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Abstract 
Purpose of Review: Delayed cerebral ischemia (DCI) is common after subarachnoid hemorrhage (SAH) and 
represents a significant cause of poor functional outcome. DCI was mainly thought to be caused by cerebral 
vasospasm; however, recent clinical trials have been unable to confirm this hypothesis. Studies in humans and 
animal models have since supported the notion of a multifactorial pathophysiology of DCI. This review 
summarizes some of the main mechanisms under investigation including cerebral vascular dysregulation, 
microthrombosis, cortical spreading depolarizations, and neuroinflammation. 
Recent Findings: Recent guidelines have differentiated between DCI and angiographic vasospasm and have 
highlighted roles of the microvasculature, coagulation and fibrinolytic systems, cortical spreading depressions, 
and the contribution of the immune system to DCI. Many therapeutic interventions are underway in both 
preclinical and clinical studies to target these novel mechanisms as well as studies connecting these 
mechanisms to one another. 
Summary: Clinical trials to date have been largely unsuccessful at preventing or treating DCI after SAH. The 
only successful pharmacologic intervention is the calcium channel antagonist, nimodipine. Recent studies have 
provided evidence that cerebral vasospasm is not the sole contributor to DCI and that additional mechanisms 
may play equal if not more important roles.  
 
Keywords: Subarachnoid hemorrhage, delayed cerebral ischemia, vasospasm, microthrombosis, cortical 
spreading depolarization, neuroinflammation 
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Introduction 
Subarachnoid hemorrhage (SAH) is a neurological emergency with considerable morbidity and mortality. It 

accounts for up to 5% of strokes each year, with about 7.2-10.5 per 100,000 people each year [1,2]. The most 
common non-traumatic cause of SAH is the spontaneous rupture of cerebral aneurysms. Despite it being less 
common than ischemic stroke, SAH has a higher mortality rate, with older studies demonstrating case-fatality 
rates between 32-67% and more recent studies demonstrating stable incidence of SAH but some reductions in 
case-fatality due to improved diagnosis and management [3,4]. Overall, the mortality is still estimated to be 
approximately 40% [5]. For those who survive, there are both short- and long-term consequences that can 
significantly reduce quality of life. With advances in both the detection and management of patients suffering 
from SAH, there is a growing number of SAH survivors who require lifelong care, cannot return to work, and 
suffer from both physical and cognitive long-term impairments [6-9]. As SAH typically affects younger patient 
populations compared to ischemic stroke, these long-term impairments can have larger personal and economic 
impacts on individual patients, their families, and society.  
 Brain injury after SAH can be 
divided into early and delayed stages 
(Figure 1). One of the earliest 
consequences of SAH is early brain 
injury (EBI), which typically occurs within 
the first 72 hours [10,11]. As blood 
rushes into the subarachnoid space 
under high arterial pressure there is a 
rise in intracranial pressure (ICP). Blood 
and its breakdown products can also 
further contribute to this rise in ICP from 
obstruction of flow of cerebrospinal fluid 
(CSF), resulting in hydrocephalus. The 
sharp rise in ICP results in a significant 
reduction in both cerebral perfusion 
pressure (CPP) and cerebral blood flow 
(CBF) that can lead to both loss of 
consciousness and global cerebral 
ischemia. Additionally, there are many 
other pathophysiological responses 
important to consider at this stage, 
including neuroinflammation, activation 
of platelets and clotting factors, 
endothelial injury, and excitotoxic effects 
of blood and its breakdown products on 
neurons [11].  
 All of the events that take place in 
the acute setting after SAH likely set the 
stage for the development of further 
delayed brain injury. One of the most commonly studied mechanisms of delayed injury involves delayed cerebral 
ischemia (DCI), a major cause of morbidity and mortality for those who survive EBI. DCI presents with delayed 
neurological deterioration and focal deficits that may progress to infarction [1]. Until recently, DCI has been 
associated with the development of cerebral vasospasm after SAH, and it was thought that DCI was a direct 
result of this arterial narrowing [12]. However, recent studies have begun to differentiate these two events and 
show that DCI may be a result of several underlying and inter-related mechanisms [13,14]. In this review, we will 
discuss four principal mechanisms that may contribute to the development of DCI (Figure 2): 1) cerebral vascular 
dysfunction (both macro- and micro-vascular), 2) microthrombosis, 3) cortical spreading depolarizations, and 4) 
neuroinflammation. While each of these have been studied in animal models, controlled clinical trials targeting 
these mechanisms have been limited. 

Figure 1. Factors contributing to brain injury in SAH. Following aneurysm rupture, 
injury can be divided into early and delayed stages, which include both systemic 
and cerebral factors. Insert: Head CT scan of a 40-year-old woman with 
subarachnoid hemorrhage showing right cerebellar hemorrhage with local mass 
effect, intraventricular extension, and early hydrocephalus represented by the 
distention noted at the temporal horns of the lateral ventricles.  
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Current Diagnosis and Management of DCI 
 There are limited therapeutic options available to address long-term impairment following SAH. DCI plays 
a highly significant role in long-term outcomes and develops in approximately 30% of SAH patients and usually 
occurs between 3 and 14 days following aneurysmal rupture [15,16]. Some factors that increase the likelihood 
of developing DCI include smoking, alcohol use, hyperglycemia, hydrocephalus, early systemic inflammatory 
response, and poor clinical condition upon initial presentation [17]. Some of these factors are considered markers 
of severity of the initial insult. However, it has been hypothesized that they correlate with the development of a 
pro-inflammatory environment that facilitates the occurrence of delayed complications such as DCI.  

Following occlusion of the ruptured intracranial aneurysm either by surgical clipping or endovascular 
coiling, there are several mainstays of treatment designed to detect and prevent the development of DCI. 
Diagnostic approaches including clinical assessments (i.e., Glasgow Coma Scale), Transcranial Doppler 
ultrasonography (TCD), and angiography can be used to detect vasospasm which is frequently seen in 
association with DCI [18]. Additionally, CT and MR scans, together with non-invasive perfusion imaging, can be 
utilized to identify cerebral ischemia, hypoperfusion, infarction, edema, and herniation. More recently, continuous 
electroencephalography (EEG) has been shown to provide valuable information in monitoring for DCI [19,20]; 
however, its use in clinical practice has not been universally accepted.  

Prevention of DCI has mainly been directed at cerebral vasospasm and includes both peri-operative and 
post-operative approaches. During surgical clipping or endovascular coiling, preventive measures can include 
clot removal, intracisternal agents such as thombolytics or prolonged-release vasodilatory agents [21]. Since 
outcomes investigated were mainly related to vasospasm, direct effects on DCI remain unclear although some 
did show improvements in symptomatic vasospasm. The main post-operative prophylactic measures include 
hypovolemia, lumbar drains, and the calcium channel antagonist nimodipine [22]. Nimodipine is the only drug 
shown to reduce DCI and improve outcomes after SAH, and several studies have attempted to optimize the 

Figure 2. Pathogenesis of delayed cerebral ischemia after SAH. The main mechanisms under 
investigation include large vessel vasospasm, microcirculatory dysfunction, microthrombosis, cortical 
spreading depolarizations, and neuroinflammation. Insert: Catheter angiography showing baseline 
(A) and severe vasospasm (B) at day 5 after SAH. 
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route of administration and dosage while reducing side effects [23-25]. The beneficial effect of nimodipine in 
SAH is unclear and has been associated to a cytoprotective effect. This Food and Drug Administration (FDA) 
approved drug is administered orally and its main adverse effect is hypotension, which can precipitate cerebral 
infarction in patients with vasospasm and hemodynamic compromise. Other pharmacologic interventions have 
been studied with largely disappointing results [25-35]. 

Once DCI has developed, treatment options are largely supportive and rely on ensuring cerebral 
perfusion that may be compromised in patients with vasospasm. “Triple-H” therapy including hypertension, 
hypervolemia, and hemodilution has been used as the mainstay of treating these patients for decades [21]. The 
goal of this approach is to preserve CPP in patients with vasospasm. The beneficial effect of each of the 
individual components of “Triple-H” therapy has not been established; in addition, hypervolemia has been 
associated with increased costs and complication rates [36-38]. Thus, current SAH treatment guidelines 
recommend the use of induced hypertension and maintenance of euvolemia, although the efficacy of this 
approach also has not been conclusively demonstrated [18,39,40]. In refractory cases, endovascular angioplasty 
as well as intra-arterial treatment with vasodilators including verapamil, nimodipine, nicardipine, and milrinone, 
may revert vasospasm [41-43]. Thus, while there are some options for managing DCI, there exists conflicting 
evidence in terms of efficacy. 
 
Mechanisms Underlying DCI 
 The lack of proven interventions to prevent or treat DCI after SAH has driven investigation into novel 
mechanisms of DCI. While historically cerebral vasospasm has been viewed as the principal underlying 
mechanism of DCI, it is likely a combination of several mechanisms that results in DCI and poor outcome [11]. 
Numerous studies have looked at these mechanisms, but one of the problems in the current literature has been 
the lack of clear definitions that distinguish DCI, cerebral vasospasm, and cerebral infarction. In 2010, an 
international panel of experts assembled to propose definitions for these terms (Table 1) [44]. Future studies 
looking at either vasospasm or DCI following SAH should abide by these definitions, which will allow for easier 
cross-study analysis and guide development of future therapeutic interventions.  
 

Table 1. Consensus Definitions of Delayed Cerebral Ischemia, Cerebral Vasospasm, and Cerebral Infarction Set by a 

Multidisciplinary Research Group Consisting of Experts on SAH and DCI  [1]. 

Term Definition Similar Terms 

Delayed 
Cerebral 
Ischemia 
(DCI) 

Occurrence of focal neurological impairments or decrease of at least 2 points on 
Glasgow Coma Scale that last for at least 1 hour, is not apparent immediately after 
aneurysm occlusion, and cannot be attributed to other causes by means of clinical 
assessment, CT, MRI, and other lab studies. 

Delayed ischemic 
neurological 
deficit (DIND), 
delayed ischemic 
deficit 

Cerebral 
Vasospasm 

Arterial narrowing of large cerebral vessels observed on a radiological test such as CT 
angiography, MRA, or digital subtraction angiography. 

Angiographic 
vasospasm, 
radiographic 
vasospasm, 
arterial narrowing 

Cerebral 
Infarction 

Death of brain tissue due to ischemia present on CT or MRI within 6 weeks of SAH, 
or on latest scan made before death within 6 weeks, or proven at autopsy, not present 
on scans between 24-48 hours after aneurysm occlusion, and not attributable to other 
causes such as surgical or endovascular treatment. 

N/A 

 
1) Cerebral Vascular Dysregulation 

For decades, the main focus of research into DCI was dysregulation of the cerebral vasculature, mainly 
at the level of larger extraparenchymal vessels. Mechanistically, this phenomenon has been associated with the 
presence of vasoactive blood products in the subarachnoid space, imbalance in the production of endogenous 
vasodilators (nitric oxide, NO) and vasoconstrictors (endothelin-1), and inflammation. Cerebral vasospasm has 
been the target of extensive study, yet only recently has its role in DCI come into question. New studies have 
begun to look at alterations in smaller intraparenchymal vessels that have an important role in regulation of CBF, 
neurovascular coupling, and maintenance of the blood-brain barrier. 

 
1.1) Cerebral Vasospasm 
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 As shown in Table 1, cerebral vasospasm is defined as “arterial narrowing of large cerebral vessels 
observed on a radiological test such as CT angiography, MRA, or digital subtraction angiography” [44]. The more 
precise term we will use here is angiographic vasospasm in order to differentiate from symptomatic vasospasm, 
which includes angiographic vasospasm associated with signs and symptoms of parenchymal injury. 
Angiographic vasospasm has been shown to develop in up to 70% of patients after SAH  [45]. Meanwhile, DCI 
is only observed in 30% of patients and does not always fall within the vascular distribution of the angiographic 
vasospasm  [46,47]. Thus, DCI can occur without the presence of angiographic vasospasm and likely is driven 
by other factors. Further, the only FDA approved drug to prevent DCI after SAH, nimodipine, has had no 
observed effect on angiographic vasospasm  [48,49].  

 Despite this information, many recent clinical trials have targeted angiographic vasospasm in hopes of 
preventing DCI. After studies in animal models identified a role of endothelin receptors on vasoconstriction of 
large extraparenchymal vessels, landmark randomized clinical trials using the endothelin-receptor antagonist 
clazosentan entitled “Clazosentan to overcome neurological ischaemia and infarct occurring after subarachnoid 
hemorrhage,” or CONSCIOUS [13]. The randomized CONSCIOUS-1 trial demonstrated a significant reduction 
in angiographic vasospasm. This finding was confirmed in the higher powered, phase III, randomized, double-
blind, placebo-controlled CONSCIOUS-2 trial. However, this study failed to show a statistically significant 
reduction in morbidity, mortality, or functional outcome  [13,49,50]. While there were some limitations to these 
studies, they suggest that angiographic vasospasm is not the sole contributor to DCI and long-term outcomes 
after SAH. 
 
1.2) Microcirculatory Dysfunction 
 In addition to angiographic vasospasm that occurs at the level of larger extraparenchymal vessels, the 
smaller microvasculature of the brain parenchyma can also show alterations. Compared to angiographic 
vasospasm, microcirculatory dysfunction cannot be as easily detected clinically by angiography or TCD  [51]. 
Most of these studies have been in animal models and few therapeutic interventions have been designed to 
target the microvasculature. Within the brain parenchyma, the main alterations that take place occur at the levels 
of the arterioles and capillaries and can include disruption of cerebral autoregulation, neurovascular coupling, 
and blood brain barrier (BBB) function [52-54]. Further, while nimodipine was shown to have no significant effect 
on large vessel vasospasm, it does inhibit arteriolar vasoconstriction [55]. This may relate to its therapeutic effect 
on DCI. 
 Maintenance of CBF within the brain parenchyma is dependent on both cerebral autoregulation and 
neurovascular coupling, both of which can be disturbed following SAH. Cerebral autoregulation is responsible 
for maintaining constant CBF despite changes in arterial blood pressures while neurovascular coupling allows 
local changes in CBF to occur in response to varying degrees of neuronal activity [56]. After SAH, fluctuations 
in arterial pressures have been observed to result in more dynamic changes in both CBF and CPP, indicating 
impairment of cerebral autoregulation [55]. Disturbance of neurovascular coupling is also observed and relates 
to impairment at the level of the neurovascular unit (NVU), made up of endothelia, pericytes, smooth muscle 
cells, neurons, and glia. Under normal physiological circumstances, the NVU should cause microvessel dilation 
in response to higher neuronal activity. Neurons release glutamate, which binds to metabotropic glutamate 
receptors (mGluRs) on astrocytes, triggering an increase in intracellular calcium that in turn releases vasodilatory 
substances at astrocytic end feet surrounding arterioles. However, several studies have shown that after SAH 
this neurovascular coupling is inverted, wherein instead of vasodilation in response to neuronal activity, there is 
either transient or sustained vasoconstriction  [57-59]. This is not observed 3 hours after SAH, but occurs as a 
delayed response and can be progressive  [59]. Following Poiseuille’s law, which states that flow through a 
cylinder is proportional to the fourth power of the radius, this vasoconstriction can therefore have drastic effects 
on the delivery of essential oxygen and nutrients to brain parenchyma [55]. Thus, vasoconstriction due to inverted 
neurovascular coupling can result in ischemic damage that may manifest as DCI. 
 This arteriolar vasoconstriction or “microspasm” has been well documented in animal models although 
only recently have molecular details emerged. Activation of smooth muscle cells and pericytes can result in 
microvascular constriction and patchy areas of hypoperfusion, which then may shunt blood away from areas and 
cause hyperperfusion in other regions [11]. This constriction may be a result of numerous vasoactive substances 
released following SAH that travel along the vasculature and reach smaller vessels, including alterations in the 
NO pathway, oxidative stress, cellular-adhesion molecules, and inflammation [54]. Nitric oxide in particular is an 
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attractive candidate for future studies as decreased bioavailability has been observed within minutes after SAH 
that persist up to 24 hours [54]. These changes in NO can be the result of decreased synthesis by the endothelial 
NO synthase (eNOS) or binding of NO by oxidative species and hemoglobin  [54].  
 At the level of the BBB, several alterations have been shown that promote cerebral edema and 
neuroinflammation. Changes in capillary morphology observed after SAH include luminal endothelial protrusion 
and swelling of astrocytic end feet that can compress the lumen of the vessel, constriction of pericytes, opening 
of tight junctions, and damage to basement membranes by matrix metalloproteinases (MMPs)  [54,60]. Many of 
these changes can be long lasting. Taken together, these alterations further support the notion that ischemic 
injury in the brain after SAH, both during EBI and thereafter, is not solely dependent on larger vessels but may 
be heavily influenced by impairments in the microvasculature as well.  
   
2) Microthrombosis 

Another novel mechanism under investigation for its role in DCI is the development of microscopic 
thrombi after SAH. Increased microthrombi can have detrimental effects on neurological function by creating 
corresponding areas of microinfarction throughout the brain. Many studies have shown alterations in both the 
coagulation and fibrinolytic cascades following SAH  [51,61]. Further, this may be closely related to arteriolar 
microspasm by creating a pro-coagulable environment [52]. Stasis and turbulence of blood flow are factors 
important in Virchow’s triad resulting in thrombosis, and along with endothelial dysfunction can follow arteriolar 
vasoconstriction. Further, nimodipine has been shown to affect fibrinolytic activity following SAH, potentially 
promoting the breakdown of microclots within the brain [62]. This may underlie the therapeutic mechanism of the 
drug along with its ability to reduce arteriolar vasoconstriction. 
 The first case study to observe microthrombosis in patients after SAH was done in autopsy studies in 
1983 [63], and since then additional experiments have been conducted in animal models and humans. Sabri et. 
al. showed that after SAH, mice had a higher burden of microthrombi-filled arterioles that correlated with arteriolar 
constriction, low NO, increased P-selectin, and neuronal apoptosis [64]. Microthrombi likely form in situ within 
microvessels following arteriolar vasoconstriction related to changes in NO, P-selectin, and shifts in other 
coagulation and fibrinolytic factors. The microthrombi observed are not merely emboli resulting from endothelial 
injury at the site of aneurysmal rupture as they are seen globally in both cerebral hemispheres  [64,65]. Further, 
the peak burden of microthrombi in these animals was shown to be consistent with the corresponding timing of 
DCI in humans [65]. In humans, microthrombi formation has been observed in both EBI and DCI, and higher 
levels of platelet activation correlate with the development of DCI in SAH patients  [66,67]. It is thus possible that 
the neurological deficits seen in DCI may be a result of microthrombosis, and indeed some studies have shown 
a relationship between microthrombi formation and long-term cognitive deficits commonly observed in SAH [68]. 
This relationship between microthrombosis and cognitive deficits warrants further study. 
 Alterations in both the coagulation and fibrinolysis cascades have been observed after SAH in both 
human and animal studies. Coagulation begins with the formation of a weak platelet plug. The coagulation 
cascade is a highly regulated series of reactions involved in hemostasis that results in the formation of thrombin, 
which cleaves soluble fibrinogen to form insoluble fibrin that seals the weak platelet plug. Alterations in molecules 
important in this cascade including platelet-activating factor, P-selectin, and overall platelet activity have been 
observed after SAH [61,67]. Further, alterations in von Willebrand Factor (vWF) and its cleaving factor 
ADAMTS13, known to be involved in other microthrombotic disorders such as thrombotic thrombocytopenic 
purpura (TTP), have been demonstrated after SAH [69]. These changes have resulted in efforts to target this 
system therapeutically; however, one of the limitations has been the lack of well-powered, randomized controlled 
trials [61]. For example, studies looking at aspirin and enoxaparin had negligible and contradictory results, 
respectively [61]. Some studies of the antithrombotic effects of statins have shown reductions in vasospasm but 
no reduction in the incidence of DCI or overall mortality while others have seen no change in the development 
of vasospasm  [70,71]. In animal models, some of these therapies, including the administration of ADAMTS13, 
have shown benefit which is reduced after SAH [72,73].  

At the level of the fibrinolytic cascade, conversion of plasminogen to active fibrin-cleaving plasmin is an 
important component in the breakdown of fibrin clots. Activators such as tissue plasminogen activator (tPA) and 
inhibitors such as plasminogen activator inhibitor-1 (PAI-1) are altered after SAH such that the balance is shifted 
toward reduced fibrinolysis [61]. Intracisternal administration of fibrinolytics such as urokinase or tPA show some 
efficacy at reducing clot burden, but there is conflicting evidence on its ability to reduce DCI and improve 
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functional outcome [74,75]. Larger randomized, double-blinded, placebo controlled trials will likely provide 
additional evidence as to the role of the coagulation and fibrinolytic cascades.  
 
3) Cortical Spreading Depolarizations (CSD) 
 CSDs were initially discovered by Leão in 1944 and have since been implicated in several pathological 
conditions, most notably migraine [76,77]. In fact, many of the observations initially done in migraine seem to 
share common features with that of stroke, suggesting a common underlying pathophysiology related to 
dysfunction in the cerebral vasculature [78]. CSDs are related to alterations in the microvasculature including 
arteriolar vasoconstriction and inverse neurovascular coupling [79]. This provides a link between some of the 
multiple potential mechanisms underlying DCI after SAH.  

CSD is defined as a slowly propagating wave of depolarization that spreads in all directions from a region 
of onset, is accompanied by a spreading depression of electrocorticographic (ECoG) activity, increased 
metabolic activity, and a significant disruption in ion homeostasis within and outside of cells [79,80]. This 
disruption can result in an osmotic imbalance that causes neuronal swelling, distortion of dendritic architecture, 
and release of large amounts of neurotransmitters. Shifts in the intracellular and extracellular ion concentration 
gradients lead to dysfunction between neighboring neuronal networks and an electrical silence within the brain 
until the period of spreading depression ceases [79]. Release of glutamate can additionally result in glutamate-

induced neurotoxicity by binding to N-methyl-D-aspartate (NMDA), -amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA), and kainate receptors, resulting in excessive stimulation and cell death.  

In addition to neurotransmitter-induced excitotoxicity, there are changes in local CBF related to CSDs. 
Conditions that induce brief periods of CSD can raise local CBF resulting in a spreading hyperemia [79]. After 
the rise in CBF, there is a period of spreading oligemia with decreased perfusion and poor neurovascular 
coupling [81]. Under pathological conditions that result in CSDs with a prolonged period of depression, this 
spreading oligemia is worsened and can lead to sustained hypoperfusion with inverse neurovascular coupling  
[79]. Arteriolar vasoconstriction following CSDs may further exacerbate the injury via hypoperfusion and 
development of a spreading ischemia.  

The first study to demonstrate the presence of CSDs after SAH occurred in 1980 in a cat model [82]. 
Over twenty years later, CSDs were demonstrated in human SAH patients by experiments done by Dreier et. al. 
in 2006 [83]. This prospective, multi-center study using ECoG not only observed CSDs in 72% (13 of 18) of 
patients, but showed that CSDs correlated strongly with the development of DCI and had high predictive values 
for DCI, especially those with progressively prolonged depression periods [83]. Since then, additional studies 
such as those of the influential Co-Operative Study on Brain Injury Depolarizations (COSBID) have shown CSDs 
in a majority of SAH patients, and that these can occur in the absence of angiographic vasospasm [84]. Some 
limitations to several of these studies include small patient sample sizes and lack of adequate control groups. It 
seems very likely that CSDs play a role in delayed injury after SAH, but whether they are a key mechanism or a 
byproduct of other alterations remains uncertain.  

Experiments in animal models have given rise to several hypotheses regarding the mechanisms 
underlying CSDs after SAH. Following aneurysmal rupture, there are decreased levels of glucose, NO, and 
oxygen along with increased levels of potassium and hemoglobin in the subarachnoid space [80]. These 
alterations can result in depolarization of neurons, with release of high concentrations of neurotransmitters and 
further shifts in ion homeostasis. One interesting and largely unexplored area is the relationship between CSDs 
and epileptogenesis, both of which are seen after SAH and may share certain features. CSDs and ictal epileptic 
events have been viewed as distinct entities, but have similar toxic effects including increased metabolic 
demand, inverse neurovascular coupling, and BBB dysfunction [85]. Case studies have additionally shown that 
a higher frequency of CSDs is associated with higher risk of developing epilepsy after SAH [85]. Further studies 
in both patients with SAH and animal models of SAH are needed to determine whether these events are truly 
related to one another. 

Given the high incidence of CSDs after SAH and their ability to predict the development of DCI, it is 
tempting to target CSDs pharmacologically in order to prevent DCI. Potential targets under investigation for 
reducing the frequency of CSDs include NMDA antagonists, GABA inhibition, anesthetics, the anticonvulsant 
topiramate, and calcitonin gene-related peptide (CGRP) antagonists [81,86-88]. Most of these therapies are 
undergoing preclinical testing in animal models and may show promise for application in SAH. 
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4) Neuroinflammation 
 Neuroinflammation within the CNS is an emerging concept in many neurological and psychiatric 
diseases. Historically, the CNS was viewed as “immune-privileged;” however, many studies over the last few 
decades have challenged that notion and have implicated the role of the immune system in both normal 
physiologic activity and during pathological conditions [89,90]. Following aneurysmal rupture in SAH, a robust 
inflammatory response ensues that some studies have correlated with both EBI and DCI [25,51,67,91]. Further, 
in a mouse model of SAH subjected to high-throughput screening, the most differentially expressed transcripts 
were genes involved in inflammation [92]. Many promising studies and potential pharmacologic interventions 
have emerged from animal models, and some have gone on to human clinical trials.  
 Clinical studies have focused on identifying markers in both the cerebrospinal fluid (CSF) and plasma in 
order to predict the occurrence of DCI [93-96]. These studies have looked at circulating inflammatory markers 
such as interleukin-6 (IL-6), C-reactive protein (CRP), interleukin-1 receptor (IL-1R) as well as hematologic 
factors such as leukocytosis and anemia. Most studies have shown a correlation between some of these factors, 
especially IL-6 and leukocytosis, and the occurrence of DCI and poor outcome [93,94]. Some limitations to these 
studies have been variation of markers within individuals and low specificity that limit translation to clinical 
practice, although larger, multi-center, randomized clinical studies are needed to further solidify the use of these 
lab values as predictors of DCI.  
 Inflammation within the CNS after SAH begins with arterial rupture, as blood enters the subarachnoid 
space and releases signals that promote an inflammatory response. Products normally found within erythrocytes 
such as hemoglobin are released into the subarachnoid space and can serve as damage-associated molecular 
patterns (DAMPs) recognized by innate immune cells [97]. Heme can be metabolized by heme oxygenase in 
immune cells and generate bioactive and pro-inflammatory compounds [98]. To prevent this damaging 
interaction, haptoglobin can bind hemoglobin and prevent its metabolism, and indeed some studies have shown 
that haptoglobin genotypes may play a role in brain injury [99]. Heme and other similar red blood cell (RBC) 
degradation products can then bind to pattern recognition receptors (PRRs) found on innate immune cells, and 
in particular microglia, the resident immune cells of the brain. One such PRR is Toll-like receptor 4 (TLR4), which 
has been correlated to the development of DCI and poor outcome [97,100]. Another DAMP currently under 
investigation for its role in DCI and vasospasm is the high mobility group box-1 (HMGB1) protein that is released 
by necrotic cells and activated immune cells after SAH [101]. These molecules play an important role in activating 
inflammatory responses in the brain. 

Studies investigating the role of microglia after SAH have found a highly significant role in DCI. Schneider 
et. al. showed that microglia play a prominent role as the major inflammatory cell in the brain after SAH and 
depletion of these cells reduces neuronal cell death [102]. The presence of microglia and neuroinflammation 
appears long-lasting as studies have shown their presence within the brain in experimental models as far as day 
21 and that it is associated with gray and white matter damage and sensorimotor impairment [103]. Activated 
microglia have been observed in both cerebral hemispheres following SAH, although are more prominent on the 
side of initial injury [103]. Experimental depletion of microglia also resulted in a reduction of vasospasm and 
neuronal apoptosis in mice [104]. This occurs via a TLR4-dependent pathway and results in activation of the 

MyD88, TRIF, MAPK, and NF-B signal transduction pathways all involved in the transcription of pro-
inflammatory genes [97,104]. An important consideration in studying microglia is the dual role they have in CNS 
damage and neuroprotection. Similar to macrophages in the periphery, microglia can be polarized to pro-
inflammatory (M1) or anti-inflammatory (M2) phenotypes, a continuum between these two phenotypes likely 
exists [105]. Microglial polarization and its time course will be important to further elucidate their complex role in 
post-SAH pathophysiology.  

While microglia play a prominent role as the resident immune cells of the CNS, many other factors work 
in conjunction to set up a robust inflammatory response after SAH. Increased expression of cellular adhesion 
molecules such as ICAM-1 and extracellular matrix remodeling proteins such as MMP-9 can contribute to 
increased permeability and breakdown of the BBB [97,106]. Peripheral immune cells including neutrophils, 
monocytes/macrophages, and lymphocytes can then transmigrate across the BBB and gain access to the 
subarachnoid space and brain parenchyma. Neutrophils and macrophages have been observed in some studies 
to enter the subarachnoid space hours after SAH and can further promote inflammation [107]. Other studies 
have shown that neutrophils in particular do not directly invade the subarachnoid space, but through secretion 
of cytokines can influence the immune response in the CNS [108]. Indeed, depletion of neutrophils resulted in a 
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reduction in tissue inflammation, vasospasm, and long-term potentiation (LTP) dysfunction in mouse models  
[108]. It is clear that the complex interplay between various immune cells warrants further study, in particular 
focusing on the predominant immune cells over time and the cytokines they produce.  

Understanding the prominent immune cell populations that contribute to acute and chronic 
neuroinflammation will be helpful in elucidating novel therapeutic targets that either prevent or treat DCI. Some 
exciting new targets under study in preclinical rodent models are listed in Table 2 [109-114]. We have focused 
on the therapeutic potential of fingolimod (FTY720) in the treatment of SAH and other forms of stroke as it is 
already FDA-approved and is well tolerated [114,115]. Additional studies are needed, especially over a longer 
period of time after the initial injury to determine the effect of these potential interventions on DCI and other long-
term impairments after SAH.   

 
Table 2. Examples of anti-inflammatory targets under development in preclinical models of experimental SAH. 

Target Drug/Molecule Outcomes Reference 

MAPK 
U0126 (MEK1/2 

inhibitor) 

Prevented upregulation of cytokines and MMP-9 
in cerebral vessels, improved neurological 
outcome [99] 

mTOR 
Rapamycin or 

AZD8055 

Reduced microglial activation, promoted M2 
phenotype polarization, reduced neuronal 
apoptosis, necrosis, brain edema and BBB 
permeability  [100] 

Mincle/Syk Albumin 

Reduced microglial activation and M1 
polarization, decreased MPO, ICAM-1 and 
chemokines involved in neutrophil invasion [101] 

PARP PJ34 

Reduced BBB permeability, brain edema, neuronal 
cell death, improved neurological function, 
decreased expression of MMP-9 and pro-
inflammatory cytokines [102] 

RAGE FPS-ZM1 

Reduced neuroinflammation and brain edema, 
improved neurological function at day 1 but not at 
day 3; also sensitized neurons towards cell death [103] 

S1PR 
FTY720 

(Fingolimod) 

Reduced intravascular leukocyte adhesion to pial 
venules, preserved pial arteriolar reactivity, 
improved neurological outcome [104] 

Abbreviations: MAPK (mitogen-activated protein kinase); mTOR (mechanistic target of rapamycin); Mincle (microglia macrophage-inducible C-type lectin); Syk 

(spleen tyrosine kinase); PARP (poly(ADP-ribose) polymerase); RAGE (receptor for advanced glycation endproducts); S1PR (sphingosine 1-phosphate receptor) 

 
Some anti-inflammatory drugs have been studied clinically, often with conflicting results or low power due 

to small patient sample sizes. Examples of either anti-inflammatory or immunomodulatory agents studied in SAH 
patients have included NSAIDs, thromboxane inhibitors, corticosteroids, methylprednisolone, cyclosporine A, 
complement inhibitors, statins, and monoclonal antibodies targeting cytokine receptors or cellular adhesion 
molecules [25,51,116,117]. While some of these drugs failed to demonstrate efficacy, some have shown promise 
and warrant continued study. For example, despite a small number of patients, IL-1R antagonist (IL-1Ra) in both 
intravenous and subcutaneous forms appears safe in SAH patients and there was a reduction in CSF and plasma 
concentrations of IL-6 [117,118]. While some of these interventions have shown no efficacy, those that have 
shown promise further support the notion that neuroinflammation plays a role in DCI after SAH. 

 
Future Directions and Conclusions 
 DCI is common after SAH and considered to be the main contributor to long-term poor functional 
outcome. Cerebral vasospasm was long viewed as the principal contributor to DCI; however, recent studies have 
challenged this notion. Microarteriolar dysfunction, microthrombosis, CSDs, and neuroinflammation are 
promising candidates with preclinical and clinical evidence supporting their role in this multifactorial disease 
process. It is also possible that these mechanisms are connected to one another and thus not entirely 
independent. Microvascular vasoconstriction within the CNS parenchyma supports a pro-thrombotic 
environment, while CSDs can impair neurovascular coupling to induce vasoconstriction instead of vasodilation 
[52,79]. New roles of microglia in the pathogenesis and regulation of CSDs have also been suggested. Activated 
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microglia may be capable of both sensing and inducing CSDs, further exacerbating the injury by contributing to 
imbalances in ion homeostasis and synaptic pruning [119]. Another exciting area that warrants further 
investigation is disturbances in the flow of CSF and clearance of waste products through both the glymphatic 
system and recently discovered meningeal lymphatic system [120-124]. It is likely that these distinct systems are 
altered following SAH and their impairment may further contribute to DCI. While each of these mechanisms 
requires further study to elucidate their contribution, it is possible that drugs targeting more than one of these 
mechanisms may be more beneficial in preventing DCI and improving long-term outcomes.   
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