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 Diabetes is a current major health problem that affects over 100 million people 

worldwide. Disease management for many patients requires frequent measurement of blood 

glucose concentrations, which usually requires pricking of a finger to draw a blood sample. 

There is great interest in developing new methods of monitoring glucose levels. Of particular 

interest would be an implantable device for continuous monitoring. New methods would require 

specificity for glucose, rapid response, sensitivity to glucose concentrations within a 

physiological range (1.7 - 33mM) (1), reproducibility, and robustness.  

 

 Protein-based biosensors for detecting specific small molecules have previously been 

derived from several members of the periplasmic ligand binding protein family (PLBP) (2). 

PLBP proteins contain two large globular domains with a connecting flexible hinge region (3). 

Upon ligand binding, the protein undergoes a large conformational change that brings the two 

lobes together with the ligand binding pocket located at the interface of the two domains (Figure 

1). A method of detecting the conformational change is attached to the protein, for example a 

fluorescent tag that undergoes a change in fluorescence when the protein switches between the 

ligand bound and unbound conformations. The two conformations of the PLBP serve as an 

on/off switch that can be used to detect bound ligand in a reagentless manner; no substrate is 

used up. Several labs have used this general method to produce variants of the E. coli 

glucose/galactose binding protein (GBP) to serve as biosensors for glucose (4-13). Recent 

developments described below include (1) mutant forms of the GBP that have binding constants 

for glucose that are within the physiological range of blood glucose levels and increased 
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specificity for glucose over other sugars, (2) the use of new reporter groups, and (3) the use of a 

thermostable GBP from Thermotoga maritima that is more robust than the E. coli GBP. 

 

 One disadvantage of using the E coli GBP as a glucose sensor has been its high binding 

affinity for glucose, 0.2 uM (14). Modified forms of the protein are needed than can respond to 

physiological levels of glucose without being saturated. Recently, three labs used site-directed 

mutagenesis guided by the GBP X-ray crystal structures to develop mutant forms of the E. coli 

GBP with changes in the ligand binding pocket that resulted in a new binding affinity that is 

within the physiological range for blood glucose monitoring (Figure 2, 15-17). A fourth lab used 

structure-guided random mutagenesis of a selected region in the ligand binding site and also 

successfully created a mutant protein that has a binding constant for glucose within the 

physiological range (18).  

  

 Another recent development is several GBP-based sensors with new reporter groups. Der 

and Dattlebaum used their mutant GBP protein described above to develop a glucose biosensor 

that uses molecular exciton luminescence as a reporter (16). Two identical rhodamine derivative 

tags were covalently bound to cysteines that were introduced through site-directed mutagenesis 

at opposite ends of the glucose binding cleft (Figure 2A). The tags are far apart when the protein 

has not bound glucose. Upon glucose binding, the GBP conformational change brings the two 

tags close enough so that they form dimers with altered excitation and fluorescence. 

 

 Two labs have developed GBP derivatives with bioluminescent reporters to obtain 

glucose-responsive bioluminescence. The Sode lab constructed a hybrid protein with their 
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modified GBP described above and split luciferase (19). Two halves of the luciferase protein that 

are not individually luminescent are fused to the two lobes of the GBP (Figure 2B). When the 

chimeric protein binds glucose, it changes conformation and brings the two luciferase domains 

close enough together that they can reassemble into a bioluminescent protein.  

 

 Similarly, the Daunert lab created a hybrid glucose-responsive bioluminescent protein by 

using aequorin (AEQ) as a reporter (20). They identified a large interdomain loop in the X-ray 

crystal structure of AEQ where the glucose binding protein could be inserted, separating the 

AEQ into two domains that are not bioluminescent. Glucose binding to the GBP brings the two 

segments of AEQ together, the coelenterazine cofactor is converted to coelenteriamide, and 

bioluminescense emission is increased.  

 

 In addition to improving the range of sensitivity and adding novel modes of detection of 

glucose binding to the GBP, other important requirements for use as a biosensor are a robust 

protein that can be used repeatedly and the ability to maintain function while immobilized on a 

surface. The Hellinga lab identified and solved the crystal structure of a GBP from the 

thermophile Thermotoga maritima, tmGBP, that does not unfold below 100°C (21).  Based on 

the crystal structure of tmGBP, they introduced a fluorescent reporter group covalently bound to 

cysteines introduced at key positions where conformational changes due to glucose binding 

might affect the fluorescence of the tag.  They successfully demonstrated that changes in 

fluorescence emission of the reporter group are indeed coupled to glucose binding (Figure 4A). 

The thermostable GBP is more stable to storage and can be immobilized on a surface through 
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biotin coupled to exposed lysines without losing sensitivity (Figure 4B). It senses glucose within 

the range of 1 to 30 mM glucose, which includes the range of physiological glucose levels. 

 

 The development of these new GBP-based glucose nanosensors are important steps 

towards using modified proteins to serve as specific, reusable, sensitive, and robust sensors for 

the measurement of glucose levels. They are potentially important steps in the direction of an 

implantable continuous glucose monitor that would aid in the management of diabetes and 

improve patients’ ability to avoid complications due to hypoglycemia or hyperglycemia.  

 

Figure Legends 

Figure 1.  The glucose/galactose binding protein undergoes a large conformational change 

that brings two lobes together when glucose is bound.  A. An alpha carbon trace of the 

glucose/galactose binding protein in its open form without glucose (PDB ID 2FWO).  B. 

Glucose/galactose binding protein in its closed form with glucose (ball and stick model) bound in 

the ligand binding pocket (PDB ID 2HPH). 

Figure 2.  Several labs have identified amino acid substitutions in or near the glucose 

binding site of the glucose/galactose binding protein that adjust the binding affinity to 

within the range needed for monitoring blood glucose levels.  The protein backbone is shown 

as an alpha carbon trace in grey.  Glucose and some of the amino acids that were substituted, 

singly or in groups, to alter the binding affinity are shown as ball-and-stick models.  Mutations 

that brought the binding affinity into the physological range include D14E/F16A (15), 

R96C/D168C/N211A/A213R (16), H152C/A213R/L238S (17), and A213R (18). 
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Figure 3.  Fluorescent or bioluminescent probes attached to the GBP in appropriate places 

can undergo changes in fluorescence or bioluminescence when the GBP changes 

conformation A. Two identical fluorescent molecules placed in appropriate locations are 

brought together and change fluorescent properties when the GBP switches from the open 

conformation to the closed, glucose bound conformation. B. The large conformational change in 

the GBP can also bring together two domains of a bioluminescent protein, such as split luciferase 

or aequorin, so that the reporter protein becomes luminescent when glucose binds to the GBP. 

Figure 4.  A thermostable glucose binding protein (tmGBP) was used to develop a more 

stable glucose biosensor. A. Glucose binding causes a change in fluorescence of the protein/dye 

conjugate (Y13C-Cy5).  Inset:  Emission spectra are shown in the absence (solid line) and 

presence of 140 mM glucose.  B.  When immobilized on microtiter plates, the tmBGP-Y13C 

protein can undergo multiple cycles of glucose binding and washing and still maintain its ability 

to respond to glucose.  Data for the unbound and glucose bound states for five cycles are 

connected by arrows.   (reproduced from Tian et al., 2007 ***need to get permission***)  
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