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Abstract

Sepsis remains one of the leading causes of death in burn patients who survive the initial
insult of injury. Disruption of the intestinal epithelial barrier has been shown after burn injury;
this can lead to the translocation of bacteria or their products (e.g., endotoxin) from the
intestinal lumen to the circulation, thereby increasing the risk for sepsis in immunocompro-
mised individuals. Since the maintenance of the epithelial barrier is largely dependent on
the intestinal microbiota, we examined the diversity of the intestinal microbiome of severely
burned patients and a controlled mouse model of burn injury. We show that burn injury
induces a dramatic dysbiosis of the intestinal microbiome of both humans and mice and
allows for similar overgrowths of Gram-negative aerobic bacteria. Furthermore, we show
that the bacteria increasing in abundance have the potential to translocate to extra-intestinal
sites. This study provides an insight into how the diversity of the intestinal microbiome
changes after burn injury and some of the consequences these gut bacteria can have in the
host.

Introduction

The gastrointestinal tract contains over 100 trillion microbes, termed the microbiota, that pro-
vide numerous benefits for the host such as metabolism and de novo synthesis of nutrients,
protection against pathogenic microbes, and immune development and function [1]. Feedback
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between these organisms and the immune system is necessary for establishing tolerance along
mucosal surfaces and maintaining the gut epithelial barrier [2]. Dysbiosis of the healthy intesti-
nal microbiome is associated with numerous disease states: inflammatory bowel disease (IBD),
autism, obesity, rheumatoid arthritis, and diabetes [3]. In IBD, it is suggested that alterations of
the healthy microbiome activate the mucosal immune response, which increases intestinal per-
meability and allows for the translocation of microbes or microbial products into the circula-
tion, thereby adversely impacting the host [4].

Sepsis is the leading cause of death in patients that suffer from severe trauma. It is hypothe-
sized that sepsis stems from bacterial infections, toxins, or metabolic products that activate pat-
tern recognition receptors and lead to a systemic inflammatory response in
immunocompromised individuals [5]. Conversely, the healthy intestinal microbiome acts as a
physiological microbial barrier which keeps commensal opportunistic pathogens in check by
resisting microbial colonization. Therefore, it is important to understand how this microbiome
is altered following injury and the role these commensal bacteria play in potentiating gut bar-
rier dysfunction, bacterial translocation, and ultimately sepsis after injury.

Burn injury is one of the most common forms of trauma, and in patients with severe burns,
75% of all deaths are related to sepsis or infectious complications arising from injury [6]. Fol-
lowing insult, there is an immediate systemic inflammatory response that spreads throughout
the body and affects secondary organs [7]. In addition to the skin, there is reported inflamma-
tion in the lungs, liver, and intestines after burn [8]. In the context of the gut, previous research
has shown that burn injury leads to a mesenteric vasoconstriction and produces a hypoxic
environment for the gut [9]. Subsequent, reperfusion of blood to the tissue produces drastic
fluctuations of oxygen levels exacerbating cell stress, cell death, and ultimately leading to a
breakdown of the epithelial barrier marked by increased intestinal permeability and bacterial
translocation to mesenteric lymph nodes (MLN) [10]. The translocation of bacteria from the
gut to MLN has been previously shown to correlate with sepsis [11]. Furthermore, there are
numerous studies which suggest that Gram-negative bacterial infections play an important role
in potentiating sepsis [12,13].

Therefore, we asked whether burn injury alters the homeostatic environment of the gut
which allows for changes in the intestinal microbiome that favors the overgrowth of Gram-
negative aerobic bacteria. This overgrowth of gut bacteria in combination with increased intes-
tinal permeability may allow for the translocation of these bacteria to extra-intestinal sites
increasing the risk of bacterial infections and predisposing patients to sepsis.

Materials and Methods
Ethics Statement

Patient Samples. Loyola University Chicago Health Sciences Division Institutional Review
Board (IRB) approved these studies and informed written consent was obtained from all sub-
jects (burn patients and controls) except burn patients with Fecal Management System (FMS).
Samples from burn patients with FMS did not require a consent as the IRB waived the need for
consent from the group of patients with FMS and all patient data was de-identified prior to
analysis.

Feces samples were obtained from 4 burn patients admitted to Loyola University Medical
Center Maywood, IL from December 2010 to November 2011; these patients sustained 25%,
32%, 44%, and 57% total body surface area (TBSA) burns, and samples were obtained 5-17
days post injury. The median age of burn patients is 49 + 9.7 and it ranges from 36 to 59 years.
There were one female and three males among burn patients included in this study. A fecal
management system routinely emplaced for burned patients, was used to collect fecal samples.
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Patients were selected who met the following criteria: adult male or female over 18 years of age
who sustained full thickness burn injury >20% TBSA, and without pre-existing clinical infec-
tions, historical evidence of gastrointestinal diseases such as Ulcerative Colitis, Crohn’s disease,
or Celiacs disease, historical evidence of gastrointestinal Clostridium difficile infection, no anti-
biotic use (other than surgical prophylaxis), without peritonitis, AIDS, immune suppressing
medications, or metastasized cancer.

Control Group. Patients with physiologically insignificant burns, i.e. superficial burns less
than 10% of total body surface area (TBSA) were designated as controls. The median age of
control group population is 39.6 + 16.84 years and it ranges from 23 to 74 years. The average
surface area of control population is 4.77 + 2.44 which ranges from 1-8% TBSA. Control popu-
lation include one female and seven males. A single fecal sample was obtained from 8 control
patients and used as controls for comparison to those with significant burn injury. These
patients did not require the use of a FMS. These patients were also subject to the above inclu-
sion and exclusion criteria.

Animals. Male C57BL/6 mice, 8-9 week old, weighing 22-25 g, were obtained from
Charles River Laboratories. All experiments were conducted in accordance with the guidelines
set forth by the Animal Welfare Act and were approved by the Institution Animal Care and
Use Committee at the Loyola University Chicago Health Sciences Division. The identification
number assigned to our animal care and use protocol is IACUC 2012067. The animals were
euthanized by CO, asphyxiation.

Burn Injury Procedure

Mice were anesthetized with xylazine (80 mg/Kg) and ketamine (1.25 mg/Kg) cocktail and
their dorsal surface shaved. Anesthetized mice were placed in a template exposing ~20% TBSA
as calculated by the Meeh formula [14]. The mice were divided into two treatment groups,
those receiving burn injuries or sham injuries. The burn group was then submerged in a water
bath set to ~85°C for ~9 seconds while the sham group was submerged in a water bath set to
37°C. Following burn or sham procedures, all animals were resuscitated with 1ml of saline i.p.
This procedure models a ~20% TBSA full thickness third degree burn and an ~15-20% mortal-
ity within 24-48 hours after injury. The burn injury procedure described in this proposal is
widely used in many previous studies [15-17] and is performed under full anesthesia and has
been histologically proven to incur a full thickness, insensate lesion [18]. The entire thickness
of the dermis, including peripheral sensory endings, is destroyed [18]. The health of the mice is
monitored constantly for four hours after the procedure to ensure that they wake up from the
anesthesia. Mice are then returned to the animal care facility and given food and water ad libi-
tum; and are monitored for any postoperative complications twice a day until the experiment
is completed. Humane endpoints were considered based on overt signs and symptoms of sepsis
(piloerection, squeaking, sensitive to touch, tearing). No animals met this criteria, therefore no
animals were euthanized prior to experimental endpoints (one or three days post burn) in this
study. 10/66 mice died following burn injury before they were observed to exhibit these signs
of sepsis. Mice were sacrificed on days one and three following injury.

DNA and RNA Purification

One and three days after injury, the intestines of the mice were surgically removed, opened,
and luminal contents were collected from the distal 5cm of the small intestine and the whole
large intestine from the cecum. RNA was purified from this region of the small and large intes-
tine tissue using RNeasy Mini Kit in combination with DNase digestion, according to the man-
ufacturer’s protocol (Qiagen, Valencia, CA, USA). For the human patient samples, the FMS
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was used to flush the bowel and collect feces from the burn patients. Control patients defecated
normally and samples from this group were directly collected into sterilized cups. Genomic
bacterial DNA was purified from mouse and human fecal samples using the Qiagen DNA
Stool Mini Kit with an initial brief sonication step in lysis buffer ASL and a high temperature
95°C incubation step to improve bacterial cell lysis.

Microbial Community Structure Analysis

Genomic DNA (gDNA) from the feces of the small and large intestine of mice, and human
stool samples was PCR amplified and prepared for next-generation sequencing (NGS) using a
modified two-step targeted amplicon sequencing approach, similar to that described previously
[19,20]. Genomic DNA was initially amplified with primers 27F and 534R (17), targeting the
V1-V3 variable regions of Bacterial small subunit (SSU) ribosomal RNA (rRNA) genes. The
primers contained 5" common sequence tags (known as common sequence 1 and 2, CS1 and
CS2) as described previously [21]. The forward primer, CS1_27YF (ACACTGACGACATG
GTTCTACA AGAGTTTGATCCTGGCTCAG) and CS2_534R (TACGGTAGCAGAGACTT
GGTCT ATTACCGCGGCTGCTGG) were synthesized by Integrated DNA Technologies
(IDT; Coralville, Iowa) as standard oligonucleotides. Common sequences are underlined. PCR
reactions were performed according to the Human Microbiome Project (HMP) 16S 454

sequencing protocol [22], with some modifications. PCR amplifications were performed in 10
microliter reactions in 96-well plates. A mastermix for the entire plate was made using the 2X
AccuPrime SuperMix II (Life Technologies, Gaithersburg, MD). The final concentration of
primers was 500 nM. From 10-50 ng of genomic DNA was added to each PCR reaction.
Cycling conditions were as follows: 95°C for 5 minutes, followed by 28 cycles of 95°C for 307,
56°C for 30” and 68°C for 5’. A final, 7 minute elongation step was performed at 68°C. Reac-
tions were verified to contain visible amplification using agarose gel electrophoresis, in addition
to no visible amplification in the no-template control prior to the second stage of PCR
amplification.

A second PCR amplification was performed in 10 microliter reactions in a 96-well plate to
incorporate Illumina sequencing adapters and sample-specific barcodes into amplicon pools. A
mastermix for the entire plate was made using the 2X AccuPrime SuperMix II. Each well
received a separate primer pair, obtained from the Access Array Barcode Library for Illumina
Sequencers. The final concentration of each primer concentration was 400 nM, and each well
received a separate primer set with a unique 10-base barcode (Fluidigm, South San Francisco,
CA; Item# 100-4876). Separate reactions with unique barcodes were included for positive con-
trol, no-template control (reaction 1) and a second no-template control reaction containing
only Access Array Barcode library primers. Cycling conditions were as follows: 95°C for 5 min-
utes, followed by 8 cycles of 95°C for 30”, 60°C for 30” and 68°C for 30”. A final, 7 minute elon-
gation step was performed at 68°C. PCR yield of positive and negative controls and select
samples were validated with Qubit fluorometric quantitation with the Qubit 2.0 fluorometer
(Life Technologies) and with size and quantification employing an Agilent TapeStation2200
device with D1000 ScreenTape (Agilent Technologies, Santa Clara, California). After assessing
no amplification in the negative controls, samples were pooled in equal volume and purified
using solid phase reversible immobilization (SPRI) cleanup, implemented with AMPure XP
beads at a ratio of 0.6X (v:v) SPRI solution to sample. This ratio removes DNA fragments
shorter than 300 bp from the pooled libraries. Final quality control was performed using
TapeStation2200 and Qubit analysis, prior to dilution to 4 pM for sequencing on an Illumina
MiSeq. The pool was loaded on a MiSeq v3 flow cell at a concentration of 5.5pM and sequenced
in 2x300bp paired end format using a 600 cycle MiSeq v3 reagent cartridge. Library preparation
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was performed at the DNA services (DNAS) facility, within the Research Resources Center
(RRC) at the University of Illinois at Chicago (UIC). Library sequencing was performed at the
Michigan State University (MSU) Research Technology Support Facility (RTSF).

Raw sequence data were imported into the software package CLC genomics workbench
(v7.0; CLC Bio, Qiagen, Boston, MA). Sequences were quality trimmed (Q20) and reads shorter
than 200 bases were removed. Due to amplicon size and quality trimming, forward and reverse
reads could not be consistently merged. Therefore, only the forward read was used for commu-
nity analyses. The trimmed sequences were exported as FASTA files. Subsequently, FASTA
files were processed through the software package QIIME. Briefly, sequences were screened for
chimeras using the usearché61 algorithm [23], and putative chimeric sequences were removed
from the dataset. Subsequently, each sample sequence set was sub-sampled to the smallest sam-
ple size to avoid analytical issues associated with variable library size [24]. Sub-sampled data
were pooled and renamed, and clustered into operational taxonomic units (OTU) at 97% simi-
larity. Representative sequences from each OTU were extracted, and these sequences were clas-
sified using the “assign_taxonomy” algorithm implementing the RDP classifier, with the
Greengenes reference OTU build [25,26]. A biological observation matrix (BIOM; [27]) was gen-
erated at taxonomic levels from phylum to genus using the “make_OTU_table” algorithm. The
BIOMs were imported into the software package Primer6 for statistical analysis and visualization
using group-average clustering, non-metric multidimensional scaling (NMDS), and analysis of
similarity (ANOSIM), as described previously[28,29]. Differences in the relative abundance of
individual taxa between a priori defined groups (e.g., control and burn patients) were tested for
significance using the “group_significance” algorithm, implemented within QIIME. Tests were
performed using the non-parametric Kruskal-Wallis one-way analysis of variance, generating a
Benjamini-Hochberg false-discovery rate (FDR) corrected p-value. Taxa with an average abun-
dance of <1% across the entire sample set were removed from such analyses.

Quantitative Analyses of Fecal Microbiome

Real time quantitative PCR (qPCR) was used to quantify bacterial SSU (16S) rRNA gene abun-
dance, as described previously [30]. Primer sets targeting SSU rRNA genes of microorganisms
at the domain level (i.e., Bacteria) and at the family level (i.e., Enterobacteriaceae) were used.
Primers included 340F (ACTCCTACGGGAGGCAGCAGT) and 514R (ATTACCGCGG
CTGCTGGC) for domain-level analyses and 515F (GTGCCAGCMGCCGCGGTAA) and
826R (GCCTCAAGGGCACAACCTCCAAG) for Enterobacteriaceae analyses. Primers were
synthesized by Invitrogen. PCR master mixes contained 1X iTaq Universal SYBR Green
Supermix (Bio-rad), and 300 nM forward and reverse primers. For standards, 10-fold dilutions
were made from purified genomic DNA from reference bacteria as described previously [30].
Reactions were run at 95°C for 3’, followed by 40 cycles of 95°C for 15” and a 63°C (Bacteria)
or 67°C (Enterobacteriaceae) for 60”. Reactions were performed using a Step One Plus gPCR
instrument (Applied Biosystems).

Histology

Small, 3-5mm sections of tissue were taken from the ileocecal wall and fixed in Carnoy solu-
tion overnight. Paraffin blocks were prepared by the Loyola University health Sciences Divi-
sion Processing Core, 5 pm sections were cut, and 1 slide from each animal was H&E stained
for tissue pathology. The procedure for fluorescent in-situ hybridization staining was per-
formed as described previously with minor adjustments [31]. Slides were deparaffinized,
dried, and incubated with the indicated probes at a final concentration of 1ng/pl in hybridiza-
tion buffer (0.9M NaCl, 20mMTris-HCL, pH 7.5, 0.1% SDS) and left to incubate overnight at
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50°C in a dark, humidified, Tupperware container. The probe sequences were as follows and
purchased from Invitrogen[30,32-35]: Universal bacterial probe EUB338: Alexa 555 5’-GC
TGCCTCCCGTAGGAGT -3’ Enterobacteriaceae probe ENTBAC 183: Alexa 488 5’-CT
CTTTGGTCTTGCGACG -3’ Following the incubation, the slides were washed 3x for 15min.
in prewarmed wash buffer (0.9M NaCl, 20mMTris-HCL, pH 7.5,0.1% SDS) at 50°C. The
slides were air dried, counterstained, and mounted using ProLong Gold Antifade Reagent
with DAPI (Molecular Probes). The sections were imaged using a Zeiss Axiovert 200m fluo-
rescent microscope and images were processed using Axiovision software.

Intestinal Permeability

One day after the burn or sham injury procedure the mice were gavaged with 0.4 ml of 22 mg/
ml FITC-dextran in PBS. After 3 hours, blood was drawn and the mice were sacrificed. The
blood was centrifuged to collect the plasma, and read spectrophotometrically at 480 nm excita-
tion and 520 nm emission wavelengths. The concentration of FITC-dextran in the plasma was
determined by relating its absorbance to a standard curve of known FITC-dextran
concentrations.

Intestinal Expression of Claudin 4, and 8. RNA from the distal small intestine tissue and
large intestine was purified as described above and reverse transcribed to cDNA using High
Capacity cDNA Reverse Transcription Kit (Life Technologies). Expression levels of claudin 4,
and 8 were quantified by qPCR using TagMan primer probes and Taqman Fast Advanced
Master Mix (Life Technologies) and ACt calculations were conducted using the endogenous
control gene Gapdh.

Cultivation of Micro-organisms. The mesenteric lymph nodes were aseptically removed,
weighed, and homogenized in PBS to achieve a 50 mg/ml (MLN- wt/vol) concentration. Equal
amounts of homogenate were plated on Tryptic soy agar plates with 5% sheep blood, and Mac-
Conkey agar to grow total and Gram-negative bacteria respectively. The plates were cultured
aerobically in a 37°C incubator with 5% CO, for 24 hours.

Statistical Analysis

Data are expressed as mean =+ standard error of the mean (SEM). Differences between groups
were determined by ANOVA with Tukey’s post hoc test or Student’s t-test using GraphPad
InStat. P<0.05 was considered statistically significant.

Data Access

The amplicon sequence data from this study have been submitted to the NCBI Sequence Read
Archive (SRA; http://www.ncbinlm.nih.gov/Traces/sra/sra.cgi) under the BioProject
(PRJNA273295) accession number SRP052710. Sequences derived from mice were uploaded
as two independent FASTQ files representing forward and reverse reads from each sample. In
sequences derived from human feces, sequence reads were imported into the software package
CLC genomics workbench and mapped against the Hg19 human genome reference. Reads
mapping to the human genome (<0.05%) were removed from the dataset, and single FASTQ
files, containing both forward and reverse reads were provided to the SRA.

Results
Burn Injury and the Structure of the Human Intestinal Microbiome

To examine the structure of the intestinal microbiome after burn injury, deep sequencing of
bacterial SSU rRNA genes (V1-V3 region) was performed, using a PCR-NGS approach. A
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Fig 1. Effects of Burn Injury on Human Gut Microbiome. The non-metric multidimensional scaling
(NMDS) plot (A) demonstrates the effect of burn injury on the overall human fecal microbial community
structure, as assessed by bacterial ribosomal RNA gene amplicon sequencing. The NMDS plot is based on
sample-standardized and log transformed abundance data. The NMDS plot and the hierarchical cluster
overlay are based on a resemblance matrix calculated using Bray-Curtis similarity. The 2D stress value was
0.10. Fecal samples were taken from eight control patients and from four burn injury patients and analyzed at
different time points (days after injury), as indicated in the figure. The most abundant bacterial families in
control patients and burn patients are indicated in pie charts (B), and taxa which were significantly different by
Kruskal-Wallis one-way analysis of variance (*,FDR-P <0.05). A box-plot of the distribution of the ratio of
rRNA genes from Enterobacteraceae to total bacterial rRNA genes in control and burn patients measured by
gPCR is shown (C), and the ratio of each individual is shown adjacent to the box-plot. A statistically significant
effect of burn injury was observed (two-tailed t-test ***, p< 0.0001).

25%, 12d

doi:10.1371/journal.pone.0129996.g001

minimum of 40,000 raw sequences was generated per sample. After chimera removal and sub-
sampling, a biological observation matrix (BIOM) was generated using 25,000 sequences per
sample. The fecal microbial community structure of control and burn injury patients was ana-
lyzed, and revealed a substantial and significant effect of burn injury (Fig 1). An analysis of
similarity (ANOSIM) demonstrated a significant difference between control and burn injury
patients (Global R = 0.632; p = 0.2%, 999 permutations; control (N = 8 individuals and 8 total
samples) and burn injury patients (N = 4 individuals and 10 total samples)). Fecal microbial
community richness at the family level was significantly higher for control patients relative to
burn injury patients (an average of 32.63 families vs 27.60 families; p<0.02, two-tailed TTEST,
unequal variance); no other calculated indices were significantly different (i.e. Pielou’s evenness
or Shannon index) (S1 and S2 Tables).

The gut microbial communities of control patients clustered together, and were divergent
from all fecal samples of burn injury patients, regardless of sampling times. The two patients
with the greatest TBSA had the most similar microbial community structure, regardless of
sampling time, with Bray-Curtis similarity of >60% (Fig 1). Initially, the two patients with
lower TBSA had distinct fecal microbial communities from those of patients with 44 and 57%
TBSA. However, 11 days after injury, the fecal microbiome of the patient with 32% TBSA
shifted towards those of the patients with 44% and 57% TBSA (Fig 1). The patients with 32%,
44%, and 57% TBSA died from sepsis, while the patient with 25% TBSA survived. Fecal micro-
bial communities of control patients were dominated by bacteria from the families Bacteroida-
ceae, Lachnospiraceae, and Ruminococcaceae (Fig 1B), confirming earlier reports of the
dominant intestinal bacteria [36-38]. The fecal microbiome of burn patients was significantly
different from those of control individuals, and bacteria from the families Bacteroidaceae,
Enterobacteriaceae, and Lachnospiraceae were the most abundant taxa in the fecal microbiome
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Table 1. Significant Effects of Burn Injury on Gut Microbial Community Structure.

FDR_P Group 1 mean Group 2 mean
Control vs Burn (Human) Control Burn
Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f _Bacteroidaceae 0.004 40.3% 19.3%
Firmicutes;c__Clostridia;o__Clostridiales;f_ 0.008 4.4% 0.8%
Firmicutes;c__Clostridia;o__Clostridiales;f__Clostridiaceae 0.008 0.4% 0.1%
Firmicutes;c__ Clostridia;o__Clostridiales;f__Ruminococcaceae 0.004 17.5% 1.8%
Firmicutes;c__ Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae 0.007 3.3% 0.4%
Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae 0.004 0.5% 31.9%
Unassigned 0.016 0.6% 0.4%
Small intestine (SI) Sham vs SI_Burn-1day (Mouse) SI_sham SI_B1
Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f _Bacteroidaceae 0.049 0.3% 5.8%
Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Porphyromonadaceae 0.049 0.1% 1.7%
Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f S24-7 0.045 52.0% 20.2%
Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae 0.045 0.1% 23.8%
Unassigned 0.045 8.9% 2.4%
Large intestine (LI) sham vs LI Burn-1day (Mouse) LI_sham LI_B1
Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae 0.034 2.9% 10.7%
Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Porphyromonadaceae 0.034 1.5% 3.9%
Firmicutes;c__ Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae 0.049 0.1% 0.8%
Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Alcaligenaceae 0.034 0.1% 0.3%
Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae 0.034 0.0% 0.6%

SI_Sham vs SI_Burn-3d (Mouse)
SI_Burn-1d vs SI_Burn-3d vs (Mouse)
LI_Sham vs LI_Burn-3d (Mouse)
Ll_Burn-1d vs LI_Burn-3d (Mouse)

doi:10.1371/journal.pone.0129996.t001

No significantly differently abundant taxa
No significantly differently abundant taxa
No significantly differently abundant taxa
No significantly differently abundant taxa

of burn injury patients (Fig 1B). Dramatic and significant differences in the relative abundance
of these families were observed in fecal microbiome of control and burn patients (Table 1). In
particular, the relative average abundance of bacteria from the family Enterobacteriaceae was
higher in burn injury patients relative to control patients (average 31.9% to 0.5%). Conversely,
significant decreases in the relative abundance of bacteria from the families Bacteroidaceae,
and Ruminococcaceae were observed (Fig 1B; Table 1).

The dramatic increase in the relative abundance of bacteria from the family Enterobacteria-
ceae was confirmed using quantitative PCR. Quantitative analyses of 16S rRNA genes of Enter-
obacteriaceae revealed a 37-fold increase in the relative abundance of Enterobacteriaceae in
teces from burn injury patients relative to those from control patients (Fig 1C). Most, but not
all the sequences assigned to the family Enterobacteriaceae could not be classified to the level
of genus; however, bacteria from the genera Citrobacter, Enterobacter, Erwinia, Escherichia,
Klebsiella, Proteus, Serratia, and Trabulsiella were detected. The most abundant taxon (OTU)
detected in burn patients had a 16S rRNA gene sequence that was highly similar (>99.5%; 279/
280 matching bases) to that of the adherent invasive E. coli strain O83:H1. The representative
gene sequence of this taxon was 100% identical to a number of strains of bacteria from the gen-
era Enterobacter and Escherichia. This single taxon represented nearly 60% of all Enterobacter-
iaceae sequences recovered in all samples.
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Fig 2. Burn Injury Alters the Mouse Intestinal Microbiome. The non-metric multidimensional scaling
(NMDS) plot (A) demonstrates the differences in microbial community structure as a result of burn injury, time
since burn injury, and sampling from small and large intestine in a mouse experimental model system of five
animals per group. Box-plots of the distribution of the ratio of rRNA genes from Enterobacteriaceae to total
bacterial rRNA genes in sham and burn animals, calculated by gPCR, are shown for small and large
intestines, one and three days post-burn injury (B). A statistically significant effect of burn injury was observed
between sham and one-day burn injury mice in the small intestine (n = 9 sham, 7 burn mice, two-tailed t-test
** p<0.01), and between one-day and three-day burn injury mice (n = 9 sham, 8 burn mice, two-tailed t-test
*, p<0.05). A statistically significant effect of burn injury was observed for the large intestine between one-
day and three-day burn injury mice (n = 8 animals per group, two-tailed t-test *, p< 0.05). The most abundant
bacterial families in sham and burn injury mice (small intestine) are indicated in pie charts (C), and taxa which
were significantly different by Kruskal-Wallis one-way analysis of variance (*, FDR-P <0.05).

doi:10.1371/journal.pone.0129996.9002

The Effect of Burn Injury on the Mouse Intestinal Microbiome

The effect of burn injury on the gut microbial community was examined in a mouse model
experimental system. These studies were performed to determine if (a) the shift in gut micro-
bial community structure in human patients was reproducible in mice; (b) determine if similar
microorganisms developed in the gut of burn injury mice as in humans; and (c) determine if
differences in community structure were observed in multiple locations in the gastrointestinal
tract. Microbial community structure was assessed in the large and small intestines of mice,
one and three days after burn or sham burn treatment. Genomic DNA extracts were processed
as described for human fecal samples, and a biological observation matrix (BIOM) was gener-
ated using 25,000 sequences per sample (Fig 2). Significant differences in microbial community
structure between large and small intestine were observed, independent of treatment or date
(ANOSIM, Global R = 0.619, p<0.002, 999 permutations). The effect of burn injury on the
microbial community structure in the large intestine was smaller than that in the small intes-
tine. Nonetheless, a moderate, but not significant shift, was observed in large intestine samples
(ANOSIM, Global R = 0.218, p = 0.059, 999 permutations) across all time points. When sam-
ples from only the first day post-burn were considered, a significant effect was observed (ANO-
SIM, Global R = 0.872, p = 0.008, 126 permutations). A similar effect was observed in the small
intestine samples (ANOSIM, Global R = 0.265, p = 0.02, 999 permutations), particularly when
only sham and day 1 samples were compared (Global R = 0.672, p = 0.008, 126 permutations).
No significant differences in any calculated diversity index was observed between the small
intestine microbiomes of no burn injury (sham) and burn injury mice (S1 and S2 Tables). In
the large intestine microbiome, the evenness and diversity of the burn injury mice at 1 day was
slightly, but significantly, different than that of sham mice or burn injury mice at 3 days (e.g.

PLOS ONE | DOI:10.1371/journal.pone.0129996 July 8, 2015 9/16



@’PLOS ‘ ONE

Gut Microbiome in Burn Injury

Shannon index of 2.32 vs 2.13 or 2.10; p<0.004; two-tailed TTEST, unequal variance; S1 and
S2 Tables).

The relative abundance of bacteria from the family Enterobacteriaceae in the gut of mice
experiencing burn injury substantially increased one day after burn injury, relative to the sham
control, and on average decreased three days after burn injury (Fig 2). The effect was significant
in the microbial communities from the small intestine after one day (Fig 2; Table 1). In the
small and large intestine, the relative abundance of Enterobacteriaceae decreased significantly
from day one to day three, but was not significantly different at day three from the sham (Fig 2;
Table 1). In addition, the relative abundance of other microbial families was significantly
altered between treatments and time points. For example, in the analysis of small intestine
microbial communities, the average relative abundance of SSU rRNA genes of bacteria from
the “S24-7” group of the Bacteroidales and bacteria from the family Bacteroidaceae was signifi-
cantly lower in burn injury mice at one day (Fig 2; Table 1).

The effect of burn injury on the microbial community in the large intestine was different
than that observed for small intestine (Fig 2). The abundance of bacteria from the family Enter-
obacteriaceae was generally much lower in the large intestine than in the small intestine (on
average, less than 1% of all bacterial sequences), regardless of condition (Table 1). Nonetheless,
shifts in the relative abundance of bacteria from the family Enterobacteriaceae were observed,
and the effect was significant by sequence analysis, though not by qPCR (Fig 2; Table 1). The
average relative abundance of bacteria from the family Bacteroidaceae, Porphyromonadaceae,
Erysipelotrichaceae, and Alcaligenaceae were all significantly higher in burn injury mice at day
1, though these taxa were of moderate or low overall relative abundance in the large intestine
microbiome (Table 1). Abundant taxa in the large intestine, such as the “S24-7” group, and the
families Lachnospiraceae, Prevotellaceae, Rikenellaceae, and Ruminococcaceae were not signif-
icantly differently abundant in the between sham and burn injury mice.

Bacterial Translocation of Enterobacteriaceae

Bacteria were identified in the small intestine using fluorescence in-situ hybridization (FISH)
analysis, employing family-level (Enterobacteriaceae) and domain-level (Bacteria) oligonucleo-
tide probes targeting the SSU rRNAs. These analyses were used to visualize the proximity of
bacteria to the small intestinal villi. In the sham mice, Enterobacteriaceae were present in low
relative abundance and were rarely attached to the intestinal villi (Fig 3). After burn injury,

Sham Burn

() 0

Fig 3. Direct Observation of Enterobacteriaceae in the Small Intestine. Tissue sections were taken from
the small intestine of sham or burn injured animals one day after injury, and stained with fluorescently labeled
oligonucleotide conjugated probes to label 16s rRNA and counterstained with DAPI to label intestinal nuclei
blue. Alexa 555 (Red) EUB 338 probe was used to stain total Bacteria, and Alexa 488 (Green) ENTBAC 183
was used to stain Enterobacteriaceae. Orange depicts co-localization of both probes and bacteria that are
Enterobacteriaceae. (A) is a representative picture of sham animals and (B) is a representative image of burn
injury animals.

doi:10.1371/journal.pone.0129996.9003
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Fig 4. Bacterial Abundance in the Mesenteric Lymph Nodes (MLN) of Mice. MLN were aseptically
removed from sham, burn day 1, and burn day 3 animals and Enterobacteriaceae were quantified by gPCR
and standardized by total bacterial 16s rRNA gene abundance, (A). Data were expressed as mean + SEM of
5-11 animals per group. Enterobacteriaceae abundance from sham and burn day 3 animals were all not
detectable (ND). In addition, MLN homogenates were plated on Tryptic Soy Agar with 5% sheep blood and
MacConkey Agar plates and cultured aerobically for 24 hours with 5% CO,_(B) is a representative image of
plates produced from one animal.

doi:10.1371/journal.pone.0129996.g004

bacteria from the family Enterobacteriaceae were observed adhering to or adjacent to the small
intestinal villi (Fig 3B).

The abundance of Enterobacteriaceae in the MLN was measured using qPCR of genomic
DNA extracted from the MLN, and through bacterial cultivation. qPCR analyses detected
Enterobacteriaceae one day after injury in the MLN (Fig 4A). To determine if these bacteria
were viable, MLN homogenates were cultured aerobically for 24 hours on Tryptic Soy Agar
(TSA) with blood to identify total aerobic bacteria, and on MacConkey Agar to identify Gram-
negative aerobic bacteria, including Enterobacteriaceae. Colonies were observed to develop on
TSA and MacConkey plates in all burn injured animals one day after injury, while no colonies
were observed on the plates inoculated with homogenate from sham animals (Fig 4B). Three
days after burn, some colonies were detected on the TSA plates, but no colonies were detected
on the MacConkey agar.

Burn Injury Increases Intestinal Permeability

Increased gut leakiness can result in bacterial translocation from the gut to the lymph nodes.
Intestinal permeability was measured in vivo one and three days after burn with a FITC-dex-
tran permeability assay. Sham and burn injured mice were gavaged with FITC-dextran one
and three days after burn. Three hours later, the concentration of this dye was determined
spectrophotometrically in the plasma. An increase in the concentration of FITC-dextran was
observed in mice one day after burn, and no change was observed three days after injury rela-
tive to the sham animals (Fig 5A). In addition, gene expression of two tight junction proteins,
claudin 4, and 8 were measured in the small and large intestine of sham and burn injury mice.
Gene expression levels of claudin 4 and 8 decreased by ~40% in the small intestine one day
after injury (Fig 5B). A smaller, and not significant, change was observed in the large intestine
(Fig 5C).

Discussion

In this study, we show that burn injury alters the structure of the intestinal microbiome pro-
moting the overgrowth of specific Gram-negative aerobic bacteria, but within the context of
fairly limited effects on overall microbial diversity. The overgrowth of Enterobacteriaceae
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Fig 5. Intestinal Permeability. Sham, burn day 1, and burn day 3 mice were gavaged with FITC-dextran and
3 hours later blood was drawn and the concentration of FITC-dextran was determined spectrophotometrically
in the plasma (A). RNA was purified from the distal small (B) and large (C) intestine one day after burn,
reverse transcribed and quantified with qPCR using primers for claudin (Cldn 4, and Cldn 8), in combination
with endogenous control Gapdh. ACt values were calculated and the mean + SEM of 10—15 animals/group
was expressed relative to sham. (A), *, p<0.05 ANOVA followed by Tukey-Kramer multiple comparisons post
hoc test of sham and burn day 1. (B), unpaired student t-test sham and burn day 1, * p<0.05.

doi:10.1371/journal.pone.0129996.9005

coupled with the increase of intestinal permeability seen one day after burn allows for the

translocation of these bacteria to the mesenteric lymph nodes. This provides evidence that the

gut may be a source of bacterial infections after burn injury, and a potential cause of sepsis.
Examining the structure of the intestinal microbiome of severely burned patients, we found
that injury promotes the overgrowth of many under representative taxa while reducing the

overall healthy diversity of bacteria. This shift in the microbiome is similarly seen in other
inflammatory conditions, such as IBD [39], and consequently may also yield profound implica-
tions for treatment of infection and immune modulation in trauma patients. The most pro-
found changes in the microbiome were dramatic increases in the abundance of y-
Proteobacteria, particularly those within the family Enterobacteriaceae. This family contains

many opportunistic pathogenic bacteria, including those from the genera Escherichia, Klebsi-

ella, Proteus, and Citrobacter, which are common in septic patients [11]. Bacteria from the fam-
ily Enterobacteriaceae are potentially proinflammatory and have been shown to induce
spontaneous colitis when transferred to wild type mice [34]. More research is needed to deter-

mine which strains of these bacteria elicit systemic inflammation after burn injury. Additional
sequencing efforts, including assembly of full length SSU rRNA gene amplicons, and deep shot-
gun metagenome sequencing, will be instrumental in more accurately identifying the burn

injury-associated Enterobacteriaceae, and in determining specific physiological capabilities
enabling their dramatic overgrowth after burn injury.
In addition to overgrowth of potentially pathogenic bacteria, we observed reductions in

potentially protective bacteria. The Lachnospiraceae are a Gram-positive family of bacteria
within the phylum Firmicutes, and include bacteria from the genus Clostridium. Various spe-
cies of spore forming bacteria under this cluster have been shown to ferment carbohydrates to
produce butyrate, induce Treg induction, and prevent inflammation in models of colitis [40-
43]. Reductions of this family of bacteria have been observed in IBD, and it is possible that
these species of bacteria are also protective in maintaining the gut barrier integrity after trauma
[39,44]. If so, reconstitution of these strains through probiotic supplementation may prove to
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be a novel treatment to burn patients, ideally leading to reduced bacterial translocation and
sepsis.

More research is needed to identify the cause of the dramatic shifts in bacterial community
structure associated with burn injury. Two potential mechanisms are increased intestinal
inflammation and reductions of antimicrobial peptides. Previous research has shown that
intestinal inflammation alters the intestinal microbiome, and allows for an overgrowth of
Enterobacteriaceae. Bacteria from the family Enterobacteriaceae have been shown to outcom-
pete other resident bacteria and reduce total bacterial numbers [45]. Another study demon-
strated that host generated nitrate produced as a by-product of the inflammatory response can
lead to boosts of E.coli in the inflamed gut [46]. In addition, o-defensins and C-type lectins,
two classes of host-produced antimicrobial peptides, have been implicated in the establishment
and regulation of the intestinal microbiota. Recent studies have shown that a reduction in o-
defensins promote shifts in microbial communities, leading to the overgrowth of pathogenic
bacteria and intestinal inflammation in Crohn’s disease [32,47,48]. C-type lectins are another
class of antimicrobials which protect against intestinal inflammation and colitis by segregating
the commensal bacteria from the intestinal epithelium [49]. Therefore a potential decrease in
these antimicrobials may help explain the shifts in bacterial abundance.

Our findings further demonstrate that burn injury leads to an increase in gut leakiness
which allows for bacterial translocation to the MLN. Tight junction (TJ) proteins, such as clau-
dins are indispensable in maintaining the permeability of the intestine. Diseases where T] pro-
tein expression is altered have been shown to correlate with the translocation of bacterial
products to the circulation [50,51]. There was a significant decrease in claudin 4, and 8, which
accompanied the increase in Enterobacteriaceae seen in the small intestine following burn
injury. Reports have shown various Proteobacteria with the potential to modulate claudin 4
expression and permeability in the intestine[52,53]. Reduced claudin 8 expression has been
observed in diseases of intestinal barrier dysfunction such as Crohn’s disease and in autism
models where dysbiosis is also evident[50,51]. There seems to be a mutual relationship between
dysbiosis of the microbiome and altered TJ proteins. However, it is not well established
whether dysbiosis precedes and causes alterations in intestinal permeability, or whether altered
permeability can directly change the microbiome.

To our knowledge this is the first study that investigates the structure of the intestinal
microbiome in severely burned patients. The relatively few patient samples, their individual
antibiotic regimens, and when the fecal management system was utilized in the clinical care of
the patients are all confounding factors to this study. Nevertheless, comparison of the burn
patients’ intestinal microbiome with that of our mouse model revealed many similar trends
providing strong evidence that trauma modifies the intestinal homeostatic environment,
thereby resulting in alterations in the intestinal microbiome, and overgrowth of Enterobacter-
iaceae. Translocation of Enterobacteriaceae to the MLN and systemic Gram-negative bacter-
emia can lead to sepsis and multiple organ failure for burn patients.
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