cognitive Social Structure for Actor A, Knowledge versus Perception 

 

  Knowledge 

      Perception 

 

 

To date, the study of CSS has focused primarily on the psychological aspects of perception and cognitive accuracy.  

Cognitive accuracy has been defined as “the degree of similarity between an individual’s perception of the structure of 

informal relationships in a given social context and the actual structure of those relationships” (Casciaro et al. 1999, p. 

286).  Research on CSS has explored the connections between cognitive accuracy and power in an organization 

(Krackhardt 1990) as well as the structural and/or psychological reason for variations in cognitive accuracy (Pattison 

1994; Casciaro 1998).   

Of importance for the context of this paper, is the fact that research on CSS has shown that individuals have large 

variations in their ability to accurately perceive the network.  Individuals make errors of omission (claiming a tie does not 

exist when it does) and errors of commission (claiming a tie exists when it does not).   Thus, any single individual’s 

reconstruction of the network will be flawed and will generally provide a poor representation of the true network.  Our 

hypothesis guiding the research objective is that by combining a small number of flawed cognitive social structures the 

errors of omission and commission uniquely associated with a single individual can be washed away through aggregation 

with other individuals’ flawed perceptions.   

3.2. CSS Reduction/Aggregation Methods 

In order to work with cognitive social structures, because they are three-dimensional datasets, one needs to engage in 

some form of data reduction or data aggregation.  Krackhardt (1987) provided three methods of aggregating cognitive 

social structures in order to transform three-dimensional data into two-dimensional data.  The three methods discussed 

were slices, locally aggregated structures, and consensus structures.  Slices are defined as one individual’s perception of 

the network. Thus, it indicates all ties between i and j, holding the perceiver constant.   

             ,  

where m is a constant, indicating the perceiver. Locally aggregate structures (LAS) are traditional means of network data 

collection relying only on information provided by the receiver or sender of a particular tie.  The rationale being that the 

individuals best suited to determine if a tie exists are the members of the dyad under question.  Such structures are 

termed locally aggregated because “the resulting relation between i and j depends on information provided by the most 

local members in the network, namely i and j themselves” (Krackhardt 1987, p.116).  Because the CSS data contains 

information on both i’s and j’s knowledge of their individual ties to others in the network, it is possible to combine their 

knowledge through an intersection rule  

                            

or a union rule 

                          

A A B C D E 

A 0 0 1 0 1 

B 0 0 1 0 0 

C 1 1 0 0 0 

D 0 0 0 0 0 

E 1 0 0 0 0 
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Based on the preceding, for a tie from actor i to actor j to exist in the aggregated network under the LAS intersection rule, 

both actor i and actor j must agree on its existence.   Alternatively, under the LAS union rule, a tie can exist in the 

aggregate network if either i or j claim the tie to exist.  Thus, the LAS intersection rule is a more conservative rule requiring 

mutual agreement by both actors in a dyad.  Note, however, that such methods use only knowledge data and ignore all of 

the perception data provided by the respondent. 

Consensus structures rely on information provided by every individual’s perception of the tie between i and j in the 

network.  Thus, as noted by Krackhardt, a practical implementation of a consensus structure is to set a threshold value, 

where a tie is defined to exist once a certain percentage of network members claim a tie exists between i and j. The 

threshold function can be defined as: 

    
   

                       
 

            

  

 

Other methods of aggregation for three-way data have been used, see for instance Batchelder et al. (1997).   

4. The Adaptive Threshold Method 
As indicated in the brief discussion on cognitive social structures, much of the current research in cognitive network theory 

focuses on perception as the phenomena to be explained and compares individual perceptions to reality.  This paper 

seeks to combine a small subset of individual perceptions to construct an approximation of reality by estimating the “true” 

network structure from a sample of cognitive slices.  The methods to produce a single network from a random sample of 

cognitive slices will be discussed in detail below.  There are two general steps: (i) sampling individuals to obtain cognitive 

slices and (ii) aggregating cognitive slices.  Once the sampling and aggregation of slices have been discussed, details on 

the performance of our methods using actual datasets will be provided in Section 5.   

4.1. Sampling and Aggregating Cognitive Slices 

Given our desire to maintain a random sampling framework, every actor in the network has an equal probability of being 

selected and upon being selected would be asked to provide his or her cognitive social structure.  Once data has been 

gathered from a random sample of size n, aggregation of the cognitive slices relies on a two part procedure utilizing both 

types of data available in an actor’s cognitive social structure:  knowledge and perception.  As a simple example of 

aggregation, assume there are 5 actors in a network: A,B,C,D,E.  Each actor’s cognitive social structure is given in Figure 

2.  Note that there is no requirement that the CSS be symmetric. 

 

Figure 2: Sample Cognitive Slices for a 5 Actor Network 

 A A B C D E      B A B C D E 

 A 0 0 1 0 1      A 0 1 0 0 0 

 B 0 0 1 0 0      B 1 0 1 0 1 

 C 1 1 0 0 0      C 0 1 0 0 1 

 D 0 0 0 0 0      D 0 0 0 0 0 

 E 1 0 0 0 0      E 0 0 0 0 0 

                  

                  

 C A B C D E      D A B C D E 

 A 0 0 0 0 0      A 0 0 1 0 1 

 B 1 0 1 0 0      B 0 0 1 1 0 
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 C 1 1 0 0 0      C 1 1 0 0 0 

 D 0 0 0 0 0      D 0 1 0 0 1 

 

Following Krackhardt (1990), we derive the “true’ network through LAS intersection.
2
  For affective relations, that cannot 

be observed or verified objectively, the most informed actors concerning the existence of a tie are the members of the 

dyad under question. Thus, truth is based on an ideal situation, where we have information about each directional tie from 

both actors in the dyad. When determining whether the Ri,j tie exists, we can assess the information provided by i and j.  

For example, i may claim to hold a friendship tie with j, but j may not confirm i’s claim.  In this case Ri,j,i=1, Ri,j,j=0.  There is 

no way to objectively determine who is correct.  As Krackhardt (1990; 1996) claims, if both i and j agree on the i-j tie then 

it is more likely to be true than if they do not agree.  This approach of defining a friendship tie only when both parties 

agree that it exists has obvious face validity (Krackhardt 1990 p. 349). Furthermore, the use of LAS intersection offers 

another advantage.  When comparing our method with the traditional roster method in Section 5, LAS intersection 

produces a criterion graph that can be reproduced by both methodologies.  Because the LAS approach “mimics the 

typical form in which network data are collected” (Krackhardt 1990, p.349), if the informants in the traditional method are 

accurate, then the row-dominated roster method and the LAS intersection method will produce similar results.  Thus, the 

LAS intersection approach to the true network provides an achievable criterion state for both methodologies and therefore 

offers a valid point of comparison. 

The goal of our methodology is to produce an accurate representation of this “true” network when only sampling a few of 

the individuals in the network.  In other words, if we were only able to survey 3 actors of this 5 person network, how 

accurately could we combine the knowledge and perception data contained in each of their cognitive slices to 

approximate the “true” network as defined by LAS intersection?  

When a sample is drawn, the primary issue is how to determine the proper means of aggregating the sampled cognitive 

slices.  Because we are sampling actors we are forced to deal with both knowledge and perception as many of the dyads 

in the network contain actors who were not sampled and thus have no local knowledge to bear on their relations.  Under 

our sampling conditions, three different scenarios for the determination of a potential tie in the aggregated network exist.  

The first is when knowledge data is present for both actors involved in the tie (i.e. both actors were sampled).  The second 

is when no knowledge exists for a tie, and thus there is only perception about the tie’s existence (i.e. neither of the two 

actors involved in the tie under question were sampled). The third is when knowledge exists for only one of the actors 

involved in the dyad (i.e. only one of the two actors involved in the tie were sampled).   

In order to illustrate these three scenarios, consider the case where A, D, and E are selected as a sample. Each actor, 

excluding the diagonal, provides eight pieces of knowledge and twelve pieces of perception data.  In the first scenario 

when both actors in the dyad under question are sampled, we combine the knowledge components of each of the 

sampled actors using the LAS intersection rule.  Thus, for instance: (i) the D-E tie was both claimed by D and E, so the tie 

exists in the aggregate network; (ii) A-E tie was claimed by A, but denied by E, so the tie does not exist in aggregate 

network, and (iii) the A-D tie was denied by both A and D, so the tie does not exist in aggregate network.  According to our 

method, no perceptions can change the existence or non-existence of these ties. 

In the second scenario, neither of the actors was sampled and so the existence of the tie can only be determined by the 

perception of others.  Thus, in our sample of A, D, E, the existence of a tie between B-C in the aggregated network relies 

on the sampled actors’ perception that such a tie exists because neither actor B nor actor C were sampled.  The critical 

question in these instances is how much perception evidence must be brought to bear on a particular tie before we claim 

that it exists in the aggregate network.  This requires us to set an evidence threshold, k, where if k or more sampled actors 

perceive a tie to exist, then the tie will be created in the aggregate network.  Discussion about how k is determined is 

detailed in Section 4.2. 

                                                            
2 There are other ways to construct the “true” network given a set of informant reports.  Butts (2003) and Romney et al.  (1986) 
argue that truth can be approximated via consensus methods.  
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In the third scenario, where only one individual of a possible tie is sampled, we must also rely on perception.  For 

example, A claims a tie with C, but C was not sampled.  We cannot treat this as the A-E case, since C was not sampled, 

so C did not have a chance to accept or deny this tie. Therefore, we treat this as perception, and the existence of the A-C 

tie has one piece of perception evidence indicating that the tie exists.  In such a case, if our perception threshold is k, then 

k-1 additional perceptions from the other sampled actors must be present to conclude that A-C tie exists.  

Following this approach, the network estimated from sample A, D, E, and the “true” network obtained by the CSS 

intersection of all five slices are given in Figure 3.  The estimated network in Figure 3 was determined by setting a simple 

evidence threshold, k, to a value of 2.   

 

Figure 3:  True Network Derived Via LAS Intersection (TRUE) and the Estimated Network (EST.)  

 

 

 

In this simple example, the estimated network produced both an error of omission (B-E tie) and an error of commission (A-

C tie).  It is evident that determining the threshold k becomes the most important factor for our aggregation methods to 

produce an accurate representation of the “true” network.   In this example, k was arbitrarily defined to be 2. This means 

that if two or more sampled individuals claim a tie existed between any two unsampled individuals, then the tie will be 

established in the aggregate network.  This is a naive way to determine k.  As sample sizes drawn from different networks 

will vary, a static level of k will tend to perform poorly (see Section 5 below).  In addition, each sample will contain actors 

with varying capacity to accurately perceive the network and thus varying propensities to commit errors.  A more 

sophisticated approach to defining and adapting the threshold level for a particular sample should take into account both 

the size and error rate.   

 

4.2. Setting an Adaptive Threshold 

From previous research on cognitive social structures it is known that individuals vary in the amount of errors of omission 

and errors of commission they make.   Because of this, any sample of cognitive slices may be more or less prone to error 

and hence more or less trustworthy as a whole.  It would be helpful to provide a measure of the accuracy of the sample 

drawn and use the measure of accuracy to set the most appropriate threshold for k.   This would allow k to be adjusted as 

a means of controlling the amount of error that occurs when aggregating a sample of cognitive slices. Borrowing 

terminology from statistics, two error types are possible when determining the existence of ties: Type 1 errors or errors of 

commission, and Type 2 errors or errors of omission.  Then for a given threshold k, we have 

P(Type 1 Error)= P(Perception says there is a tie | There is no tie) =                   (1) 

P(Type 2 Error)= P(Perception says there is no tie | There is tie) =                   (2) 

where P denotes probability.  We will estimate these probabilities from the observed frequencies.  Because each sample 

of cognitive slices contains both knowledge and perception, we are able to estimate the probability of error from the 

sample itself without the need for a full dataset.  In our adaptive threshold method we focus on Type 1 errors due to the 

lack of knowledge about the origins of Type 2 errors.  A Type 2 error can occur because either an actor does not believe 

that a tie exists between two individuals or because the actor is simply unaware of whether a tie exists and the default 

decision when unaware of a tie may be to claim its inexistence.  This creates problems when attempting to measure and 

TRUE A B C D E   EST. A B C D E 

A 0 0 0 0 0   A 0 0 1 0 0 

B 0 0 1 0 1   B 0 0 1 0 0 

C 1 1 0 0 0   C 1 1 0 0 0 

D 0 0 0 0 1   D 0 0 0 0 1 

E 0 0 0 1 0   E 0 0 0 1 0 
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reduce Type 2 errors during the aggregation of cognitive slices.  Type 1 error is also more important for aggregating 

cognitive slices as the evidence threshold in the consensus methods for cognitive social structures is based on those who 

perceive a tie to exist, and thus errors of commission are potentially more costly. 

For an example of a Type 1 error in the context of a single cognitive slice, return to Figure 2 and view the sampled slices 

of A, D, and E.  Note that A claims to not send a tie to D and D claims to not receive a tie from A.  Thus, based only the 

sampled slices we know that the directional tie A-D does not exist in the “true” network.  An example of a Type 1 error 

occurs in the sampled cognitive slices because actor E perceives that a tie exists from A to D when in fact we know that it 

does not.  Thus, actor E committed a Type 1 error and we can acknowledge this error based solely on the sampled 

cognitive slices.  This is a crucial point.  We can locate and count the number of Type 1 errors committed by a cognitive 

slice based only on information from individuals who were sampled.  With larger networks, the opportunities to create 

Type 1 errors increase and thus it is possible to develop a reasonable estimate of the overall accuracy of the sampled 

actors’ perceptions.  This allows k to be determined by setting a tolerable level of Type 1 error and then calculating the 

threshold value of k that is necessary to meet the pre-defined tolerance level.   

Hence, k can adjust based on the measure of the accuracy of each sample drawn.  Formally, our estimator of a Type 1 

error rate,    , is simply:
3
 

    
 umber of  ype 1 Errors Comitted by the Sample

 umber of  ossible  ype 1 Errors in the Sample
 ,                                                          (3)  

where n is the sample size.  Type 1 errors or the number of perception ties cancelled by knowledge can be increased or 

decreased based on the value of k.  For instance, in a sample of 8 actors (say person A through person H) from a larger 

network we would directly observe 56 interactions among those sampled individuals.  These interactions are pieces of 

knowledge or ties that are known based on local interaction and thus known to exist or not exist in the “true” network.  We 

can then observe how each of the sampled actors perceives those ties to be distributed among the other sampled actors.  

For instance, assume there is no tie from actor A to actor B.  Under LAS intersection rules, this would mean that actor A 

denied sending a tie to B and actor B denied receiving a tie from A.  We can look to see how many of the remaining six 

sampled actors (C through H) perceived a tie to exist.   The six other sampled actors would collectively make a Type 1 

error if k or more of them perceived the tie to exist.  By adjusting k we can adjust the number of Type 1 errors committed 

by any particular sample of actors.  Because we can determine the accuracy of each sample, we can determine how high 

or low our threshold level of k needs to be set to keep that sample’s Type 1 error below some pre-defined level.  

Given that the actors are randomly sampled, the error rate calculated from the sample of cognitive slices is assumed to be 

an accurate representation of the overall error rate the sampled actors would make for the entire network.  Thus, for a 

given sample we can set a tolerable Type 1 error rate and let the accuracy or accountability of the sample determine the 

threshold level k necessary for the sample to not exceed the Type 1 error rate.  The algorithm to determine the exact k for 

a given sample operates as follows:  

Step 1. Set α, the tolerable error rate. Typical values are 0.05, 0.10, 0.15 

Step 2. Draw a random sample of size n. 

Step 3. Find the smallest k such that      , and denote this by k*. 

Step 4. Compute the estimated network using the aggregation method with threshold k*. 

In what follows we will refer to this methodology as the adaptive threshold method.   For a formulized handling of the 

methodology please see Appendix A.  

                                                            
3 If we assume that all known ties between sampled actors, in other words the local knowledge of the ties in the sample, are all zero, 
then in a sample of n actors there are n(n-1)(n-2) opportunities to make a Type 1 error.  This is because each of the n sampled actors 
is not involved in (n-1)(n-2) of the ties and therefore is capable of making a Type 1 error for these dyads only. 



8 
 

5. Performance of the Adaptive Threshold Method 
In this section we illustrate the performance of the adaptive threshold method through an extended simulation study.  The 

simulation study consists of repeated sampling from real datasets where the complete CSS is known for each individual. 

Section 5.1 describes the datasets, Section 5.2 gives a short review of the global network measures we assess, Section 

5.3 provides some basic properties of our estimators, and Section 5.4 presents the main findings comparing the adaptive 

threshold method with the traditional roster and ego network methods. 

5.1. Data 

To test our method of aggregation using the algorithm to adaptively define k, we analyze five datasets.  The five datasets 

are: (i) High Tech Mangers – 21 managers of machinery firm, (ii) Silicon Systems – 36 semiskilled production and service 

workers from an small entrepreneurial firm, (iii) Pacific Distributors – 33 key personnel from the headquarters of an 

electronics components distributor, (iv) Government Office – 36 government employees at the federal level, and (v) Italian 

University – 25 researchers across three interrelated research centers at a university.  Each dataset contains a CSS for all 

or nearly all actors in the network for both friendship and advice relationships.  In this study we focus on friendship ties.  

Because the datasets we use contain cognitive slices for all individuals in the network, we are able to run multiple trials.  

Each trail pulls various random samples and creates an approximation of the network from the sampled individuals’ 

cognitive data.  Every random sample produces a different estimation of the network and we evaluate the variability from 

sample to sample.  More importantly, because the datasets contain cognitive slices for all actors, we are able to generate 

the “true” network, or criterion graph.  By establishing the “true” network, we can dependably assess the performance of 

our methodology.  Obviously, when employing our methodology in practice, as with any sampling methodology, one will 

never have data on the full population under study and thus never know the true value of the variable of interest.  In our 

case, this means that a cognitive slice will not be available for every actor as the goal of the methodology is to rely on a 

small random sample of cognitive slices to estimate the overall network.  The primary objective of this paper is to 

demonstrate the behavior of our methods under various sampling conditions when the “true” structure is known.   his 

allows us to understand how such procedures will behave in the field. 

5.2. Global Network Measures 

We evaluate our performance through the correlation of the estimated network with the true network, and through our 

ability to estimate several global network measures, namely, density, clustering coefficient, and average path length.  We 

give a short review of all these concepts, but refer the reader to Wasserman and Faust (1994) for a general treatment of 

network concepts. 

Following Krackhardt (1990), we utilize a correspondence measure to assess the accuracy of the aggregated network 

with the true network.  The correspondence measure, labeled as S14 by Gower and Legendre (1986), calculates the 

accuracy of the aggregated network.  Given that the matrices of relationships in the five datasets contain only ones and 

zeros, there are four possible states of relationship between the aggregated network and the true network: 

 a – matching zeros, meaning the ij cell in the true network is zero and the corresponding ij cell in the aggregated 

network is zero 

 b – omission error, meaning the ij cell in the true network is 1 but the corresponding ij cell in the aggregated 

network is zero 

 c – commission error, meaning the ij cell in the true network is zero but the corresponding ij cell in the aggregated 

network is one 

 d – matching ones, meaning the ij cell in the true network is one and the corresponding ij cell in the aggregated 

network is one 

Given these definitions, correlation is calculated as follows:
4
 

                                                            
4 As noted by Krackhardt (1990),   S14 provides a value that is equal to what one would obtain if the matrices were vectorized and a 
simple Pearson correlation coefficient was calculated.  



9 
 

     
     

                     
   

Network density is a measure of the connectedness of the overall network.  Density of a network is the ratio of existing 

ties to the number of possible ties. For directed graphs the formula for density is:  

l / n(n-1), 

where l  is the number of existing ties, and n(n-1)  is the number of possible directed ties among the n actors. 

The clustering coefficient, also referred to as transitivity, is the probability that two neighbors of a randomly chosen node 

are themselves connected.  In other words, looking at a particular node in the network, the clustering coefficient measures 

the interconnectedness among the alters of that node.  The formula for the clustering coefficient of a single node i is 

defined as: 

     
  

        
   

where Ai is the number of ties between node i’s mi adjacent nodes (Kilduff et al. 2008)
5
.  The global clustering coefficient is 

simply the average of the individual clustering coefficients for all nodes. 

The shortest path length between two nodes, known as the geodesic distance, is defined as the smallest number of ties 

needed to connect two nodes in a network.  If two nodes can be connected via existing ties in the network they are said to 

be reachable.  The average path length is simply the mean path length of all pairs of reachable nodes, which is defined 

as: 

 

      
           

 
   

 
   , 

where           is the geodesic distance between node i and node j (Kilduff et al. 2008).
6
   

 

5.3. Performance of Adaptive Threshold Method and Effect of   

We now illustrate the performance and characteristics of the proposed estimation method through graphs summarizing 

our simulation results.  For each graph in this section and in Section 5.4, the horizontal axis represents the sample size 

taken from the network under study, and the vertical axis represents the value of an estimated network measure. A 

horizontal line in each graph displays the true network measure. The colored lines in the graphs correspond to the 95% 

empirical confidence intervals (CI) for every sample size considered.   For a given sample size, say n, an empirical 95% 

confidence interval is obtained by randomly drawing 1,000 samples of size n, estimating the network measure of interest 

using the indicated method for each sample, and reporting the 2.5th and 97.5th percentiles of the estimates.  

For an initial assessment, we begin by comparing a static threshold approach with our adaptive threshold method.  We 

use the High Tech Managers data and consider all sample sizes between 4 and 21.  In the simulation we draw 1,000 

random samples for each sample size, and estimate the network density for every sample.  Figure 4-a displays the results 

of a simulation study for static k=2, static k=5, and static k=8.  Figure 4-b displays the results of the adaptive threshold 

method using 3 different levels of  . 

 

                                                            
5 Note the formula for transitivity for a graph is often written differently.  It is calculated as  

                           

                                    
.  The 

numerator is the number of subgraphs of 3 nodes all of which are connected.  The denominator is the number of connected and 
non-connected subgraphs of 3 nodes.   
6 For two nodes that are unreachable, their values are ignored in the calculation of the shortest path length.  Thus, the average path 
length calculation only considers distances between reachable nodes in the network. 



10 
 

Figure 4: Static versus Adaptive Methods 

 

 

We can see from Figure 4-a that selection of a static threshold k is crucial, as small k leads to overestimation and large k 

leads to underestimation of the network measure. The threshold of k=2  is too low when sampling, say, 12 individuals.  If 

just 2 of those 12 individuals make the same error of commission then an erroneous tie is placed in the network.  The k=2 

curve begins to decrease after the half waypoint because more and more ties are determined by local knowledge and 

thus there are fewer chances for errors of commission to occur.  We find a very different effect for the k=5 and the k=8 

lines, as these threshold tend to be too high.  This sensitivity is not present for the adaptive threshold method as seen in 

Figure 4-b, as the threshold method specifies    as opposed to k, giving the researcher control of the probability of a Type 

1 error.  Accordingly, with a low   level of 0.05, the threshold values are the highest  and therefore the distribution of 

density estimates is slightly lower when compared with the other   levels.  As the   value moves to 0.10 and to 0.15 the 

threshold values drop, resulting in density measures with slightly larger predicted values.  Regardless of the   level, the 

true density is consistently covered within the confidence intervals, and as the sample size increases, the variability 

decreases and the estimated density converges to the true value. These results provide a strong motivation for utilizing 

the adaptive threshold method. 

The choice of   is important in the adaptive threshold method.  For each dataset and for each measure, different   levels 

will produce different results.  As with setting a Type 1 error rate in traditional statistics, there are no hard rules to finding 

the optimal level.  While the results are not shown here, our investigation of various   levels across the datasets and 

across network measures revealed that an   set between 0.08 to 0.12 produced the most reliable results.  The final 

choice of an   rate is ultimately the researcher’s and depends on the importance placed on errors of commission and 

errors of omission. 

5.4       Comparing the Adaptive Threshold Method to Standard SNA Methods 

In this section we incorporate all five datasets and analyze how the adaptive threshold method performs at estimating 

various network level indices.   For each of the five networks, simulation studies were carried out in order to produce the 

95% empirical confidence intervals for each of the network measures.  We report the 95% empirical confidence intervals 

for the graph correlation with the true network, density, clustering coefficient, and average path length.  In order to assess 

how well the adaptive threshold method performs we compare it’s performance with two other standard approaches.  

These approaches are the traditional roster method, which collects data on each actor in the network about his or her 

direct ties, and the ego network approach, which collects data on the focal actor's direct ties as well as the ties among 

his/her alters.   
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For the traditional roster approach, the network at each sample size was generated by combining the self-reports of the 

sampled actor’s ties.  In cases where some individuals were not sampled, missing data was imputed through 

symmetrization.  For example, if actor i was sampled but actor j was not, then initially the row for actor j would be empty.  

To estimate the structure of j’s ties we used a simple strategy commonly employed by network researchers when dealing 

with (what are believed to be) logically symmetric relations - the missing j-i tie is set to the same value as non-missing i-j 

tie.
7
 Because we intend to compare our method to the traditional roster method when the roster method achieves 

moderate to high response rate, imputing missing data only affects a small proportion of ties in these ranges. 

For the ego network approach, global measures were estimated by calculating the value of the measure in each sampled 

actor’s ego-network and then averaging those values across all n sampled actors.  Note, that because the ego network 

approach does not produce an approximation of the network structure it is not displayed in the graphics comparing graph 

correlation.  Additionally, because the ego network approach asks individuals to identify their alters and the connections 

among their alters, by definition, all individuals in the ego network must be a distance of no greater than 2 steps away 

from each other.  Therefore, average path length measures were not calculated for ego network samples. 

The results of our comparison between the adaptive threshold approach with  =0.1 , the traditional roster approach, and 

the ego network approach are displayed in Figure 5 and Figure 6.  Figure 5 presents the confidence intervals for 

correlation, and Figure 6 presents the confidence intervals and mean square error (MSE) plots for global network 

measures. Mean square error is a standard tool in evaluating the performance of an estimator in terms of bias and 

variability. For a given n, mean square error for a network measure is simply computed as MSE=variance+bias
2
, where 

variance is the observed variance of the estimated network measure, and bias is the difference between the true value of 

the network measure and the average of the estimated network measure, based on 1000 repetitions.   As stated before, 

horizontal line in the confidence interval graphs indicates the true value.  For the MSE graphs, the horizontal dashed 

yellow line is provided as a point of comparison, and indicates the MSE of the roster method when a 70% response rate is 

achieved.   

 

Figure 5: Graph Correlations 

 

                                                            
7 In results not shown here, we aggregated the roster approach data without using symmetrization to impute the missing relations.  
Such an approach leaves missing actor’s rows blank and thus does a very poor job of estimating structure. With no other information 
to determine non-sampled actors’ ties, symmetrizing provides the most informed approach for estimating structure.  There are 
other ways to impute missing data, including the use of exponential random graph models, which are beyond the scope of this 
paper. 
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Figure 6: Global Network Measures 

High Tech Managers Data 
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Italian University Data 
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Government Office Data 
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Silicon Systems Data 
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Pacific Distributers Data 
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In Figure 5, both methods of estimating network structure have an upwardly sloping trend as sample size increases 

indicating a closer approximation to the true network.  However, the traditional roster approach does not achieve 100% 

correlation in our trials, as it does not converge to the true network.  The main reason for this lack of convergence is that 

under the traditional roster method, actor i is only asked about those individuals with whom he/she is friends. Therefore, if 

actor i claims to be tied to actor j then the i-j tie is said to exist in the network. This presents a significant opportunity for 

error as the existence of this tie does not take into account actor j’s belief of the i-j tie.  Hence, the existence of a tie is 

never verified; its existence solely relies on actor i’s individual claim.
 8
  While it is theoretically possible for the roster 

method to perfectly reproduce the true network, in practice, due to the rosters methods reliance on row data, the resulting 

network tends to be biased due to inaccurate self reports.   

In Figure 6, one should view n as representing sample size for adaptive threshold and ego-net methods, and response 

rate for traditional roster method. Thus, one can compare the performance of the roster method with an 70% response 

rate to the adaptive threshold method and ego-net method using a 30% sample size. Figure 6 clearly indicates that the 

adaptive threshold method provides better coverage of the true network measure than either of the two standard SNA 

approaches. Even with very small sample sizes, we find that the adaptive threshold method produces a 95% confidence 

interval which consistently captures the true global measure with a reasonable interval width.  In fact, across all datasets 

and all global measures, except for the path length estimate in the Government Office, the true value is within the 

confidence bands at all sample sizes.  We can also compare the different methods' performance through MSE plots.  By 

comparing the MSE plots, one can determine the point at which the adaptive threshold method outperforms the other 

methods.   For example, the MSE plot for High Tech Managers network density indicates that, no matter how small the 

sample size used with the adaptive threshold method, it performs better than the traditional method with 70% response 

rate, in terms of MSE. When we look at the MSE graphs for the five datasets and three network measures, we see that 

overall the adaptive threshold method outperforms the two traditional methods in terms of MSE, especially for density and 

average path length.    

The graphs reveal that the ego network and the roster method approach tend to overestimate the density and clustering 

coefficients.  One reason for the overestimation of density is that respondents tend to over-report the number of friends 

they have (Kumasar et al. 1994).  While this tendency is still present with the adaptive threshold method when 

determining ties based on knowledge, its influence is diminished by checking the validity if i’s claim of the i-j tie with j’s 

claim of the i-j tie.  In instances where neither i nor j are sampled, respondents’ inclination to claim more ties than are 

actually present is eliminated due to the reliance on the perception of others.  

Increases in density tend to lead to increases in clustering simply due to the larger number of ties.  Heider (1958) provides 

an  additional, psychological reason, why the clustering coefficient may be inflated for the ego network method.  Based on 

Heider’s (1958) balance theory, individuals tend to view relationships as being transitive.  If actor J is friends with actor A 

and actor B, but unaware of the relationship between A and B, actor J will tend to assume a tie exists between A and B to 

form a balanced triad.  Freeman (1992) discovered that a large number of the errors in a respondent’s recall of a 

previously observed network could be attributed to his/her inclination to correct intransitivity.  With regard to calculating 

path length, the overestimation of density results in an underestimation of the average distance between actors. 

Overall, the comparisons strongly indicate that the adaptive threshold method outperforms the traditional SNA approaches 

to data collection.  In addition to the improved accuracy in estimating the network structure, the adaptive threshold method 

also provides the researcher with the benefits of random sampling and a reduced need for high participation rates.  These 

benefits can greatly enhance comparative research grounded in the network perspective.  There are two cases in which 

the adaptive threshold method does not perform as well.  Both the clustering coefficient and the average path length in the 

Government Office dataset are poorly estimated at small sample sizes relative to the other methods.  A primary reason for 

                                                            
8 The fact that i and j may differ in their perception of the i-j friendship tie may appear unintuitive.  We refer the reader to Carly and 
Krackhardt (1996), which details the processes by which non-symmetry and non-reciprocation occur with interaction based 
behaviors.  Because of this, we would advise researchers interested in employing the traditional roster approach to always ask about 
directed relationships in both directions.  While this often takes place with instrumental ties, such as advice seeking/advice 
providing, such an approach is also necessary for affective ties that appear logically symmetric.  
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the poor performance is the large confidence intervals arising from the variation in the actors' perception of the network.    

The incorporation of a significant number of additional datasets would be necessary to better understand the contextual 

conditions that may give rise to large variation in actor perception.  However, it is also possible that the results are simply 

idiosyncratic to the Government Office.  Regardless of the factors influencing perception, a researcher seeking to a 

measure a network would, on average, be best served by using the adaptive threshold method.   

6. Thoughts on Implementation and Limitations 

Research utilizing a network perspective (Brass 1995; Cross et al. 2003) is seen as an improvement upon traditional 

econometric or statistical models as it investigates social influence, and not solely individual attributes, as explanation of 

social phenomena (Burt 1992, p. 4).  Previous research has demonstrated that informal social structures facilitate 

communication, collaboration, knowledge transfer, and innovation within an organization (Kilduff and Tsai 2003; Kilduff 

and Krackhardt 2008).  Experimental work dating back to the 1950s has demonstrated the importance of communication 

patterns for group performance (Bavelas 1950; Guetzkow and Simon 1955; Leavitt 1951; Shaw 1964).  The effect of 

network structure on collective outcomes has been demonstrated for bank profitability (Krackhardt and Hansen 1993), 

work groups of a telecommunications firm (Cummings and Cross 2003), mental health networks (Provan and Milward 

1995; Provan and Sebastian 1998), artistic groups (Uzzi and Spiro 2005), and electronic product development projects 

(Hansen 1999).  Such cross-network research could be enhanced through the adaptive threshold method by facilitating 

the researcher's ability to gather data on a larger number of networks.  Furthermore, there are several current research 

areas that could benefit by comparing structure and performance across multiple networks. 

One example is the role of social networks in teacher and school performance.   Daly et al. (2010, p. 363) state that 

“teachers working in collaboration tend to have a wider skill variety, be more informed about their colleagues’ work and 

student performance, report increased instructional efficacy, and are more likely to express higher levels of satisfaction”.  

Schools with higher levels of social capital have been show to have higher performance (Leana and Pil 2006).  However, 

the relationship between social capital and school performance has not been rigorously tested using network methods.  A 

comparative study could test the relationship between the actual structure of a social network in a school that gives rise to 

social capital and the collective performance of the teacher’s in the school.  Gathering data in the 50 to 100 schools 

necessary for statistical analysis may be prove difficult for the researcher using a standard roster approach.  With the 

adaptive threshold method, a small random sample of teachers in each school could provide all of the necessary 

structural information.  In addition, because adaptive threshold uses a random sample, additional information concerning 

the school climate, organizational commitment, and other important school level factors can be estimated from the 

participating teachers.   

When researchers look to employ the adaptive threshold method in a study such as the one described above, two key 

decisions must be made.  One is determining the   rate and the other is determining the sample size needed from each 

organization or network under study.  As noted above,   rates in the 0.08 to 0.12 range tended to perform the best for our 

measures and for our networks.  Based on the results in Section 5, it appears that sampling percentages as low as 25-

40% can produce accurate results and provides the researcher with a large enough sample to deal with several non-

respondents.  Clearly, in any given instance, the necessary sample size is dependent upon the accuracy of the actors in 

the network.  If individuals in a particular network have higher quality perceptions about the relations around them, then 

even smaller sample sizes will produce an accurate picture of the network.  Cases like the Government Office, where the 

clustering coefficient and average path length were poorly estimated at low sample sizes, provide a perfect example 

indicating that our methods are sensitive to the quality of perception slices. When the correlations between the slices are 

low, the variances of our estimators may be large for small sample sizes as the few 'knowledge' ties are not able to 

correct the false 'perception' ties yet. This is illustrated by the large MSE values for small sample sizes in the Government 

Office dataset. The researcher should be aware of this sensitivity issue when selecting a sample size and a threshold 

value alpha. 

This paper represents only a first attempt at probing the applicability of these methods.  Future work on this topic can 

attempt to improve upon the current performance of our estimator.   A potential means of improvement would be to 

measure the accuracy for each individual in the sample rather than the accuracy of the overall sample.  Given that 
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individuals have varying propensities to commit Type 1 and Type 2 errors, such information could be used to weight the 

perception of each individual.  One could identify the individuals who tend to make errors of commission and those who 

tend to make errors of omission and use this information to better determine the existence of ties based on perception 

data.  These methods may also be adapted to aid researches with needs that extend beyond a random sample or wish to 

utilize other sampling techniques to improve estimate accuracy.  For example, research has shown that people with 

higher level positions in companies tend to have poorer cognitive accuracy (Casciaro 1998).  Given this, a researcher may 

choose to over sample individuals in the lower ranks.  An alternative approach would be to apply an adaptive sampling 

framework where once an initial actor’s CSS is given, the researcher can determine the next individual in the network to 

sample by selecting an individual who is not friends with the initial respondent.  Such a method would provide greater 

coverage in all areas of a network that may not be achieved through random sampling alone.  The current research could 

also be broadened by looking beyond network level measures to track the accuracy of network representation on an 

individual level (i.e. how often is the most central person in the network correctly identified; see for instance the work by 

Borgatti et al. 2006).     

Another promising avenue of potential use for our methodology is in the area of hard to reach networks.  Given the 

inherent difficulty of accessing a significant number of actors in hidden or hard to reach networks, network data collection 

is often impossible.  However, it may be feasible to locate a few individuals in the hard to reach network, work with them 

to bound the network, and then use our techniques to generate estimates of the actual structure of the network. 

There are limitations to our approach as well.  The size of the network under study controls the applicability of our 

sampling methodology as a data collection tool.  As noted by Krackhardt (1987), in cases where the network is reasonably 

large, having a respondent provide his or her perception of every tie in the network would be a difficult task.  However, for 

networks of small to moderate sizes, cognitive structures can and have been used effectively as a data collection method. 

However, there is opportunity  to expand the adaptive threshold method to larger networks.  Burt and Ronchi (1994) 

attempted to measure the structure of a large intra-organizational network using a capture-recapture method by 

interviewing only a subset of the population understudy.  Relationships between individuals not directly interviewed were 

determined based on the informant’s perception of the strength of connection.  Burt and Ronchi (1994) found that strong 

relations tended to be “recaptured”, meaning they were perceived by multiple informants in the network as occurring.  

Therefore, it might be possible to map relationships among individuals in a large network using a partial cognitive social 

structure approach where not every individual is asked about every tie.  In a network of 500 people, a 20% sample size 

provides 100 pieces of evidence for every tie.  This may be more evidence than is necessary to accurately determine a 

relationship and clearly the demands on the sampled informants would be much too great to actually attempt to gather 

cognitive social structure data on a network that size. 

One potential solution to the demands placed on a respondent to a cognitive social structure questionnaire in a larger 

network is the link sampling design discussed by Butts (2003).  With a link sampling design, individuals are not required to 

provide information on all possible relationships in his/her network but rather on only a subset of them.  Finding the proper 

balance between the size of the sample and the size of the subset of links an individual in the sample would be required 

to provide information on is an interesting next step for this approach. Locating the balance necessary to reduce 

respondent burden and maintain accurate network representations would greatly expand the potential range of application 

for our method. 

7. Conclusion 

The adaptive threshold method proposed in this study is well suited for network research where complete data collection 

is costly or impossible, particularly for cross-network studies. Large scale cross-network studies are rare due to the time 

and expense required to collect network data on a large number of networks for statistical analysis as well as concerns 

over the validity of network structure when missing data is present.  Our sampling methods can drastically reduce 

researcher time and effort needed to uncover network structures, and, as demonstrated in the paper, are capable of 

producing accurate representations of the true network.  More importantly, our methods proved to be more reliable than 

either of the two alternative measures to collect network data. 
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Appendix A:   Formulation of the Adaptive Threshold Methodology 

In order to formulize the methodology described in the text, we introduce the following notation and summarize the 

methodology in a three-step procedure. Consider an unknown NxN network  . Assume we randomly selected n NxN CSS 
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slices from this network, say             For a given vector t, let 1(t) denote an NxN matrix whose row and column 

entries corresponding to t are 1’s and the rest are 0’s. Similarly, let 1(-t) denote an NxN matrix whose row and column 

entries corresponding to t are 0’s and the rest are 1’s. Let s denote a vector containing the index numbers of the sampled 

slices. For example, in the 5x5x5 example in Section 4, where A,D, and E are sampled, s={1,4,5}. We denote the sampled 

and unsampled portions of the network by S and U respectively, where 

        

         

Let       denote a function which assigns 1’s to all the entries of a matrix A that are greater than a given constant t, and 

assigns 0’s to all the remaining entries. Let “*” denote the element by element multiplication of two matrices. For a given 

threshold k, we would like to find   , an estimate of  , based on the CSS slices             

Step 1: Find exact entries of    

For all i=1,…,n, decompose    such that 

            , 

where      denotes the knowledge portion of   , and      denotes the perception portion of   . We have 

            , 

             . 

The combined knowledge and combined perception in the observed sample, denoted by K and P respectively, are given 

as 

       
 
   , 

       
 
   . 

Then the exact entries of   , computed from the knowledge and will not be changed by other perceptions, are contained in 

the matrix E given by 

           

Step 2: Find perception entries of    

As we discussed in Section 4, unverified (or undenied) knowledge ties will be treated as a perception. Then the perception 

contribution of knowledge from Step 1 is contained in the matrix C, where 

       

We will decompose perception P into two parts, the active part (denoted by   ) and the inactive part (denoted by   ). We 

will use    to find the perception entries of   .    will be used to find   . We have 

      , 

          . 

Combining C and   , we have the final perception matrix   , given by 

           , 
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which contains the perception entries of   . 

Step 3: Combine Steps 1 and 2 to find    

The estimated network is given by 

       . 

Recall that in the adaptive threshold method we estimate the Type 1 error probability for a given k, and denote this 

quantity by    . Using the above notation we have  

                           , 

where sum(A) denotes the sum of all entries of a given matrix A. Note that this is equivalent to equation 3 given in Section 

4. 

 

 


