
 

Introduction 

Schizophrenia (SCZ) and bipolar disorder (BD) are psychiatric disorders with world-wide 

lifetime prevalences of around 1%
1-4

. These disorders have been shown to be highly heritable by 

monozygotic and dizygotic twin studies and by adoption studies: the heritability estimates for 

SCZ range from 70 to 85% and, for BD, from 60 to 85%
5
. Over the past two decades, genetic 

studies of thousands of samples have identified hundreds of candidate genes
6-8

. Most of these 

findings have not been supported by genome-wide studies. Moreover, functional genomic roles 

have not yet been determined for most of the associated genes. 

            Gene expression can bridge the gap between genetic variation and disease susceptibility 

as an intermediate phenotype that is regulated by a combination of genetic and epigenetic factors. 

Gene expression transcription profiling is widely used and has been thoroughly validated by the 

MicroArray Quality Control (MAQC) project
9,10

. Expression microarray studies test thousands 

of gene transcripts for differential expression simultaneously.  When all these genes are tested 

for association with disease, it creates a multiple testing problem: to minimize false positives, the 

multiple test correction sets the significance threshold so high that true positives might be missed 

as well.  Additionally, testing individual genes for disease association also ignores the interaction 

between genes. So far, hundreds of gene expression microarray studies of psychiatric diseases 

have been reported, including studies of SCZ, BD and autism. However, the significant gene 

changes detected by one study are seldom replicated in another, let alone across three or more
11

. 

Gene expression network analyses are an alternative approach for analyzing expression 

data that reduce the sample space tested (that is, the number of hypotheses to be tested).  Gene 

expression networks are constructed from expression data from thousands of genes, and describe 

the interactions among groups of transcripts. They can be used to observe systematic alterations 

in expression associated with complex diseases such as psychiatric disorders. Horvath and 

colleagues have developed an algorithm for creating networks, called Weighted Gene Co-

expression Network Analysis (WGCNA), which is widely used
12,13

. This method identifies 

groups of genes within a network whose expressions are highly correlated.  These groups, called 

modules, can then be compared between cases and controls, among different tissues, species, or 

other phenotypes or clinical traits
14-17

. 



 

Oldham et al. were the first to apply this method to expression in brain.  They compared 

the gene expression across different brain regions and demonstrated that the modules reflect the 

underlying cell-type composition of the regions
18

. 

 The method was first applied to a psychiatric disease by Torkamani et al., who detected 

SCZ-associated gene co-expression modules in one microarray data analysis, and found that 

aging affected gene expression in normal controls, but not in SCZ patients
19

. They made the 

interesting distinction between constructing networks from case and control data separately and 

constructing a network from a combination of case and control data. Constructing modules from 

case and control networks separately allows comparison of basic module structure between the 

two groups.  If modules are not substantially preserved in cases, a conclusion can be drawn that 

fundamental relationships among genes have been disrupted.  If modules are substantially 

preserved in cases, the case and control data can be combined for network construction, and the 

detected modules assessed for differential expression between cases and controls.  Torkamani 

found that modules were substantially preserved in cases, and identified five SCZ-associated 

modules; Gene Ontogeny (GO) enrichment analysis showed those five modules were associated 

with oxidative phosphorylation, angiogenesis, neuron differentiation, chromatin and nucleosome 

assembly, and inositol phosphate metabolism, separately.  

Voineagu et al. applied WGCNA to another psychiatric disease, autism.  In addition to a 

GO enrichment analysis, they found one of the differentially expressed modules was enriched in 

disease genome-wide association study (GWAS) signals.  They interpreted this as evidence that 

the module’s member genes were causally associated with autism. They also found another 

module with altered expression but not enriched in GWAS signals and took it as an indication of 

a non-genetic etiology
20

.  

Note that all three of these network studies were based on analysis of a single microarray 

data set; their findings have not yet been replicated in other data sets at the network level. 

 To demonstrate the robustness and reproducibility of WGCNA findings, we used 

multiple microarray data sets to study co-expression networks in brains of psychiatric patients. 

We constructed gene expression networks, and then identified gene co-expression modules 

within the networks. The modules were tested for association with SCZ.  We assessed whether 



 

the disease-associated modules were detected in independent data sets, including sets from 

several different brain collections and different brain regions.  Reproducible, or preserved, 

modules were then evaluated for case-control differences in the independent data sets.  

Since it is widely accepted that SCZ and BD have genetic factors in common
21,22

, we 

tested whether the gene modules perturbed in SCZ were similarly perturbed in BD. We also 

tested whether the disease-associated modules were enriched with genetic variants that had been 

previously associated with disease by GWASs
23,24

.



 

Subjects and Methods 

Samples and quality control 

Cerebellum (CB) and parietal cortex (PCX) brain tissues were obtained from Stanley 

Medical Research Institute (SMRI)
25

,.  They came from the SMRI’s Neuropathology Consortium 

and Array collections, and included 50 SCZ samples, 50 BD samples, and 50 unaffected control 

samples.  Expression data for these samples came from the NCBI Gene Expression Omnibus 

(GEO) database (GSE35978). One of the two prefrontal cortex (PFC) brain expression data sets 

came from Dobrin’s group using SMRI samples (PFC-SMRI)
25

, while the second came from the 

Victorian Brain Bank Network (PFC-VBBN)
26  

and was obtained from at GEO (GSE21138, 

sample information and preparation in Supplementary File and associated Tables S1-S4)
25,26

.   

ComBat, a batch effects adjustment program that we have previously shown to be the 

best available, was used to remove batch effects from the data sets (see Supplementary File for 

detailed preprocessing steps)
27,28

. 

 

Gene network construction and module detection 

We used weighted gene co-expression network analysis (WGCNA)
13

 to identify modules 

of co-expressed genes within gene expression networks. To construct the network, the absolute 

values of Pearson correlation coefficients were calculated for all possible gene pairs.  Values 

were entered into a matrix, and the data were transformed so that the matrix followed an 

approximate scale-free topology (see Supplementary File for detailed information). A dynamic 

tree cut algorithm was used to detect network modules
29

. WGCNA and the dynamic tree cut 

algorithm were implemented in R
12,29

. 

We ran singular value decomposition (SVD) on each module’s expression matrix and 

used the resulting module eigengene, which is equivalent to the first principal component 
30

, to 

represent the overall expression profiles of the modules. 

Module preservation statistics 



 

We utilized the module preservation statistic Zsummary, to assess the module preservation 

from different expression data sets
33

 (see Supplementary File for formal definition). Unlike the 

cross-tabulation test, Zsummary not only takes into account the overlap in module membership, but 

also the density and connectivity patterns of modules. In addition, for our study, network-based 

preservation statistics only require that module membership be identified in the original data sets, 

reducing the variation coming from various parameters setting to identify new modules in 

validation data sets.    

We converted the probe-level measurements into gene-level measurements to make data 

from different platforms comparable. The probe within a gene that had the highest coefficient of 

variation was used to represent that gene. Overall, 8497 genes were retained in our preservation 

calculation. 

Differential expression test for modules 

We used multiple linear regressions on the modules’ eigengenes to remove the effects of 

sex, age, pH and PMI from the SMRI samples and VBBN samples. The residual eigengene 

values were then used to test the disease association using Pearson’s correlation test. We used 

false discovery rate (FDR) for multiple testing correction
49

.  

Module-based GWAS signal enrichment test 

GAIN-SCZ was the genome-wide association study of the GAIN SCZ data set, which 

comprised 4591 cases and controls (1217 European-American cases, 1442 European-American 

controls, 953 African-American cases, 979 African-American controls). The data was 

downloaded from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000021.v3.p2). GAIN-BD was a genome-wide association study of 

the GAIN BD data set, which comprised 3261 cases and controls (1079 European-American 

cases, 1081 European-American controls, 415 African-American cases, 686 African-American 

controls). The data was downloaded from dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000017.v3.p1). Whole genome genotyping of GAIN data was done 

with the Affymetrix Genome-Wide Human SNP Array 6.0 (Affymetrix, Santa Clara, CA, United 

States).  



 

The TGen-BD GWAS data came from the genome-wide association study of the 

Translational Genomics Research Institute’s (TGen) BD data (http://www.tgen.org/, Phoenix, 

AZ, United States), which comprised 1,190 BD cases and 401 controls. Sample genotyping was 

conducted using the Affymetrix GeneChip Mapping 5.0K Array. We performed imputation 

using MaCH v1.0 to increase the density of interrogated SNPs
31

, with HapMap data as reference. 

Overall, 2,593,107 SNPs in GAIN-SCZ, 3,281,319 SNPs in GAIN-BD, and 2,542,706 SNPs in 

TGen-BD were included after imputation.  

 

Imputed GWAS data was used to test whether the two disease-associated modules were 

enriched in SCZ/BD association signals
32

. We used a previously-reported procedure to run the 

enrichment test
32

. First, the max −log(P-value) of a SNP located between 20kb upstream and 

downstream of a gene was assigned to represent the gene, then the gene set’s enrichment scores 

(ES) were calculated based the gene’s rank. SNP level permutation was applied to generate the 

distribution of the ES and then the distribution was normalized. For multiple gene sets, FDR was 

calculated by joining all the distributions of ESs, each for one gene set, generated by permutation. 

As the difference of gene length distribution between genes in one module was significant 

(p=5.47e-27), we also applied a permutation procedure to verify whether there was a gene length 

bias in the genetic signals enrichment test
43, 50

, and there was no bias (see Supplementary 

Methods section 8).  

http://www.tgen.org/


 

Results 

Gene modules in parietal cortex 

We first analyzed the parietal cortex (PCX) brain gene expression in 50 SCZ patients and 

50 normal controls from the Stanley Medical Research Institute (SMRI) using the Affymetrix 

Human Gene 1.0 ST Array
25

. After a series of sample and array-level quality control measures 

(see Supplementary methods for details), we retained 45 SCZ patients and 46 normal controls 

with measures of 19,884 transcripts.  

Networks were constructed in two different ways: first, we constructed one network from 

control data and one network from case data, then identified modules in the control network and 

assessed their preservation in the case network.  Second, we constructed a network from the 

combined case and control data, and identified modules within it.  

Structure of co-expression modules in schizophrenia cases and controls 

Case and control sample gene networks were constructed separately to detect whether 

there was any gene co-regulation disruption or creation in cases relative to controls. We assessed 

module preservation using a permutation-based preservation statistic, Zsummary, developed by 

Langfelder et al., which assesses whether the connectivity level and pattern of a module in one 

data set is preserved in another
33

. The authors suggest the following significance thresholds: 

Zsummary < 2 implies no evidence for module preservation, 2 < Zsummary < 10 implies weak to 

moderate evidence, and Zsummary > 10 implies strong evidence for module preservation.  In our 

study, all modules detected in the control data had Zsummary greater than 10 in the case data (Fig. 

1), suggesting well-preserved membership and connectivity of the control modules in the SCZ 

cases. This is consistent with two previous gene network-based psychosis studies
20,34

, where the 

case modules had no obvious perturbations relative to control modules. 

To test the reliability of the module construction results, we compared the modules 

identified from control samples to published gene expression networks. Cross-tabulation showed 

that our control modules have similar module membership to modules previously reported by 

Oldham et al. 
18

(Supplementary Fig. 1). Slight differences, including some modules in our 



 

controls collapsing into one module in the Oldham data, might have been due to the differences 

in samples and platforms, data-filtering steps and/or parameters used for network construction 

and module detection.   

Differential expression of modules in schizophrenia patients  

Since there was no significant difference in module structure between cases and controls, 

modules identified in a gene network constructed from both case and control data were analyzed 

for differential expression in SCZ patients. Twenty-four modules were detected (Supplementary 

Fig. 2). We used an eigengene to summarize each module’s expression profile
30

 (see Methods for 

formal eigengene definition). After multiple linear regressions on the eigengenes to remove the 

effects of sex, pH and post-mortem interval (PMI), three covariates that can affect measures of 

gene expression
11

, the residual module eigengenes for each individual were tested for disease 

association. The eigengenes of two PCX modules, referred to as M1A and M3A, were 

significantly associated with SCZ after multiple testing correction (Fig. 2A). M1A comprised 

490 genes, while M3A comprised 106. NOTCH2 and MT1X, respectively, were the hub genes of 

M1A and M3A, meaning that, of all the genes in their modules, these two genes had the 

strongest correlation with the module’s eigengene, as well as being highly connected to the other 

genes in their modules (Supplementary Tables 5 and 6). 



 

Replication of findings in different data sets 

Replication of module structure  

We tested co-expression module preservation across different microarray data sets. We 

again used the module preservation statistic, Zsummary, to compare modules. Data sets included 

prefrontal cortex (PFC) tissues and cerebellum (CB) tissues, also from the Stanley Medical 

Research Institute (SMRI) but performed by a different research group
25

, and another PFC data 

set, where samples came from the Victorian Brain Bank Network (VBBN)
26

.  

As measured by the Zsummary statistic, six of the 18 modules identified in the SMRI PCX 

data were strongly preserved in the SMRI PFC data set, including M1A. Six modules were 

moderately preserved, including M3A, and four modules were not preserved (Supplementary Fig. 

3). Similarly, M1A was strongly preserved and M3A moderately preserved in the SMRI CB and 

VBBN PFC data sets (Table 1; Supplementary Fig. 4 and 5). 

Replication of disease association  

We tested the modules’ hub genes for disease association, since hub genes by definition 

are highly correlated with their modules’ eigengenes
35

. After controlling for the effects of 

covariates, NOTCH2, the hub gene of M1A, was significantly associated with SCZ in VBBN and 

SMRI PFC data (p=0.049 and 0.022, respectively), but not in SMRI CB data (p=0.583). MT1X, 

the hub gene of M3A, was consistently upregulated in SCZ in VBBN PFC, SMRI PFC and 

SMRI CB data (p=3.5E-03, 0.026 and 1.3E-04, respectively) (Fig. 2B, 2C).  These results 

suggest that M1A gene network perturbation between SCZ and controls occurs in cerebral cortex 

but not in cerebellum, while M3A perturbation happens across all brain regions.    

Modules shared between schizophrenia and bipolar disorder 

We were interested in whether the M1A and M3A modules associated with SCZ were 

also associated with BD. One BD data set with two regions studied was tested, PCX and CB 

from SMRI. The control samples here overlapped with the control samples used to construct the 

SCZ case and control network and modules. We first confirmed that the M1A and M3A in PCX 

were well-preserved in the BD case-control data sets (Table 1; Supplementary Fig. 6 and 7), then 



 

we tested whether NOTCH2 and MT1X gene expression were associated with BD. NOTCH2 

showed an association trend in PCX (p=0.054) but not in CB (p=0.117), while MT1X showed 

significant association in both regions (p=0.015 in PCX and 1.5e-3 in CB) (Fig. 2B, 2C), 

indicating M1A in PCX and M3A in two brain regions were altered in BD, and were shared by 

two diseases. 



 

Characterization of two disease-associated modules   

NOTCH2, a member of the Notch gene family, had the highest intramodular connectivity 

in the SMRI PCX M1A module. The Notch signaling pathway plays a key role in cell to cell 

communication, and was reported to play multiple roles in central nervous system 

development
36-38

. Functional enrichment analyses were performed with The Database for 

Annotation, Visualization and Integrated Discovery (DAVID) (Fig. 3, Supplementary Table 7)
39

. 

Consistent with the hub gene’s function, M1A was highly significantly enriched with gene 

ontology terms related to neuron differentiation and neuron development genes (p=7.50e-08 and 

3.63e-06, FDR q=1.27e-04 and 6.14e-03, respectively).  

We also found that 46 genes in M1A overlapped with a synaptic gene group associated 

with SCZ identified by Lips et al.
40

.  These overlapping genes are interesting because ten of them 

have previously been reported to be associated with either SCZ or BD, which may suggest a 

relationship between synaptic dysfunction and these two psychiatric diseases.  These genes 

include ABLIM1, APOE, AQP4, SLC1A2, SLC1A3, SLC4A4, GABRG1, NTRK2, ADD3 and 

MAOA.  

Functional enrichment analysis showed M3A to be highly enriched in gene ontology 

categories related to metallothioneins (MT) and metal binding site functions (p=2.41e-05, FDR 

q=0.031) (Fig. 4, Supplementary Table 8). MT genes respond to several stimuli, including metals, 

oxidative agents, inflammation and stress; they influence cognition, protect against 

neurotoxicity and play a role in the astrocytic response to CNS injuries
41

. The expressions of our 

MT gene family members, including the hub gene MT1X, and MT1E, MT1F and MT2A have 

previously been reported to be differentially expressed in SCZ
42

.  



 

Enrichment of genetic association signals 

To determine whether the expression alterations to modules M1A and M3A had genetic 

bases, we tested the modules for enrichment with SCZ and BD genetic association signals. M1A 

showed significant enrichment of signals from both SCZ and BD GWASs (GAIN, SCZ, p<0.001, 

FDR q=0.009; GAIN-BD, p<0.001, FDR q=0.0015; TGen, BD, p<0.001, FDR q=0.002) 

(Supplementary Fig. 8, 9 and 10) (see Supplementary materials for further descriptions of 

GWAS data sets). Those significances were retained after controlling for gene length bias
43

.  

M3A was not enriched in signals from either disease.  We also used other GWAS data, from 

non-psychiatric disease type 2 diabetes (T2D), as a negative control for our enrichment analysis. 

Neither M1A nor M3A were enriched with signals from a T2D GWAS.  

 



 

Discussion  

 

We looked for case-control differences at the level of gene co-expression regulation, 

rather than the level of individual genes. We found strong evidence of such differences in one 

expression data set, and then demonstrated robust gene network preservation and disease 

association across five additional different data sets. These data sets came from different brain 

banks and different brain regions, and were produced on different expression microarray 

platforms; they contained data from patients with SCZ and BD, as well as normal controls. To 

the best of our knowledge, this is the first time gene expression alterations associated with 

disease have been replicated across so many gene expression data sets. This reproducibility 

suggests that our results are reliable and that the WGCNA network-based method increased the 

statistical power of our expression study.     

M1A was enriched with neuron development and neuron differentiation genes, among 

others. Using module preservation statistics, we determined that the M1A module was highly 

preserved in the five other data sets, and was consistently up-regulated in SCZ and BD cerebral 

cortex relative to controls, but not in cerebellum. This result is consistent with Torkamani et al’s 

finding that modules enriched in neuron differentiation are differentially expressed between SCZ 

patients and normal controls
19

. A test for enrichment with GWAS signals suggested that M1A 

expression changes may have a genetic basis. Based on those observations, we speculate that the 

etiology of psychiatric diseases could be related to developmental dysfunction in the cerebral 

cortex, extending the neurodevelopmental hypothesis of SCZ
44

, which has recently received 

further support from imaging studies
45

 and deep sequencing analysis
46

.  

M3A was enriched with metallothionein genes. It was moderately conserved in other data 

sets and consistently showed differential expression in both cerebral cortex and cerebellum 

between SCZ and BD patients, relative to controls. M3A was not significantly enriched in 

GWAS signals. Expression changes in these MT genes in SCZ and BD has been previously 

reported
42,47

, but, so far, no positive genetic associations of these genes have been reported. 

Considering that the major physiological function of MT genes is binding of heavy metals to 

protect the central nervous system (CNS) against neurotoxicity or other injuries
41

, the change in 



 

the expression of M3A may be a downstream effect of disease or may be related to 

environmental insult.  Alternatively, loci regulating M3A or its member genes may exist, but not 

have been detected by GWAS. 

One advantage of module-based association studies is that they substantially reduce the 

multiple testing correction burden inherent in genome-wide association studies
51

 and microarray 

studies, particularly in brain expression studies where sample size is always limited by tissue 

availability. Microarray studies test tens of thousands of genes at one time, which require that p-

values be very small to reach genome-wide significance. However, WGCNA produced tens of 

modules of highly correlated genes to be tested for association. In our case, we found M1A to be 

significant in most of our data sets, but when we ran an individual gene-based analysis, the hub 

gene of M1A, NOTCH2, was nominally significant but did not survive the multiple testing 

correction (data not shown). WGCNA may also reveal the function of an otherwise poorly 

characterized gene, if that gene is a member of a module highly enriched in a particular function. 

In addition, by comparing results from different data sets, we demonstrated that findings at the 

network/pathway level are consistent. 

Our results suggested that the observed similarities between SCZ and BD are manifested 

at the transcriptional level.  Shared genetic elements have previously been demonstrated
21,22,48

, 

and some expression studies reported overlapping aberrant individual genes at the transcriptional 

level
47

. Our study explored the shared pathology defect at a higher level, revealing a larger scale 

gene pathway-based perturbation. Further functional work can focus on those genes, especially 

the hub genes, which may reveal the molecular bases of the symptoms shared between these two 

diseases.  

In summary, our study revealed that 1) SCZ and BD shared altered expression of neuron 

differentiation and neuron development genes (M1A) and metallothionein genes (M3A), which 

may indicate common etiology or pathology; 2) M1A’s up-regulation in cerebral cortex could be 

regulated by genetic variants already found to be associated with SCZ and BD risk; 3) M3A 

expression change was found in both cerebral cortex and cerebellum, and was not detectably 

regulated by genetic variants. 



 

Acknowledgement:  

This work was funded by 5R01MH080425 (to C.L.), and supported by the Geraldi Norton 

Foundation and the Eklund Family. We thank Elizabeth Thomas and Ali Torkamani for sharing 

Victorian Brain Bank Network (VBBN) brain expression data with us. We thank investigators of 

Wellcome Trust Case Control Consortium (WTCCC) for sharing non-psychiatric disease type 2 

diabetes (T2D) GWAS data. We thank the investigators of Bipolar Genome Study (BiGS) for 

generating those bipolar GAIN-BD and Tgen-BD GWAS data, thank investigators of GAIN for 

generating SZ GWAS data. We thank Seth E. Dobrin, Maree Webster and other collaborators at 

the Stanley Medical Research Institute for providing the Stanley Online Genomics Database and 

brain samples. We also thank Lorenzo Pesce, Alex Rodriguez and collaborators at Computation 

Institute, University of Chicago for supplying their supercomputing devices and services.   

 

Conflict of interest: 

The authors declare no conflict of interest. 

 

 

 

Supplementary information is available at Molecular Psychiatry's website.

Deleted: Eklund Family



 

References: 

1. Jablensky A. The 100-year epidemiology of schizophrenia. Schizophrenia Research 1997 Dec 19; 
28(2-3): 111-125. 

 
2. McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A. The heritability of bipolar affective 

disorder and the genetic relationship to unipolar depression. Archives of General Psychiatry 
2003 May; 60(5): 497-502. 

 
3. Merikangas KR, Akiskal HS, Angst J, Greenberg PE, Hirschfeld RMA, Petukhova M et al. Lifetime 

and 12-month prevalence of bipolar spectrum disorder in the national comorbidity survey 
replication. Archives of General Psychiatry 2007 May; 64(5): 543-552. 

 
4. McGrath J, Saha S, Chant D, Welham J. Schizophrenia: A Concise Overview of Incidence, 

Prevalence, and Mortality. Epidemiologic Reviews 2008 Nov 1; 30(1): 67-76. 
 
5. Burmeister M, McInnis MG, Zollner S. Psychiatric genetics: progress amid controversy. Nature 

Reviews Genetics 2008 Jul; 9(7): 527-540. 
 
6. Sanders J, Gill M. Unravelling the genome: a review of molecular genetic research in 

schizophrenia. Irish Journal of Medical Science 2007 Mar; 176(1): 5-9. 
 
7. Hattori E, Liu CY, Badner JA, Bonner TI, Christian SL, Maheshwari M et al. Polymorphisms at the 

G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent 
pedigree series. American Journal of Human Genetics 2003 May; 72(5): 1131-1140. 

 
8. O'Donovan MC, Williams HJ, Owen MJ. New findings from genetic association studies of 

schizophrenia. Journal of Human Genetics 2009 Jan; 54(1): 9-14. 
 
9. Shi LM, Campbell G, Jones WD, Campagne F, Wen ZN, Walker SJ et al. The MicroArray Quality 

Control (MAQC)-II study of common practices for the development and validation of microarray-
based predictive models. Nature Biotechnology 2010 28: 827-838.. 

 
10. Shi LM, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC et al. The MicroArray Quality 

Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression 
measurements. Nature Biotechnology 2006 Sep; 24(9): 1151-1161. 

 
11. Sequeira PA, Martin MV, Vawter MP. The first decade and beyond of transcriptional profiling in 

schizophrenia. Neurobiol Dis 2011 Jan; 45(1): 23-36. 
 
12. Horvath S, Langfelder P. WGCNA: an R package for weighted correlation network analysis. BMC 

Bioinformatics 2008 Dec 29; 9(559). 
 
13. Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. 

Stat Appl Genet Mol Biol 2005; 4: Article17. 
 



 

14. Cai CC, Langfelder P, Fuller TF, Oldham MC, Luo R, van den Berg LH et al. Is human blood a good 
surrogate for brain tissue in transcriptional studies? BMC Genomics 2010 Oct 20; 11. 

 
15. Fuller TF, Ghazalpour A, Aten JE, Drake TA, Lusis AJ, Horvath S. Weighted gene coexpression 

network analysis strategies applied to mouse weight. Mammalian Genome 2007 Jul; 18(6-7): 
463-472. 

 
16. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu XM, Li MF et al. Spatio-temporal transcriptome of the 

human brain. Nature 2011 Oct 27; 478(7370): 483-489. 
 
17. Oldham MC, Horvath S, Geschwind DH. Conservation and evolution of gene co-expression 

networks in human and chimpanzee brains. Proceedings of the National Academy of Sciences of 
the United States of America 2006 Nov 21; 103(47): 17973-17978. 

 
18. Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S et al. Functional 

organization of the transcriptome in human brain. Nature Neuroscience 2008 Nov; 11(11): 1271-
1282. 

 
19. Torkamani A, Dean B, Schork NJ, Thomas EA. Coexpression network analysis of neural tissue 

reveals perturbations in developmental processes in schizophrenia. Genome Research 2010 Apr; 
20(4): 403-412. 

 
20. Geschwind DH, Voineagu I, Wang XC, Johnston P, Lowe JK, Tian Y et al. Transcriptomic analysis 

of autistic brain reveals convergent molecular pathology. Nature 2011 Jun 16; 474(7351): 380-
384. 

 
21. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA et al. Genome-wide 

association study identifies five new schizophrenia loci. Nature Genetics 2011 Oct; 43(10): 969-
976. 

 
22. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al. Common 

polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009 Aug 6; 
460(7256): 748-752. 

 
23. Shi JX, Levinson DF, Duan JB, Sanders AR, Zheng YL, Pe'er I et al. Common variants on 

chromosome 6p22.1 are associated with schizophrenia. Nature 2009 Aug 6; 460(7256): 753-757. 
 
24. Goes FS, Zandi PP, Miao K, McMahon FJ, Steele J, Willour VL et al. Mood-incongruent psychotic 

features in bipolar disorder: Familial aggregation and suggestive linkage to 2p11-q14 and 13q21-
33. American Journal of Psychiatry 2007 Feb; 164(2): 236-247. 

 
25. Torrey EF, Webster M, Knable M, Johnston N, Yolken RH. The Stanley Foundation brain 

collection and Neuropathology Consortium. Schizophrenia Research 2000 Aug 3; 44(2): 151-155. 
 
 
26. Narayan S, Tang B, Head SR, Gilmartin TJ, Sutcliffe JG, Dean B et al. Molecular profiles of 

schizophrenia in the CNS at different stages of illness. Brain Research 2008 Nov 6; 1239: 235-248. 
 



 

27. Chen C, Grennan K, Badner J, Zhang DD, Gershon E, Jin L et al. Removing Batch Effects in 
Analysis of Expression Microarray Data: An Evaluation of Six Batch Adjustment Methods. PLoS 
One 2011 Feb 28; 6(2). 

 
28. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using 

empirical Bayes methods. Biostatistics 2007 Jan; 8(1): 118-127. 
 
29. Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: the Dynamic 

Tree Cut package for R. Bioinformatics 2008 Mar 1; 24(5): 719-720. 
 
30. Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-

expression modules. BMC Systems Biology 2007 Nov 21; 1. 
 
31. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: Using Sequence and Genotype Data to 

Estimate Haplotypes and Unobserved Genotypes. Genetic Epidemiology 2010 Dec; 34(8): 816-
834. 

 
32. Wang J, Zhang KL, Cui SJ, Chang SH, Zhang LY. i-GSEA4GWAS: a web server for identification of 

pathways/gene sets associated with traits by applying an improved gene set enrichment analysis 
to genome-wide association study. Nucleic Acids Research 2010 Jul; 38: W90-W95. 

 
33. Langfelder P, Luo R, Oldham MC, Horvath S. Is My Network Module Preserved and Reproducible? 

PLoS Computational Biology 2011 Jan; 7(1). 
 
34. Thomas EA, Torkamani A, Dean B, Schork NJ. Coexpression network analysis of neural tissue 

reveals perturbations in developmental processes in schizophrenia. Genome Research 2010 Apr; 
20(4): 403-412. 

 
35. Saris CGJ, Horvath S, van Vught PWJ, van Es MA, Blauw HM, Fuller TF et al. Weighted gene co-

expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients. 
BMC Genomics 2009 Aug 27; 10. 

 
36. Alexson TO, Hitoshi S, Coles BL, Bernstein A, van der Kooy D. Notch signaling is required to 

maintain all neural stem cell populations - Irrespective of spatial or temporal niche. 
Developmental Neuroscience 2006; 28(1-2): 34-48. 

 
37. Breunig JJ, Silbereis J, Vaccarino FM, Sestan N, Rakic P. Notch regulates cell fate and dendrite 

morphology of newborn neurons in the postnatal dentate gyrus. Proceedings of the National 
Academy of Sciences of the United States of America 2007 Dec 18; 104(51): 20558-20563. 

 
38. Lathia JD, Mattson MP, Cheng A. Notch: from neural development to neurological disorders. 

Journal of Neurochemistry 2008 Dec; 107(6): 1471-1481. 
 
39. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists 

using DAVID bioinformatics resources. Nature Protocols 2009; 4(1): 44-57. 
 



 

40. Lips ES, Cornelisse LN, Toonen RF, Min JL, Hultman CM, Consortium tIS et al. Functional gene 
group analysis identifies synaptic gene groups as risk factor for schizophrenia. Mol Psychiatry 
2011. 

 
41. West AK, Hidalgo J, Eddins D, Levin ED, Aschner M. Metallothionein in the central nervous 

system: Roles in protection, regeneration and cognition. Neurotoxicology 2008 May; 29(3): 489-
503. 

 
42. Choi KH, Elashoff M, Higgs BW, Song J, Kim S, Sabunciyan S et al. Putative psychosis genes in the 

prefrontal cortex: combined analysis of gene expression microarrays. BMC Psychiatry 2008 Nov 
7; 8. 

 
43. Peilin Jia, Jian Tian, Zhongming Zhao. Assessing gene length biases in gene set analysis of 

Genome-Wide Association Studies. International Journal of Computational Biology and Drug 
Design 2010; 3(4): 297-310. 

 
44. Weinberger DR. Implications of Normal Brain-Development for the Pathogenesis of 

Schizophrenia. Archives of General Psychiatry 1987 Jul; 44(7): 660-669. 
 
45. Pantelis C, Yucel M, Wood SJ, Velakoulis D, Sun DQ, Berger G et al. Structural brain imaging 

evidence for multiple pathological processes at different stages of brain development in 
schizophrenia. Schizophrenia Bulletin 2005 Jul; 31(3): 672-696. 

 
46. Myers RA, Casals F, Gauthier J, Hamdan FF, Keebler J, Boyko AR et al. A Population Genetic 

Approach to Mapping Neurological Disorder Genes Using Deep Resequencing. PLoS Genetics 
2011 Feb; 7(2). 

 
47. Shao L, Vawter MP. Shared gene expression alterations in schizophrenia and bipolar disorder. 

Biological Psychiatry 2008 Jul 15; 64(2): 89-97. 
 
48. Craddock N, O'Donovan MC, Owen MJ. Genes for schizophrenia and bipolar disorder? 

Implications for psychiatric nosology. Schizophrenia Bulletin 2006 Jan; 32(1): 9-16. 
 
49. Storey JD, Tibshirani R. Statistical significance for genome-wide studies. Proc Natl Acad Sci USA. 

2003 Apr 1; 100(7):3889-94. 
 
50. Jia P, Wang L, Fanous AH, Chen X, Kendler KS; International Schizophrenia Consortium, et al.  A 

bias-reducing pathway enrichment analysis of genome-wide association data confirmed 
association of the MHC region with schizophrenia. J Med Genet. 2012 Feb;49(2):96-10 

 
51. Jia P, Wang L, Fanous AH, Pato CN, Edwards TL, The Internatio nal Schizophrenia Consortium, et 

al  Network-Assisted Investigation of Combined Causal Signals from Genome-Wide Association 
Studies in Schizophrenia. PLoS Computational Biology, 2012 8(7): e1002587 

 
 



 

Table 1 Preservation statistic of SMRI-PCX-SZ M1A (top) and M3A (bottom) on VBBN-

PFC-SZ, SMRI-PFC-SZ, SMRI-CB-SZ, SMRI-PFC-BD, SMRI-CB-BD data sets.  
 

 

 

 

 

 

 

 

 

 

 

 

 

VBBN, victorian brain bank network; SMRI, stanley medical research institute; PFC, prefrontal 

cortex; CB, cerebellum; PCX, parietal cortex.   

*Zsummary < 2 implies no evidence for module preservation, 2 < Zsummary < 10 implies weak to 

moderate evidence, and Zsummary > 10 implies strong evidence for module preservation. 

Test  

Modules 

Brain 

banks 

Platform  Diseases Brain regions Zsummary
*
 

M1A VBBN Affy U133 Schizophrenia PFC 17 

SMRI Affy U133 Schizophrenia PFC 21 

SMRI Affy HG 1.0 Schizophrenia CB 29 

SMRI Affy HG 1.0 Bipolar disorder PCX 29 

SMRI Affy HG 1.0 Bipolar disorder CB 27 

M3A VBBN Affy U133 Schizophrenia PFC 3 

SMRI Affy U133 Schizophrenia PFC 6 

SMRI Affy HG 1.0 Schizophrenia CB 8 

SMRI Affy HG 1.0 Bipolar disorder PCX 7 

SMRI Affy HG 1.0 Bipolar disorder CB 9 



 

Figure 1 Gene network modules from PCX from schizophrenia patients and normal 

controls are well preserved.  

Zsummary is the summary preservation statistics, using the control modules as reference modules. 

Y-axis represents preservation statistics for the corresponding module in the case data sets, and 

x-axis is the gene numbers in each module. The dashed blue and green lines indicate the 

thresholds Z=2 and Z=10, respectively. Zsummary < 2 implies no evidence for module preservation, 

2 < Zsummary < 10 implies weak to moderate evidence, and Zsummary > 10 implies strong evidence 

for module preservation. 

Figure 2 Module and hub genes’ association test results.   

Eigengene-based test detected 24 modules in PCX (A), listed on the x-axis. The y-axis indicates 

the -log10 of association p value. The red line represents the p=0.05 threshold. M3A and M1A 

modules were significant after multiple test correction, with FDR q value<0.05 (green bars with 

red stars on the top). NOTCH2 in M1A (B) and MT1X in M3A (C), with disease in replicate data 

sets. Green bars represent the significance of association in SCZ and control networks, while red 

bars represent the significance of association in BD and control networks. The purple line marks 

the significance threshold of p=0.05. 

Figure 3 Global gene module characterization-M1A.  

A. Heatmap of genes in M1A. Samples are listed in columns and genes in rows. Samples bar 

under the hierarchal clustering tree were marked as red indicating cases and as blue indicating 

controls. Normalized expression values ranged between -2 and 2, as shown in the color legend 

under the heatmap. B. Highly connected genes in M1A network. C. Top five enriched gene 

ontology categories of highly corrected genes in the M1A module.   

Figure 4 Global gene module characterization-M3A.  

A. Heatmap of genes in M3A. Samples listed in column and genes in rows. Samples bar under 

the hierarchal clustering tree were marked as red indicating cases and as blue indicating controls. 

Normalized expression values ranged between -2 and 2, as shown in the color legend under the 

heatmap. B. Highly connected genes in M3A core network. C. Top five gene ontology categories 

enriched in the M3A module.   

 


