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Abstract

We review the literature relating to the retrieval of chlorophyll concentrations in the Great
Lakes from satellite observations. Most studies show that the satellite estimates of lake
chlorophyll concentration are linearly related to the observed concentrations, though they
tend to overestimate concentrations at lower values and underestimate them at higher val-
ues. Deviations from a consistent, accurate, linear relationship can be attributed to tempo-
ral and spatial variations in the inherent optical properties of the color producing agents in
the water as well as to varying concentrations of interfering substances such as suspended
non-algal particles and colored dissolved organic matter.We confirmed these results by
using a simple optical model to examine the sensitivity of the retrieved chlorophyll val-
ues to the concentrations of interfering substances and to differences in model parameters.
Because the spatial and temporal optical properties of the Great Lakes are unpredictable,
no retrieval method is likely to produce accurate results all the time. The papers we re-
viewed show that simple band ratio algorithms can provide chlorophyll estimates that are
proportional toin situ concentrations. The bulk of the literature suggests that the band
ratio methods will be of most value in regions where the concentrations of interfering
substances such as dissolved organic material or suspendedsediments are minimal. Be-
cause of these limitations we recommend that future papers presenting chlorophyll analy-
sis based on satellite data provide confirming field observations that include measurements
of suspended particles and dissolved organic carbon. We also recommend that Great Lakes
scientists explore novel methods for retrieving chlorophyll concentrations from satellite
observations that have proven useful in other optically complex waters.
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Introduction

The number of studies that have used satellite observationsto explore biological fea-
tures of the Great Lakes has increased dramatically in recent years. Of the published
research that has focused on estimation of chlorophylla concentration, there are two gen-
eral classes of papers; those that report using satellite data to explore the processes that
affect the phytoplankton community size and distribution in the lakes (Lesht et al., 2002;
Chen et al., 2004; Kerfoot et al., 2008; Lohrenz et al., 2008;Kerfoot et al., 2010; Barbiero
et al., 2011) and those that present evaluations the methodsused to convert satellite ob-
servations to estimates of chlorophylla concentration (Bergmann et al., 2004; Budd and
Warrington, 2004; Li et al., 2004; Shuchman et al., 2006; Witter et al., 2009). Although
many of these studies use the same equations, often termed retrieval algorithms, to es-
timate chlorophyll concentration, their conclusions withrespect to the applicability and
success of the estimations can be quite different. In fact, because the literature can seem
contradictory and confusing, we believe that a review of these papers is useful not only
to assess the research that has been published, but also to understand the applicability and
limitations of the methods and to suggest avenues for futureresearch.

Our review includes studies of each of the lakes and includesdata collected by three
ocean color sensors; the Coastal Zone Color Scanner (CZCS),the Sea-viewing Wide
Field-of-view Sensor (SeaWiFS), and the Moderate Resolution Imaging Spectroradiome-
ter (MODIS). In analyzing these studies, we attempted to determine and describe the im-
portant aspects of the methods used by the original authors.However, because the original
works varied in their purposes and approaches they also varied in the amounts of method-
ological detail provided and for some papers we were unable to extract technical specifics
that might have been useful. In a few cases we used the published data to reanalyze the
original results in an attempt to clarify or generalize them. These cases are indicated in
the text. Our review, however, is not intended to be a detailed study-by-study critique nor
to be a presentation of new field or laboratory observations.

In the following section we briefly describe the history of United States efforts in satel-
lite remote sensing of ocean color. Other space agencies, notably those in Japan and Eu-
rope, also have launched ocean color monitoring satellites, but these have not been used to
any extent in studies of the Great Lakes. We then present the basic theory behind the re-
trieval algorithms used to convert the satellite observations to geophysical values, focusing
first on multi-component algorithms and then on the more commonly used empirical band
ratio algorithms. Because applications of empirical band ratio methods are much more
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common in the literature we devote the subsequent section tothe studies that are based on
these algorithms. Finally, we discuss and summarize our findings and conclusions.

Satellite remote sensing of ocean color

Satellite-borne ocean color sensors measure the sunlight scattered back toward the
satellite from substances present in surface layer of the water. The depth to which the
sunlight penetrates the water depends on the composition ofthe water and can vary from
less than a meter in very turbid water to tens of meters in clear water where absorption and
scattering by the water itself is the major light attenuating process. The first satellite ocean
color sensor, the CZCS, was designed to determine if observations from space could be
used to identify and quantify the suspended and dissolved substances that affect the color
of ocean waters. CZCS measured the scattered sunlight at four discrete bands in the visible
portion of the spectrum (each 20 nm wide, centered at 443 nm, 520 nm, 550 nm, and 670
nm). Intended as a proof-of-concept instrument, the CZCS operated from October 1978
through June 1986 when the sensor failed. Although many studies used the data collected
in the 91-month life of the system to examine the distribution of phytoplankton in the
oceans (Gordon et al., 1983; Singh et al., 1983; Pan et al., 1988) no similar applications
were done in the Great Lakes, probably because of problems with the atmospheric cor-
rection algorithm (Tanis, 1984). A major result of the CZCS mission was the conclusion
that although it was a successful proof-of-concept experiment, uncertainties in the quality
of the radiometric data indicated that future ocean color sensors needed to be more stable
and have more reliable radiometric calibrations (Evans andGordon, 1994).

These requirements for radiometric calibration and stability were incorporated into the
follow-on sensors: SeaWiFS and MODIS. SeaWiFS, was launched in September 1997 and
produced data through early December of 2010. MODIS-A, which was launched in June
2002, still is producing data. The SeaWiFS sensor has detectors at six bands in the visible
(412 nm, 443 nm, 490 nm, 510 nm, 555 nm, 670 nm) which were selected to facilitate
global studies of ocean color. Unlike SeaWiFS which was designed specifically for ocean
color monitoring, MODIS was designed for a wide range of Earth system studies. MODIS
has 36 bands with different spatial and radiometric resolutions. Seven bands in the visible
(412 nm, 442 nm, 488 nm, 531 nm, 551 nm, 667 nm, 678 nm) are intended primarily for
ocean color studies. Both the SeaWiFS and MODIS instrumentshave higher radiometric
resolution and wider dynamic range than did CZCS so the sensors are more sensitive and
less likely to be saturated in regions with high concentrations of scattering material.
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Retrieval algorithms

The numerical processes used to convert the radiometric measurements made by the
satellite-borne sensors into interpretable geophysical values are referred to as retrieval al-
gorithms. Typically, the geophysical variable (e.g. chlorophyll concentration) is expressed
as a function of either the normalized radiances (radiant flux per unit area per unit solid an-
gle per unit wavelength interval) or the normalized remote sensing reflectances – the ratio
of the upwelling normalized radiance leaving the water to the incident irradiance (power
per unit area per unit wavelength interval) on the water surface at some number of bands.

The basic assumption underlying all such algorithms is the existence of a unique rela-
tionship between the spectral content of the scattered sunlight measured by the satellite-
borne sensor and the concentrations of color producing agents (CPAs, sometimes referred
to as optically active components or OACs) in the water with which the sunlight interacts.
Sunlight passing downward through the air-water interfaceis absorbed and scattered by
the water and by the other materials dissolved and suspendedin the water. This absorption
and scattering is wavelength dependent and each CPA has a different absorption and/or
scattering spectrum. In addition to the water itself, threeCPAs usually are considered.
These are suspended minerals or, more generally, non-algalparticulates (NAP), colored
dissolved organic material (CDOM), and phytoplankton.

As an example, Fig. 1 shows the average phytoplankton absorption spectrum deter-
mined by Lohrenz et al. (2004) for Lake Michigan from sampling done as part of the
Episodic Events Great Lakes Experiment (EEGLE) program (http://www.glerl.noaa.

gov/eegle/). This figure, which is typical of phytoplankton absorptionspectra reported
by others (Bukata et al., 1991b; Bergmann et al., 2004; Witter et al., 2009) shows that
most communities of phytoplankton absorb most radiation atshorter (blue) wavelengths
and very little in the middle part of the spectrum (green). Asa result, green light is prefer-
entially scattered from algae-rich waters. The radiance received at the satellite is propor-
tional to the amount of light scattered, which, in the absence of other CPAs, depends on
the concentration of chlorophyll. If other CPAs are present, the radiance also depends on
the concentrations of those substances and on their absorption and scattering properties.

Retrieval algorithms can be classified by the assumptions made about the optical com-
plexity of the water. Semi-analytical or multi-component models attempt to model the
effects of multiple interacting substances. Empirical algorithms are based on the assump-
tion that a single optical component (e.g. chlorophyll) is dominant. Both have been applied
to studies of the Great Lakes, though because empirical algorithms are simpler to apply
and are used in standard processing software, studies basedon the empirical algorithms
are much more common.
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Semi-analytical and multi-component model algorithms

Because phytoplankton may not be the only CPA in the water, a complete retrieval al-
gorithm would include the effects all of the constituents that interact with the incomingso-
lar radiation. By considering each of these constituents inone retreival, multi-component
algorithms are intended to determine simultaneously the concentrations of each from the
sampled radiance spectrum. Many such algorithms have been developed and applied to
oceanic and coastal waters (see, for example, recent papersby Garcia et al. (2006) and
Chang et al. (2007)); here we concentrate on those that have been used in the Great Lakes.

The first application of these methods to the Great Lakes was the work done by Bukata
and colleagues (Bukata et al., 1978, 1979, 1981b,a, 1985, 1991a,b). Basing their methods
on the findings of Gordon et al. (1975), Bukata et al. (1979) used field measurements of
upwelling and downwelling spectral irradiance along with measurements of spectral atten-
uation to determine the diffuse reflectance and attenuation coefficient profiles in five bands
at ten stations along a nearshore (maximum depth 37 m) transect in western Lake On-
tario. They used these calculations to compute the inherentoptical properties (absorption
coefficient (a), scattering coefficient (b), total attenuation coefficient (c), backscattering
probability (B), forwardscattering probability (F = 1 − B), volume scattering function
(β(Θ)), and scattering albedo (ω0) of the water at the sampled locations.

By combining these calculations of the inherent optical properties with simultaneous
measurements of chlorophyll-a, NAP, and dissolved organic carbon (DOC) concentra-
tions (as a proxy for CDOM), Bukata et al. (1981b), were able to determine the optical
cross sections of the CPAs in nearshore western Lake Ontario. The optical cross sections
are essentially the absorption and scattering spectra characteristic of each constituent nor-
malized by the concentration of the constituent. That is, the total absorption and scattering
properties of the water (measured by the inherent optical properties) may be expressed as

a(λ) = aw(λ) + xâChl(λ) + yâNAP(λ) + zâCDOM(λ), (1)

b(λ) = bw(λ) + xb̂Chl(λ) + yb̂NAP(λ),

(Bb)(λ) = Bbw(λ) + xB̂bChl(λ) + yB̂bNAP(λ)

in which a(λ), b(λ), andBb(λ) are the total absorption, scattering, and backscatter coef-
ficients at wavelength (λ), x, y, andz are the concentrations of chlorophyll-a, NAP, and
CDOM, andâi, b̂i, and B̂bi are the absorption, scattering, and backscattering cross sec-
tions of theith constituent (Chl, NAP, CDOM). The absorption and scattering coefficients
of water are designatedaw, bw, andBbw. Thus, given simultaneous measurements of the
constituent concentrations and the inherent optical properties, the optical cross sections
may be estimated by multivariate regression.

Once the optical cross sections were determined, Bukata et al. (1981a) showed that by
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following Gordon et al. (1975) the irradiance reflectanceR(0, λ) just below the free surface
could be expressed as

R(0, λ) =
N∑

n=0

rn(0)Xn (2)

wherern(0) are polynomial expansion coefficients determined by Gordon et al. (1975), and

X =
(Bb)(λ)

a(λ) + (Bb)(λ)
(3)

as determined from equation set (1).
By calculating the propagation of the radiance through the water-air interface and sub-

sequently through the atmosphere, it is possible to determine the theoretical spectra of
radiances that would be received at a satellite sensor as a function of the constituent con-
centrations. The spectra shown in Fig. 2 are the result of this type of calculation for the
simple case when chlorophyll and water are the only CPAs.

The process of using these equations to retrieve the concentrations of the constituents
in the water from the radiance measured at the satellite is based on inverting the calcula-
tions. Measured radiance spectra and known (or hypothesized) optical cross sections are
used along with non-linear optimization methods to retrieve the in-water concentrations of
the several constituents. To test the methodology, Bukata et al. (1985) used an independent
set of radiance data from Lake Ontario along with their directly determined cross sections
to calculate concentrations of NAP (primarily mineral sediments), CDOM (parameterized
by dissolved organic carbon), and chlorophyll in the lake (their Figures 33-35). Their
model produced “excellent” predictions for NAP, “possiblyacceptable” predictions for
CDOM, but “nonexistent” predictions for chlorophyll. Specifically, the predicted chloro-
phyll values were much lower than the observed values and often close to zero.

Bukata et al. (1985) tested several possible explanations for the failure of the model
to predict the observed chlorophyll concentrations in LakeOntario. They concluded that
the problem resulted from a combination of factors, including (a) dominant influence of
the non-phytoplankton (NAP and CDOM) components on the reflectance spectrum and
(b) the optical cross sections they used (which were determined from their original data
set) were inappropriate for the second, independent, data set. When they used the second
data set to derive new optical cross sections, they found that the absorption spectrum for
chlorophyll differed considerably from the one derived from the first data set. Predictions
made using the new set of cross sections were much improved.

A recent series of overlapping papers (Pozdnyakov et al., 2005a,b; Shuchman et al.,
2006), applied the same bio-optical model used by Bukata et al. (1985) to archival ob-
servations made in Lake Michigan. The focus of the first two papers in this series is on
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the optimization method used to invert the bio-optical model to obtain in-water concen-
trations. The authors use a combination of the Levenberg-Marquardt algorithm employed
by Bukata et al. (1985) and a neural network model to speed thecalculations to the point
where the model could be implemented in an operational scheme. The third paper, de-
scribed below, is focused on using the combined optimization method to examine chloro-
phyll patterns in Lake Michigan between the years 1998 and 2004.

To validate the performance of the algorithm, Shuchman et al. (2006) compared field
measurements of chlorophyll made in the vicinity of the Kalamazoo River outflow on
single days in July and September 2003 with satellite retrievals averaged over a nine-pixel
(∼10 km2) area surrounding the sampling locations. The satellite data were primarily from
SeaWiFS and though the processing details are not described, Shuchman et al. (2006) re-
port that the satellite data involved application of an early form of atmospheric correction
that commonly resulted in non-physical negative radiance values in the blue portion of the
spectrum or other distortions. We note that in presenting the exact same data set and com-
parisons Pozdnyakov et al. (2005b) state that the data were processed with the ”MUMM-
MSL12 software” presumably referring to the more sophisticated MUMM (Ruddick et al.,
2000) atmospheric correction method developed for use in turbid and inland waters that
was imbedded into NASA’s SeaDAS software (Baith et al., 2001).

Retrievals of chlorophyll-a, NAP, and CDOM in Shuchman et al. (2006) were obtained
using the optical cross sections determined for Lake Ontario by Bukata et al. (1991a). Al-
though no statistics were presented, the comparison between the retrieved and sampled
chlorophyll concentrations was described as “good.” The term “good consistency” also
was used when the authors compared retrieved values of chlorophyll, NAP, and CDOM to
historical data collected as part of the EEGLE program during the springs of 1998-2000.
Although the authors point to several uncertainties associated with their estimates, includ-
ing use of an imperfect optical model, possible problems with atmospheric correction, dis-
parity between the point measurements made in the field and the pixel-averaged estimates
obtained from the satellite, and temporal mismatch betweenthe satellite data and field
samples, they conclude that the “results should be considered satisfactory for the analysis
of patterns and seasonal distributions and interactions although actual concentrations may
be in error.” Indeed, the algorithm underestimated the EEGLE chlorophyll concentrations
by at least an order of magnitude (see their Figure 10). Like Bukata et al. (1985), the
retrievals of NAP and CDOM were more in line with commonly accepted values.

A different multi-component approach is illustrated by the work of Li et al. (2004)
in their study of Lake Superior. These researchers used a model by Carder et al. (1999)
that is based on the approximate relationship between remote sensing reflectance (Rrs)
and adsorption and backscattering,Rrs(λ) � bb(λ)/a(λ). In this relationshipλ is wave-
length,bb is the total backscattering resulting from the combinationof backscatter from
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the water (bbw) and from suspended particles (bbp). Total absorption is calculated as
a(λ) = aw(λ) + aϕ(λ) + ad(λ) + ag(λ), in which the subscriptsw, ϕ, d, andg refer to water,
phytoplankton, detritus (NAP), and gelbstoff (CDOM). In this model the absorption and
backscattering functions are determined empirically and arather complicated calculation
yields chlorophyll concentration.

Applied to Lake Superior using a default set of parameters, this semi- analytical ap-
proach resulted in predictions of chlorophyll concentration that Li et al. (2004) character-
ize as having “better agreement” with the field results than the empirical algorithms tested
(see section below), though examination of their Figure 10 does not offer strong support
for this statement. The authors used their data to optimize the model parameters for Lake
Superior data in an attempt to improve the relationship between the predicted and observed
measurements. Although the optimization reduced the variability of the predicted values,
the new relationship was no more successful at reproducing the field data than was the
unoptimized model. The authors conclude that more work needs to be done to develop an
algorithm to retrieve chlorophyll concentrations more accurately in Lake Superior.

Estimating the optical cross- sections (the spectrally dependent absorption and scatter-
ing functions) of the various CPAs in the water can be quite involved. Until very recently
the only published study was that of Bukata et al. (1985). Work on development of a multi-
year, multi-lake database of optical properties reportedly is currently underway (personal
communication from an anonymous reviewer) and in the past few years a number of new
optical characterization studies (Lohrenz et al., 2004; Binding et al., 2008; Effler et al.,
2010; O’Donnell et al., 2010; Peng and Effler, 2010) have been presented. Although none
of the published studies was explicitly extended to development of new chlorophyll re-
trieval algorithms, they should provide a more solid basis for further exploration of the
method. However, these recent papers also point to complications that may make it even
more difficult to apply multi-component algorithms. For example, Binding et al. (2008)
showed that the NAP absorption spectrum in Lake Erie dependson the ambient level of
CDOM absorption, probably because some of the CDOM is in the form of colloids or ad-
hered to the surface of mineral particles. In addition, the Binding et al. (2008), O’Donnell
et al. (2010), and Peng and Effler (2010) work in Lake Erie and the Effler et al. (2010)
study in Lake Superior all demonstrate substantial spatialvariations in the measured opti-
cal cross sections.

Empirical algorithms for retrieving values of chlorophyll- a

Because chlorophyll is the dominant color-producing agentin the open ocean (Barale,
1991) most open-ocean retrieval algorithms either ignore the effects of the other CPAs
that might be present or assume that they co-vary with chlorophyll. These algorithms
have been developed by assuming a relationship between the chlorophyll concentration
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and some function of the radiance (or reflectance) values measured by the satellite. In the
most general mathematical terms, we can express this as

Cchl = f (g(R(λ))),

in which Cchl is the calculated concentration of chlorophyll,f andg are functions, and
R(λ) represents the satellite measured radiances in different bands (wavelengths),λ. The
function g represents some expression involving radiance values determined at one or
more wavelengths. The functionf represents some formulaic relationship between the de-
pendent variable chlorophyll concentration and the independent variable radiances passed
through the functiong.

Algorithms of this sort are termed empirical because the forms of the functionsf and
g and their coefficients are determined by statistical regression of radiance and chlorophyll
measurements obtained from field data rather than based purely on theory. One common
feature of the empirical algorithms is that the functiong(R(λ)) is based on the logarithm
of a ratio of two of the sensor bands. Because chlorophyll absorbs strongly in the blue
and weakly in the green (see Fig. 1), all other things being equal, the ratio of blue to green
radiance received at the satellite should be inversely proportional to the concentration of
chlorophyll (Fig. 2).

In preparation for operation of the current generation of satellite ocean color sensors,
NASA assembled a large database ofin situ observations of bio-optical conditions from
around the world. This database, which is continually updated, has been used to develop
and evaluate a number of empirical retrieval algorithms (O’Reilly et al., 2000). An exam-
ple subset of these algorithms, used by the first three ocean-color monitoring satellites, is
listed in Table 1.

Although algorithms of this sort have been successful when applied to satellite obser-
vations of the open ocean, it was not at all clear that they would be equally successful when
applied to more optically complex (so-called ”Case 2”, using the classification of Morel
and Prieur (1977)) waters where substances other than chlorophyll might have significant
optical effects. Reflectance spectra from these waters would be more complicated (Bukata
et al., 1985) and, in theory, the simple band ratio algorithms would be “invalid” (Binding
et al., 2008) . Nearshore areas of the Great Lakes that are influenced by riverine inputs
of dissolved organics and resuspension of bottom sedimentsas well as open water areas
affected by whitings or with significant concentrations of other suspended particles would
likely fall into this category of optical complexity.

Because the Great Lakes rarely are completely free of NAP or CDOM, use of band
ratio algorithms in the Great Lakes has been approached withsome skepticism. In his
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classic study using CZCS observations to study southern Lake Michigan, Mortimer (1988)
used the spectra presented by Bukata et al. (1985) as the basis for his remark that

The chief challenge facing remote-sensing in coastal waters is the disentan-
glement of the optical contributions of chlorophyll (Chl),suspended minerals
(SM), and dissolved organic carbon (DOC).

More recent papers (Li et al., 2004; Binding et al., 2008; Lohrenz et al., 2008; Binding
et al., 2010) also refer to this problem when discussing the difficulty of obtaining chloro-
phyll concentration values from satellite measurement of the Great Lakes using ratio algo-
rithms.

Bukata et al. (1991b) is the earliest work that attempted to evaluate the ocean data re-
trieval methods for application to the Great Lakes. Workingin Lakes Ladoga (Russia) and
Ontario these researchers examined the ability of empirical ocean retrieval algorithms to
estimate chlorophyll-a concentrations in inland waters. They tested several contemporary
(ca 1985) algorithms, including those developed by Gordon et al. (1983) for use with the
Coastal Zone Color Scanner (CZCS). Bukata et al. (1991b) used the empirical algorithms
andin situ measurements of upwelling radiance in Lake Ladoga to calculate chlorophyll
concentrations and compared these calculations with field measurements of chlorophyll.
Although no statistics were presented in the paper, it was apparent from their Figure 1
that the ocean algorithms were poor predictors of the measured values. The failure was
attributed to the optical complexity of the largely nearshore waters that were sampled; the
authors suggested that similar optical complexity also might be a problem throughout the
Great Lakes.

Re-examination of Bukata et al. (1991b) and of the results ofmore recent work sug-
gests that the failure of the algorithms tested may not have resulted entirely from the op-
tical complexity of the waters, but rather because the functional forms of the algorithms
they tested may have been inherently inadequate. Figure 3 shows that the current CZCS
algorithm, which is based on a polynomial power function, ismuch more sensitive over
the range of reflectance ratios tested by Bukata et al. (1991b) than are the simple power
function algorithms they examined, especially at higher concentrations.

Without more information about the methods used to collect the biological and optical
data presented in Bukata et al. (1991b), it is impossible to completely reassess these results.
We note, however, that an approximate reconstruction of therelationship between the
measurements and the predictions made by using the best algorithm reported in Bukata
et al. (1991b) shows a weak, though significant at the 10% level (p = 0.06), correlation
(Cpred = 0.24 ∗ Cobs + 2.66, r = 0.36). The correlation (Cpred = 0.39 ∗ Csat + 3.72, r =
0.37) is slightly better (p = 0.05), though the intercept is larger, if we use the current
CZCS algorithm (O’Reilly et al., 2000) with the approximatereflection ratios obtained
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by inverting the Bukata et al. (1991b) results (Fig. 4). The intercept using the current
CZCS algorithm may be biased high because the older algorithm examined by Bukata
et al. (1991b) was based on theR520/R550 ratio. The current algorithm uses either this
ratio or theR443/R550 ratio depending on the relative magnitudes ofR443 andR520. Because
reflection in the blue wavelengths is higher at lower chlorophyll concentrations, the ratio
R443/R550 would be higher than theR520/R550 ratio and the predicted concentrations lower.
Of course, it also is possible that enhanced absorption in the blue region of the spectrum
due to the presence of interfering substances (e.g. CDOM) would affect the ratio as well.

Use of satellite ocean color observations to study the Great Lakes

The standard ocean color products distributed by NASA include estimates of chlorophyll-
a concentrations are obtained from band ratio algorithms. Since SeaWiFS began produc-
ing usable data late in 1997 several studies have used the SeaWiFS standard chlorophyll
products derived from one of the empirical algorithms shownin Table 1 to study processes
in the Great Lakes. Other studies, which are discussed below, have focused on evaluation
and, in some cases, local or regional modification of these standard SeaWiFS algorithms.

Studies that used standard products to examine processes

Lesht et al. (2002) was the first work to use SeaWiFS chlorophyll observations to ex-
amine biological processes in the Great Lakes. Chlorophyllconcentrations were estimated
by using the OC2v2 algorithm (O’Reilly et al., 2000), which was the NASA standard at
the time, and the paper documented an early summer phytoplankton bloom in southern
Lake Michigan that occurred in response to a transient wind event. The paper included
a qualitative comparison of the retrieved chlorophyll values with a limited set of field
measurements, but did not attempt any statistical analysisor detailed verification of the
satellite observations within situ values. The authors noted that the magnitude of the
satellite estimates both before and during the phytoplankton bloom were consistent with
historical measurements of chlorophyll concentrations inLake Michigan and their calcula-
tions of primary production, which were based on the satellite derived chlorophyll values,
compared well with publishedin situ values.

In a modeling study comparing conditions in Lake Michigan in1998 and 1999 Chen
et al. (2004) used a few SeaWiFS chlorophyll images along with observations made during
the EEGLE program. Chen et al. (2004) concluded that their modeled spatial patterns of
chlorophyll distribution agreed well, in a qualitative way, with the SeaWiFS images which
were based on the OC2v2 algorithm. They did not, however, attempt to make a quantitative
comparison based on the modeled and observed concentrationvalues.

11



More recently, Kerfoot et al. (2008) also used EEGLE field observations and a few
selected SeaWiFS images to examine the springtime spatial pattern of chlorophyll con-
centration in southern Lake Michigan. The authors used a coastal atmospheric correction
method (Stumpf et al., 2003) intended for use in Case 2 waters, and generated chloro-
phyll images by using the SeaWiFS OC2v2, OC2v4 and OC4v4 algorithms. The satel-
lite estimates were compared with EEGLE program field measurements of chlorophyll
“taken along transects at 5-10 m depth from 22 Mar 98 – 11 Sep 99.” The associa-
tion between the field measurements (Ca) and the satellite estimates (Csat) was excellent
(Ca = −0.087[±0.171]+1.079[±0.102]Csat, r2 = 0.874,N = 18). The paper, however, was
not clear as to whether theCsat values used in the regression came from OC2v4 or OC4v4
algorithms nor was was there comment about the potential interference that might result
from the presence of high concentrations of either CDOM or NAP though at least some of
the samples were collected during the March 1998 EEGLE “plume” event (Lohrenz et al.,
2008). A subsequent paper (Kerfoot et al., 2010) used similar satellite data to examine
long term changes in the occurrence of a late winter phytoplankton bloom in Lake Michi-
gan. A note in this paper suggests that the regression described above (Kerfoot et al., 2008)
was based on OC2v4 retrievals. Kerfoot et al. (2010) collected additional samples in the
southern basin of Lake Michigan from 21-23 April 2008 and again found excellent cor-
respondence between the satellite derived chlorophyll andthe field observations, though
the slope differed significantly from 1 (Ca = −0.022[±0.082]+ 1.209[±0.058]Csat, r2 =

0.900,N = 51).
Lohrenz et al. (2008) used SeaWiFS OC2 retrievals from Lake Michigan to produce

chlorophyll values as input to a primary production model. No other information about
processing of the satellite data was provided in this paper.They found that the satellite
derived chlorophyll values were “generally comparable in magnitude to determinations
of chlorophyll in discrete samples.” However, the authors report that some of the satel-
lite estimates from inshore stations were “anomalously high” relative to the field values
and attribute this overestimation to the presence of high concentrations of CDOM orig-
inating from the St. Joseph River. In addition to overestimation of chlorophyll values
near the river outflow, the authors found that in 1999 and 2000the OC2 algorithm pro-
duced chlorophyll values that were lower than field values collected in offshore waters,
an effect they attributed to relatively high abundances of cryptophytes observed in the
phytoplankton population during 1999. Because cryptophytes absorb light preferentially
in the green region of the spectrum they would tend to distortthe chlorophyll estimates
based on the standard band ratio algorithm. Examination of Lohrenz et al. (2008) Figure
5, however, suggests that with the exception of the nearshore (within∼ 5 km from shore)
values from 1999, the retrieved chlorophyll values are quite reasonable. Using the data
plotted in this figure to approximate the root-mean-squarederror between retrieved and
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sampled chlorophyll values yields RMSE∼0.5 mg/m3 (about 18% of the mean observed
chlorophyll value) overall for each of the two different analytical methods (high-pressure
liquid chromatography and fluorometric assay) they used to determine the field chloro-
phyll concentrations. The average RMSE between paired chlorophyll values determined
by the two analytical methods was∼0.37 mg/m3. Lohrenz et al. (2008) conclude (their
p. 67) by stating that their findings are “consistent with those of other studies that have
found satellite estimates of chlorophyll to correctly represent spatial and temporal trends
in coastal waters despite bias in absolute accuracy.”

Finally, Barbiero et al. (2011) used SeaWiFS OC4v4 chlorophyll observations made
from 1998 though 2006 to demonstrate that the magnitude of the spring bloom in Lake
Huron has declined dramatically since 2003. The decline in chlorophyll concentration
suggested by the satellite data corresponded to field observations of declines in phyto-
plankton biovolume and to increases in spring dissolved silica and secchi depth that also
began in 2003 (Barbiero et al., 2009). The satellite data were processed from Level 1A
to Level 2 with NASA’s SeaDAS software using an advanced iterative atmospheric cor-
rection algorithm ((Bailey et al., 2010). Pixels were mapped to a standard grid and esti-
mated chlorophyll values extracted from locations corresponding to the U.S. EPA’s Great
Lakes National Program Office (GLNPO) open water monitoring stations. The field values
were obtained by using standard analytical methods. The relationship between 2002-2006
satellite and laboratory chlorophyll values was linear (Csat = 0.0145+ 1.000Clab) and
statistically indistinguishable from a 1:1 relationship (F = 70.76;p < 0.001;r2 = 0.50.)

Studies that use in situbiological observations and satellite data to evaluate algorithms

Rather than use satellite data to examine limnological processes, several studies have
focused on evaluation of the retrieval algorithms. We first consider those that use chloro-
phyll values derived from the radiances measured at the satellite along with the field obser-
vations of chlorophyll. These studies used satellite and field data that were approximately
matched in space and time. Because some of the satellite imagery may be obscured by
cloud cover and because, unlike the satellite measurementswhich are essentially aver-
ages over∼1 km2 areas, the field samples are point measurements, some variability due
to temporal and spatial mismatching is to be expected. Furthermore, because the satellite
retrievals also depend on the method used to remove the effects of the atmosphere from
the radiances measured at the satellite this type of study issubject to an additional de-
gree of uncertainty. However, despite these limitations, these studies are most like those
used to explore processes and shed considerable light on theapplicability of the algo-
rithms for limnological studies. In particular, they demonstrate how satellite chlorophyll
retrievals might be expected to correspond to field observations (so-called “ground truth”).
We describe those studies that are based solely onin situ observations of chlorophyll and
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radiance, thus eliminating the temporal, spatial, and atmospheric uncertainties, in the fol-
lowing section.

Working in Lake Superior during the springs of 1998-1999, Budd and Warrington
(2004) compared field values of chlorophyll obtained from several coastal transects off the
north shore of the Keweenaw peninsula with satellite estimates made using the OC2v2
algorithm. The satellite data were pre-processed to removenegative radiance values. Neg-
ative radiance values typically occur because the atmospheric correction method overes-
timates the contribution of atmospheric aerosol scattering to the satellite radiances, espe-
cially at short wavelengths (Stumpf et al., 2003). The imagery was screened to accept only
those images that matched the date of field sampling and that had fewer than 10% pixels
covered by cloud. The satellite values used in the comparisons were averages of the re-
trieved values within 3 by 3 pixel boxes surrounding the sampling locations. Field chloro-
phyll values ranged from 0.1 mg/m3 to 2.5 mg/m3 with all but two of the field observations
below 0.5 mg/m3; these two large values were considered outliers and eliminated from the
analysis. Although the slope of the relationship between the satellite and field values devi-
ated considerably from unity, the association between the remaining retrieved (COC2) and
measured (Chl) values was excellent (COC2 = 3.1(Chl) + 0.4, r2 = 0.87,N = 18). The
authors concluded that the tendency of OC2v2 to overestimate the field measurements re-
sulted from high concentrations of CDOM in the water. Because the relationship between
the retrieved and observed values was linear, they suggest multiplying the OC2v2 results
by a constant factor of 0.3 to obtain more accurate estimates.

Witter et al. (2009) compared field measurements collected in Lake Erie to SeaWiFS
retrievals using twelve empirical algorithms. The field data used in this work were taken
from the spring and summer GLNPO monitoring surveys done between 1998 and 2002
and represented all three Lake Erie basins. The field data were screened to eliminate high
(> 20 mg/m3) values of chlorophyll concentration and samples from within 2 km of land.
The satellite data were processed using the same atmospheric correction method used by
Budd and Warrington (2004) and screened with very similar criteria. Witter et al. (2009),
however, accepted images if fewer than 20% of their pixels were covered by cloud rather
then the 10% cloud limit required by Budd and Warrington (2004). Comparisons were
made with the field data only if all pixels within 5 pixels of the sampling locations were
cloud-free.

In general, the correlations between the retrieved and measured values was good (0.61<
r < 0.73). However, for nine of the twelve algorithms the slope of the correlation was less
than 0.7 and the intercept was greater than 2.0 mg/m3. In other words, most of the al-
gorithms seemed to be biased high at low chlorophyll concentrations and biased low at
higher concentrations. When stratified by basin, the agreement between the retrieved and
measured values improved from western basin to eastern basin, suggesting that interfer-
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ence from suspended sediments in the western and central basins negatively affected the
retrievals.

Witter et al. (2009) went on to use their data to develop a “regional algorithm” for
Lake Erie. In essence, they used regression to optimize a different form of empirical
algorithm specific to their observations. Specifically, Witter et al. (2009) found that the
expressionC = 10a+bR+cR2

, whereR = log(Rrs490/Rrs555) and a, b, and c are a set of
coefficients specific to the western, central, and eastern basins,provided a statistically
improved (relative to the standard NASA algorithms they tested) relationship between the
calculated and observed chlorophyll values in Lake Erie.

Because the regional algorithm described above still is based on a reflectance ratio
albeit with different coefficients, it still should be subject to the same types of interferences
that are expected to affect the standard algorithms though it is possible that the coefficient
changes also changed the sensitivity of the algorithm to thepresence of NAP and CDOM.
The authors state that improvement in fit between the measured values and those obtained
by using the optimized retrieval was small in the western basin and better in the central and
eastern basins, though the retrieved values still tended tounderestimate the field values.
An important conclusion of this work is that “an algorithm with a power-law form may be
effective” in a region of the lake where interference from suspended sediment is minimal.

Although he used MODIS data rather than SeaWiFS data in his work, Watkins (2009)
evaluated the OC4v4 algorithm using matched satellite and field data collected during
April, August, and September 2003 in Lake Ontario. The satellite data were processed by
using the standard NASA procedures that at the time includedan iterative near-infrared
atmospheric correction method. Like Witter et al. (2009), the Lake Ontario results showed
good association between the satellite retrievals and fielddata (r2 = 0.62) at open water
(> 30 m) stations, though the satellite estimates underestimated the field results (Csat =

0.42(Chla) + 1.01). The algorithm tended to overestimate the chlorophyll measured at
nearshore stations, especially in April when, the author notes, “suspended sediment and
dissolved organic matter are prevalent.”

Studies that use in situoptical and biological measurements to evaluate algorithms

Only two studies (Bergmann et al., 2004; Li et al., 2004) report usingin situ radiomet-
ric observations along with biological sampling to evaluate the standard empirical chloro-
phyll algorithms in the Great Lakes. In both cases, surface radiometers, profiling spectral
radiometers, and profiling absorption and attenuation meters were used to measure the op-
tical properties of the water column at each sampling station. These optical observations
provided direct measurements of the remote sensing reflectance values that were input to
the retrieval algorithms, thus avoiding the uncertainty associated with atmospheric cor-
rection models and the spatial and temporal mismatch between satellite and biological
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sampling.
Bergmann et al. (2004) did their work in southern Lake Michigan as part of the EE-

GLE program. Although the main aim of their research was to examine how resuspended
sediments alter the optical conditions in the water, they also tested the predictive ability of
seven empirical chlorophyll retrieval algorithms and reported the results in a single para-
graph at the end of their paper. These authors state that “there was a strong correlation
between measured and calculated chlorophyll concentration at most stations.” However,
they also found that the chlorophyll retrievals underestimated the field data by about 45%
at stations where the phytoplankton community was dominated by cryptophytes. They
attributed this underprediction to the high absorption of green wavelengths by the cryp-
tophytes. Interestingly, it was the offshore water that was dominated by cryptophytes,
so in contrast to the other studies discussed below, the algorithms performed better in
the nearshore than offshore. At those stations at which fewer than 40% of the phyto-
plankton were cryptophytes, the slope andr2 values for regressions relating the field data
to chlorophyll values calculated by using SeaWiFS OC2v2, OC4v4, and MODIS/OC3M
were 1.04/0.95, 0.73/0.83, and 0.70/0.89 respectively. These results did not seem to be
affected by the presence of high concentrations of suspended sediment.

Finally, using similar field methods, Li et al. (2004) evaluated nine empirical algo-
rithms and one “semi-analytical” algorithm using data collected in Lake Superior. We
only discuss the empirical algorithms here; the semi-analytical algorithm was discussed
above in the section on multicomponent models.

Chlorophyll concentrations in Lake Superior generally arevery low. The range of
values reported by Li et al. (2004) was∼0.5 to∼1.2 mg/m3. In contrast to the results re-
ported by Budd and Warrington (2004) for the same waters, none of the calculated chloro-
phyll values using several algorithms was correlated with the field measurements. Li et al.
(2004) attempted to find an optimized regional algorithm by manipulating the coefficients
of the OC4v4 algorithm, but the optimized algorithm did not improve the results. In all
cases the empirical algorithms overestimated the field measurements. The authors attribute
this to the low ratio of chlorophyll-a to dissolved organic material in the coastal Lake Su-
perior waters they sampled. Budd and Warrington (2004) alsospeculated that CDOM
would negatively affect the retrievals though they did not present any CDOM measure-
ments.

Discussion

Like many inland and coastal waters, the Great Lakes usuallyare thought of as op-
tically complex (Case 2) and many researchers (as noted above) have assumed that the
band ratio algorithms will not be at all useful for study of these waters. Unfortunately, the
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few published studies that evaluate multi-component models developed for Case 2 waters
showed that they were not successful predictors of chlorophyll concentration. Because
multi-component models would include the effect of all the significant CPAs, they could,
in theory, accommodate spatial and temporal variations in the concentrations of the sub-
stances that interfere with the band ratio algorithms. To accomplish this, however, the
optical cross sections of the CPAs would have to be determined and furthermore, some
assessment would have to be made as to the spatial and temporal variability of those cross
sections. As we noted above, work intended to develop a database of optical cross sec-
tions for the Great Lakes is currently underway. None of thiswork that might be directed
toward development of retrieval algorithms has been published as of this writing. We hope
that when it is, it will be fully accessible to the broad community and be sufficiently gen-
eral so that it can be widely implemented. Until that time, researchers interested in using
satellite imagery to study phytoplankton processes the Great Lakes will have to rely on the
commonly available and easily implemented band ratio methods.

Table 2 shows that with one exception (Li et al., 2004), all the studies that used the
band ratio algorithms and collected matched field data showed a good correspondence be-
tween retrieved and observed values, although only a few demonstrated a 1:1 relationship.
Clearly, because these published studies represent the work of different investigators who
used different field and satellite data processing methods and who studied different areas
of different lakes at different times in different years it is not surprising that the results
differ in detail. What is surprising, in our view, is the consistent significant linearity of the
relationships. This linearity indicates to us that though they are not ideal, the band ratio
algorithms can provide estimates that are reflective of the true chlorophyll concentrations
in the Great Lakes. The degree to which these estimates are useful will depend, of course,
on the purpose for which they are intended.

Given that the waters of the Great Lakes are never completelyfree of interfering CPAs
and that the phytoplankton assemblages will vary between and within lakes as functions of
space and time (Fahnenstiel and Scavia, 1987) , what then canaccount for the consistent
linearity between predicted and observed chlorophyll values found when the band ratio
algorithms have been used in Great Lakes research? Because the standard empirical algo-
rithms are based on analysis of oceanic measurements, it certainly is reasonable to assume
that they would not be appropriate for the Great Lakes where the phytoplankton popula-
tions differ from oceanic populations and also vary considerably within and between lakes
and from season to season. The question is how much does this variation affect the re-
trievals? We might further ask if such variations can account for differences in the results
demonstrated in the published work? We attempted to addressthese questions by using
the Bukata et al. (1985) multicomponent optical model (Eqs 1-3 above) in a diagnostic
mode.

17



As noted above, the empirical algorithms are based on the assumption that chloro-
phyll is the dominant CPA in the water and, if other CPAs are present, they co-vary with
chlorophyll concentration. Considering the situation when the absorption and scattering
processes result only from the presence of chlorophyll and water, then the empirical algo-
rithms must parameterize these processes in their functional forms and parameter values.
Assuming the absorption and scattering properties of pure water are universal, the specific
forms of the empirical algorithms must represent some global average of the scattering
and absorption properties of phytoplankton and co-variates.

We tested the question of how the retrieved chlorophyll values would depend on the
specified absorption spectrum by using the Bukata et al. (1985) multicomponent optical
model along with the two field measured phytoplankton absorption spectra determined by
Bukata et al. (1985) and the one determined by Lohrenz et al. (2004). We used the model
to produce theoretical reflectance spectra that might be expected in Case 1 (phytoplank-
ton dominated) waters for several different values of chlorophyll concentration. We then
sampled these spectra at the wavelengths used by the currentNASA standard empirical
algorithm for SeaWiFS (OC4v6) and compared the retrieved chlorophyll values to those
that were used to generate the spectra (Fig. 5).

The results shown in Fig. 5 show that, assuming the Bukata et al. (1985) model and
phytoplankton backscattering cross-section are appropriate, that the retrievals indeed de-
pend on the form of the phytoplankton absorption spectrum. Despite the differences, the
results are linear, though the slopes vary between 0.5 and 1.5. The highest slope corre-
sponds to the case where the assumed phytoplankton absorption spectrum (Bukata et al.
(1985) spectrum C) does not show a distinct absorption peak in the blue. That spectrum re-
sembles the phytoplankton absorption spectra presented byBinding et al. (2008) in which
CDOM (highly absorbent at short wavelengths) may have been adsorbed on the plankton
particulates or otherwise retained on the filter being analyzed. The other two spectra are
more typical with distinct absorption peaks in both the blueand red regions.

To see if the possible presence of CDOM and NAP could account for the diverse results
reported by the studies listed in Table 2, we again used the model to simulate OC4v6
chlorophyll retrievals for cases in which both CDOM and NAP were allowed to vary over
a range of values. For this exercise we used the Lohrenz et al.(2004) phytoplankton
absorption spectrum along with the spectral model of NAP absorption from Binding et al.
(2008) and the backscattering functions provided by Bukataet al. (1985). Because the
model components have been drawn from studies that were doneat different times and
in different lakes, we do not expect the results to be exact or definitive, but rather to help
illustrate how, in theory, the presence of these interfering substances might confound the
band ratio retrieval algorithms. The results are plotted inFig. 6. We note that Bukata et al.
(1985) parameterized CDOM absorption in terms of the more commonly measured DOC
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concentration which we used in the model. Much of DOC is not colored, and Binding
et al. (2008) found that absorption due to CDOM could range from 0.08 m−1 to 0.75 m−1

in Lake Erie. When normalized by the observed concentrationof DOC, Binding et al.
(2008) found the average specific absorption coefficient at 440 nm (ˆaCDOM(440) in Eq. 2
above) was 0.102 m2 g−1 which agreed well with the value 0.115 m2 g−1 determined in
Lake Ontario by Bukata et al. (1985).

In the absence of CDOM (Fig. 6a), adding any suspended particles (indicated by the
TSM concentrations shown in the figure legends) reduces the slope and increases the inter-
cept of the relationship between retrieved and modeled chlorophyll values thus producing
predictions that are lower than model input values at higherconcentrations. We should
repeat here that we view these model results as qualitative rather than quantitative. Ob-
served TSM concentrations in more turbid regions of the Great Lakes (e.g. the western
Lake Erie or nearshore areas subject to sediment resuspension) can reach 20 g/m3 shown
as the highest TSM concentration in Fig. 6. At this TSM level,using the backscatter and
absorption spectra noted above, we found that the retrievedchlorophyll values became
nearly independent of the model input chlorophyll values. The modeled effect of adding
particles primarily depends on the scattering properties of the particles. The particle scat-
tering cross sections presented by Bukata et al. (1985) range from 0.052 to 0.034 m2g−1

with the higher values occurring at shorter wavelengths. Unfortunately, very few detailed
studies of particle scattering have been done in the Great Lakes and we know of no other
published backscattering cross section for Great Lakes particulates. In the absence of
particulates, increasing the concentration of CDOM (Figs.6b, 6c, and 6d) changes the
relationship between retrieved and model input values fromlinear to logarithmic, with
very rapid increases in the predicted values at low concentrations. Higher concentrations
of CDOM also tend to increase the sensitivity of the retrieval to changes in particulate
concentrations and result in reduced slopes and higher intercepts.

The results of the studies listed in Table 2 generally are consistent with these quali-
tative model results. The tendency of the retrievals from Lakes Erie and Ontario (Witter
et al., 2009; Watkins, 2009) to underestimate the field values suggests the presence of NAP
especially at higher chlorophyll concentrations. The LakeOntario results (Watkins, 2009)
particularly were poor in the nearshore where NAP and CDOM were prevalent. When
chlorophyll and suspended particulate concentrations arelow but CDOM is present, such
as in the coastal Lake Superior case studied by Budd and Warrington (2004), the slope
of the modeled regression will be greater than 1 near the origin, but will flatten out as
chlorophyll concentration increases, more or less as was observed (e.g. the “outlier” val-
ues identified by Budd and Warrington (2004)). The Lake Huronresults in Barbiero et al.
(2011) were based on samples collected over a number of yearsin the open lake where
both CDOM and NAP concentrations are expected to be low and conditions most like
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“Case 1” waters. In the coastal areas of southern Lake Michigan sampled by Kerfoot
et al. (2008) and Kerfoot et al. (2010) the authors comment onminimal effects of CDOM
(Kerfoot et al., 2010) and on the insensitivity of the relationship between retrieved and
observed chlorophyll concentration on the presence of suspended particulates (Bergmann
et al., 2004). In Lake Michigan, however, the composition ofthe phytoplankton commu-
nity was found to affect the relationship because of differences in the absorption spectrum
(Bergmann et al., 2004).

The reasons satellite data are so attractive for limnological studies is that, relative to
traditional ship-based sampling, they are (a) synoptic and(b) available year-around with
near daily frequency. No other sampling method affords the possibility for simultaneous
measurement of properties over such large areas or for conducting studies based on spa-
tially resolved time series. Given that the optical properties of the lakes (i.e. the concen-
trations of CPAs and composition of the phytoplankton communities) will no doubt vary
in both space and time, it certainly is reasonable to question the value of satellite retrievals
based on any single empirical algorithm. Because the optical cross sections on which the
multi-component algorithms depend also will vary in space and time, making simultane-
ous retrievals of all the CPAs similarly questionable unless some scheme for dynamic (in
both space and time) adjustment of the optical cross sections is developed.

Several authors (Lohrenz et al., 2004; Shuchman et al., 2006; Lohrenz et al., 2008)
comment on the utility of satellite imagery for estimating spatial and temporal trends re-
gardless of the absolute accuracy of the algorithms even though this would strictly require
that the algorithms be broadly applicable over space and time. To determine how unpre-
dictable variations in NAP and CDOM might affect chlorophyll retrievals made by using
the empirical algorithms we conducted a Monte-Carlo experiment in which we randomly
and independently selected the concentrations of the interfering CPAs input to the Bukata
et al. (1985) model from log-normal distributions assumed typical of the distributions in
the Great Lakes. For each realization of the model we also randomly selected the phyto-
plankton absorption spectrum from those determined by Bukata et al. (1985) and Lohrenz
et al. (2004), the NAP absorption spectrum from those presented by Bukata et al. (1985)
and that derived by Binding et al. (2008), and the CDOM absorption from data published
by Bukata et al. (1985), Binding et al. (2008), and Effler et al. (2010). The model was run
10,000 times and a randomly selected subset of 250 of the 10,000 realizations was used to
generate the results shown in Fig. 7.

The relationship between the retrieved and modeled chlorophyll shown in Fig. 7 is
representative of the Monte-Carlo results. The best fit relationship is linear with a slope
less than one and a positive intercept, similar to those presented in most of the papers we
have reviewed above (Bergmann et al., 2004; Budd and Warrington, 2004; Kerfoot et al.,
2008; Witter et al., 2009; Watkins, 2009; Kerfoot et al., 2010; Barbiero et al., 2011). The
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increased scatter at higher values of chlorophyll shown in Fig. 7 results from the three
different chlorophyll absorption cross sections input to the model (see Fig. 5). This vari-
ability emphasizes the importance of using accurate optical cross sections when applying
a multi-component optical model such as the one on which thissimulation was based.

Each of the field studies cited above involved collection of data from different loca-
tions at different times and in some cases over areas as large as an entire lake and over
time spans of several years. If we assume that the samples collected as part of these stud-
ies randomly varied in concentrations of interfering substances and optical properties, then
our Monte-Carlo study simulates the field data. Unfortunately, none of the field studies re-
port simultaneous measurement CDOM or NAP with the chlorophyll values. Though the
Monte-Carlo model is only qualitative, the linear relationship between the retrieved and
modeled chlorophyll values found in Fig. 7 and the linear relationships between observed
chlorophyll in the papers reviewed suggests that in a statistical sense, the empirical algo-
rithms can reflect the chlorophyll concentrations in the Great Lakes despite local variations
in the concentrations and composition of the CPAs.

One additional aspect of the studies we reviewed should be mentioned in the context
of assessing the uncertainty associated with application of the band ratio methods. Many
of the field measurements reported in the work we reviewed were collected in the spring.
The EEGLE sampling in Lake Michigan (Bergmann et al., 2004; Lohrenz et al., 2004,
2008) took place during March and April. Kerfoot et al. (2010) used Lake Michigan
data collected in April and Barbiero et al. (2011) used GLNPOdata from spring surveys
(March and early April) in their study of Lake Huron. Although several of the other
studies we cite used data collected throughout the year, only the Budd and Warrington
(2004) study in Lake Superior formally tested the dependence of the retrieval on season;
they found no seasonal effect. Because the number of samples that is collected in any
single survey is limited, the tendency has been to pool all the available data. Without more
specific information about timing of the field sampling, we cannot evaluate this source of
variability.

By design, we have restricted our review to the published literature that deals explic-
itly with retrieval of chlorophyll concentrations from satellite observations of the North
American Great Lakes. These papers are dominated by studiesusing data from SeaW-
iFS or MODIS and band ratio algorithms. We would be remiss, however, if we did not
also note that novel chlorophyll retrieval methods based ondifferent spectral bands and
on other sensors have been applied to other optically complex waters (coastal, estuarine,
and inland) where band ratio algorithms have been found lacking. Although not within
the scope of our review, because these methods offer possible alternatives that could be
exploited in studies of the Great Lakes, we describe them briefly here.

In March, 2002 the European Space Agency (ESA) launched a satellite (ENVISAT)
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that carried a variety of instruments intended for environmental monitoring. Among these
instruments was the Medium Resolution Imaging Spectrometer (MERIS) which was de-
signed primarily for ocean color applications. In contrastto the fixed spectral bands pro-
vided by SeaWiFS and MODIS, MERIS samples 15 spectral bands between 390 nm and
1040 nm, the exact location and the width of which are programmable and can be modified
in orbit by ground control. For ocean color applications, the fifteen bands are distributed
between 412.5 nm and 900 nm. Because Sun-stimulated chlorophyll fluoresces near 685
nm, three MERIS bands (665 nm, 681.25 nm, and 708.75 nm) are concentrated in this
region of the spectrum. Gower et al. (1999) describe how these bands can be used in
an algorithm based on the Fluorescence Line Height (FLH) to estimate chlorophyll con-
centrations in regions where retrievals based on band ratioalgorithms are complicated by
the presence of NAP and CDOM. Other researchers have explored using FLH based on
these MERIS band as well as the MODIS band at 678 nm but found erratic results when a
substantial amount of NAP was present.

At least three other algorithms with potential for improving chlorophyll retrievals in
optically complex waters have been the subject of recent study. The first, known as the
maximum chlorophyll index (MCI), is based on the amplitude of the MERIS 708.75 nm
band. Gower et al. (2008) discuss the algorithm as well as itsapplication for detection of
blooms and other transient events. This algorithm seems especially well suited to blooms
of cyanobacteria (Alikas et al., 2010; Binding et al., 2011). Dall’Olmo et al. (2005) ex-
plored the use of SeaWiFS and MODIS red and near-infrared (NIR) bands for retrieving
chlorophyll concentration from observations of turbid water. These algorithms were used,
along with a similar three-band algorithm based on MERIS observations by Gitelson et al.
(2007) in a study of chlorophyll in Chesapeake Bay. In this highly productive system, Gi-
telson et al. (2007) found that the algorithms could accountfor approximately 80% of the
variability in chlorophyll observations with a relative error of about 20%. Finally, a com-
pletely different approach that uses five bands has been proposed by Gohinet al. (2002).
The basis of this algorithm is a look-up table developed fromfield observations in which
chlorophyll concentration is related to a data triplet consisting of the standard OC4 band
ratio and the radiances at 412 nm and 555 nm. In a comparison ofalgorithm performance
conducted in the Bay of Bengal and the Arabian Sea, Tilstone et al. (2011) found this
five-band algorithm was the most accurate for both coastal and open ocean areas.

Only one paper (Gons et al., 2008) has assessed the use MERIS data or these algo-
rithms for research in the Great Lakes. Gons et al. (2008) chose two diverse areas, indica-
tive of the extremes of trophic conditions in the lakes, to examine the performance the FLH
and red-to-NIR algorithms in oligotrophic (Keweenaw Bay, Lake Superior) and eutrophic
(Green Bay, Lake Michigan) waters. They found that the red-to-NIR algorithm was ap-
plicable to Green Bay, but not to Keweenaw Bay where the method resulted in negative
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values. Although they found a strong linear relationship between observed chlorophylll-
a concentrations and those predicted by the FLH algorithm in Keweenaw Bay, when the
algorithm was applied to an entire scene, results from closely located pixels exhibited con-
siderable noise, suggesting that conditions in Lake Superior may be very close to or below
the MERIS detection limit.

Conclusion

Modeling the performance of the empirical algorithms for different combinations of
interfering substances and properties shows that the empirical band ratio retrieval algo-
rithms can produce estimates of chlorophyll concentrations that are proportional to model
input values. This finding is consistent with numerous studies reporting significant linear
relationships between chlorophyll determined from satellite observations using band ratio
algorithms and that measuredin situ. Furthermore, the published evidence suggests that
even if the absolute accuracy of the empirical retrievals may be questioned, the spatial and
temporal patterns in chlorophyll concentrations derived from satellite data correspond to
what is known about the lakes from other types of studies (Lesht et al., 2002; Chen et al.,
2004; Shuchman et al., 2006; Kerfoot et al., 2008; Lohrenz etal., 2008; Watkins, 2009;
Barbiero et al., 2011). Because they are subject to interference from other CPAs, the em-
pirical algorithms should provide better estimates of chlorophyll concentration in regions
where the influence of CDOM and NAP are likely to be minimal (e.g. the open waters
of the lakes). In nearshore areas, in regions where the lakesare affected by significant
riverine inputs, and in waters subject to frequent resuspension of bottom sediments (e.g.
western Lake Erie and other shallow areas), the retrievals may be seriously distorted by
the presence of these interfering substances and should be used with great care.

Ideally studies based on satellite observations would include some field measurements
for confirmation which would include simultaneous determinations of the concentrations
of the other CPAs present in the waters. Although the empirical band ratio methods cur-
rently are the most accessible, recent application of otheralgorithms and data from new
sensors have shown promise in optically complex waters. More studies assessing algo-
rithms such as FLH, MCI, and red-NIR modeling are needed to determine their applica-
bility to the Great Lakes. Additional studies of the opticalproperties of the Great Lakes
also are needed to better understand the regional and temporal variations of these prop-
erties. Because of the sensitivity of multi-component models to variations in the input
optical cross sections, accurate determination of these cross sections are particularly im-
portant. We are hopeful, of course, that the latest work (Binding et al., 2010; Effler et al.,
2010; O’Donnell et al., 2010; Peng and Effler, 2010) and other ongoing, not yet published,
studies will provide new insight and extend the applicationof satellite remote sensing to
the Great Lakes.
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Carder, K.L., Müeller-Karger, F., Harding, L., Magnuson,A., Phinney, D., Moore,
G.F., Aiken, J., Arrigo, K.R., Letelier, R., Culver, M., 2000. Ocean Color Chloro-
phyll a Algorithms for SeaWiFS, OC2 and OC4: Version 4. SeaWiFS postlaunch
technical report series. Vol 11, Part 3, Ch. 2. NASA-TM-2000-206892. NASA God-
dard Space Flight Center. Greenbelt, Maryland.

Pan, D., Gower, J., Borstad, G., 1988. Seasonal variation ofthe surface chlorophyll distri-
bution along the british columbia coast as shown by czcs satellite imagery. Limnology
and Oceanography 33, 227–244.

Peng, F., Effler, S.W., 2010. Characterizations of individual suspendedmineral particles
in western lake erie: implications for light scattering andwater clarity. J. Great Lakes
Research 36, 686–698.

Pozdnyakov, D., Korosov, A., Grassl, H., Pettersson, L., 2005a. An advanced operational
algorithm for operational retrieval of water quality from satellite data in the visible.
International Journal of Remote Sensing 26, 2669–2687.

Pozdnyakov, D., Shuchman, R., Korosov, A., Hatt, C., 2005b.Operational algorithm for
the retrieval of water quality in the Great Lakes. Remote Sensing of Environment 9,
352–370.

Ruddick, K.G., Ovido, F., Rijkeboer, M., 2000. Atmosphericcorrection of SeaWiFS
imagery for turbid coastal and inland waters. Applied Optics 39, 897–912.

Shuchman, R., Korosov, A., Hatt, C., Pozdnyakov, D., Means,J., Meadows, G., 2006.
Verification and application of a bio-optical algorithm forLake Michigan using Sea-
WiFS: a 7-year inter-annual analysis. J. Great Lakes Research 32, 258–279.

Singh, S., Cracknell, A., Charlton, J., 1983. Comparison between czcs data from 10
july 1997 and simultaneousin situ measurements for southeastern scottish waters.
International Journal of Remote Sensing 4, 755–784.

Stumpf, R.P., Arnone, R., Jr., R.G., Martinolich, P., Ransibrahmanakul, V., 2003. A
partially-coupled ocean-atmosphere model for retrieval of water leaving radiance
from SeaWiFS in coastal waters, in: Patt, F. (Ed.), Algorithm Updates for the Fourth
SeaWiFS Data Reprocessing. NASA Goddard Space Flight Center, Greenbelt, Mary-
land. volume 22.

Tanis, F., 1984. Phase 2 development of Great Lakes algorithms for Nimbus-7 Coastal
Zone Color Scanner. Final Report 157900-23-F. Mich. Environ. Res. Inst.. Ann Ar-
bor, Michigan.

29



Tilstone, G.H., Angel-Benavides, I.M., Pradhan, Y., Shutler, J.D., Groom, S., Sathyen-
dranath, S., 2011. An assessment of chlorophyll-a algorithms available for SeaWiFS
in coastal and open areas of the bay of bengal and arabian sea.Remote Sensing of
Environment 115, 2277–2291.

Watkins, J.M., 2009. Comparison of shipboard and satellitemeasurements of surface
water temperature and chlorophylla in Lake Ontario. Aquatic Ecosystem Health &
Management 12, 271–280.

Witter, D.L., Ortiz, J.D., Palm, S., Heath, R.T., Budd, J.W., 2009. Assessing the the
application of SeaWiFS ocean color algorithm to Lake Erie. Journal of Great Lakes
Research 35, 361–370.

30



Table 1: Sampling of algorithms for retrieving chlorophyll- a concentration (Cchl) from satellite observations
of remote sensing reflectance. A more complete list of algorithms may be found in O’Reilly et al. (2000).
R in these functions is log10 of the indicated band ratio. CZCS refers to the Coastal Zone Color Scanner,
SeaWiFS to the Sea-viewing Wide Field Spectrometer, MODIS to the Moderate-resolution Imaging Spec-
trometer.

Algorithm Functional Representation Bands Employed (R)
CZCS/OC3C Cchl = 10.0(0.362−4.066R+5.125R2

−2.6458R3
−0.597R4) 443> 520/550

SeaWiFS/OC4v4 Cchl = 10.0(0.366−3.067R+1.930R2+0.649R3
−1.532R4) 443> 490> 510/555

MODIS/OC3M Cchl = 10.0(0.2830−2.753R+1.4578R2
−0.6598R3

−1.4038R4) 443> 490/550
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Table 2: Regression results from those studies with quantitative comparisons between chlorophyll values retrieved with standard OC2v2,
OC2v4, and OC4v4 empirical algorithms and field measurements.

Reference Lake Algorithm: Regression Notes
Bergmann et al. (2004) Michigan OC2v2:Csat = 0.81∗C, r2 = 0.66 No intercept given. All stations.

OC2v2:Csat = 1.04∗C, r2 = 0.95 No intercept given. Non-cryptophyte
stations.

OC2v4:Csat = 0.68∗C, r2 = 0.69 No intercept given. All stations.
OC2v4:Csat = 0.78∗C, r2 = 0.83 No intercept given. Non-cryptophyte

stations.
OC4v4:Csat = 0.65∗C, r2 = 0.68 No intercept given. All stations.
OC4v4:Csat = 0.73∗C, r2 = 0.83 No intercept given. Non-cryptophyte

stations.
Budd and Warrington (2004) Superior OC2v2:Csat = 3.1 ∗C + 0.4, r2 = 0.87 Without two outliers
Li et al. (2004) Superior OC2v2:Csat = 5.12∗C − 1.05, r2 = 0.05 Based onin situ radiances

OC4v4:Csat = 3.82∗C − 0.50, r2 = 0.05
Kerfoot et al. (2008) Michigan OC2v4:C = 1.08∗Csat − 0.087, r2 = 0.84 RegressedC f ield on Csat; 1998-1999

data; March-September
Watkins (2009) Ontario OC4v4:Csat = 0.42∗C + 1.01, r2 = 0.62 Offshore (> 30 m) sites; March-

December
Witter et al. (2009) Erie OC2v4:Csat = 0.46∗C + 2.06, r2 = 0.72 All basins, spring and summer open-

lake data
OC4v4:Csat = 0.75∗C + 2.21, r2 = 0.70

Kerfoot et al. (2010) Michigan OC2v4:C = 1.209∗Csat − 0.022 21-23 April 2008 data
Barbiero et al. (2011) Huron OC4v4:Csat = 1.00∗C + 0.01, r2 = 0.50 2002-2006 spring open lake data
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Figure 1: Average Lake Michigan phytoplankton absorption spectrum, normalized to 440 nm, from Lohrenz
et al. (2004). Data were collected during the springs of 1998-2000 from stations along three nearshore
transects in the southeast portion of the lake. Vertical lines show the positions of the six SeaWiFS bands in
the visible portion of the spectrum.
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Figure 2: Theoretical subsurface reflection (non-dimensional) spectra for varying concentrations of
chlorophyll-a calculated by using the method described by Bukata et al. (1991a). Optical cross sections
for chlorophyll-a and for pure water are those determined by Bukata et al. (1985) for Lake Ontario and later
used by Shuchman et al. (2006). Results shown are for the casewhen there are no other optically active
component (e.g., suspended minerals and DOC) in the water. Vertical lines show the positions of the six
SeaWiFS bands in the visible portion of the spectrum.
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Figure 3: Comparison of chlorophyll-a concentrations predicted by the current CZCS algorithm (O’Reilly
et al., 2000) and four CZCS algorithms tested by Bukata et al.(1991b) for a range of reflectance ratios.
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Figure 4: Chlorophyll-a concentrations predicted by the current CZCS algorithm (O’Reilly et al., 2000)
and the best algorithm from Bukata et al. (1991b) versus measured chlorophyll values from Lake Ladoga.
Values of the field measurements and of the reflectance ratiosused to calculate the points on this figure were
estimated from Fig. 1 in Bukata et al. (1991b). The solid lineis 1:1, the dashed line is the best fit for Bukata
algorithm, and the dash-dotted line is the best fit for the thecurrent CZCS algorithm.
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Figure 5: Chlorophyll-a concentrations (Cr) retrieved by using the current SeaWiFS algorithm (OC4v6)
versus modeled chlorophyll concentrations (Cm) in the absence of any CDOM or NAP calculated with the
Bukata et al. (1985) model for three chlorophyll absorptionspectra. Dotted line indicates 1:1 relationship.
Plotted points were selected randomly and used to calculatethe linear regression coefficients.
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Figure 6: Chlorophyll-a concentrations retrieved by using the current SeaWiFS algorithm (OC4v6) versus
modeled chlorophyll concentrations assuming varying concentrations of NAP for CDOM concentrations of
0.0 g/m3 (panel a), 1.0 g/m3 (panel b), 2.0 g/m3 (panel c), 3.0 g/m3 (panel d). Solid line indicates a 1:1
relationship. Plotted points were selected randomly.
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Figure 7: Chlorophyll-a concentrations (COC4) retrieved by using the current SeaWiFS algorithm (OC4v6)
versus modeled chlorophyll concentrations (Cm) for randomly selected combinations of chlorophyll, CDOM
and NAP concentrations and randomly selected absorption spectra for chlorophyll, NAP, and CDOM.
Dashed line indicates a 1:1 relationship. and the solid lineshows the best fit to the plotted points. The
plotted points were selected randomly.
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