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Prostate cancer is the most common solid cancer in males and is the second 

leading cause of cancer deaths in American men (Jemal et al., 2008).  While rates 

today are markedly higher than rates observed three decades ago, the most recent 

statistics show that prostate cancer incidence rates have now stabilized which is 

thought to reflect changes in utilization of prostate specific antigen (PSA) testing. In 

addition, benign prostatic hyperplasia (BPH) is the most common benign neoplasm, 

occurring in ~ 50% of all men by the age of 60.  Despite extensive research, the basis 

for these high rates of abnormal prostatic growth is not well understood.  It is 

recognized, however, that steroids play a role in the initiation and progression of 

prostate cancer which is the basis for hormonal treatment strategies.  Eunuchs do not 

develop prostatic carcinoma (Moore, 1947) and regression of the cancer can be initially 

achieved by castration and androgen blockade (Huggins & Hodges, 1941).  In addition 

to androgens, estrogen involvement in the etiology of BPH and prostatic cancer has 

been postulated  and the use of antiestrogens has been recently recognized to have a 

therapeutic role in prostate cancer management (Raghow et al., 2002, Steiner & Pound, 

2003, Smith, 2008 #3236). Human and rodent prostates express both estrogen receptor 

α (ERα) and estrogen receptor β (ERβ) during development and into adulthood with 

ERα primarily found in stromal cells (Prins & Birch, 1997, Schulze & Claus, 1990) and 

ERβ in differentiated epithelium (Enmark et al., 1997, Prins et al., 1998).  Furthermore, it 

is believed that early prostatic developmental events which are regulated by steroids 

may be linked to the predisposition of this structure to high rates of disease in adult men 

(Henderson B.E. et al., 1991, Henderson B E et al., 1988). It is noteworthy that relative 
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to adult estrogenic responses, the prostate gland is particularly sensitive to estrogen 

exposures during the critical developmental period (Prins et al., 2007).  

The established risk factors for prostate cancer are age and race with African 

American men possessing the highest incidence of prostate cancer world-wide, at rates 

two-fold of those for Caucasian-American counterparts.  It is also recognized that 

genetics (family history), diet and environmental factors can impact prostate cancer risk.  

In the human population, direct connections between endocrine disruptors (EDs) and 

prostate cancer risk has not been established.  Nonetheless, due to the hormonal basis 

of this disease and the evidence that dietary compounds high in isoflavones (e.g. red 

clover, genistein) can control prostate cancer growth in humans (Jarred et al., 2002, 

Lakshman et al., 2008) and animal models (McCormick et al., 2007), there is 

reasonable cause to evaluate and understand any potential relationship between 

environmental endocrine disruptors and prostate cancer risk.  In addition to 

epidemiologic studies, there are in vitro studies with human prostate cells and in vivo 

studies in animal models that indicate associations between EDs and prostate cancer, 

carcinogenesis and/or susceptibility.  Due to difficulties in directly associating prostate 

cancer risk in humans with ED exposures, potential risk(s) will have to include research 

with animal models, particularly those that that are responsive to environmentally 

relevant exposures. 

Evidence and Mechanisms: 

Farming and Pesticides 

 Regarding links between prostate cancer and environmental factors in humans 

(outside of diet), the most compelling data comes from the established occupational 
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hazard of farming and increased prostate cancer rates (Alavanja et al., 2003, Meyer et al., 

2007, Morrison et al., 1993).  While several variables may contribute to higher prostate 

cancer rates in farmers, chronic or intermittent exposures to pesticides is the most likely 

explanation (Alavanja et al., 2003, Van Maele-Fabry et al., 2006).  This is supported by a 

large epidemiology study (Agricultural Health Study) in a collaborative effort between the 

NCI, NIEHS and EPA in the United States that has examined agricultural lifestyles and 

health in ~90,000 participants in North Carolina and Iowa since 1993 (www.aghealth.org). 

Evaluation of >55,000 pesticide applicators revealed a direct link between methyl bromide 

exposure, a fungicide with unknown mode of action, and increased prostate cancer rates .  

Further, six pesticides out of 45 common agricultural pesticides showed correlation with 

exposure and increased prostate cancer in men with a familial history, suggesting gene-

environment interactions.  These six agents were chlorpyrifos, fonofos, coumaphos, 

phorate, permethrin and butylate (Alavanja et al., 2003, Mahajan et al., 2006).  The first 

four of these compounds are thiophosphates and share a common chemical structure.  

While these agents are regarded as acetylcholine esterase inhibitors and have not been 

shown to have direct estrogenic or antiandrogenic activities, a literature search revealed 

that these compounds have significant capacity as p450 enzyme inhibitors.  In particular, 

chlorpyrifos, fonofos and phorate strongly inhibit CYP1A2 and CYP3A4 which are the 

major p450s that metabolize estradiol, estrone and testosterone in the liver (Usmani et al., 

2003, Usmani et al., 2006).  Furthermore, the human prostate constitutively expresses 

CYP1A2 and CYP3A4 enzymes that are involved in intraprostatic metabolism of steroids, 

drugs and dietary compounds  (Lawson et al., 2002; Finnstrom et al, 2001, Sterling et al, 

2004]. This raises the possibility that exposure to these compounds may interfere with 
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steroid hormone metabolism by the liver as well as the prostate and, in so doing, alter 

steroid balance and availability which in turn may contribute to increased prostate cancer 

risk. A similar mechanism of endocrine disruption in vivo has been identified for PCBs and 

polyhalogenated aromatic hydrocarbons (including dioxins, BPA and dibenzofurans) 

through potent inhibition of estrogen sulfotransferase which effectively elevates 

bioavailable estrogens in various target organs (Kester et al., 2002, Kester et al., 2000). 

Environmental Estrogens; 

In men, chronically elevated estrogens have been associated with increased risk 

of prostate cancer (Modugno et al., 2001). In rodents, estrogens in combination with 

androgens induce prostate cancer (Leav et al., 1988). For the sake of simplicity, we 

here refer to environmental estrogens as molecules with identified estrogenic activity 

(estrogen mimics), mostly through activation of estrogen receptors.   

 DES: Diethylstilbestrol exposure is considered an important model of endocrine 

disruption and provides proof-of-principle for exogenous estrogenic agents as disruptors 

of multiple end-organs.  Maternal exposure to DES during pregnancy was found to 

result in more extensive prostatic squamous metaplasia in human male offspring than 

observed with maternal estradiol alone (Driscoll & Taylor, 1980).  While prostatic 

metaplasia eventually resolved following DES withdrawal, ectasia and persistent 

distortion of ductal architecture remained (Yonemura et al., 1995).  This has lead to the 

postulation that men exposed prenatally to DES may be at increased risk for prostatic 

disease later in life although this has not been borne out in the limited population 

studies conducted to date (Giusti et al., 1995).  However, extensive studies with DES in 

rodent models predict marked abnormalities in the adult prostate including increased 
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susceptibility to adult-onset carcinogenesis following early DES exposures (Arai et al., 

1983, Huang et al., 2004, Prins et al., 2001, Rajfer & Coffey, 1978).  

BPA: Bisphenol A is a synthetic polymer used in the production of polycarbonate 

plastics and expoxy resins and significant levels have been found in the urine of 93% of 

US population in a recent screen by the CDC (Calafat et al., 2008). The relative binding 

affinity of BPA for either estrogen receptor (ERα and ERβ) and capacity for BPA to 

activate ER-dependent transcription is ~10,000 lower than estradiol or diethylstilbestrol 

(Kuiper et al., 1998),  (Lemmen et al., 2004).  While these data might suggest that BPA 

has minimal estrogenic activity, 1 μM BPA is 50% as efficacious as 1 μM 17β-estradiol 

in activating an estrogen responsive luciferase reporter (Kurosawa et al., 2002).  This 

indicates that, although BPA may have a significantly lower potency than endogenous 

estrogens in vitro, it is a full agonist for both ERα and ERβ. Furthermore, BPA induces 

ER through non-genomic pathways with an EC50 equivalent to 17β-estradiol suggesting 

that in vivo estrogenic activity of BPA may be due to non-genomic activation of ER 

(Song et al., 2002, Walsh et al., 2005).   

Effects of BPA with regards to carcinogenic potential, including the prostate 

gland, have recently been reviewed by an expert panel (Keri et al., 2007). In short, there 

is evidence from rodent models and human prostate cell lines that BPA can influence 

carcinogenesis, modulate prostate cancer cell proliferation and for some tumors, 

stimulate progression.  Recent reports have provided evidence that early life exposure 

to BPA may increase susceptibility to hormonal carcinogenesis in the prostate gland, 

possibly by developmentally reprogramming carcinogenic risk (Ho et al., 2006, Prins et 

al., 2008). Studies using a rat model showed that brief neonatal exposure to a low dose 
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of BPA (10 μg/kg BW/day) significantly increased the incidence and grade of prostatic 

intraepithelial neoplasia (PIN) following adult estrogen exposure.  This model of 

sensitivity to hormonal carcinogenesis is relevant to humans in that relative estradiol 

levels increase in the aging male and may contribute to prostate disease risk (Kaufman 

& Vermeulen, 2005). The above studies further identified alterations in DNA methylation 

patterns in multiple cell signaling genes in BPA-exposed prostates which suggests that 

environmentally relevant doses of BPA  “imprint” the developing prostate through 

epigenetic alterations (Ho et al., 2006, Prins et al., 2008).  

Knudsen and colleagues examined the influence of BPA on human prostate 

cancer cells that contained an AR point mutation (AR-T877A) frequently found in 

advanced prostate cancers of patients who relapsed after androgen deprivation therapy  

(Wetherill Y B et al., 2005). They first observed that 1 nM BPA activates AR-T877A in 

transcriptional assays and leads to unscheduled cell cycle progression and cellular 

proliferation in vitro in the absence of androgen.  Since BPA had no impact on wild type 

AR, these data indicate that this gain-of-function AR mutant attained the ability to utilize 

BPA as an agonist. Subsequent in vivo analyses of the impact of BPA on human 

prostate tumor growth and recurrence was performed utilizing a mouse xenograft of 

human cells containing the AR-T877A mutation (Wetherill Y.B. et al., 2006).  At low 

doses that fall within the reported ranges of human exposure, prostate tumor size 

increased in response to BPA administration as compared to placebo control and mice 

in the BPA cohort demonstrated an earlier rise in PSA (biochemical failure).  These 

findings indicating that BPA significantly shortened the time to therapeutic relapse. 
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These outcomes underscore the need for further study of the effects of BPA on tumor 

progression and therapeutic efficacy.  

PCBs: Persistent organic pollutants, such as polychlorinated biphenols (PCBs) 

are fat soluble chemicals that bioaccumulate in the human body.  Many have estrogenic 

or antiandrogenic activity and as such, may perturb male reproductive activity.  A recent 

analysis of adipose tissue concentrations of PCBs in Swedish men with and without 

prostate cancer revealed a significant association between PCB levels in the higher 

quandrants and prostate cancer odds ratio with the most marked associations for 

PCB153 and trans-chlodane (Hardell et al., 2006). A more extensive epidemiologic 

study of capacitor manufacturing plant workers highly exposed to PCBs revealed a 

strong exposure-response relationship for prostate cancer mortality (Prince et al., 2006). 

This supports previous findings of correlations between PCB 153 and 180 and prostate 

cancer risk in electric utility workers (Charles et al., 2003, Ritchie et al., 2003).  While 

estrogenic activity of these compounds is a suspected mode of action, there is also 

evidence that PCBs  inhibit estrogen sulfotransferase activity in the liver and effectively 

increase bioavailable estrogen in the body (Kester et al., 2000). Recently, Aroclor-1254, 

a mixture of 60 PCB pollutants, was tested on rat prostate cells in vitro and shown to 

disrupt gap junctions, expression of connexin 32 and 43 and increase double-stranded 

DNA breaks suggesting that PCBs may be able to transform prostate cells leading to 

carcinogenesis (Cillo et al., 2007). Further investigation using animal models is 

warranted for PCBs and prostate cancer risk.  

 UV filters: There are a few recent reports that ultra violet light filters that are used 

to protect against the sun have estrogenic activity (Schlumpf et al., 2004b).  Specifically, 



 9

4-methylbenzylidene camphor (4-MBC) and 3-benzyidene camphor (3-BC) are ERβ 

ligands (Schlumpf et al., 2004a). While little if any work has been done with regards to 

these UV filters and human prostate cancer, a few recent reports indicate that 

developmental exposure to the compounds can alter prostate gland development and 

estrogen target gene expression in the rat (Hofkamp et al., 2008, Schlumpf et al., 

2004b). This raises the possibility that the fetal prostate may be affected following 

maternal use of these compounds. 

 Cadmium:  Cadmium is known to ligand to ERs and function as an estrogenic 

mimic.  While some large epidemiologic reports have indicated a relationship between 

cadmium exposure and prostate cancer rates, others have refuted these findings 

(Parent & Siemiatycki, 2001).  Nonetheless, there are intriguing reports in the literature 

which show that cadmium has proliferative action with human prostate cells in vitro 

through an ER-dependent mechanism and that this exposure is associated with 

acquisition of androgen-independence (Benbrahim-Tallaa et al., 2007b).  Furthermore, 

prostatic tumors have been shown to be experimentally induced by oral exposure to 

cadmium (Waalkes, 2000). Since cadmium bioaccumulates in the body, further 

epidemiologic analysis of cadmium and prostate cancer risk is warranted, particularly in 

men with occupational exposures.  

 Arsenic:  Exposure to arsenic has long been associated with a number of 

diseases including cancers (Chen et al., 1988, Watson & Yager, 2007).  A recent review 

of the epidemiologic data has shown an association between inorganic arsenic 

exposure from the environment and prostate cancer incidence and mortality in the 

human population (Benbrahim-Tallaa & Waalkes, 2008).  Importantly, it has been 
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documented that arsenic may mediate some of these effects through endocrine 

disruption, specifically through interaction with ERs and activation of estrogen-regulated 

genes (Davey et al., 2007).  In this context, there is a recent report that arsenic can 

induce malignant transformation of prostate epithelial cells in vitro and drive them 

towards an androgen-independent state (Benbrahim-Tallaa et al., 2007a). Interestingly, 

this was shown to be mediated through Ras-MAPK pathways and it is possible that 

membrane ERs may be involved in this process. Epidemiologic studies have shown an 

association between arsenic exposure and prostate cancer mortality in Taiwan (Chen et 

al., 1988), a finding that was substantiated by a later study in the United States (Lewis 

et al., 1999). Thus it is possible that endocrine disruption by arsenic can contribute to 

prostate cancer risk. 

Antiandrogens: 

 While there are no known environmental androgens, endocrine disruptors can 

also function through anti-androgenic pathways.  Since prostate cancer is an androgen-

dependent disease, we will briefly examine the known effects of some of these agents 

on the prostate gland.   

Vinclozalin: Vinclozolin is a fungicide that is used as a pesticide on crops.  It has 

known anti-androgenic properties by interfering with androgen receptor (AR) activity 

(Kavlok & Cummings, 2005).  Since vinclozalin effects are driven through AR 

antagonism, it is not surprising that there are no reported associations between this 

compound and prostate cancer, an androgen-dependent disease.  Exposure of rats to 

vinclozalin during development results in reduced prostate gland growth and size which 

would be expected for an anti-androgen (Yu et al., 2004). Of interest, however, are 
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recent studies with maternal (i.e. in utero) exposure to vinclozalin in rats which produce 

transgenerational effects on offspring through epigenetic alterations (Anway M D et al., 

2005).  These permanent pertubations include adverse consequences on the prostate 

gland such as premature acinar atrophy and aging-associated prostatitis  for four 

generations (Anway M. & Skinner, 2008). This may be particularly significant in light of 

recent evidence that chronic inflammation may play a role in prostate cancer initiation 

(Nelson et al., 2002). 

DDT/DDE:  Dichlorodiphenyltrichloroethane (DDT) and its metabolic derivative 

p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) were widely used as pesticides in the 

United States and their use is still in effect in other countries world-wide. In addition to 

AR antagonistic effects (Gray et al., 1999), p,p’-DDE at high concentrations has been 

shown to function as an inhibitor of 5α-reductase, the intraprostatic enzyme responsible 

for converting testosterone to the more potent androgen, dihydrotestosterone (Lo et al., 

2007).   While many reproductive abnormalities have been found with DDT/DDE 

exposure, including reduced prostate growth, there is no known association between 

exposure to DDT/p,p’-DDE and prostate cancer risk .  

Summary and Key Questions: 

 There is increasing evidence both from epidemiology studies and animal models 

that specific endocrine-disrupting compounds may influence the development or 

progression of prostate cancer. In large part, these effects appear to be linked to 

interference with estrogen signaling, either through interacting with ERs or by 

influencing steroid metabolism and altering estrogen levels within the body.  In humans, 

epidemiologic evidence links specific pesticides, PCBs and inorganic arsenic exposures 
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to elevated prostate cancer risk.  Studies in animal models also show augmentation of 

prostate carcinogenesis with several other environmental estrogenic compounds 

including cadmium, UV filters and BPA.  Importantly, there appears to be heightened 

sensitivity of the prostate to these endocrine disruptors during the critical developmental 

windows including in utero and neonatal time points as well as during puberty. Thus 

infants and children may be considered a highly susceptible population for ED 

exposures and increased risk of prostate cancers with aging. 

 There are several key questions that must be addressed in future studies in order 

to best appreciate and understand the risks of prostate disease as they relate to 

endocrine-disrupting chemicals.   

1. What specific ED chemicals can influence the prostate gland and increase 

prostate cancer risk or progression? 

2. What are their modes of action?   

3. Are there epigenetic pathways that mediate developmental exposures to EDs 

and prostate disease with aging?  

4. Is there an additive or synergistic effect from ED mixtures and prostate cancer 

risk or growth? 

5. Does ED exposure influence prostate cancer susceptibility in subpopulations 

of men?  Are there specific pathways with which ED chemicals synergize to 

influence prostate cancer incidence and/or progression? 

6. Is the in utero developing human prostate sensitive to ED chemicals and do 

they influence prostate cancer risk in the aging male? What are the most 

appropriate life stages for examining ED and prostate cancer risk? 
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7. Is there a transgenerational risk for prostate cancer as a function of ED 

exposures? 

8. Can we establish molecular markers for ED exposures as they relate to 

prostate disease risk? 

Focused research on these and other specific questions is required in order to 

adequately evaluate the human risk for prostate disease from the growing 

accumulation of EDs in the environment.  Insight into molecular mechanisms may 

help to provide biomarkers for prostate disease risk from ED exposure as well as to 

provide opportunities for therapeutic intervention. 
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