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1.  Introduction  

In this paper, we present a general framework for evaluating both pairwise and 
overall reproducibility for a biomarker measured on a spatial continuous scale 
within the context of structured variance-covariance matrices. We illustrate our 
approach by examining how distance between two sections of the prostate gland 
affects the overall reproducibility of the MCM2 biomarker, as determined from 
measuring their concentrations in the needle core samples taken from each of the 
sections.  Specifically, we assess reproducibility of the MCM2 biomarker under 
one of five variance-covariance structures, unstructured, compound symmetry, 
spatial linearity, the spatial spherical structure, and the spatial exponential 
structure. We determine how appropriate each covariance structure is for 
evaluating reproducibility by comparing the goodness-of-fit of each model using 
the likelihood ratio test (Hedeker and Gibbons, 2006).  We further conducted 
simulation studies involving data of different sample sizes generated under 
different distributions and the mentioned variance-covariance structures to 
examine the validity of our method under different conditions. 

Our methods can be applied in studies involving biopsies of other glands 
and organs, tissue microarrays, and other methods used in obtaining biomarker 
data.  Adequacy of obtaining biomarker data from biopsies has been discussed by 
Hewitt et al. (2004), where the authors note that renal biopsies provide more 
information on biomarkers associated with kidney disease than might urine or 
serum samples.  Because of the organ’s complexity, this procedure is now only 
warranted for the most severe cases.  If the reproducibility is consistent across the 
kidney, however, then investigators might perform the procedure on an isolated 
area to determine biomarker levels in less severe cases as well.  Arguments for 
our methods could also apply to stereotactic needle biopsies done in the brain to 
study biomarkers.  If the biomarker concentrations obtained from the biopsies are 
similar across different portions of the brain, then fewer biopsies might be 
required to determine the highest tumor grade, which is used to select treatment 
modalities for malignant brain tumors (Helenowski, 2006).   

Investigators working with ductal lavage fluid in breast cancer research 
can likewise employ our methods to determine the reproducibility of the fluid 
across the breast is reproducible.  Francescatti et al. (2005) and Johnson-Maddux 
et al. (2005) state how ductal lavage fluid might not be obtained from every duct 
sampled, thus adding to the necessity of determining this reproducibility.   Ductal 
lavage requires much delicacy and precision (2005), leading to another reason 
why investigators would want to perform this procedure on fewer locations of the 
breast with little sampling error.  Johnson

-

Maddux et al. (2005) further discuss 
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poor reproducibility of the breast fluid over time.  We could thus extend our 
methods to determine how the decrease in reproducibility relates to the time 
continuum itself and if reproducibility over time will improve with advanced 
sampling techniques. 

2. Statistical Background 

In this work, we first discuss the background of already established methods for 
measuring reproducibility and its dependency on continuous variables and then 
present how our method adds to these approaches by evaluating how these 
measures change with respect to different pre-specified variance-covariance 
structures.  When evaluating reproducibility over say K sources (e.g., K observers 
or raters), pairwise concordance and overall concordance, as initially described by 
Lin (1989; 2000), are given, respectively, by: 

(1.1) 

(1.2) 

for any two samples i and j,  where � �1,..., 1i K� � and � �1 2,...,j i K� � � denote 
the ith and jth  of K sources, respectively.   These statistics are comprised of the 
population variance parameters 2

i� and 2
j� , the sample covariance, ij� , and the 

sample mean parameters, i� and j� , of the biomarker samples from sources i and 
j, respectively.   

These measures have been adapted to address various issues related to the 
assessment of reproducibility.  Most notably, Barnhart and Williamson (2001) and 
Barnhart et al. (2001) discuss the applications of generalized estimating equations 
(GEE) in evaluating the impact of different covariates on pairwise and overall 
concordance correlation coefficients (CCC’s). Barnhart and Williamson (2001) 
describe a set of three different GEE for obtaining estimates of pairwise CCC’s by 
modeling the means, variances, and CCC’s, respectively. They note that an 
advantage of the GEE approach involves the relaxed assumptions of the 
distribution of the data and its ability to factor out other sources of inter-subject 
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variability accounted for by fixed known sources such as gender or age., a facet of 
a between-subject problem.        

In related work, Carrasco and Jover (2003) use a variance-components 
approach to examine reproducibility among several measurements by 
demonstrating the equivalence of the intra-class correlation coefficient (ICC) to 
the overall CCC (1.2). They show that under a simple linear mixed-effects model 
with observers treated as fixed effects and subjects as random effects, the ICC 
will equal the overall CCC of Lin (1989; 2000). If restricted to two observers, the 
ICC will be equivalent to the pairwise CCC (1.1). Following Barnhart and 
Williamson, Carrasco and Jover (2003) extend their approach to account for 
known inter-subject sources of variation by including additional between-subject 
covariates into their linear mixed-effects model.  Unlike the work of these 
previous authors, we focus on the problem of accounting for spatial within subject 
variation when estimating pairwise and overall reproducibility – our example 
examining the spatial effect of distance on the reproducibility between any two 
prostate gland sections. Our approach combines the marginal modeling strategy 
adopted by Barnhart and Williamson (2001) with the flexible linear mixed 
modeling approach of Carrasco and Jover (2003).  This is achieved by simply 
specifying a marginal linear model having a specified mean structure and a 
specified marginal variance-covariance structure that can accommodate spatial 
and temporal correlation patterns.  

3.  Validation Examples 

To test the validity of our method for relating within-subject reproducibility to 
spatial distribution, we applied our model to both real data and simulated data.  
Applications to real data and accompanying statistical methods are described in 
Sections 4. Simulation procedures and results are described in Section 7.  The 
implications of these results are discussed in Section 8. 

4.  Data Example  

For our example, we use data for the MCM2 biomarker, coming from seven 
patients, ages 47 – 68, having prostate biopsies between 2002 and 2003.  For the 
biopsies, needle core samples were taken from each of the ten sections of the 
prostate.  Figure 1 shows the orientation of each section.  Our analyses will 
pertain to the eight peripheral sections of the prostate gland. Four of these 
peripheral sections are on the left side of the prostate gland and four sections are 
on the right side. The two central (transitional) sections from the normal 
compartment and sections with evidence of pre-neoplastic or cancerous features 
will not be used in the analyses.  We will examine the reproducibility of the 
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MCM2 index, or the percentage of cells taken from each section positively 
staining for MCM2, between any two given sections of the gland using the 
pairwise concordance correlation coefficient (CCC) or the overall CCC.  Finally, 
we also will look at the fit of the models from which we derive the elements of 
the variance-covariance matrix used in the overall CCC to determine the validity 
of the overall CCC based on the assumed variance-covariance structure.  All 
analyses will be applied to data rank-ordered by core ID; normality tests and plots 
of the data indicated that this approach satisfied residual normality assumptions 
(Conover and Iman, 1981; Wallis, 1939; Helenowski et al., 2003).  This approach 
is equivalent to calculating the Spearman correlation across the subjects between 
cores, except that we now account for repeated measures. Other transformations, 
such as log transformation of the data were also tried, but rank-ordered data 
proved most satisfactory in assuming normality. 

Figure 1:  Orientation of prostate gland sections from which the data in the 
example was taken.  Note that we use only the data coming from the eight 
peripheral regions, as opposed to the central or transitional (TZ) sections. The 
numbers in the parentheses indicate the number of the biopsy needle core 
designated to take a tissue sample from that particular prostate gland section in 
each subject.  The pair of numbers in brackets represent the spatial coordinates 
when the prostate is viewed as a 4 x 2 grid consisting of 4 rows and 2 columns.  
The columns represent the left and right side of the gland. We arbitrarily chose 
core 9 to represent row 1, column 1 (i.e., coordinate [1,1]). Based on this 
orientation, core 4 represents row 1, column 2 (i.e., coordinate [1,2]); core 8 
represents row 2, column 1 (i.e., coordinate [2,1]), etc.  

(1) BR = Basal Right section 
(2) M1R = Middle 1 Right section 
(3) M2R = Middle 2 Right section 
(4) AR = Apical Right section 
(6) BL = Basal Left section 
(7) M1L = Middle 1 Left section
(8) M2L = Middle 2 Left section
(9) AL = Apical Left section 

BL 
(6) 

[4,1] 

M1L 
(7) 

[3,1] 

M2L 
(8) 

[2,1] 
AL 
(9) 

[1,1] 

AR 
(4) 

[1,2] 

M2R 
(3) 

[2,2] 

M1R 
(2) 

[3,2] 

BR 
(1) 

[4,2] 

TZ Zones 
(5,10) 

* Not used in 
analyses 
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5.  Statistical Methods 

The pairwise and overall CCC given in (1.1) and (1.2) may be estimated directly 
on the basis of the sample moments from a given pair of readings as shown by Lin 
(1989). Alternatively, pairwise CCC’s and an overall CCC can be computed 
based on a marginal linear model having a specified mean and variance-
covariance structure. Consider the marginal model: 

ykm = �����k  + km,        (5.1) 

where ykm is a biomarker measurement taken from the source effect k� for k = 
{1,…,K} sources considered as fixed effects (e.g., K different raters or 
instruments or, in our example, different gland sections), and the km are random 
error terms for m = {1,…,M} subjects.  The vector of errors for the mth subject, m  
= (1m , 2m,…, Km)T is assumed to be normally distributed with mean vector 0 and 
variance-covariance matrix, �(�), where � represents a vector of parameters 
corresponding to some specified variance-covariance structure.  From this model, 
each subject’s vector of readings, ym = (y1m , y2m,…, yKm)T follows a multivariate 
normal distribution with mean vector � = (�1 , �2,…, �K)T where �k = � + �k, and 
variance-covariance, �(�) = ((�kl(�)))k,l=1,…,K.  

Parameters of this model can be estimated for various specifications of 
�(�), including those with different spatial patterns, using either maximum 
likelihood (ML) or restricted maximum likelihood (REML) estimation.  A 
concordance correlation matrix, Rc, representing pairwise CCC’s between the K
different sources can then be calculated directly from the estimated values of �
and �(�) using (1.1). Likewise, we can compute an overall CCC (OCCC) using 
(1.2) but corrected for mean bias as indicated by Carrasco and Jover (2003).  A 
macro program to implement this method is available upon request.  

By specifying �(�) = �2(1-	)I + 	J where � = (�2, 	), I is the K�K
identity matrix and J is the K�K unit matrix of 1’s, model (3.1) is the marginal 
form of the linear mixed-effects model of Carrasco and Jover (2003) with 	 
representing the usual ICC obtained under a simple random intercept mixed-
effects model. In this case, the concordance correlation matrix, Rc, will reflect the 
assumed compound symmetric covariance structure and any differences between 
the pairwise CCC’s will reflect differences in location shift between the various 
sources, �k. When �(�) is unstructured (i.e., arbitrary positive-definite), the 
concordance correlation matrix, Rc, will correspond to the K(K-1)/2 unique 
pairwise CCC’s that can be obtained using (1.1). For balanced data, these will 
coincide exactly with the moment-based estimator of Lin (1989) with ML 
estimation, while use of REML estimation will result in the unbiased moment-
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based estimator of Carrasco and Jover (2003). With balanced data, it is 
straightforward to show that the OCCC obtained under model (3.1) assuming 
compound symmetry is the same as that OCCC obtained under model (3.1) 
assuming an unstructured variance-covariance matrix (see appendix for proof). 
Conceptually, assuming compound symmetry is equivalent to using a weighted 
average of all the variances with each variance coming from each level of the 
source effect (e.g., from each biopsy needle core sample in our example).  This 
average is obtained not only across all the source effects but also across all 
subjects. The common covariance between any two source effects (e.g., needle 
core samples corresponding to two prostate gland zones within a subject) is 
likewise obtained via a weighted average across all pairwise combinations of 
source effects across all subjects.   Consequently, since the weights are the same 
for balanced data, the OCCC in (1.2) may be computed using either an 
unstructured covariance matrix or a compound symmetric covariance matrix. This 
approach has important implications in those cases where one has highly 
unbalanced or sparse data, for example.  For a data set involving K = 8 and M = 7, 
an 8x8 unstructured variance-covariance matrix may not be estimable, for 
instance. We therefore rely on the compound symmetric structure to draw 
inference on the OCCC.  One advantage of using model (3.1) to obtain an overall 
reproducibility statistic is that fitting the data assuming a covariance structure that 
may be biologically meaningful, as in the case of applying model (3.1) assuming 
spatial linearity, for instance. In this manner, we can examine both pairwise and 
overall reproducibility of the biomarker taking into account spatial distance. A 
model that incorporates a spatial pattern assumes that the covariance between 
biomarker samples from any two sources depends on this continuous variable 
whether the dependency exists or not.  Spatial covariance structures can 
incorporate dependency on distance via an exponential spatial covariance 
structure, a spatial power structure, or a spherical structure.   For our analyses, we 
try spatial covariance structures, where the covariance will depend linearly, 
spherically, or exponentially on the Euclidean distance between two prostate 
sections, based on a rectangular spatial coordinate system, as shown in Figure 1.  
The coordinates correspond to a 4 � 2 grid consisting of 4 rows and 2 columns.  
The columns represent the left and right side of the gland. We arbitrarily chose 
core 9 to represent row 1, column 1 (i.e., coordinate [1,1]). Based on this 
orientation, core 4 represents row 1, column 2 (i.e., coordinate [1,2]); core 8 
represents row 2, column 1 (i.e., coordinate [2,1]), etc. For example, the 
Euclidean distance between core 1 and core 9 is � � � �2 22 1 4 1 10� � � � = 3.16228. 
Euclidian distance is used in this work, since we are interested in relationships 
between prostate gland zones corresponding to needle cores only with respect to 
their relative coordinate positions and not to their absolute locations.  Previous 
work has mentioned how this Euclidean distance approach serves as an equivalent 
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alternative to functions like the semi-variogram or variogram in spatial statistics 
(Atkinson and Lewis, 2000; Wagner, 2003). The specific form for the spatial 
linear covariance matrix for sources k and l, for example, is  

Cov(Ykm,Ylm) = �2{1-( 	 dkl )}�I{	 dkl � 1}    (5.2) 

where dkl is the Euclidean distance between cores k and l based on the spatial 
coordinates of Figure 1, and I(	 dkl � 1) is the indicator function taking a value of 
1 when 	 dkl � 1, and 0 otherwise.   If pairwise reproducibility does depend on 
distance via the assumed structure in (3.2), then the pairwise reproducibility 
statistics (or CCC’s) will decrease with increasing distance by a factor of 1 - 	���
Consequently, the reproducibility between samples coming from two sources 
decreases with increasing Euclidean distance between the sources.   

For the data discussed in this work, we will consider the five variance-
covariance structures of unstructured covariance (UN), compound symmetry 
(CS), spatial linearity (SL), the spatial spherical structure (SS), and the spatial 
exponential structure (SE).  Since we can not fit an unstructured variance-
covariance matrix to all 7 subjects due to sparseness of data (K>M), we obtained 
pairwise CCC’s by fitting model (3.1) to each pair of sources and from these 
separate model fits estimated the CCC for that pair. We then constructed a 
concordance correlation matrix based on these individual paired fits. We also 
compute both pairwise and overall CCC’s using model (3.1) assuming the 
variance-covariance structures of compound symmetry, spatial linear, spatial 
spherical, and spatial exponential structures, however.  

To determine which covariance structure best describes the true 
relationship between overall reproducibility and distance, we used the likelihood 
ratio test (LRT), involving a �2 distribution with degrees of freedom determined 
by the number of covariance parameters, as described in Hedeker and Gibbons 
(2006). We also examined graphically, the appropriateness of each covariance 
structure by plotting the pairwise CCC’s from (1.1) versus distance based on our 
coordinate system, superimposing the average pairwise CCC’s for each 
covariance structure assumption. Such checks on goodness-of-fit of an assumed 
covariance structure are paramount as different covariance structures can provide 
similar estimates of overall reproducibility (OCCC) but still have markedly 
different estimates of pairwise reproducibility.  Inference regarding the OCCC 
can be carried out using methods described by Carrasco and Jover (2003) but 
applied to our model (3.1), where standard error estimates can be obtained via the 
delta method.    
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6. Results 

Table 1 gives the means and standard deviations for the untransformed MCM2 
data.  Table 2 contains the individual pairwise CCC’s for each unique pair of 
cores obtained assuming unstructured covariance, compound symmetry, or one of 
the spatial structures mentioned above applied to the data.  As described above, 
the pairwise CCC’s for an unstructured covariance matrix were obtained strictly 
on a pairwise basis as we could not fit model (3.1) assuming an overall 
unstructured covariance across all 8 cores. This unstructured concordance 
correlation matrix is presented strictly for comparative purposes.  For the MCM2 
data, the pairwise CCC’s obtained assuming unstructured covariance and 
averaged within Euclidean distance for this data set range from 0.00 to 0.57, with 
67% of the correlations being greater than 0.50.  Again noting the equivalence of 
these CCC’s to the ICC, we consider the majority of these pairwise 
reproducibility measures as fair to good.  Rosner (2006) states that a value around 
0.40 for the ICC, and thus for the equivalent form of the CCC, indicates fair to 
good reproducibility.   

This is further evidenced in Figure 2 where we plot the individual 
unstructured pairwise CCC’s from Table 2 (corresponding to an unstructured 
covariance matrix) versus Euclidean distance. Superimposed with connecting 
lines are the average pairwise CCC’s from Table 2 at each Euclidean distance. As 
illustrated, there is no evidence of a spatial trend; thus compound symmetry 
appears to provide a reasonable fit to the pairwise unstructured CCC’s.  

Table 1: Core means and standard deviations for MCM2 data. 

Real Data 

CoreID N Mean Standard Deviation 

1 7 35.74 13.32 
2 7 33.99 6.62 
3 7 36.36 7.77 
4 6 36.90 12.68 
6 6 34.43 6.61 
7 7 35.25 7.22 
8 7 34.83 7.34 
9 7 34.39 4.06 
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The overall CCC’s in Table 3 give values among all sections of the 
prostate gland for the MCM2 data assuming either compound symmetry (0.61), 
spatial linearity (0.54), the spatial spherical structure (0.42), and the spatial 
exponential structure (0.44).    From the -2 log likelihood values in Table 3, we 
see that the model assuming compound symmetry provides the best fit for the 
data.  The LRTs  indicate that this model provides a significantly better fit than 
the models assuming spatial linearity (p = 0.004), a spatial spherical structure (p = 
0.01), or a spatial exponential structure (0.055). 

Table 3: Overall Reproducibility (Overall CCC) and -2 log likelihood values and 
likelihood ratio tests (LRTs) for models assuming different variance-covariance 
structures when applied to the MCM2 data. 

Model 
Assuming 

Overall 
CCC 

-2log 
Likelihood 

p-value vs. 
Compound 
Symmetry 

p-value 
vs. 
Spatial 
Linearity 

p-value 
vs. 
Spatial 
Spherical 

Compound 
Symmetry 0.61 190 - - - 

Spatial 
Linearity 0.54 198 0.0041 - - 

Spatial 
Spherical 0.42 196 0.0099 0.2092 - 

Spatial 
Exponential 0.44 193 0.0547 0.0333 0.0857 

7.  Simulation Approach and Summary of Results 

To examine the effectiveness of our method on other data sets of various sizes, 
and following different distributions we also simulated data assuming a nested 
design with observations nested within “subjects”.  Parameters used in generating 
normal data included 0, 15, and 30 for the mean, and 1, 2, 5, and 10 for the 
variance.  In generating gamma distributed data, 15 and 30 were considered for 
the location parameter and, and 1, 2, 5, and 10 were considered for the scale 
parameter.  Finally, data following a Uniform(0,1) distribution were also 
generated.  Different samples sizes were likewise considered in our simulation 
study involving 5, 8, or 10 observations per subject for 5, 10, 25, or 50 subjects.  
Pre-specified variance-covariance structures used in generating the data included 
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compound symmetry, spatial linearity, the spatial spherical structure, and the 
spatial exponential structure; these structures were associated with initial 
correlations of 0.1, 0.5, or 0.9.   

Under each distribution and variance-covariance structure, we randomly 
selected 30 parametric settings with which we generated 1000 data sets and 
applied our model.  Only random selections of parametric settings were tested 
given each distribution and pre-specified variance-covariance structure, as all 
possible combinations of location, scale, and correlation parameters could not be 
feasibly tried. 

Results are presented in Table 4.  For each combination of data 
distribution and prespecified covariance structure, the intent was to run 1000 
simulations for each of the randomly selected parametric settings.  The third 
column of Table 4 gives the numbers and percentage (out of 30) of settings where 
all 1000 simulations converged.  For each simulation, the model was fit using four 
covariance assumptions.  The fourth column of Table 4 gives the percentage (out 
of the total number of simulations) for which the model with the highest 
likelihood had a covariance structure that matched with the prespecified 
covariance structure. 

In general, the probability of agreement was slightly lower for data 
generated under a spatial variance-covariance structure as opposed to under a 
compound symmetric variance-covariance structure, however.  The probability of 
agreement also tended to be smaller for data with scalar parameters (variance) 
being relatively smaller than the location parameters (mean) and with smaller pre-
specified correlation parameters in normal data.   Similar results were also 
observed for data following the gamma distribution.   Contrarily, the probability 
of agreement tended to be greater with an increasing magnitude of the pre-set 
correlation parameter in uniform data as well as in normally distributed and 
gamma distributed data.  We note here that results were similar for generated data 
sets of different sample sizes tried. 
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Table 4:  Summary of simulation results indicating the distribution that the data 
was generated under, the pre-specified variance-covariance structure used in 
generating the data, the percentage of data settings (out of 30) for which models 
under all four variance-covariance structure considered converged for all 1000 
simulations, the percentage of convergent simulations where the variance-
covariance structure (VC) indicated by our method as providing the optimal fit for 
the data was the same as the pre-specified VC, and the total number of convergent 
models. 

Distribution 
of Data 

Pre-specified 
Variance-

Covariance 
Structure 

(VC) 

Number and 
Percentage 

(%) out of 30 
Convergent 

Models 

Percentage 
(%) of 

Convergent 
Models (out of 

the Total 
Number of 
Convergent 
Simulations) 
in agreement 
with the Pre-

specified VC’s 

Total 
Number of 
Convergent 
Simulations 

Normal Compound 
Symmetric 

28 (93.33%) 96.43% 28,000 

Spatial Linear 20 (66.67%) 93.10% 20,000 
Spatial 
Spherical 

18 (60.00%) 94.50% 18,000 

Spatial 
Exponential 

16 (53.33%) 93.90% 16,000 

Gamma Compound 
Symmetric 

28 (93.33%) 96.43% 28,000 

Spatial Linear 20 (66.67%) 94.40% 20,000 
Spatial 
Spherical 

19 (63.33%) 95.00% 19,000 

Spatial 
Exponential 

19 (63.33%) 95.20% 19,000 

Uniform Compound 
Symmetric 

27 (90.00%) 94.60% 27,000 

Spatial Linear 20 (66.67%) 94.80% 20,000 
Spatial 
Spherical 

21 (70.00%) 100.00% 21,000 

Spatial 
Exponential 

28 (93.33%) 97.50% 28,000 
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8.  Conclusion  

The statistical methods implemented here can help investigators in determining 
how a continuous variable as spatial distance affects a measure of biomarker 
reproducibility.  Such procedures may prove useful to medical researchers 
examining biomarkers thought to be associated with the diseases they are 
studying.  Carrasco and Jover (2003) first discussed the equivalence of the 
concordance correlation coefficient (CCC) given in Lin (1989; 2000) to the 
intraclass correlation coefficient (ICC), applying elements of a variance-
covariance structure from a mixed-effects model to these statistics.  As a result, 
they were able to describe reproducibility using variation of fixed effects as well 
as random effects.  We use a strictly marginal model allowing for different 
variance-covariance structures that includes the approach in Carrasco and Jover 
(2003), where the marginal model is obtained by integrating out the random 
effects. Our approach is slightly more flexible in that it allows us to examine the 
impact of various assumed covariance structures and not simply a random-effects 
structure. Moreover, it allows one to investigate spatial and temporal variation 
effects on reproducibility. 

Applying our methods to MCM2 data from peripheral regions of the 
prostate gland, we determined that the overall CCC values obtained from the 
model assuming compound symmetry (0.61) was higher than the overall CCC 
values obtained from the models assuming any of the spatial structures (0.42 to 
0.54), as shown in Table 3.  These results indicate that the overall reproducibility 
among the cores is independent of the distance between them, since once again 
the model assuming compound symmetry offers the best fit for the data.   

Models obtained assuming the spatial structures indicate a poorer fit to the 
data, as indicated by the likelihood ratio test (Table 3) and by visual inspection of 
the MCM2 data (Figure 2).  The lesser fit using spatial dependency indicates that 
there is consistent reproducibility across sections, and that this reproducibility is 
better represented by the compound symmetry model.  

Simulation results for the normal, gamma, and uniform data of different 
samples sizes also has shown that our method indicates that the variance-
covariance structure that the data is generated under as providing the optimal fit 
of the data in most cases.  Therefore, our method generally leads to correct 
inferences concerning spatial dependence among within-subject observations.  
This inference, however, can be influenced by the relationship between location 
and scale parameters associated with the distribution of the data and magnitude of 
the pre-set correlation parameter.  These occurrences may results from variation 
being concentrated on between-subject differences, as within-subject variation 
approaches zero. 
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Figure 2: Superimposing the average pairwise reproducibility measures (CCC’s) 
versus Euclidean distance for the original data obtained from the models 
assuming unstructured covariance, compound symmetry, spatial linearity, the 
spatial spherical structure, and the spatial exponential structure.  With assuming 
the spatial structures, we see a downward linear trend across distance, 
corresponding to a coefficient 	 > 0 as presented in equation (3.2).  Individual 
pairwise CCC’s (indicated by the points) indicate no clear relationship between 
reproducibility and distance, consistent with the results coming from the models 
assuming unstructured covariance or compound symmetry. 
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Barnhart et al. (2001) suggest a scheme incorporating different weights for 
the pairwise CCC’s when calculating of the overall CCC’s, which could have 
affected the overall CCC calculations based on the model assuming a variance-
covariance structure dependent on distance.  The aim of our study was created to 
test uniform biomarker concentrations throughout the prostate gland, however.  
Therefore, calculations of the overall CCC using equal weights are appropriate.  
As mentioned in the introduction, these methods can also be extended to several 
studies involving similar designs such as biopsies of other organs, tissue 
microarrays, and ductal lavage procedures.  These studies demonstrate a potential 
need for methods to determine the dependence of biomarker reproducibility on a 
continuous variable as distance and could be extended to a continuous variable 
such as time also. 

The approach we take can be generalized to include between-subject 
covariates as in Barnhart and Williamson (2001) and Barnhart et al. (2001). These 
covariates may be included directly in model (3.1) in the same way Carrasco and 
Jover (2003) do in their linear mixed-effects model. One advantage of the 
approach taken by Barnhart and Williamson (2001) is that they allow modeling of 
the CCC directly as a function of covariates.  Nevertheless, the approach of 
Barnhart et al. (2001) requires specifying a complex set of estimating equations 
each making use of the normality assumption in order to specify the higher order 
working covariance matrices needed to fit each set of GEE. Vonesh et al. (2001) 
overcome these issues by assuming normality and using a marginal linear model 
with specified covariance structure in combination with robust standard errors to 
obtain the same level of flexibility described by Barnhart and Williamson (2001). 
Specifically, Vonesh et al. (2001) show that using the maximum likelihood 
estimation approach under the normality assumption is equivalent to solving a set 
of second-order GEE (GEE2) under non-Gaussian assumptions. Using an 
empirical sandwich estimator can provide robust standard errors of the CCC by 
applying the delta-method in a manner similar to that in Carrasco and Jover 
(2003).   

The coverage probability (CP) and total deviation index (TDI) measures 
mentioned in Lin et al. (2006), along with the CCC, can also be used to measure 
reproducibility between individuals for each prostate gland zone in our example.  
These additional indexes, TDI (�) and CP (�) allow us to obtain information for a 
large portion of the data, without information on total data variability.  
Consequently, these two indexes can be explored in future work regarding the 
dependence of reproducibility on a continuous variable given limited data.  Lin et 
al. (2006) provided simulation studies which showed that given k subjects, if m, 
the number of measures increases to infinity, these proposed indexes match those 
proposed by Barnhart et al. (2001). If m = 1, on the other hand, the indexes match 
with the ICC values given by Carrasco and Jover (2003).  Thus, the work of Lin et 
al. (2006) provides common ground in evaluating reproducibility using different 
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indexes.  We should be aware that different interpretations of the indexes depend 
on the nature of the data, however.  It may also be useful to examine how 
precision and accuracy are affected by spatial effects. 

This paper has presented a number of alternatives to assess reproducibility 
of markers taken in a spatial pattern.  For the MCM2 data analyzed in this paper, 
reproducibility over the space was indicated by a compound symmetry model 
being the best fit.  Simulation studies in most cases also indicated the variance-
covariance structure that data were generated under as providing the optimal fit, 
further reinforcing the potential effectiveness of our method.  By fitting a space-
dependant covariance structure such as spatial linearity, the spatial spherical 
structure, or the spatial exponential structure, other data sets may indicate that 
markers taken at a greater distance from each other would have less similar levels 
than those taken closer together, as can be implied from our simulation studies. 

Here, we conclude that our method could be applied to any data involving 
within-subject observations in order to determine which variance-covariance 
structure provides the optimal fit for those within-subject values.  The type of 
variance-covariance structure determined as providing the best fit for the data 
may then aid in inference about the type of impact that the spatial distance 
between within-subject observations have on their reproducibility.  Therefore, we 
recommend this method to investigators working with such data involving this 
design, attempting to answer such questions. 

9.  Appendix 

The following proofs show the equivalence of the pairwise and overall 
concordance correlation coefficients (CCC’s) derived from variance components 
obtained via models assuming either unstructured covariance or compound 
symmetry for balanced data. (A1) shows how the pairwise CCC’s are equivalent 
for the balanced case, while (A2) to (A5) show how the overall CCC’s are 
equivalent for balanced data. 
For any given unique pair of sources i and j,  

2 2
2 ; 1,..., 1; 2,... ;

2
i j i K j K i j

� �
�

�
� � � � �

which implies 

2 2
2 2 2 2 22 2 ; 1,..., 1; 2,... ;

2
i j

i j i K j K i j
� �

� � � � �
� ��

� � � � � � � � �� �
� �� �

(A1).   

The equation in (A1) shows that the denominator of the pairwise CCC will be the 
same for balanced data, but not for unbalanced data, regardless of which of these 
two variance-covariance structures we use.  
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We can likewise show the equivalence of the overall CCC’s if we were to 
employ the sample moments obtained using model (1.2).    The numerators are the 
same for balanced data assuming either variance-covariance structure, as shown 
in (A2) below.  Specifically, 
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The equivalence of the denominators is given in (A3), (A4), and (A5). 
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which implies 
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