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Abstract 

Androgen-disruptors are environmental chemicals that interfere with the biosynthesis, 

metabolism or action of endogenous androgens resulting in a deflection from normal male 

developmental programming and reproductive tract growth and function. Since male sexual 

differentiation is entirely androgen-dependent, it is highly susceptible to androgen-disruptors. 

Animal models and epidemiological evidence link exposure to androgen disrupting chemicals 

with reduced sperm counts, increased infertility, testicular dysgenesis syndrome, and 

testicular and prostate cancers. Further, there appears to be increased sensitivity to these 

agents during critical developmental windows when male differentiation is at its peak.  A 

variety of in vitro and in silico approaches have been used to identify broad classes of 

androgen disrupting molecules that include organochlorinated pesticides, industrial 

chemicals, and plasticizers with capacity to ligand the androgen receptor. The vast majority 

of these synthetic molecules act as anti-androgens.  This review will highlight the evidence 

for androgen disrupting chemicals that act through interference with the androgen receptor, 

discussing specific compounds for which there is documented in vivo evidence for male 

reproductive tract perturbations. 

 

 

Keywords: endocrine disrupting chemicals, EDC, androgen-disruptor, androgen receptor, 

antiandrogen, vinclozolin, DDT, pthalate 
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1. Introduction 

Male reproductive health is defined by both the proper development of the 

reproductive system and maintenance of function throughout adult life, including the capacity 

to reproduce. While female sexual differentiation, considered the default developmental 

pathway, is largely independent of estrogens and androgens, male sexual differentiation is 

driven by androgens produced by the fetal testes and is entirely androgen-dependent [1, 2]. 

Consequently, it is expected that endocrine-disrupting chemicals (EDCs) that interfere with 

androgen action will have a greater impact on male developmental programming and 

reproductive tract maturation. 

In contrast to estrogenic modes of action, relatively little is known about how 

androgenic/antiandrogenic EDCs at environmentally relevant concentrations affect male 

reproductive tract health. Androgens mediate a wide range of developmental and 

physiological responses in the male and are crucial for testicular and accessory sex gland 

development and function, pubertal sexual maturation in multiple organs, maintenance of 

spermatogenesis and maturation of sperm, male gonadotropin regulation through feedback 

loops and various male secondary characteristics such as bone mass, musculature, fat 

distribution and hair patterning [2, 3]. Testosterone and its metabolite 5- -

dihydrotestosterone (DHT), the primary androgenic hormones, mediate their biological 

effects predominantly through binding of the androgen receptor (AR), which is expressed in 

many end-organs including the hypothalamus, pituitary, liver, prostate, and testes [3]. There 

are multiple sites whereby EDCs can interfere with androgen-dependent mechanisms and 

affect male reproductive tract health and these include androgen synthesis, metabolism and 

clearance, feedback regulation, AR expression in target organs, and direct AR binding [4-9]. 

This review will focus on EDCs that ligand the AR and in so doing, behave in vitro as AR 

antagonists and/or, in a few cases, as AR agonists. Further, we will highlight the in vivo 
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evidence that some of these man-made chemicals interfere with biological processes and in 

so doing, disrupt male reproductive tract health and well-being. 

 

2. Androgen Receptor 

The actions of androgens within target cells are transduced by the low abundance 

intracellular AR, the number 4 member of the NR3C subgroup of a nuclear receptor 

superfamily that mediates the action of steroid hormones [10]. The human AR cDNA was 

first cloned in 1988 [11, 12] and an AR has since been described in a number of species 

including, mouse [13], rat [14], rabbit [15] monkey [16] and fish [17, 18]. The single-copy 

androgen receptor gene is localized on the human X chromosome between q11-q13 [19] and 

contains 8 exons with a total length of 90 kb. As schematized in Figure 1, the large AR gene 

encodes a 115-120 kD modular protein with five domains that each harbor an autonomous 

function that is critical to AR action; an N-terminal or A/B domain (NTD) with 

transactivation function, the DNA-binding or C domain (DBD), a hinge region or D domain 

and a ligand-binding or E domain (LBD) [20-22].  

The first 30 residues of the AR NTD are highly conserved and critical for interactions 

with the LBD that provide for agonist-induced stabilization of the receptor [23]. This NTD-

LBD interaction between 2 AR molecules is a property unique to AR among the steroid 

receptor family. The NTD also harbors the transcriptional Activation Function-1 (AF-1) 

domain which specifies the cell and promoter-specific activity and functions as a site for co-

receptor protein interaction. Phosphorylation of the NTD via the actions of multiple 

intracellular kinases is a well characterized post-translational modification that permits 

ligand-independent AR activation [23, 24]. The AR gene has a unique feature compared to its 

sex steroid receptor counterparts in that it contains polymorphic repeats of CAG (glutamine) 

and GGC (glycine) in the NTD, which have been linked to certain chronic diseases [24]. 
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The DBD consists of two zinc-fingers that are encoded by exons 2 and 3, respectively, 

which recognize and bind to the cis-acting enhancer DNA sequences, or hormone response 

elements (HRE) located within the regulatory regions of target genes. The first zinc-finger 

composes the P-box (proximal box) conferring specificity sequences on the receptor protein 

and also forming a “recognition helix” [25]. P-box residues are identical among the AR, 

progesterone and glucocorticoid receptors, therefore, these receptors bind a common 

consensus HRE (or GRE). Amino acids of the second zinc-finger form the “D-box” (distal 

box) and are more specifically involved in spacer sequence and provide an interface for 

receptor dimerization [25]. The D domain primarily serves to connect the more highly 

conserved C and E domains of the receptor. Commonly referred to as the “hinge” region, the 

D domain also harbors a nuclear localization signal that influences cellular 

compartmentalization of the receptor.  

The AR LBD is a highly structured, multifunctional region that primarily serves to 

bind androgens and also is the primary site for EDC interactions. The LBD of the AR in 

humans, rats and mice is identical and provides for high affinity binding of two endogenous 

androgens, testosterone and 5α-hydroxy-testosterone (DHT), the latter of which binds with 

much greater affinity [26]. Similar to other steroid receptors, the LBD contains an Activation 

Function-2 (AF-2) domain located in the C-terminus. While the AF-2 augments ligand-

dependent transcriptional activity for most steroid receptors, this function is markedly weaker 

in the AR where the AF-2 is more involved in interactions with residues in the NTD [23]. 

Receptor binding to an agonist ligand leads to rearrangement of the LBD such that helix-11 is 

repositioned and helix-12 swings back to form a “lid” over the binding pocket [27]. This 

agonist-induced repositioning of helix-12 leads to the formation of a hydrophobic cleft, 

which serves to recruit co-activators such as p160 to the receptor complex to promote 

receptor transcriptional activity. In contrast, receptor antagonists are unable to induce a 

similar repositioning of helix-12, leading to receptor recruitment of co-repressors such as 
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NcoR and SMRT and a structure incompatible with co-activator recruitment, thus making it 

less likely to activate transcription [28]. 

In the “classic” model of steroid receptor action, the AR resides in the nucleus or 

cytoplasm but is sequestered in a multi-protein inhibitory complex in the absence of 

hormone. Upon hormone binding, a conformational change occurs in the receptor, 

transforming it to an “activated” state that is now able to homodimerize, show increased 

phosphorylation, and bind to HREs within target gene promoters. The ligand/HRE-bound 

receptor complex interacts with the general transcription apparatus either directly or 

indirectly via co-regulatory proteins to promote transcription of the target gene [25]. This 

classic steroid receptor mechanism is dependent on the functions of both AF-1 and AF-2 

domains of the receptor, which synergize via the recruitment of co-activator proteins to the 

DBD, most notably the p160 family members. It is generally believed that the DNA-bound 

receptor/co-activator complex facilitates disruption of the chromatin and formation of a stable 

transcription pre-initiation complex. Unique to AR among the sex steroid receptors is that the 

agonist-liganded AR NTD interacts with co-repressors NCoR and SMRT which function as 

negative regulators of androgen-stimulated transcriptional activity [28]. Depending on the 

cell and promoter context, the DNA-bound AR complex may positively or negatively affect 

expression of the downstream target genes.  

 

3. Evidence Linking AR Disruptors with Disorders of Male Health 

The link between environmental chemicals and male infertility has been widely 

appreciated since 1962 with the publication of Rachel Carson‟s book, Silent Spring, which 

highlighted the effects of dichlorodiphenyltrichloroethanes (DDTs) on infertility in birds and 

other wildlife. While human studies examining altered male reproduction in relation to 

environmental chemicals were initially limited, evidence has emerged over the years that 

suggests a link between hormonally active toxicants and developmental reproductive 
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abnormalities [29]. Studies have raised the possibility that EDCs may be contributing to a 

decline in the human sperm count that has been observed over the last 50-60 years [30-32]. A 

review of 61 international studies involving 14,947 men between 1938 and 1992 showed that 

the average sperm count had dropped from 113 million/ml in 1940 to 66 million/ml in 1990, 

in addition to alterations in sperm morphology and motility [33]. Many epidemiological 

studies suggest a link between non-persistent (or „contemporary-use‟) pesticide exposure and 

altered semen quality [34] suggesting that EDCs may be the proximate cause. Two recent 

studies based on occupational reports involving simultaneous exposure to several pesticides 

found associations between pesticide exposures representative of that seen in the general 

population and reduced semen quality [35, 36]. 

In addition to altered semen quality, other male reproductive tract anomalies 

potentially attributable to EDCs have emerged with increased frequency over the past few 

decades that together have been described as testicular dysgenesis syndrome [37]. These 

disorders in the human population, which include increased incidences in cryptorchidism, 

hypospadias, oligospermia, and testicular germ cell cancer, have been linked in some studies 

to prenatal endocrine-disruptor exposure [37-43]. It is interesting to note that the so-called 

testicular dysgenesis syndrome has geographical specificity which emphasizes the likelihood 

that environmental factors contribute to these reproductive tract abnormalities [44]. Although 

not all cases of these disorders are a result of EDC exposures and have separate etiologies, a 

unifying hypothesis that links these disorders provides an intriguing and compelling 

argument that requires further investigation. Other male reproductive abnormalities that have 

been associated with EDCs that have AR disruptor activity in both human epidemiology 

studies as well as in animal models included delayed puberty [45] and reduced anogenital 

distance in newborn boys [46]. 

Another area of male reproductive health potentially linked to EDC exposures is 

cancers of the reproductive tract, specifically testicular and prostate cancers. Testicular 
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cancer rates have increased worldwide over the past 35 years with the greatest increase 

observed in certain European populations. Although direct evidence for increased testicular 

cancer due to EDC exposures is very limited, there are several reports [47, 48] that suggest a 

link. In utero diethylstilbestrol exposure has been associated with an increased risk of 

testicular cancers [49] while maternal levels of chlorinated chemicals suggests a link for these 

compounds with mixed estrogenic and antiandrogenic activity to testicular cancer rates in 

sons [50]. Further, a rabbit model for testicular cancer identified exposure to di-n-

butylphthalates with antiandrogenic action to testicular carcinoma in situ [51]. There is 

compelling data for increased prostate cancer risk and exposure of farmers to pesticides, 

some which are inhibitors of p450 enzymes involved in steroid metabolism [42, 50, 52]. 

Epidemiologic studies of occupational exposure to PCBs revealed a strong exposure-response 

relationship for prostate cancer risk [53] and prostate cancer mortality [54]. While estrogenic 

activity of these compounds is a suspected mode of action, there is also evidence that some 

PCBs may behave as antiandrogens. 

While there are many sites of action for chemicals to interfere with androgen 

signaling, available evidence primarily classifies these compounds into two broad categories; 

(i) interference with androgen biosynthesis or metabolism to indirectly modulate androgen 

function (nonreceptor-mediated disruptors) and (ii) interaction with the androgen receptor to 

interfere with the ligand-dependent transcriptional function (receptor-mediated disruptors). 

Furthermore, it has been shown that some pesticides can act by reducing androgen receptor 

expression [4-6]. For the purposes of this review, we here look at the exposure to endocrine-

disrupting pollutants with identified antiandrogenic toxicity, mostly through binding of the 

androgen receptor to alter proper folding of its ligand-binding domain (LBD), blocking 

recruitment of co-activators and preventing transcriptional initiation. Androgen-disruptors 

acting via this mechanism include vinclozolin, DDT, procymidone, linuron, lindane, 

dieldrin/aldrin, methoxychlor, nonylphenol, and bisphenol-A [7-9]; Table 1). These 
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chemicals will be discussed individually in the following section based upon their chemical 

classifications. 

 

4. Classification of AR Disrupting Chemicals 

Androgen receptor-mediated disruptors can be classified into agonists and antagonists. 

An agonist binds to androgen receptor and triggers a response mimicking the action of a 

naturally occurring androgen. In contrast, an antagonist acts opposite to an agonist and blocks 

androgen receptor transactivation. Thus far, there are limited studies on screening of 

androgen receptor binding activity for a large number of chemicals [55-62], which include 

studies based solely on their chemical structure [63, 64]. Among the systematic investigation 

of compounds, a pilot study by Araki and colleagues [55] is the first report of industrial or 

environmental chemicals with AR agonist activity. However, not until a few years ago was 

1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH; Figure 2) identified as the first 

potent environmental activator of the human AR [65] and the only AR agonist for which in 

vivo study has been performed [66]. 

 

4.1. Agonists 

4.1.1. Tetrabromoethylcyclohexanes (TBECHs) 

 TBECH, a brominated flame retardant used in a variety of products as insulation, 

stuffing in furnishings, is presence in both sediments and organisms along with its potent 

activation of AR at nanomolar concentrations caused TBECH to be ranked as one of the 10% 

most hazardous compounds to ecosystems [67]. TBECH can exist in four diastereoisomeric 

forms: α and β, found in the commercial flame retardant marketed as Saytex BCL 462 by 

Albemarle Corp.; and γ and δ, converted from α and β at temperatures > 120°C [68]. 

In silico analysis of interaction energies and in vitro binding assays showed that 

TBECH diastereomers γ and δ are more potent activators of the human AR than α or β [69]. 
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TBECH-γδ (50:50) binds to the AR with 22% of DHT‟s binding affinity and all 

diastereomers induced expression of the downstream target prostate-specific antigen (PSA) in 

vitro [69]. Nyholm and colleagues [66] showed that TBECH can be maternally transferred in 

zebrafish. Future studies are needed to determine the androgenic effects of TBECH in vivo. 

 

4.2. Antagonists 

Environmental and industrial chemicals with antiandrogenic action cover wild range 

of chemical structures including flutamide derivatives, diphenylmethanes, phthalates, 

organochlorines, and alkylphenols (Figure 2). 

 

4.2.1. Diphenylmethanes 

Dichlorodiphenyltrichloroethanes (DDTs) and Congeners 

Commercial DDT contains several isomers of which p,p’-1,1,1-trichloro-2,2-bis[p-

chlorophenyl]ethane (p,p’-DDT) and its persistent metabolic derivative p,p’-1,1-Dichloro-

2,2-bis(p-chloroethyl)ethylene (p,p’-DDE) are the major components. DDT was widely used 

as a pesticide in the United States until its ban in 1972 after it was found to have adverse 

effects on male reproductive tract development in wildlife [9, 70]. The Second National 

Health and Nutrition Examination Survey conducted between 1976 and 1980 revealed a 

prevalent human exposure in 99.5% of the U.S. population with measurable serum p,p’-DDE 

levels [71]. Although human exposure has declined significantly since that time, some 

populations still bear significant levels of p,p’-DDE [72, 73] due to its considerably high 

environmental half-life, bioaccumulation and the continued use of DDT against malaria in 

some developing countries. 

Regarding its properties as an AR disruptor, DDT isomers p,p’-DDT, o,p’-1,1,1-

trichloro-2,2-bis[p-chlorophenyl]ethane (o,p’-DDT) [74], and metabolite p,p’-DDE [57] were 

shown to reduce binding of DHT to AR in vivo while p,p’-DDE inhibited DHT-induced 
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transcriptional activation in vitro [9]. In addition to AR antagonistic effects of DDT, p,p'-

DDE at high concentrations has been shown to function as an inhibitor of 5α-reductase, 

responsible for converting testosterone to DHT [75]  thus it is likely that these compounds 

interfere with androgen signaling at multiple sites of action. 

Although human serum concentrations of DDT and p,p'-DDE were only weakly 

associated to cryptorchidism or hypospadias in offspring [76-79], fetal and neonatal exposure 

in male produced demasculinizing effects with a high incidence of epididymal and testicular 

lesions [9, 80], and reduced prostate growth and inflammation [81]. 

Methoxychlor 

The insecticide methoxychlor is structurally related to DDT. Compared to DDT, 

however, it has low environmental persistence and therefore was used to replace DDT as a 

pesticide after the later was banned in the United States. Beyond its considered estrogenic 

activity, methoxychlor also shows affinity to the AR at comparable or even higher levels than 

DDTs [57]. While methoxychlor exposure of neonatal rats did not affect male puberty, 

reproductive organ weights or functions in adulthood [82, 83], exposure throughout gestation, 

weaning, and lactation resulted in multiple effects including inhibition of somatic growth and 

accessory sex gland weight, elevated pituitary and serum prolactin levels, delayed puberty, 

suppression of Leydig cell function, reduced sperm counts [84, 85] and decreased DNA 

content of the accessory sex glands in the male offspring [86]. Rats fed 2000 ppm 

methoxychlor for 90 days exhibited decreased prostate size and cell content [87]. Together, 

these biological endpoints indicate robust antiandrogenic activity of this environmental 

contaminant with regards to male reproductive health. 

Bisphenol A (BPA) 

BPA is a synthetic polymer used in the production of polycarbonate plastics and 

epoxy resins and significant levels have been found in the urine of 93% of the US population 

in a recent screen by the CDC [88]. While its mode of action is believed to be primarily as an 
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estrogen receptor agonist, studies have also shown AR binding [57] and antagonistic activity 

for BPA [89]. Thus negative effects of BPA on male reproductive health need to be evaluated 

in the context of its antiandrogenic capacity in addition to its estrogenic actions. BPA 

exposures have been linked to reduced sperm counts in a rodent model [90] and a human 

epidemiology study [91]. Recent assessment of occupational exposure to BPA has linked 

erectile dysfunction in men with high urinary BPA levels [63]. 

The effects of BPA with regards to carcinogenic potential, including the prostate 

gland, have recently been reviewed by an expert panel [92]. In short, there is evidence from 

rodent models and human prostate cell lines that BPA can influence carcinogenesis, modulate 

prostate cancer cell proliferation, and for some tumors, stimulate progression [93, Prins, 2008 

#3196, 94]. Of particular interest with regards to AR action are the studies by Knudsen and 

colleagues who examined the influence of BPA on human prostate cancer cells that contained 

an AR point mutation (AR-T877A) frequently found in advanced prostate cancers of patients 

who relapse after androgen deprivation therapy [95]. They first observed that 1 nM BPA 

activates AR-T877A in transcriptional assays and leads to unscheduled cell cycle progression 

and cellular proliferation in vitro in the absence of androgen. Since BPA had no impact on 

wild-type AR, these data indicate that this gain-of-function AR mutant attained the ability to 

utilize BPA as agonist. Subsequent in vivo analyses of the impact of BPA on human prostate 

tumor growth and recurrence were performed using a mouse xenograft of human cells 

containing the AR-T877A mutation [94]. At low doses that fall within the reported ranges of 

human exposure, prostate tumor size increased in response to BPA administration. Further, 

mice in the BPA cohort demonstrated an earlier rise in PSA which is indicative of 

biochemical failure. These outcomes underscore the need for further study of the effects of 

BPA on prostate tumor progression and therapeutic efficacy. 
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4.2.2. Flutamides 

Vinclozolin 

Vinclozolin [3-(3,5-dichlorophenyl)-5-methyl-5-vinil-oxazolidine-2,4-dione] is a 

systemic dicarboximide fungicide extensively used to control diseases caused by Botrytis 

cinerea, Sclerotinia sclerotiorum, and Moniliniam spp. on fruits, vegetables, ornamental 

plants and vines. It is a well known contaminant of the human diet with endocrine disrupting 

potential as an AR antagonist through its primary metabolites 2-[[(3,5-dichlorophenyl)-

carbamoyl]oxy]-2-methyl-3-butenoic acid and 3',5'-dichloro-2-hydroxy-2-methylbut-3-

enanilide, [96]. Vinclozolin has been shown to inhibit AR transactivation and androgen-

dependent gene expression [96-98]. Defects in prostate development and ectopic location of 

the testes are equivalent to those observed in rats treated with the antiandrogen flutamide, 

suggesting a similar mechanism of action. 

In vivo administration of vinclozolin at different doses, routes, and periods (gestation, 

lactation, puberty, adulthood) dictates the effects on the male reproductive tract. Chronic 

prostatitis induced by transient in utero exposure during late gestation (days 14-19) in rats 

was not evident until puberty or thereafter and are reported to be reversible by pubertal 

androgen treatments [99]. Peripubertal oral administration of vinclozolin delayed puberty and 

altered sex accessory gland and epididymal growth in male rats [100]. In contrast, exposure 

of rats to vinclozolin during midgestation, time of sex determination, promoted multiple 

adult-onset phenotypes including penile malformation, decreased sperm production and 

motility, increased spermatogenic cell apoptosis, altered sperm maturation proteins, 

hypospadias, cleft phallus, suprainguinal ectopic testes, vaginal pouch, epididymal and 

testicular granulomas, atrophic accessory sex glands, and kidney disease with tumor 

development [80, 99, 101-106]. In studies performed by Skinner and colleagues, the 

developmental vinclozolin exposure effects were found to be heritable through multiple 

generations with continued defects observed in the F3 generation and beyond [107]. An 
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epigenetic basis for the transgenerational disease phenotype of vinclozolin has been 

established that involves perturbations in DNA methylation patterns on the male germ cell 

[108]. It is important to note that timing of the exposure is critical for the epigenetic and 

transgenerational effects on vinclozolin and is related to the establishment of DNA 

methylation patterns during sex determination in developing male germ cells on fetal days 8-

14. 

 

Linuron 

Linuron is currently marketed as a selective phenyl urea herbicide for pre- and/or 

post-emergence control of weeds in crops. The structurally related diuron is used to keep 

weeds from track systems and sporting grounds [109]. Both compounds are degraded in the 

environment to 3,4-dichloroanilide and further metabolized into 3,4-dichloroacetanilide 

[109]. 

Linuron displays weak affinity to AR [57, 110-112]. In a 2-year feeding trial, linuron 

increased the incidence of testicular tumors in rats [111]. In short-term in vivo dosing, linuron 

treatment reduced testosterone- and DHT-dependent tissue weights [80] and altered the 

expression of androgen-regulated rat ventral prostate genes [113]. In utero exposure to 

linuron (day 14–18) induced developmental alterations of the testes and epididymides in the 

male rat offspring [113]. 

 

4.2.3. Organochlorines 

Hexachlorocyclohexanes  

Commercial lindane is a hexachlorocyclohexane (HCH) and consists of several 

isomers (α, β, γ, δ). The -HCH form, which is used as an insecticide, tends to accumulate in 

body fat of mammalian species and is the most acutely toxic [114, 115]. It has been shown 

that lindane binds to AR in rat prostate [57, 116], inhibits DHT binding [74], and causes 
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biochemical and histological changes in the rat testis [117]. The -HCH isomer is a 

byproduct in the manufacture of lindane and accounts for 90% of the total HCH found in 

human milk [115]. Male rats fed with β-HCH throughout lactation and weaning developed 

reproductive toxicity characterized by reduced size of seminiferous tubules and decreased 

number of interstitial cells along with spermatogenic arrest {Van Velsen, 1986 #3495;[118]. 

 

Procymidone 

Procymidone is a dicarboximide fungicide structurally related to the well-

characterized fungicide vinclozolin. It has low potential for bioaccumulation in the soil and 

moderate mobility. In vitro, procymidone binds AR [57, 112, 119], inhibits DHT binding in 

transfected COS (monkey kidney) cells, and inhibits DHT-induced transcriptional activation 

in CV-1 cells [8]. 

Procymidone causes reproductive malformations in the fetal male at dosage levels that 

have little effects on the reproductive tract of the adult male rat [8, 80, 119]. Maternal 

procymidone exposure during gestation and early lactation caused shortened anogenital 

distance, permanent nipples, reduced weight of several androgen-dependent tissues (levator 

ani and bulbocavernosus muscles, prostate, seminal vesicles, Cowper's gland and glans 

penis), and reproductive tract malformations (hypospadias, cleft phallus, vaginal pouch, 

hydronephrosis, occasional hydroureter, epididymal granulomas, and ectopic, undescended 

testes). In addition, perinatal procymidone treatment had a marked effect on the histology of 

the lateral and ventral prostatic and seminal vesicular tissues displaying increased incidence 

of inflammation, similar to that produced by perinatal exposure to vinclozolin [8, 80]. 

 

Aldrin and Dieldrin 

Aldrin and its major metabolite, dieldrin, were used as insecticides until the early 

1970s, when they were widely restricted or banned. Aldrin is rarely found in food but dieldrin 
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accumulates in the mammalian organism causing background levels in the environment 

[115]. In vitro, aldrin binds AR [57] and dieldrin reduces binding of DHT to AR [74]. In most 

of the reproduction studies (over one to six generations) carried out with aldrin or dieldrin on 

mice and rats, the major effect was an increased mortality rate in pups not yet weaned. 

Reproductive performance was only affected at doses causing maternal intoxication. Single 

doses of aldrin and dieldrin, equal to about half the LD50, caused severe fetotoxicity and an 

increased incidence of teratogenic abnormalities in the mouse and hamster [120]. Mating 

studies of dieldrin-exposed rats suggest male-dependent disturbances in fertility [121]. 

 

4.2.4. Phthalates 

Butylbenzylphthalate (BBP) 

The diesters of 1,2-benzenedicarboxylic acid (phthalic acid), commonly known as 

phthalates, are a group of man-made chemicals widely used in industrial applications. They 

are primarily used as plasticizers in the manufacture of flexible vinyl plastic which, in turn, is 

used in consumer products, flooring, and wall coverings, food contact applications, and 

medical devices [122]. They are also used in personal-care products (e.g., perfumes, lotions, 

cosmetics), as solvents and plasticizers for cellulose acetate, and in making lacquers, 

varnishes and coatings including those used to provide timed release of some pharmaceuticals 

[122]. 

BBP was shown to binds AR in vitro [57]. In utero or perinatal BBP exposure of rats 

produced a diverse profile of reproductive malformations in the male offspring mainly 

characterized by reduced weight of the testis, epididymis, ventral prostate and glans penis, 

reduced anogenital distance, female-like areolas/nipples, and decreased daily sperm 

production [80]. A large study on male partners of subfertile couples from an infertility clinic 

in Massachusetts [123, 124]found a dose-response relationship between monobenzyl 

phthalate (MBzP, the primary hydrolytic metabolite of BBP) and sperm concentrations that 
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fell below the WHO reference value. In contrast to the U.S. study, a Swedish study found no 

relationship between MBzP levels and any semen parameter [125]. The Swedish study 

population consisted of young men (median age, 18 years-old; range, 18–21) from the 

general population, whereas in the U.S. study the median age of the men from an infertility 

clinic was 35.5 years-old (ranged from 22 to 54). It is unclear whether middle-aged men, 

compared with young men, are more susceptible to reproductive toxicants. 

 

4.2.5. Alkylphenols 

Alkylphenol ethoxylate (APE) are surfactants widely used as industrial (such as 

textile and paper industry) and laboratory detergents, antioxidant, plastic stabilizers, as well 

as carriers in agricultural pesticides. In sewage treatment plant effluents, APEs are degraded 

to more stable, persistent, and hydrophobic alkylphenols such as 4-n-nonylphenol (nNP) and 

4-n-octylphenol (nOP). Although alkyl phenols are mainly known for their estrogenic 

properties, nNP and nOP have been found to be weakly antiandrogenic in recombinant yeast 

reporter gene assays [8, 59, 89, 126]. Neonatal exposure to nOP negatively affected pubertal 

spermatogenesis by significant advanced lumen formation and decreased apoptotic rate of 

germ cells [127], and reduced plasma testosterone [128] in male rat offspring. Male rats 

exposed during gestation or during the first 21 days of postnatal life caused reduction in 

testicular size, ventral prostate weight, and daily sperm production [129]. 

 

5. Summary 

 This review has synthesized the current evidence for EDCs acting as disruptors of 

androgen signaling in the male reproductive tract. Although the list is not comprehensive, it is 

clear that sufficient data has accrued to indicate that environmental contaminants are capable 

of deleterious effects on male reproductive tract health through their abilities to act as AR 

antagonists, or in a few cases, as AR agonists. While mechanistic data mostly arises from in 
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vitro assays and in vivo animal models, there are an increasing number of human studies and 

epidemiology reports that document clear negative impacts on the human male. While further 

research at all levels is required to provide detailed understandings of mechanisms and 

impacts, it is important to take caution at this stage with the continued use of environmental 

compounds that disrupt male reproductive health. Importantly, continued studies are required 

to monitor the use of the known compounds as well as to screen all chemicals for potential 

AR disrupting activity so that caution may be applied with their continued use.  
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Figure Legends 

 

Figure 1. Domain structure of the androgen receptor. The androgen receptor is composed of 

a N-terminal domain (NTD) or A/B domain, with transactivation function mediated through 

the AF-1 region, a DNA-binding (DBD) or C domain, harboring two zinc finders that 

recognize AREs in regulated genes, a hinge region or D domain, and a ligand-binding (LBD) 

or E domain that contains the steroid binding pocket and helices 11 and 12 as well as the 

activation function-2 region (AF-2). 

 

Figure 2. Two-dimentional molecular structures of selected androgen disruptors from each 

class. DHT, dihydrotestosterone; TBECH, tetrabromoethylcyclohexane; p,p’-DDE, p,p’-1,1-

Dichloro-2,2-bis(p-chloroethyl)ethylene; nOP, 4-n-octylphenol 
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Table 1. Endocrine-disrupting pollutants with antiandrogenic toxicity through binding of the AR. 

Androgen-disruptor Effects and associated mechanism References 

Diphenylmethanes   

DDT Decreased fertility, cryptorchidism; inhibition of DHT 

binding to AR, perturbed Ca++ mobilization, 

phosphorylation of c-ERB2/c-met; inhibition of p450scc 

[9, 74, 130-134] 

DDE Cryptorchidism; inhibition of DHT binding to AR, 

MAPK pathway and PI3K activation, interacts with 

GPR30 

[9, 74, 133-136] 

Methoxychlor Inhibition of somatic growth, reduced accessory sex gland 

weight, elevation of serum prolactin; suppression of 

Leydig cell function; inhibition of spermatogenesis, 

decreased seminal vesicles and epididymal weight, 

pubertal delay; induction of CYP28, CYP23A and CAR, 

alterations in germline DNA methylation, ER activation, 

antiandrogen and transgenerational effects 

[82-85, 87] 

Bisphenol A (BPA) Aberrant development of prostate and urethra, increased 

anogenital distance, altered periductal stroma, increases 

susceptibility to prostate hormonal carcinogenesis,  

inhibition of DHT binding to AR, ligands mutated ARs 

[93, 95, 134, 137-139] 

   

Flutamides   

Vinclozolin Hypospadias, undescended testes, delayed puberty, 

prostate disease among subsequent generations; inhibition 

of DHT binding to AR, alters germline DNA methylation 

patterns 

[100, 134, 140-143] 

   

Linuron Disruption of reproductive tract development; reduction 

of epididymal and accessory sex gland weight; increased 

serum estradiol and luteinizing hormone 

[113] 

   

Organochlorines   

Lindan ( -HCH) Alterations in testes histology; inhibition of DHT binding 

to AR 

[74, 117] 

Procymidone Fetal rat: shortened anogenital distance, permanent 

nipples, hypospadias, ectopic undescended testes, reduced 

weight and altered histology of prostate (and several other 

androgen-dependent tissues) 

[8] 

Dieldrin/aldrin Reproductive performance affected at doses causing 

maternal intoxication; inhibition of DHT binding to AR 

[74] 

   

Phthalates   

Butylbenzylphthalate Reduced anogenital distance and weights of testes, 

epididymis, ventral prostate, and glans penis, female-like 

areolas/nipples, hypospadias, cryptorchidism, 

oligospermia, infertility; inhibition of DHT binding to AR 

[80, 134, 144, 145] 

   

Others   

Nonyilphenol MAPK pathway activation, PKC/cAMP modulation, 

reduced CYP1A1 expression; Reduction of 5 -reductase 

and 3 -hydroxysteroid-dehydrogenase activities; 

inhibition of DHT binding to AR 

[7, 8] 

 

 

 


