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Abstract

The U.S. Environmental Protection Agency’s Great Lakes National Program Office (GLNPO)

has collected water quality data from the five Great Lakes annually since 1993. We used

the GLNPO observations made since 2002 along with coincident measurements made

by the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) andthe Moderate-resolution

Imaging Spectroradiometer (MODIS) to develop a new band-ratio algorithm for estimating

chlorophyll concentrations in the Great Lakes from satellite observations. The new algo-

rithm is based on a third-order polynomial model using the same maximum band ratios

employed in the standard NASA algorithms (OC4 for SeaWiFS and OC3M for MODIS).

The sensor-specific coefficients for the new algorithm were obtained by fitting the relation-

ship to several hundred matched field and satellite observations. Although there are some

seasonal variations in some lakes, the relationship between the observed chlorophyll values

and those modeled using the new coefficients is fairly stable from lake to lake and across
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years. The accuracy of the satellite-derived chlorophyll estimates derived from the new

algorithm was improved substantially relative both to the standard NASA retrievals and

to previously published algorithms tuned to specific lakes.Monte-Carlo fits to randomly

selected subsets of the observations allowed us to estimatethe uncertainty associated with

the retrievals purely as a function of the satellite data. Our results provide, for the first

time, a single simple band ratio method for retrieving chlorophyll concentrations in the

offshore “open” waters of the Great Lakes from satellite observations.
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Introduction1

The problem of estimating chlorophyll concentration in thesurface waters of the Great2

Lakes from satellite observations is one that has challenged researchers for years. Al-3

though successful chlorophyll retrieval methods have beendeveloped for large areas of4

the ocean (Yoder et al., 1993), efforts to develop new or adapt existing algorithms for use5

in the Great Lakes have met with, at best, mixed results (Lesht et al., 2012). The ocean6

algorithms are based for the most part on an empirical relationship between chlorophyll7

concentration and the ratio of the remote sensing reflectance (Rrs) measured by the satel-8

lite sensor at two wavelengths (bands). When applied to the Great Lakes, the variability9

in the performance of these algorithms has been attributed to the presence of confounding10

factors such as high concentrations of suspended material (Witter et al., 2009), high con-11

centrations of dissolved organic material (Budd and Warrington, 2004), and phytoplankton12

populations dominated by particular organisms (Bergmann et al., 2004). The general con-13

sensus among workers in this area (Bukata et al., 1985; Mortimer, 1988; Li et al., 2004;14

Shuchman et al., 2006; Binding et al., 2008; Lohrenz et al., 2008; Binding et al., 2010) is15

2



that simple algorithms based on band ratios are not applicable to the Great Lakes because16

the Great Lakes, unlike the open ocean, are assumed to be optically complex “Case 2”17

waters (Morel and Prieur, 1977) and the factors that affect the color of the water are not18

dominated by phytoplankton pigments.19

In theory, the influence of optically active non-algal substances, such as non-algal20

particulates (NAP, primarily suspended mineral particles), or colored dissolved organic21

material (CDOM), that would interfere with the chlorophyllretrievals based on band ratio22

methods can be calculated by using models that include the optical effects of these compo-23

nents explicitly. These calculations require knowledge ofthe spectrally resolved scattering24

and absorption properties of each optically active component (Preiur and Sathyendranath,25

1981). Referred to here as the multi-component method, thisapproach was first applied26

to the Great Lakes by Bukata and colleagues (Bukata et al., 1978, 1979, 1981b,a, 1985,27

1991a,b). In the multi-component method the spectral content of the incoming solar radi-28

ation reflected from the surface layer of water back to space is modeled as function of the29

spectral absorption and backscattering due to the combinedeffects of the color producing30

agents (CPAs, sometimes referred to as optically active constituents or OACs) present in31

the water. Attempts that have been made to apply multi-component methods to the Great32

Lakes (Bukata et al., 1985; Pozdnyakov et al., 2005; Shuchman et al., 2006) have not33

been entirely successful. Bukata et al. (1985) found that when applied to western Lake34

Ontario the multi-component method produced estimates that closely matched observed35

NAP concentrations and made acceptable estimates of CDOM concentration, but resulted36

in substantial underestimation of chlorophyll concentrations. Similarly, when Shuchman37

et al. (2006) compared multi-component estimates made fromSeaWiFS observations with38
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a limited set (two days) of field measurements of chlorophyllmade in the vicinity of the39

Kalamazoo River outflow in Lake Michigan the model produced acceptable estimates of40

the NAP and CDOM observations, but underestimated the observed chlorophyll concen-41

trations by an order of magnitude. More recently, however, Binding et al. (2012) devel-42

oped a two-component (phytoplankton and mineral sediment)model for Lake Erie that43

is based on the red and near-infrared bands measured by MODIS. This model simulta-44

neously estimates the concentrations of suspended mineralparticles and chlorophyll and45

appears promising when applied to turbid and productive waters. Being based red and46

near-infrared wavelengths, this model should be fairly insensitive to the effect of CDOM47

absorption which is not included in the model.48

No matter which components are included, the multi-component methods depend on49

the accuracy of the optical cross sections of the CPAs. Although work aimed at provid-50

ing new estimates of these cross sections currently is underway (personal communication,51

G. Leshkevich, 2011), to the best of our knowledge, those determined by Bukata et al.52

(1981b) are the only optical cross sections measured in the Great Lakes that have been53

tabulated and published (Bukata et al., 1985). Other detailed optical characterization stud-54

ies of the Great Lakes recently have been presented (Lohrenzet al., 2004; Binding et al.,55

2008; Effler et al., 2010; O’Donnell et al., 2010; Peng and Effler, 2010; Binding et al.,56

2012) but, with the exception of the Binding et al. (2012) study in Lake Erie, they do57

not present sufficient information to derive the spectral cross sections needed to apply a58

multi-component model. Until multi-component methods areproven and widely avail-59

able, we believe that the empirical band ratio approach willprovide the primary practical60

means of making quantitative estimates of chlorophyll concentrations in the lakes from61
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satellite observations. Of course, because the complicating effects of non-algal substances62

can be significant, successful application the band ratio method will be limited to waters63

in which the optical properties are dominated by phytoplankton. As we will demonstrate64

below, however, waters where the band ratio method is most likely to be compromised65

by the presence of confounding substances constitute a small fraction of the Great Lakes66

(primarily embayments and shallow waters subject to frequent sediment resuspension).67

The standard NASA retrieval algorithms are based on the workof O’Reilly et al. (1998)68

who conducted an extensive study comparing a large and diverse set of oceanic field mea-69

surements of chlorophyll concentrations with predictionsmade from a number of different70

retrieval algorithms. They found that, in general, the multi-component (or semi-analytical)71

methods did not perform as well as did band ratio methods. Theband ratio methods are72

simple to apply and do not require detailed knowledge of the optical cross sections of the73

CPAs.74

The fundamental assumption underlying the empirical band ratio retrieval methods is75

that the optical properties of the water are dominated by phytoplankton absorption of in-76

coming solar radiation. Because chlorophyll-a absorbs most radiation at shorter (blue)77

wavelengths and very little in the middle (green) part of thespectrum (Bricaud and Stram-78

ski, 1990; Lohrenz et al., 2004), green light is preferentially reflected by algae. Thus,79

the ratio of the blue light reflected from the water (relatively sensitive to concentration of80

chlorophyll) to the reflected green light (relatively insensitive to chlorophyll concentration)81

should be inversely related to the concentration of phytoplankton in the water. By using82

a set of filters tuned to discrete narrow regions (bands) of the electromagnetic spectrum,83

satellite sensors like SeaWiFS and MODIS are designed to measure the spectral content84
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of the light reflected from the surface in those bands most appropriate for calculating this85

blue/green ratio.86

The choice of bands used to represent the blue and green portions of the spectrum87

varies between sensors and among the several empirical algorithms developed for each88

sensor. The current version of the standard NASA band ratio algorithm (see http://oceancolor.89

gsfc.nasa.gov/REPROCESSING/R2009/ocv6/) for SeaWiFS uses the maximum of the90

three bands{Rrs443,Rrs489,Rrs510} to represent the blue band andRrs555 to represent the91

green band. For MODIS, the blue band is represented by the maximum of {Rrs443,Rrs489}92

and the green band byRrs547. In both cases, the relationship between chlorophyll (Chla)93

and the band ratio is expressed as a fourth-order polynomialin X = log10 (Rrsblue/Rrsgreen),94

log10 (Chla) = a0 + a1X + a2X
2 + a3X

3 + a4X
4
. (1)95

The coefficients used in the standard NASA algorithms were determinedby regression96

analysis of the large set of coincidentin situ chlorophyll andRrsmeasurements obtained97

from a wide variety of ocean waters described by O’Reilly et al. (1998). The data set98

(SeaBAM) used by NASA in this process is updated periodically and is publicly available99

(Werdell et al., 2003). No similar database exists for the Great Lakes, though as noted100

above efforts reportedly are underway to develop one (G. Leshkevich,personal communi-101

cation, 2011).102

It is important to understand that the standard NASA chlorophyll retrieval algorithms103

were intended to be global in scope. That is, for each sensor,one of the designers’ goals104

was to develop a single relationship for estimating chlorophyll concentrations regardless105

of the time of year or area of the ocean being observed. This goal was achieved by tuning106

the candidate algorithms to the SeaBAM data, which were assembled by merging data107
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from a number of different sources (O’Reilly et al., 1998) in which the measured chloro-108

phyll concentrations ranged over four orders of magnitude (between 0.019 and 32.79 mg109

m−3). Of course, because of the large bio-optical diversity in the ocean, it was explic-110

itly recognized that no one single algorithm could be optimal in every situation or region.111

The expectation, rather, was that the estimates provided bythe general algorithm would112

provide estimates that were within known and reasonable limits of accuracy.113

Band ratio estimates of chlorophyll concentration based onthe standard NASA algo-114

rithms have proven valuable for understanding biological processes in the Great Lakes115

(Lesht et al., 2002; Chen et al., 2004; Kerfoot et al., 2008, 2010; Barbiero et al., 2011).116

However, other studies have questioned the absolute accuracy of the standard NASA re-117

trievals in the Great Lakes (Budd and Warrington, 2004; Li etal., 2004; Bergmann et al.,118

2004; Lohrenz et al., 2008; Witter et al., 2009; Watkins, 2009). We noted in our recent119

review of the applications of satellite ocean color algorithms to the Great Lakes (Lesht120

et al., 2012) that although the slopes, intercepts, and strength of the fits of the linear rela-121

tionships between retrieved and observed chlorophyll varied from study to study, retrievals122

that were based on the standard NASA band ratio algorithms produced chlorophyll esti-123

mates that were linearly related to the concentrations measured in the field, contrary to124

expectations based on the assumption that the Great Lakes must be considered Case-2 wa-125

ters. Lesht et al. (2012) showed that some variation in the results could be due to variations126

in the amounts of the confounding substances present, whichundoubtedly differed among127

the published studies. Some variation might also to due to the limited extent of the data128

used in the underlying studies and/or from procedural differences among them.129

A few studies have attempted to “tune” or optimize band ratioalgorithms for partic-130
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ular regions in the Great Lakes. One common feature of these studies is that they have131

been limited to individual lakes. In some cases, this narrowfocus stemmed from the re-132

searchers’ proximity to or interest in the lake in question (Witter et al., 2009; Binding133

et al., 2012). In other cases the research was part of a largerprogram being done in a134

specific region (Li et al., 2004). Perhaps because of data limitations or because it has been135

assumed that retrieval algorithms must be lake-specific, noprevious work has attempted136

to derive a single algorithm that would be applicable to all of the lakes. Such an algo-137

rithm, similar to the global ocean color algorithms that long have been used in the ocean,138

would greatly simplify and enhance efforts to employ satellite data for study of the Great139

Lakes. Although it is based on sampling done exclusively in offshore waters, the exten-140

sive GLNPO water quality monitoring data can be considered aGreat Lakes analogy to141

the in situ portion of the SeaBAM database used by NASA to develop the global ocean142

algorithms. In this paper we describe our use of the GLNPO data to develop of a single143

chlorophyll retrieval algorithm for the Great Lakes that isappropriate for those regions of144

the lakes that are represented by the GLNPO monitoring program.145

Methods146

Satellite Data147

All of the satellite data used in this study were processed with NASA’s SeaDAS soft-148

ware (Baith et al., 2001), version 6.3. We began with daily SeaWiFS and MODIS L1A im-149

agery obtained from NASA’s Ocean Color Data archive (http://oceancolor.gsfc.nasa.gov).150

These image files, which were extracted geographically to limit the imagery to the individ-151

ual lakes, included every daytime overpass from shortly after launch (September 1997 for152

8



SeaWiFS and July 2002 for MODIS) to the end of the SeaWiFS mission (December 2010)153

and through December 2011 for MODIS (which still operates).We used the appropriate154

versions of the SeaDASl2genmodule to convert the raw L1A raw radiance values to L2155

geophysical variable values, adopting the default SeaDAS atmospheric correction scheme156

that involves a 2-band model selection with an iterative near infrared (NIR) correction157

(Bailey et al., 2010). For days on which two L1A images of a lake were collected we158

kept only the image with the more favorable viewing geometry. To avoid computational159

artifacts, we did not further resample or grid the L2 files butrather used the original L2160

data values in all of our subsequent analyses.161

Field Observations162

Figure 1 shows the locations of the eighty stations sampled regularly by GLNPO be-163

tween 1998 and 2011. Surveys were made twice a year, generally in April to monitor164

spring conditions and again in August to collect data when the lakes are stratified. The165

actual ranges of dates sampled over the years are 11 March through 15 May in the spring166

and 30 July through 30 September in the summer. Although we included a two shallow167

water stations that were primarily intended to sample benthos in our analysis, the regular168

GLNPO monitoring stations were located offshore in the open waters of each lake by de-169

sign, and except for those in the shallow western and centralbasins of Lake Erie, all are170

in water that is greater than 30 m deep. All the regular monitoring stations in the central171

basin of Lake Erie are in water that is greater than 20 m deep.172

[Figure 1 here.]173

At each station, samples for chlorophyll were taken at discrete depths throughout the174

entire water column with Niskin bottles mounted on a SeaBirdCarousel Water Sampler.175
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For the present study, averages of samples collected from the isothermal upper (10 m)176

water column for each station/survey were used. Chlorophyll-a, uncorrected for pheo-177

phytin, was determined on a Turner Designs 10-AU fluorometerfollowing the method of178

Welschmeyer (1994).179

Data Screening and Matching180

We matched the field data values to the corresponding pixels in the satellite imagery181

as follows: For each field sample we identified the satellite images that were recorded on182

or within one day of the date of field collection. Beginning with the image closest in time183

to the field sampling, we determined the extent to which the image was contaminated by184

cloud cover. The amount of cloud contamination was calculated by dividing the number185

of cloudy water pixels by the total number of water pixels. Wediscarded images that were186

more than 80% cloud covered and then checked the next closestimage. If none of the im-187

ages recorded within a day of the field sample collection passed through this initial screen,188

then no match was made for that field observation. For each accepted image we identified189

the pixel corresponding to the field location by using geometrical correlation between the190

station location and the image pixel locations (see Appendix A for details). We accepted191

the observation for analysis only if the all the pixels within a 5x5 pixel box surrounding the192

sampling location were cloud free and valid, as indicated bythe following SeaDAS data193

quality flags: ATMFAIL, LAND, HIGLINT, HILT, STRAYLIGHT, CLDICE, CHLFAIL,194

NAVFAIL (http: //oceancolor.gsfc.nasa.gov/VALIDATION /flags.html).195

Of the 2126 individual GLNPO samples collected between 1998and 2011 our match-196

ing process resulted in a total of 1035 station/pixel pairs for SeaWiFS (1998-2010) and 974197

(2002-2011) for MODIS. We eliminated a number of the matchedobservations because198

10



one or more of the reflectance values were negative, possiblyindicating that the atmo-199

spheric correction model overestimated the contributionsof scattering aerosols (Bailey200

et al., 2010). Because Barbiero et al. (2011) found evidencethat the GLNPO chlorophyll201

measurements made prior to 2002 were biased toward low values, we further decided to202

limit the SeaWiFS data to the period 2002-2010 (the end of theSeaWiFS mission). Our203

final data set consisted of 454 matches for SeaWiFS and 782 matches for MODIS. The204

distribution of matched samples/images by lake and year is shown in Table 1. Only three205

samples (1 for SeaWiFS and 2 for MODIS) came from the shallow benthos stations.206

[Table 1 here.]207

Model Selection, Fitting, and Evaluation Statistics208

After conducting an extensive analysis of different combinations of band ratios and209

functional forms, O’Reilly et al. (1998) found that a fourth-order polynomial relating210

log10(Chla) to X = log10(Rrsblue/Rrsgreen) best represented the SeaBAM data (as noted211

above,Rrsblue is max[Rrs443,Rrs489,Rrs510] for SeaWiFS and is max[Rrs443,Rrs489] for212

MODIS; Rrsgreen is Rrs555 for SeaWiFS andRrs547 for MODIS) . Rather than experiment213

with different band ratios and functional forms, we chose to use thesesame ratios and poly-214

nomial model in our study, but we found that the Great Lakes data could be represented215

adequately by a third-order relationship216

log10 (Chla) = a0 + a1X + a2X
2 + a3X

3. (2)217

We used the same tuning method described by O’Reilly et al. (1998) to determine the co-218

efficients in Eq. 2. This procedure uses an iterative process in which the model coefficients219

(a0, a1, a2, a3 in Eq. 2) are adjusted until the intercept and slope of the linear relationship220
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between log10(Chlmodel
a ) and log10(Chlinsitu

a ) were zero and one respectively. In contrast to221

standard linear regression in which the objective is to determine a set of model coefficients222

that minimizes the sum of the squared differences between the modeled and observed val-223

ues, the iterative method is aimed at determining the set of model coefficients that produces224

a 1:1 relationship between the modeled and observed values.Although the error sum of225

squares may be larger (relative to the standard regression result) when the model coef-226

ficients are determined by using the iterative method, the method facilitates comparison227

between different models by constraining the slope and intercept (O’Reilly et al., 1998;228

Campbell and O’Reilly, 2006).229

We based our assessment of model performance on statistics calculated from the log-230

transformed data. The log transformation is appropriate (Campbell and O’Reilly, 2006)231

both because the data values vary over several orders of magnitude and because the log232

transformed chlorophyll is more normally distributed thanthe untransformed data (Fig 2).233

Our evaluation statistics include the slope (b) and intercept (a) of the best fit regression234

line between the (log transformed) model estimates (Pi) and observed values (Oi), the235

bias, or the difference between the means of the estimates (P) and the observations (O)236

(negative bias indicates that the predicted values underestimate the observed values), the237

ratio of the standard deviations of the estimates (σp) and observations (σo), the refined238

index of agreement (dr) (Willmott et al., 2011), the root mean squared error (RMS E), the239

percent unsystematic error (%US E) (Willmott, 1982), and the mean absolute error (MAE)240

(Willmott et al., 2009). For comparison with other studies,we also included the Pearson’s241

correlation coefficient (r), though this statistic has been shown to be overly sensitive to242

high extreme values (Willmott, 1982; Legates and McCabe, 1999; Moriasi et al., 2007)243
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and is less useful than measures based on the absolute difference between the estimates244

and observations (Campbell and O’Reilly, 2006). Because several of these statistics may245

be unfamiliar, we provide their formal definitions in Appendix B.246

[Figure 2 here.]247

The slope and intercept of the regression line indicate how well the estimates match the248

observations. We used a type II (or reduced major axis) modelto compute the regression.249

This type of model is appropriate when both variables are subject to uncertainty (Press and250

Teukolsky, 1992; Press et al., 1992). Bias measures the average tendency of the estimates251

to be larger or smaller than the observations; ideally the bias would equal zero. Similarly,252

comparing the standard deviations of the estimates and observations shows how well the253

model reproduces the overall variation in the data. BothRMS EandMAE are error indices254

that are useful because they characterize the error in the units of the variable of interest.255

Because it is based on the squared error,RMS Etends to exaggerate large errors andMAE256

is the preferred statistic (Willmott et al., 2009). In either case, the lower the ratio of257

RMS Eor MAE to the standard deviation of the observations, the better the model (Moriasi258

et al., 2007). Ideally, models would be free of systematic error (Willmott, 1982). In better259

models, the %US E, which is the unsystematic proportion of theRMS Eapproaches one.260

In addition to evaluating the overall performance of the model, we calculated evaluation261

statistics for each lake, for each lake and season, and for each year.262

The refined index of agreement (Willmott et al., 2011) is a dimensionless statistic,263

bounded by±1, that provides a summary measure of how well the model estimates repro-264

duce the data. Based on the absolute values of the difference between the estimates and265

observations, this statistic is not overly sensitive to high extreme values. Thedr statistic266
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is a measure of how well the model (algorithm) predicts the observations relative to how267

well the observations could be predicted by the observed mean. A perfect model, one for268

which Pi = Oi, would result in adr value of 1. If the sum of the absolute differences269

between the predicted and observed values (Σ|Oi − Pi |) is very large relative to the sum of270

the absolute deviations of the observations around their mean (Σ|Oi −O|) or if there is very271

little observed variability, thendr will approach -1. The value ofdr will be zero when sum272

of the absolute value of the differences between the predictions and observations is twice273

the sum absolute differences of the observations about the observed mean. Modelswith274

dr = 0.5 result in predictions that are equivalent to using the observed mean as the predic-275

tor and “good” models should havedr values> 0.5 indicating that the sum of the absolute276

predicted deviations is less than the sum of the absolute observed deviations. However,277

because characterization of model performance using values of dr is somewhat arbitrary278

(Legates and McCabe, 2012), we use the statistic as a relative indicator. When evaluat-279

ing the success of the models applied to our data, we primarily considered the slope, the280

intercept, theMAE, and the %US E.281

Estimation of Retrieval and Parameter Uncertainties282

We have only one set of matched data for each sensor so we are unable to validate our283

results with a completely independent set of observations.Furthermore, standard methods284

for assessing the uncertainty associated with the model fitsare inapplicable to our data285

because the model coefficients were determined by using the iterative method described286

above rather than by using simple least-squares regression. To address these issues we287

adapted a dual Monte Carlo resampling approach (Wei et al., 2008) to estimate the un-288

certainties of our models. In this two step process we first selected (with replacement)289
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a random subset of half the observations. Assuming that boththe selected chlorophyll290

and maximum band ratio values were samples from independent, normally-distributed,291

random variables we then perturbed the observed values by a random error term scaled292

to an assumed accuracy for the measured variables (5% for maximum band ratio (Bailey293

and Werdell, 2006) and 10% for chlorophyll) and used these perturbed values as the basis294

for a new fit. We repeated these random selection processes 1000 times to generate an295

ensemble of model coefficients that could be used to estimate confidence intervals for the296

predictions as a function of the maximum band ratio. Volpe etal. (2011) used a similar297

method to determine confidence intervals for estimates of remote sensing reflectance as a298

function of water turbidity.299

We used a subsampling approach (Hartigan, 1969) to estimatethe uncertainty in the300

model parameters. Because the number of our matched sampleswas fairly large, we did301

not apply the “leave out one” jackknife analysis adopted by the few other remote sensing302

studies that attempted a similar analysis (Volpe et al., 2011; Novoa et al., 2012). Rather,303

we partitioned the full data set into halves by years and determined the model coefficients304

for each of the five-year partitions. Because the total data set consisted of ten years, there305

are 252 unique five-year partitions. We also determined how well the model tuned to each306

partition predicted the observations in the complementarypartition and used the model307

evaluation statistics described above to assess the results.308
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Results309

Satellite images matched within situchlorophyll observations310

Chlorophyll concentrations measured by GLNPO between 2002and 2011 ranged be-311

tween 0.19 mg m−3 and 33.55 mg m−3, with a geometric mean of 1.37 mg m−3. The312

distribution of the measurements is approximately log-normal, with a slight skew toward313

larger values. Histograms of the subsets of chlorophyll values that were matched with the314

SeaWiFS and MODIS observations (Fig. 2) are very similar to overall distribution indicat-315

ing that the matching process resulted in samples representative of the overall population316

of observations. The minimum, maximum, and geometric mean of the SeaWiFS-matched317

chlorophyll values were 0.24 mg m−3, 24.03 mg m−3, and 1.29 mg m−3. For MODIS, these318

values were 0.22 mg m−3, 32.69 mg m−3, and 1.30 mg m−3.319

Model fit320

Model coefficients derived from GLNPO data (Table 2) resulted in improved fits for321

both MODIS and SeaWiFS sensors, compared to standard NASA models (Fig. 3). Re-322

calling that the coefficients determined for the Great Lakes Fit (GLF) models (Table 2)323

were constrained to result in a slope of one and intercept of zero, the values fordr , %USE,324

and MAE were 0.780, 0.976, 0.142 for MODIS and 0.758, 0.956, and 0.158 for SeaWiFS,325

respectively. For comparison, the slope, intercept, and statistics for the standard NASA326

models were 0.892, -0.074, 0.761, 0.640, 0.154 for MODIS-OC3M and 0.844, -0.048,327

0.739, 0.631, and 0.170 for SeaWiFS-OC4. When based on the entire dataset, the standard328

NASA relationships tend to underestimate the chlorophyll concentration for both sensors.329

A larger set of evaluation statistics comparing the GLF model to the standard NASA algo-330

rithms is given in Table 3.331
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[Table 2 here.]332

[Figure 3 here.]333

[Table 3 here.]334

Plots (after O’Reilly et al. (1998)) showing the relationships between the observed335

chlorophyll values and those predicted using both the standard NASA algorithms and the336

GLF model for MODIS and SeaWiFS are shown in Fig. 4. Because the GLF model co-337

efficients were determined under the constraint of producing a slope and intercept equal338

to one and zero respectively, the relative improvement in the performance of the fitted339

models is best illustrated by the changes in the quantile-quantile and frequency distribu-340

tion plots. The plots indicate greater deviation between predicted and observed values at341

higher chlorophyll concentrations in the standard NASA models (OC3M and OC4) com-342

pared to the GLF models. This underestimation of chlorophyll at high concentrations by343

the O3M and OC4 models can be seen by the divergence in relative frequencies between344

model andin situ values at high chlorophyll concentrations Fig. 4. At the most extreme345

values, however, all models show notable deviation betweenobserved and predicted val-346

ues.347

[Figure 4 here.]348

Fits by lake and by year349

The highest chlorophyll concentrations observed in our study come from Lake Erie350

where there also seems to be a distinct seasonal bifurcationin the relationship between351

log10(Chlinsitu
a ) and log10 of the maximum band ratio (MBR), especially for MODIS (Fig. 4352

bottom row). This bifurcation is evident when the GLF model is applied separately by353

season (Fig. 5 and Table 3). The seasonal difference is most pronounced in Lake Erie354
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(for both MODIS and SeaWiFS), where spring values were underestimated by the model355

and summer values were overestimated. The slope of the relationship between the values356

predicted by the GLF models and the observations also shows seasonal dependence in both357

Lakes Ontario (MODIS and SeaWiFS) and Superior (SeaWiFS).358

When applied to the individual lakes the MODIS GLF model performs very well (slope359

very close to 1, intercept near 0) in Lakes Huron and Michigan(Table 4). The model tends360

to under-predict the observations made in Lakes Erie and Superior, though the slopes are361

still greater than 0.92. In Lake Ontario, the slope is higherthan would be expected (1.45),362

but this determination is based on considerably fewer samples than in the other lakes.363

The SeaWiFS GLF results are similar for Lakes Erie, Huron, Michigan, and Ontario with364

slopes between 0.91 and 1.16. The Lake Superior slope is somewhat higher (1.25). In both365

cases with high slopes (MODIS Ontario and SeaWiFS Superior)the standard deviation of366

the model predictions is higher than the standard deviationof the observations, suggest-367

ing the presence of some outlier observations. We did not attempt to identify or remove368

possible outliers in this analysis.369

[Figure 5 here.]370

[Table 4 here.]371

When the GLF model is applied to all lakes by year the quality of the predictions are372

remarkably stable (Table 5). For MODIS the slope of the relationship between the values373

predicted by the GLF and the observations varies between 0.911 (2007) and 1.150 (2005)374

andMAE between 0.108 (2010) and 0.179 (2011). For SeaWiFS the slopevaries between375

0.940 (2007) and 1.417 (2010) andMAE between 0.129 (2003) and 0.186 (2006). We376

note, however, that the SeaWiFS sensor experienced problems throughout 2010 before377
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failing completely in December of that year so the results for 2010 may be suspect.378

[Table 5 here.]379

Comparison with published regionalized models380

Only a few studies have been published in which researchers attempted to improve381

the local accuracy of chlorophyll retrievals by fitting new band ratio models to data col-382

lected in the Great Lakes. Li et al. (2004) (L-2004) usedin situoptical measurements and383

least squares methods to optimize the fit of the OC4 algorithm(Eq. 1) to chlorophyll data384

they collected in Lake Superior. The set of optimized coefficients are given as{0.3815,385

-1.6837, 2.5054, -0.5899, -0.6505} (L-2004, page 452). When applied to our data, the386

results (Fig. 6, bottom panel) show that a 4th order model with these coefficients blows up387

at higher values of the maximum band ratio and predicts unrealistically low chlorophyll388

concentrations (relative to the GLNPO chlorophyll observations). This problem is avoided389

in the 3rd order GLF model (Fig. 6, top panel) which produces reasonable predictions (in-390

tercept= 0.032, slope= 1.247, MAE= 0.121) over the narrow range of chlorophyll values391

(0.5 mg m−3 to 1.9 mg m−3) that were observed in Lake Superior.392

[Figure 6 here.]393

Witter et al. (2009) (W-2009) used data collected in Lake Erie to develop a set of394

“regional algorithms” that were tuned both for whole lake and for the three individual395

lake basins. Rather than use an algorithm in the same form as Eq. 1, W-2009 found396

that the expressionChla = 10a+bR+cR2
, whereR = log(Rrs490/Rrs555) anda, b, andc are397

a set of coefficients specific to the whole lake, and western, central, and eastern basins,398

resulted in a statistically improved relationship (relative to estimates from the standard399

NASA algorithms) between the calculated and observed chlorophyll values, though the400
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tuned estimates still tended to underestimate the observedvalues. When we applied the401

W-2009 models to our data (Fig. 7, first column), we found thatalthough the slope of402

the fit for the whole-lake was close to one, the model was biased low (observed values403

were higher than the modeled values). Seasonal differences in the relationship between404

the modeled and observed chlorophyll are seen in both the GLFand W-2009 models with405

the apparent slope for the spring data being lower than that for the summer data. Although406

it is not basin-specific, the GLF model produced estimates inthe eastern and central basins407

with MAE values of 0.180 and 0.186 (log units) respectively.The overall (not seasonally408

separated) GLF predictions in the more turbid and productive western basin had an MAE409

of 0.322. The MAE values for the W-2009 model were 0.305, 0.422, and 0.343 in the410

eastern, central, and western basins respectively. The GLFtended to over predict the411

lower range of chlorophyll values observed in the spring in all basins. The over prediction412

was largest in the western basin.413

[Figure 7 here.]414

The Binding et al. (2012) model (B-2012) uses the multi-component approach to si-415

multaneously estimate the concentrations of suspended mineral particles and chlorophyll416

in Lake Erie from MODIS data. Overall, we found that this multicomponent model did not417

perform as well as did the GLF when compared to the GLNPO observations (Fig. 8). The418

intercept, slope, and MAE values for the GLF model were 0.087, 0.917, and 0.209 com-419

pared to -0.318, 1.226, and 0.382 for B-2012. The B-2012 model, however, was developed420

primarily for application to turbid and productive waters and can result in artificially low421

concentration values (sometimes negative estimates) in clearer waters. As is the case for422

the GLF model, there seems to be some seasonal dependence in the B-2012 predictions,423
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with the slope of the relationship between the modeled and observed chlorophyll values424

lower in the spring than in the summer at higher chlorophyll values (> 4 mg m−3) where425

the B-2012 model should be most accurate.426

[Figure 8 here.]427

Parameter and prediction uncertainty428

The distributions of the model parameters determined from the 252 unique five-year429

partitions show that for all the parameters the mean values of the distributions are very430

close to the values obtained by fitting to the entire dataset (Fig. 9). Performance of the431

models fit to the complementary five-year partitions is comparable to the performance432

of overall model. The mean value ofdr for the partitioned subsets is 0.772 for MODIS433

and 0.743 for SeaWiFS with ranges of [0.736, 0.798] and [0.674, 0.791] respectively,434

suggesting that the model calibration is robust. A completelisting of the fit statistics for435

the independent data sets is given in Table 6.436

[Figure 9 here.]437

[Table 6 here.]438

The estimated chlorophyll prediction error is shown as a function of the observed max-439

imum band ratio in Fig. 10. By enumerating the Monte Carlo generated values in a number440

of bins along the MBR axis, we were able to estimate empiricalconfidence intervals for the441

model predictions (the 80% interval is listed in Table 7 along with the±1σ interval). For442

both MODIS and SeaWiFS, the GLF predictions become very uncertain when log10(MBR)443

values are very low, (< -0.3 for MODIS,< -0.2 for SeaWiFS). In our data, however, ob-444

servations in this range are fairly rare (Fig. 11). Throughout most of the range of observed445

MBR values, the estimated accuracy of the retrieved chlorophyll concentrations is better446
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than 30%.447

[Figure 10 here.]448

[Table 7 here.]449

Figure 11 here.]450

Discussion451

The GLF models presented here represent the first chlorophyll retrieval algorithms452

tuned to data from all five Laurentian Great Lakes. Our study is unique in both its453

spatial and temporal extent, covering all five lakes and including ten years of data and454

our results clearly demonstrate a consistent relationshipbetween satellite-measured blue-455

green reflectance ratios and surface chlorophyll concentrations in the offshore waters of456

the Great Lakes represented by the GLNPO monitoring program. Based on several ap-457

propriate statistical measures, including the slope and intercept of the linear relationship458

between the modeled and observed log-transformed chlorophyll concentrations, the mean459

absolute error, and the revised index of agreement, the GLF model outperformed both the460

standard ocean-derived algorithms (OC4 for SeaWiFS and OC3M for MODIS, O’Reilly461

et al. (1998)) as well as regionally-tuned, lake-specific, algorithms developed for Lake462

Erie (Witter et al., 2009; Binding et al., 2012) and Lake Superior (Li et al., 2004).463

Based on our Monte-Carlo simulations, we estimate that the accuracy of the GLF pre-464

dictions throughout most of the expected concentration range in the offshore waters of465

the Great Lakes is better than the±35% criterion established for the standard NASA algo-466

rithms for Case 1 ocean waters (McClain et al., 1992). We notethat the errors in reflectance467

and chlorophyll assumed above are intended to represent random measurement variability468

22



and not the systematic variability that would result from the contributions of non-algal469

substances to the radiance values. This latter (and likely larger) source of variability is470

represented by the random selection of samples. For example, if the set of selected obser-471

vations includes samples in which non-algal substances dominate the reflectance spectrum472

(and band ratio), then the resulting variability should be reflected in the predicted chloro-473

phyll concentrations. Of course, the degree to which this latter source of variability is474

included in our data depends on the extent to which interfering substances influenced the475

input observations. Because the GLNPO data were primarily collected in offshore wa-476

ters where the effects of interferences would tend to be minimal, our estimates will likely477

underestimate the uncertainty that might be associated with observations made near the478

shore, in very turbid waters, or waters with high concentrations of CDOM.479

The GLF is based on a third-order polynomial (Eq. 2) rather than on the fourth-order480

polynomial used in the NASA OC3M and OC4 algorithms (Eq. 1). O’Reilly et al. (1998)481

note that adding the higher order (fourth) term in their relationship served to improve the482

fit at the lowest chlorophyll values. Because the lowest chlorophyll concentration observed483

in the Great Lakes is an order of magnitude larger than the lowest value in the ocean data484

set (0.19 mg m−3 in the Great Lakes versus 0.019 mg m−3 in SeaBAM) and the highest485

chlorophyll concentrations are comparable (33.55 mg m−3 in the lakes data versus 32.79486

mg m−3 in the ocean) the extra term is unnecessary for modeling the Great Lakes. The487

retrievals based on the NASA algorithms are biased low throughout the entire range of488

observed chlorophyll concentrations but the greatest differences between the NASA re-489

trievals and those obtained using the GLF occur at higher concentrations. This difference490

may represent a compositional distinction between the coastal ocean samples that con-491
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tribute to the higher chlorophyll concentrations in the SeaBAM data and those (primarily492

Lake Erie) samples that contribute the high chlorophyll values in the GLNPO data.493

Because the Lake Erie samples appear to drive the major differences between the494

NASA and GLF results, we repeated the GLF analysis on the database eliminating the495

Lake Erie samples. As would be expected the reduced-set (without Lake Erie) GLF model496

coefficients differ from those derived using the entire data set. The newa0, a1, a2, anda3497

values for MODIS are{0.3269, -2.7992, 1.2031, and 1.9369}. For SeaWiFS the coefficient498

set is{0.3889, -2.6479, 0.4819, -1.1660}. As measured by the change in slope, intercept,499

dr , MAE, and %MAE, the overall GLF fit to the remaining lakes was improved only500

marginally. On the other hand, the ability of the NASA algorithms to model the GLNPO501

observations was much improved, with slopes much closer to one (1.013 for MODIS,502

0.964 for SeaWiFS). The NASA algorithms, however, still hadmuch higher bias than the503

GLF fits (0.072 for MODIS and 0.028 for SeaWiFS).504

Although some samples were obtained in coastal waters the SeaBAM dataset was505

drawn primarily from Case 1 non-polar waters in which optical properties are dominated506

by phytoplankton and their associated products (O’Reilly et al., 1998). The coefficients507

for the standard OC3M and OC4 equations were derived from SeaBAM and thus, these508

coefficients would not be expected to perform well in more optically complex Case-2 wa-509

ters in which non-algal derived substances, such as mineralsuspended solids and colored510

dissolved organic matter, significantly influence optical properties. Our results show that511

a band ratio model can be used successfully in the offshore areas of the Great Lakes. This512

fact implies that, at least on a statistical basis, these waters are similar to the ocean Case 1513

waters in which the optical properties are dominated by phytoplankton.514
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Many studies, however, have shown that the standard band ratio equation form can515

still be appropriate for optically complex waters when fitted to a regional dataset. For516

example, McKee et al. (2007) derived sets of OC4 coefficients for two optical water types517

a study assessing the applicability of blue/green reflectance ratios to estimate chlorophyll518

in the Irish and Celtic Seas. The resulting models performedwell, indicating that the519

standard multiple band ratio equation form can be appropriate for shelf seas. Werdell520

et al. (2007) successfully developed a tuned OC3 type algorithm for estimating chlorophyll521

concentrations in Chesapeake Bay. A regionally-tuned version of OC4 also improved522

the accuracy of SeaWiFS retrievals in the Yellow and East China Seas (Siswanto et al.,523

2011), although an alternative equation form (Tassan, 1994) proved superior at high TSM524

concentrations. In the Baltic Sea, however, developed tuned standard algorithms for both525

MODIS and SeaWiFS substantially reduced bias in chlorophyll retrievals, but were still526

deemed unsatisfactory in view of large associated RSME (Darecki and Stramski, 2004).527

None of the few previous instances where band ratio model tuning has been attempted528

in the Great Lakes has resulted in accurate retrievals. In W-2009 the tuned models pro-529

vided better estimates than did the standard NASA models butthe tuned estimates still530

were lower than the observations. Li et al. (2004) (L-2004) however, were unable to find531

a tuned model that was significantly better than the NASA algorithm. When applied to532

our observations, the W-2009 basin-specific models (Witteret al., 2009) generally under-533

predicted thein situdata. As mentioned above, Barbiero et al. (2011) found evidence that534

the GLNPO chlorophyll measurements made prior to 2002 were likely too low. Because535

most of the data used by W-2009 to calibrate their model were obtained from GLNPO536

surveys made between 1998 and 2002 this low bias might account for under-prediction537
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of W-2009. The negative bias in the tuned W-2009 model is alsoseen in the results538

for the individual basins. Li et al. (2004) suggest that the low ratio of chlorophyll-a to539

CDOM precludes the use of empirical approaches in Lake Superior. However, this con-540

clusion is based on the poor performance of L-2004 model in the coastal waters sampled541

by L-2004 where CDOM concentrations may be high due to riverine inputs. As might542

be expected, the L-2004 also fails when applied to our observations, which come entirely543

from offshore regions where the GLF model provides reasonably good predictions in Lake544

Superior (Fig. 6).545

The tendency of both the MODIS and SeaWiFS GLFs to underestimate the observed546

chlorophyll in Lakes Erie and Ontario (Fig. 5) in the spring and to overestimate chlorophyll547

in the summer may be due to seasonal differences in the phytoplankton population. Spe-548

cific absorption coefficients of phytoplankton can vary due to differences in pigment com-549

position, cell size and amount and distribution of pigment within the cell, (e.g., Sathyen-550

dranath et al. (1987)). As a result, phytoplankton community composition will impact es-551

timation of chlorophyll from ocean-color data (Carder et al., 1999; Sathyendranath et al.,552

2001). For instance, Stuart et al. (2000) have shown that diatom populations exhibit lower553

specific absorption coefficients, relative to prymnesiophytes, in the Labrador Sea due to554

increased pigment packaging and increased intra-cellularchlorophyll a, while Bergmann555

et al. (2004) have hypothesized that the accuracy of blue/green reflectance ratios in the556

Great Lakes can be compromised by phycobilin-containing algae. Sathyendranath et al.557

(2004) used a model to estimate the effects of changes in the dominance of diatoms on558

the reflectance ratio and found that, for equal values of chlorophyll concentration, diatom-559

dominated populations would tend to have higher reflectanceratios than populations of560
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mixed phytoplankton. Therefore, dominance of phytoplankton communities by larger di-561

atoms might lead to underestimation of retrieved chlorophyll. While the differences in the562

calculated ratios by Sathyendranath et al. (2004) were relatively small (∼5%), the effect on563

concentration estimates would be amplified at low band ratio(high concentration) values564

because of the polynomial form of the retrieval models. Spring phytoplankton commu-565

nity composition in Lake Erie, particularly in the central and eastern basins, is notable for566

being dominated by the large-celled diatomAulacoseira islandica(GLNPO, unpublished567

data). Because the GLF coefficients were tuned to the complete dataset, the GLF estimates568

will generally fall between the extremes defined by pure diatom and mixed plankton pop-569

ulations in more productive regions of the lakes. The relatively wide confidence intervals570

associated with low band ratio values (Fig. 10) reflect the effect of this seasonal bifurca-571

tion. Seasonal differences in the fit are much less pronounced in the other lakes because572

chlorophyll values are generally low (higher band ratio values).573

In addition to differences due to changes in the phytoplankton populations, chlorophyll574

overestimates in Lake Ontario during the summer may also result from whiting events575

(Peng and Effler, 2010) that cause high reflectance values in the green portion of the spec-576

trum (Wortman, 2005). High green reflectance values would tend to reduce the observed577

band ratio and result in higher estimated chlorophyll values. GLNPO summer sampling578

during the years 2005, 2006, and 2007 coincided with peaks insatellite observed values579

of Rrs555 (J. Watkins, personal communication, 2012) and these threeyears accounted580

for almost half of the total number of matched samples from Lake Ontario in our data581

(Table 1).582

No previous study of chlorophyll retrievals done in the Great Lakes has used such an583
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extensive set of data, nor has one attempted to provide any characterization of the uncer-584

tainty associated with the estimates. Although it is likelythat random variations in the585

quantities of interfering substances contribute most to the uncertainty associated with the586

GLF retrievals, other factors that are difficult to ignore also may have some affect. Among587

these are errors in the basic measurements of chlorophyll and reflectance (including inac-588

curacy in the atmospheric correction algorithm embedded inthe radiometric calibrations)589

and temporal and spatial differences in the matching of thein situ and satellite observa-590

tions. Our Monte-Carlo approach was intended to simulate the combined effects of these591

error sources. The question of uncertainty becomes most important when satellite data592

are used to estimate absolute values of chlorophyll and to assess the significance of ap-593

parent changes in concentration in space or over time. For example, using SeaWiFS data594

Barbiero et al. (2011) found that spring chlorophyll levelsin Lake Huron declined by ap-595

proximately 50% between 1998-2002 and 2003-2006. The SeaWiFS estimated average596

Lake Huron southern basin spring (April-May) chlorophyll concentration in 2003-2006597

was∼1.0 mg m−3, a decline of approximately 0.8 mg m−3 from the values estimated for598

the 1998-2002 period. Based on the empirical confidence limits shown in Table 7, a change599

of this magnitude is unlikely (<10%) to be an artifact of the retrieval uncertainty.600

Conclusion601

Algorithms based on the blue-green band ratio are among the most simple of the meth-602

ods designed to retrieve surface water chlorophyll concentration from satellite observa-603

tions. The practical utility of the band ratio method results from this simplicity. Estimates604

of blue and green reflectance from satellite sensors are readily available and the compu-605
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tation required to convert reflectance values into estimates of chlorophyll concentration is606

straightforward and easily implemented. By using a single set of sensor-dependent co-607

efficients, the GLF model makes it possible to make consistent estimates of chlorophyll608

concentration across the lakes without the necessity of adjusting coefficients on the basis609

of location, season, or year.610

Discovering the limits of band ratio methods applied to the Great Lakes is an ongoing611

process. We expect our results to be most applicable to the offshore waters represented612

by the GLNPO monitoring program. The regular GLNPO monitoring program does not613

include sampling in the major Great Lakes embayments such asGreen Bay, Saginaw Bay,614

the North Channel, Georgian Bay, and the Bay of Quinte. Because these areas are out-615

side the our sampling universe, we would not necessarily expect that our results would be616

applicable to satellite observations of these waters, nor would we necessarily expect our617

results to be applicable to shallow or nearshore waters strongly influenced by sediment618

resuspension or the presence of high concentrations of CDOM. Some work has been re-619

ported in which satellite observations have been used to determine if waters are Class-1 or620

Class-2 (Lee and Hu, 2006; Matsushita et al., 2012) and to classify inland waters before621

choosing a retrieval algorithm that has been tuned to water type (Le et al., 2011; Li et al.,622

2012). Such methods may be applicable to the Great Lakes and we are exploring that623

possibility using the GLNPO data.624

Further work is needed to determine the causes of the apparent seasonal bifurcation625

in the relationship between observed chlorophyll and the maximum band ratio at higher626

chlorophyll concentrations and to understand how errors inthe retrievals might be related627

to other properties of the surface water that are observableby satellite. Validation of the628
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GLF model with independent data also is very desirable. Although the GLF performs629

well, other algorithmic approaches also should be explored. Given the appropriate opti-630

cal cross-sections, the two-component model developed forLake Erie by Binding et al.631

(2012) based on two bands in the red and near-infrared is fairly simple to apply and shows632

promise for providing simultaneous estimates of both chlorophyll and suspended mineral633

concentrations in productive regions of the lakes. Similarly, the five-band algorithm devel-634

oped by Gohin et al. (2002) that incorporates both the blue-green ratio as well as radiances635

at two other wavelengths was successful when applied to the coastal Bay of Biscay (Gohin636

et al., 2005), the English Channel (Gohin et al., 2002), and the Bay of Bengal and Arabian637

Sea (Tilstone et al., 2011) and should be investigated usingdata from the Great Lakes.638

A simple band ratio method using a single set of sensor-specific coefficients can pro-639

vide consistent estimates of chlorophyll concentrations in the offshore surface waters of640

Great Lakes with accuracy comparable to that required for oceanic estimates. The uncer-641

tainty associated with the chlorophyll retrievals also canbe estimated from the satellite642

data making it possible to assign confidence limits to the estimates. Because the model is643

independent of lake and time, application of the GLF to satellite images of the Great Lakes644

provides the means for quantitative analysis of differences within and between lakes and645

over time. Applying the GLF to both historical and contemporary satellite observations646

should greatly facilitate use of this imagery in studies of phytoplankton processes in the647

Great Lakes.648
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Appendices654

A. Matching station locations with image pixels655

We letplat, plonrepresent the latitude and longitude of the image pixels andf lat, f lon656

the latitude and longitude of the field station. To determined the image pixel corresponding657

to the field location we let658

uvp[0] = cos(plat) ∗ cos(plon)

uvp[1] = cos(plat) ∗ sin(plon)

uvp[2] = sin(plat)

and659

uv f[0] = cos(f lat) ∗ cos(f lon)

uv f[1] = cos(f lat) ∗ sin(f lon)
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uv f[2] = sin(f lat)

and then calculate the dot product between theuvpanduv f vectors,660

661

dot= uvp[0] ∗ uv f[0] + uvp[1] ∗ uv f[1] + uvp[2] ∗ uv f[2].662

663

Finding the maximum value of the dot product yields the location of the desired image664

pixel. Once this pixel was located, we checked to ensure thatit and all pixels within a665

5-km radius of it were cloud free and had valid data (as determined by the status of the L2666

data quality flags). Only if these criteria were met did we accept the station and image pair667

for further analysis668

B. Model comparison statistics669

Following Willmott (1982) and Willmott et al. (2011), givena set ofN paired observa-670

tions,Oi and model predictions,Pi we define the following statistics that appear in the text.671

Following Campbell and O’Reilly (2006) these statistics are based on the log-transformed672

variables.673

674

O = N−1
N
∑

i=1

Oi, the mean of the observations.675

676

P = N−1
N
∑

i=1

Pi, the mean of the predicted values.677

678

P̂i = a + bOi, the linear fit prediction of Pi, where a and b are the intercept and slope679

of the least-squares regression ofP on O.680
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681

MS Es = N−1
N
∑

i=1

(P̂i −Oi)
2, the systematic error of the model.682

683

MS Eu = N−1
N
∑

i=1

(Pi − P̂i)
2, the unsystematic error of the model.684

685

MS E= MS Es+ MS Eu, the mean square error.686

687

%US E= MS Eu/MS E, the percent unsystematic error.688

689

RMS E= [N−1
N
∑

i=1

(Pi −Oi)
2]0.5, the root mean square error.690

691

MAE = N−1
N
∑

i=1

|Pi −Oi |, the mean absolute error.692

693

The revised index of agreement (dr),694

695
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Tables907

MODIS Lake
Year Erie Huron Michigan Ontario Superior Total
2002 12 7 0 4 8 31
2003 32 11 16 1 21 81
2004 28 12 6 6 20 72
2005 23 18 21 15 21 98
2006 28 6 16 15 22 87
2007 18 12 9 12 22 73
2008 29 25 12 5 28 99
2009 22 21 11 13 16 83
2010 11 11 10 9 26 60
2011 30 20 3 11 34 98
Total 233 143 104 84 218

SeaWiFS
Year Erie Huron Michigan Ontario Superior Total
2002 29 3 12 7 8 59
2003 24 10 13 1 4 52
2004 23 9 13 4 5 54
2005 23 14 14 12 9 72
2006 35 13 12 2 8 70
2007 17 7 13 12 8 57
2008 5 9 1 0 3 18
2009 18 11 6 5 0 40
2010 1 6 7 2 16 32
Total 175 82 91 45 61

Table 1: Number of Matched Field/Satellite Samples
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Sensor a0 a1 a2 a3

MODIS 0.3429 -3.3925 3.3412 0.7857
SeaWiFS 0.4006 -4.0975 10.6576 -16.4647

Table 2: Coefficients of the GLF model (log10(Chlmod
a ) = a0 + a1*X + a2*X 2 + a3*X 3) for MODIS and

SeaWiFS. X= log10 of the maximum band ratio (MBR).
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Model Intercept Slope r Bias σpred/σobs dr RMSE %USE MAE N
All data

OC3M -0.074 0.892 0.891 0.090 0.893 0.761 0.203 0.640 0.154 782
MOD3-GLF -0.000 1.040 0.891 -0.006 1.041 0.780 0.191 0.976 0.142 782

OC4 -0.048 0.844 0.841 0.078 0.845 0.739 0.229 0.631 0.170 454
SWF4-GLF 0.001 1.052 0.834 -0.012 1.053 0.758 0.237 0.956 0.158 454

Spring data
OC3M -0.060 0.742 0.893 0.106 0.742 0.756 0.231 0.391 0.172 408

MOD3-GLF 0.006 0.875 0.899 0.016 0.876 0.798 0.191 0.759 0.143 408
OC4 -0.013 0.789 0.797 0.065 0.789 0.719 0.266 0.586 0.200 252

SWF4-GLF 0.038 1.023 0.791 -0.044 1.022 0.736 0.283 0.892 0.188 252
Summer data

OC3M -0.085 1.094 0.924 0.073 1.094 0.771 0.167 0.808 0.135 374
MOD3-GLF -0.002 1.263 0.917 -0.029 1.264 0.760 0.192 0.889 0.141 374

OC4 -0.083 0.913 0.911 0.095 0.913 0.776 0.173 0.582 0.133 202
SWF4-GLF -0.038 1.067 0.906 0.029 1.067 0.797 0.161 0.963 0.121 202

Table 3: Statistics of NASA and GLF models fit to data [log10(Chlmod
a ) vs. log10(Chlinsitu

a )] with seasonal
subsets (see Methods for explanation of abbreviations in column headings).
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Lake Intercept Slope r Bias σpred/σobs dr RMSE %USE MAE N
MODIS

Erie 0.087 0.917 0.675 -0.037 0.917 0.624 0.268 0.745 0.209 233
Huron -0.005 1.010 0.723 0.007 1.011 0.640 0.117 0.868 0.091 143

Michigan -0.063 0.999 0.767 0.063 0.999 0.608 0.128 0.670 0.105 104
Ontario -0.118 1.448 0.601 -0.023 1.447 0.415 0.214 0.976 0.181 84
Superior -0.007 0.938 0.390 0.002 0.938 0.472 0.143 0.649 0.108 218

SeaWiFS
Erie 0.110 0.906 0.639 -0.059 0.906 0.619 0.302 0.704 0.215 175

Huron 0.037 1.165 0.729 -0.010 1.166 0.613 0.139 0.961 0.102 82
Michigan -0.068 0.937 0.724 0.066 0.937 0.603 0.134 0.609 0.109 91
Ontario -0.087 1.030 0.662 0.077 1.031 0.576 0.190 0.714 0.138 45
Superior 0.032 1.247 0.466 -0.016 1.246 0.430 0.154 0.864 0.121 59

Table 4: Statistics of GLF model fit to data [log10(Chlmod
a ) vs. log10(Chlinsitu

a )] for all years by lake (see
Methods for explanation of abbreviations in column headings).
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Year Intercept Slope r Bias σpred/σobs dr RMSE %USE MAE N
MODIS

2003 -0.008 0.948 0.921 0.019 0.948 0.817 0.157 0.881 0.124 81
2004 0.021 1.116 0.854 -0.036 1.117 0.740 0.169 0.947 0.116 72
2005 -0.028 1.150 0.887 -0.000 1.150 0.750 0.220 0.999 0.149 98
2006 0.045 1.109 0.916 -0.059 1.109 0.779 0.176 0.886 0.139 87
2007 -0.056 0.911 0.884 0.070 0.911 0.764 0.216 0.739 0.166 73
2008 0.022 0.914 0.895 -0.015 0.914 0.805 0.204 0.829 0.151 99
2009 -0.029 0.964 0.885 0.035 0.964 0.778 0.179 0.870 0.136 83
2010 -0.049 1.131 0.914 0.042 1.132 0.734 0.135 0.898 0.108 60
2011 0.017 1.107 0.907 -0.037 1.107 0.785 0.230 0.974 0.179 98

SeaWiFS
2002 0.093 1.039 0.761 -0.099 1.039 0.685 0.252 0.771 0.176 59
2003 -0.046 0.970 0.916 0.056 0.970 0.803 0.164 0.819 0.129 52
2004 0.004 1.012 0.812 -0.006 1.011 0.744 0.201 0.915 0.136 54
2005 -0.079 1.113 0.881 0.052 1.114 0.738 0.226 0.947 0.161 72
2006 0.082 1.169 0.842 -0.114 1.170 0.756 0.298 0.853 0.186 70
2007 -0.041 0.940 0.808 0.055 0.939 0.769 0.288 0.809 0.180 57
2008 0.064 1.324 0.922 -0.086 1.325 0.790 0.220 0.712 0.130 18
2009 -0.033 0.954 0.900 0.045 0.954 0.822 0.200 0.851 0.140 40
2010 0.050 1.417 0.586 -0.034 1.418 0.307 0.179 0.943 0.144 32

Table 5: Statistics of GLF model fit to data [log10(Chlmod
a ) vs. log10(Chlinsitu

a )] from all lakes by year. MODIS
began producing data after the GLNPO sampling was completedin 2002 (see Methods for explanation of
abbreviations in column headings).
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Statistic Mean σ Minimum Maximum
MODIS

Intercept -0.001 0.023 -0.061 0.063
Slope 1.057 0.089 0.878 1.348

r 0.888 0.009 0.831 0.906
Bias 0.008 0.029 -0.066 0.081

dr 0.772 0.013 0.736 0.798
RMSE 0.200 0.023 0.163 0.324
%USE 0.937 0.053 0.724 1.000
MAE 0.146 0.010 0.124 0.182

SeaWiFS
Intercept 0.002 0.046 -0.096 0.112

Slope 1.062 0.102 0.864 1.342
r 0.695 0.033 0.605 0.786

Bias 0.013 0.057 -0.126 0.142
dr 0.743 0.020 0.674 0.791

RMSE 0.247 0.028 0.186 0.319
%USE 0.889 0.082 0.572 1.000
MAE 0.167 0.012 0.137 0.199

Table 6: Statistics oflog10(Chlmod
a ) vs. log10(Chlinsitu

a ) for five-year partitioned model fits. Coefficients cali-
brated with five-year partitions were used to model the observed chlorophyll in the complementary partitions
(see Methods for explanation of abbreviations in row labels).
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log10(MBR) log10(Chlmod
a ) Chlmod

a − σ Chlmod
a Chlmod

a + σ 10% quantile 90% quantile
(mg/m3) (mg/m3) (mg/m3) (mg/m3) (mg/m3)

MODIS
0.349 -0.383 0.381 0.414 0.449 0.371 0.456
0.249 -0.280 0.472 0.525 0.584 0.457 0.609
0.149 -0.087 0.698 0.819 0.960 0.663 1.022
0.050 0.184 1.239 1.527 1.882 1.156 2.039
-0.050 0.522 2.599 3.330 4.267 2.385 4.677
-0.150 0.913 6.050 8.179 11.058 5.557 12.447
-0.250 1.354 13.763 22.595 37.093 12.759 44.610

SeaWiFS
0.349 -0.436 0.306 0.366 0.438 0.289 0.454
0.249 -0.237 0.502 0.579 0.669 0.479 0.701
0.149 -0.027 0.800 0.941 1.106 0.762 1.174
0.049 0.248 1.409 1.770 2.223 1.310 2.429
-0.050 0.635 3.142 4.320 5.939 2.854 6.712
-0.149 1.187 8.834 15.386 26.798 8.050 34.042

Table 7: Estimated uncertainty (±1σ and empirical 80% confidence intervals) for GLF chlorophyllretrievals.
Overbars indicate the averages of the Monte Carlo run valuesfalling in 0.1 bins oflog10(MBR). Chlmod

a is
10.(log10(Chlmod

a )) andChlmod
a ± σ is 10.(log10(Chlmod

a )±σ(log10(Chlmod
a )).

52



List of Figures908

1 Locations of GLNPO WQS stations. . . . . . . . . . . . . . . . . . . . . 56909

2 Histograms of GLNPO chlorophyll-a measurements, 2002-2011. Black910

bars represent the entire set of field data, the white bars represent the field911

data that were matched with MODIS observations (2002-2011), and the912

hatched bars represent the field data that were matched with SeaWiFS ob-913

servations (2002-2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . 57914

3 log10(observed chlorophyll) vs. log10(maximum band ratio) for MODIS915

(top panel) and SeaWiFS (bottom panel). Dashed lines show the standard916

NASA algorithms. The GLF model for each set is shown by the solid lines. 58917

4 Comparisons between modeled (Chlmod
a ) and observed chlorophyll (Chlinsitu

a )918

data: From top to bottom: Scatterplots (1:1 indicated by gray line, regres-919

sion indicated by black line); quantile-quantile plots; relative frequency of920

in situ (solid line) and modeled (dashed line) values; maximum bandra-921

tio versusin situ Chla (symbols) and maximum band ratio (MBR) versus922

model (curve). Note that the x-axes for each row of figures areshown in923

column 1. Also shown in the second panel from the top are linesindicating924

model:in situ ratios of 1:5 and 5:1. From left to right columns are NASA925

OC3Mv6, MODIS GLF, NASA OC4v6, and SeaWiFS GLF. . . . . . . . 59926

53



5 Comparison of GLF modeled (Chlmod
a and observed chlorophyll (Chlmod

a )927

data by sensor and season. Panels from top to bottom are as described in928

Fig. 4. From left to right the columns are MODIS GLF spring, MODIS929

GLF summer, SeaWiFS GLF spring, SeaWiFS GLF summer. Symbolsare930

the same as those used in Fig. 3 and Fig. 4 . . . . . . . . . . . . . . . . . 60931

6 Chlorophyll (Chlmod
a ) in Lake Superior predicted by the GLF model (top932

panel) and the Li et al. (2004) model (bottom panel) versus observed933

chlorophyll (Chlinsitu
a ). Results for the Li et al. (2004) model that pro-934

duced values of chlorophyll< 0.1 mg/m3 are not plotted nor included in935

the statistics (see Methods for description of abbreviations in legend). Two936

outliers with GLF modeled chlorophyll values> 10 mg/m3 are not plotted937

nor included in the statistics shown. Solid line is 1:1 and dashed line is the938

model regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61939

7 Chlorophyll (Chlmod
a ) in Lake Erie predicted by the GLF model (right col-940

umn) and the Witter et al. (2009) whole lake and basin-tuned models (left941

column) versus observed chlorophyll. Rows are (from top) all Lake Erie942

stations, eastern basin stations (triangles), central basin stations (squares),943

and western basin stations (circles). Open symbols represent samples col-944

lected in the spring and filled symbols those collected in thesummer. Solid945

line is 1:1 and dashed line is model regression. See methods for explana-946

tion of statistics abbreviations. . . . . . . . . . . . . . . . . . . . . .. . 62947
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8 Chlorophyll (Chlmod
a ) in Lake Erie predicted by the GLF model (top) and948

the Binding et al. (2012) model (bottom) versus observed chlorophyll949

(Chlinsitu
a ). Results for the Binding et al. (2012) model were limited to950

those that produced non-negative values of chlorophyll. Lake Erie basins951

are designated by symbols (open for spring samples and solidfor sum-952

mer samples). Solid line is 1:1 and dashed line is model regression. See953

Methods for explanation of abbreviations in legend. . . . . . .. . . . . . 63954

9 Frequency distributions of GLF model parameters (a0, a1, a2, a3) obtained955

from five-year subsets of the complete data record. Left column shows956

results for MODIS, right column for SeaWiFS. Vertical linesindicate pa-957

rameter values determined from fit to entire dataset. . . . . . .. . . . . . 64958

10 Monte-Carlo (M-C) fits of the 3rd order model (Eq. 2) relating log10(chlorophyll)959

to log10(maximum band ratio) for MODIS (top panel) and SeaWiFS (bot-960

tom panel, note change of scale). Samples from the M-C runs are plotted961

in gray. The points and error bars show the average± one standard de-962

viation of the samples within 0.1 intervals of log10(maximum band ratio).963

The upper curve is the GLF model and the lower curve is the standard964

NASA algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65965

11 Histograms of log10(maximum band ratio) from the MODIS (top panel)966

and SeaWiFS (bottom panel) observations that were matched with GLNPO967

field samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66968
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Figure 1: Locations of GLNPO WQS stations.
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Figure 2: Histograms of GLNPO chlorophyll-a measurements,2002-2011. Black bars represent the entire
set of field data, the white bars represent the field data that were matched with MODIS observations (2002-
2011), and the hatched bars represent the field data that werematched with SeaWiFS observations (2002-
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Figure 3: log10(observed chlorophyll) vs. log10(maximum band ratio) for MODIS (top panel) and SeaWiFS
(bottom panel). Dashed lines show the standard NASA algorithms. The GLF model for each set is shown
by the solid lines.
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Figure 4: Comparisons between modeled (Chlmod
a ) and observed chlorophyll (Chlinsitu

a ) data: From top to
bottom: Scatterplots (1:1 indicated by gray line, regression indicated by black line); quantile-quantile plots;
relative frequency ofin situ (solid line) and modeled (dashed line) values; maximum bandratio versusin situ
Chla (symbols) and maximum band ratio (MBR) versus model (curve). Note that the x-axes for each row of
figures are shown in column 1. Also shown in the second panel from the top are lines indicating model:in
situ ratios of 1:5 and 5:1. From left to right columns are NASA OC3Mv6, MODIS GLF, NASA OC4v6, and
SeaWiFS GLF.
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Figure 5: Comparison of GLF modeled (Chlmod
a and observed chlorophyll (Chlmod

a ) data by sensor and
season. Panels from top to bottom are as described in Fig. 4. From left to right the columns are MODIS
GLF spring, MODIS GLF summer, SeaWiFS GLF spring, SeaWiFS GLF summer. Symbols are the same as
those used in Fig. 3 and Fig. 4
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Figure 6: Chlorophyll (Chlmod
a ) in Lake Superior predicted by the GLF model (top panel) and the Li et al.

(2004) model (bottom panel) versus observed chlorophyll (Chlinsitu
a ). Results for the Li et al. (2004) model

that produced values of chlorophyll< 0.1 mg/m3 are not plotted nor included in the statistics (see Methods
for description of abbreviations in legend). Two outliers with GLF modeled chlorophyll values> 10 mg/m3

are not plotted nor included in the statistics shown. Solid line is 1:1 and dashed line is the model regression.
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Figure 7: Chlorophyll (Chlmod
a ) in Lake Erie predicted by the GLF model (right column) and the Witter et al.

(2009) whole lake and basin-tuned models (left column) versus observed chlorophyll. Rows are (from top)
all Lake Erie stations, eastern basin stations (triangles), central basin stations (squares), and western basin
stations (circles). Open symbols represent samples collected in the spring and filled symbols those collected
in the summer. Solid line is 1:1 and dashed line is model regression. See methods for explanation of statistics
abbreviations.
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Figure 8: Chlorophyll (Chlmod
a ) in Lake Erie predicted by the GLF model (top) and the Bindinget al. (2012)

model (bottom) versus observed chlorophyll (Chlinsitu
a ). Results for the Binding et al. (2012) model were

limited to those that produced non-negative values of chlorophyll. Lake Erie basins are designated by sym-
bols (open for spring samples and solid for summer samples).Solid line is 1:1 and dashed line is model
regression. See Methods for explanation of abbreviations in legend.
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Figure 9: Frequency distributions of GLF model parameters (a0, a1, a2, a3) obtained from five-year subsets
of the complete data record. Left column shows results for MODIS, right column for SeaWiFS. Vertical
lines indicate parameter values determined from fit to entire dataset.
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Figure 10: Monte-Carlo (M-C) fits of the 3rd order model (Eq. 2) relating log10(chlorophyll) to
log10(maximum band ratio) for MODIS (top panel) and SeaWiFS (bottom panel). Samples from M-C runs
are plotted in gray. The points and error bars show the average ± one standard deviation of the samples
within 0.1 intervals of log10(maximum band ratio). The upper curve is the GLF model and thelower curve
is the standard NASA algorithm.
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Figure 11: Histograms of log10(maximum band ratio) from the MODIS (top panel) and SeaWiFS (bottom
panel) observations that were matched with GLNPO field samples.
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