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Abstract

We compared in situ surface chlorophyll concentration values measured between 2012-

2015 as part of the U.S. Environmental Protection Agency’s Great Lakes National Program

Office (GLNPO) annual monitoring program with corresponding concentration estimates

obtained by applying our previously published (Lesht et al., 2013) Great Lakes Fit (GLF)

band ratio algorithm to data from the Moderate-resolution Imaging Spectroradiometer

(MODIS) sensor. Coefficients used in the original GLF algorithm were derived from

similarly matched GLNPO and satellite observations collected between 2002 and 2011.

The Model II linear relationship between the original GLF-predicted log-transformed val-

ues and the new set (2012-2015) of field observations yielded intercept = 0.036, slope

= 1.063, and r2 = 0.830. Residuals for modeled chlorophyll concentrations below ∼ 8.0

mg m−3 were unbiased and normally distributed, but positively biased at higher modeled
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concentrations. When applied to the entire data set (2002-2015), the linear relationship

between the GLF-modeled and the observed values had intercept = -0.000, slope=0.999,

and r2=0.820. New model coefficients derived from the entire (2002-2015) data set were

very similar those obtained from the 2002-2011 data. Continual testing and assessment of

any empirical model is desirable especially when the model is designed to be employed

by a broad community. We conclude that this comparison of the GLF algorithm with

the additional four years of independent data further validates its use for estimating sur-

face chlorophyll concentrations from satellite observations of the open waters of the Great

Lakes.

Keywords: Remote sensing, ocean color, chlorophyll a, satellite observations, algorithm

verification

Introduction1

Several papers have described new algorithms for estimating chlorophyll concentra-2

tions in the Great Lakes from satellite observations (see Lesht et al. (2012) for a review3

of work prior to 2012 and more recently Lesht et al. (2013) and Shuchman et al. (2013)).4

However, in contrast to the continual assessment of algorithms developed by the major5

space agencies (e.g. NASA and ESA) which are provided to users via the agencies’ web6

sites, to our knowledge no work has been reported in which the performance of these Great7

Lakes-specific algorithms has been tested with new, independent observations. Because8

all empirical or semi-empirical algorithms depend on the data from which their numeri-9

cal coefficients are derived, testing with new data is essential both to assess the models’10

success and to examine their limitations (Augusiak et al., 2014). In some cases it might11

be desirable simply to update the model coefficients as more data are acquired (Werdell12
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et al., 2003), in other cases models may have to be discarded or structurally modified if13

systematic failure is observed.14

In Lesht et al. (2013) we demonstrated that a simple band-ratio algorithm could be15

used to estimate surface chlorophyll values in the offshore waters of the Great Lakes from16

ocean color satellite observations (SeaWiFS from 1998-2010 and MODIS from 2002-17

2011). In that work we tuned the MODIS retrieval model to field data collected in all18

five lakes as part of the annual GLNPO monitoring program that we pooled across ten19

years (2002-2011). Although we presented an uncertainly analysis based on Monte-Carlo20

and sub-sampling methods in that paper, we were unable to test the algorithm with new,21

independent data. The primary purpose of this note is to report the results of our assess-22

ment of the GLF algorithm’s performance based on comparison of its predictions with new23

MODIS observations collected from 2012-2015. Such a test is necessary to demonstrate24

that the algorithm is capable of representing data that were not available when it was de-25

veloped and so could not have affected its structure or coefficients (Augusiak et al., 2014).26

For completeness, our secondary objective was to determine how much the original model27

coefficients change when the model is fit to the full (2002-2015) data set.28

Methods29

Matching field observations and satellite data30

Our original methods for matching the GLNPO field measurements with the satel-31

lite observations (Lesht et al., 2013) were similar to the procedures described by Bai-32

ley and Werdell (2006). Field sampling and determinations of in situ chlorophyll con-33

centrations followed standard GLNPO protocols (U.S.E.P.A., 2010) and were consistent34
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throughout the study period. For the satellite data, we processed Level 1A (digital counts)35

data to Level 2 (geophysical values, L2) using the l2gen (v8.1.4) processing code in36

SeaDAS (Baith et al., 2001). We limited comparisons to satellite images that were col-37

lected within one day of the field sampling. This temporal window is larger than the38

±3-hr window used by Bailey and Werdell (2006); inconsistencies in the recorded times39

of the GLNPO field sampling made it impossible for us to resolve them to intervals finer40

than one day. Images that satisfied the temporal matching criterion next were checked41

for viewing geometry and for overall cloud cover. Images for which the solar zenith an-42

gle at the scene center exceeded 70◦ were rejected as were those for which more than43

20% of the pixels exceeded a satellite zenith angle of 60◦. We also rejected images in44

which less than 20% of the lake surface was cloud free. For the images that passed45

this screening, we then checked the native-resolution L2 pixels within 5x5-pixel boxes46

centered on the field sampling locations to ensure that none of the NASA quality flags47

(http://oceancolor.gsfc.nasa.gov/VALIDATION/flags.html) we used (ATMFAIL, LAND,48

CLDICE, HIGLINT, HILIT, STRAYLIGHT, CHLFAIL, NAVFAIL) were set. This qual-49

ity test is more stringent than the one used by Bailey and Werdell (2006) who accepted50

matches for which 50% of the pixels (rather than all) in the 5x5 box were unflagged. The51

CHLFAIL test, which checks the basic shape of the input reflectance spectrum, is based52

on the standard NASA OC3M wavelengths; because we used these same wavelengths53

in GLF algorithm (described below) CHLFAIL also screened pixels for which the input54

spectra were inappropriate for use with the GLF algorithm. To further limit the sampling55

area, we used the arithmetic mean value of the retrieved values within a 3x3 pixel box56

centered on the sample location as the representative satellite value for that location. Fi-57
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nally, we rejected matches for which any of the values of remote sensing reflectance (Rrs)58

were less than zero, indicating possible overcorrection by the atmospheric radiation model59

used to remove the contributions of atmospheric scattering and reflectance from the signal60

received at the satellite. We used the same SeaDAS default 2-band NIR iteration model61

(Bailey et al., 2010) that Shuchman et al. (2013) showed performs well over the Great62

Lakes in our processing.63

We did not include either a check for spatial homogeneity or a pixel-by-pixel check64

of the satellite viewing angle in our original (Lesht et al., 2013) analysis; both were used65

by Bailey and Werdell (2006) in their study. To make our approach in the present work66

even more comparable to theirs, we added the pixel-based validation flag HISATZEN to67

the suite of flags checked in the 5x5 pixel box and also used a spatial homogeneity test,68

similar to that presented by Kahru et al. (2014) in the new calculations presented here. For69

the homogeneity test we rejected matches if the retrieved chlorophyll concentration (C)70

values in the 5x5 pixel region surrounding the sampling location were such that (Cmax −71

Cmin)/Cmin > 1. We include comparisons between the results of the original analysis (Lesht72

et al., 2013) and of the updated analysis where appropriate below.73

Chlorophyll retrieval74

The general form of the band-ratio retrieval algorithm is log10(Chlmod) = c0+
∑n

i=1 ciX
i,75

in which X is log10(MBR), the ci are the model coefficients, and MBR represents the76

maximum band ratio, which for MODIS is calculated as Max{Rrs443,Rrs488}/Rrs547 in77

which Rrsnnn is the remote sensing reflectance at nominal wavelength nnn. In our original78

investigation of the GLF we found that a third-order polynomial was adequate for use in79

the Great Lakes and noted that the primary effect of adding the fourth-order term to the80
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polynomial was to change the shape of the relationship at larger values of log10(MBR)81

(smaller values of chlorophyll). The fourth-order term is used in the standard NASA82

band-ratio algorithms because it is necessary for retrievals in the ocean where the lowest83

chlorophyll concentrations can be over an order of magnitude smaller than they are in the84

Great Lakes (Lesht et al., 2013). Although we did test a fourth-order version of the GLF85

as part of this work, we noted only a slight improvement over the third-order model and86

report only the most basic results of this test.87

The coefficients used in the original GLF model were obtained by using an iterative88

method based on successive applications of a reduced major axis (Model II) regression,89

the appropriate regression approach when both variables are uncertain (Press and Teukol-90

sky, 1992). This procedure, which yields the model coefficients that result in a 1:1 re-91

lationship between the retrieved and observed log-transformed chlorophyll values, is the92

same method used by NASA in their development of the standard SeaWiFS and MODIS93

retrieval algorithms (O’Reilly et al., 2000). In the present study, we used a maximum like-94

lihood fitting method based on direct minimization of the chi-square function appropriate95

when both variables are subject to experimental error to determine the GLF coefficients.96

The chi-square function is written as (Press and Teukolsky, 1992)97

χ2(a, b) =

N
∑

i=1

(yi − a − bxi)
2

σ2
yi
+ b2σ2

xi

(1)98

in which y is log10(Cmod) and x is log10(Cobs). Because the retrieval algorithm is in the form99

of a polynomial (log10(Cmod) = c0 +
∑n

j=1 c jX
j, in which X is log10(MBR), n is the degree100

of the polynomial (n = 3 in the original GLF and n = 4 in the standard NASA retrieval101

models) and the c j values are the model coefficients) we can substitute this polynomial for102

6



yi, apply the desired constraints that the intercept (a) equals zero and slope (b) equals 1,103

and re-write Eq. 1 as a function only of the model coefficients (c j).104

χ2(c) =

N
∑

i=1

((c0 +
∑n

j=1 c jX
j

i
) − xi)

2

σ2
c

0+
∑n

j=1
c jX j
+ σ2

x

. (2)105

We used the R (R Core Team, 2014) package optimx (Nash and Varadhan, 2011) to106

minimize Eq. 2 with respect to the parameter vector c. The initial parameter vector needed107

to begin the minimization was obtained by using the function monpol from R package108

MonoPoly (Murray et al., 2013) for the third-order model and with the lm function from109

the R base stats package (R Core Team, 2014) for the fourth-order model (fourth-order110

models are not necessarily monotone). Our experience comparing the original and the111

maximum likelihood fit methods showed that the maximum likelihood method yields112

nearly identical results to the original method (see Table 2) but is more intuitive and com-113

putationally efficient.114

Comparison statistics115

Our analysis generally follows the procedures outlined by Bailey and Werdell (2006)116

and Campbell and O’Reilly (2006) both of which were developed specifically for evalu-117

ation of satellite retrieval algorithms. To provide measures of the overall bias and uncer-118

tainty associated with the GLF, we calculated both the ratio of satellite to in situ chloro-119

phyll and the absolute percent difference for each matched pair of observations (Bailey120

and Werdell, 2006). The absolute percent difference (PD) is calculated as:121

PDi = 100 ∗
|Xi − Yi|

Yi

(3)122
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where the Xis are the satellite values and the Yis are the in situ values. We refer to the123

median value of the absolute percent differences as MPD.124

We also calculate the median of the ratios, an indicator of the overall bias of the es-125

timates, and the semi-interquartile range (SIQR) of the ratios, a measure of the spread of126

the data. The SIQR is defined as:127

S IQR =
Q3 − Q1

2
(4)128

In which Q1 is the 25th percentile of the ratios and Q3 is the 75th percentile. Thus 50%129

of the observed ratios fall between Q1 and Q3.130

In addition, we calculated the log-transformed model error or residual (δi), the mean131

square error (MSE), and the root mean square error (RMSE) following Campbell and132

O’Reilly (2006). These are defined as:133

δi = log10(Ci
mod) − log10(Ci

obs) = log10

(

Ci
mod

Ci
obs

)

(5)134

in which Ci
mod

and Ci
obs

represent the ith modeled and observed values; bias is the average135

value of the residuals, and the mean square error is defined as136

MS E =
1

N

N
∑

i=1

(δi)
2, (6)137

and the root mean square error (RMSE) is simply
√

MS E.138

Finally, we used Major Axis (MA) Model II regression as implemented in the R pack-139

age lmodel2 (Legendre, 2014) to assess the linear association between the modeled and140

the observed chlorophyll values. Because the distributions of both the observed and mod-141

eled chlorophyll values are approximately log-normal (see Lesht et al. (2013) Fig. 2), we142

based our regression calculations on the log-transformed values.143
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Results144

Figure 1 shows the relationship between the in situ chlorophyll measurements and the145

maximum band ratio (Max{Rrs443,Rrs488}/Rrs547) obtained from the corresponding satel-146

lite images. The points measured between 2002-2011 that were used to determine the147

original GLF coefficients are shown as the gray crosses. The new (2012-2015) points are148

color coded by lake (the official lake colors are: Erie = red, Huron = green, Michigan =149

blue, Ontario = pink, Superior = yellow), season (darker shade indicates summer sam-150

pling), and shape coded by year. The curves illustrate the original GLF model (black solid151

line) and the model fits to the reduced (by adding the homogeneity and HISATZEN con-152

straints) 2002-2011 data (black dashed line) and to the full (2002-2015) data (blue dashed153

line).154

Effects of adding the homogeneity and HISATZEN constraints155

Adding the homogeneity and HISATZEN constraints reduced the total number of ac-156

cepted matches for the period 2002-2011 from 774 used in the original GLF analysis to157

708. Three points were eliminated by using the pixel-based HISATZEN test. Of the 63158

matches that were rejected by the homogeneity test, 28 were from Lake Erie, 20 from159

Lake Superior, and 15 from Lake Ontario. Of the 20 rejected matches from Lake Superior,160

13 were samples from one station (SU06, 45.55861N, 86.37694W) which, though in deep161

water (∼165 m), is relatively close to the northeastern shore of the lake and near a river162

mouth. In the other lakes, the rejected matches also tended to be from stations close to163

shore where spatial gradients in chlorophyll might be expected, but no other single station164

accounted for so many of the matches that failed the test.165
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With a regression slope of 0.978, the original GLF model predicts slightly lower val-166

ues of chlorophyll than were observed when it is applied to the reduced 2002-2011 data167

(Table 1), but the RMSE is lower and the r2 value of the regression is higher, indicating168

that some of the error in the original fit resulted from including non-representative points.169

When the GLF model is fit to the reduced 2002-2011 data, the change in the model coef-170

ficients is small (Table 2).171

Original GLF applied to 2012-2015 data172

Comparison between the original GLF model-predicted and observed 2012-2015 chloro-173

phyll values are shown in Fig. 2. The annotations in panel (a) note the results (intercept =174

0.036, slope = 1.063, and r = 0.911) of the Model II regression along with the root-mean175

square error (0.181) and bias (0.040) The residuals of the fitted models log10(Cmod/Cobs))176

are plotted as a function of the model-predicted values in panel (c). The mean and standard177

deviation (σ) of the residuals and fractions of residuals within 1σ of the means also are178

noted.179

Original GLF applied to 2002-2015 data180

The relationship between the modeled (original GLF) and the observed chlorophyll181

values for the full (2002-2015) data set is illustrated in Fig. 3. Model II regression be-182

tween the 956 log-transformed modeled and in situ values yields an intercept of -0.000,183

slope of 0.999, and r2 of 0.820 (panel a). The quantile-quantile plot (panel b) and plot of184

the relative frequency distributions (panel d) show that the distributions of modeled and185

observed values are very similar throughout most of the range, with a modest deviation at186

the lowest end of the distributions. The distribution of the log of the ratio of the modeled to187
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observed values (panel c) shows that the errors are symmetric and distributed log-normally188

with a mean value very close to zero (0.04) and standard deviation of 0.176 (log units).189

Discussion190

The original GLF was developed to establish a simple method for estimating surface191

chlorophyll concentrations in the offshore waters of the Great Lakes from readily available192

satellite observations. Because the GLF was intended to provide a single relationship that193

could be applied to the lakes universally, it is to be understood that this generality might194

involve some sacrifice of local accuracy (i.e, the algorithm is not tuned by lake or by195

subregion with a lake). In particular, we would not expect the algorithm to apply to regions196

of the lakes not represented in the sample data (e.g. shallow waters, nearshore areas, and197

embayments). We also want to emphasize that because the data used to derive the GLF198

model coefficients were obtained exclusively from observations made as part of the annual199

GLNPO monitoring program, strictly speaking, the GLF is an algorithm that can be used to200

estimate the surface chlorophyll values as measured by the GLNPO program. As such, the201

degree to which the GLF estimates the “true” surface chlorophyll concentrations depends202

on the accuracy and representativeness of the underlying in situ measurements. Of course,203

this limitation is true of any method fit to a particular set of field observations.204

Both the range and the scatter of the new (2012-2015) chlorophyll values are similar to205

those typical of the values collected between 2002-2011. The new observations fall within206

the cloud of points formed by the original data (Fig. 1), reinforcing our conclusions (Lesht207

et al., 2013) that the GLNPO chlorophyll data can be represented by a simple function of208

the MODIS maximum band ratio and that function is temporally stable.209
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Examination of the fit and residuals when the original GLF is used to model the 2012-210

2015 data (Fig. 2) shows the model performs well through most of the range of modeled211

chlorophyll values. Despite the cluster of positive residuals at higher values of modeled212

chlorophyll, 72% of the residuals fall within 1σ of the mean. The largest residuals (at213

higher chlorophyll values (> ∼8 mg m−3)) consist of observations from the western and214

central basins of Lake Erie where it is most likely that non-chlorophyll constituents such215

as suspended mineral sediment and colored dissolved organic material interfere with the216

band-ratio retrievals (Binding et al., 2008, 2010, 2012; Shuchman et al., 2013). Because217

the uncertainty of the GLF retrievals is relatively high at these values we recommend218

caution when the GLF is applied to satellite observations with very low (< -0.20) values219

of the maximum band ratio. Observations of this magnitude, however, represent a small220

fraction (<1%) of the observed values.221

The intercept of the GLF when applied to the 2012-2015 data is greater than zero222

and the slope is greater than one. Our original work showed that the slope and intercept223

of linear relationship between the modeled and observed values varied when the GLF224

was applied to individual years, and similarly varied when the GLF was applied to five-225

year subsets of the original data (Lesht et al. (2013), Tables 5 and 6). This variation226

reflects the unavoidable uncertainties associated with the sampling, the matching of the227

field data to the satellite imagery, the error in the reflectance values, and the degree to228

which interfering substances influence the observations (Lesht et al., 2012). To determine229

whether the fit obtained for 2012-2015 (Fig. 2) was anomalous, we compared the sample230

intercept and slope to empirical distributions obtained by using bootstrap techniques (Wu,231

1986) in which we calculated the Model II fit between the GLF and observations for 10,000232
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randomly selected four-year subsets of data taken from the full (2002-2015) set. Figure 4233

shows that the intercept and slope values obtained for 2012-2015, though greater than234

zero and one, are within the 95% bootstrap confidence intervals (-0.0364, 0.0420 for the235

intercept and 0.9164, 1.1261 for the slope).236

The coefficient values determined from the maximum likelihood fit to the reduced sets237

of 2002-2011 and 2002-2015 values are very similar to the original GLF coefficients (Ta-238

ble 2). As we noted in our original derivation of the GLF, because the coefficients are239

determined with the constraint that the intercept and slope of the linear relationship be-240

tween the log-transformed modeled and observed values be zero and one respectively, fa-241

miliar least-squared methods cannot be used to assess the coefficient uncertainties. Rather,242

similarity between the different model coefficients can be determined by comparison with243

the empirically derived coefficient distributions obtained by using sub-sampling methods244

(Lesht et al. (2013), Fig. 9). Reference to this figure shows that the updated coefficient245

values are very close to the median values of their respective empirical distributions. The246

substantial reduction in mean absolute error (from 0.142 to 0.130) when the GLF is fit247

to the data set that includes the homogeneity constraint probably reflects elimination of248

questionable matching points.249

The original GLF model performs very well when compared to the entire 2002-2015250

data set (Fig. 3). The Model II intercept and slope of the linear relationship between251

log10(Cmod) and log10(Cobs) are -0.000 and 0.999 respectively, with low bias and RMSE252

comparable to that obtained in the original fit based on the pre-2012 data. Furthermore, the253

residuals are normally distributed (panel (c)) and the frequency distribution of the modeled254

chlorophyll values closely matches that of the observed values (panel (d)). Taken together,255
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these results suggest that the original GLF can continue to be used without substantial256

modification.257

Conclusions258

Observations from the four most recent years (2012-2015) of GLNPO monitoring con-259

firm that there is a clear relationship between the field-measured chlorophyll concentra-260

tions and the satellite-observed reflectance band ratio. Estimates of chlorophyll concen-261

tration obtained from the GLF model closely agree with the new observations, though the262

model accuracy diminishes at higher (> ∼8 mg m−3) estimated chlorophyll concentrations,263

approximately corresponding to log10(BandRatio) values below -0.2. Adding a homogene-264

ity constraint to the procedure used for selecting matched field and satellite observations265

resulted in a substantial reduction of the mean absolute error between the estimated and266

observed chlorophyll values, suggesting that some of the error in the original fit resulted267

from instances of spatial inhomogeneity. When the original GLF was tested with the full268

data set (2002-2015) the slope and intercept of the linear relationship between log10(Cmod)269

and log10(Cobs) was -0.000 and 0.999 respectively indicating excellent accuracy overall.270

An alternative to the original model that included a 4th-order term improved the model271

performance only slightly.272

Algorithms that convert in-space observations of radiance to estimates of surface wa-273

ter chlorophyll concentration in the Great Lakes make it possible to take advantage of the274

frequent, synoptic, and high resolution measurements provided by satellite remote sensing275

in studies of bio-geophysical processes in the lakes. Because they are intended to be used276

by broad communities not necessarily expert in remote sensing or modeling, simply pre-277
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senting a new algorithm with an initial assessment of its validity may not be sufficient for278

its ultimate adoption. We argue that continued analysis of the algorithms’ performance is279

necessary both to establish confidence in their application and to assess their limitations.280

We encourage both algorithm developers and other users to test and assess published al-281

gorithms in their work and to share their results for the benefit of the entire community.282
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Table 1: Chlorophyll validation statistics (after Bailey and Werdell (2006)) for different sets of coefficients and data

Data Coefficients Ratio (SQIR)a % Differenceb Intercept Slope r2 RMSE N

2002-2011 GLF1 0.967 (±0.255) 24.85 0.000 1.000 0.800 0.183 774

2002-2011 GLF2 0.973 (±0.255) 24.56 0.000 1.000 0.800 0.181 774

2002-20113 GLF1 0.946 (±0.224) 22.76 -0.012 0.978 0.821 0.168 708

2012-20153 GLF1 1.083 (±0.266) 24.90 0.036 1.063 0.830 0.180 248

2002-20153 GLF1 0.973 (±0.240) 23.26 0.000 0.999 0.820 0.174 956

2002-20153 GLFv22 0.976 (±0.242) 23.54 0.000 1.000 0.822 0.173 956

2002-20153 GLFv22,4 0.977 (±0.240) 23.09 0.000 1.000 0.824 0.172 956

Regression statistics (Model II) are based on log transformed values.
a Median model to in situ ratio and semi-interquartile range
b Median absolute percent difference
1 Coefficients (see Line 1 of Table 2 below) from Lesht et al. (2013)
2 Coefficients (see Line 2 of Table 2 below) determined using Eq. 2
3 Including homogeneity and pixel-based HISATZEN tests
4 4th order model

Table 2: Best-fit coefficients determined for the Great Lakes Fit (GLF) model for different models, datasets, and fitting

methods. ci are the model coefficient values, N is the number of matched points and MAE is the mean absolute error

between the observed and modeled chlorophyll values.

Years Fit Method N c0 c1 c2 c3 c4 MAE

2002-2011 NASA Iterative1 774 0.3429 -3.3925 3.3412 0.7857 0.142

2002-2011 Max Likelihood2 774 0.3430 -3.3942 3.3433 0.7858 0.138

2002-20113 Max Likelihood2 708 0.3660 -3.4553 3.1773 1.1559 - 0.130

2002-20153 Max Likelihood2 956 0.3578 -3.2742 2.4548 0.7291 - 0.131

2002-20153,4 Max Likelihood2 956 0.3592 -3.5244 2.5975 10.8482 -22.8493 0.129

1 Lesht et al. (2013)
2 Equation 2
3 Including homogeneity and pixel-based HISATZEN tests
4 4th order model
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Figure 1: Log transformed observed chlorophyll (log10(Cobs)) vs. log10(Band Ratio) for MODIS. The black

solid line shows the original GLF model ((Lesht et al., 2013), Table 2). The black dashed line is the model

derived from the same time period (2002-2011) after elimination of points that fail the HISATZEN and

homogeneity tests. The blue dashed line shows the third-order model fit to the entire (2002-2015) dataset.
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Figure 2: Scatter plots between log10(Cmod) and log10(Cobs) (a) and between residuals (log10(Cmod/Cobs)

and Cmod (b) for the original GLF model fit to 2012-2015 data. Gray line in panel (a) shows the Model II

regression; the black line is 1:1. Gray lines in panels (b) are ±1σ of the residual mean. Lake color and year

shape coding is the same as in Fig. 1.
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Figure 3: Comparison of GLF modeled chlorophyll (Cmod) with in situ GLNPO observations (Cobs) 2002-

2015: a) Scatterplot of Cmod and Cobs; b) (Quantile-quantile plot of Cmod versus Cobs; c) Frequency distri-

bution of log(Cmod/Cobs); d) Relative frequency of Cmod (blue curve) and Cobs (red curve). Lake color code

(panel a) is the same as in Fig. 1.
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Figure 4: Bootstrap frequency distributions of the intercepts (left panel) and slopes (right panel) of the Model

II regressions of log10(Cmod) against log10(Cobs) using the original GLF coefficients and 10,000 simulated

four-year subsets of the 2002-2105 data set. The slope and intercept obtained for the 2012-2015 subset are

indicated by the dark vertical lines and cumulative probability distributions by the overlaid curve. The 95%

bootstrap confidence intervals are indicated by the light gray lines.
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