
 

 

 

 

The Learning Zone in New Product Development 

 

 

 

 

 

 

 

Anna Shaojie Cui
1
 

University of Illinois at Chicago 

 

 

 

Kwong Chan 

University of Massachusetts at Amherst 

 

 

 

Roger J. Calantone 

Michigan State University 

 

 

*Accepted for publication for IEEE Transactions on Engineering Management

                                                           

1 Corresponding author: Anna Shaojie Cui, Assistant Professor of Marketing, College of 

Business Administration, University of Illinois at Chicago, University Hall 2223, 601 S. 

Morgan Street, Chicago IL 60607, USA. Tel: 001-312-996-7326. Fax: 001-312-996-3559. 

Email: ascui@uic.edu. 

 



2 

 

The Learning Zone in New Product Development 

 

 

 

Keywords: information, innovation, knowledge, organizational learning, new product 

development 

 

Abstract 

 

New information is the fuel that allows organizations to innovate. Yet the generation of new 

information may yield little benefit if existing practices prevent the firm from integrating new 

insights effectively. This study provides evidence that existing knowledge has both an 

enhancement effect that improves the firm’s ability to benefit from new information, and an 

inhibition effect that lowers its motivation to learn. Firms that utilize a moderate level of 

existing knowledge benefit from new information more than firms that rely too little or too 

much upon existing knowledge. We call this optimal circumstance the “learning zone”. 

Furthermore, we find that the moderating effects of existing knowledge are stronger for new 

products of lower novelty that provide a similar learning context. In addition, as novelty 

increases, the prominence of the enhancement effect increases, whereas the inhibition effect 

becomes less prevalent. Highly novel products that are able to utilize existing knowledge are 

therefore most likely to benefit from new information. Existing technical knowledge is also 

found to inhibit the use of new information to a greater degree than market knowledge. The 

findings suggest that organizations should evaluate their reliance on existing knowledge and 

create a learning zone that provides the best condition for innovation.   
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I. Introduction 

As competitive pressure and environmental complexity increase, the amount of data 

companies collect “has turned from a rain shower into a deluge” [1]. In developing new 

products, firms endeavor to understand customers’ needs and potential market response. In 

the technical domain, the advancement in technology allows engineers and scientists to 

generate an unprecedented amount of technical data [2], [3]. However, these costly activities 

to generate market and technical information often fail to fulfill their promise [4], [5]. 

Attempts to be market responsive often lead to unexpected consequences [6], and gathering 

customer information has been found to have negative or no impact upon innovation 

outcomes and firm performance (e.g., [7], [8]). This phenomenon of unfulfilled promise is 

mirrored in engineering and R&D where a large amount of technical information may also be 

difficult to understand or integrate to improve product design [9]. Given the resource 

intensive nature of new information generation, the prevalence of such findings is worrying. 

Knowing when new information is likely to be beneficial would enable more efficient 

allocation of resources [10] and help firms more effectively learn. It is thus critical for a firm 

to understand when it is most able to benefit from new information, i.e., to be able to answer 

the question “When is my firm most able to learn?” 

Part of the answer lies in the way a firm’s existing knowledge is utilized in innovation 

projects. The new information a firm gathers needs to be combined with existing knowledge 

to improve new products. However, this integration process is more than a simple linear 

summation of old and new insights [10], [11], as the very acts of information search, 

interpretation and integration occur through the lens of existing understanding [10]. Existing 

knowledge influences how new information is interpreted, the extent to which it is integrated 

with existing systems and whether it is successfully utilized. Thus the ability to realize the 

benefit of new information is inevitably influenced by existing knowledge. 
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While existing knowledge can enhance a firm’s ability to understand and integrate 

new information [12], it may also create core rigidities [13] and competency traps [14] that 

inhibit the use of new information. Thus existing knowledge has both an enhancement effect, 

where a firm is more able to utilize new information when it is equipped with existing 

knowledge, and an inhibition effect where heavy reliance on existing knowledge increases 

the firm’s attachment to existing routines and reduces its motivation to use new information. 

Such contrasting effects indicate a complex influence of existing knowledge upon learning. 

Although qualitative accounts of contrasting learning effects have captured the imagination 

of scholars, with Leonard-Barton’s [13] account of core capabilities and core rigidities 

perhaps being the most salient, empirical tests remain sparse. Studies that simultaneously 

consider enhancement and inhibition effects, to the best of our knowledge, are absent. A few 

simulation studies have shown existing competencies can impede learning [15], although they 

only serve to highlight the paucity of empirical work.  

Research concerning organizational memory finds that existing knowledge has 

differential effects upon innovation outcomes such as profitability and innovativeness [16] 

and that its effects vary according to environmental conditions [17]. However, these studies 

focus on the direct effects of existing knowledge upon innovation outcomes rather than the 

innovation process. Without exploring the learning process, that is, how existing knowledge 

may influence the use of new information to achieve outcomes, it is difficult to determine the 

reason for these diverse effects. Research in new product development has also emphasized 

the direct effects of either new information (e.g., [18], [19]) or existing knowledge (e.g., [17], 

[20]) on product outcomes, but has rarely examined how existing knowledge may influence 

the use of new information. Thus extant research does not reflect how new information is 

integrated and used in the product development process, and is at odds with learning theories 

that suggest new information is used through the lens of existing knowledge.  
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This study examines how existing knowledge influences a firm’s ability to learn from 

new information in the context of new product development. We propose that a moderate 

level of existing knowledge provides the best condition for learning. We further examine how 

such a curvilinear effect is moderated by the novelty of the innovation context. The findings 

provide empirical evidence for the enhancement and inhibition effects of existing knowledge 

upon learning, and allow for the identification of an optimal learning zone where new 

information is most beneficial for innovation.   

II. Theory and hypotheses 

New product development (NPD) is an ideal context for this study because it is an 

organizational activity that combines new information generated via search and 

experimentation with existing routines and competences [21]. It is suitable for examining the 

interplay between new information and existing knowledge in the learning process. To 

measure the ultimate effect of this interplay, we use new product advantage as the focal 

outcome. New product advantage is defined as the extent to which a product is superior to 

market alternatives, that is, it provides unique benefits and thus better meets customers’ needs 

[22]. New product advantage is the direct outcome of integrating new information and 

existing knowledge, thus a more suitable performance measure than profitability or market 

share, which can be achieved in ways that do not depend upon the integration of new 

information and existing knowledge (such as through promotion programs or cost reduction). 

A. Learning as manifest change: the effect of new information generation on new product 

advantage 

To examine the benefit of new information, we define learning as manifest change 

resulting from the use of new information
2
. In the context of NPD, learning occurs if new 

                                                           

2
 Some research uses the concept of learning more broadly and considers information generation that increases the range of 

potential actions but does not lead to actual actions also as learning [11]. We argue that manifest change is necessary for 
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information generation leads to observable change in new product outcomes. Thus we view 

learning as productive use of new information. Specifically in our regression analyses, new 

product advantage is the dependent variable and the effect of new information generation 

upon new product advantage indicates learning, that is, how effectively the firm turns new 

information into output.  

We consider new information generation in market and technical areas because they 

represent crucial competence areas in NPD. During the NPD process, marketing research 

activities, such as screening of product ideas, preliminary market assessment, detailed market 

studies and pre-commercial business analysis, enable the firm to generate new market 

information that informs a product’s feature design, target market and positioning [23]. New 

technical information is generated through activities such as technical assessment, 

development of product prototypes, and product testing [9], [23], [24]. Technical information 

gathered through these processes helps the firm understand design feasibility, technological 

requirements and performance specifications for product features.  

Research findings concerning the effect of new information on product outcomes are 

inconsistent. Some research finds that market information generated through detailed market 

studies enables the development of advantageous products (e.g., [22], [25]), whereas other 

studies indicate that relying on customer information may reduce or have no effect upon 

innovation performance (e.g., [4], [7], [8]). Information generated through technical activities 

has been found to enhance feature design [26], but such information may not be easily 

understood or integrated to generate superior products [9]. These inconsistent findings 

suggest that the effect of new information on new product advantage may be dependent upon 

certain conditions. We propose that the level of existing knowledge involved in a NPD 

                                                                                                                                                                                     

learning since new information that does not lead to improved product outcomes consumes resources and creates 

inefficiency. Our approach captures the actual benefit of new information. It also provides a better way to assess learning, 

because it is difficult to measure an organization’s potential actions. 



7 

 

project is a condition that determines whether new information can be effectively used to 

generate superior products.  

B. The moderating impact of existing knowledge  

We define existing knowledge as the degree to which a NPD project relies on the 

firm’s existing market and technical systems. If a new product project uses existing 

distribution channels or resources, and faces familiar customers and competitors, then it 

utilizes a high level of existing market knowledge. Similarly, projects that use existing 

technologies and manufacturing processes rely on high levels of existing technical knowledge. 

On the other hand, if a NPD project requires substantial changes to existing systems, its 

reliance on existing knowledge is low.  

Both new information and existing knowledge are important inputs to the NPD 

process where they are combined to generate product solutions. The amount of existing 

knowledge that a NPD project utilizes can influence the degree to which new information is 

understood, whether it can be effectively combined with existing knowledge, and whether it 

is successfully utilized in product design.  

Prior knowledge helps distinguish between relevant and irrelevant external 

information [27] as well as interpret relevant information [10], [28]. Similarly, for internally 

generated information such as that obtained from experiments, insights are also of higher 

quality when informed by past experience [14]. In NPD, market information is often 

generated externally through customer research, and technical information is often generated 

through internal experimentation such as in-house testing, but in either case the interpretation 

of new information is enhanced when managers are equipped with existing knowledge [18].  

Furthermore, existing knowledge improves the utilization of new information to 

generate superior products. Research suggests that innovation is achieved through 

recombination of components of prior and/or new knowledge [29], [30]. The greater a firm’s 
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existing knowledge, the more likely it can identify effective ways of combining new 

information and existing knowledge to generate feasible and advantageous product solutions 

[31], [32]. Firms with higher levels of existing knowledge also have experience with a wider 

variety of knowledge components, and thus are able to more effectively select appropriate 

combinations for use in NPD [29]. On the other hand, lower knowledge stocks will limit the 

possibility of successful combination.  

The previous arguments focus upon the firm’s ability to learn, which is distinct from 

the motivation to learn. While existing knowledge improves a firm’s capacity to better utilize 

new information, when the firm heavily relies on existing knowledge, its motivation to use 

new information tends to reduce as it becomes more attached to existing routines and less 

open to new information
3
.   

Managers tend to value familiar routines [14] and avoid ambiguity and risks [33]. 

Over reliance on existing technology or marketing systems increases managers’ confidence in 

their knowledge base, which may lead them to resist the use of new information. Such 

resistance arises in multiple ways including: reframing new issues in a more familiar way that 

oversimplifies the problem [34], applying more stringent quality criteria for new information, 

and expressing distrust toward individuals who provide new information [33]. Such behaviors 

often happen unconsciously. Managers may not be aware of the biases created by their prior 

understandings, but the common end result is that new information inconsistent with past 

understandings is ignored or misinterpreted [10].   

                                                           

3 Our discussion on learning motivation focuses on the openness to absorb and use new information, not the willingness to 

generate new information, because this study is interested in the productive use or benefit of new information. While 

existing knowledge may influence the firm’s motivation to collect new information, our focus is on how the benefit of newly 

generated information may vary depending on the levels of existing knowledge. As a supplementary analysis we examined 

the correlation between existing knowledge and new information generation in our dataset but did not find any significant 

relationship (Further detail is included in the discussion section). We also followed the procedure proposed by Baron and 

Kenny [35] to test whether new information generation mediates the relationship between existing knowledge and new 

product advantage, but did not find any significant mediation effects.  
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Furthermore, existing knowledge is associated with different organizational members. 

Established senior members often derive authority from exclusive access to existing 

knowledge [36] and association with dominant disciplines [13]. When a new product does not 

utilize substantial existing knowledge, the project is more likely to break free from the 

influence of established disciplines [37]. In contrast, heavy reliance upon existing knowledge 

can lead to undue influence from established functional areas that impedes consideration of 

divergent ideas provided by other functions [38], 39]. Thus the dominance of established 

disciplines stifles heterogeneity of skillsets utilized in NPD, which reduces the number of 

possible knowledge combinations and limit the potential and quality of innovation [40], [41]. 

Therefore high reliance on existing knowledge can create “learning traps” [14] that impede 

innovation. The overall propensity for existing practices to inhibit the use of new information 

has been shown in both case [13] and simulation studies [15].  

The benefit of new information is therefore dependent upon the level of reliance on 

existing knowledge. At low levels of existing knowledge, the firm lacks the competence to 

learn and is less able to benefit from new information. At higher levels of existing 

knowledge, the firm’s learning competence is enhanced; however, excessive reliance on 

existing knowledge reduces its motivation to learn. The negative motivational effects may be 

so strong that they render learning competence ineffective because organizational members 

are unwilling to pursue learning. Collectively, this suggests a curvilinear effect where 

moderate levels of existing knowledge are most beneficial for learning. At this intermediate 

condition, learning enabled by existing knowledge has yet to be overcome by the negative 

motivational influence, and the firm is able to learn most effectively. Thus we hypothesize:  

H1a: The effect of new market information generation upon new product advantage is 

moderated by existing market knowledge in an inverse U-shaped manner where 
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existing market knowledge first enhances then inhibits the effect of new market 

information generation. 

H1b: The effect of new technical information generation upon new product advantage 

is moderated by existing technical knowledge in an inverse U-shaped manner where 

existing technical knowledge first enhances then inhibits the effect of new technical 

information generation. 

C. The role of novelty 

The field of organizational learning emphasizes the role of contextual similarity 

between past and present tasks [12], [34]. A NPD project is a learning context where existing 

knowledge is applied and combined with new information to generate a new product. This 

learning context may be similar to or different from previous circumstances in which existing 

knowledge was applied. The level of dissimilarity of the NPD learning context can be 

represented by the degree of innovativeness of the new product
4
. When a product is very 

new, it may still utilize existing technology or marketing systems, but existing knowledge is 

applied in a way that is substantially different from prior practice. Thus novelty is the overall 

newness of a product that represents difference in the context in which market and technical 

knowledge is applied. We argue that novelty of the learning context influences the extent to 

which existing knowledge can impact the use of new information. Specifically, we propose 

that the curvilinear moderation effect of existing knowledge upon the relationship between 

new information and new product advantage is weaker for highly novel products. 

                                                           

4 While product innovativeness may be argued to be a NPD outcome, here we treat it as a contextual factor because the 

overall newness of the product is often set at a certain level at the start of a NPD project. This approach has been used in 

previous studies [20]. In addition, new product innovativeness and new product advantage are distinct concepts [42]. 

Innovativeness is concerned with the overall newness of a product, whereas product advantage refers to a product’s 

superiority relative to other products in the marketplace. While a newer product tends to provide more advantages, newness 

also lowers customer familiarity and requires customer behavioral change, thus a newer product may not always be more 

advantageous, as customers tend to resist the adoption of unfamiliar products [43].  
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New information is easier to understand when a firm has previously conducted 

activities in a similar context [12], [34]. The more divergent the context between current and 

previous learning situations, the less likely existing knowledge is able to facilitate the 

interpretation and use of new information, because previous knowledge combinations are less 

likely to be applicable. Even though a larger amount of existing knowledge provides more 

possible combinations, the new context of application limits the firm’s ability to utilize them 

successfully. Therefore, the enhancement effect of existing knowledge is lower for highly 

novel products, that is, as the firm’s reliance on existing knowledge increases, its ability to 

benefit from new information does not increase as sharply compared to when novelty is low.  

The negative motivational effect of existing knowledge is also weaker for distal 

learning contexts. For projects in a similar domain, managers are more likely to rely on 

standard routines, leading to greater resistance to the use of new information. In contrast, 

when new projects are very novel, organizational members tend to be more open to new ideas 

as existing routines do not compete directly in the new context [13]. Lower applicability of 

existing knowledge in the new learning context also means dominant disciplines associated 

with existing knowledge are less influential, thereby permitting a diversity of knowledge to 

be used in product development. Thus when the level of existing knowledge is high, the 

novel context of a NPD project helps the firm break free from the negative motivational 

influence of existing knowledge. Therefore, as the firm’s reliance on existing knowledge 

increases, its negative impact upon the use of new information does not increase as sharply 

compared to when novelty is low. This mitigated inhibition effect together with the 

previously discussed lesser enhancement effect leads us to hypothesize an overall weaker 

moderation effect of existing knowledge for higher levels of product novelty. 

H2a: The curvilinear moderation of existing market knowledge upon the effect of new 

market information generation is weaker when product novelty is high. 
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H2b: The curvilinear moderation of existing technical knowledge upon the effect of 

new technical information generation is weaker when product novelty is high. 

III.  Method 

A. Sample and data 

The sampling frame was obtained from a commercially supplied list covering the 

chemical, biochemical and pharmaceutical industries in North America. We randomly 

selected 700 firms from the list to contact. The questionnaire was administered by a 

professional survey research organization that conducted multiple callbacks. Incentives 

including a monetary amount and a copy of aggregated results were given to boost response. 

Preliminary research such as interviews and pretest of the questionnaire was conducted to 

ensure the quality of data collection. We received 451 usable responses, yielding a response 

rate of 64.4%. The respondents were product line managers, new product development 

managers and product managers. Their primary functional areas in the company are 

distributed between marketing (42.6%) and R&D (35.9%) and other areas such as production 

and general management (21.5%). They were asked to answer the questions with regard to a 

recent new product project he/she worked on. Responding firms were diverse in scope. The 

number of employees ranged from 11 to 30,000 with an average of 1309, while annual R&D 

as a percentage of revenue ranged from 0.1% to 15% and averaged 3.8% of revenue. We used 

t-tests to compare early and late respondents. No significant differences were found for the 

key variables, suggesting non-response bias is not a significant problem [44].  

B. Measures 

Moorman and Miner’s [16] measures of memory have been commonly used to 

measure knowledge (e.g. [17], [20]). A limitation of this approach is that self-reported levels 

of knowledge are based upon organizational awareness of knowledge, which, even if 

accurate, is insufficient to determine if the knowledge can be utilized in a learning task. We 



13 

 

apply an action-based approach to measuring existing knowledge. The action-oriented 

perspective of knowledge [45] argues that the performance of a routine is a stronger 

indication that knowledge exists. Firms engaged in an activity necessarily have the requisite 

knowledge to perform that activity. Thus knowledge can be measured by the activities 

undertaken by a firm. If a NPD project utilizes existing marketing or technical systems, such 

activities are an indication of its reliance on existing knowledge.  

Existing market knowledge: In measuring existing market knowledge, we assess the 

degree to which past distribution systems carry over to the current NPD project, and the 

degree to which the new product faces familiar customers and competitors. The items are 

borrowed from Cooper and Kleinschmidt [46] and Danneels and Kleinschmidt [47]. 

Existing technical knowledge: Existing technical knowledge is measured with the 

degree to which the technology used for the new product is found within the firm, and the 

extent to which existing manufacturing processes can be applied to the new product. The 

items are borrowed from Cooper and Kleinschmidt [46] and Danneels and Kleinschmidt [47]. 

New market information generation: We operationalize new market information 

generation as activities in the NPD process that are used to gather new market information. 

Specifically, we measure new product activities including screening of the product idea, 

preliminary market assessment, pre-commercial business analysis and detailed market 

studies. The degree to which these activities are carried out indicates the firm’s effort to 

obtain new market formation related to the new product. The items are adapted from Cooper 

and Kleinschmidt [46] and Calantone, Schmidt and Song [48].  

New technical information generation: We measure new product activities that are 

used to generate technical information, including preliminary technical assessment, 

development of a product prototype and in-house product testing. The items are adapted from 

Cooper and Kleinschmidt [46] and Calantone, Schmidt and Song [48]. Our measurement of 
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market and technical information generation at several different phases reflects normative 

models of the NPD process [49].   

The measures of new information generation are consistent with our action-based 

approach of measurement. They provide a means to assess ongoing activities of the firm 

rather than self-reported newness of information content, which tends to be more subjective. 

While existing knowledge measures the overall degree to which a NPD project relies on 

existing systems, the measures of new information generation are based upon specific 

information generation activities in the NPD process. This distinction allows us to clearly 

separate the measurement of new information and existing knowledge.  

New product advantage: New product advantage measures the extent to which a new 

product is superior to competing products in terms of meeting customer needs, provides 

unique attributes that are not available from competing products, and offers highly visible 

benefits to the customers. The items are borrowed from existing research [50], [51].  

Novelty: We assess novelty via product innovativeness. This measure rates the overall 

degree of innovativeness of the new product relative to other products in the market. This 

item is adapted from Atuahene-Gima [51] and Kleinschmidt and Cooper [42].  

We conducted a confirmatory factor analysis (CFA) to assess measurement validity 

(see Appendix). The χ
2 

for the CFA model is 313.82 with 78 degrees of freedom. The fit 

indices are: comparative fit index (CFI) 0.91, root mean square error of approximation 

(RMSEA) 0.082, which collectively indicate the measurement model has satisfactory fit. All 

item loadings are high (λ > 0.58) and significant (t> 11.00), providing evidence for 

convergent validity. Discriminant validity was assessed by examining pairs of constructs in a 

series of two-factor CFAs. Significant χ
2 

difference tests for each comparison indicated 

sufficient discriminant validity between the constructs [52].  
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To alleviate the concerns for potential common method bias, we first conducted 

Harman’s one-factor test. Significantly worse fit for the one-factor model (χ
2 

= 1748.80, df= 

79) provides preliminary evidence that common method bias is not a threat to measurement 

validity. Second, we followed Lindell and Whitney’s [53] approach to examine the influence 

of common method variance on the relationships among constructs. We selected market 

attractiveness, measured with economic climate and the number of profitable customers and 

innovative users in the market, as the marker variable because it is uncorrelated with new 

product advantage (r=0.01, not significant) [53]. We examined the correlations between 

market attractiveness and other constructs, and used the smallest correlation to partial out the 

influence of common method variance. The correlations among constructs did not 

substantially change and their significance remained the same, suggesting that the 

relationships among constructs are not accounted for by common method variance. Further, 

we utilized a structural equation model to examine the impact of common method variance 

on the relationships among constructs [54]. We used market attractiveness to identify a 

common method factor, on which the indicators of all constructs were loaded. Due to the 

difficulty of handling high order interactions in structural equation models [55], we only 

included main effects in the model. We compared coefficient estimates in models with and 

without the common method factor. The significance of the independent constructs stayed the 

same when the common method factor was included. For the significant paths, the difference 

between standardized coefficients averaged 0.004, which is less than 2% of the original 

coefficients. These results indicate that common method variance does not seriously bias the 

relationships among constructs [53]. 

C. Control variables 

We included a number of control variables. At the project level, we controlled for the 

use of cross-functional teams because teams have been found to improve new product 
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performance [56]. With regard to firm characteristics, we controlled for firm size [57] and 

R&D intensity [58]. Because environmental factors are known to impact new product 

success, we controlled for the firm’s order of market entry [59], stage of product life cycle of 

the market entered [60] and increase in market competition [22]. Among the control 

variables, increase in market competition and cross-functional teams are self-report scales. 

For these two constructs, we conducted a CFA to assess measurement validity. The CFA 

model showed good fit (χ
2 

= 17.41/df =5; CFI= 0.99; SRMR =0.034; RMSEA =0.074), with 

all item-construct loadings high (λ > 0.58) and significant (t>11.77).   

IV.   Results 

We used averaged scores for each construct and tested the hypotheses using OLS 

regression. All variables were mean-centered before analysis [61]. The interaction terms were 

added to the model sequentially (Table 2). F-tests indicated each step significantly improved 

model fit, providing support for the interaction model. To reduce the chance that higher order 

simple effects could be mistaken for interaction effects, we included quadratic effects for new 

market and technical information generation and found the results to be the same. We 

therefore omitted the quadratic terms to maintain a more parsimonious model. The variance 

inflation factors for all models were below the suggested cutoff value of 10 [62], indicating 

multicollinearity is not a serious concern. Hypothesis testing is based upon Model 4 that 

exhibits the most explanatory value. 

<< Insert Tables 1 and 2 here >> 

 

A. The impact of existing knowledge upon learning 

Given that learning in our analysis is represented by the effect of new information 

generation upon new product advantage, the impact of existing knowledge upon learning is 

reflected in the interaction terms between new information generation and existing 

knowledge. The curvilinear moderation effects of existing knowledge are tested with the 
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quadratic interaction terms between new information generation and existing knowledge. The 

quadratic interactions are significant and negative for both market (β=-0.03, p<0.01) and 

technical dimensions (β= -0.02, p=0.01), indicating an inverse U-shaped relationship. H1 is 

supported. The linear interaction terms are also negative and significant for market (β=-0.07, 

p=0.01) and technical domains (β=-0.12, p<0.01). Note that when quadratic interaction terms 

are included, it is the signs of the quadratic interaction terms that determine the shape of the 

curve -- U-shaped or inverse U-shaped [61]. In such models, the linear interaction terms 

determine the relative position of the curve along the axis rather than the shape of the curve, 

and they cannot be interpreted independent of the quadratic interaction terms.   

We graph these effects in Figure 1 where the Y-axis is the effect of new information 

generation on new product advantage and represents learning. For both market and technical 

areas, existing knowledge is shown to first enhance and then inhibit learning. The 

contribution of new information generation to new product advantage is the highest at a 

moderate level of exiting knowledge
5
.  

<< Insert Figure 1 here >> 

B.  The role of novelty 

To examine the role of novelty in influencing the impact of existing knowledge upon 

learning, we included interactions of novelty with the independent variables. The results 

                                                           

5
 Prior knowledge may also influence the use of new information through a substitution effect as firms may have 

a finite need for insight and seek information only to the degree that existing knowledge is insufficient [63]. The 

implication is that if new information does not appear to be beneficial, it could be because the organization does 

not need the new information. An examination of the regression results in Model 2 of Table 2 shows negative 

linear interactions between new information generation and existing knowledge, indicating the existence of 

substitution effects. However, such substitution effects do not completely explain the relationship between new 

information generation and existing knowledge. In better specified Model 3 and Model 4, the significant 

curvilinear interactions between new information generation and existing knowledge indicate that, in addition to 

reducing the need for new information, existing knowledge influences the use of information through the 

competence and motivational effects discussed in this study. Since the motivational inhibition effect occurs at 

high levels of existing knowledge, learning effects suggest a curvilinear interaction between new information 

generation and existing knowledge, while substitution effects manifest as a monotonic negative relationship. 

Thus the observed curvilinear interactions are valid evidence for the proposed learning effects. Model 2 that 

represents only substitution effects is a mis-specified model compared to Model 3 and Model 4 that correctly 

capture the effects of existing knowledge. 
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show that novelty moderates (β=0.01, p<0.01) the quadratic impact of existing market 

knowledge upon the benefit of new market information generation. Given the negative 

quadratic interaction between new market information generation and existing market 

knowledge, these positive coefficients indicate that increased product novelty reduces the 

strength of the interaction between existing market knowledge and new market information 

generation, providing support for H2a. Specifically, this indicates that novelty changes the 

shape of the inverse U-shaped curve. High novelty results in flatter curves as existing 

knowledge becomes less relevant (and therefore impacts the use of new information less) in 

dissimilar learning contexts. Novelty does not significantly influence the quadratic 

moderating impact of existing technical knowledge (β=0.001, p=0.81). H2b is not supported. 

However, novelty significantly influences the linear moderating impact of existing technical 

knowledge (β=0.02, p=0.01). This indicates that novelty does not change the shape 

(steepness) of the inverse U-shaped curve for technical knowledge, but rather changes the 

position of the curve along the axis.  

<< Insert Figure 2 here >> 

Figure 2 shows the moderation effects of existing knowledge under different levels of 

novelty. The three lines correspond to average, high, and low (one standard deviation above 

and below the mean respectively) levels of novelty. Consistent with H2a, the graph for 

market activities shows that low novelty has the steepest inverse U-shaped curve, indicating 

the strongest effect of existing knowledge in influencing the benefit of new information. The 

effect is similar but less pronounced for products at the mean value of novelty. Interestingly, 

for highly novel products, existing market knowledge is monotonically beneficial for the use 

of new information, although this effect is one of mitigated loss as the effect of market 

information generation is mostly negative (negative Y values occur for most of the X-axis 

range for high novelty).  
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The graph for technical activities at high novelty indicates that existing knowledge 

first enhances and then inhibits the use of new information, supporting the hypothesized 

effects. However, as product novelty decreases, the range of X-values for which existing 

technical knowledge exhibits enhancing effects decreases. When product novelty is low, 

existing technical knowledge exhibits mainly an inhibition effect upon the use of new 

information. Thus when compared to market knowledge, reliance upon technical knowledge 

has a greater capacity to inhibit learning.  

V. Discussion 

This study examines the impact of existing knowledge upon the firm’s ability to learn 

from new information. It finds that existing knowledge initially enhances learning, but when 

the reliance on existing knowledge increases to a high level, it shows an inhibition effect 

upon learning. This finding suggests that there is an optimal “learning zone” characterized by 

a moderate level of existing knowledge where firms are best equipped to learn. Furthermore, 

the moderation effects of existing knowledge are found to be stronger for innovations of 

lower novelty, suggesting that the role of existing knowledge is influenced by the similarity 

of the current learning context compared to prior applications. In addition, differential effects 

are found across market and technical disciplines. The findings suggest that the benefit of 

new information can only be understood conditional upon the level of existing knowledge.   

A. The curvilinear impact of existing knowledge  

Despite qualitative accounts of enhancement and inhibition influences of existing 

knowledge upon learning, empirical tests remain sparse. Studies that simultaneously consider 

enhancement and inhibition effects are absent. This study not only provides the first empirical 

test for the contrasting effects of existing knowledge, but also demonstrates that the very 

same knowledge that assists learning can also inhibit learning. Future research should 

consider curvilinear models to capture the influence of prior knowledge.  
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Prior research has found that existing knowledge has direct effects on new product 

outcomes such as profitability and innovativeness. Our results show that the impact of 

existing knowledge has another key dimension based upon its influence on the use of new 

information. A better understanding of the impact of existing knowledge upon the learning 

process may help to explain the differential direct effects of existing knowledge upon 

different outcomes and under different environmental conditions [16], [17].   

The curvilinear effect of existing knowledge suggests the need to evaluate the reliance 

on existing knowledge when acquiring new information. When existing knowledge is limited, 

the firm may not be able to understand new information or generate sufficient knowledge 

combinations to successfully use new information. On the other hand, with high levels of 

existing knowledge, new information may not be effectively used due to interpretation bias 

caused by ingrained practices or resistance from organizational members associated with 

existing systems. Given the resource intensive nature of information generation activities, 

information generation should be avoided unless (1) the firm is equipped with sufficient 

knowledge to integrate new information and (2) organizational resistance can be 

appropriately overcome. Instead of applying standard processes of information generation to 

all NPD projects, firms need to evaluate existing systems and adjust information generation 

activities accordingly. While prior work has found that rigid NPD routines can restrict 

learning and hurt product performance [64], an inspection of Table 1 shows no significant 

correlation between new information generation and existing knowledge, indicating that 

firms do not systematically adjust their information generation activities. This suggests 

possible inefficiencies and highlights the importance of considering the role of existing 

knowledge in learning.  

B. The role of novelty 
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We find that existing knowledge has a stronger influence upon learning for less novel 

products. This finding suggests that the learning context in which knowledge is applied 

influences the enhancement and inhibition effects of existing knowledge. While the literature 

has often intertwined knowledge context and quantity, we find distinct effects for the context 

in which learning occurs and the quantity of existing knowledge utilized. 

An interesting finding is that, although the application of existing knowledge may be 

more difficult for a highly novel product, the use of existing knowledge is more likely to be 

beneficial in such contexts. As shown in Figure 2, when product novelty increases, the 

prominence of the enhancement effect increases, whereas the inhibition effect becomes less 

prevalent. For the market domain, the inhibition effect of existing knowledge is only present 

at low and moderate levels of novelty; at high levels of novelty, existing market knowledge 

monotonically enhances the use of new information. In the technical domain, primarily 

negative effects of existing knowledge are observed for low and moderate novelty, while a 

large range of positive effect is present for products of high novelty. Thus a highly novel 

product that is able to utilize existing systems is most likely to benefit from new information. 

Firms that are able to find ways to recombine knowledge in new innovation contexts are 

more likely to be successful innovators.   

The greatest benefit of new information is achieved when the product is of low 

novelty (Figure 2), suggesting that new information generation is generally more beneficial 

for less novel products. When firms move to unfamiliar contexts, the difficulty of using new 

information is substantially increased, as previous knowledge combinations are less 

applicable. This finding highlights the challenge of radical innovation and is consistent with 

the scarcity of successful radical innovations in the market [65].  

Differential effects are found across market and technical domains. First, existing 

technical knowledge shows more inhibition effects than market knowledge. For low and 
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moderately novel products, while existing market knowledge shows both enhancing and 

inhibition effects, existing technical knowledge mainly inhibits learning. For highly novel 

products, existing market knowledge mainly enhances learning, although technical 

knowledge can both enhance and inhibit the use of new information. Being embedded in 

technological systems, manufacturing facilities and experts with specialized training, 

technical knowledge is highly context-dependent and difficult to communicate [32], [66]. The 

sticky nature of technical knowledge may create greater rigidity than market knowledge [67].  

Although the greatest benefit of new market and technical information is both 

achieved at low novelty, due to the stronger rigidity in technical knowledge, this happens at 

low (rather than medium) levels of existing knowledge for the technical domain (Figure 2). 

For products of low novelty, technical rigidity is even stronger due to context similarity. 

Using a lower amount of existing knowledge in the project helps to avoid the negative 

consequences of such rigidity. Thus a combination of low novelty and low existing 

knowledge provides a learning context where existing knowledge is applicable but does not 

create too much inhibition effect. Such a scenario produces higher returns than acquiring new 

information at high novelty, where existing knowledge is difficult to apply yet the negative 

effects of learning traps can be strong due to the high rigidity in technical knowledge.  

Second, for highly novel products, while technical learning follows the hypothesized 

inverse U-shaped curve, existing market knowledge monotonically improves the use of new 

market information. This positive influence is through mitigating the negative effect of 

market information generation upon product advantage (negative Y values for high novelty) 

(Figure 2). Prior research has argued that strong reliance on customer information may limit 

creativity because customers tend to rely on past experience and focus on specific product 

features and preferences, but lack the ability to conceive of future needs, which is crucial for 

highly novel products [68], [69]. Our finding supports these arguments. Gathering too much 
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market information may reduce focus in the NPD process and constrain the success of highly 

novel products. Importantly, existing market knowledge is able to mitigate the negative 

influence of new market information for highly novel products. When the firm has a strong 

understanding of the market, it is more able to translate specific customer inputs into 

fundamental customer needs, which are more likely to lead to broad exploration [68]. 

Therefore, for highly novel products, the positive role of existing market knowledge is 

enhanced due to the increased need to correctly interpret customer information, whereas the 

inhibition impact is mitigated due to the new learning context. The result is a beneficial effect 

of existing market knowledge at all levels.  

C. The benefit of new information  

While new information is acknowledged to be essential for innovation, consistent 

empirical support is lacking. In considering the limits of market information Sinkula [10] 

asks: “…when is too much too much?” The conditional effects identified in this study offer a 

possible answer. New information is only useful when it is effectively integrated with 

existing knowledge. Our results indicate that disparities in prior work may be due to the lack 

of consideration of existing knowledge, as the role of new information and existing 

knowledge can only be understood jointly.   

D. Managerial implications  

Firms need to evaluate existing systems and capabilities before investing in costly 

new information generation activities. Instead of applying a standard process of information 

generation to all NPD projects, firms need to adjust their information generation effort 

according to levels of existing knowledge. This may be achieved by classifying NPD projects 

based upon their reliance on existing knowledge and developing different information 

acquisition strategies. Firms may establish procedures of assessing existing systems in the 

NPD process, which serves as a means to break the inertia of routine information generation.    
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The capacity for existing knowledge to impede the effective use of new information 

raises the issue of mitigation. How can the undesirable effects of existing knowledge be 

minimized? Physical assets are indicators of existing knowledge but can be replaced to the 

extent that resources are available. However cultural change within organizations is far more 

problematic as knowledge associated with values and norms is more difficult to modify. To 

facilitate learning, firms may set up mechanisms that separate competence from constraining 

values and norms, and create new incentives that subsume existing hierarchy. For example, 

relocation of projects away from dominant cultures or instilment of a mentality to challenge 

authority can help isolate the negative influence of existing knowledge.  

Technical knowledge and personnel may be more prone to the negative effects of 

existing knowledge, and thus greater effort is required to overcome such influences. This is 

especially the case for technology-driven firms where technical areas play a dominating role 

in NPD. To overcome the rigidity of existing knowledge, technical functions should be more 

aware of the need to be open to ideas from other areas [70]. Engineers and scientists may also 

benefit from developing a broad knowledge base that can provide diverse insights, or 

working on different projects that offer opportunities for cross-fertilization.  

E. Limitations and future research   

While our study is able to identify curvilinear effects of existing knowledge, we are 

not able to directly measure learning competence and motivation, which would provide 

further insights on how to leverage competence while preventing the negative motivational 

effects of existing knowledge. Furthermore, a longitudinal study design would allow more 

temporal separation and stronger tests of the relationships identified in this study. Our study 

highlights the complex interaction between new information and existing knowledge, 

suggesting the need to further understand such complexity. Research that measures 

information generation and the application of existing knowledge at different NPD stages 
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would provide insight into how existing knowledge interacts with new information in specific 

activities. Because the delivery of services is more dependent upon individual abilities and 

social interactions [71], new information and existing knowledge are likely to interact to an 

even greater degree in a service context. Uncertainty in NPD projects and in the external 

environment is also likely to impact the relationship between new information and existing 

knowledge, as uncertainty often acts as a catalyst for organizational change yet provokes 

factions to protect political territories. With a rich variety of research possibilities, we hope 

that further research finds cause to build upon the framework we have provided for the 

impact of existing knowledge upon learning in product innovation.
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Fig. 1. Curvilinear influence of existing knowledge upon learning 

 

 

 

 

 

 

 

 

Fig. 2. Curvilinear influence of existing knowledge upon learning under different levels 

of novelty 
 

 

 



 

 

TABLE 1 

MEANS, STANDARD DEVIATIONS AND CORRELATIONS  

 Mean Standard 

Deviation 
1 2 3 4 5 6 7 8 9 10 11 12 

1. New market information generation 5.53 1.68 1            

2. New technical information generation 7.16 1.87 0.31
**

 1           

3. Existing market knowledge 8.04 2.15 0.05 0.19
**

 1          

4. Existing technical knowledge 7.29 2.46 0.15
**

 0.04 0.51
**

 1         

5. Novelty 6.08 2.70 0.15
**

 0.09 -0.20
**

 -0.14
**

 1        

6. New product advantage 6.89 1.89 0.19
**

 0.04   0.01 0.11
*
 0.55

**
 1       

7. Cross-functional team 6.77 2.31 0.34
**

 0.41
**

 -0.21
**

 -0.25
**

 0.18
**

 0.16
**

 1      

8. Firm size 1.31 3.79 -0.16
**

 0.01 -0.01 0.06 -0.23
**

 -0.28
**

 0.11
*
 1     

9. R&D intensity 3.81 2.77 -0.01 0.03 0.03 0.03 0.15
**

 0.07 -0.01 -0.04 1    

10. Order of entry to the market 1.92 1.23 -0.09 0.19
**

 -0.08 0.003 -0.35
**

 -0.29
**

 0.18
**

 0.05 0.22
**

 1   

11. Stage of product life cycle of  

      the market 

3.60 1.33 -0.17
**

 -0.05 0.19
**

 0.17
**

 -0.34
**

 -0.21
**

 -0.24
**

 0.16
**

 0.03 0.19
**

 1  

12. Increase of market     

      competition 

6.09 1.43 0.06 0.02 -0.11
*
 -0.01 -0.08 -0.17

**
 0.16

**
 -0.07 0.03 0.002 0.07 1 

1. *p<0.05, **p<0.01 

2. Firm size is in thousands of employees. 

 



 

 

TABLE 2. 

THE EFFECTS OF NEW INFORMATION GENERATION AND EXISTING KNOWLEDGE UPON NEW PRODUCT 

ADVANTAGE 

         Model 1        Model 2         Model 3      Model 4 

  Variables Hs Coef. p value Coef. p value Coef. p value Coef. p value 

 Intercept   6.89 <0.01  6.92 <0.01   6.90 <0.01  7.13 <0.01 

 New market information generation  -0.03 0.57 -0.07 0.13   0.06 0.27  0.09 0.10 

 New technical information generation  -0.08 0.06 -0.11 0.01   0.09 0.09  0.10 0.08 

 Existing market knowledge  -0.01 0.84 0.03 0.43  -0.04 0.45 -0.11 0.03 

 Existing market knowledge
2
       -0.01 0.70 -0.02 0.25 

 Existing technical knowledge   0.20 <0.01  0.20 <0.01   0.21 <0.01   0.12 <0.01 

 Existing technical knowledge
2
        0.01 0.23 -0.01 0.56 

 New market information generation   X  Existing market knowledge     -0.08 <0.01  -0.14 <0.01 -0.07 0.01 

 New market information  generation  X  Existing market knowledge
2
 H1a      -0.03 <0.01 -0.03 <0.01 

 New technical information  generation  X  Existing technical knowledge
 

    -0.10 <0.01  -0.16 <0.01 -0.12 <0.01 

 New technical information  generation  X  Existing technical knowledge
2
 H1b      -0.03 <0.01 -0.02 0.01 

 Novelty  0.29 <0.01 0.28 <0.01 0.27 <0.01   0.21 <0.01 

 Market information generation  X  Novelty        -0.10 <0.01 

 Technical information generation  X  Novelty          0.01 0.61 

 Existing market knowledge   X  Novelty          0.04 0.01 

 Existing market knowledge
2
  X  Novelty          0.01 0.06 

 Existing technical knowledge   X  Novelty        -0.03 0.02 

 Existing technical knowledge
2
  X  Novelty        -0.01 0.37 

 Market information generation  X  Existing market knowledge   X  Novelty 

xisting 

         0.06 <0.01 

 Market information generation  X  Existing market knowledge
2
  X  Novelty H2a         0.01 <0.01 

 Technical information generation  X Existing technical knowledge  X  Novelty
 

         0.02 0.01 

 Technical information generation  X Existing technical knowledge
2
 X  Novelty H2b         0.001 0.81 

Control variables          

 Cross-functional team    0.24 <0.01  0.32 <0.01   0.32 <0.01  0.24 <0.01 

 Firm size   -0.12 <0.01 -0.12 <0.01 -0.12 <0.01 -0.10 <0.01 

 R&D intensity   -0.03 0.32 -0.07 <0.01 -0.09 <0.01   0.01 0.72 

 Order of entry to the market   -0.29 <0.01 -0.30 <0.01 -0.36 <0.01 -0.27 <0.01 

 Stage of product life cycle of the market  0.07 0.24   0.10 0.06   0.12 0.02   0.22 <0.01 

 Increase in market competition   -0.27 <0.01 -0.32 <0.01 -0.30 <0.01 -0.24 <0.01 

R
2
  0.44  0.54  0.57  0.67  

Adjusted R
2
  0.43  0.52  0.56  0.65  

 1. Unstandardized regression coefficients are reported.  2.  Significant results are in bold font.   3. Firm size is in thousands of 

employees.  

 



 

 

APPENDIX 

MEASUREMENT ITEMS 
 Item-construct 

loading 

Constructs λ t-value 

New market information generation (11 point scale 0 to 10) α= 0.72   

Rate how well these activities were carried out:   

1. Initial screening of the product idea – the first review of the venture 0.70 12.91 

2. Preliminary market assessment: An initial, preliminary, but non-scientific market 

assessment; a first and quick look at the market  

0.72 13.31 

3. Detailed market study/market research: marketing research, involving a reasonable 

sample of respondents, a formal design, and consistent data collection procedure  

0.64 11.66 

4. Pre-commercialization business analysis: A financial or business analysis, following 

product development but prior to full-scale launch* 

--- --- 

New technical information generation (11 point scale 0 to 10) α= 0.74   

Rate how well these activities were carried out:   

1. Preliminary technical assessment: An initial, preliminary appraisal to identify the 

probable technical route and risks  

0.68 12.72 

2. Product development: The actual development of the product resulting in a prototype or 

sample product  

0.58 11.00 

3. In-house product testing: Testing the product in-house; in the lab or under controlled 

conditions as opposed to in the field or with customers 

0.87 16.25 

Existing market knowledge (11 point scale 0 to 10) α= 0.75   

1. To what extent were the competitors that this product took you up against familiar ones – 

ones you had faced before?  
0.61 12.33 

2. To what extent was the distribution or channel system that you used for this product 

familiar or an existing one?  

0.94 20.42 

3. To what extent did the type of distribution skills and resources needed for this product fit 

an existing company distribution system?  

0.73 14.95 

4. To what extent were the customer needs served by this product familiar ones – the kinds 

of needs you have served before* 

--- --- 

Existing technical knowledge (11 point scale 0 to 10) α= 0.85   

1. To what extent could this product be manufactured using existing company plant and 

equipment, with no changes required? (0-10 scale)  

0.76 16.27 

2. To what extent was the type of product or manufacturing process a familiar or existing 

one for you?   

0.94 21.83 

3. To what extent was the technology used in the development of this product familiar or in-

house technology to you?   
0.72 15.32 

4. To what extent did the product involve an inventory versus adaptation of known or 

existing technology * 

--- --- 

New product advantage (11 point scale 0 to 10) α= 0.82   

1. To what extent was the product superior to competing products in terms of meeting 

customers’ needs?  

0.87 18.70 

2. To what extent did the product offer the customer unique attributes or performance 

characteristics not available from competitive products? 
0.88 18.75 

3. To what extent were the benefits offered highly visible ones to the customer… they were 

very apparent to users?  

0.63 12.87 

Novelty   

Rate how innovativeness the product was – its “degree of innovativeness” – relative to 

products then in your market area. 0 being essentially a copy, a “me-too”; 10 being very 

innovative, first of its kind.  

--- --- 
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Cross-functional team (11 point scale 0 to 10) α= 0.75   

1. To what extent was the project undertaken by a multi-disciplinary team (e.g. comprised 

of marketing, R&D, production, etc.)? 

0.66 13.35 

2. To what extent did the team carry the project from beginning to end, i.e., idea to launch?  0.90 17.66 

3. To what extent was the project undertaken by a dedicated team, i.e. they devoted a large 

percentage of their time to the project? 

0.58 11.77 

Firm size   

Number of employees. --- --- 

R&D intensity   

Annual R&D expenditure as a percent of total sales. --- --- 

Order of entry to the market   

Were you first into the market with this kind of product? Circle only one. --- --- 

       a. 1
st
 in     b. 2

nd
 in    c. 3

rd
 in    d. 4

th
 in     e. 5

th
 or later   

Stage of product life cycle of the market   

At what stage of the product life cycle was your main market for this product? 

(Remember: the product life cycle applies to the whole product group, not just an individual 

product). Circle only one. 

a. Introduction  b. early growth  c. growth  d. early maturity  e. mature f. decline 

--- --- 

Increase in market competition (reverse coded)   

1. To what extent did the aggressiveness of competition and competitive activities increase 

during this project? (5= no change; 0 being the highest increase, 10 being the highest 

decrease) 

0.98 28.78 

2. To what extent did price competition in the marketplace increase during this project? (5= 

no change; 0 being the highest increase, 10 being the highest decrease) 

0.65 15.18 

  * These items were dropped during the measurement purification process. 
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