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Abstract

We review the literature relating to the retrieval of chiphg!l concentrations in the Great
Lakes from satellite observations. Most studies show thmatshtellite estimates of lake
chlorophyll concentration are linearly related to the atasd concentrations, though they
tend to overestimate concentrations at lower values andrestimate them at higher val-
ues. Deviations from a consistent, accurate, linear oalahip can be attributed to tempo-
ral and spatial variations in the inherent optical progsrof the color producing agents in
the water as well as to varying concentrations of interfpgabstances such as suspended
non-algal particles and colored dissolved organic maifée. confirmed these results by
using a simple optical model to examine the sensitivity @f tétrieved chlorophyll val-
ues to the concentrations of interfering substances anidfezehces in model parameters.
Because the spatial and temporal optical properties of teatG&akes are unpredictable,
no retrieval method is likely to produce accurate resultsha time. The papers we re-
viewed show that simple band ratio algorithms can providerophyll estimates that are
proportional toin situ concentrations. The bulk of the literature suggests thatotdmnd
ratio methods will be of most value in regions where the catregions of interfering
substances such as dissolved organic material or suspeedadents are minimal. Be-
cause of these limitations we recommend that future papesepting chlorophyll analy-
sis based on satellite data provide confirming field obsemathat include measurements
of suspended particles and dissolved organic carbon. Weedesmmend that Great Lakes
scientists explore novel methods for retrieving chlordpbgncentrations from satellite
observations that have proven useful in other optically glemwaters.
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I ntroduction

The number of studies that have used satellite observatioasplore biological fea-
tures of the Great Lakes has increased dramatically in teasars. Of the published
research that has focused on estimation of chloroghgtincentration, there are two gen-
eral classes of papers; those that report using satellitetdaxplore the processes that
affect the phytoplankton community size and distribution ia ldikes (Lesht et al., 2002;
Chen et al., 2004; Kerfoot et al., 2008; Lohrenz et al., 26@8foot et al., 2010; Barbiero
et al., 2011) and those that present evaluations the metlsmikto convert satellite ob-
servations to estimates of chlorophglboncentration (Bergmann et al., 2004; Budd and
Warrington, 2004; Li et al., 2004; Shuchman et al., 2006&¥iet al., 2009). Although
many of these studies use the same equations, often termmedakalgorithms, to es-
timate chlorophyll concentration, their conclusions widispect to the applicability and
success of the estimations can be quitéedent. In fact, because the literature can seem
contradictory and confusing, we believe that a review os¢hpapers is useful not only
to assess the research that has been published, but alsdetstamd the applicability and
limitations of the methods and to suggest avenues for fugearch.

Our review includes studies of each of the lakes and inclddés collected by three
ocean color sensors; the Coastal Zone Color Scanner (CZb&S)Sea-viewing Wide
Field-of-view Sensor (SeaWiFS), and the Moderate Reswiuthaging Spectroradiome-
ter (MODIS). In analyzing these studies, we attempted terd@nhe and describe the im-
portant aspects of the methods used by the original authiogever, because the original
works varied in their purposes and approaches they alsed/arithe amounts of method-
ological detail provided and for some papers we were unabdatract technical specifics
that might have been useful. In a few cases we used the peabiddta to reanalyze the
original results in an attempt to clarify or generalize thehinese cases are indicated in
the text. Our review, however, is not intended to be a detatady-by-study critique nor
to be a presentation of new field or laboratory observations.

In the following section we briefly describe the history ofitéd States £orts in satel-
lite remote sensing of ocean color. Other space agencigahlgdahose in Japan and Eu-
rope, also have launched ocean color monitoring satelbtgghese have not been used to
any extent in studies of the Great Lakes. We then presentasie theory behind the re-
trieval algorithms used to convert the satellite obseovetio geophysical values, focusing
first on multi-component algorithms and then on the more comlynused empirical band
ratio algorithms. Because applications of empirical bamttbrmethods are much more



common in the literature we devote the subsequent sectitetstudies that are based on
these algorithms. Finally, we discuss and summarize ouinfyscand conclusions.

Satellite remote sensing of ocean color

Satellite-borne ocean color sensors measure the sunbghiesed back toward the
satellite from substances present in surface layer of therwdhe depth to which the
sunlight penetrates the water depends on the compositithreafiater and can vary from
less than a meter in very turbid water to tens of meters irr @#ager where absorption and
scattering by the water itself is the major light attenugipnocess. The first satellite ocean
color sensor, the CZCS, was designed to determine if obs@ngafrom space could be
used to identify and quantify the suspended and dissolMestances thatfect the color
of ocean waters. CZCS measured the scattered sunlightratismuete bands in the visible
portion of the spectrum (each 20 nm wide, centered at 443 @thnm, 550 nm, and 670
nm). Intended as a proof-of-concept instrument, the CZGSaipd from October 1978
through June 1986 when the sensor failed. Although manyestused the data collected
in the 91-month life of the system to examine the distributad phytoplankton in the
oceans (Gordon et al., 1983; Singh et al., 1983; Pan et &8)1% similar applications
were done in the Great Lakes, probably because of problemthstiaé atmospheric cor-
rection algorithm (Tanis, 1984). A major result of the CZC&sron was the conclusion
that although it was a successful proof-of-concept expamipruncertainties in the quality
of the radiometric data indicated that future ocean colosses needed to be more stable
and have more reliable radiometric calibrations (Evans@oidion, 1994).

These requirements for radiometric calibration and stgivlere incorporated into the
follow-on sensors: SeaWiFS and MODIS. SeaWiFS, was lauhich&eptember 1997 and
produced data through early December of 2010. MODIS-A, tviaas launched in June
2002, still is producing data. The SeaWiFS sensor has desegt six bands in the visible
(412 nm, 443 nm, 490 nm, 510 nm, 555 nm, 670 nm) which were teeld@o facilitate
global studies of ocean color. Unlike SeaWiFS which wasgiesi specifically for ocean
color monitoring, MODIS was designed for a wide range of Eaytstem studies. MODIS
has 36 bands with @ierent spatial and radiometric resolutions. Seven bandwirisible
(412 nm, 442 nm, 488 nm, 531 nm, 551 nm, 667 nm, 678 nm) aredateprimarily for
ocean color studies. Both the SeaWiFS and MODIS instruneavs higher radiometric
resolution and wider dynamic range than did CZCS so the sg@se more sensitive and
less likely to be saturated in regions with high concendregiof scattering material.



Retrieval algorithms

The numerical processes used to convert the radiometrisurgrments made by the
satellite-borne sensors into interpretable geophyseales are referred to as retrieval al-
gorithms. Typically, the geophysical variabkeg. chlorophyll concentration) is expressed
as a function of either the normalized radiances (radiarfdfér unit area per unit solid an-
gle per unit wavelength interval) or the normalized remeteseng reflectances — the ratio
of the upwelling normalized radiance leaving the water wititident irradiance (power
per unit area per unit wavelength interval) on the waterasgrfat some number of bands.

The basic assumption underlying all such algorithms is #tig@nce of a unique rela-
tionship between the spectral content of the scatteredgsumheasured by the satellite-
borne sensor and the concentrations of color producingtag€RAs, sometimes referred
to as optically active components or OACs) in the water witticl the sunlight interacts.
Sunlight passing downward through the air-water interiacabsorbed and scattered by
the water and by the other materials dissolved and suspemtleelwater. This absorption
and scattering is wavelength dependent and each CPA hdieeedt absorption araor
scattering spectrum. In addition to the water itself, the#As usually are considered.
These are suspended minerals or, more generally, nonfsgatulates (NAP), colored
dissolved organic material (CDOM), and phytoplankton.

As an example, Fig. 1 shows the average phytoplankton atisorgpectrum deter-
mined by Lohrenz et al. (2004) for Lake Michigan from samgloione as part of the
Episodic Events Great Lakes Experiment (EEGLE) progiamy: //www.glerl.noaa.
gov/eegle/). This figure, which is typical of phytoplankton absorptswectra reported
by others (Bukata et al., 1991b; Bergmann et al., 2004; Weéteal., 2009) shows that
most communities of phytoplankton absorb most radiatioshatter (blue) wavelengths
and very little in the middle part of the spectrum (green).aAssult, green light is prefer-
entially scattered from algae-rich waters. The radianceived at the satellite is propor-
tional to the amount of light scattered, which, in the absesfcother CPAs, depends on
the concentration of chlorophyll. If other CPAs are prestrd radiance also depends on
the concentrations of those substances and on their alusogoid scattering properties.

Retrieval algorithms can be classified by the assumptiorerabout the optical com-
plexity of the water. Semi-analytical or multi-componenbaels attempt to model the
effects of multiple interacting substances. Empirical akions are based on the assump-
tion that a single optical componemtd. chlorophyll) is dominant. Both have been applied
to studies of the Great Lakes, though because empiricatitiigts are simpler to apply
and are used in standard processing software, studies bagbe empirical algorithms
are much more common.



Semi-analytical and multi-component model algorithms

Because phytoplankton may not be the only CPA in the watesngptete retrieval al-
gorithm would include theféects all of the constituents that interact with the inconsog
lar radiation. By considering each of these constituentsmretreival, multi-component
algorithms are intended to determine simultaneously time@atrations of each from the
sampled radiance spectrum. Many such algorithms have baexiogped and applied to
oceanic and coastal waters (see, for example, recent papdésircia et al. (2006) and
Chang et al. (2007)); here we concentrate on those that lemreused in the Great Lakes.

The first application of these methods to the Great Lakes neawork done by Bukata
and colleagues (Bukata et al., 1978, 1979, 1981b,a, 1983a18). Basing their methods
on the findings of Gordon et al. (1975), Bukata et al. (197@dugeld measurements of
upwelling and downwelling spectral irradiance along witbasurements of spectral atten-
uation to determine the filuse reflectance and attenuationfé@eent profiles in five bands
at ten stations along a nearshore (maximum depth 37 m) shimseestern Lake On-
tario. They used these calculations to compute the inhegidal properties (absorption
codticient @), scattering cofcient (0), total attenuation cdicient (), backscattering
probability B), forwardscattering probabilityH = 1 — B), volume scattering function
(8(®)), and scattering albeda)) of the water at the sampled locations.

By combining these calculations of the inherent opticaperties with simultaneous
measurements of chlorophyll;, NAP, and dissolved organic carbon (DOC) concentra-
tions (as a proxy for CDOM), Bukata et al. (1981b), were ableetermine the optical
cross sections of the CPAs in nearshore western Lake OniEnm® optical cross sections
are essentially the absorption and scattering spectractesistic of each constituent nor-
malized by the concentration of the constituent. That istdital absorption and scattering
properties of the water (measured by the inherent opticgdeaties) may be expressed as

a) = au(d)+ Xt’EIChI (4) + yiE’lNAP(/l) + Zacpom(A4), (1)
b(1)) = bw(1)+ Xbcrll () + beAF:(/l),
(Bb)(1) = Bby(1) + xBhbcr (1) + yBbnap(4)

in which a(2), b(1), andBb(2) are the total absorption, scattering, and backscattdr coe
ficients at wavelengthi, x,y, andz are the concentrations of chlorophgl-NAP, and
CDOM, andd;, b, andBb; are the absorption, scattering, and backscattering cexss s
tions of thei™ constituent (Chl, NAP, CDOM). The absorption and scattedoeficients
of water are designateay,, b,,, andBb,,. Thus, given simultaneous measurements of the
constituent concentrations and the inherent optical ptigse the optical cross sections
may be estimated by multivariate regression.

Once the optical cross sections were determined, Bukata(@®81a) showed that by



following Gordon et al. (1975) the irradiance reflectaR(@, 1) just below the free surface
could be expressed as

N
R(O,4) = )" ra(0)X" 2)
n=0
wherer,(0) are polynomial expansion cieients determined by Gordon et al. (1975), and
__ (B9 3)
a(4) + (Bb)(1)

as determined from equation set (1).

By calculating the propagation of the radiance through tagewair interface and sub-
sequently through the atmosphere, it is possible to deterrtie theoretical spectra of
radiances that would be received at a satellite sensor asctidn of the constituent con-
centrations. The spectra shown in Fig. 2 are the result sftyie of calculation for the
simple case when chlorophyll and water are the only CPAs.

The process of using these equations to retrieve the caatients of the constituents
in the water from the radiance measured at the satellitessan inverting the calcula-
tions. Measured radiance spectra and known (or hypoth®sigetical cross sections are
used along with non-linear optimization methods to regithe in-water concentrations of
the several constituents. To test the methodology, Bukatia@985) used an independent
set of radiance data from Lake Ontario along with their diyedetermined cross sections
to calculate concentrations of NAP (primarily mineral seeints), CDOM (parameterized
by dissolved organic carbon), and chlorophyll in the lakeeift Figures 33-35). Their
model produced “excellent” predictions for NAP, “possilagceptable” predictions for
CDOM, but “nonexistent” predictions for chlorophyll. Spigzally, the predicted chloro-
phyll values were much lower than the observed values aret afose to zero.

Bukata et al. (1985) tested several possible explanatamthé failure of the model
to predict the observed chlorophyll concentrations in L@kgario. They concluded that
the problem resulted from a combination of factors, inahgdja) dominant influence of
the non-phytoplankton (NAP and CDOM) components on the gifiee spectrum and
(b) the optical cross sections they used (which were detexdnirom their original data
set) were inappropriate for the second, independent, éatd\then they used the second
data set to derive new optical cross sections, they fourtdiieaabsorption spectrum for
chlorophyll ditered considerably from the one derived from the first dataRedictions
made using the new set of cross sections were much improved.

A recent series of overlapping papers (Pozdnyakov et ab52®; Shuchman et al.,
2006), applied the same bio-optical model used by Bukatad €1285) to archival ob-
servations made in Lake Michigan. The focus of the first twpgpa in this series is on
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the optimization method used to invert the bio-optical mMddeobtain in-water concen-
trations. The authors use a combination of the Levenbermgivtadt algorithm employed
by Bukata et al. (1985) and a neural network model to speedaloelations to the point
where the model could be implemented in an operational sehérhe third paper, de-
scribed below, is focused on using the combined optimiratiethod to examine chloro-
phyll patterns in Lake Michigan between the years 1998 a4 20

To validate the performance of the algorithm, Shuchman.g28D6) compared field
measurements of chlorophyll made in the vicinity of the iKadaoo River outflow on
single days in July and September 2003 with satellite netlseaveraged over a nine-pixel
(~10 kn?) area surrounding the sampling locations. The satellite ware primarily from
SeaWiFS and though the processing details are not descB8bhedhman et al. (2006) re-
port that the satellite data involved application of anye#&stm of atmospheric correction
that commonly resulted in non-physical negative radiarataes in the blue portion of the
spectrum or other distortions. We note that in presentiegettact same data set and com-
parisons Pozdnyakov et al. (2005b) state that the data wecegsed with the "MUMM-
MSL12 software” presumably referring to the more soph&gd MUMM (Ruddick et al.,
2000) atmospheric correction method developed for userbidwand inland waters that
was imbedded into NASA's SeaDAS software (Baith et al., 2001

Retrievals of chlorophylk, NAP, and CDOM in Shuchman et al. (2006) were obtained
using the optical cross sections determined for Lake QmtariBukata et al. (1991a). Al-
though no statistics were presented, the comparison bettheeretrieved and sampled
chlorophyll concentrations was described as “good.” Thetégood consistency” also
was used when the authors compared retrieved values obgiigit, NAP, and CDOM to
historical data collected as part of the EEGLE program dutine springs of 1998-2000.
Although the authors point to several uncertainties assediwith their estimates, includ-
ing use of an imperfect optical model, possible problemk aitmospheric correction, dis-
parity between the point measurements made in the field apixkl-averaged estimates
obtained from the satellite, and temporal mismatch betvikersatellite data and field
samples, they conclude that the “results should be coresddsatisfactory for the analysis
of patterns and seasonal distributions and interactiaghswadh actual concentrations may
be in error.” Indeed, the algorithm underestimated the EEGhlorophyll concentrations
by at least an order of magnitude (see their Figure 10). LikkaBa et al. (1985), the
retrievals of NAP and CDOM were more in line with commonly eoted values.

A different multi-component approach is illustrated by the wdrkicet al. (2004)
in their study of Lake Superior. These researchers used &InbgdCarder et al. (1999)
that is based on the approximate relationship between eeswising reflectancék()
and adsorption and backscatterifys(1) = by(1)/a(1). In this relationshipt is wave-
length, by, is the total backscattering resulting from the combinatbbackscatter from



the water y,) and from suspended particlels,{). Total absorption is calculated as
a(A) = aw(1) + a,(1) + ag(4) + ag(1), in which the subscripte, ¢, d, andg refer to water,
phytoplankton, detritus (NAP), and gelb§t@CDOM). In this model the absorption and
backscattering functions are determined empirically arattzer complicated calculation
yields chlorophyll concentration.

Applied to Lake Superior using a default set of parametéis,demi- analytical ap-
proach resulted in predictions of chlorophyll concentnatihat Li et al. (2004) character-
ize as having “better agreement” with the field results tlmenempirical algorithms tested
(see section below), though examination of their Figure d€schot @fer strong support
for this statement. The authors used their data to optinhizertodel parameters for Lake
Superior data in an attempt to improve the relationship betvthe predicted and observed
measurements. Although the optimization reduced the lditiaof the predicted values,
the new relationship was no more successful at reprodubiedi¢ld data than was the
unoptimized model. The authors conclude that more work sieeetde done to develop an
algorithm to retrieve chlorophyll concentrations morewaately in Lake Superior.

Estimating the optical cross- sections (the spectrallyedédpnt absorption and scatter-
ing functions) of the various CPAs in the water can be quitelved. Until very recently
the only published study was that of Bukata et al. (1985).Rdordevelopment of a multi-
year, multi-lake database of optical properties repoytedturrently underway (personal
communication from an anonymous reviewer) and in the pasiy&ars a number of new
optical characterization studies (Lohrenz et al., 2004dBig et al., 2008; Her et al.,
2010; O’'Donnell et al., 2010; Peng andiEr, 2010) have been presented. Although none
of the published studies was explicitly extended to devalept of new chlorophyll re-
trieval algorithms, they should provide a more solid basisféirther exploration of the
method. However, these recent papers also point to coniplsathat may make it even
more dfficult to apply multi-component algorithms. For example, @y et al. (2008)
showed that the NAP absorption spectrum in Lake Erie dependhe ambient level of
CDOM absorption, probably because some of the CDOM is indha bf colloids or ad-
hered to the surface of mineral particles. In addition, thredg et al. (2008), O’'Donnell
et al. (2010), and Peng andfter (2010) work in Lake Erie and thefiter et al. (2010)
study in Lake Superior all demonstrate substantial speiations in the measured opti-
cal cross sections.

Empirical algorithmsfor retrieving values of chlorophyll- a

Because chlorophyll is the dominant color-producing agrettie open ocean (Barale,
1991) most open-ocean retrieval algorithms either ignbeedfects of the other CPAs
that might be present or assume that they co-vary with cplofh. These algorithms
have been developed by assuming a relationship betweerhibmghyll concentration



and some function of the radiance (or reflectance) valuesuned by the satellite. In the
most general mathematical terms, we can express this as

Cen = f(9(R(1))),

in which Cg, is the calculated concentration of chlorophyilandg are functions, and
R(1) represents the satellite measured radiancesiierdnt bands (wavelengths), The
function g represents some expression involving radiance valuesndieid at one or
more wavelengths. The functidrrepresents some formulaic relationship between the de-
pendent variable chlorophyll concentration and the inddpat variable radiances passed
through the functiom.

Algorithms of this sort are termed empirical because thm#of the functiond and
g and their co#ficients are determined by statistical regression of ragdiand chlorophy!l
measurements obtained from field data rather than basely puréheory. One common
feature of the empirical algorithms is that the functg{fR(1)) is based on the logarithm
of a ratio of two of the sensor bands. Because chlorophylbissstrongly in the blue
and weakly in the green (see Fig. 1), all other things beingkdhe ratio of blue to green
radiance received at the satellite should be inverselygtmmal to the concentration of
chlorophyll (Fig. 2).

In preparation for operation of the current generation ¢l ocean color sensors,
NASA assembled a large databasearogitu observations of bio-optical conditions from
around the world. This database, which is continually updahas been used to develop
and evaluate a number of empirical retrieval algorithmd@lly et al., 2000). An exam-
ple subset of these algorithms, used by the first three ocel@n-monitoring satellites, is
listed in Table 1.

Although algorithms of this sort have been successful whgried to satellite obser-
vations of the open ocean, it was not at all clear that theyldMoel equally successful when
applied to more optically complex (so-called "Case 2”, gsihe classification of Morel
and Prieur (1977)) waters where substances other tharoghiglt might have significant
optical éfects. Reflectance spectra from these waters would be mongicated (Bukata
et al., 1985) and, in theory, the simple band ratio algorghwould be “invalid” (Binding
et al., 2008) . Nearshore areas of the Great Lakes that avemtid by riverine inputs
of dissolved organics and resuspension of bottom sedinaasnigell as open water areas
affected by whitings or with significant concentrations of othespended particles would
likely fall into this category of optical complexity.

Because the Great Lakes rarely are completely free of NAPDXDKZ, use of band
ratio algorithms in the Great Lakes has been approachedswitie skepticism. In his



classic study using CZCS observations to study southera Maghigan, Mortimer (1988)
used the spectra presented by Bukata et al. (1985) as treefbakis remark that

The chief challenge facing remote-sensing in coastal wasethe disentan-
glement of the optical contributions of chlorophyll (Crdyspended minerals
(SM), and dissolved organic carbon (DOC).

More recent papers (Li et al., 2004; Binding et al., 2008; fieniz et al., 2008; Binding
et al., 2010) also refer to this problem when discussing th&dlty of obtaining chloro-
phyll concentration values from satellite measuremert@Great Lakes using ratio algo-
rithms.

Bukata et al. (1991b) is the earliest work that attempted/éduate the ocean data re-
trieval methods for application to the Great Lakes. Workingakes Ladoga (Russia) and
Ontario these researchers examined the ability of empwio@an retrieval algorithms to
estimate chlorophyl& concentrations in inland waters. They tested several ogmteary
(ca 1985) algorithms, including those developed by Gordon.€t1883) for use with the
Coastal Zone Color Scanner (CZCS). Bukata et al. (1991l teeempirical algorithms
andin situ measurements of upwelling radiance in Lake Ladoga to catiewhlorophyll
concentrations and compared these calculations with fieldsorements of chlorophyll.
Although no statistics were presented in the paper, it wasu@mt from their Figure 1
that the ocean algorithms were poor predictors of the medsualues. The failure was
attributed to the optical complexity of the largely neargheaters that were sampled; the
authors suggested that similar optical complexity alsohtiig a problem throughout the
Great Lakes.

Re-examination of Bukata et al. (1991b) and of the resultsofe recent work sug-
gests that the failure of the algorithms tested may not heselted entirely from the op-
tical complexity of the waters, but rather because the fanat forms of the algorithms
they tested may have been inherently inadequate. Figure\8sstinat the current CZCS
algorithm, which is based on a polynomial power functionmisch more sensitive over
the range of reflectance ratios tested by Bukata et al. ()9®& are the simple power
function algorithms they examined, especially at higheremtrations.

Without more information about the methods used to colleetiiological and optical
data presented in Bukata et al. (1991b), itis impossibletoaietely reassess these results.
We note, however, that an approximate reconstruction ofreheionship between the
measurements and the predictions made by using the besitlagaeported in Bukata
et al. (1991b) shows a weak, though significant at the 10% (gve- 0.06), correlation
(Cpred = 0.24 % Cyps + 2.66,1 = 0.36). The correlationGpeq = 0.39% Cye + 3.7271 =
0.37) is slightly better p = 0.05), though the intercept is larger, if we use the current
CZCS algorithm (O’Reilly et al., 2000) with the approximatdlection ratios obtained
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by inverting the Bukata et al. (1991b) results (Fig. 4). Theeicept using the current
CZCS algorithm may be biased high because the older algortkamined by Bukata
et al. (1991b) was based on tRe,o/Rsso ratio. The current algorithm uses either this
ratio or theRy43/Rego ratio depending on the relative magnitude&ef; andRs,,. Because
reflection in the blue wavelengths is higher at lower chlbsdiconcentrations, the ratio
Ra443/Rsso would be higher than thBs,o/Rsso ratio and the predicted concentrations lower.
Of course, it also is possible that enhanced absorptioneiblie region of the spectrum
due to the presence of interfering substanegs CDOM) would &fect the ratio as well.

Use of satellite ocean color observationsto study the Great L akes

The standard ocean color products distributed by NASA ohekstimates of chlorophyll-
a concentrations are obtained from band ratio algorithmsce&SEeaWiFS began produc-
ing usable data late in 1997 several studies have used thWgiESgatandard chlorophyll
products derived from one of the empirical algorithms shawFable 1 to study processes
in the Great Lakes. Other studies, which are discussed bkbe focused on evaluation
and, in some cases, local or regional modification of themedsird SeaWiFS algorithms.

Sudies that used standard products to examine processes

Lesht et al. (2002) was the first work to use SeaWiFS chlorbplwgervations to ex-
amine biological processes in the Great Lakes. Chloroglyltentrations were estimated
by using the OC2v2 algorithm (O’Reilly et al., 2000), whiclasvthe NASA standard at
the time, and the paper documented an early summer phytdaptabloom in southern
Lake Michigan that occurred in response to a transient wuahie The paper included
a qualitative comparison of the retrieved chlorophyll wswvith a limited set of field
measurements, but did not attempt any statistical anatysitetailed verification of the
satellite observations witin situ values. The authors noted that the magnitude of the
satellite estimates both before and during the phytoptanktoom were consistent with
historical measurements of chlorophyll concentratiorissike Michigan and their calcula-
tions of primary production, which were based on the séallerived chlorophyll values,
compared well with publisheiah situ values.

In a modeling study comparing conditions in Lake Michigari®98 and 1999 Chen
et al. (2004) used a few SeaWiFS chlorophyllimages along @bservations made during
the EEGLE program. Chen et al. (2004) concluded that thedeteal spatial patterns of
chlorophyll distribution agreed well, in a qualitative wayith the SeaWiFS images which
were based on the OC2v2 algorithm. They did not, howevengit to make a quantitative
comparison based on the modeled and observed concentvatias.
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More recently, Kerfoot et al. (2008) also used EEGLE fieldestagtions and a few
selected SeaWiFS images to examine the springtime spati@rp of chlorophyll con-
centration in southern Lake Michigan. The authors used atabatmospheric correction
method (Stumpf et al., 2003) intended for use in Case 2 waderd generated chloro-
phyll images by using the SeaWiFS OC2v2, OC2v4 and OC4v4rithges. The satel-
lite estimates were compared with EEGLE program field measants of chlorophyll
“taken along transects at 5-10 m depth from 22 Mar 98 — 11 Sep Y8e associa-
tion between the field measuremen@y)(and the satellite estimate€4;) was excellent
(Ca = —0.087[+0.171]+1.079[+0.102]Cs, r?> = 0.874 N = 18). The paper, however, was
not clear as to whether tl&, values used in the regression came from OC2v4 or OC4v4
algorithms nor was was there comment about the potentiaiference that might result
from the presence of high concentrations of either CDOM oPNBough at least some of
the samples were collected during the March 1998 EEGLE “plugnent (Lohrenz et al.,
2008). A subsequent paper (Kerfoot et al., 2010) used girsdtellite data to examine
long term changes in the occurrence of a late winter phyidqdan bloom in Lake Michi-
gan. A note in this paper suggests that the regression tedabove (Kerfoot et al., 2008)
was based on OC2v4 retrievals. Kerfoot et al. (2010) catkeidditional samples in the
southern basin of Lake Michigan from 21-23 April 2008 andiadaund excellent cor-
respondence between the satellite derived chlorophylithedield observations, though
the slope diered significantly from 1@, = —0.022[+0.082] + 1.209[+0.058]Cgy, I =
0.900 N = 51).

Lohrenz et al. (2008) used SeaWiFS OC2 retrievals from Lalkehigan to produce
chlorophyll values as input to a primary production modeb ®ther information about
processing of the satellite data was provided in this papbey found that the satellite
derived chlorophyll values were “generally comparable iagmitude to determinations
of chlorophyll in discrete samples.” However, the auth@pgart that some of the satel-
lite estimates from inshore stations were “anomalouslyrhiglative to the field values
and attribute this overestimation to the presence of higitentrations of CDOM orig-
inating from the St. Joseph River. In addition to overestiomof chlorophyll values
near the river outflow, the authors found that in 1999 and 206@00C2 algorithm pro-
duced chlorophyll values that were lower than field valudtected in dishore waters,
an dfect they attributed to relatively high abundances of crghttes observed in the
phytoplankton population during 1999. Because cryptoghwtosorb light preferentially
in the green region of the spectrum they would tend to dist@tchlorophyll estimates
based on the standard band ratio algorithm. Examinatiorobfénz et al. (2008) Figure
5, however, suggests that with the exception of the neaggfwathin ~ 5 km from shore)
values from 1999, the retrieved chlorophyll values areejtgasonable. Using the data
plotted in this figure to approximate the root-mean-squamedr between retrieved and
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sampled chlorophyll values yields RMSB.5 mgm? (about 18% of the mean observed
chlorophyll value) overall for each of the twoffrent analytical methods (high-pressure
liquid chromatography and fluorometric assay) they usedeterchine the field chloro-
phyll concentrations. The average RMSE between pairedapthyll values determined
by the two analytical methods wa€).37 mgm?®. Lohrenz et al. (2008) conclude (their
p. 67) by stating that their findings are “consistent withshof other studies that have
found satellite estimates of chlorophyll to correctly regent spatial and temporal trends
in coastal waters despite bias in absolute accuracy.”

Finally, Barbiero et al. (2011) used SeaWiFS OC4v4 chloytipibservations made
from 1998 though 2006 to demonstrate that the magnitudeeo§piing bloom in Lake
Huron has declined dramatically since 2003. The declinehiorophyll concentration
suggested by the satellite data corresponded to field cddsmmg of declines in phyto-
plankton biovolume and to increases in spring dissolvadasdnd secchi depth that also
began in 2003 (Barbiero et al., 2009). The satellite dataeweocessed from Level 1A
to Level 2 with NASAs SeaDAS software using an advancecdhttee atmospheric cor-
rection algorithm ((Bailey et al., 2010). Pixels were mapp® a standard grid and esti-
mated chlorophyll values extracted from locations coroesiing to the U.S. EPA's Great
Lakes National Programf@ce (GLNPO) open water monitoring stations. The field values
were obtained by using standard analytical methods. Th&éwakhip between 2002-2006
satellite and laboratory chlorophyll values was line@g( = 0.0145+ 1.000C,5,) and
statistically indistinguishable from a 1:1 relationship£ 70.76; p < 0.001;r? = 0.50.)

Sudies that use in situ biological observations and satellite data to evaluate algorithms

Rather than use satellite data to examine limnologicalgsses, several studies have
focused on evaluation of the retrieval algorithms. We fistsider those that use chloro-
phyll values derived from the radiances measured at thitastong with the field obser-
vations of chlorophyll. These studies used satellite and fiata that were approximately
matched in space and time. Because some of the satelliteersnatpy be obscured by
cloud cover and because, unlike the satellite measuremdnth are essentially aver-
ages over1 knv areas, the field samples are point measurements, someiltgridioe
to temporal and spatial mismatching is to be expected. Eurtbre, because the satellite
retrievals also depend on the method used to removeffaete of the atmosphere from
the radiances measured at the satellite this type of studylgect to an additional de-
gree of uncertainty. However, despite these limitationesé studies are most like those
used to explore processes and shed considerable light capfiieability of the algo-
rithms for limnological studies. In particular, they denstnate how satellite chlorophyll
retrievals might be expected to correspond to field obsemnva({so-called “ground truth”).
We describe those studies that are based soleiy aitu observations of chlorophyll and
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radiance, thus eliminating the temporal, spatial, and aprheric uncertainties, in the fol-
lowing section.

Working in Lake Superior during the springs of 1998-1999d@&wand Warrington
(2004) compared field values of chlorophyll obtained fromesal coastal transectsfahe
north shore of the Keweenaw peninsula with satellite esgsanade using the OC2v2
algorithm. The satellite data were pre-processed to remegative radiance values. Neg-
ative radiance values typically occur because the atmospb@rection method overes-
timates the contribution of atmospheric aerosol scatjeiarthe satellite radiances, espe-
cially at short wavelengths (Stumpf et al., 2003). The inmpges screened to accept only
those images that matched the date of field sampling and #bfefver than 10% pixels
covered by cloud. The satellite values used in the compasiseere averages of the re-
trieved values within 3 by 3 pixel boxes surrounding the sdamgpgocations. Field chloro-
phyll values ranged from 0.1 mg? to 2.5 mgm?3 with all but two of the field observations
below 0.5 mgm3; these two large values were considered outliers and editeihfrom the
analysis. Although the slope of the relationship betweerstiellite and field values devi-
ated considerably from unity, the association betweendgh&iming retrievedGoc,) and
measuredGhl) values was excellenCpc, = 3.1(Chl) + 0.4,r> = 0.87,N = 18). The
authors concluded that the tendency of OC2v2 to overestithatfield measurements re-
sulted from high concentrations of CDOM in the water. Beedahe relationship between
the retrieved and observed values was linear, they suggésplying the OC2v2 results
by a constant factor of 0.3 to obtain more accurate estimates

Witter et al. (2009) compared field measurements collectddhike Erie to SeaWiFS
retrievals using twelve empirical algorithms. The fieldadased in this work were taken
from the spring and summer GLNPO monitoring surveys donedwen 1998 and 2002
and represented all three Lake Erie basins. The field data seeeened to eliminate high
(> 20 mgm?) values of chlorophyll concentration and samples from inithkm of land.
The satellite data were processed using the same atmaspberection method used by
Budd and Warrington (2004) and screened with very similéeica. Witter et al. (2009),
however, accepted images if fewer than 20% of their pixelsewevered by cloud rather
then the 10% cloud limit required by Budd and Warrington @00Comparisons were
made with the field data only if all pixels within 5 pixels ofetlsampling locations were
cloud-free.

In general, the correlations between the retrieved andunedsalues was good.@L <
r < 0.73). However, for nine of the twelve algorithms the slopehaf torrelation was less
than 0.7 and the intercept was greater than 2.0mgIn other words, most of the al-
gorithms seemed to be biased high at low chlorophyll comagohs and biased low at
higher concentrations. When stratified by basin, the agee¢retween the retrieved and
measured values improved from western basin to eastern, sgjgesting that interfer-
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ence from suspended sediments in the western and centias begatively fected the
retrievals.

Witter et al. (2009) went on to use their data to develop aitmeg algorithm” for
Lake Erie. In essence, they used regression to optimizéfareit form of empirical
algorithm specific to their observations. Specifically, tdfitet al. (2009) found that the
expressiorC = 107*PR*R \whereR = log(Rrsio/Rrssss) and a, b, and ¢ are a set of
codficients specific to the western, central, and eastern bgsiogided a statistically
improved (relative to the standard NASA algorithms theyad}srelationship between the
calculated and observed chlorophyll values in Lake Erie.

Because the regional algorithm described above still i®damn a reflectance ratio
albeit with diferent coéicients, it still should be subject to the same types of isterices
that are expected tdfact the standard algorithms though it is possible that tlefficent
changes also changed the sensitivity of the algorithm tptasence of NAP and CDOM.
The authors state that improvement in fit between the measataes and those obtained
by using the optimized retrieval was small in the westernrbasd better in the central and
eastern basins, though the retrieved values still tendeshderestimate the field values.
An important conclusion of this work is that “an algorithmtiva power-law form may be
effective” in a region of the lake where interference from susigel sediment is minimal.

Although he used MODIS data rather than SeaWiFS data in hik,Wdatkins (2009)
evaluated the OC4v4 algorithm using matched satellite ald fiata collected during
April, August, and September 2003 in Lake Ontario. The Bedelata were processed by
using the standard NASA procedures that at the time inclaheiderative near-infrared
atmospheric correction method. Like Witter et al. (2008¢, Lake Ontario results showed
good association between the satellite retrievals and diatd (> = 0.62) at open water
(> 30 m) stations, though the satellite estimates underetartae field resultsGs; =
0.42(Chl,) + 1.01). The algorithm tended to overestimate the chlorophyghsured at
nearshore stations, especially in April when, the authdes\d'suspended sediment and
dissolved organic matter are prevalent.”

Sudiesthat use in situ optical and biological measurements to evaluate algorithms

Only two studies (Bergmann et al., 2004; Li et al., 2004) repsingin situ radiomet-
ric observations along with biological sampling to evaduite standard empirical chloro-
phyll algorithms in the Great Lakes. In both cases, surfademeters, profiling spectral
radiometers, and profiling absorption and attenuation regtere used to measure the op-
tical properties of the water column at each sampling statidhese optical observations
provided direct measurements of the remote sensing raileetaalues that were input to
the retrieval algorithms, thus avoiding the uncertaintyoagated with atmospheric cor-
rection models and the spatial and temporal mismatch betwatellite and biological
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sampling.

Bergmann et al. (2004) did their work in southern Lake Miamgas part of the EE-
GLE program. Although the main aim of their research was tn@re how resuspended
sediments alter the optical conditions in the water, they t¢sted the predictive ability of
seven empirical chlorophyll retrieval algorithms and népd the results in a single para-
graph at the end of their paper. These authors state thae“thas a strong correlation
between measured and calculated chlorophyll concentrationost stations.” However,
they also found that the chlorophyll retrievals undereated the field data by about 45%
at stations where the phytoplankton community was doméhbtecryptophytes. They
attributed this underprediction to the high absorption i@egm wavelengths by the cryp-
tophytes. Interestingly, it was thdfshore water that was dominated by cryptophytes,
So in contrast to the other studies discussed below, theitiges performed better in
the nearshore thanfishore. At those stations at which fewer than 40% of the phyto-
plankton were cryptophytes, the slope aAdalues for regressions relating the field data
to chlorophyll values calculated by using SeaWiFS OC2v24@K and MODIEOC3M
were 1.040.95, 0.730.83, and 0.7@.89 respectively. These results did not seem to be
affected by the presence of high concentrations of suspendedess.

Finally, using similar field methods, Li et al. (2004) evaka nine empirical algo-
rithms and one “semi-analytical” algorithm using data ecléd in Lake Superior. We
only discuss the empirical algorithms here; the semi-ditallyalgorithm was discussed
above in the section on multicomponent models.

Chlorophyll concentrations in Lake Superior generally @eey low. The range of
values reported by Li et al. (2004) wa$.5 to~1.2 mgm?®. In contrast to the results re-
ported by Budd and Warrington (2004) for the same watersg wbthe calculated chloro-
phyll values using several algorithms was correlated vhighfield measurements. Li et al.
(2004) attempted to find an optimized regional algorithm @nipulating the ca@cients
of the OC4v4 algorithm, but the optimized algorithm did nofprove the results. In all
cases the empirical algorithms overestimated the field ureagents. The authors attribute
this to the low ratio of chlorophylla to dissolved organic material in the coastal Lake Su-
perior waters they sampled. Budd and Warrington (2004) spgxulated that CDOM
would negatively ffect the retrievals though they did not present any CDOM nreasu
ments.

Discussion

Like many inland and coastal waters, the Great Lakes usaadjthought of as op-
tically complex (Case 2) and many researchers (as notedealbave assumed that the
band ratio algorithms will not be at all useful for study oé#e waters. Unfortunately, the
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few published studies that evaluate multi-component nsodeVeloped for Case 2 waters
showed that they were not successful predictors of chlgidbpbncentration. Because
multi-component models would include th&eet of all the significant CPAs, they could,
in theory, accommodate spatial and temporal variationeencbncentrations of the sub-
stances that interfere with the band ratio algorithms. Taaplish this, however, the
optical cross sections of the CPAs would have to be detedramel furthermore, some
assessment would have to be made as to the spatial and téng@hility of those cross
sections. As we noted above, work intended to develop a ds¢abf optical cross sec-
tions for the Great Lakes is currently underway. None of wsk that might be directed
toward development of retrieval algorithms has been phbtisas of this writing. We hope
that when it is, it will be fully accessible to the broad conmity and be sfliciently gen-
eral so that it can be widely implemented. Until that timesga@chers interested in using
satellite imagery to study phytoplankton processes thaiG@kes will have to rely on the
commonly available and easily implemented band ratio nmitho

Table 2 shows that with one exception (Li et al., 2004), adl studies that used the
band ratio algorithms and collected matched field data st@wgood correspondence be-
tween retrieved and observed values, although only a fewodstrated a 1:1 relationship.
Clearly, because these published studies represent theofvditferent investigators who
used diterent field and satellite data processing methods and wihlestditerent areas
of different lakes at dierent times in dferent years it is not surprising that the results
differ in detail. What is surprising, in our view, is the congigtgEignificant linearity of the
relationships. This linearity indicates to us that thouigéytare not ideal, the band ratio
algorithms can provide estimates that are reflective ofrilne ¢hlorophyll concentrations
in the Great Lakes. The degree to which these estimates efitd usll depend, of course,
on the purpose for which they are intended.

Given that the waters of the Great Lakes are never complitsyof interfering CPAs
and that the phytoplankton assemblages will vary betwedmathin lakes as functions of
space and time (Fahnenstiel and Scavia, 1987) , what theaotant for the consistent
linearity between predicted and observed chlorophyll @alfound when the band ratio
algorithms have been used in Great Lakes research? Betaustaihdard empirical algo-
rithms are based on analysis of oceanic measurementdaindgilis reasonable to assume
that they would not be appropriate for the Great Lakes whezeghytoplankton popula-
tions difer from oceanic populations and also vary considerablyiwahd between lakes
and from season to season. The question is how much doesatiasion dfect the re-
trievals? We might further ask if such variations can actdéandifferences in the results
demonstrated in the published work? We attempted to adtliesse questions by using
the Bukata et al. (1985) multicomponent optical model (E¢gdbove) in a diagnostic
mode.
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As noted above, the empirical algorithms are based on thergd&on that chloro-
phyll is the dominant CPA in the water and, if other CPAs aspnt, they co-vary with
chlorophyll concentration. Considering the situation whige absorption and scattering
processes result only from the presence of chlorophyll asteérvthen the empirical algo-
rithms must parameterize these processes in their furadtiorms and parameter values.
Assuming the absorption and scattering properties of patemnare universal, the specific
forms of the empirical algorithms must represent some dlaberage of the scattering
and absorption properties of phytoplankton and co-vesiate

We tested the question of how the retrieved chlorophyll e@slwould depend on the
specified absorption spectrum by using the Bukata et al.5)l8&ilticomponent optical
model along with the two field measured phytoplankton alsmrspectra determined by
Bukata et al. (1985) and the one determined by Lohrenz e2@04). We used the model
to produce theoretical reflectance spectra that might beated in Case 1 (phytoplank-
ton dominated) waters for severaligrent values of chlorophyll concentration. We then
sampled these spectra at the wavelengths used by the chi&A standard empirical
algorithm for SeaWiFS (OC4v6) and compared the retrievédraphyll values to those
that were used to generate the spectra (Fig. 5).

The results shown in Fig. 5 show that, assuming the Bukatha €1385) model and
phytoplankton backscattering cross-section are ap@taprihat the retrievals indeed de-
pend on the form of the phytoplankton absorption spectruespie the dterences, the
results are linear, though the slopes vary between 0.5 &dThe highest slope corre-
sponds to the case where the assumed phytoplankton alosospectrum (Bukata et al.
(1985) spectrum C) does not show a distinct absorption petlieiblue. That spectrum re-
sembles the phytoplankton absorption spectra presentBahlyng et al. (2008) in which
CDOM (highly absorbent at short wavelengths) may have bdearbed on the plankton
particulates or otherwise retained on the filter being arealy The other two spectra are
more typical with distinct absorption peaks in both the ldne red regions.

To see if the possible presence of CDOM and NAP could accoutihé diverse results
reported by the studies listed in Table 2, we again used th#ehto simulate OC4v6
chlorophyll retrievals for cases in which both CDOM and NAErevallowed to vary over
a range of values. For this exercise we used the Lohrenz €2@04) phytoplankton
absorption spectrum along with the spectral model of NAR#giign from Binding et al.
(2008) and the backscattering functions provided by Bukatal. (1985). Because the
model components have been drawn from studies that were atatiferent times and
in different lakes, we do not expect the results to be exact or dedinlitut rather to help
illustrate how, in theory, the presence of these interéesnbstances might confound the
band ratio retrieval algorithms. The results are plottelign 6. We note that Bukata et al.
(1985) parameterized CDOM absorption in terms of the monmemonly measured DOC
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concentration which we used in the model. Much of DOC is ndbreal, and Binding
et al. (2008) found that absorption due to CDOM could ranganf.08 nm* to 0.75 ntt
in Lake Erie. When normalized by the observed concentraisfoROC, Binding et al.
(2008) found the average specific absorptionficcient at 440 nmdcpom(440) in Eq. 2
above) was 0.102 frg~! which agreed well with the value 0.115°rg™! determined in
Lake Ontario by Bukata et al. (1985).

In the absence of CDOM (Fig. 6a), adding any suspended [egrijimdicated by the
TSM concentrations shown in the figure legends) reduceddpe and increases the inter-
cept of the relationship between retrieved and modeledaphyll values thus producing
predictions that are lower than model input values at higlogicentrations. We should
repeat here that we view these model results as qualitathenrthan quantitative. Ob-
served TSM concentrations in more turbid regions of the Grakes €.g. the western
Lake Erie or nearshore areas subject to sediment resuspgieain reach 20/g?® shown
as the highest TSM concentration in Fig. 6. At this TSM leusing the backscatter and
absorption spectra noted above, we found that the retriekitophyll values became
nearly independent of the model input chlorophyll valueke Thodeled fect of adding
particles primarily depends on the scattering propertiesaparticles. The particle scat-
tering cross sections presented by Bukata et al. (1985erfiogn 0.052 to 0.034 Ag
with the higher values occurring at shorter wavelengthdoldanately, very few detailed
studies of particle scattering have been done in the Grdatd.and we know of no other
published backscattering cross section for Great Lakescpktes. In the absence of
particulates, increasing the concentration of CDOM (Fifb, 6¢, and 6d) changes the
relationship between retrieved and model input values flioear to logarithmic, with
very rapid increases in the predicted values at low conagotrs. Higher concentrations
of CDOM also tend to increase the sensitivity of the retriggachanges in particulate
concentrations and result in reduced slopes and higheceqts.

The results of the studies listed in Table 2 generally aresistent with these quali-
tative model results. The tendency of the retrievals frorkesaErie and Ontario (Witter
et al., 2009; Watkins, 2009) to underestimate the field \s\duwgjgests the presence of NAP
especially at higher chlorophyll concentrations. The L@keario results (Watkins, 2009)
particularly were poor in the nearshore where NAP and CDONMewsevalent. When
chlorophyll and suspended particulate concentrationtosrdout CDOM is present, such
as in the coastal Lake Superior case studied by Budd and Mygon (2004), the slope
of the modeled regression will be greater than 1 near thenprimyit will flatten out as
chlorophyll concentration increases, more or less as wasreéd €.9. the “outlier” val-
ues identified by Budd and Warrington (2004)). The Lake Huesults in Barbiero et al.
(2011) were based on samples collected over a number of yetlie open lake where
both CDOM and NAP concentrations are expected to be low andittons most like
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“Case 1" waters. In the coastal areas of southern Lake Machgpmpled by Kerfoot
et al. (2008) and Kerfoot et al. (2010) the authors commemhommal efects of CDOM
(Kerfoot et al., 2010) and on the insensitivity of the redaghip between retrieved and
observed chlorophyll concentration on the presence ofeudga particulates (Bergmann
et al., 2004). In Lake Michigan, however, the compositiomhaf phytoplankton commu-
nity was found to ffect the relationship because oftdrences in the absorption spectrum
(Bergmann et al., 2004).

The reasons satellite data are so attractive for limno&gtudies is that, relative to
traditional ship-based sampling, they are (a) synoptic(@yavailable year-around with
near daily frequency. No other sampling methdéids the possibility for simultaneous
measurement of properties over such large areas or for ctingwstudies based on spa-
tially resolved time series. Given that the optical projesrof the lakesi(e. the concen-
trations of CPAs and composition of the phytoplankton comities) will no doubt vary
in both space and time, it certainly is reasonable to questie value of satellite retrievals
based on any single empirical algorithm. Because the dmiioas sections on which the
multi-component algorithms depend also will vary in spacé ime, making simultane-
ous retrievals of all the CPAs similarly questionable uslesme scheme for dynamic (in
both space and time) adjustment of the optical cross secisateveloped.

Several authors (Lohrenz et al., 2004; Shuchman et al.,;a0dl&enz et al., 2008)
comment on the utility of satellite imagery for estimatingasal and temporal trends re-
gardless of the absolute accuracy of the algorithms evargtihthis would strictly require
that the algorithms be broadly applicable over space anel.tifo determine how unpre-
dictable variations in NAP and CDOM mighffact chlorophyll retrievals made by using
the empirical algorithms we conducted a Monte-Carlo expenit in which we randomly
and independently selected the concentrations of thefémileg CPAs input to the Bukata
et al. (1985) model from log-normal distributions assumgadal of the distributions in
the Great Lakes. For each realization of the model we alsdoraty selected the phyto-
plankton absorption spectrum from those determined by Budgal. (1985) and Lohrenz
et al. (2004), the NAP absorption spectrum from those ptesidny Bukata et al. (1985)
and that derived by Binding et al. (2008), and the CDOM alsamg@drom data published
by Bukata et al. (1985), Binding et al. (2008), andl& et al. (2010). The model was run
10,000 times and a randomly selected subset of 250 of th@Q 0g@lizations was used to
generate the results shown in Fig. 7.

The relationship between the retrieved and modeled chihglbphown in Fig. 7 is
representative of the Monte-Carlo results. The best fitioglahip is linear with a slope
less than one and a positive intercept, similar to thoseepted in most of the papers we
have reviewed above (Bergmann et al., 2004; Budd and Waornng004; Kerfoot et al.,
2008; Witter et al., 2009; Watkins, 2009; Kerfoot et al., @0Barbiero et al., 2011). The

20



increased scatter at higher values of chlorophyll shownign F results from the three
different chlorophyll absorption cross sections input to the@eh¢see Fig. 5). This vari-

ability emphasizes the importance of using accurate dptrogs sections when applying
a multi-component optical model such as the one on whichsimsilation was based.

Each of the field studies cited above involved collection atfadfrom dfferent loca-
tions at diferent times and in some cases over areas as large as an a&keir@ld over
time spans of several years. If we assume that the samplesteol as part of these stud-
ies randomly varied in concentrations of interfering sahses and optical properties, then
our Monte-Carlo study simulates the field data. Unfortulyatene of the field studies re-
port simultaneous measurement CDOM or NAP with the chloybpfalues. Though the
Monte-Carlo model is only qualitative, the linear relasbip between the retrieved and
modeled chlorophyll values found in Fig. 7 and the lineaatiehships between observed
chlorophyll in the papers reviewed suggests that in a stalsense, the empirical algo-
rithms can reflect the chlorophyll concentrations in theaBtakes despite local variations
in the concentrations and composition of the CPAs.

One additional aspect of the studies we reviewed should diomed in the context
of assessing the uncertainty associated with applicafitimecband ratio methods. Many
of the field measurements reported in the work we reviewee wellected in the spring.
The EEGLE sampling in Lake Michigan (Bergmann et al., 200dhrenz et al., 2004,
2008) took place during March and April. Kerfoot et al. (2D1Ged Lake Michigan
data collected in April and Barbiero et al. (2011) used GLNdR®a from spring surveys
(March and early April) in their study of Lake Huron. Althdugeveral of the other
studies we cite used data collected throughout the yeay, tbel Budd and Warrington
(2004) study in Lake Superior formally tested the dependerithe retrieval on season;
they found no seasonalfect. Because the number of samples that is collected in any
single survey is limited, the tendency has been to pool albihailable data. Without more
specific information about timing of the field sampling, wacat evaluate this source of
variability.

By design, we have restricted our review to the publisheddiure that deals explic-
itly with retrieval of chlorophyll concentrations from ®dlite observations of the North
American Great Lakes. These papers are dominated by stusiieg data from SeaW-
iIFS or MODIS and band ratio algorithms. We would be remissyéwer, if we did not
also note that novel chlorophyll retrieval methods basedlifierent spectral bands and
on other sensors have been applied to other optically comyd¢ers (coastal, estuarine,
and inland) where band ratio algorithms have been foundrgckAlthough not within
the scope of our review, because these methdids possible alternatives that could be
exploited in studies of the Great Lakes, we describe thegilptiere.

In March, 2002 the European Space Agency (ESA) launchededlisa{ENVISAT)
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that carried a variety of instruments intended for envirental monitoring. Among these
instruments was the Medium Resolution Imaging Spectron{®&RIS) which was de-
signed primarily for ocean color applications. In contrtasthe fixed spectral bands pro-
vided by SeaWiFS and MODIS, MERIS samples 15 spectral baetiégen 390 nm and
1040 nm, the exact location and the width of which are prognairie and can be modified
in orbit by ground control. For ocean color applicationg fifiteen bands are distributed
between 412.5 nm and 900 nm. Because Sun-stimulated chidrdporesces near 685
nm, three MERIS bands (665 nm, 681.25 nm, and 708.75 nm) areentrated in this
region of the spectrum. Gower et al. (1999) describe howetlesmds can be used in
an algorithm based on the Fluorescence Line Height (FLH}stonate chlorophyll con-
centrations in regions where retrievals based on bandalgarithms are complicated by
the presence of NAP and CDOM. Other researchers have edplsiag FLH based on
these MERIS band as well as the MODIS band at 678 nm but fouatieresults when a
substantial amount of NAP was present.

At least three other algorithms with potential for imprayichlorophyll retrievals in
optically complex waters have been the subject of recemlystlihe first, known as the
maximum chlorophyll index (MCI), is based on the amplitudeh® MERIS 708.75 nm
band. Gower et al. (2008) discuss the algorithm as well apitdication for detection of
blooms and other transient events. This algorithm seeneces|y well suited to blooms
of cyanobacteria (Alikas et al., 2010; Binding et al., 201Dpl'Olmo et al. (2005) ex-
plored the use of SeaWiFS and MODIS red and near-infrareR)Hands for retrieving
chlorophyll concentration from observations of turbid @rafl hese algorithms were used,
along with a similar three-band algorithm based on MERIS:olzgtions by Gitelson et al.
(2007) in a study of chlorophyll in Chesapeake Bay. In thghhy productive system, Gi-
telson et al. (2007) found that the algorithms could accémmapproximately 80% of the
variability in chlorophyll observations with a relativerer of about 20%. Finally, a com-
pletely diferent approach that uses five bands has been proposed by & @thii2002).
The basis of this algorithm is a look-up table developed ff@iad observations in which
chlorophyll concentration is related to a data triplet ¢stirsg of the standard OC4 band
ratio and the radiances at 412 nm and 555 nm. In a comparisaigafthm performance
conducted in the Bay of Bengal and the Arabian Sea, Tilstorad. €2011) found this
five-band algorithm was the most accurate for both coasthbpen ocean areas.

Only one paper (Gons et al., 2008) has assessed the use MBRI®rdthese algo-
rithms for research in the Great Lakes. Gons et al. (2008e&hgo diverse areas, indica-
tive of the extremes of trophic conditions in the lakes, taraine the performance the FLH
and red-to-NIR algorithms in oligotrophic (Keweenaw Bagke Superior) and eutrophic
(Green Bay, Lake Michigan) waters. They found that the tetHR algorithm was ap-
plicable to Green Bay, but not to Keweenaw Bay where the nietbsulted in negative
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values. Although they found a strong linear relationshipwieen observed chlorophylll-
a concentrations and those predicted by the FLH algorithmewé&enaw Bay, when the
algorithm was applied to an entire scene, results from tldseated pixels exhibited con-
siderable noise, suggesting that conditions in Lake Saperay be very close to or below
the MERIS detection limit.

Conclusion

Modeling the performance of the empirical algorithms fdffetient combinations of
interfering substances and properties shows that the malpirand ratio retrieval algo-
rithms can produce estimates of chlorophyll concentratibat are proportional to model
input values. This finding is consistent with numerous sisdeporting significant linear
relationships between chlorophyll determined from sigetibservations using band ratio
algorithms and that measureusitu. Furthermore, the published evidence suggests that
even if the absolute accuracy of the empirical retrievalg beaquestioned, the spatial and
temporal patterns in chlorophyll concentrations derivexinf satellite data correspond to
what is known about the lakes from other types of studiest{Lesal., 2002; Chen et al.,
2004; Shuchman et al., 2006; Kerfoot et al., 2008; Lohrered.e2008; Watkins, 2009;
Barbiero et al., 2011). Because they are subject to inemtar from other CPAs, the em-
pirical algorithms should provide better estimates of obydyll concentration in regions
where the influence of CDOM and NAP are likely to be minimag( the open waters
of the lakes). In nearshore areas, in regions where the kieedfected by significant
riverine inputs, and in waters subject to frequent resusiparof bottom sediment®.g.
western Lake Erie and other shallow areas), the retrievalg Ime seriously distorted by
the presence of these interfering substances and shoukkdenith great care.

Ideally studies based on satellite observations wouldigeksome field measurements
for confirmation which would include simultaneous deterations of the concentrations
of the other CPAs present in the waters. Although the engliband ratio methods cur-
rently are the most accessible, recent application of algarithms and data from new
sensors have shown promise in optically complex waters. eMtudies assessing algo-
rithms such as FLH, MCI, and red-NIR modeling are needed terdene their applica-
bility to the Great Lakes. Additional studies of the optipabperties of the Great Lakes
also are needed to better understand the regional and telhvaoiations of these prop-
erties. Because of the sensitivity of multi-component ni®de variations in the input
optical cross sections, accurate determination of thesssgections are particularly im-
portant. We are hopeful, of course, that the latest workdBig et al., 2010; Her et al.,
2010; O’'Donnell et al., 2010; Peng andlEr, 2010) and other ongoing, not yet published,
studies will provide new insight and extend the applicatbsatellite remote sensing to
the Great Lakes.
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Table 1: Sampling of algorithms for retrieving chlorophyiconcentrationC ) from satellite observations
of remote sensing reflectance. A more complete list of allgars may be found in O’'Reilly et al. (2000).
Rin these functions is log of the indicated band ratio. CZCS refers to the Coastal ZowlerCScanner,

SeaWiFS to the Sea-viewing Wide Field Spectrometer, MODIt¢ Moderate-resolution Imaging Spec-
trometer.

Algorithm Functional Representation Bands EmployRed
CZCS0C3C Coy = 10.0(0.362—4.066%5.125?2—2.6458?3—0.597R4) 443> 520550

SeaWiF$OC4v4 Cgy = 10,00366-306RALBICLOMR-LIIR) 443> 490> 510555
MODIS/OC3M Cay = 1O.0(0.2830—2.753?+1.457ER2—0.6598?3—1.4038?4) 443> 4905550
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Table 2: Regression results from those studies with quivet comparisons between chlorophyll values retrieveti siandard OC2v2,
0OC2v4, and OC4v4 empirical algorithms and field measuresnent

D

@D

D

Reference Lake Algorithm: Regression Notes
Bergmann et al. (2004) Michigan | OC2v2:Cgy = 0.81 % C,r? = 0.66 No intercept given. All stations.
OC2v2:Cgy = 1.04%C,r?> = 0.95 No intercept given. Non-cryptophyt
stations.
OC2v4:Cg = 0.68% C,r? = 0.69 No intercept given. All stations.
OC2v4:Cg = 0.78% C,r2 = 0.83 No intercept given. Non-cryptophyt
stations.
OC4v4:Cgy = 0.65% C,r2 = 0.68 No intercept given. All stations.
OC4v4:Cg = 0.73%C,r?> = 0.83 No intercept given. Non-cryptophyt
stations.
Budd and Warrington (2004) Superior | OC2v2:Cgy = 3.1+« C + 0.4,1r° = 0.87 Without two outliers
Li et al. (2004) Superior | OC2v2:Cgt = 512+ C — 1.05r%> = 0.05 | Based orin situ radiances
OC4v4:Cgy = 3.82+ C - 0.50,r2 = 0.05
Kerfoot et al. (2008) Michigan | OC2v4:C = 1.08 « Cs — 0.087,r% = 0.84 | Regresse€figq 0N Cgy; 1998-1999
data; March-September
Watkins (2009) Ontario | OC4v4:Cg = 042+ C +1.0Lr%> =0.62 | Offshore & 30 m) sites; March
December
Witter et al. (2009) Erie OC2v4:Cgt = 046+ C +2.06,r° = 0.72 | All basins, spring and summer ope
lake data
OC4v4:Ce = 0.75% C + 2.21,r2 = 0.70
Kerfoot et al. (2010) Michigan | OC2v4:C = 1.209x Cg — 0.022 21-23 April 2008 data
Barbiero et al. (2011) Huron OC4v4:Ce = 1.00+ C + 0.01,r° = 0.50 | 2002-2006 spring open lake data
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Figure 1: Average Lake Michigan phytoplankton absorptioecsrum, normalized to 440 nm, from Lohrenz
et al. (2004). Data were collected during the springs of 12080 from stations along three nearshore
transects in the southeast portion of the lake. Verticaldishow the positions of the six SeaWiFS bands in
the visible portion of the spectrum.
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Figure 2: Theoretical subsurface reflection (non-dimemadjospectra for varying concentrations of
chlorophyll-a calculated by using the method described by Bukata et a@1@P Optical cross sections
for chlorophyll-aand for pure water are those determined by Bukata et al. jf68bake Ontario and later
used by Shuchman et al. (2006). Results shown are for thevdaese there are no other optically active
componenté.g., suspended minerals and DOC) in the water. Vertical linesvsthe positions of the six
SeaWiFS bands in the visible portion of the spectrum.
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Figure 3: Comparison of chlorophydl-concentrations predicted by the current CZCS algorithniRlly
et al., 2000) and four CZCS algorithms tested by Bukata €1.8P1b) for a range of reflectance ratios.
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Figure 4: Chlorophylla concentrations predicted by the current CZCS algorithnR@llly et al., 2000)
and the best algorithm from Bukata et al. (1991b) versus oredschlorophyll values from Lake Ladoga.
Values of the field measurements and of the reflectance raex$to calculate the points on this figure were
estimated from Fig. 1 in Bukata et al. (1991b). The solid i;&:1, the dashed line is the best fit for Bukata
algorithm, and the dash-dotted line is the best fit for thectiveent CZCS algorithm.
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Figure 5: Chlorophylla concentrations (G retrieved by using the current SeaWiFS algorithm (OC4v6)
versus modeled chlorophyll concentrationg, @ the absence of any CDOM or NAP calculated with the
Bukata et al. (1985) model for three chlorophyll absorp8pectra. Dotted line indicates 1:1 relationship.
Plotted points were selected randomly and used to calcihlaténear regression cficients.
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Figure 6: Chlorophylla concentrations retrieved by using the current SeaWiFSrigthgoo (OC4v6) versus
modeled chlorophyll concentrations assuming varying eatrations of NAP for CDOM concentrations of
0.0 gm® (panel a), 1.0 gn® (panel b), 2.0 g® (panel c), 3.0 gn° (panel d). Solid line indicates a 1:1
relationship. Plotted points were selected randomly.
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Figure 7: Chlorophylla concentrations (6c4) retrieved by using the current SeaWiFS algorithm (OC4v6)
versus modeled chlorophyll concentrationg,@r randomly selected combinations of chlorophyll, CDOM
and NAP concentrations and randomly selected absorptientrspfor chlorophyll, NAP, and CDOM.
Dashed line indicates a 1:1 relationship. and the solid $in@ws the best fit to the plotted points. The
plotted points were selected randomly.
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