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Abstract (234 words). This paper presents a novel approach for understanding information 

exchange efficiency and its decay across hierarchies of modularity, from local to global, of the 

structural human brain connectome. Magnetic resonance imaging techniques have allowed us to 

study the human brain connectivity as a graph, which can then be analyzed using a graph-

theoretical approach. Collectively termed brain connectomics, these sophisticated mathematical 

techniques have revealed that the brain connectome, like many networks, is highly modular and 

brain regions can thus be organized into communities or modules. Here, using tractography-

informed structural connectomes from 46 normal healthy human subjects, we constructed the 

hierarchical modularity of the structural connectome using bifurcating dendrograms. Moving 

from fine to coarse (i.e., local to global) up the connectome’s hierarchy, we computed the rate of 

decay of a new metric that hierarchically preferentially weighs the information exchange 

between two nodes in the same module. By computing “embeddedness”-the ratio between nodal 

efficiency and this decay rate, one could thus probe the relative scale-invariant information 

exchange efficiency of the human brain. Results suggest that regions that exhibit high 

embeddedness are those that comprise the limbic system, the default mode network, and the 

subcortical nuclei. This supports the presence of near-decomposability overall yet relative 

embeddedness in select areas of the brain. The areas we identified as highly embedded are varied 

in function but are arguably linked in the evolutionary role they play in memory, emotion and 

behavior.  

  



1  Introduction 

Magnetic resonance imaging techniques have allowed us to study the human brain both 

functionally and structurally. Complex interactions between different regions of the brain have 

necessitated the development and growth of the field of connectomics. The brain connectome is 

typically mathematically represented using connectivity matrices to describe the interaction 

among different brain regions. Most current connectome study designs involve the computation 

of summary statistics on a global or nodal level [Guimera and Amaral, 2005; Sporns et al., 

2005]. Additionally, evidence suggests that brain regions are organized into modules, with 

several key regions of the brain serving as hubs that act as relay centers globally [Colizza et al., 

2006; Sporns et al., 2007].  

In one of the first attempts to quantify a node’s “hubness” in a network [Guimera and 

Amaral, 2005], after determining the community structure, all nodes had the within-module 

degree z and the participation coefficient computed. The within-module degree (z-score) is 

defined as 𝑧𝑖 = (𝜅𝑖 − 𝜅𝑠𝑖
)/𝜎𝜅𝑠𝑖

 where 𝜅𝑖 is the number of links of node i to other nodes in its 

module 𝑠𝑖, 𝜅𝑠𝑖
 is the average of 𝜅 over all the nodes in 𝑠𝑖, and 𝜎𝜅𝑠𝑖

 is the standard deviation. The 

participation coefficient is defined as 𝑃𝑖 = 1 − ∑ (𝜅𝑖𝑠/𝜅𝑖)
2𝑁𝑀

𝑠=1  with 𝜅is indicating the number of 

links node i has to nodes in any module s (P values are between 0 and 1, with higher values 

indicating more links to nodes in other module). A node is said to be a global connector hub if its 

within-module degree z-score is > 2.5 and its participation coefficient > 0.3.  

In brain connectomics, researchers have also adopted similar classification schemes. For 

example, in [Meunier et al., 2009] the authors demonstrated the existence of hierarchical 

modular organization (i.e.,  the ubiquitous property of “near-decomposability” according to 



Simon’s theory on complex systems; [Fisher, 1961; Simon, 1965; Simon and Ando, 1961]) in 

human brain resting state functional networks, and proceeded to classify the roles of a node 

based on various combinations of cut-off values of within-module degree z-score and 

participation coefficient. 

However, here we argue such an approach has two main disadvantages. First, these cut-off 

values are ultimately arbitrarily determined and categorical, and thus do not necessarily reflect 

the complexity and the continuous nature of brain connectivity (e.g for a non-hub node, it is 

classified as ultra-peripheral if its participation coefficient is less than 0.05, peripheral if between 

0.05 and 0.62, connector if between 0.62 and 0.80, and kinless if between 0.80 and 1.0). Second, 

despite the hierarchical nature of the human connectome, within-module degree z scores and 

participation coefficients are still defined after restricting to a specific modular hierarchy, and 

thus they do not properly capture the potential scale-dependent nature of a node’s role in the 

network as a whole. In this study, we thus seek to address these issues by proposing a new 

approach to collectively probe the scale-dependence of information transfer across all levels of 

modular hierarchy, without resorting to arbitrary thresholding, binning, or binarization of scalar-

valued datapoints.   

In a different yet related context, there have been substantial research efforts exploring 

topological organizations of neuroanatomy corresponding to the brain’s functional “gradients”, 

for example, how the “ventral” emotional processing system interacts with the “dorsal” 

executive processing system [Catani et al., 2013; Iordan et al., 2013].  Along these two 

converging lines, we posit that the novel approach presented in this paper would yield results that 

not only are consistent with these known neuroanatomical topological organizations or 

“gradients,” but also provide additional insights into the underpinnings of these topologies. In 



this sense, through acknowledgement and measurement of both standard connectome metrics 

such as efficiency and novel properties of scale-dependent information transfer, another facet of 

network interaction emerges; the extent that select regions embed in a complex system and how 

existence of such phenomena  may help explain relevant observable system properties. Our 

approach can thus potentially offer a new platform for researchers to move beyond simple single-

scale brain connectome analyses and can be easily adapted to probe both temporal and spatial 

brain connectivity across multiple scales.   



2 Methods 

2.1 Image Acquisition 

Forty-six healthy control subjects (HC, mean age: 59.7±14.6, 20 males) were recruited by 

community outreach using newspaper, radio, television advertisements, and relevant outpatient 

clinics. The study was approved by the Institutional Review Board and conducted in accordance 

with the Declaration of Helsinki. 

MRI data was aquired on a Philips 3.0T Achieva scanner (Philips Medical Systems, Best, 

The Netherlands) using an 8-channel SENSE head coil. High resolution three-dimensional T1-

weighted images were acquired with a MPRAGE sequence (FOV = 240mm; 134 contiguous 

axial slices; TR/TE = 8.4/3.9ms; flip angle = 8o; voxel size = 1.1 x 1.1 x 1.1 mm). For DTI 

images, we used a single-shot spin-echo echo-planar imaging (EPI) sequence (FOV = 240 mm; 

voxel size = 0.83 x 0.83 x 2.2 mm; TR/TE = 6,994/71ms; Flip angle = 90o). Sixty-seven 

contiguous axial slices aligned to the AC-PC line were collected in 32 gradient directions with 

b=700s/mm2 and one acquisition without diffusion sensitization (b0 image). Parallel imaging 

was utilized with an acceleration factor of 2.5 to reduce scanning time to ~ 4 minutes. 

2.2 Data Preprocessing  

We generated individual structural brain networks for each of the forty-six subjects using a 

pipeline reported previously [GadElkarim et al., 2012]. First, diffusion weighted (DW) images 

were eddy current corrected using the automatic image registration (AIR) tool embedded in 

DtiStudio software (http://www.mristudio.org) by registering all DW images to their 

corresponding b0 images with 12-parameter affine transformations. This was followed by 



computation of diffusion tensors and deterministic tractography using the FACT algorithm [Mori 

et al., 1999]. T1-weighted images were used to generate label maps using the Freesurfer software 

(http://surfer.nmr.mgh.harvard.edu).  

These 82 Freesurfer labels were used to generate structural brain network of matrix size 82 

by 82. Each of these 82 Freesurfer ROI labels was then further subdivided using an algorithm 

that continuously bisected this region across all subjects using a plane perpendicular to the main 

axis of its shape. Mathematically, this is achieved by first aligning the centroid coordinates of 

this ROI across all subjects to yield a combined group ROI (thus accounting for the difference in 

individual subject spaces). Second, we determined the main axis by conducting a principal 

component analysis on all voxels belonging to this combined group ROI. This bisecting process 

was then iterated until the average sub-regions’ voxel sizes were 2800, 1500 and 800 voxels. 

This corresponds to 184, 344, and 620 individual brain regions, with each cuboid brain region 

equivalent to about 4, 2 and 1 cm3 respectively. Note as matrix sparsity increases with 

upsampling of the region labels,  all networks were examined to ensure that every region was 

directly connected to at least one other region, preventing the formation of any isolated “islands”, 

and as a result 1, 1, and 7 subjects were excluded from subsequent analyses for the 184, 344, 620 

up-sampled networks.  

To account for differences in total fiber counts, individual connectivity matrices were first 

normalized by dividing each (i,j)-th element by the total counts for that row (i.e., the total 

number of fibers originating from brain region i), thus converting the elements along each row to 

represent percentages. We then further symmetrized these normalized matrices by averaging the 

(i,j)-th and (j,i)-th elements, following the procedure in [Cao et al., 2013; Sun et al., 2012] . 

Shortest path length or the graph distance matrix was generated by setting the inverse of the 

http://surfer.nmr.mgh.harvard.edu/


normalized and symmetrized connectivity weights as the edge length [Dijkstra, 1959]. In order to 

examine the proposed scale-dependence in information transfer, we used the PLACE algorithm 

[GadElkarim et al., 2014] that extracts, top to bottom, a connectome’s hierarchical modular 

structure using bifurcating dendrograms, reaching up to 8, 16, 32, and 64 different communities 

(level 3, 4, 5 and 6) for the 82-, 183-, 334-, and 620- parcellation schemes respectively, thus 

maintaining the number of parcels per community to be ~10.  

2.3 Determine community structure of brain networks (PLACE) 

Just as social networks can be divided into cliques describing modes of association (family, 

school, etc.), a connectome can be divided into modules or communities. To compute the 

modular or community structure of networks, to date most studies have attempted to find the set 

of non-overlapping modules that maximizes the modularity or weighted modularity metric Q or 

Qw [Newman and Girvan, 2004]. As proposed by Newman and Girvan, Q is mathematically 

defined as: Q(𝐺) = (
1

2𝑚
) ∑ (𝐴𝑖𝑗 − 𝑘𝑖𝑖≠𝑗 𝑘𝑗/2𝑚)𝛿(𝑐𝑖, 𝑐𝑗) where Q is a function of a graph G, m is 

the total number of edges, Aij = 1 if an edge links nodes i and j and 0 otherwise, 𝛿(𝑐𝑖, 𝑐𝑗) = 1 if 

nodes i and j are in the same community and 0 otherwise, and ki is the node i's degree (the 

“weighted” version of Q that takes edge weights into consideration is similarly defined). To find 

the modular structure that maximizes Q or Qw, the fast unfolding algorithm is often used 

[Blondel et al., 2008]. Although Q has been the most commonly utilized measure, it is known 

that Q suffers from resolution limits. By contrast, PLACE [Ajilore et al., 2013; GadElkarim et 

al., 2012; GadElkarim et al., 2014] is a novel framework that extracts the connectome’s 

hierarchical modular structure by finding groups of nodes that are highly efficiently integrated 

amongst themselves while separated from others. PLACE hierarchically maximizes a new metric 



ΨPL (using top-down binary trees), defined as the difference between the mean inter- and mean 

intra- modular path lengths: Ψ𝑃𝐿 = inter𝑃𝐿
𝐶1↔𝐶2 −

1

2
(intra𝑃𝐿

𝐶1 + intra𝑃𝐿
𝐶2). For two 

communities Ci and Cj:  

inter𝑃𝐿
𝐶𝑖↔𝐶𝑗 =  ∑ 𝑃𝐿𝑛𝑚/𝑁𝑖𝑁𝑗𝑛∈𝐶𝑖;𝑚∈𝐶𝑗

  

intra𝑃𝐿
𝐶𝑖 =  ∑ 𝑃𝐿𝑛𝑚/[(𝑁𝑖

2 − 𝑁𝑖)/2]𝑛,𝑚∈𝐶𝑖;𝑛>𝑚   

(PL denotes the shortest path length between two nodes and N the number of nodes in a module). 

Thus, maximizing ΨPL is equivalent to searching for a partition such that its communities exhibit 

stronger intra-community integration and stronger between-community separation. 

To illustrate, Figure 1 shows how PLACE sequentially extracted the hierarchical modular 

structure, from top to down, of the average group connectivity matrix obtained using the 620-

parcellation scheme, starting at level 1 (2 communities) to reach level 6 (64 communities); refer 

to results section for details. 

2.4 Measuring modular Scale-dependence information transfer  

To probe the proposed scale-dependent information transfer across the entire brain 

connectome’s modular hierarchy, we first define the following variable 𝜏 for any node i at any 

hierarchical level L: 

𝜏𝑖
𝐿 =

∑ (1/2)𝐿 − min(𝐿,   𝐿𝑒𝑣𝑒𝑙∗(𝑖,𝑗))𝑃𝐿(𝑖, 𝑗)−1𝑗≠𝑖

𝑗=1, 2,..,𝑛 

∑ (1/2)𝐿 − min( 𝐿,   𝐿𝑒𝑣𝑒𝑙∗(𝑖,𝑗) )𝑗≠𝑖

𝑗=1, 2,..,𝑛

 

Here n is the total number of ROIs, and Level*(i, j) indicates the most local hierarchy at 

which nodes i and j are still assigned to the same module (in PLACE community structures are 

extracted top-down; thus we will use “low level” to indicate coarse or more global, and “high 



level” to indicate finer or more local with the root level which contains all nodes to be labeled 

level 0). Note that the above equation collapses to the standard nodal efficiency when computed 

at the root (L=0): 

𝜏𝑖
𝐿=0 =

∑ 𝑃𝐿(𝑖, 𝑗)−1𝑗≠𝑖

𝑗=1, 2,..,𝑛

𝑛 − 1
 

Furthermore, the weighting term (1/2)𝐿 − min(𝐿,   𝐿𝑒𝑣𝑒𝑙∗(𝑖,𝑗)) simply returns 1 if nodes i and j 

belong to the same module at level L, returns ½ if nodes i and j do not belong to the same 

module at level L, but do so at level L-1, ¼ if nodes i and j do not belong to the same module at 

level L or L-1, but do so at level L-2, etc. Thus, this factor gives more weights to the information 

exchange efficiency between nodes that remain in the same module at higher levels of hierarchy, 

and as a result 𝜏 can be interpreted as a hierarchically weighted nodal efficiency. 

Next, as PLACE algorithm assigns nodes based on path lengths, plotting 𝜏𝑖
𝐿/ 𝜏𝑖

0 (y axis) 

against level of bifurcation (x axis) thus yields a monotonically increasing function, which then 

can be fitted with an exponential function 𝜏𝑖
𝐿/𝜏𝑖

0 = exp (𝜇𝑖𝐿) where the rate constant 𝜇𝑖 is unique 

to each region. Intuitively, the rate constant 𝜇𝑖 thus represents the rate of decay in a given node’s 

information exchange efficiency with other regions, as we move from fine-to-coarse or local-to-

global along the modular hierarchy.  

  



3  Results 

3.1 Hierarchical modularity of the structural connectome  

As predicted, PLACE algorithm successfully extracted hierarchical modular structures 

from the connectome of each of the subjects for all parcellation schemes (excluding those with 

disconnected networks. For visualization purposes, the hierarchical structure of the averaged 

connectome for the group, as a whole, is superimposed on one subject’s brain. To illustrate 

PLACE-based hierarchical modularity, Figure 1A shows the structural networks rearranged to 

match the community structure created from PLACE. The subsequent extracted modular 

structure (each color represents one community) of the averaged connectome is seen in Figure 

1B, which is formed by averaging element-wise the connectomes of all 39 subjects for the 620-

parcellation scheme (7 subjects out of 46 had disconnected networks and thus were excluded).  

3.2 The rate of decay in information exchange  

After the modular structures are extracted, for each ROI we then computed the vector 

(𝜏𝑖
0/𝜏𝑖

0, 𝜏𝑖
1/𝜏𝑖

0, 𝜏𝑖
2/𝜏𝑖

0. . ) and averaged them over all available subjects for that particular 

parcellation scheme.  Figure 2 visualizes the group average 𝜏𝑖
𝐿/𝜏𝑖

0 = (y axis) versus the level (L) 

for all four schemes, showing, as we hypothesized, that 𝜏𝑖
𝐿/𝜏𝑖

0is a monotonically increasing 

function with respect to L. For each node, 𝜏𝑖
𝐿/ 𝜏𝑖

0 against level of bifurcation is then fitted with an 

exponential function in the form: 𝜏𝑖
𝐿/𝜏𝑖

0 = exp (𝜇𝑖𝐿).  

Figure 3 visualizes this novel 𝜇𝑖 variable plotted against the standard nodal efficiency (i.e., 

𝜏𝑖
0). Note that nodal efficiency 𝜏𝑖

0 decreases as the resolution or granularity of parcellation 

increases from 82 to 620, while the novel variable 𝜇𝑖is relatively insensitive to parcellation 

resolution. Such observations are further confirmed by correlational analyses (Tables I and II), 



which supported that µ values are highly correlated (thus relatively parcellation-insensitive, also 

see Figure 4) when compared across different parcellation schemes, as measured by both 

standard correlation coefficients and the ranking based on their values (Kendall’s tau).  

Interestingly, we note that in general less efficient nodes (those with low nodal efficiency 

𝜏𝑖
0) tend to also have higher rates of decay; by contrast, nodes that have lower decay rate can 

have either low, medium, or high nodal efficiency 𝜏𝑖
0. In fact, if we restrict ourselves to nodes 

with decay rates 𝜇𝑖 less than 0.08, the correlation between 𝜇𝑖 and 𝜏𝑖
0 becomes statistically 

nonsignificant after controlling for multiple comparisons (correlation coefficient r and p values 

for the 82, 184, 334, and 620 parcellation schemes were -0.134/ 0.274, -0.206/0.060, 

0.180/0.054, and -0.144/0.041 respectively). These correlational results thus support that the 

decay rate constant µ captures scale-dependent properties of the connectome that are not 

measured by single-scale graph metrics such as standard nodal efficiency.  

For the 82-parcellation scheme, we additionally conducted post hoc multiple linear 

regression analyses to test an age effect (age measured in years) in the decay rate: 𝜇 =

𝜇𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝜇𝑎𝑔𝑒 × 𝑎𝑔𝑒.  Results revealed that both the left and right superior frontal gyrus 

exhibit an age effect (left superior frontal gyrus: μage =-0.0013, p=0.0021); right superior frontal 

gyrus μage=-0.0012, p=0.0054) before controlling for multiple comparisons (neither survived 

multiple comparison corrections using FDR).  

Last, we propose to form the ratio 𝜏𝑖
0/ µ𝑖 , which can be thought of as a measure of 

hierarchical embeddedness of any brain region.  By sorting this ratio from high to low one can 

highlight nodes that not only 1) have high nodal efficiency, but also 2) have slower decay from 

local to global across connectome’s hierarchical modularity. Indeed, these regions not only 



communicate overall more efficiently with other brain regions, they do so across all levels of 

hierarchy (i.e., insensitive to scale changes).  

Figure 4 visualizes both the decay rate constant 𝜇𝑖  and the “embeddedness” ratio 𝜏𝑖
0/ µ𝑖  

neuroanatomically using top views for all 4 parcellation schemes on the brain surface of a 

representative subject. Note that visually trends are consistent across all schemes, showing both a 

a medial-to-lateral gradient and (to a lesser degree) posterior-to-anterior gradient for 𝜇𝑖 and  

𝜏𝑖
0/ µ𝑖 (the gradients are increasing for decay rate 𝜇𝑖  and decreasing for the ratio 𝜏𝑖

0/ µ𝑖; the 

medial-to-lateral gradient is discussed in the Discussion section, while the posterior-to-anterior 

gradient is possibly related to the rostro-caudal gradient during neurodevelopment [Redies and 

Puelles, 2001]). 

To better appreciate how the gradient of this ratio translates to known neuroanatomical 

regions, after averaging 𝜇𝑖 and 𝜏𝑖
0 within each of the original 82 Freesurfer anatomical labels 

using data from the 620-parcellation scheme, Table III lists label-averaged embeddedness 𝜏𝑖
0/ µ𝑖 

for the 82 anatomical regions, from high to low. Regions ranked higher here thus exhibit higher 

degrees of scale-invariant efficiency in communicating with the rest of the network.  Note that 

highly embedded brain regions are primarily the bilateral subcortical structures including the 

thalamus and basal ganglia, the regions forming the limbic system (insula, nucleus accumbens, 

and subdivisions of cingulum), the precuneus (part of the default mode network [Raichle et al., 

2001]), superior parietal regions, and the medial orbitofrontal cortex. Figure5 visualizes decay 

rate 𝜇𝑖 and embeddedness 𝜏𝑖
0/ µ𝑖  for these regions using axial views (overlaid with high-

resolution T1-weighted structural images from a representative subject; precuneus and 

neighboring parietal regions are best appreciated in slice A, basal ganglia, thalamus, and insula 



in slice B, and nucleus accumbens, medial temporal lobe and medial orbitofrontal cortex in slice 

C). 

  



4 Discussion 

In this study, we proposed a multi-scale approach to understand the property of 

“embeddedness” in structural brain connectome. The proposed approach is advantageous in that 

it collectively examines all levels of a connectome’s hierarchical modularity, instead of 

restricting to one hierarchy in prior studies. To measure embeddedness, we quantified the rate of 

exponential decay in information exchange, from local to global or fine to coarse, across modular 

hierarchies. Post hoc analyses further revealed that this rate of decay exhibits no statistically 

significant age-related changes across the whole brain. We then mathematically define 

“embeddedness” as the numerical inverse of this decay rate multiplied by nodal efficiency; nodes 

with high degrees of embeddedness thus not only communicate overall more efficiently with 

other brain regions, they do so with relative modular scale-invariance.  

To validate this multi-scale approach, we investigated regional nodal embeddedness using 

diffusion weighted MR imaging data from a sample of 46 normal healthy human subjects. For all 

subjects, the structural connectome’s hierarchical modularity was extracted using a path-length 

based algorithm at four levels of parcel granularity: the original Freesurfer-based parcellation as 

well as three upsampled schemes with mean parcel volumes of approximately 4, 2, and 1 cm3 

respectively. Results supported that the rate of information exchange decay is relatively invariant 

with respect to the granularity of parcellation schemes. Moreover, while in general high decay 

rate is associated with low nodal efficiency, nodes with low decay rate displays wide-ranging 

efficiency values (i.e., when restricted to lower values, decay rate dissociates from nodal 

efficiency), and thus they measure separate properties of the human brain connectome.  

It is worth noting that although overall the decay rate 𝜇 remains relatively constant across 

adulthood with no evidence of a significant age-dependence, there was however a trend toward a 



decreasing rate with age in the bilateral superior frontal gyrus before controlling for multiple 

comparisons.  While age-related changes in structure and function in select regions of the frontal 

lobe have been reported in the superior frontal gyrus [Convit et al., 2001; Solbakk et al., 2008; 

Wellington et al., 2013], the trend decrease in decay rate may additionally be consistent with the 

compensatory scaffolding (i.e. the recruitment of additional circuitry) theory in cognitive aging 

involving the frontal lobe [Park and Reuter-Lorenz, 2009]. 

Computing group-average nodal embeddedness and sorting them from high low, we 

showed that neuroanatomical regions with highest degrees of embeddedness are those 

comprising the limbic system, the subcortical nuclei (basal ganglia and thalamus), and the 

default mode network.  

Our results have several implications. First, by successfully extracting hierarchical 

modularity we demonstrated that the human connectome, like many other types of complex 

systems in nature, exhibits the ubiquitous property of “near-decomposability” as theorized in 

[Simon, 1965] which pioneered work on complex systems more than 50 years ago (in this 

theory, most complex systems are near-decomposable systems, i.e., there exists of a hierarchy of 

components, such that at any level of the hierarchy the rates of interaction within components are 

much higher than those between different components [Simon, 2002]). However, we additionally 

demonstrated that despite being nearly decomposable overall, select components of the human 

brain connectome further exhibit relative “embeddedness” (i.e., variability in the extent that a 

region’s efficiency of communication persists through increasing distances of the network).  

We note that the highly embedded brain regions detected in this study heavily (if not 

entirely) overlap with the recently proposed “revised limbic system” [Catani et al., 2013] model 

for memory, emotion and behavior. In this model, the authors updated the classic limbic model 



as proposed by [Papez, 1937; Yakovlev et al., 1960] to include three distinct but partially 

overlapping networks: the Temporo-amygdala-orbitofrontal network, the Hippocampal-

diencephalic and parahippocampal-retrosplenial network, and the Dorsomedial default network. 

Thus, our results offer connectome evidence for fundamental differences between the 

affective/limbic system and the executive/cognitive-control system (the latter regions responsible 

for specialized and well-defined higher cortical functions). 

Our results may additionally support an evolutionarily value to a high degree of 

embedded integration of emotional information. Indeed, the limbic system has been a more 

ancient part of evolutionary development relative to higher level cognition. Therefore it makes 

sense that the former is better embedded from a system perspective; basic functions mediated by 

the limbic system require a diffuse pattern of integration and efficient access to the rest of the 

brain. 

Note an analogy can thus be drawn between our findings and the “System 1/fast versus 

System 2/slow” conclusion discussed by [Kahneman, 2011] as part of a rapidly evolving new 

discipline – behavioral economics [Camerer et al., 2011; Colin and George, 2004] (here System 

1 is the “brain’s fast, automatic, intuitive approach while System 2 refers to the mind’s slower 

analytical mode, where reason dominates” [Walsh, 2014]). Although both systems offer value in 

their respective ways, we posit that connectome conditions necessary for generating highly 

complex executive functions (highly localized and organized) are thus different from those 

necessary for generating intuition-based functions (e.g., kneejerk reaction); to say it simply, one 

comes at the cost of the other.   

The potential implication of our findings can be far-reaching. For example, they further 

explain the well-established emotional distractibility seen during cognitive tasks [Dolcos et al., 



2014; Iordan et al., 2013].  Along these lines, a better understanding of various disease states 

might be understood.  For instance, those with autism spectrum disorders might be viewed as 

having abnormalities in terms of the degree that emotional circuitry is embedded [Washington et 

al., 2014].  A difficulty in this area might explain why these individuals tend to gravitate towards 

activities with less emphasis on emotional integration.  In this same light, those with savant skills 

might be viewed as not actually developing a new function, but rather that the loss of limbic 

embeddedness allows for unfettered functioning of brain regions built for highly complex mental 

operations.  

To briefly compare our results with relevant findings in a recent study [Meunier et al., 

2009] that similarly constructed hierarchical modularity using functional brain networks, we note 

that in that study the well-known modularity metric (Q) was employed. Also, despite 

demonstrating modular hierarchies, the authors determined node roles based on the most global 

(nontrivial) modular decomposition, but qualitatively examined brain regions in each module at 

the most local level using one representative subject (instead of collectively investigating across 

all hierarchies as in this current study). Results also differ in their selection of modules in that 

they identify medial and lateral occipital areas amongst the largest modules.  They note that 

occipital modules decompose towards a dominant sub-module, whereas the other identified 

regions decompose more evenly into multiple sub-modules. By contrast, our results indicated 

that occipital areas are relatively less embedded compared to the limbic system network, pointing 

to different utilities in the use of our method in assessing brain networks.   

Another interesting concept to which we compare our results is the property of “rich-

club” organization in the human connectome [Harriger et al., 2012; van den Heuvel and Sporns, 

2011; de Reus and van den Heuvel, 2014]. We note that similar to our medial-to-lateral gradient 



(Figure 5), regions reported to be rich club (precuneus, superior frontal and superior parietal, as 

well as subcortical hippocampus, putamen and thalamus) are primarily medially located bi-

hemispherically. However, excluding the superior frontal cortex all rich-club regions form a 

subset of the regions that we found to also exhibit higher degree of embeddedness. This suggests 

that the “rich-clubness” and embeddedness are two distinct yet potentially complementary 

properties. Future studies are thus needed to further understand their relationship.    

It should note that as a potential limitation of the current study our data is derived from 

diffusion-weighted MRI instead of functional MRI (fMRI). One may argue that the use of fMRI 

might elucidate variations in network architecture during various functional states (resting vs 

task-specific), as well as better understand the functional correlates of “embeddedness” as a 

novel network property.  A future area of study would clearly be to apply the proposed technique 

to fMRI data.  Other potential limitations may also include: 1) DTI as a method is based on 

numerous assumptions that may not reflect “actual” white matter pathways in the brain, this can 

lead to confounding results from anisotropic voxels, b-value weighting, and tractography 

reconstruction algorithms; 2) PLACE’s method of a bifurcating community structure may not be 

optimal in other studies of embeddedness, such as with functional MRI [Yeo et al., 2011]; 3) the 

concept of embeddedness needs to be replicated in larger datasets as well as using networks that 

arise in fields outside of neuroscience. 

Last, the observed left-right split for the first-level bifurcation in our PLACE results may 

be related to the under-estimation of inter-hemispheric connections during DTI tractography, 

explaining the medial-lateral gradient in the decay rate and embeddedness. We thus cross-

validated our approach using a second dataset  (21 healthy subjects; mean age in years: 

40.4±10.1; 15 males) whose diffusion-weighted MRI utilized a higher angular resolution (68 



directions; 64 with a b value of 1000s/mm2; 4 b0 images) coupled with probabilistic tractography  

(see supplementary material) [Behrens et al., 2007]. Interestingly, for this second dataset, 

PLACE varied its first-level split between left/right and anterior/posterior, depending on the 

individual. However, all subjects had the complementary split happen in the following level (if 

the first level was an anterior/posterior split, the second level was a left/right split).  The ordering 

of the first two levels could thus depend on individual differences during fiber reconstruction. 

Regardless, the correlations between the nodal efficiency, μ, and embeddedness values obtained 

from the two datasets were all statistically significant with p values less than 0.001, despite the 

fact that they were generated from two different samples using two different tractography 

reconstruction techniques.  



5 Conclusion 

This work presents a novel connectome approach to understand the property of 

embeddedness, i.e., the degree of scale-dependence of information exchange efficiency across 

levels of hierarchical modularity. Our results support that the structural human connectome 

exhibits: 1) overall near-decomposability and 2) selective embeddedness in brain regions within 

the “limbic network” (including the limbic system, subcortical structures, and regions known to 

be part of the default mode network). That is, these regions display higher degrees of information 

exchange efficiency with lower decay. Results may have clinical implication, in that such 

topological differences may provide structural evidence of the prioritization of limbic network-

mediated information, possibly in the context of its enhanced evolutionary value. 
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Figure 1: To illustrate PLACE-based hierarchical modularity, Figure 1A shows the structural 

networks rearranged according to the community structure created from PLACE. Figure 1B 

visualizes, on the surface of an individual participant’s brain, the subsequent extracted modular 

structure (each color represents one community) of the mean connectome, which is formed by 

averaging element-wise the connectomes of all 39 subjects for the 620-parcellation scheme (7 

subjects out of 46 had disconnected networks and thus were excluded). 

  



 

 

Figure 2: The proposed metric (y-axis, 𝜏𝑖
𝐿/𝜏𝑖

0) in each ROI as we move from global (coarse) to 

local (fine) levels of modular hierarchy (x-axis). As expected, the metric monotonically increases 

with respect to the level, indicating that a region has higher information transfer efficiencies with 

its closer neighbors. Here, each line represents a specific brain region’s information transfer 

efficiency as the granularity increases. 

  



 

Figure 3: In this figure, we plot the rate constant , obtained from fitting 𝜏𝑖
𝐿/𝜏𝑖

0 = exp (𝜇𝑖𝐿) for 

each region i,  against the nodal efficiency in all four parcellation schemes. We note that in 

general less efficient nodes (those with low nodal efficiency 𝜏𝑖
0) tend to also have higher rates of 

decay; by contrast, nodes that have lower decay rate can have either low, medium, or high nodal 

efficiency 𝜏𝑖
0. In fact, if we restrict ourselves to nodes with decay rates 𝜇𝑖 less than 0.08, the 

correlation between 𝜇𝑖 and 𝜏𝑖
0 becomes statistically insignificant except for the 620-parcelation 

scheme (p=0.041) before correcting for multiple corrections (all insignificant after controlling for 

multiple comparisons). 

  



 

Figure 4: Figure 4A visualizes both the decay rate constant 𝜇𝑖 (left panel) and the ratio 𝜏𝑖
0/ µ𝑖 

(right panel) neuroanatomically using top views for all 4 parcellation schemes on the brain 

surface of a representative subject. Note that visually trends are consistent across all schemes, 

showing both a posterior-to-anterior gradient and a medial-to-lateral gradient for 𝜇𝑖 and  𝜏𝑖
0/ µ𝑖 

(the gradients are increasing for decay rate 𝜇𝑖  and decreasing for the ratio 𝜏𝑖
0/ µ𝑖). Figure 4B 

visualizes the embeddedness, as a heat map, on a Freesurfer-defined group average cortical 

surface using the 82-parcellation scheme. 



 

Figure 5: shows regions with low decay rate 𝜇𝑖 and high 𝜏𝑖
0/ µ𝑖   ratio (embeddedness) using 

axial views overlaid with corresponding high-resolution T1-weighted structural images (top) 

from a representative subject with slices shown on a lateral view of the 3D brain (bottom).  Here, 

precuneus and neighboring parietal regions are best appreciated in slice A, basal ganglia, 

thalamus and insula in slice B, and nucleus accumbens, medial temporal lobe and medial 

orbitofrontal cortex in slice C. A sagittal slice for localization is shown at the bottom of the 

figure. Also see Table III. 


