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Terrestrial ecosystems exchange vast amounts of C with 
the atmosphere between the processes of gross primary 
photosynthesis (GPP) and ecosystem respiration. As such, land 
surface processes that affect the balance between photosynthesis 
and respiration should affect the atmospheric concentration of 
CO2. Because atmospheric CO2 concentrations have been stable 
over millennia during the Holocene, it can be hypothesized that 
any process that has affected one biospheric C flux component 
has been compensated by changes in the other component. 
However, human activities are causing a net release of CO2 into the 
atmosphere, which is altering the C flux balance between global 
GPP and terrestrial ecosystem respiration. Reliable predictions 
of direct effects of CO2 and related climate forcing factors on 
vegetation and their feedbacks on the climate system depend 
deeply on our understanding of this global photosynthesis-
ecosystem respiration balance. Tremendous progress has been 
made on understanding the photosynthetic flux of the terrestrial 
biosphere, but our understanding of the respiration flux and 
its components has advanced at a much slower pace [1]. As the 
majority of the ecosystem respiration flux originates from soils, 
understanding plant and soil biota interactions in terrestrial 
ecosystems represent a major challenge for climate predictions. 
Belowground processes are complex and govern major feedbacks 
between the terrestrial biosphere and climate. Here, we identified 
two major belowground biogeochemical processes that have 
been elusive to ecosystem scientists.  

BELOWGROUND PLANT CARBON ALLOCATION 
AND IMPACTS ON SOIL RESPIRATION

Increases in respiratory demand by belowground tissues 
influence total belowground carbon allocation in vegetation.  
Because plants allocate C to maximize photosynthesis and 
growth [2], plants will partition GPP into tissues that would 
minimize negative impacts of limiting resources on growth 
[1,3,4]. Increased allocation of C to belowground tissues could be 
to meet nutrient and water demands [5], potentially increasing 
respiration costs and reducing the proportion of GPP invested 
in growth [1]. Although climate and phenological factors may 
lead to proportional changes in aboveground and belowground 
C allocation, factors such as water, temperature, atmospheric 
CO2 or nutrient availability have been documented to affect 

total belowground carbon allocation and autotrophic and 
heterotrophic respiration from soil [6,7,8]. In addition to root 
biomass, the fraction of GPP shunted belowground support 
maintenance and nutrient uptake costs, exudates, and nutrient-
carbon trade with symbiotic organisms. A significant portion of 
the GPP allocated belowground to sustain processes other than 
biomass appears to modulate soil heterotrophic activity [9], 
suggesting that plants exert some control on soil heterotrophic 
respiration from ecosystems.  

An increasing body of recent literature shows a direct 
influence of GPP on the autotrophic component of soil respiration 
[10,8]. This contrasts with simple temperature response 
functions often seen in model representations of root respiration 
from soils [9] and the empirical evidence showing acclimation 
and adaptation of respiration to climate change factors [11-13]. 
In fact, GPP has also been shown to influence soil heterotrophic 
respiration to a similar or greater extent than soil temperature 
or moisture [14-16]. The mechanisms of these connections are 
not fully understood [9], but may include stimulation of soil 
microbial activity via the rhizosphere priming effect [17]. The 
connection between GPP and heterotrophic respiration may 
reflect a complex network of hierarchal effects of environmental 
change on belowground factors. Therefore, soil microorganisms 
not only respond to changes in soil moisture, temperature or 
disturbance regimes but also to how plants respond to the very 
same environmental factors. Changes in root biomass, root depth 
distribution or plant nutrient demand in response to biotic 
and abiotic factors need to be characterized in the context of 
C allocation patterns [18] and its effects on soil heterotrophic 
activity. 

Many models apply carbon allocation patterns to predict 
growth and C balance of ecosystems under climate change 
scenarios [19,20,4]. These models operate at temporal and 
spatial scales that often differ from field observations which are 
much longer and larger [3]. This is in part due to the difficulty 
of measuring total belowground C allocation at multiple scales 
[21,3]. New promising methods based on diurnal stem diameter 
change that correlate phloem sap flow with total sugar flux 
may provide new insights at tree and stand levels at various 
temporal scales [22].The transport of soil and root-respired CO2 
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to aboveground tissues via xylem and its potential re-fixation 
in leaves has recently been quantified [23,24] and it is often 
ignored in ecosystem C budgets. At the very least, the addition 
of the active responses of GPP and C allocation patterns to 
environmental change (rather than implying first-order kinetics 
of passive responses of C flux to temperature and moisture) has 
been shown to improve models [17,9]. Therefore, the amount and 
proportion of GPP allocated belowground in response to climate 
forcing factors can impact soil C and nutrient cycling, which, in 
turn, affect ecosystem productivity, resilience and adaptation.  

THE ROOT-SOIL ORGANIC MATTER CONTINUUM
A substantial proportion of the C allocated belowground  

is invested in fine root biomass. Fine roots (usually defined as 
roots less than 2 mm diameter) are active in uptake of water 
and nutrients from the soil. Individual fine roots turnover and 
decompose, serving as a major source of carbon (C) for soils [25]. 
Production of new fine roots could be a significant component of 
net primary production (NPP) in terrestrial ecosystems, though 
current estimates of the magnitude of fine-root contribution to 
NPP vary widely [26,27].  Similar to belowground C allocation, 
most of the range in root productivity arises from the different 
methodologies employed. 

No current technology allows real-time monitoring of root 
production and senescence in a natural setting. Comparisons 
between root sampling methods reveal large differences in 
turnover times and productivity for fine roots, with estimates 
between minirhizotrons or isotopic tracer methods at the same 
site varying more than 5-fold [28]. Each method fundamentally 
measures a different parameter; minirhizotrons measure 
longevity of individual roots while isotope tracers measure 
residence time of carbon in the root system. A major barrier to 
improved understanding of fine roots is a lack of a paradigm 
for the fundamental unit of turnover. In contrast to an arbitrary 
diameter size classification for fine roots, the branching structure 
of roots has been utilized to categorize root traits from each 
branching order [29], providing evidence that clusters of lower 
order roots are produced and senesce together in ‘ephemeral 
root modules’ [30]. 

The last decade of research has shown that heterogeneity 
exists for many root properties, including function, turnover, and 
longevity. With increased branching order, nitrogen content and 
respiration rate decreases [31], and diameter and non-structural 
carbohydrate content increases [32]. Importantly, turnover 
within fine roots is best fit by models incorporating a small C 
pool replaced rapidly (months) and a larger C pool replaced more 
slowly (years to decades) [33,27]. Therefore, modeling fine roots 
with a single turnover time insufficiently captures root dynamics. 
The amount of carbon within each root pool can have significant 
impact on C and nutrient cycling in terrestrial ecosystems. 
Consequently, improved quantification of the size and turnover 
rate for multiple root C pools is a high research priority. 
Longevity of roots is likely impacted by resource availability, 
similar to allocation patterns [3]. Currently, little is known about 
the impact of global change on root longevity, or how changes in 
allocation itself will influence root longevity. 

Compared to leaves, the number of studies analyzing traits 

of individual roots is miniscule. In fact, global leaf trait data-sets 
allowed the determination of specific traits common to either 
short-lived or long-lived leaves, or a leaf economics spectrum 
[34]. Unfortunately, similar data for root traits are only available 
from a very limited number of sites and species. Increasing the 
number of studies that examine root traits could eventually lead 
to the creation of a root economics spectrum that would go a 
long way towards understanding of fine-root longevity. Another 
important unresolved question regarding fine roots is the rate 
at which fine root carbon is transferred to soils. Root chemistry 
seems to play an important role in soil organic matter stabilization 
[35]. Currently, models (e.g. CENTURY) assume 50% of root litter 
accumulates as soil organic matter. Little empirical evidence 
exists to support this rate [27], and further studies validating it 
should be a high research priority. 

In summary, the long-term terrestrial ecosystem C balance 
is likely controlled by below-ground processes. Belowground 
modeling paradigms, including simple abiotic controls on soil 
respiration rates and a single homogenous C pool for fine roots 
are being challenged by the last decade of research. Important 
parameters, such as temperature dependencies of respiration 
[36] or the 50% transfer rate of decomposing root C to soil organic 
matter [27,37] remain largely invalidated. Carbon allocation is a 
dynamic process, and roots respond actively to environmental 
change, the dynamics of which are not currently captured in 
ecosystem models. This emphasis is even more important in 
climate sensitive ecosystems in tropical and Arctic regions. 
Improved understanding of below-ground carbon dynamics 
controlled by plants is a necessary step to create prognostic 
terrestrial carbon cycle models. 
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