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On the Two-user Interference Channel with Lack of
Knowledge of the Interference Codebook at one

Receiver
Alex Dytso, Daniela Tuninetti, and Natasha Devroye

Abstract—In multi-user information theory it is often assumed
that every node in the network possesses all codebooks used in
the network. This assumption may be impractical in distributed
ad-hoc, cognitive or heterogeneous networks. This work considers
the two-user Interference Channel with one Oblivious Receiver
(IC-OR), i.e., one receiver lacks knowledge of the interfering
cookbook while the other receiver knows both codebooks. The
paper asks whether, and if so how much, the channel capacity
of the IC-OR is reduced compared to that of the classical IC
where both receivers know all codebooks. A novel outer bound
is derived and shown to be achievable to within a gap for the
class of injective semi-deterministic IC-ORs; the gap is shown
to be zero for injective fully deterministic IC-ORs. An exact
capacity result is shown for the general memoryless IC-OR when
the non-oblivious receiver experiences very strong interference.
For the linear deterministic IC-OR that models the Gaussian
noise channel at high SNR, non i.i.d. Bernoulli(1/2) input bits
are shown to achieve points not achievable by i.i.d. Bernoulli(1/2)
input bits used in the same achievability scheme. For the real-
valued Gaussian IC-OR the gap is shown to be at most 1/2 bit
per channel use, even though the set of optimal input distri-
butions for the derived outer bound could not be determined.
Towards understanding the Gaussian IC-OR, an achievability
strategy is evaluated in which the input alphabets at the non-
oblivious transmitter are a mixture of discrete and Gaussian
random variables, where the cardinality of the discrete part is
appropriately chosen as a function of the channel parameters.
Surprisingly, as the oblivious receiver intuitively should not be
able to “jointly decode” the intended and interfering messages
(whose codebook is unavailable), it is shown that with this choice
of input, the capacity region of the symmetric Gaussian IC-OR
is to within 1

2
log (12πe) ≈ 3.34 bits (per channel use per user) of

an outer bound for the classical Gaussian IC with full codebook
knowledge at both receivers.

I. INTRODUCTION

A classical assumption in multi-user information theory
is that each node in the network possesses knowledge of
the codebooks used by every other node. However, such an
assumption might not be practical in heterogeneous, cognitive,

The authors are with the Electrical and Computer Engineering Department
of the University of Illinois at Chicago, Chicago, IL 60607 USA (e-mail:
odytso2, danielat, devroye @uic.edu).

The results in this paper were presented in part at the IEEE International
Symposium on Information Theory, Istanbul, Turkey, July 2013 and at the
IEEE Information Theory and Applications Workshop, San Diego, USA,
February 2014.

The work of the authors was partially funded by NSF under award number
1017436. The contents of this article are solely the responsibility of the authors
and do not necessarily represent the official views of the NSF.

Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

distributed or dynamic networks. For example, in very large
ad-hoc networks, where nodes enter and leave at will, it might
not be practical for new nodes to learn the codebooks of old
nodes and vice-versa. In cognitive radio scenarios, where new
cognitive systems coexist with legacy systems, requiring the
legacy systems to know the codebooks of the new cognitive
systems might not be viable. This motivates the study of
networks where each node possesses only a subset of the
codebooks used in the network. We will refer to such systems
as networks with partial codebook knowledge and to nodes
with only knowledge of a subset of the codebooks as oblivious
nodes.

To the best of our knowledge, systems with oblivious
terminals were first introduced in [1]. In [1] lack of codebook
knowledge was modeled by using codebook indices, which
index the random encoding function that maps the messages to
the codewords. If a node has codebook knowledge it knows the
index (or instance) of the random encoding function used; else
it does not and the codewords essentially look like the symbols
were produced in an independent, identically distributed (i.i.d.)
fashion from a given distribution. In [2] and [3] this concept of
partial codebook knowledge was extended to model oblivious
relays and capacity results were derived. However, as pointed
out in [2, Section III.A] and [3, Remark 5], these capacity
regions are “non-computable” in the sense that it is not
known how to find the optimal input distribution in general.
In particular, the capacity achieving input distribution for the
practically relevant Gaussian noise channel remains an open
problem.

We make progress on this front by demonstrating that
certain rates are achievable for the Gaussian noise interfer-
ence channel with oblivious receivers (G-IC-OR) through the
evaluation of a simplified Han-Kobayashi scheme [4] in which
joint decoding of the intended and interfering messages is not
required at the oblivious receiver. The major contribution of
this work is the realization that Gaussian inputs perform poorly
in the proposed achievable region. We therefore propose to use
a class of inputs that we termed mixed inputs. A mixed input is
random variable that is a mixture of a continuous and a discrete
part, such as for example a Gaussian random variable and a
uniformly distributed random variable on an equally spaced
set of discrete points. We then properly design the distribution
of the mixed input as a function of the channel parameters.

We are not the first to consider discrete inputs for Gaussian
noise channels. In [5] the authors considered the point-to-point
power-constrained Gaussian noise channel and derived lower
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bounds on the achievable rate when the input is contained to
be an equally spaced Pulse Amplitude Modulation (PAM) in
which each each point is used with equal probability; such
an input was shown to be optimal to within 0.41 bits per
channel use [5, eq.(9)]. As pointed out in [6], already in
1948 Claude Shannon in the unpublished work [7] argued the
asymptotically optimality of a PAM input for the point-to-point
power-constrained Gaussian noise channel.

In [8, Theorems 6 and 7], the authors asymptotically char-
acterized the optimal input distribution over N masses at
high and low SNR, respectively, for a point-to-point power-
constrained Gaussian noise channel by assuming that N is not
dependent on SNR. For the purpose of this work, these bounds
cannot be used, as 1) these bounds are optimized for a specific
SNR while we shall need to lower bound the rate achievable
by a discrete input at multiple receivers each characterized by
a different SNR; 2) we need a firm bound that holds at all finite
SNR; and 3) we need to properly choose N as a function of
SNR, a question posed but left open in [8].

The sub-optimality of Gaussian inputs for Gaussian noise
channels has been observed before. Past work on the asyn-
chronous IC [9], [10] showed that non-Gaussian inputs may
outperform i.i.d. Gaussian inputs by using local perturbations
of an i.i.d. Gaussian input: [9, Lemma 3] considers a fourth or-
der approximation of mutual information, while [10, Theorem
4] uses perturbations in the direction of Hermite polynomials
of order larger than three. In both cases the input distribution
is assumed to have a density, though [9, Fig. 1] numerically
shows the performance of a ternary PAM input as well. For
the cases considered in [9], [10], the improvement over i.i.d.
Gaussian inputs shows in the decimal digits of the achievable
rates; it is hence not clear that perturbed continuous Gaussian
inputs as in [9], [10] can actually provide Degrees of Freedom
(DoF) gains over Gaussian inputs (note that a strict DoF gain
implies an unbounded rate gain as SNR increases) which we
seek in this work. In a way this work follows the philosophy
of [11]: the main idea is to use sub-optimal point-to-point
codes in which the reduction in achievable rates is more than
compensated by the decrease in the interference created at the
other users.

The rest of the paper is organized as follows. The general
memoryless IC-OR channel model is introduced in Section II,
together with the special class of injective semi-deterministic
IC-ORs (ISD-IC-OR) of which the Gaussian noise channel is
an example. Our main results are:

1) In Section III, in Theorem 2 we derive a novel outer
bound that incorporates this partial codebook knowledge
explicitly. In this bound, the single rate bounds are valid
for a general memoryless IC-OR while the sum-rate
bound is valid for the ISD-IC-OR only.

2) In Section IV we demonstrate a series of capacity and
approximate capacity results for various regimes and
classes of IC-OR. Specifically, by using the achievable
region in Proposition 3 we prove: (a) in Theorem 4 we
obtain the capacity region for the general memoryless
IC-OR in very strong interference at the non-oblivious
receiver, (b) in Theorem 5 we demonstrate the capacity
region to within a gap for the ISD-IC-OR, and (c)

in Corollary 6 we show that for the injective fully
deterministic IC-OR the gap is zero.

3) In Section IV-D, we look at the practically relevant
G-IC-OR and its corresponding Linear Deterministic
Approximation (LDA-IC-OR) in the spirit of [12], which
models the G-IC-OR at high SNR, whose exact capacity
is in principal given by Corollary 6 but whose convex
closure we were not able to determine directly. Surpris-
ingly, for the LDA-IC-OR we numerically demonstrate
that for the proposed achievable scheme in Proposition 3,
i.i.d. Bernoulli(1/2) input bits (known to be optimal for
the LDA-IC with full codebook knowledge [13]) are out-
performed by other (correlated and non-uniform) input
distributions that achieve the same sum-rate performance
as full codebook knowledge.

4) In Section IV-E, for the G-IC-OR, we show in Corollary
7 that our inner and outer bounds that are to within
1/2 bit (per channel use per user) of one another.
However, similarly to prior work on oblivious models,
we are not able to find the set of input distributions that
exhaust the outer bound in Theorem 2, in particular we
cannot argue whether i.i.d. Gaussian inputs exhaust the
outer bound.
Inspired by the results for the LDA-IC-OR, we numer-
ically show that a larger sum-capacity is attainable by
using a discrete input at the non-oblivious transmitter
than by selecting i.i.d. Gaussian inputs, or using time-
division, or treating interference as noise, in the strong
interference regime at high SNR. This suggests that the
penalty for the lack of codebook knowledge is not as
severe as one might initially expect.

5) For the remainder of the paper we consider the G-
IC-OR, and demonstrate that even with partial code-
book knowledge we are able to achieve to within
1
2 log (12πe) ≈ 3.34 bits per channel use of the sym-
metric capacity region of the G-IC with full codebook
knowledge through the use of mixed inputs.1 The main
tool, to derive the symmetric capacity to within a con-
stant gap is Theorem 8, which is the lower bound from
[5] on the mutual information achievable by a PAM input
on a point-to-point Gaussian noise channel. With this
tool, in Section VI in Theorems 9 and 10, we evaluate
the achievable rate region presented in Proposition 3 for
the G-IC-OR when the non-oblivious transmitter uses
either a PAM input or a mixed input that comprises a
Gaussian component and a PAM component. Corollar-
ies 11 and 12 provide the gDoF characterization of the
achievable regions in Theorems 9 and 10.

6) In past work on networks with oblivious nodes no
performance guarantees were provided as the capacity
regions could not be evaluated. In Section VII we study
the generalized degrees of freedom (gDoF) achievable
with mixed inputs. In Theorem 13, we show that mixed

1The restriction to the symmetric case, i.e., same direct links and same
interference links, is just to reduce the number of parameters in our deriva-
tions. We strongly believe that an approximate capacity result (to within a
constant gap) can be shown for the general asymmetric case, albeit through
more tedious computations than those reported here.



3

inputs achieve the gDoF of the classical G-IC, hence
implying that there is no loss in performance due to
lack of codebooks in a gDoF sense / at high SNR. This
is quite surprising considering that the oblivious receiver
cannot perform joint decoding of the two messages,
which is optimal for the classical G-IC in the strong
and very strong interference regimes.

7) Finally, in Section VIII we turn our attention to the finite
SNR regime and in Theorem 14 we show that the capac-
ity of the symmetric G-IC-OR is within 1

2 log (12πe) ≈
3.34 bits per channel use of the outer bound to the
capacity region of the classical symmetric G-IC.

We conclude the paper with some final remarks and future
directions in Section IX. Some proofs are reported in the
Appendix.

II. CHANNEL MODEL

A. Notation

We adopt the following notation convention:
• Lower case variables are instances of upper case random

variables which take on values in calligraphic alphabets.
• Throughout the paper log(·) denotes logarithms in base

2.
• [n1 : n2] is the set of integers from n1 to n2 ≥ n1.
• Y j is a vector of length j with components (Y1, . . . , Yj).
• We let δ(·) denote the the Dirac delta function.
• If A is a random variable (r.v.) we denote its support by

supp(A).
• The symbol | · | may denote different things: |A| is the

cardinality of the set A, |X| is the cardinality of supp(X)
of the r.v. X , or |x| is the absolute value of the real-
valued x.

• For x ∈ R we let bxc denote the largest integer not greater
than x.

• For x ∈ R we let [x]+ := max(x, 0) and log+(x) :=
[log(x)]+.

• The functions Ig(x), Id(n, x) and Nd(x), for n ∈ N and
x ∈ R+, are defined as

Ig(x) :=
1
2

log(1 + x), (1)

Id(n, x) :=
[

1
2

log(1 + min(n2 − 1, x))− 1
2

log
(πe

3

)]+
,

(2)

Nd(x) :=
⌊√

1 + x
⌋
, (3)

where the subscript d reminds the reader that discrete
inputs are involved, while g that Gaussian inputs are
involved.

• N (µ, σ2) denotes a real-valued Gaussian r.v. with mean
µ and variance σ2.

• Unif([n1 : n2]) denotes the uniform distribution over the
set [n1 : n2].

• Bernoulli(p) denotes the Bernoulli distribution with pa-
rameter p ∈ [0, 1].

• X ∼ PAM(N) denotes the uniform distribution over a
zero-mean Pulse Amplitude Modulation (PAM) constel-
lation with |X| = N points and unit-energy.
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Fig. 1. The IC-OR, where F1 and F2 represent codebook indices known to
one or both receivers.

• co(·) denotes the convex closure operator.

B. General Memoryless IC-OR

An IC-OR consists of the two-user memoryless interfer-
ence channel (X1,X2, PY1Y2|X1X2 ,Y1,Y2) where receiver 2 is
oblivious of transmitter 1’s codebook. We use the terminology
“codebook” to denote a set of codewords and the (one-to-
one) mapping of the messages to these codewords. We model
lack of codebook knowledge as in [1], where transmitters
use randomized encoding functions, which are indexed by
a message index and a “codebook index” (F1 and F2 in
Fig. 1). An oblivious receiver is unaware of the “codebook
index” (F1 is not given to decoder 2 in Fig. 1) and hence
does not know how codewords are mapped to messages. The
basic modeling assumption is that without the knowledge of
the codebook index a codeword looks unstructured. More
formally, by extending [2, Definition 2], a (2nR1 , 2nR2 , n)
code for the IC-OR with enabled time sharing is a six-
tuple (PF1|Qn , σ

n
1 , φ

n
1 , PF2|Qn , σ

n
2 , φ

n
2 ), where the distribution

PFi|Qn , i ∈ [1 : 2], is over a finite alphabet Fi conditioned on
the time-sharing sequences qn from some finite alphabet Q,
and where the encoders σni and the decoders φni , are mappings

σn1 : [1 : 2nR1 ]× [1 : |F1|]→ Xn1 ,
σn2 : [1 : 2nR2 ]× [1 : |F2|]→ Xn2 ,
φn1 : [1 : |F1|]× [1 : |F2|]× Yn1 → [1 : 2nR1 ],

φn2 : [1 : |F2|]× Yn2 → [1 : 2nR2 ].

Moreover, when user 1’s codebook index is unknown at
decoder 2, the encoder σn1 and the distribution PF1|Qn must
satisfy

P[Xn
1 = xn1 |Qn = qn]

=
2nR1∑
w1=1

|F1|∑
f1=1

PF1|Qn(f1|qn) 2−nR1 δ
(
xn1 − σn1 (w1, f1)

)
=

∏
t∈[1:n]

PX1|Q(x1t|qt), (4)

according to some distribution PX1|Q. In other words, when
averaged over the probability of selecting a given codebook
and over a uniform distribution on the message set, the trans-
mitted codeword conditioned on any time sharing sequence has
an i.i.d. distribution according to some distribution PX1|Q. We
refer the reader to [2, Remark 1] for further justifications of
the condition in (4).
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A non-negative rate pair (R1, R2) is said to be
achievable if there exist a sequence of encoding func-
tions σn1 (W1, F1), σn2 (W2, F2), and decoding functions
φn1 (Y n1 , F1, F2), φn2 (Y n2 , F2), such that the average probabil-
ity of error satisfies maxi∈[1:2] P[Ŵi 6= Wi]→ 0 as n→ +∞.
The capacity region is defined as the convex closure of all
achievable rate pairs (R1, R2) [14].

Remark 1. One of the key features of our model is that the
codebook index may change from codeword to codeword. In
particular, one can show that the number of codebooks is given
by |F | = |X|n2nR [2]. Therefore, communicating the index
of the codebook - before the transmission of every codeword
- incurs a non vanishing overhead. For more discussion on
which communication schemes are permitted and which are
not we refer reader to [1], [2].

C. Injective Semi-Deterministic IC-OR

For a general memoryless IC-OR, no restrictions are im-
posed on the transition probability PY1Y2|X1X2 . The ISD-IC-
OR is a special IC-OR with transition probability

PY1Y2|X1X2(y1, y2|x1, x2)

=
∑
t1,t2

PT1|X1(t1|x1)PT2|X2(t2|x2)

· δ
(
y1 − g1(x1, t2)

)
δ
(
y2 − g2(x2, t1)

)
, (5)

for some memoryless transition probabilities PT1|X1 and
PT2|X2 , and some deterministic functions g1(·, ·) and g2(·, ·)
that are injective when their first argument is held fixed [15].
The ISD property implies that

H(Y1|X1) = H(T2) and H(Y2|X2) = H(T1),
∀PX1X2 = PX1PX2 , (6)

or in other words that the Tu is a deterministic function of
the pair (Yu, Xu), u ∈ [1 : 2]. For channels with continuous
alphabets, the summation in (5) should be replaced with an
integral and the discrete entropies in (6) with the differential
entropies.

III. OUTER BOUNDS

In this section we present novel outer bounds for the IC-
OR. In particular, we derive the single rate bounds that are
valid for a general memoryless IC-OR and a sum-rate bound
that is valid for the ISD-IC-OR only.

We begin by proving a property of the output distributions
that is key to deriving single-letter expressions in our outer
bounds; this property holds for a general memoryless IC-OR.

Proposition 1. The output of the oblivious decoder has a
product distribution conditioned on the signal whose codebook
is known, that is,

PY n2 |Xn2 ,F2(yn2 |xn2 , f2) =
n∏
i=1

PY2i|X2i(y2i|x2i).

which implies

H(Y n2 |Xn
2 , F2) =

n∑
i=1

H(Y2i|X2i)

for ISD-IC-OR=
n∑
i=1

H(T1i).

Proof of Proposition 1: Starting from the joint distribu-
tion of Y n2 , X

n
1 conditioned on Xn

2 , F2 we have that

PY n2 ,Xn1 |Xn2 ,F2(yn2 , x
n
1 |xn2 , f2)

a)
= PXn1 (xn1 )

n∏
i=1

PY2i|X1i,X2i(y2i|x1i, x2i)

b)
=

n∏
i=1

PX1i(x1i)
n∏
i=1

PY2i|X1i,X2i(y2i|x1i, x2i)

c)
=

n∏
i=1

PY2i,X1i|X2i(y2i, x1i|x2i)

where the equalities follows from: a) the inputs are indepen-
dent and the channel is memoryless, b) the assumption that
Xn

1 has a product distribution if not conditioned on F1 as in
(4), and c) the inputs are independent. By marginalizing with
respect to Xn

1 yields

PY n2 |Xn2 ,F2(yn2 |xn2 , f2)

=
n∏
i=1

∑
x1i

PY2i,X1i|X2i(y2i, x1i|x2i)

=
n∏
i=1

PY2i|X2i(y2i|x2i),

as claimed.

The main result of the section is the following upper bound:

Theorem 2. Any achievable rate pair (R1, R2) for the IC-OR
must satisfy

R1 ≤ I(Y1;X1|X2, Q), (memoryless IC-OR) (7a)
R2 ≤ I(Y2;X2|Q), (memoryless IC-OR) (7b)

R1 +R2 ≤ H(Y1|Q) +H(Y2|U2, Q)−H(T2|X2, Q)
−H(T1|Q)(memoryless ISD-IC-OR)

= I(Y1;X1, X2|Q) + I(Y2;X2|U2, Q), (7c)

for some input distribution that factors as

PQ,X1,X2,U2(q, x1, x2, u2)
= PQ(q)PX1|Q(x1|q)PX2|Q(x2|q)PT2|X2(u2|x2), (7d)

and with |Q| ≤ 2. We denote the region in (7) as Rout.

Proof of Theorem 2: By Fano’s inequality
H(W1|Y n1 , F1, F2) ≤ nεn and H(W2|Y n2 , F2) ≤ nεn
for some εn → 0 as n→∞.

We begin with the R1-bound (non-oblivious receiver)
in (7a):

n(R1 − εn)
a)

≤ I(W1;Y n1 , F1, F2)
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b)

≤ I(W1;Y n1 |F1, F2,W2)
c)

≤ I(Xn
1 ;Y n1 |F1, F2, X

n
2 )

d)
= H(Y n1 |F1, F2, X

n
2 )

−
n∑
i=1

H(Y1i|X1i, X2i)

e)

≤
n∑
i=1

H(Y1i|X2i)−
n∑
i=1

H(Y1i|X1i, X2i)

=
n∑
i=1

I(X1i;Y1i|X2i),

where the (in)equalities follow from: a) Fano’s inequality, b)
giving W2 as side information and using the fact that F1,
F2, W1 and W2 are mutually independent, c) data processing
(Fi,Wi) → Xn

i → Y n1 , for i ∈ [1 : 2], and d) because the
channel is memoryless, e) by chain rule of entropy and by
“conditioning reduces entropy”. For the R2-bound (oblivious
receiver) in (7b) we have:

n(R2 − εn)
a)

≤ I(W2;Y n2 , F2)
b)

≤ I(W2;Y n2 |F2)
c)

≤ I(Xn
2 ;Y n2 |F2)

d)
= H(Y n2 |F2)−

n∑
i=1

H(Y2i|X2i)

e)

≤
n∑
i=1

H(Y2i)−
n∑
i=1

H(Y2i|X2i)

=
n∑
i=1

I(X2i;Y2i),

where the (in)equalities follow from: a) Fano’s inequality, b)
the fact that F2 and W2 are independent, c) data processing
(Fi,Wi) → Xn

i → Y n1 , for i ∈ [1 : 2], and d) by
Proposition 1, e) from chain rule of entropy and “conditioning
reduces entropy”.

Next, by providing U2 as side information to receiver 2
(oblivious receiver) similarly to [15]2, where U2 is jointly
distributed with the inputs according to (7d), we have:

n(R1 +R2 − 2εn)
a)

≤ I(Xn
1 ;Y n1 |F1, F2)

+ I(Xn
2 ;Y n2 , U

n
2 |F2)

= H(Y n1 |F1, F2)
−H(Y n1 |F1, F2, X

n
1 ) +H(Un2 |F2)

−H(Un2 |F2, X
n
2 ) +H(Y n2 |F2, U

n
2 )

−H(Y n2 |F2, X
n
2 , U

n
2 )

b)
= H(Y n1 |F1, F2)−H(Tn2 |F1, F2)

2Random variable U2 is obtained by passing X2 through an auxiliary
channel described by PT2|X2 . Intuitively, U2 represents interference caused
by X2 plus noise at the output Y1. The idea is that providing a noisy version
of X2 as side information will result in a tighter bound than for example
giving just X2.

+H(Un2 |F2)−H(Un2 |F2, X
n
2 )

+H(Y n2 |F2, U
n
2 )−H(Tn1 )

c)
= H(Y n1 |F1, F2)−H(Tn2 |F1, F2)
+H(Tn2 |F2)−H(Tn2 |F2, X

n
2 )

+H(Y n2 |F2, U
n
2 )−H(Tn1 )

d)
= H(Y n1 |F1, F2) +H(Y n2 |F2, U

n
2 )

−H(Tn2 |Xn
2 )−H(Tn1 )

e)

≤
n∑
i=1

H(Y1i|F1, F2)

+H(Y2i|F2, U2i)
−H(T2i|X2i)−H(T1i),
f)

≤
n∑
i=1

H(Y1i) +H(Y2i|U2i)

−H(T2i|X2i)−H(T1i),

where (in)equalities follow from: a) by Fano’s inequality
and by giving U2 as side information and by proceeding
as done for the single rate bounds up to step labeled “c)”,
b) by the injective property in (5) and the independence of
(Xn

1 , T
n
1 ) and Xn

2 , c) by definition of U2 in (7d) we have
H(Un2 |F2) = H(Tn2 |F2), d) by independence of the messages
we have H(Tn2 |F1, F2)−H(Tn2 |F2) = 0, e) since the channel
is memoryless and thus H(Tn2 |F2, X

n
2 ) = H(Tn2 |Xn

2 ) =∑n
i=1H(T2i|X2i) and since H(Tn1 ) = H(Y n2 |Xn

2 ) can be
single-letterized by using Proposition 1, and f) by conditioning
reduces entropy.

The introduction of a time-sharing random variable Q ∼
Unif[1 : n] yields the bounds in (7). The Fenchel-Eggleston-
Caratheodory theorem [16, Chapter 14] guarantees that we
may restrict attention to |Q| ≤ 2 without loss of optimality.

Finally, the equality in (7c) follows from the injective prop-
erty in (5), the independence of the inputs and the memoryless
property of the channel, i.e.,

H(T2|X2) = H(T2|X1, X2) = H(Y1|X1, X2, Q),
H(T1|Q) = H(T1|U2, Q,X2).

This concludes the proof.

IV. CAPACITY RESULTS

In this section we prove that the outer bound in (7) is
(approximately) tight in certain regimes or for certain classes
of channels. To start, we propose an achievable rate region
based on a simplified Han-Kobayashi scheme [4] in which
joint decoding of the intended and interfering messages is not
required at receiver 2 (the oblivious receiver) and in which
every node uses an i.i.d. codebook.

A. Inner Bound

Consider an achievability scheme where encoder 1 transmits
using an i.i.d. codebook, while encoder 2, corresponding to
the oblivious receiver, rate-splits as in the Han and Kobayashi
achievability scheme for the classical IC [4]. It may then be
shown that the following rates are achievable,
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Proposition 3. The set of non-negative rate pairs (R1, R2)
satisfying

R1 ≤ I(Y1;X1|U2, Q), (8a)
R2 ≤ I(Y2;X2|Q), (8b)

R1 +R2 ≤ I(Y1;X1, U2|Q) + I(Y2;X2|U2, Q), (8c)

is achievable for every input distribution that factorizes as

PQ,X1,X2,U2 = PQPX1|QPX2|QPU2|X2Q, (8d)

and where |Q| ≤ 8 from [17]. We denote the region in (8) as
Rin, which is achievable for any memoryless IC-OR.

Proof of Proposition 3: The proof follows by setting the
auxiliary r.v. U1 in the Han and Kobayashi rate region in [14,
Section 6.5] to U1 = ∅. Note, that this modified version of the
Han and Kobayashi scheme employs joint decoding (of desired
and undesired messages) only at receiver 1 (the non-oblivious
receiver) and hence knowledge of the codebook of transmitter
1 is not needed at receiver 2 (the oblivious receiver).

Remark 2. By comparing the outer bound region Rout in
Theorem 2 to the inner bound region Rin in Proposition 3 we
notice the following differences: 1) in (7d) the side information
random variable U2 is distributed as T2 conditioned on X2,
while in (8d) the auxiliary random variable U2 can have any
distribution conditioned on X2; 2) the mutual information
terms involving Y1 have X2 in the outer bound, but U2 in the
inner bound; and 3) the mutual information terms involving
Y2 are the same in both regions.

B. Capacity in very strong interference at the non-oblivious
receiver for the general memoryless IC-OR

In this section we show that under special channel con-
ditions, akin to the very strong interference regime for the
classical IC, the outer bound region in Theorem 2 is tight.

A general memoryless IC-OR for which

I(X2;Y2|X1) ≤ I(X2;Y1), ∀PX1,X2 = PX1PX2 , (9)

is said to have very strong interference at the non-oblivious
receiver (receiver 1). Intuitively, when the condition in (9)
holds, the non-oblivious receiver should be able to first decode
the interfering signal by treating its own signal as noise and
then decode its own intended signal free of interference. This
should “de-activate” the sum-rate bound in (7c). Next we
formalize this intuition.

Theorem 4. When the condition in (9) holds the capacity
region of the IC-OR is given by

R1 ≤ I(X1;Y1|X2, Q), (10a)
R2 ≤ I(X2;Y2|Q), (10b)

taken over the union of all input distributions that factor as
PQ,X1,X2 = PQPX1|QPX2|Q and where |Q| ≤ 2.

Proof of Theorem 4: By dropping the sum-rate outer
bound in (7c) we see that the region in (10) is an outer bound
for a general memoryless IC-OR. By setting U2 = X2 in the

achievable region in (8), the region

R1 ≤ I(X1;Y1|X2, Q), (11a)
R2 ≤ I(X2;Y2|Q), (11b)

R1 +R2 ≤ I(X1, X2;Y1|Q), (11c)

taken over the union of all PQ,X1,X2 = PQPX1|QPX2|Q, is
achievable. We see that the single rate bounds in (11) match
the upper bounds in (10). We next intend to show that when
the condition in (9) holds, the sum-rate bound in (11c) is
redundant. By summing (11a) and (11b)

R1 +R2 ≤ I(X1;Y1|X2, Q) + I(X2;Y2|Q)
a)

≤ I(X1;Y1|X2, Q) + I(X2;Y2, X1|Q)
b)
= I(X1;Y1|X2, Q) + I(X2;Y2|X1, Q)
c)

≤ I(X1;Y1|X2, Q) + I(X2;Y1|Q)
= I(X1, X2;Y1|Q) = eq.(11c),

where in a) we loosened the achievable sum-rate by adding
X1 as “side information” to receiver 2, in b) we used the
independence of the inputs, and in c) the condition in (9).
Therefore, the sum-rate bound in (11c) can be dropped without
affecting the achievable rate region. This shows that the outer
bound in (10) is achievable thereby proving the claimed
capacity result.

Remark 3. For the classical IC, the very strong interference
regime is defined as

I(X1;Y1|X2) ≤ I(X1;Y2),
I(X2;Y2|X1) ≤ I(X2;Y1),

for all product input distributions; under these pair of condi-
tions capacity can be shown. For the IC-OR, the very strong
interference constraint at receiver 2 (oblivious receiver) is not
needed in order to show capacity. Therefore, the very strong
interference condition for the IC-OR is less stringent than
that for the classical IC. We believe this is so because the
oblivious receiver (receiver 2) cannot decode the message of
user 1 as per the modeling assumption. Indeed, we feel that the
“lack of codebook knowledge” as originally proposed in [1]
actually models the inability of a receiver to jointly decode its
message along with unintended ones, as the mapping between
the messages and codewords is not known.

C. Capacity to within a Constant Gap for the ISD-IC-OR

We now show that Rin in Proposition 3 lies to within a
gap of the outer bound Rout in Theorem 2 for the general
ISD-IC-OR. We have

Theorem 5. For the ISD-IC-OR, if (R1, R2) ∈ Rout then
([R1 − I(X2;T2|U2, Q)]+, R2) ∈ Rin.

Proof of Theorem 5: The proof is as in [15]. First, we
define a new outer bound region R̄out by replacing X2 with
U2 in all positive entropy terms of region Rout, which is
permitted as H(Y2|X2) ≤ H(Y2|U2) by the data processing
inequality. We conclude that Rout ⊆ R̄out. We next compare
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R̄out and Rin term by term (we only need to compare the
mutual informations invoking Y1 as those involving Y2 are the
same in both bounds, see Remark 2, thus implying a zero gap
for rate R2): the difference is that R̄out has −H(Y1|X1, X2)
where Rin has −H(T2|U2, Q); thus the gap is

−H(Y1|X1, X2) +H(T2|U2, Q)
= −H(T2|X2) +H(T2|U2, Q) = I(X2;T2|U2, Q).

This concludes the proof.

Remark 4. Note that

I(X2;T2|U2, Q) = H(T2|U2, Q)−H(T2|X2)
≤ H(T2)−H(T2|X2)
≤ max

PX2

I(T2;X2),

so the gap is finite / constant for all channel PT2|X2 with finite
capacity.

We next give an example of constant gap characterization in
Section IV-E after having discussed in Section IV-D a special
class of ISD-IC-OR for which the gap to capacity is zero.

D. Exact Capacity for the Injective Fully Deterministic IC-OR

We now specialize Theorem 5 to the class of injective fully
deterministic ICs [18]. For this class of channels the mappings
T1 and T2 in (5) are deterministic functions of X1 and X2,
respectively. We have

Corollary 6. For the injective fully deterministic IC-OR the
outer bound in Theorem 2 is tight.

Proof of Corollary 6: The injective fully deterministic
IC-OR has T2 = U2 and therefore I(X2;T2|U2, Q) = 0 in
Theorem 5.

As an application of Corollary 6 we consider next the Linear
Deterministic Approximation (LDA) of the Gaussian IC-OR at
high SNR, whose classical counterpart (where all codebooks
are known) was first proposed in [12]. The LDA-IC-OR has
input/output relationship

Y1 = Sq−n11X1 + Sq−n12X2, T2 = Sq−n12X2, (12a)
Y2 = Sq−n21X1 + Sq−n22X2, T1 = Sq−n21X1, (12b)

where inputs and outputs are binary-valued vectors of length
q, S is the q × q shift matrix [12], (n11, n12, n21, n22)
are non-negative integers and q := max{n11, n12, n21, n22}.
Summations and multiplications are bit-wise over the binary
field.

For simplicity, we next evaluate the symmetric sum-capacity
of the LDA-IC-OR. The symmetric LDA-IC-OR has param-
eters n11 = n22 = nS and n12 = n21 = nI := nS α
for some non-negative α. The maximum symmetric rate, or
symmetric sum-capacity normalized by the sum-capacity of
an interference-free channel, is defined as

d(α) :=
max{R1 +R2}

2 nS
, (13)

where the maximization is over all achievable rate pairs
(R1, R2) satisfying Theorem 2, which is the capacity region

by Corollary 6. Since we may provide the oblivious receiver
in the LDA-IC-OR with the additional codebook index so as
to obtain the classical LDA-IC with full codebook knowledge,
we immediately have

d(α) ≤ d(W)(α)

= min
(

1,max
(α

2
, 1− α

2

)
,max (α, 1− α)

)
, (14)

where d(W)(α), the so-called W-curve [19], is the maximum
symmetric rate of the classical LDA-IC. In [13] it was shown
that i.i.d. Bernoulli(1/2) input bits in the Han and Kobayashi
region yield d(W)(α).

Although Theorem 2 gives the exact capacity region of
the LDA-IC-OR, it is not immediately clear which input
distribution achieves the maximum symmetric rate. Instead
of analytically deriving the sum-capacity, we proceeded to
numerically evaluate Theorem 2 for |Q| = 1, which is not
necessarily optimal. We observe the surprising result that even
with |Q| = 1 i.e., without time sharing, some of the points on
the normalized sum-capacity of the LDA-IC-OR are equal to
d(W)(α), see Fig. 2 and Table I. Although we lack a formal
proof that we can achieve the whole W-curve with a non
i.i.d. Bernoulli(1/2) input we do, however, conjecture that it
is indeed possible with the scheme in Proposition 3. If true,
this implies that partial codebook knowledge at one receiver
does not impact the sum-rate of the symmetric LDA-IC-OR
at these points. This is quite unexpected, especially in the
strong interference regime (α ≥ 1) where the optimal strategy
for the classical LDA-IC is to jointly decode the interfering
message along with the intended message—a strategy that
seems to be precluded by the lack of codebook knowledge
at one receiver. This might suggest a more general principle:
there is no loss of optimality in lack of codebook knowledge
as long as the oblivious receiver can remove the interfering
codeword, regardless of whether or not it can decode the
message carried by this codeword.

Another interesting observation is that i.i.d. Bernoulli(1/2)
input bits may no longer be optimal (though we do not
show their strict sub-optimality). In Table I we report, for
some values of α and nS, nI, the input distributions to be
used in Rout in Theorem 2. We notice that, at least when
evaluating the region in Theorem 2 for |Q| = 1 only, that
the region exhausting inputs are now correlated. For example,
Table I shows that, for α = 4/3 the inputs X1 and X2 are
binary vectors of length log(16) = 4 bits; out of the 16
different possible bit sequences, only 4 are actually used at
each transmitter with strictly positive probability to achieve
d(W)(4/3) = 4/6. By using i.i.d. Bernoulli(1/2) input bits in
Theorem 2 for |Q| = 1 we would obtain a normalized sum-
rate of 1/2 = 3/6, the same as achieved by time division
[13].

Also, i.i.d. Bernoulli(1/2) inputs in the LDA model usu-
ally are translated to i.i.d. Gaussian inputs in the Gaussian
noise model. This intuition is reinforced, in the next section,
by showing that i.i.d. Gaussian are also suboptimal for the
Gaussian noise model for |Q| = 1. Also, the fact that
there exist other, non i.i.d Bernoulli(1/2), input distributions
that are capacity achieving for the LDA stimulates search
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TABLE I
LDA-IC-OR: EXAMPLES OF SUM-RATE OPTIMAL INPUT DISTRIBUTIONS FOR THE CAPACITY REGION IN THEOREM 2.

α, (nS, nI) Probability mass function with |Q| = 1
1
2 , (2, 1) PX1 = [0.5, 0, 0.5, 0]

PX2 = [0, 0.5, 0, 0.5]
2
3 , (3, 2) PX1 = [0, 0, 0.25, 0.25, 0, 0, 0.25, 0.25]

PX2 = [0, 0, 0.25, 0.25, 0, 0, 0.25, 0.25]
1, (2, 2) PX1 = [0, 0, 0.5, 0.5]

PX2 = [0, 0.5, 0, 0.5]
4
3 , (3,4) PX1 = [0, 0, 0, 0, 0, 0.25, 0, 0.25, 0, 0, 0, 0, 0, 0.25, 0, 0.25]

PX2 = [0, 0, 0, 0.25, 0, 0.25, 0, 0, 0, 0, 0, 0, 0, 0.25, 0, 0.25]
2, (2, 1) PX1 = [0, 0.5, 0, 0.5]

PX2 = [0, 0.5, 0, 0.5]

α1
2

2
3

1 2

1

1
2

4
3

d(α)

Fig. 2. The normalized sum-capacity, or maximum symmetric rate, for the
classical LDA-IC (dash-dotted black line). Normalized sum-rates achieved
by the input distributions in Table I (red dots) for the LDA-IC-OR. The
normalized sum-rate achieved by i.i.d. Bernoulli(1/2) inputs and |Q| = 1
(solid blue line) in the capacity region in Theorem 2 for the LDA-IC-OR.

for non-Gaussian inputs that might be capacity achieving
for a Gaussian noise channel. In fact the rest of the paper
tries to use intuition gained in this section to construct non-
Gaussian inputs that will be capacity or constant gap capacity
approaching.

E. The Gaussian Noise IC-OR

We now consider the practically relevant real-valued single-
antenna power-constrained Gaussian noise channel, whose
input/output relationship is

Y1 = h11X1 + h12X2 + Z1 = h11X1 + T2, (15a)
T2 = h12X2 + Z1,

Y2 = h21X1 + h22X2 + Z2 = h22X2 + T1, (15b)
T1 = h21X1 + Z2,

where hij are the real-valued channel coefficients for (i, j) ∈
[1 : 2]2 assumed constant and known to all nodes, the
input Xi ∈ R is subject to per block power constraints
1
n

∑n
i=1X

2
i ≤ 1, i ∈ [1 : 2], and the noise Zi, i ∈ [1 : 2], is

a unit-variance zero-mean Gaussian r.v..
By specializing the result of Theorem 5 to the G-IC-OR we

may show the following:

Corollary 7. For the G-IC-OR the gap is at most 1/2 bit per
channel use.

Proof of Corollary 7: For the G-IC-OR T2 = h12X2+Z1,
and thus we set U2 in Theorem 2 to U2 = h12X2 +Z∗1 , where
Z1 ∼ Z∗1 and mutually independent. We thus have

I(X2;T2|U2, Q) = h(T2|U2, Q)− h(Z2)
≤ h(T2 − U2)− h(Z1)

= h(Z1 − Z∗1 )− h(Z1) =
1
2

log(2),

as claimed.

In the classical G-IC with full codebook knowledge, Gaus-
sian inputs exhaust known outer bounds, which are achiev-
able to within 1/2 bit per channel use [19]. From the rate
expression in Theorem 2 it is not clear whether Gaussian
inputs are optimal for Rout. The following discussion shows
that in general the answer is in the negative. For simplicity
we focus on the achievable generalized Degrees of Freedom
(gDoF) for the symmetric G-IC-OR. The symmetric G-IC-OR
has |h11|2 = |h22|2 = SNR and |h12|2 = |h21|2 = INR, with
INR = SNRα for some non-negative α. The sum-gDoF is
defined as

d(α) := lim
SNR→+∞

max{R1 +R2}
2 · 1

2 log(1 + SNR)
, (16)

where the maximization is over all possible achievable rate
pairs. By using the classical G-IC as a trivial upper bound,
we have d(α) ≤ d(W)(α) where d(W)(α) is given in (14).

By evaluating Theorem 2 for independent Gaussian inputs
and |Q| = 1 (which we do not claim to be optimal, but which
gives us an achievable rate up to 1/2 bit) we obtain

(R1 +R2)(GG) = min
{

Ig (SNR) + Ig

(
SNR

1 + INR

)
,

Ig

(
SNR

INR + 1

)
+ Ig

(
INR +

SNR

1 + INR

)}
,

⇐⇒ d(GG)(α) =
1
2

+
[

1
2
− α

]+
,

the superscript “GG” indicates that both transmitters use a
Gaussian input. For future reference, with Time Division (TD)
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Fig. 3. Achievable normalized sum-rate for the symmetric G-IC-OR with
α = 4/3 vs SNR in dB. Legend: time division in solid blue line; Gaussian
inputs at both transmitters in red stars; X1 is a uniform PAM with N =

bSNR
1
6 c points and X2 is Gaussian in dash-dotted black line.

and Gaussian codebooks we can achieve

(R1 +R2)(TD) =
1
2

log (1 + 2 SNR)

⇐⇒ d(TD)(α) =
1
2
.

We plot the achievable gDoF vs. α in Fig. 2, together with
the gDoF of the classical G-IC given by d(W)(α) [19]. We note
that Gaussian inputs are indeed optimal for 0 ≤ α ≤ 1/2, i.e.,
d(GG)(α) = d(W)(α), where interference is treated as noise
even for the classical G-IC (which is also achievable by the
G-IC-OR). For α > 1/2 we have d(GG)(α) = d(TD)(α), that
is, Gaussian inputs achieve the same rates as time division. In-
terestingly, Gaussian inputs are sub-optimal in our achievable
region in general as we show next.

Consider α = 4/3. With Gaussian inputs we only achieve
d(GG)(4/3) = d(TD)(4/3) = 1/2. Notice the similarity with
the LDA-IC-OR: the input distribution that is optimal for the
non-oblivious IC performs as time division for the G-IC-OR.
Inspired by the LDA-IC-OR we explore now the possibil-
ity of using non-Gaussian inputs. By following [1, Section
VI.A], which demonstrated that binary signaling outperforms
Gaussian signaling for a fixed finite SNR, we consider a
uniform PAM constellation with N points. Fig. 3 shows the
achievable normalized sum-rate R1+R2

2· 12 log(1+SNR)
as a function

of SNR for the case where X1 (the input of the non-oblivious
pair) is a PAM constellation with N =

⌊
SNR1/6

⌋
points and

X2 (the input of the oblivious pair) is Gaussian; we refer
to the achievable gDoF of this inputs as d(DG)(α). Notice
that the number of points in the discrete input is a function
of SNR. We also report the achievable normalized sum-rate
with time division and Gaussian inputs. Fig. 3 shows that,
for sufficiently large SNR, using a discrete input outperforms
time division; moreover, for the range of simulated SNR,
it seems that the proposed discrete input achieves a gDoF
of d(DG)(α) = α/2 = 4/6 as for the classical G-IC with
full codebook knowledge. In the sections that follow we
analytically show that using discrete input (or mixed) at the
non-oblivious transmitter indeed achieves the full gDoF and
symmetric capacity region to within a constant gap.

V. DISCRETE INPUTS: MAIN TOOL

In this section we review the lower bound of [5] on the
mutual information achievable by a PAM input on a point-
to-point power-constrained Gaussian noise channel that will
serve as the main tool in evaluating our inner bound for the
G-IC-OR in Proposition 3. The bound is as follows:

Theorem 8. Let XD ∼ PAM(N) and let ZG ∼ N (0, 1) and
SNR be a non-negative constant. Then

Id (N, SNR) =:[
Ig
(

min
(
N2 − 1,SNR

))
− 1

2
log
(πe

3

)]+
(17)

≤ I(XD;
√

SNR XD + ZG)

≤ Ig
(

min
(
N2 − 1,SNR

))
. (18)

Proof of Theorem 8: The upper bound in (18) follows
from the well known facts that “Gaussian maximizes the
differential entropy for a given second moment constraint”
and that “a uniform input maximizes the entropy of a discrete
random variable” [14]. Let now xmin := min(N2 − 1,SNR)
and xmax := max(N2 − 1,SNR). We have

I(XD;
√

SNRXD + ZG)
from [5, Part b]
≥ 1

2
log
(
1 + (N2 − 1)

)
− 1

2
log
(

1 +
N2 − 1
1 + SNR

)
− 1

2
log
(πe

6

)
= Ig (xmin) + Ig (xmax)− Ig (xmin + xmax)

− 1
2

log
(πe

6

)
= Ig (xmin)− Ig

(
xmin

1 + xmax

)
− 1

2
log
(πe

6

)
≥ Ig (xmin)− 1

2
log
(πe

3

)
,

since xmin
1+xmax

∈ [0, 1]. This, combined with non-negativity of
mutual information, gives the lower bound in (17).

Remark 5. The upper and lower bounds in Theorem 8 are
to within 1

2 log
(
πe
3

)
bits of one another. We shall refer to

the quantity 1
2 log

(
πe
3

)
as the “shaping loss” due to the

use of a one-dimensional lattice constellation on the power-
constrained point-to-point Gaussian channel. Note that what
is known as “shaping gain” of a one-dimensional lattice
constellation in the literature is 1

2 log
(
πe
6

)
[20]; what we call

here “shaping loss” has an extra 1
2 log(2) due to the term

Ig
(

xmin
1+xmax

)
; we refer to the sum of these two contributions as

“shaping loss” because it is purely due to the one-dimensional
lattice (“shaping” part) and it causes a reduction in rate
compared to the upper bound (“loss” part).

If we could choose N2 − 1 = SNR ⇐⇒ N =
√

1 + SNR
then we could claim that a PAM input is optimal (i.e., achieves
the capacity of the point-to-point power-constrained Gaussian
noise channel) to within gap ≤ 1

2 log
(
πe
3

)
bits per channel

use, where the gap would be completely due to the shaping
loss.

Unfortunately, N is constrained to be an integer. If for
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N we choose the closest integer to
√

1 + SNR, that is,
N =

⌊√
1 + SNR

⌋
=: Nd(SNR), then we incur a further

1 bit “integer penalty”, by which we mean that the difference
between the point-to-point Gaussian channel capacity and the
lower bound on the achievable rate with a PAM in (17) is
upper bounded as

gap ≤ Ig (SNR)− Id (Nd(SNR),SNR)

≤ 1
2

log
(πe

3

)
+

1
2

log+

(
1 + SNR⌊√
1 + SNR

⌋2
)

≤ 1
2

log
(πe

3

)
︸ ︷︷ ︸

shaping loss

+
1
2

log(4)︸ ︷︷ ︸
integer penalty

=
1
2

log
(

4πe
3

)
, (19)

where the largest integer penalty is attained for 1 + SNR =
22 − ε, 0 < ε� 1, for which b

√
1 + SNRc2 = (2− 1)2 = 1.

VI. ACHIEVABLE REGIONS FOR THE G-IC-OR

We now analyze the G-IC-OR by using Theorem 8 (i.e.,
bounds on the mutual information achievable by a PAM input
on a point-to-point power-constrained Gaussian noise channel)
and the insight on the nature of the gap due to a PAM input
from Remark 5. We first present a scheme (an achievable rate
region evaluated using a mixed input) that will prove to be
useful in strong and very strong interference, and then present
a more involved scheme that will be useful in the somewhat
trickier weak and moderate interference regimes. Although
the second scheme includes the first as a special case, we
start with a simpler scheme to highlight the important steps of
the derivation without getting caught up in excessive technical
details.

A. Achievable Scheme I

We first derive an achievable rate region from Proposition 3
with inputs

Scheme I: X1D ∼ PAM (N) , N ∈ N, independent of
(20a)

X2G ∼ N (0, 1), (20b)
X1 = X1D, X2 = X2G, (20c)
U2 = X2, Q = ∅. (20d)

which we will show in the next sections to be gDoF optimal
and to within a constant gap of the symmetric capacity of
the classical G-IC in the strong and very strong interference
regimes. Such results may not be shown by using i.i.d. Gaus-
sian inputs in the same achievable scheme in Proposition 3.
The achievable region is derived for a general G-IC-OR and
later on specialized to the symmetric case.

Theorem 9. For the G-IC-OR the following rate region is

achievable by the input in (20)

R1 ≤ Id
(
N, |h11|2

)
, (21a)

R2 ≤ Id

(
N,

|h21|2
1 + |h22|2

)
+ Ig

(
|h22|2

)
− Ig

(
min

(
N2 − 1, |h21|2

))
, (21b)

R1 +R2 ≤ Id

(
N,

|h11|2
1 + |h12|2

)
+ Ig

(
|h12|2

)
. (21c)

Proof of Theorem 9: We proceed to evaluate the rate
region in Proposition 3 with the inputs in (20), that is, the
achievable region in (11) with |Q| = 1.

The rate of the user 1 is bounded by R1 ≤ I(X1;Y1|X2) =
I(X1D;h11X1D + Z1), where I(X1D;h11X1D + Z1) can be
further lower bounded by using (17) from Theorem 8 with
SNR = |h11|2; by doing so we obtain the bound in (21a).

The rate of the user 2 is bounded by

R2 ≤ I(X2;Y2)
= h(h21X1D + h22X2G + Z2︸ ︷︷ ︸

∼N (0,1+|h22|2)

)− h(h21X1D + Z2)

=

(
h

(
h21√

1 + |h22|2
X1D + Z2

)
− h(Z2)

)
︸ ︷︷ ︸

≥Id
“
N,

|h21|2

1+|h22|2

”
from (17)

+
1
2

log(1 + |h22|2)−
(
h (h21X1D + Z2)− h(Z2)

)
︸ ︷︷ ︸
≤Ig(min(N2−1,|h21|2)) from (18)

,

from which we conclude that the achievable rate for user 2 is
lower bounded as in (21b).

The sum-rate is bounded by R1 + R2 ≤ I(X1, X2;Y1) =
I(X1;Y1) + I(X2;Y1|X1), where I(X1;Y1) can be lower
bounded by means of Theorem 8 with SNR = |h11|2

1+|h12|2 and
where I(X2;Y1|X1) = I(X2G;h12X2G + Z1) = Ig(|h12|2);
by combining the two terms we obtain the bound in (21c).

B. Achievable Scheme II

The input in (20) might not be optimal in general and
may be generalized as follows. Consider the rate region in
Proposition 3 with inputs

Scheme II:
X1D, X1G, X2Gc, X2Gp independent and distributed as
X1D ∼ PAM (N) , N ∈ N,
all the others are N (0, 1), (22a)

X1 =
√

1− δ1X1D +
√
δ1X1G, δ1 ∈ [0, 1], (22b)

X2 =
√

1− δ2X2Gc +
√
δ2X2Gp, δ2 ∈ [0, 1]. (22c)

U2 = X2Gc, Q = ∅. (22d)

In Scheme II, X2Gc encodes a “common” message, and
X2Gp and X1G encode the “private” messages as in the
classical Han-Kobayashi scheme [4]. We shall also interpret
X1D as encoding a “common” message even if X1D cannot
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be decoded at receiver 2 (the oblivious receiver) as receiver 2
lacks knowledge of the codebook(s) used by transmitter 1. The
main message of the paper is in fact that, even with lack of
codebook knowledge, if there would-be-common message is
from a discrete alphabet then its effect on the rate region—
up to a constant gap—is as if the message could indeed be
jointly decoded. We believe this is because lack of codebook
knowledge may be translated as lack of knowledge of the
mapping of the codewords to the messages, but does not
preclude a receiver’s ability to perform symbol-by-symbol esti-
mation of the symbols in the interfering codeword (rather than
decoding the messages carried by the codeword). Correctly
estimating and subtracting off the interfering symbols is as
effective as decoding the actual interfering codeword, as the
message carried by the codeword is not desired anyhow. A
similar intuition was pointed out in [1] where the authors write
“We indeed see that BPSK signaling outperforms Gaussian
signaling. This is because demodulation is some form of
primitive decoding, which is not possible for the Gaussian
signaling.”

In the next sections we will show that Proposition 3 with
the inputs in (22) is gDoF optimal and is to within a constant
gap of a capacity outer bound for the classical G-IC in the
weak and moderate interference regimes. Also note that with
δ1 = δ2 = 0 Scheme II in (22) reduces to Scheme I in (20).

The achievable region is derived for a general G-IC-OR and
later on specialized to the symmetric case. The rate region
achievable by Scheme II is:

Theorem 10. For the G-IC-OR the following rate region is
achievable with inputs as in (22)

R1 ≤ Id

(
N,

|h11|2(1− δ1)
1 + |h11|2δ1 + |h12|2δ2

)
+ Ig

( |h11|2δ1
1 + |h12|2δ2

)
, (23a)

R2 ≤ Id

(
N,

|h21|2(1− δ1)
1 + |h21|2δ1 + |h22|2

)
+ Ig

( |h22|2
1 + |h21|2δ1

)
− Ig

(
min

(
N2 − 1,

|h21|2(1− δ1)
1 + |h21|2δ1

))
, (23b)

R1 +R2 ≤ Id

(
N,

|h11|2(1− δ1)
1 + |h11|2δ1 + |h12|2

)
+ Ig

(
|h11|2δ1 + |h12|2

)
− Ig

(
|h12|2δ2

)
+ Id

(
N,

|h21|2(1− δ1)
1 + |h21|2δ1 + |h22|2δ2

)
+ Ig

( |h22|2δ2
1 + |h21|2δ1

)
− Ig

(
min

(
N2 − 1,

|h21|2(1− δ1)
1 + |h21|2δ1

))
. (23c)

Proof of Theorem 10: The proof can be found in
Appendix A and follows similarly to the proof of Theorem 9.

VII. HIGH SNR PERFORMANCE

We now analyze the performance of the schemes in The-
orems 9 and 10 for the symmetric G-IC-OR at high-SNR
by using the gDoF region as performance metric. The gDoF
region is formally defined as follows. For an achievable pair
(R1, R2), let

D(α)

:=
{

(d1, d2) ∈ R2
+ : di := lim

INR = SNRα,
SNR → ∞

Ri
1
2 log(1 + SNR)

,

i ∈ [1 : 2], (R1, R2) is achievable
}
. (24)

Let DG-IC(α) and DG-IC-OR(α) be the gDoF region of the
classical G-IC and of the G-IC-OR, respectively.

We first present two different achievable gDoF regions
based on Theorems 9 and 10, which we will compare to
DG-IC(α) given by [19]

DG-IC(α) : d1 ≤ 1, (25a)
d2 ≤ 1, (25b)

d1 + d2 ≤ max(α, 2− α), (25c)
d1 + d2 ≤ max(2α, 2− 2α), (25d)

2d1 + d2 ≤ 2, only for α ∈ [1/2, 1], (25e)
d1 + 2d2 ≤ 2, only for α ∈ [1/2, 1]. (25f)

Corollary 11 (gDoF region from achievable Scheme I). Let
N = Nd(SNRβ) and

DI(α, β) : d1 ≤ min(β, 1), (26a)

d2 ≤ min(β, [α− 1]+) + 1−min(β, α), (26b)

d1 + d2 ≤ min(β, [1− α]+) + α. (26c)

for any β ≥ 0. By Theorem 9, the gDoF region DI(α, β) is
achievable.

Proof of Corollary 11: We prove the bound in (26b) only
as the other bounds follow similarly. With INR = SNRα and
N = Nd(SNRβ) we have

lim
SNR→∞

log(N2)
log(1 + SNR)

= β,

lim
SNR→∞

log(1 + INR)
log(1 + SNR)

= α.

Therefore d2 can be bounded as

d2 = lim
SNR→∞

left hand side of eq.(21b)
1
2 log(1 + SNR)

= min(β, [α− 1]+) + 1−min(β, α),

thus proving (26b).
Next, by using Theorem 10 with the power split as in [19]

we show yet another achievable gDoF region.

Corollary 12 (gDoF region from achievable Scheme II). Let
N = Nd(SNRβ) and

DII(α, β) : d1 ≤ min(β, 1 + α−max(1, α))
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+ [1− α]+, (27a)
d2 ≤ min(β, [α− 1]+) + 1−min(β, α),

(27b)
d1 + d2 ≤ min(β, [1 + α−max(1, 2α)]+)

+ max(α, 1− α)
+ min(β, [2α−max(1, α)]+)
+ [1− α]+ −min(β, α). (27c)

for any β ≥ 0. By Theorem 10, the gDoF region DII(α, β) is
achievable.

Proof of Corollary 12: Let INR = SNRα, N =
Nd(SNRβ), and δ1 = δ2 = 1

1+INR in Theorem 10 (see the
region in (40) in Appendix A) and take limits similarly to the
proof of Corollary 11.

We are now ready to prove the main result of this section:

Theorem 13. For the G-IC-OR there is no loss in gDoF
compared to the classical G-IC, i.e.,

DG-IC(α) = DG-IC-OR(α).

Proof of Theorem 13: We consider several regimes:
a) Very strong interference regime α ≥ 2: In this

regime the gDoF region outer bound DG-IC(α) is characterized
by (25a) and (25b). For achievability we consider Corollary 11
with β = 1, that is,

DI(α, 1) : d1 ≤ min(1, 1) = 1,
d2 ≤ min(1, [α− 1]+) + 1−min(1, α)

= 1,
d1 + d2 ≤ min(1, [1− α]+) + α

= α (redundant because α ≥ 2).

Since the sum-gDoF is redundant, we get that

DI(α, β = 1) = {di ∈ [0, 1], i ∈ [1 : 2]}
= DG-IC-OR(α) = DG-IC(α).

Fig. 4(a) illustrates the region DI(α, β = 1).
b) Strong interference regime 1 ≤ α < 2: In this

regime the gDoF region outer bound DG-IC(α) is characterized
by (25a)-(25c) and has two dominant corner points: (d1, d2) =
(1, α − 1) and (d1, d2) = (α − 1, 1). For achievability we
consider the following achievable gDoF regions

DI(α, 1) : d1 ≤ 1,
d2 ≤ α− 1,

d1 + d2 ≤ α (redundant).

and

DI(α, α− 1) : d1 ≤ α− 1,
d2 ≤ 1,

d1 + d2 ≤ α (redundant),

Fig. 4(b) illustrates that

co
(
DI(α, 1) ∪ DI(α, α− 1)

)
= DG-IC(α)

= DG-IC-OR(α).

c) Moderately weak interference regime 1
2 < α < 1: In

this regime the gDoF region outer bound DG-IC(α) is charac-
terized by all the constraints in (25) and has four corner points:
(d1, d2) = (1, 0), (d1, d2) = (0, 1), and (d1, d2) = (min(4α−
2, α), 2 − 2α) and (d1, d2) = (2 − 2α,min(4α − 2, α)). The
gDoF pair (d1, d2) = (1, 0) is trivially achievable by silencing
user 2, and similarly (d1, d2) = (0, 1) by silencing user 1. For
achievability of the remaining two corner points, we consider
the following achievable gDoF regions

DII(α, 2α− 1) : d1 ≤ min(2α− 1, 1 + α− 1)
+ 1− α = α,

d2 ≤ min(2α− 1, 0) + 1
−min(2α− 1, α) = 2− 2α,

d1 + d2 ≤ min(2α− 1,
[1 + α−max(1, 2α)]+)
+ max(α, 1− α)
+ min(2α− 1, [2α− 1]+)
+ 1− α−min(2α− 1, α)
= min(2α, 2− α),

(redundant for α ∈ [2/3, 1]).

and

DII(α, 1− α) : d1 ≤ min(1− α, 1 + α− 1)
+ 1− α = 2− 2α,

d2 ≤ min(1− α, 0) + 1
−min(1− α, α) = α,

d1 + d2 ≤ min(1− α,
[1 + α−max(1, 2α)]+)
+ max(α, 1− α)
+ min(1− α, [2α− 1]+)
+ 1− α−min(1− α, α)
= min(2α, 2− α),

(redundant for α ∈ [2/3, 1]).

Fig. 4(c) (for α ∈ [2/3, 1]) and Fig. 4(d) (for α ∈ [1/2, 2/3])
illustrate that

co
({

(d1, d2) = (1, 0)
}
∪
{

(d1, d2) = (0, 1)
}

∪ DII(α, 2α− 1) ∪ DII(α, 1− α)
)

= DG-IC(α)

= DG-IC-OR(α).

d) Noisy Interference 0 ≤ α ≤ 1
2 : In this regime one

may achieve the whole optimal G-IC gDoF region by using
Gaussian inputs, treating interference as noise, and power
control. Since this strategy is feasible for the G-IC-OR, the
G-IC gDoF region is achievable also for the G-IC-OR.

This concludes our proof.
The result of Theorem 13 is quite surprising, namely, that

for the G-IC-OR we can achieve the gDoF region of the
classical G-IC in all regimes. This is especially surprising in
the strong and very strong interference regimes where joint
decoding of intended and interfering messages is optimal for
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the classical G-IC—recall that joint decoding appears to be
precluded by the absence of codebook knowledge in the G-
IC-OR. This seems to suggest that while decoding of the
undesired messages is not possible, one may still estimate
(i.e., symbol-by-symbol demodulate) the codeword symbols
corresponding to the undesired messages.

VIII. FINITE SNR PERFORMANCE

In the previous section we showed that the gDoF region of
the classical G-IC can be achieved even when one receiver
lacks knowledge of the interfering codebook. One may then
ask whether it is possible to achieve the capacity, possibly up
to a constant gap, of the classical G-IC at all finite SNRs.
We next show that this is indeed possible. For future use, the
capacity region of the classical G-IC is outer bounded by [19]

R(G-IC)
out : R1 ≤ Ig (SNR) , (28a)

R2 ≤ Ig (SNR) , (28b)

R1 +R2 ≤
[
Ig (SNR)− Ig (INR)

]+
+ Ig (SNR + INR) , (28c)

R1 +R2 ≤ 2Ig

(
INR +

SNR

1 + INR

)
, (28d)

2R1 +R2 ≤
[
Ig (SNR)− Ig (INR)

]+
+ Ig (SNR + INR)

+ Ig

(
INR +

SNR

1 + INR

)
, (28e)

R1 + 2R2 ≤
[
Ig (SNR)− Ig (INR)

]+
+ Ig (SNR + INR)

+ Ig

(
INR +

SNR

1 + INR

)
, (28f)

which is tight for SNR ≤ INR and optimal to with 1/2 bit
(per channel use per user) otherwise.

The main result of this section is:

Theorem 14. For the G-IC-OR it is possible to achieve the
outer bound region in (28) to within 1

2 log (12πe) ≈ 3.34 bits
per channel use per user.

Proof of Theorem 14: We consider different regimes
separately.

a) Very strong interference SNR(1 + SNR) ≤ INR:
In the regime the capacity region of the classical G-IC is
given by (28a) and (28b). For achievability we consider the
achievable region in Theorem 9 with

N = Nd(SNR) (equivalent of β = 1)

=⇒ N2 − 1 ≤ SNR ≤ INR

1 + SNR
≤ INR. (29)

Recall that the achievable region in Theorem 9 is the region
in (11) with the inputs as in (20); the sum-rate in Theorem 9
is redundant if I(X1;Y1|X2) + I(X2;Y2) ≤ I(X1, X2;Y1),
that is, if I(X2;Y2) ≤ I(X2;Y1), for all input distributions

in (20). With a Gaussian X2 as in (20):

I(X2;Y2) ≤ I(X2;Y2|X1) = I(X2G;
√

SNR X2G + Z2)
= Ig(SNR),

and

I(X2;Y1) = I(X2G;
√

INR X2G +
√

SNR X1D + Z2)

≥ Ig

(
INR

1 + SNR

)
,

because a Gaussian noise is the worst noise for a Gaussian
input. Since in very strong interference we have Ig(SNR) ≤
Ig
(

INR
1+SNR

)
, the condition I(X2;Y2) ≤ I(X2;Y1) is verified

for all inputs in (20) and hence we can drop the sum-rate
constraint in (21c) from Theorem 9. Therefore, in this regime
the following rates are achievable

R(G-IC-OR very strong)
in : R1 ≤ Ig(SNR)−∆1, (30a)

R2 ≤ Ig(SNR)−∆2, (30b)

where for N = Nd(SNR)

∆1 := Ig(SNR)− Id (N, SNR)

≤ 1
2

log
(

4πe
3

)
for the reasoning leading to eq.(19),

(30c)

∆2 := Ig
(
min

(
N2 − 1, INR

))
− Id

(
N,

INR

1 + SNR

)
= log(N)−

[
log(N)− 1

2
log
(πe

3

)]+
≤ 1

2
log
(πe

3

)
, (30d)

where the equality in (30d) is a consequence of the relation-
ships in (29).

It is immediate to see that (30c) is the gap for R1 and
that (30d) is the gap for R2. Therefore in this regime the gap
is at most 1

2 log
(

4πe
3

)
per channel use per user, and it is due

to shaping loss and integer penalty.
b) Strong interference SNR ≤ INR < SNR(1+SNR): In

this regime the capacity region of the classical G-IC is given
by (28a)-(28c), and has two dominant corner points

R(G-IC strong P1)
out :

(R1, R2) =
(

Ig (SNR) , Ig

(
INR

1 + SNR

))
, (31a)

and

R(G-IC strong P2)
out :

(R1, R2) =
(

Ig

(
INR

1 + SNR

)
, Ig (SNR)

)
. (31b)

The other two corner points are (R1, R2) = (Ig(SNR), 0)
and (R1, R2) = (0, Ig(SNR)) that can be exactly achieved
by silencing one of the users.

For achievability we mimic the proof of the gDoF region
in the same regime (see Fig. 4(b)), that is, we show the
achievability to within a constant gap of the corner points
in (31a) and (31b) by choosing two different values of N
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DI(α, β = α− 1)

α− 1 1

DG-IC(α)

1 ≤ α ≤ 2

d1 + d2 = α

(b) Strong interference.

d1

d2

2− 2α

α

DII(α, β = 1− α)

DII(α, β = 2α− 1)

2− 2α α

DG-IC(α)

1

1

2d1 + d2 = 2

d1 + 2d2 = 2
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(c) Moderately weak interference 1.

d1
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↵
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1/2  �  2/3
4↵� 2

4↵� 2

DII(�, ⇥ = 1� �)

(d) Moderately weak interference 2.

Fig. 4. How to achieve the gDoF region for the G-IC-OR in different parameter regimes.

in Theorem 9. For the corner point in (31a) we consider the
achievable region in Theorem 9 with

N = Nd(SNR) (equivalent of β = 1)

=⇒ N2 − 1 ≤ SNR ≤ INR ≤ SNR(1 + SNR), (32a)

and for the corner point (31b) we consider the achievable
region in Theorem 9 with

N = Nd

(
INR

1 + SNR

)
(equivalent of β = α− 1)

=⇒ N2 − 1 ≤ INR

1 + SNR
≤ SNR ≤ INR. (32b)

For the choice of N in (32a) the achievable region in
Theorem 9 can be written as

R1 ≤ Id (N, SNR)

=
[
log (N)− 1

2
log
(πe

3

)]+
,

R2 ≤ Id

(
N,

INR

1 + SNR

)
+ Ig (SNR)

− Ig
(
min

(
N2 − 1, INR

))
=
[
Ig

(
INR

1 + SNR

)
− 1

2
log
(πe

3

)]+
+ Ig(SNR)− log(N),

R1 +R2 ≤ Id

(
N,

SNR

1 + INR

)
+ Ig (INR)

=
[
Ig

(
SNR

1 + INR

)
− 1

2
log
(πe

3

)]+
+ Ig(INR),

which can further be lower bounded as

R(G-IC strong P1)
in : R1 ≤ log (N)− 1

2
log
(πe

3

)
= Ig (SNR)−∆1, (33a)

R2 ≤ Ig (SNR + INR)− log(N)
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− 1
2

log
(πe

3

)
= Ig

(
INR

1 + SNR

)
−∆2, (33b)

R1 +R2 ≤ Ig (SNR + INR)

− 1
2

log
(πe

3

)
= (Ig (SNR)−∆1)

+
(

Ig

(
INR

1 + SNR

)
−∆2

)
+

1
2

log
(πe

3

)
,

(33c)

where the sum-rate bound is clearly redundant and where

∆1 := Ig (SNR)− log(N) +
1
2

log
(πe

3

)
≤ 1

2
log
(

4πe
3

)
, (34a)

∆2 := log(N)− Ig (SNR) +
1
2

log
(πe

3

)
≤ 1

2
log
(πe

3

)
. (34b)

Therefore, with N as in (32a) in Theorem 9, the gap to the
corner point in (31a) is at most 1

2 log
(

4πe
3

)
per channel use

per user, as for the very strong interference regime.

By following similar steps, for the choice of N in (32b) in
Theorem 9, the gap to the corner point in (31b) is still given
by (34), that is, the gap is at most 1

2 log
(

4πe
3

)
per channel use

per user, as for the very strong interference regime.

c) Moderately weak interference INR ≤ SNR ≤ INR(1+
INR): In this regime the capacity of the G-IC is outer bounded
by (28).

As we did for the gDoF region (see Figs. 4(c) and 4(d)),
we show here that we can achieve, up to a constant gap,
all dominant corner points of (28). By silencing one of
the users, we can achieve (R1, R2) = (Ig(SNR), 0) and
(R1, R2) = (0, Ig(SNR)); these rate points are to within 1 bit
of the corner points of (28) given by (R1, R2) = (A, Ig (SNR))
and (R1, R2) = (Ig (SNR) , A) where

A := Ig (SNR + INR) + Ig

(
INR +

SNR

1 + INR

)
− Ig (SNR)− Ig (INR)

= Ig

(
INR

1 + SNR

)
+ Ig

(
SNR

(1 + INR)2

)
≤ Ig

(
SNR

1 + SNR

)
+ Ig

(
INR

1 + INR

)
≤ 2 · 1

2
log(2) = 1.

We therefore have to show the achievability of the remaining
two corner points obtained by the intersection of the sum-
rate outer bound (given by min(eq.(28c),eq.(28d))) with ei-
ther (28e) or (28f). For these corner points, the gDoF-optimal
choices of β were 2α − 1 and 1 − α, which we mimic here
by choosing the following values of N in the region in (40)

(a simplified achievable region from Theorem 10)

N = Nd

(
INR2

1 + SNR + 2INR

)
(equivalent of β = 2α− 1)

=⇒ N2 − 1 ≤ INR2

1 + SNR + 2INR

≤ min
(

INR2

1 + 2INR
,

INR · SNR

1 + SNR + 2INR

)
, (35)

because INR ≤ SNR, and

N = Nd

(
SNR · INR

(1 + INR)2 + SNR

)
(equivalent of β = 1− α)

=⇒ N2 − 1 ≤ SNR · INR

(1 + INR)2 + SNR

≤ min
(

INR2

1 + 2INR
,

INR · SNR

1 + SNR + 2INR

)
, (36)

because SNR ≤ INR(1 + INR). In the regime INR ≤ SNR ≤
INR(1 + INR) we also have

INR2

(1 + INR)(1 + SNR) + INR
≤ INR2

(1 + INR)2 + INR

≤ 1 ≤ N2 − 1, ∀N ≥ 2. (37)

With (35)-(37), and by recalling that Ig(x) − 1
2 log(4) ≤

log(Nd(x)) ≤ Ig(x), x ≥ 0, the region in (40) can be further
lower bounded as follows3

R(G-IC-OR weak)
in :

R1 ≤ Ig(x)− 1
2

log(4)

− 1
2

log
(πe

3

)
+ Ig

(
SNR

1 + 2INR

)
, (38a)

R2 ≤ Ig

(
INR2

(1 + INR)(1 + SNR) + INR

)
− 1

2
log
(πe

3

)
+ Ig

(
SNR

2

)
−Ig(x), (38b)

R1 +R2 ≤ Ig

(
min

(
INR2

1 + SNR + 2INR
,

SNR · INR

(1 + INR)2 + SNR

))
− 1

2
log(4)

+ Ig

(
INR +

SNR

1 + INR

)
− Ig

(
INR

1 + INR

)
+ Ig

(
SNR

1 + 2INR

)
− 2 · 1

2
log
(πe

3

)
, (38c)

where

x :=
INR2

1 + SNR + 2INR
if N as in (35), or (38d)

x :=
SNR · INR

(1 + INR)2 + SNR
if N as in (36). (38e)

3In order to get the sum-rate, let n = N2−1 ∈ N and consider either N =
Nd(a) : na := Nd(a)

2−1 ≤ a ∈ R+ or N = Nd(b) : nb := Nd(a)
2−1 ≤

b ∈ R+ in the expression y(n) := Ig(min(n, a)) + Ig(min(n, b)) − Ig(n)
that appears in the sum-rate. It follows easily that for N = Nd(a) : y =
Ig(min(na, b)) ≥ Ig(min(na, nb)) ≥ Ig(min(a, b)) − 1

2
log(4), and for

N = Nd(b) : y = Ig(min(a, nb)) ≥ Ig(min(na, nb)) ≥ Ig(min(a, b))−
1
2

log(4), where the term 1
2

log(4) is due to the “integer penalty”.
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In Appendix B we show that region in (38) achieves the
classical G-IC outer bound to within 1

2 log (12πe) ≈ 3.34 bits
(per channel user per user).

d) Noisy interference INR(1 + INR) ≤ SNR: In this
regime Gaussian inputs, treating interference as noise, and
power control is optimal to within 1/2 bit (per channel use
per user) for the classical G-IC; since this scheme does not
require codebook knowledge / joint decoding, the gap result
applies to the G-IC-OR as well.

This concludes the proof.

IX. CONCLUSION

In this paper we derived capacity results for the interference
channel where one of the receivers lacks knowledge of the
interfering codebook, in contrast to a classical model where
both receivers possess full codebook knowledge. For the class
of injective semi-deterministic interference channels with one
oblivious receiver, we derived a capacity result to within a
constant gap; the gap is zero for fully deterministic channels,
thereby providing an exact capacity characterization. We also
derived the exact capacity region for a general memoryless
interference channel with one oblivious receiver in the regime
where the non-oblivious receiver experiences very strong in-
terference.

We next proceeded to the Gaussian noise channel, where,
unlike past work on oblivious receivers, we were able to
demonstrate performance guarantees. For the symmetric case
we derived the gDoF region and the capacity region to within
a constant gap of 1

2 log (12πe) ≈ 3.34 bits (per channel use
per user). Surprisingly, this lack of codebook knowledge at one
receiver does not impact the gDoF at all, and only the Gaussian
capacity region to within a constant gap, compared to having
full codebook knowledge. We believe this is because even
though the mapping from codewords to messages may not be
known, this does not prevent the receiver from estimating (for
example by symbol-by-symbol demodulation) and removing
the effect of the interfering codeword itself.

An interesting future direction is to consider a generalization
with lack of interfering codebook knowledge at both receivers,
where one might surmise that both inputs would have discrete
components. However, this generalization is highly non-trivial
and significantly more mathematically challenging, and was
left as an open problem in [2]. The major issue that arises
when both users employ discrete inputs is the need to compute
the cardinality and minimum distance of the sum of two
discrete sets. These quantities are not only difficult to compute
in general, but are also very sensitive to whether channel
gains are rational or irrational (this is an open problem in
additive combinatorics). For progress on this problem see our
conference work [21], [22].

We studied the performance of mixed inputs on the Gaussian
IC. Its application to oblivious and asynchronous ICs some-
what surprisingly implies that much less “global coordination”
between nodes is needed than one might initially expect: syn-
chronism and codebook knowledge might not be critical if one
is happy with “approximate” capacity results. Why discrete
inputs are able to resolve these issues might be because even

simple expressions such as I(X1;Y1) + I(X2;Y2), which do
not appear to employ joint decoding, may still capture some
form of “interference estimation”. Extension to other ICs and
to more than two users are subject of current investigation.

APPENDIX A
PROOF OF THEOREM 10

We proceed to evaluate the rate region in Proposition 3 with
the inputs in (22). With the chosen inputs, the outputs are

Y1 = h11

√
1− δ1X1D + h11

√
δ1X1G

+ h12

√
1− δ2X2Gc + h12

√
δ2X2Gp + Z1,

Y2 = h21

√
1− δ1X1D + h21

√
δ1X1G

+ h22

√
1− δ2X2Gc + h22

√
δ2X2Gp + Z2.

The achievable region in (8) with Q = ∅, U2 = X2Gc reduces
to

R1 ≤ I(X1;Y1|X2Gc)
= h(Y1|X2Gc)− h(Y1|X1, X2Gc)

= h(h11

√
1− δ1X1D + h11

√
δ1X1G

+ h12

√
δ2X2Gp + Z1)

− h(h12

√
δ2X2Gp + Z1)

= h

(√
|h11|2(1− δ1)

1 + |h11|2δ1 + |h12|2δ2
X1D + Z1

)
− h(Z1) + Ig

(
|h11|2δ1 + |h12|2δ2

)
− Ig

(
|h12|2δ2

)
,

therefore, by Theorem 8, we can further lower bound the rate
of user 1 as

R1 ≤ Id

(
N,

|h11|2(1− δ1)
1 + |h11|2δ1 + |h12|2δ2

)
+ Ig

( |h11|2δ1
1 + |h12|2δ2

)
,

thus proving (23a).
For the rate of user 2 we have

R2 ≤ I(X2;Y2)

= h
(
h21

√
1− δ1X1D + h21

√
δ1X1G

+ h22

√
1− δ2X2Gc + h22

√
δ2X2Gp + Z2

)
− h

(
h21

√
1− δ1X1D + h21

√
δ1X1G + Z2

)
= h

(√
|h21|2(1− δ1)

1 + |h21|2δ1 + |h22|2
X1D + Z2

)
− h(Z2)

+ Ig
(
|h21|2δ1 + |h22|2

)
− h

(√
|h21|2(1− δ1)
1 + |h21|2δ1

X1D + Z2

)
+ h(Z2)

− Ig
(
|h21|2δ1

)
therefore, by Theorem 8, we can further lower bound the rate
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of user 2 as

R2 ≤ Id

(
N,

|h21|2(1− δ1)
1 + |h21|2δ1 + |h22|2

)
+ Ig

( |h22|2
1 + |h21|2δ1

)
− Ig

(
min

(
N2 − 1,

|h21|2(1− δ1)
1 + |h21|2δ1

))
thus proving (23b).

Finally for the sum-rate we have

R1 +R2 ≤ I(X1, X2Gc;Y1) + I(X2;Y2|X2Gc)

= h(h11

√
1− δ1X1D + h11

√
δ1X1G

+ h12

√
1− δ2X2Gc + h12

√
δ2X2Gp + Z1)

− h(h12

√
δ2X2Gp + Z1)

+ h(h21

√
1− δ1X1D + h21

√
δ1X1G

+ h22

√
δ2X2Gp + Z2)

− h(h21

√
1− δ1X1D + h21

√
δ1X1G + Z2)

therefore, by Theorem 8, we can further lower bound the sum-
rate as

R1 +R2 ≤ Id

(
N,

|h11|2(1− δ1)
1 + |h11|2δ1 + |h12|2

)
+ Ig

(
|h11|2δ1 + |h12|2

)
− Ig

(
|h12|2δ2

)
+ Id

(
N,

|h21|2(1− δ1)
1 + |h21|2δ1 + |h22|2δ2

)
+ Ig

(
|h21|2δ1 + |h22|2δ2

)
− Ig

(
min

(
N2 − 1,

|h21|2(1− δ1)
1 + |h21|2δ1

))
− Ig

(
|h21|2δ1

)
thus proving (23c).

Remark 6. For future use, we specialized the derived achiev-
able rate region for the power splits δ1 = 1

1+|h21|2 and
δ2 = 1

1+|h12|2 inspired by [19]; we thus have that the following
region is achievable for any N ∈ N

R1 ≤ Id

N, |h11|2a
1 + |h11|2

1+|h21|2 + b


+ Ig

 |h11|2
1+|h21|2

1 + b

 , (39a)

R2 ≤ Id

(
N,

|h21|2a
1 + a+ |h22|2

)
+ Ig

( |h22|2
1 + a

)
− Ig

(
min

(
N2 − 1, |h21|2a

))
, (39b)

R1 +R2 ≤ Id

N, |h11|2a
1 + |h11|2

1+|h21|2 + |h12|2


+ Ig

( |h11|2
1 + |h21|2

+ |h12|2
)
− Ig (b)

+ Id

N, |h21|2a
1 + a+ |h22|2

1+|h12|2

+ Ig

 |h22|2
1+|h12|2

1 + a


− Ig

(
min

(
N2 − 1, |h21|2a

))
. (39c)

where a := |h21|2
1+|h21|2 ∈ [0, 1] and b := |h12|2

1+|h12|2 ∈ [0, 1].
In the symmetric case the region in (39) is further lower

bounded by

R1 ≤ Ig

(
min

(
N2 − 1,

SNR · INR

1 + SNR + 2INR

))
− 1

2
log
(πe

3

)
+ Ig

(
SNR

1 + 2INR

)
, (40a)

R2 ≤ Ig
(
min

(
N2 − 1,

INR2

(1 + INR)(1 + SNR) + INR

))
− 1

2
log
(πe

3

)
+ Ig

(
SNR

1
2

)
− Ig

(
min

(
N2 − 1,

INR2

1 + 2INR

))
, (40b)

R1 +R2 ≤ Ig

(
min

(
N2 − 1,

SNR · INR

(1 + INR)2 + SNR

))
− 1

2
log
(πe

3

)
+ Ig

(
INR +

SNR

1 + INR

)
− Ig

(
INR

1 + INR

)
+ Ig

(
min

(
N2 − 1,

INR2

1 + SNR + 2INR

))
− 1

2
log
(πe

3

)
+ Ig

(
SNR

1 + 2INR

)
− Ig

(
min

(
N2 − 1,

INR2

1 + 2INR

))
. (40c)

APPENDIX B
GAP DERIVATION FOR THE MODERATELY WEAK

INTERFERENCE REGIME

In order to show achievability to within a constant gap of the
outer bound in (28) by means of the achievable region in (38)
(a further lower bound to the region in (40)), we distinguish
two cases.

CASE 1 (regime corresponding to α ∈ [2/3, 1] in Fig. 4(c))

Assume that the sum-rate in eq.(38c) is redundant; under
this condition we match the corner point of the rectangular
achievable region, given by (R1, R2) = (eq.(38a), eq.(38b)),
to

R(G-IC mod P1)
out :

R1 = Ig

(
INR +

SNR

1 + INR

)
, (41a)

R2 = Ig (SNR)− Ig (INR) + Ig(INR + SNR)

− Ig

(
INR +

SNR

1 + INR

)
, (41b)
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and

R(G-IC mod P2)
out :

R1 = Ig (SNR)− Ig (INR) + Ig(INR + SNR)

− Ig

(
INR +

SNR

1 + INR

)
, (42a)

R2 = Ig

(
INR +

SNR

1 + INR

)
, (42b)

which were obtained from the intersection of the sum-rate
outer bound in (28c) with either (28e) or (28f). In particular,
for the corner point in (41) we use x in (38d) (which
corresponds to N in (35)), and for the corner point in (42)
we use x in (38e) (which corresponds to N in (36)).

The gap is readily computed as follows: for the corner point
in (41) we have

∆1 = eq.(41a)-eq.(38a)|x in (38d)

≤ Ig

(
INR +

SNR

1 + INR

)
− Ig

(
SNR

1 + 2INR

)
− Ig

(
INR2

1 + SNR + 2INR

)
+

1
2

log(4) +
1
2

log
(πe

3

)
≤ 1

2
log (2) +

1
2

log (4) +
1
2

log
(πe

3

)
=

1
2

log
(

8πe
3

)
,

and

∆2 = eq.(41b)-eq.(38b)|x in (38d)

≤ Ig (SNR)− Ig (INR) + Ig(INR + SNR)

− Ig

(
INR +

SNR

1 + INR

)
− Ig

(
SNR

2

)
+ Ig

(
INR2

1 + SNR + 2INR

)
−Ig

(
INR2

(1 + INR)(1 + SNR) + INR

)
+

1
2

log
(πe

3

)
≤ 1

2
log (2) +

1
2

log
(πe

3

)
=

1
2

log
(

2πe
3

)
, since INR ≤ SNR in weak interf.,

while for the corner point in (42) we have

∆1 = eq.(42a)-eq.(38a)|x in (38e)

≤ Ig (SNR)− Ig (INR) + Ig(INR + SNR)

− Ig

(
INR +

SNR

1 + INR

)
− Ig

(
SNR

1 + 2INR

)
− Ig

(
SNR · INR

(1 + INR)2 + SNR

)
+

1
2

log (4) +
1
2

log
(πe

3

)
≤ 1

2
log (2) +

1
2

log (4) +
1
2

log
(πe

3

)
=

1
2

log
(

8πe
3

)
,

and

∆2 = eq.(42b)-eq.(38b)|x in (38e)

≤ Ig

(
INR +

SNR

1 + INR

)
− Ig

(
SNR

2

)
+ Ig

(
SNR · INR

(1 + INR)2 + SNR

)
−Ig

(
INR2

(1 + INR)(1 + SNR) + INR

)
+

1
2

log
(πe

3

)
≤ 1

2
log (2) +

1
2

log
(πe

3

)
=

1
2

log
(

2πe
3

)
, since INR ≤ SNR in weak interf.

CASE 2 (regime corresponding to α ∈ [1/2, 2/3] in Fig. 4(d))
Assume that the sum-rate in (38) is not redundant, that is

after simple algebraic manipulation,

1 + min (x|x in (38d), x|x in (38e))

<
(1 + 2INR)(1 + SNR

2 )
(1 + INR)(1 + SNR) + INR︸ ︷︷ ︸

∈[0.7358,1] for INR≤SNR≤INR(1+INR) see Appendix C

· (1 + INR)(1 + INR + SNR)
(1 + INR)2 + SNR︸ ︷︷ ︸

=1+x|x in (38e)

,

which implies

x|x in (38d) ≤ x|x in (38e). (43)

Under the condition in (43) we match one of the corner point
of the pentagon-shaped achievable region in (38) to

R(G-IC weak P1)
out :

R1 = 3Ig

(
INR +

SNR

1 + INR

)
− Ig (SNR + INR)− Ig (SNR) + Ig (INR) ,

(44a)
R2 = Ig (SNR)− Ig (INR) + Ig (SNR + INR)

− Ig

(
INR +

SNR

1 + INR

)
, (44b)

and

R(G-IC weak P2)
out : (45a)

R1 = Ig (SNR)− Ig (INR) + Ig (SNR + INR)

− Ig

(
INR +

SNR

1 + INR

)
, (45b)

R2 = 3Ig

(
INR +

SNR

1 + INR

)
− Ig (SNR + INR)− Ig (SNR) + Ig (INR) ,

(45c)

which were obtained from the intersection of the sum-rate
outer bound in (28d) with either (28e) or (28f). In particular,
for the corner point in (44) we use x in (38d) (which
corresponds to N in (35)), and for the corner point in (45)
we use x in (38e) (which corresponds to N in (36)).
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The gap is readily computed as follows: for the corner point
in (44) see (46) and (47) while for the corner point in (45)
see (48) and (49) This concludes the proof.

APPENDIX C
MINIMUM OF A FUNCTION

The minimum of the function

f(x, y) =
(1 + 2y)(1 + x

2 )
(1 + y)(1 + x) + y

, for (x, y) ∈ R2
+

such that 1 ≤ y ≤ x ≤ y(1 + y),

is found by first taking the partial derivative with respect to
x, given by ∂f

∂x = − 2y2+7y+3
2(2x+y+xy+1)2 which is easily seen to be

monotone decreasing in x therefore attaining the minimum

f(y(1 + y), y) =
2y3 + 3y2 + 5y + 2
2y3 + 6y2 + 6y + 2

, for 1 ≤ y.

Now by taking the partial derivative with respect to y, given by
∂f
∂y = (3y2−4y−1)

2(y+1)4
and setting it equal to zero we see that the

minimum occurs at y =
√

7+2
3 . Hence, the minimum of the

function occurs at f
(√

7+2
3

(
1 +

√
7+2
3

)
,
√

7+2
3

)
= 0.7359.

Conditions on the second derivatives can be easily checked to
verify that indeed the claim stationary point is a global min-
imum (even easier still, by plotting the function for example
with Matlab).
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∆1 = eq.(44a)-
(

eq.(38c)-eq.(38b)
)
|x in (38d)

≤ 2Ig

(
INR +

SNR

1 + INR

)
− Ig (SNR + INR)− Ig (SNR) + Ig (INR) + Ig

(
INR

1 + INR

)
− Ig

(
SNR

1 + 2INR

)
+ Ig

(
SNR

2

)
+ Ig

(
INR2

(1 + INR)(1 + SNR) + INR

)
− 2Ig

(
INR2

1 + SNR + 2INR

)
+

1
2

log (4) +
1
2

log
(πe

3

)

=
1
2

log


(

SNR
2 + 1

) (
INR

INR+1 + 1
) (

INR2

INR+(INR+1) (SNR+1) + 1
)

(INR + 1)
(
INR + SNR

INR+1 + 1
)2

(
INR2

2 INR+SNR+1 + 1
)2 (

SNR
2 INR+1 + 1

)
(SNR + 1) (INR + SNR + 1)


+

1
2

log (4) +
1
2

log
(πe

3

)
=

1
2

log

(
(2 INR + 1)2

(
SNR
2 + 1

)
(2 INR + SNR + 1)

(INR + 1) (SNR + 1) (2 INR + SNR + INR SNR + 1)

)
+

1
2

log
(πe

3

)
≤ 1

2
log(6) +

1
2

log (4) +
1
2

log
(πe

3

)
=

1
2

log (8πe) (46)

∆2 = eq.(44b)-eq.(38b)|x in (38d)

≤ Ig (SNR)− Ig (INR) + Ig (SNR + INR)− Ig

(
INR +

SNR

1 + INR

)
− Ig

(
SNR

2

)
+ Ig

(
INR2

1 + SNR + 2INR

)
− Ig

(
INR2

(1 + INR)(1 + SNR) + INR

)
+

1
2

log
(πe

3

)
=

1
2

log


(

INR2

2 INR+SNR+1 + 1
)

(SNR + 1) (INR + SNR + 1)(
SNR
2 + 1

) (
INR2

INR+(INR+1) (SNR+1) + 1
)

(INR + 1)
(
INR + SNR

INR+1 + 1
)
+

1
2

log
(πe

3

)
=

1
2

log
(

2 (SNR + 1) (2 INR + SNR + INR SNR + 1)
(INR + 1) (SNR + 2) (2 INR + SNR + 1)

)
+

1
2

log
(πe

3

)
≤ 1

2
log (2) +

1
2

log
(πe

3

)
=

1
2

log
(

2πe
3

)
, (47)

∆1 = eq.(45b)-eq.(38a)|x in (38e)

≤ Ig (SNR)− Ig (INR) + Ig (SNR + INR)− Ig

(
INR +

SNR

1 + INR

)
− Ig

(
SNR

1 + 2INR

)
− Ig

(
SNR · INR

(1 + INR)2 + SNR

)
+

1
2

log
(πe

3

)
+

1
2

log(4)

=
1
2

log

 (SNR + 1) (INR + SNR + 1)(
SNR

2 INR+1 + 1
)

(INR + 1)
(

INR SNR
SNR+(INR+1)2

+ 1
) (

INR + SNR
INR+1 + 1

)


+
1
2

log (4) +
1
2

log
(πe

3

)
=

1
2

log
(

(2 INR + 1) (SNR + 1)
(INR + 1) (2 INR + SNR + 1)

)
+

1
2

log (4) +
1
2

log
(πe

3

)
≤ 1

2
log (2) +

1
2

log (4) +
1
2

log
(πe

3

)
=

1
2

log
(

4πe
3

)
, (48)

∆2 = eq.(45c)-
(

eq.(38c)-eq.(38a)
)
|x in (38e)

≤ 2Ig

(
INR +

SNR

1 + INR

)
− Ig (SNR + INR)− Ig (SNR) + Ig (INR) + Ig

(
INR

1 + INR

)
+

1
2

log
(πe

3

)
=

1
2

log
(

(1 + 2INR)((1 + INR)2 + SNR)
(1 + INR)2(1 + SNR)(1 + INR + SNR)

)
+

1
2

log
(πe

3

)
≤ 0 +

1
2

log
(πe

3

)
=

1
2

log
(πe

3

)
(49)


