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Abstract

Darwinian selection should preclude cooperation from evolving; yet cooperation is widespread among organisms. We show
how kin selection and reciprocal altruism can promote cooperation in diverse 262 matrix games (prisoner’s dilemma,
snowdrift, and hawk-dove). We visualize kin selection as non-random interactions with like-strategies interacting more than
by chance. Reciprocal altruism emerges from iterated games where players have some likelihood of knowing the identity of
other players. This perspective allows us to combine kin selection and reciprocal altruism into a general matrix game model.
Both mechanisms operating together should influence the evolution of cooperation. In the absence of kin selection,
reciprocal altruism may be an evolutionarily stable strategy but is unable to invade a population of non-co-operators.
Similarly, it may take a high degree of relatedness to permit cooperation to supplant non-cooperation. Together, a little bit
of reciprocal altruism can, however, greatly reduce the threshold at which kin selection promotes cooperation, and vice-
versa. To properly frame applications and tests of cooperation, empiricists should consider kin selection and reciprocal
altruism together rather than as alternatives, and they should be applied to a broader class of social dilemmas than just the
prisoner’s dilemma.
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Introduction

Darwinian selection precludes any action that increases the

competitive ability of others at the expense of one’s self [1]. Yet in

social species, kinship fosters cooperation and common agendas

help unrelated individuals to work together within and between

species. Cooperation abounds in nature on many levels of

biological organizations [2–4], from social insects and social

vertebrates [5–7] to coevolved pairs of plants and their pollinators

[8], symbiosis [9], and even cancer cells [10].

The three standard motives for the evolution of cooperation

include kin selection, reciprocity, and group selection [11–15].

Hamilton [16] formalized the idea of kinship in promoting the

evolution of altruism. Supposing a cost to the altruist (c), a benefit

to the recipient (b), and their genetic relatedness (r), Hamilton [16]

showed that natural selection favours altruism among relatives

when r.c/b. The concept is based on ‘inclusive fitness’: the sum of

an individual’s reproductive success plus the effects the individual

has on the reproductive success of its relatives. For example, sterile

worker ants can accrue reproductive benefits by helping their

relative, the queen. In so doing, their shared genes survive and get

passed on to the next generation.

Parallel to kin selection, Trivers [17] used reciprocity to explain

cooperation among non-relatives. Selection may favour altruism

toward a non-relative if the recipient later returns the favour, in

which case both individuals accrue a net benefit. Because

reciprocal altruism is vulnerable to individuals who cheat by

failing to repay acts of altruism, Axelrod and Hamilton [18] used

an iterated prisoner’s dilemma game to show how a tit-for-tat

strategy might prevail against completely non-cooperative strate-

gies.

Kin selection and reciprocal altruism are often viewed and

tested as alternatives. Furthermore, theories of kin selection rely on

population genetic models while models for reciprocal altruism

focus on the specifics of repeated interactions and the capacity to

shape conditional strategies. The two have never melded easily

[12–14].

The germs of kin selection and reciprocal altruism can be traced

back to Darwin [1], [19] who also saw how group selection might

favour altruism, that is, a group containing many altruists – each

ready to subordinate their own selfish interests for the greater good

of the group – may have a survival advantage over a group

composed mainly or exclusively of selfish organisms. The work of

Williams [20] and Maynard Smith [21] ended the ‘good of the

species’ tradition in the 1960s. While we are aware of the recent

debate over the significance of the theories of kin selection vs.

group selection [12–14], this is outside this paper’s scope.

Here we formally combine kin selection and reciprocal altruism

and show how they are mutually inclusive properties of games. We

apply a game theoretic approach [15] to three famous evolution-

ary games: prisoner’s dilemma, snowdrift, and hawk-dove.

Specifically, we 1) examine separately the effect of adding non-

random interactions (r, the probability that like-individuals interact

with like) and repeated interactions (w, the probability that one

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e63761



knows one’s opponent); and 2) develop a general model for the

evolution of cooperation that satisfies the requirements of all three

games. While simple and straightforward, this combined treatment

of kin selection and reciprocal altruism across a variety of social

dilemmas is necessary for empiricists to properly frame applica-

tions and tests of cooperative behaviours.

Methods

We describe three games – prisoner’s dilemma, snowdrift, and

hawk-dove game – separately, to illustrate why individuals should

act selfishly and under what conditions they should cooperate. We

incorporate elements of both kin selection and reciprocal altruism,

and combine all three games into a single general model.

Prisoner’s Dilemma
The prisoner’s dilemma provides the archetype for games

pitting community interests against those of the individual. Two

prisoners being questioned each have the choice to either defend

the other’s innocence or betray their guilt. It is better for both

players to defend rather than betray each other. The highest

payoff of all, however, accrues to one who betrays while being

defended by the other. The worst outcome accrues to a player that

defends a betraying opponent.

As a 262 matrix game, the prisoner’s dilemma (Table 1) has

strategies of C (cooperate, or defend) and D (defect, or betray). A

co-operator bestows a benefit (b) to its opponent at cost (c) to itself.

A defector incurs no costs and bestows no benefits. We assume that

b.c insuring that two co-operators enjoy a higher payoff than two

defectors. While cooperation maximizes group payoffs, a defector

will always enjoy higher payoffs than a co-operator when played

against the same opponent. For this game, D is the non-invadable

evolutionarily stable strategy (ESS), also known as the Nash

equilibrium in conventional games [22]. The ESS represents a ‘‘no

regret’’ strategy where no one individual can benefit from

unilaterally changing its strategy [15].

Defection is an ESS so long as interactions occur at random

with respect to strategy, and if the game is played but once. We

relax these assumptions by considering non-random interactions

and an iterative game by which individuals can gain information

about others’ predispositions.

We let r be the probability of non-random interactions where

like-individuals interact with like, independent of the frequencies

of co-operators and defectors in the population [23]. Following

many interactions, a portion r occurs with like-individuals while

the portion 1-r occurs with randomly selected individuals (Table 2).

For reciprocal altruism, we let w be the probability that an

individual knows the strategy of its opponent based on prior

knowledge either through direct experience or via observations as

part of an iterative game [24–26]. This produces yet another

modification to the payoff matrix (Table 3). Tit-for-tat (TFT) [18]

can be viewed as a strategy that cooperates with strangers and

individuals known to cooperate, and withholds cooperation from

individuals known to be defectors or cheaters.

We combine the matrix models for kin selection (r.c/b) and

reciprocal altruism (w.c/b) into a single model by simultaneously

considering non-random interactions (represented by r) in an

iterative game (represented by w). These adjustments to the

prisoner’s dilemma yield a new payoff matrix (Table 4).

Snowdrift
Imagine two drivers who are trapped on opposite sides of a

snowdrift. Each has the option of staying in the car or shovelling

snow to clear a path. Like the prisoner’s dilemma, it is always best

if your opponent cooperates while you do not. Yet, in snowdrift

the individual benefits by digging regardless of what the partner

does. The benefit is shared whether one or both individuals dig,

while the cost is shared only if both dig (Table 5; the payoff matrix

in Table 6).

Table 1. The cost-benefit form of the prisoner’s dilemma.

C D

C b2c 2c

D b 0

Cooperate strategy (C) bestows benefit b on its partner and incurs cost c to
itself, while the defect strategy (D) bestows no benefit and incurs no cost. The
matrix entries represent the payoff to an individual using a row strategy when
partnered with an individual using a column strategy (here, b.c .0).
doi:10.1371/journal.pone.0063761.t001

Table 2. A modification for prisoner’s dilemma for non-
random interactions.

C D

C r(b2c)+(12r)(b2c) r(b2c) 2 (12r)c

D (12r)b 0

The term r is the probability of like interacting with like and (12r) the
probability of random interactions. Payoffs are to the individual playing the row
strategy against an opponent playing the column strategy.
doi:10.1371/journal.pone.0063761.t002

Table 3. A modification for prisoner’s dilemma for iterative
interactions.

TFT D

TFT r(b2c)+(12r)(b2c) 2 (12w)c

D (12w)b 0

The term w is the probability of a player knowing the strategy of its partner. The
tit-for-tat (TFT) strategy cooperates with strangers or with known TFT
individuals. It plays defect with known D individuals.
doi:10.1371/journal.pone.0063761.t003

Table 4. Payoff matrix for an iterative prisoner’s dilemma
with non-random interactions.

All-C TFT All-D

All-C r(b2c)+(12r)(b2c) r(b2c)+(12r)(b2c) r(b2c)+(12r)( 2c)

TFT r(b2c)+(12r)(b2c) r(b2c)+(12r)(b2c) r(b2c)+(12r)(12w)(
2c)

All-D r(0)+(12r)(b) r(0)+(12r)(12w)(b) 0

Following many interactions, a portion r occurs with a like-individual, and only
the portion 1-r occurs with the randomly selected individual. All-C interacts with
another All-C, both r and 1-r of the time the interaction generates a payoff of
r(b2c)+(12r)(b2c), with a total payoff of ‘‘r(b2c)+(12r)(b2c)’’ for All-C and TFT
pair of strategies. Likewise, All-C and All-D obtains r(b2c)+(12r)( 2c), and so
forth.
doi:10.1371/journal.pone.0063761.t004

Evolution of Cooperation
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Hawk-dove Game
In the hawk-dove (or chicken) game, opponents have the

opportunity to play Hawk and fight (i.e., defect), or play Dove and

give way (i.e., cooperate). Payoffs are maximized when both

players give way and play Dove (cooperate). Unfortunately, in a

world of doves, it pays to defect and play Hawk (defect). This

game’s payoffs can be couched in terms of costs and benefits and

modified to consider the joint consequences of kin selection and

reciprocal altruism (Table 7; the payoff matrix in Table 8).

General Model
Any game with a social dilemma can be considered in terms of

kin selection and reciprocal altruism, with the following elements:

1) Games with social dilemmas must be non-zero sum; 2) The

strategy of cooperation (C) played against cooperation must

produce a higher payoff than the strategy of defect (D) played

against D (a.d in Table 9); 3) The strategy C played against C

must yield a greater payoff than the average payoffs to C and D

when C plays against D: a.(b+c)/2; and 4) C played against C

yields less payoff than D played against C (c.a). In a social

dilemma, the always-cooperate (All-C) strategy, that is, individuals

cooperating in all situations, provides the best collective outcome,

but there is an incentive to cheat and play the strategy of defect (D)

in a world of co-operators. Always-cooperate strategy is not an

ESS. These games have a mixed strategy ESS when b.d, and

always-defect strategy (All-D) is the global ESS when d.b.

We make this a model of kin selection by permitting non-

random interactions (r .0) with no prior knowledge of one’s

opponent (w = 0) (Table 10, with its payoff matrix in Table 11).

We combine kin selection and reciprocal altruism into a single

model, by simultaneously considering non-random and repeated

interactions (Table 12).

Results

Prisoner’s Dilemma
In the prisoner’s dilemma game, after many rounds of

interactions, a portion r occurs with like-individuals while the

portion 1-r occurs with randomly selected individuals, with the

following outcomes (Table 2): Always-cooperate (All-C) strategy is

the ESS only when C played against C yields a higher payoff than

D played against C,

r(b2c)+(12r)(b2c).r(0)+(12r)(b)

[rw
c

b
ð1Þ

Always-defect (All-D) strategy is the ESS when the condition is

reversed (r,c/b).

Equation (1) represents Hamilton’s rule (kin selection). It does

not rely explicitly on genetic relatedness. The term r simply

represents the likelihood of assortative interactions. Interactions

among relatives generate a positive r but relatedness is not

necessary. From a game-theoretic modelling approach [23–25],

kin selection, in a broader sense, represents a form of cooperative

behaviour that can evolve when individuals interact non-randomly

with respect to strategy.

In reciprocal altruism (when letting w be the probability that an

individual knows the strategy of its opponent based on prior

knowledge) we obtain a different payoff matrix (Table 3).

All-TFT (tit-for-tat strategy) is the ESS when:

w(b2c)+(12w)(b2c).w(0)+(12w)(b)

[ww

c

b
ð2Þ

Note that the always-defect strategy is an ESS for this matrix

since 0. 2 (12w)c.

Reciprocal altruism only leads to the evolution of cooperation if

the probability of recognizing others, w, exceeds the cost-to-benefit

Table 5. Payoff matrix for the snowdrift game.

C D

C b/22c/2 b/22c

D b/2 0

Digging out of the snowdrift gives each player a benefit of b/2. The cost is born
by the digger (C) who splits the cost when both dig, or bears the entire cost as
the sole digger. When b/22c.0, the ESS is a mixture of C and D individuals.
When b/22c/2.0.b/22c, All-D is the sole ESS, even though there is still a
social dilemma where All-C yields higher payoffs than All-D.
doi:10.1371/journal.pone.0063761.t005

Table 6. Payoff matrix for an iterative snowdrift with non-random interactions.

All-C TFT All-D

All-C r(b/22c/2)+(12r)(b/22c/2) r(b/22c/2)+(12r)(b/22c/2) r(b/22c/2)+(12r)(b/22c)

TFT r(b/22c/2)+(12r)(b/22c/2) r(b/22c/2)+(12r)(b/22c/2) r(b/22c/2)+(12r)(12w)(b/22c)

All-D r(0)+(12r)(b/2) r(0)+(12r)(12w)(b/2) 0

doi:10.1371/journal.pone.0063761.t006

Table 7. Payoff matrix for the hawk-dove game.

C D

C b/2 0

D b b/22c

In hawk-dove game, if both players cooperate, then they split the benefit b/2.
When one player cooperates and the other defects, the co-operator obtains
nothing but the defector the benefit, b. If both players defect, they split the
benefit, but also incur a cost (b/22c).
doi:10.1371/journal.pone.0063761.t007

Evolution of Cooperation
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ratio [24]. Even when tit-for-tat (All-TFT) is an ESS, the strategy

of defect continues to be an ESS, although just a local ESS – each

can resist invasion from the other, but neither can invade a

population of the other. If the population begins with a sufficiently

high frequency of defectors, the tit-for-tat strategy cannot invade.

The matrix models for kin selection (r.c/b) and reciprocal

altruism (w.c/b) combine to yield a new payoff matrix when we

simultaneously permit non-random interactions (represented by r)

and an iterative game (represented by w) (Table 4, see also [25]).

We can examine when always-cooperate, tit-for-tat, and always-

defect strategies are possible ESSs (Table 4):

1) All-C is an ESS when All-C played against All-C yields higher

rewards than All-D played against All-C:

r(b2c)+(12r)(b2c).r(0)+(12r)(b)

[rw
c

b

1) TFT is an ESS so long as TFT played against TFT serves

better than All-D played against TFT (TFT individuals only

defect when opponents defect):

r(b2c)+(12r)(b2c).r(0)+(12r)(12w)(b)

[ww

c{rb

b(1{r)
ð3Þ

It is easier for tit-for-tat strategy to be an ESS than it is for the

always-cooperate strategy. Individuals using tit-for-tat strategy can

benefit both from non-random interactions, and from having an

iterative game that provides knowledge of others. If there are no

non-random interactions (r = 0), tit-for-tat strategy can still be an

ESS so long as the probability of recognizing others is greater than

the cost-to-benefit ratio: w.c/b [24].

1) All-D is an ESS so long as All-D played against All-D serves

better than TFT played against All-D:

0. r(b2c)+(12r)(12w)( 2c)

[wv

c{rb

c(1{r)
ð4Þ

Decreasing either w or r increases the likelihood of always-defect

being an ESS. When there are no non-random interactions (r = 0),

defection is always an ESS (even when tit-for-tat strategy is also an

ESS).

We can consider all of the combinations of non-random

interactions and foreknowledge of others that permit cooperation

to evolve (Figure 1). The three ESS conditions generate three

isolegs – lines of indifference in terms of behavioural choice (sensu

[27]). We shall denote these isolegs as the C-ESS isoleg, TFT-ESS

isoleg, and D-ESS isoleg, respectively. They can be found by

evaluating the above conditions (equation 4) as equalities rather

than inequalities. Each can be solved in terms of w as a function of

r, thus providing the isoleg in the state space of familiarity, w,

versus non-random interactions, r. Outside of the C-ESS (or TFT-

ESS) isoleg, always-cooperate (or tit-for-tat) strategy is an ESS (it

may be local or global). Inside these isolegs, always-cooperate (or

tit-for-tat) is not an ESS. Inside of the D-ESS isoleg, always-defect

is an ESS, and outside of this isoleg it is not.

Having both non-random interactions (r) and familiarity (w)

increases the range over which cooperation can evolve, and

reduces the likelihood that All-D will be an ESS. Rather than

alternative hypotheses for the evolution of cooperation, kin

selection and reciprocal altruism can be considered jointly (see

also [28], [29]).

The opportunity for cooperative behaviours to evolve via non-

random interactions (kin selection) and iterative games (reciprocal

altruism with tit-for-tat strategies) extends to other games of social

dilemmas, such as the snowdrift and hawk-dove games.

Snowdrift
The results in snowdrift game are interesting (Table 5) in that

always-cooperate (All-C) is never an ESS. When b/2– c .0,

always-defect (All-D) is not an ESS either. Thus, the ESS is a

mixture of cooperators (C) and defectors (D) (mixed strategy).

When b-c .0. b/2– c, always-defect is an ESS even though

always-cooperate would provide each player with higher payoffs.

Table 8. Payoff matrix for an iterative hawk-dove game with non-random interactions.

All-C TFT All-D

All-C r(b/2)+(12r)(b/2) r(b/2)+(12r)(b/2) r(b/2)+(12r)(0)

TFT r(b/2)+(12r)(b/2) r(b/2)+(12r)(b/2) r(b/2)+(12r)(w)(b/22c)+(12r)(12w)(0)

All-D r(b/22c)+(12r)(b) r(b/22c)+(12r)w(b/22c)+(12r)(12w)b r(b/22c)+(12r)(b/22c)

doi:10.1371/journal.pone.0063761.t008

Table 9. A general payoff matrix for games with social
dilemmas.

C D

C a b

D c d

Three conditions hold for social dilemmas: 1) a.d, 2) a.(b+c)/2, and 3) c.a. A
mixed strategy is the ESS when b.d, and All-D is a global ESS when d.b.
doi:10.1371/journal.pone.0063761.t009

Table 10. A general payoff matrix with r as the probability of
non-random interactions where like interacts with like.

C D

C r(a)+(12r)a r(a)+(12r)b

D r(d)+(12r)c r(d)+(12r)d

doi:10.1371/journal.pone.0063761.t010

2)

3)

Evolution of Cooperation
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Regardless of whether the snowdrift game has a mixed ESS or an

ESS of All-D, it represents a social dilemma.

As in the prisoner’s dilemma, kin selection or reciprocal altruism

can allow for All-C to be an ESS. The conditions for cooperation

to be the ESS under non-random interactions remains Hamilton’s

Rule (r.c/b), and for repeated interactions remains w.c/b.

We can produce a payoff matrix that simultaneously considers

non-random interactions, r, and the possibility of knowing one’s

partner, w, via repeated plays of the game (Table 6).

In snowdrift, the following ESS conditions emerge:

1) All-C is the ESS when b/22c/2. b/2(12r)

[rw
c

b

1) TFT is the ESS when b/22c/2. b/2(12r)(12w)

[ww

c{rb

b(1{r)

1) All-D is the ESS when 0. b/2+cr/22bw+brw2c+cw2crw

[ww

bzrc{2c

(1{r)(b{2c)

We can consider all combinations of non-random interactions

and foreknowledge of others that permit cooperation to evolve

(Figure 2). For the case of low costs (b/2– c .0), there are All-C

and All-TFT isolegs (Figure 2A). There is no All-D isoleg because

All-D is never an ESS for the low-cost snowdrift game. Outside of

the All-TFT isoleg, tit-for-tat (TFT) is the global ESS; outside of

the All-C isoleg, all-cooperate is an ESS. Inside of the TFT isoleg,

a mixed strategy of tit-for-tat individuals and defectors is the ESS.

Increasing either r or w increases the frequency of tit-for-tat

individuals within the mixed-strategy ESS and eventually the

likelihood that tit-for-tat is the sole ESS.

For high costs (b/2– c ,0), the TFT-ESS isoleg intersects the D-

ESS isoleg producing four outcomes for the ESS (Figure 2B). At

low levels of non-random interaction and with little likelihood of

knowing one’s partner, always-defect is the global ESS. At high

levels of knowledge but low levels of non-random interactions,

always-defect or tit-for-tat strategy is a local ESS (this region also

exists for prisoner’s dilemma). With higher levels of non-random

interactions but little knowledge of one’s partner, a mixed strategy

of tit-for-tat individuals and defectors comprises a global ESS. It

takes high values of both r and w for tit-for-tat to be the sole global

ESS.

Hawk-dove Game
Like snowdrift, the hawk-dove game has a low and high cost

form. Regardless of cost, always-cooperate is never an ESS. With

low costs (b/22c.0), always-defect is the global ESS – there is no

cooperation. With high costs (b/22c.0), a mixed strategy of

cooperation and defect is the global ESS. High costs and a mixed-

strategy ESS are the typical form of the hawk-dove game. Both kin

selection and reciprocal altruism permit additional outcomes to

the game favouring the evolution of cooperation.

Under strict kin selection (w = 0), always-cooperate can be the

ESS when r.b/(b+2c). Under strict reciprocal altruism (r = 0), tit-

for-tat can be an ESS when w.b/(b+2c). When we modify the

hawk-dove game to include both non-random interactions and

iterative plays of the game, we get the following matrix (Table 8).

Table 11. A general payoff matrix for reciprocal altruism
where w is the probability that an individual knows its
opponent’s strategy.

TFT D

TFT w(a)+(12w)a w(d)+(12w)b

D w (d)+(12w)c w(d)+(12w)d

doi:10.1371/journal.pone.0063761.t011

Table 12. Payoff matrix for an iterative general game with non-random interactions.

All-C TFT All-D

All-C r(a)+(12r)a r(a)+(12r)a r(a)+(12r)b

TFT r(a)+(12r)a r(a)+(12r)a r(a)+(12r)(12w)b+ wd(12r)

All-D r(d)+ c(12r)(12w)+wd (12r) r(d)+(12r)w(d)+(12r) (12w)(c) r(d)+(12r)d

doi:10.1371/journal.pone.0063761.t012

Figure 1. Prisoner’s dilemma with varying combinations of r
and w. Below the D ESS isoleg, All-D is ESS. Above the TFT isoleg, TFT is
an ESS. Either D or TFT can be the ESS in the region between the D- and
TFT-ESS isoleg, leading to alternative stable states. To right of the C-ESS
isoleg, C can be an ESS. Parameter values: b = 1.65 and c = 1.
doi:10.1371/journal.pone.0063761.g001

2)

3)

Evolution of Cooperation
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Permitting both kin selection and reciprocal altruism allows the

following ESSs:

1) All-C is the ESS when b/2. b2cr2br/2

[rw
b

bz2c

1) TFT is the ESS when b/2. r(b/22c)+(12r)w(b/

22c)+(12r)(12w)b

[ww

b{rb{2rc

(1{r)(bz2c)

1) All-D is the ESS when b/22c.r(b/2)+(12r)(w)(b/22c)

[ww

b{2c{rb

(1{r)(b{2c)

The low cost hawk-dove game generates the same configuration

of ESSs as the high cost snowdrift game (Figure 3A). Always-defect

is the global ESS at low r and w. At higher w and low r, always-

defect or tit-for-tat is the local ESS resulting in alternate stable

states. A mixed strategy ESS results at high r but low w. With

alternate stable states, a small increase in non-random interactions

can make tit-for-tat the global ESS. Similarly, with a mixed

strategy ESS, a small increase in the knowledge of one’s opponent

can make tit-for-tat the global ESS.

The high cost hawk-dove game produces the same outcomes as

the low cost snowdrift game. There is no D-ESS isoleg. Hence the

ESSs can be a mixed strategy solution (low r and w), tit-for-tat as

the global ESS, or always-cooperate as an ESS once the level of

Figure 2. The snowdrift game with varying combinations of r
and w, under low and high costs. Panel A shows the snowdrift
game under low cost (where b/2– c .0; values used were b = 2.4, c = 1).
At low r and w, a mixed strategy of TFT and D is the ESS. At high r and
w, All-TFT becomes the global ESS, and once r is sufficiently large, All-C
can be an ESS. Panel B shows that higher values of r and w are required
to promote cooperation when costs of cooperating are higher (where
b/2– c ,0, values used were b = 2.4, c = 1.5). Because the D and TFT ESS
isolegs cross, there are four regions of outcomes: 1) All-D is a global ESS,
2) All-D or All-TFT is local ESS (alternate stable states), 3) a mixture of
TFT and D are a global ESS, and 4) All-TFT is the global ESS. All-C can be
an ESS when r.c/b.
doi:10.1371/journal.pone.0063761.g002

Figure 3. The hawk-dove game at varying values of r and w,
under low and high cost. Panel A shows the hawk-dove game under
low cost (b/22c.0; values used were b = 2.4, c = 1). The D and TFT
isolegs cross, so there are four regions of outcomes: 1) All-D is a global
ESS, 2) All-D or All-TFT are local ESSs (alternate stable states), 3) a
mixture of TFT and D are a global ESS, and 4) All-TFT is the global ESS.
All-C can be an ESS when r.c/b. Panel B shows the hawk-dove game
under high cost (b/22c,0; values used were b = 2.4, c = 2) when. At low
values of r and w, a mixed strategy of TFT and D is the ESS. At higher
values TFT becomes the global ESS. Once r is sufficiently large, then All-
C can be an ESS.
doi:10.1371/journal.pone.0063761.g003
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non-random interactions is sufficiently high (Figure 3B). A

relatively small likelihood of non-random interaction or knowledge

of one’s opponent is sufficient to produce a cooperative solution.

General Model
The findings from our general model (Table 9) – where

cooperatives playing against cooperatives produce a higher payoff

than defectors playing against defectors – reveal a mixed strategy

ESS.

For All-C to be ESS, r(a)+(12r)a.r(d)+(12r)c

[rw
c{a

c{d

For All-D to be ESS, r(d)+(12r)d.r(a)+(12r)b

[rw
d{b

a{b

Both All-C and All-D may be local ESSs (alternate stable states)

when
d{b

a{b
wrw

c{a

c{d
. The ESS is a mixed strategy when:

d{b

a{b
vrv

c{a

c{d
.

Changing this model to reciprocal altruism (by allowing iterative

plays of the game, when w .0 and r = 0, All-D is always an ESS

(Table 11).

For All-TFT to be an ESS, w(a)+(12w)a.w (d)+(12w)c[

w.(d2a)/(c2d).

When we combine kin selection and reciprocal altruism into a

single model, by simultaneously considering non-random and

repeated interactions (Table 12), we get the following outcomes –.

1) For All-TFT to be ESS:

a.r(d)+(12r)(12w)c+(12r)wd

[ww

(c{a)zr(d{c)

(1{r)(c{d)

When r = 0, then w.(c2a)/(c2d), and w must be positive for any

cooperation to evolve.

1) For All-D to be ESS,

d.r(a)+(12r)(12w)b+(12r)(wd)

[ww

r(a{b)z(b{d)

(1{r)(b{d)

Discussion

Prisoner’s dilemma, snowdrift, and hawk-dove games pose a

dilemma for Pareto efficiency. The natural inclination of an

individual player is to defect, even though both players would

benefit from cooperation. Our model shows various ‘‘doses’’ of

reciprocity and kin selection together can generate cooperation as

the sole ESS, both cooperation and defection as local ESSs,

cooperation and defection as mixed strategy ESS, and defection as

the sole ESS.

Research on kin selection and reciprocal altruism have followed

independent paths [4], [12–14], [29], [30–31]; at times creating

controversies and confusing the students of behaviour [13], [32].

Unlike existing models, the model we develop presents kin

selection and reciprocal altruism as mutually inclusive properties

of games. Both operate through similar processes: the cost-to-

benefit ratio of behaving cooperatively must be either less than the

probability of like-individuals interacting under non-random

interactions (r), or the probability of knowing the identity of one’s

opponent (w). We suggest that non-random and iterative

interactions occurring together ease the evolution of cooperation:

non-random interactions (kin selection) reduce the threshold of w

necessary for cooperation, and iterative interactions that increase

the probability of knowing one’s opponent reduces the threshold of

r necessary for cooperation. A similar finding on the importance of

joint effect of assortment (kin selection) and reciprocity for

understanding cooperation has recently been made [33]. Here

we consider three evolutionary games (prisoner’s dilemma,

snowdrift and hawk-dove) making it more general. Furthermore,

we illustrate the concepts of isolegs [27] to map the boundaries of

possible solutions of local, global and mixed strategies.

Modellers’ preoccupation with genetic relatedness (r) may have

obscured the connections between reciprocal altruism and kin

selection. This may obscure the ecological factors promoting

assortative interactions and iterated games. For instance, in many

vertebrate species, the direct benefits of helping may be sufficient

to maintain cooperative societies [6], [7]. A ‘‘strategy’’ rather than

a ‘‘genetic’’ approach [15] to cooperation shows how these two

processes likely work together – non-random interactions (kin

selection) facilitate the evolution of cooperation via reciprocal

altruism, and vice-versa.

Although we explicitly integrated kin selection and reciprocal

altruism, with matrix model, we note that other mechanisms

besides the synergistic conditions generated by kin selection and

reciprocal altruism may influence the evolution of cooperation

[34]. The introduction of spatial structure via nearest neighbor

interactions, for instance, may act to cluster co-operators together

[35], [36] promoting cooperation (analogous to non-random

interactions, r). Such game theoretical models show a transition

from models that consider well-mixed populations to spatial grids

and complex networks [34]. The extension of these models to

coevolutionary strategies, together with the main strategies

(cooperate or defect), suggests that the networks themselves

‘‘evolve’’ or ‘‘adapt’’ [37]. In this way the probabilities of

assortative interactions and/or familiarity with opponents may

change as well and become potential behavioural or evolutionary

strategies. Such contributions may help us understand social

dilemmas more accurately and push theoretical underpinning to

more realistic conditions [38].
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