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NOTES ON QUASIMINIMALITY AND EXCELLENCE

JOHN T. BALDWIN
�

Abstract. This paper ties together much of the model theory of the last 50 years. Shelah’s

attempts to generalize the Morley theorem beyond first order logic led to the notion of

excellence, which is a key to the structure theory of uncountable models. The notion of

Abstract Elementary Class arose naturally in attempting to prove the categoricity theorem

for Lù1 ,ù(Q). More recently, Zilber has attempted to identify canonical mathematical struc-

tures as those whose theory (in an appropriate logic) is categorical in all powers. Zilber’s

trichotomy conjecture for first order categorical structures was refuted by Hrushovski, by

the introducion of a special kind of Abstract Elementary Class. Zilber uses a powerful and

essentailly infinitary variant on these techniques to investigate complex exponentiation. This

not only demonstrates the relevance of Shelah’s model theoretic investigations to mainstream

mathematics but produces new results and conjectures in algebraic geometry.

Zilber proposes [63] to prove ‘canonicity results for pseudo-analytic’ struc-
tures. Informally, ‘canonical’ means ‘the theory of the structure in a suitable
possibly infinitary language (see Section 2) has one model in each uncount-
able power’ while ‘pseudoanalytic’ means ‘the model of power 2

�
0 can be

taken as a reduct of an expansion of the complex numbers by analytic func-
tions’. This program interacts with two other lines of research. First is the
general study of categoricity theorems in infinitary languages. After initial
results by Keisler, reported in [31], this line was taken up in a long series of
works by Shelah. We place Zilber’s work in this context. The second direc-
tion stems from Hrushovski’s construction of a counterexample to Zilber’s
conjecture that every strongly minimal set is ‘trivial’, ‘vector space-like’, or
‘field-like’. This construction turns out to be a very concrete example of an
Abstract Elementary Class, a concept that arose in Shelah’s analysis. And
the construction is a crucial tool for Zilber’s investigations. This paper ex-
amines the intertwining of these three themes. For simplicity, we work in a
countable vocabulary.
The study of (

�
,+, � , exp) leads one immediately to some extension of

first order logic; the integers with all their arithmetic are first order definable
in (

�
,+, � , exp). Thus, the first order theory of complex exponentiation is
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horribly complicated; it is certainly unstable and so its first order theory
cannot be categorical in power. That is, the first order theory of complex
exponentiation cannot have exactly one model in each uncountable cardinal.
One solution is to use infinitary logic to pin down the pathology. Insist that
the kernel of the exponential map is fixed as a single copy of the integers
while allowing the rest of the structure to grow. We describe in Section 5
Zilber’s theorem that, modulo certain (very serious) algebraic hypotheses,
(

�
,+, � , exp) can be axiomatized by a categorical Lù1,ù(Q)-sentence.
The notion of amalgamation is fundamental to model theory. Even in
the first order case, the notion is subtle because there are several variants
depending on the choice of a class of modelsK and a notion � of substruc-
ture. The pair (K , � ) has the amalgamation property if whenever M � K
is embedded by f0, f1 into N0, N1 so that the image of the embeddings
f0M,f1M � N0, N1 respectively, there is an N � and embeddings g0, g1 of
N0, N1 intoN � with g0f0 and g1f1 agreeing onM . IfK is the class of mod-
els of a complete first order theory then the amalgamation property holds
with � as elementary embeddings of models. If K is the class of substruc-
tures of models of a complete quantifier eliminable first order theory then the
amalgamation property holds for � as arbitrary embeddings. Morley [39]
observed that by adding names for each definable relation, we can assume,
for studying the spectrum problm, that any first order theory has elimination
of quantifiers. Shelah [47], noted that this amalgamation hypothesis allows
us to assume the existence of a ‘monster model’ which serves as a universal
domain. In this domain the notion of type of an element a over a set A can
be thought of either semantically as the orbit of a under automorphisms that
fix A or syntactially as the collection of formulas with parameters from A
that are satisfied by a.
Of course, the extension from first order logic causes the failure of the
compactness theorem. For example, it is easy to write a sentence in Lù1,ù
whose only model is the natural numbers with successor. But there are some
more subtle losses. The duality between the syntactic and semantic concept
of type depends on the amalgamation property. Here is a simple example
showing that amalgamation fails in models of a sentence of Lù1,ù . Consider
the theory T of a dense linear order without endpoints, a unary predicate
P(x) which is dense and codense, and an infinite set of constants arranged in
order type ù+ù � . LetK be class of all models of T which omit the type of
a pair of points, which are both in the cut determined by the constants. Now
consider the types p and q which are satisfied by a point in the cut, which is
inP or in � P respectively. Nowp and q are each satisfiable in amember ofK
but they are not simultaneously satisfiable. So the amalgamation property
has failed for K and elementary embeddings. This shows that a more subtle
notion than consistency is needed to describe types in this wider context.
We took ‘canonical’ above as meaning ‘categorical in uncountable car-
dinalities’. That is, the class has exactly one model in each uncountable
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cardinality. The analysis of first order theories categorical in power is based
on first studying strongly minimal sets. A set is strongly minimal if every
definable subset of it is finite or cofinite. A natural generalization of this,
particularly since it holds of simply defined subsets of (

�
,+, � , exp), is to

consider structures where every definable set is countable or cocountable.
As we will see, the useful formulation of this notion requires some auxiliary
homogeneity conditions. The role of homogeneity in studying categoricity
in infinitary languages has been known for a long time. There is a rough
translation between ‘homogeneity’ hypotheses on a model and and corre-
sponding ‘amalgamation’ hypotheses on the class of substructures of the
model (Section 2). A structure is � 1-homogeneous if for any two countable
sequences a, b, which realize the same type, and any c, there is a d such
that ac and bd realize the same type. Thus, � 1-homogeneity corresponds
to amalgamation over arbitrary countable subsets. Keisler [31] proved the
natural generalization ofMorley’s theorem for a sentenceø inLù1,ù modulo
two assumptions:

1. Every model of ø has arbitrarily large elementary extensions.
2. Every model of ø is � 1-homogeneous.
Keisler asked whether every � 1-categorical sentence in Lù1,ù satisfies as-
sumption 2. The answer is no. Marcus [37] gave an example of a minimal
primemodelwith infinitelymany indiscernibles and amodification by Shelah
provides an example of a totally categorical (categorical in each uncount-
able cardinality) sentence in Lù1,ù which has no � 1-homogeneous models.
Shelah’s notion of an excellent class (extremely roughly: ‘amalgamation over
(independent) n-dimensional cubes for all n’ and ‘ � 0-stability’) provides a
middle ground. An excellent class (See paragraph 2.0.9.) is a strengthening
of Keisler’s first assumption (provides not only arbitrarily large models but a
certain control over their construction) while weakening the second to assert
amalgamation only over certain configurations.
Recall that the logicL(Q) adds to first order logic the expression (Qx)φ(x)
which holds if there are uncountably many solutions of φ. I had asked
whether a sentence inL(Q) could have have exactly onemodel and thatmodel
have cardinality � 1. Shelah proved in [45] using � that an � 1-categorical
sentence in Lù1,ù(Q) must have a model of power � 2. There is a beautiful
proof of this result in ZFC in [51]. Shelah has moved this kind of argument
from ( � 1, � 2) to (ë, ë+) in a number of contexts. But, getting arbitrarily large
models just from categoricity in a single cardinal has remained intractable,
although Shelah reported substantial but not yet written progress in the
summer of 2003.
Shelah proved an analogue to Morley’s theorem in [48], [49] for ‘excellent’
classes defined inLù1,ù. Assuming 2

�
n < 2

�
n+1 , for all n < ù, he also proved

the following kind of converse: every sentence in Lù1,ù that is categorical in
� n for all n < ù is excellent and categorical in all cardinals. The assumption
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of categoricity all the way up to � ù is shown to be essential in [18] by
constructing for each n a sentence øn of Lù1,ù which is categorical up to � n
but has the maximal number of models in all sufficiently large cardinalities.
He also asserted that these results ‘should be reproved’ for Lù1,ù(Q). This
‘reproving’ has continued for 20 years and the finale is supposed to appear
in the forthcoming Shelah [53], [54].
Zilber’s approach to categoricity theorems is more analogous to the
Baldwin-Lachlan approach than to Morley’s. Baldwin-Lachlan [8] pro-
vide a structural analysis; they show each model of an � 1-categorical theory
is prime over a strongly minimal set. This allows one to transfer the ‘geo-
metric’ proof of categoricity in power for a strongly minimal theory to show
categoricity in � 1 implies categoricity in all cardinalities. In fact, Zilber
considers only the quasiminimal case. But a ‘Baldwin-Lachlan’ style proof
was obtained by Lessmann for homogeneous model theory in [34] and for
excellent classes in [35]. That is, he proves every model is prime and minimal
over a quasiminimal set.
We begin in Section 1 by recalling the basic notions of the Fraı̈ssé construc-
tion and the notion of homogeneity. In Section 2, we sketch some results on
the general theory of categoricity in non-elementary logics. In particular,
we discuss both reductions to the ‘first order logic with omitting types’ and
the ‘syntax-free’ approach of Abstract Elementary Classes. We turn to the
development of the special case of quasiminimal theories in Section 3. This
culminates in Zilber’s first approximation of a quasiminimal axiomatization
of complex exponentiation. In Section 4we formulate the generalizedFraı̈ssé
construction and place it in the setting of Abstract Elementary Classes. We
analyze this method for constructing first order categorical theories; we then
see a variant to get examples in homogeneous model theory. Then we discuss
the results and limitations of the program to obtain analytic representations
of models obtained by this construction. Finally in Section 5 we return to
Zilber’s use of these techniques to study complex exponentiation. We de-
scribe the major algebraic innovations of his approach and the innovations
to the Hrushovski construction which result in structures that are excellent
but definitely not first order axiomatizable.
Many thanks to Rami Grossberg and Olivier Lessmann, who were in-
valuable in putting together this survey, but are not responsible for any
errors. Comments by Assaf Hasson, David Kueker, David Marker, Charles
Steinhorn, Saharon Shelah, and Boris Zilber improved both the accuracy
and the exposition. We particularly thank the referee and editor for further
clarifying the expositition.

�
1. The Fraı̈ssé construction. In the early 1950’s Fraı̈ssé [13] generalized

Hausdorff’s back and forth argument for the uniqueness of the rationals
as a countable dense linear order (without end points). He showed that
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any countable class K of finite relational structures closed under substruc-
ture and satisfying the joint embedding and amalgamation properties (see
Definition 4.1.6) has a unique countable (ultra)-homogeneous member (de-
noted � ): any isomorphism between finite subsets of � extends to an au-
tomorphism. There are easy variants of this notion for locally finite classes
in a language with function symbols. The existence of such structures is
proved by iterating the amalgamation property and taking unions of chains.
(See [21] for a full account.) Jónsson [28] extended the notion to arbitrary
cardinals and Morley-Vaught [40] created an analogous notion for the class
of models of first order theories with elementary embeddings as the mor-
phisms. They characterized the homogeneous universal models in this situa-
tion as the saturated models. In general the existence of saturated models in
power κ requires that κ = κ<κ and κ > 2 �L � ; alternatively, one may assume
the theory is stable. In particular, κ-saturated models are κ-homogeneous.
Morley proved every uncountable model of a theory categorical in an un-
countable power is saturated. Abstract versions of the Fraı̈ssé construction
undergird the next section; concrete versions dominate the last two sections
of the paper.

�
2. Syntax, stability, amalgamation. This section is devoted to investi-

gations of categoricity for non-elementary classes. We barely touch the
immense literature in this area; see [15]. Rather we just describe some of the
basic concepts and show how they arise from concrete questions of categoric-
ity in Lù1,ù and Lù1,ù(Q). In particular, we show how different frameworks
for studying nonelementary classes arise and some relations among them.
Any serious study of this topic begins with [30], [31].
In its strongest form Morley’s theorem asserts: Let T be a first order
theory having only infinite models. If T is categorical in some uncountable
cardinal then T is complete and categorical in every uncountable cardinal.
This strong form does not generalize to Lù1,ù; take the disjunction of a
sentence which is categorical in all cardinalities with one that has models
only up to, say, � 2. Using both the upward and downward Löwenheim-
Skolem theorem, Łos [36] proved that a first order theory that is categorical
in some cardinality is complete. Since the upwards Löwenheim-Skolem
theorem fails for Lù1,ù, the completeness cannot be deduced for this logic.
However, if the Lù1,ù-sentence ø is categorical in κ, then, applying the
downwards Löwenheim-Skolem theorem, for every sentence φ eitherø � φ
or all models of φ have cardinality less than κ. So if φ and ø are κ-
categorical sentences with a common model of power κ they are equivalent.
We say a sentence ofLù1,ù is complete if it either implies or contradicts every
other Lù1,ù-sentence. Such a sentence is necessarily � 0-categorical (using
downward Löwenheim-Skolem). Moreover, every countable structure is
characterized by a complete sentence, which is called its Scott sentence. So
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if a model satisfies a complete sentence, it is L � ,ù-equivalent to a countable
model. In particular, any model M of ø � Lù1,ù is small. That is, for
every n it realizes only countably many Lù1,ù-n-types (over the empty set).
Moreover, if φ has a small model then φ is implied by a complete sentence
satisfied in that model.
In the first order case it is trivial to reduce the study of categoricity to
complete (for Lù,ù) theories. Moreover, first order theories share the fun-
damental properties of sentences—in particular, Löwenheim-Skolem down
to � 0. But an Lù1,ù-theory need not have a countable model. The difficulty
is that an Lù1,ù-theory need not be equivalent to a countable conjunction
of sentences, even in a countable language. So while we want to reduce
the categoricity problem to that for complete Lù1,ù-sentences, we cannot
make the reduction trivially. We first show that if ø � Lù1,ù has arbitrarily
large models and is uncountably categorical then ø extends to a complete
sentence. A key observation is that if ø has arbitrarily large models then ø
has models that realize few types.

Lemma 2.0.1. Suppose ø � Lù1,ù has arbitrarily large models.
1. In every infinite cardinality ø has a model that realizes only countably
many Lù1,ù-types over the empty set.

2. Thus, if N is the unique model of ø in some cardinal, ø is implied by a
consistent complete sentence ø

�
which holds of N .

Proof. Since ø has arbitrarily large models we can construct a model
with indiscernibles (Chapters 13–15 of [31]). Now take an Ehrenfeucht-
Mostowski model M for ø over a set of indiscernibles ordered by a k-
transitive dense linear order. (A ordering is k-transitive if any two properly
ordered k-tuples are in the same orbit under the automorphism group. These
orders exist in every cardinal; take the order type of an ordered field.)
Then for every n, M has only countably many orbits of n-tuples and so
realizes only countably many types in any logic where truth is preserved by
automorphism—in particular in Lù1,ù. If ø is κ-categorical, let ø

�
be the

Scott sentence of this Ehrenfeucht-Mostowski model with cardinality κ.
�

If we do not assume ø has arbitrarily large models the reduction to com-
plete sentences, sketched below, is more convoluted and uses hypotheses
(slightly) beyond ZFC. In particular, the complete sentence ø

�
does not

hold, a priori of the categoricity model. The natural examples of Lù1,ù-
sentences which have models of bounded cardinality (e.g., a linear order
with a countable dense subset, or coding up an initial segment of the Vα
hierarchy of all sets) have the maximal number of models in the largest
cardinality where they have a model. Shelah discovers a dichotomy (Theo-
rem 2.0.2) between such sentences and ‘excellent’ sentences. We expand on
the notion of excellence at 2.0.9 and later in the paper. For the moment just
think of the assertion that a complete Lù1,ù-sentence (equivalently, its class
of models) is excellent as a step into paradise.
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For any class K of models, I (ë,K) denotes the number of isomorphism
types of members of K , with cardinality ë. We may write ø instead of K
if K is the class of models of ø. We say that a class K has many models of
cardinality � n if I ( � n,K) � ì(n) (and few if not; there may not be any). We
use as a black box the function ì(n) (defined precisely in [49]). Either GCH
or � O# imply ì(n) = 2

�
n but it is open whether it might be (consistently)

smaller. The difficult heart of the argument is the following theorem of
Shelah [48], [49]; we don’t discuss the proof of this result but just show how
this solution for complete sentences gives the result for arbitrary sentences
of Lù1,ù.

Theorem 2.0.2. 1. (For n < ù, 2
�
n < 2

�
n+1) A complete Lù1,ù-sentence

which has few models in � n for each n < ù is excellent (see 2.0.9).
2. (ZFC) An excellent class has models in every cardinality.
3. (ZFC) Suppose that φ is an excellent Lù1,ù-sentence. If φ is categorical
in one uncountable cardinal κ then it is categorical in all uncountable
cardinals.

So a nonexcellent class defined by a complete Lù1,ù-sentence ø may not
have arbitrarily large models but, if not, it must have many models in some
cardinal less than � ù. Combining several results of Keisler, Shelah [48]
shows:

Lemma 2.0.3. Assume 2
�
0 < 2

�
1 . Let ø be a sentence of Lù1,ù that has at

least one but less than 2
�
1 models of cardinality � 1. Then ø has a small model

of cardinality � 1.
Proof. By Theorem 45 of [31], for any countable fragment L � containing
ø and any N �= ø of cardinality � 1, N realizes only countably many L �
types over the empty set. Theorem 2.2 of [45] says that if ø has a modelM
of cardinality � 1 which realizes only countably many types in each fragment
then ø has a small model of cardinality � 1. We sketch a proof of that
theorem. Add to the language a linear order <, interpreted as a linear
order of M with order type ù1. Using that M realizes only countably
many types in any fragment, write Lù1,ù as a continuous increasing chain of
fragments Lα such that each type in Lα realized inM is a formula in Lα+1.
Add new 2n + 1-ary predicates and n + 1-ary functions fn. LetM satisfy
En(α, a, b) if and only if a and b realize the same Lα-type and let fn map
M n+1 into the initial ù elements of the order, so that En(α, a, b) implies
fn(α, a) = fn(α, b). Note: (i) En(â, y, z) refines En(α, y, z) if â > α;
(ii) En(0, a, b) implies a and b satisfy the same quantifier free formulas;
(iii) if â > α, En(â, a, b) implies ( � x)( � y)En+1(α, xa, yb). Thus, (iv) for
any a � M each equivalence relation En(a, y, z) has only countably many
classes. All these assertions can be expressed by an Lù1,ù sentence φ. Now
add a unary predicate symbol P and a sentence ÷ which asserts that M
is an end extension of P(M ). For every α < ù1 there is a model Mα of
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φ � ø � ÷ with order type of (P(M ), <) greater than α. (Start with P as α
and alternately take an elementary submodel for the smallest fragment L �
containing φ � ø � ÷ and close down under<. Afterù steps we have theP for
Mα .) Now by Theorem 12 of [31] there is countable structure (N0, P(N0))
such that P(N0) contains a copy of (Q,<) and N0 is an end extension of
P(N0). By Theorem 28 of [31], N0 has an L � elementary extension of
cardinality � 1. Fix an infinite decreasing sequence d0 > d1 > . . . inN0. For
each n, defineE+n (x, y) if for some i ,En(di , x, y). Now using (i), (ii) and (iii)
prove by induction on the quantifier rank of φ that N1 �= E+n (a, b) implies
N1 �= φ(a) if and only if N1 �= φ(b) for every Lù1,ù-formula φ. For each
n, En(d0, x, y) refines E

+
n (x, y) and by (iv) En(d0, x, y) has only countably

many classes; so N is small.
�

Using these two results, we easily derive a version of Morley’s theorem for
an Lù1,ù-sentence.

Theorem 2.0.4. Assume 2
�
n < 2

�
n+1 for n < ù. If an Lù1,ù-sentence ø

has an uncountable model, then either

1. ø has many models in � n for some n < ù or
2. ø has arbitrarily large models and if ø is categorical in one uncountable
cardinal κ then it is categorical all uncountable cardinals.

Proof. Supposeø has few models in � n for each n < ù. By Lemma 2.0.3,
choose a small model ofø, say with Scott sentenceø

�
. Assuming 2

�
n < 2

�
n+1

for each n, Theorem 2.0.2 (1) implies ø
�
is excellent. By Theorem 2.0.2 (2)

ø
�
and thus ø have arbitrarily large models. Now suppose ø is categorical

in κ > � 0. Then so is ø
�
whence, by Theorem 2.0.2 (3), ø

�
is categorical in

all uncountable powers.
To show ø is categorical above κ note that by downward Löwenheim-
Skolem all models of ø with cardinality at least κ satisfy ø

�
; the result

follows by the categoricity of ø
�
. If ø is not categorical in some cardinality

ì < κ, theremust be a sentence è which is inconsistent withø
�
but consistent

with ø. Applying the entire analysis to ø � è, we find a complete sentence
ø

� �
which has arbitrarily large models, is consistent with ø and contradicts

ø
�
. But this is forbidden by categoricity in κ.

�

One corollary of this result is

Corollary 2.0.5. Assume 2
�
0 < 2

�
1 . If an Lù1,ù-sentence is categorical

in � n for n < ù, then it is categorical in all cardinalities.
Hart and Shelah [18] have shown the necessity of the hypothesis of cate-
goricity up to � ù.
A key tool in the study of complete Lù1,ù-sentences is the reduction of the
class of models of such sentences to classes which are ‘closer’ to being first
order. We now give a full account of this easy reduction. Chang proved
in [12] that the class of models of any sentence in Lκ+,ù could be viewed as
the class of reducts to L of models of a first order theory in an expansion L

�



342 JOHN T. BALDWIN

of L which omitted a family of types. Chang (Lopez-Escobar [12]) used this
observation to prove that the Hanf number for Lκ+,ù is same as the Hanf
number for omitting a family of κ types. Shelah [45] took this reduction
a step further and showed that the class of models of a complete sentence
in Lù1,ù are in 1-1 correspondence (mapping L � ,ù-submodel to elementary
submodel) with the class of atomic models of an appropriate first order
theory in an expanded language. That is, to study the generalization of
Morley’s theorem to complete Lù1,ù-sentences it suffices to study classes of
structures defined by a special type of finite diagram. By a finite diagram
we mean an EC(T,Γ) class: those models of first order theory that omit all
types from a specified collection Γ of types in finitely many variables over
the empty set. Abusing the EC(T,Γ) notation, EC(T,Atomic) denotes the
class of atomicmodels of T (i.e., to conform to the notation we should write
nonatomic). Most detailed study of the spectrum of Lù1,ù-sentences [45],
[48], [49], [35], [16], [27] just work with finite diagrams or more restrictively
atomic models (and usually under stronger homogeneity conditions). In
general, an atomic class might be defined by omitting uncountably many
types; in the case of interest only countably many types have to be omitted.

Theorem 2.0.6. Let ø be a complete sentence in Lù1,ù. Then there is a
countable language L

�
extending L and a first order L

�
-theory T such that the

reduct map is 1-1 from the atomic models of T onto the models of ø.

Proof. LetL � be a countable fragment ofLù1,ù which contains all subfor-
mulas ofø and the conjunction of eachLù1,ù-type that is realized in a model
of ø. (This set is countable since complete sentences are small.) Expand L
to L

�
by inductively adding a predicate Pφ(x) for each L � -formula φ. Fix a

model of ø and expand it to an L
�
-structure by interpreting the new predi-

cates so that the new predicates represent each finite Boolean connective and
quantification faithfully: E.g.,

P � φ(x) � � Pφ(x),

and
P( � x)φ(x) � (� x)Pφ(x),

and that, as far as first order logic can, the Pφ preserve the infinitary opera-
tions: for each i ,

P �
i φi (x)

� Pφi (x).
Let T be the first order theory of any such model and consider the countable
set Γ of types

p �
i φi (x)

= � � P �
i φi (x) ��� � Pφi (x) : i < ù � .

Note that if q is an Lù1,ù-type realized in a model of T , P � q generates a
principal type in T . Now ifM is a model of T which omits all the types in Γ
(in particular, ifM is an atomic model of T ),M � L �= ø and each model of
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ø has a unique expansion to a model of T which omits the types in Γ (since
this is an expansion by definitions in Lù1,ù).

�

So in particular, any complete sentence of Lù1,ù can be replaced (for spec-
trum purposes) by considering the atomic models of a first order theory. Since
all the new predicates are Lù1,ù-definable this is the natural extension of
Morley’s procedure of replacing each first order formula φ by a predicate
symbol Pφ. Morley’s procedure resulted in a theory with elimination of
quantifiers thus guaranteeing amalgamation over sets for first order categor-
ical T . A similar amalgamation result does not follow in this case. Nor, In
general, do finite diagrams satisfy the upwards Löwenheim-Skolem theorem.

Remark 2.0.7 (Lù1,ù(Q)). The situation for Lù1,ù(Q) is more compli-
cated. The example [18] of a sentence of Lù1,ù that is � 1-categorical and
not categorial in all uncountable powers is quite complicated. But the L(Q)
theory of two disjoint infinite sets illustrates this phenomena trivially. Some
of the analysis of [48], [49] goes over directly. But many problems intervene
and Shelah has devoted several articles (notably [52], [53], [54] to complet-
ing the analysis; a definitive version has not appeared. The difficulty in
extending from Lù1,ù to Lù1,ù(Q) is in constructing models with the proper
interpretation of the Q-quantifier. Following Keisler’s analysis of this prob-
lem in [30] the technique is to consider various notions of strong submodel.
Two notions are relevant: in the first, the relation ofM � K N holds when
definable sets which are intended to be countable (M �= � (Qx)φ(x)) do not
increase from M to N . The seconds adds that definable sets intended to
be uncountable (M �= (Qx)φ(x)) increase from M to N . The first notion
gives an AEC (Definition 2.0.8); the second does not. The reduction [51],
[53] is actually to an AEC along with the second relation as an auxiliary that
guarantees the existence of standard models.

When Jónsson generalized the Fraı̈sse construction to uncountable car-
dinalities [28], [29], he did so by describing a collection of axioms, which
might be satisfied by a class of models, that guaranteed the existence of
a homogeneous-universal model; the substructure relation was an integral
part of this description. Morley and Vaught [40] replaced substructure by
elementary submodel and developed the notion of saturated model. Shelah
[51], [50] generalized this approach in two ways. He moved the amalgama-
tion property from a basic axiom to a constraint to be considered. (But
this was a common practice in universal algebra as well.) He made the sub-
structure notion a ‘free variable’ and introduced the notion of an Abstract
Elementary Class: a class of structures and a ‘strong’ substructure relation
which satisfied variants on Jonsson’s axioms. To be precise

Definition 2.0.8. A class ofL-structures, (K , � K), is said to be an abstract
elementary class: AEC if both K and the binary relation � K are closed under
isomorphism and satisfy the following conditions.
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� A1. IfM � K N thenM
�
N .� A2. � K is a partial order on K .� A3. If � Ai : i < ä � is � K -increasing chain:

1. � i<ä Ai � K ;
2. for each j < ä, Aj � K � i<ä Ai
3. if each Ai � K M � K then � i<ä Ai � K M .� A4. If A,B,C � K , A � K C , B � K C and A

�
B then A � K B .� A5. There is a Löwenheim number κ(K) such that if A �

B � K there
is a A

�
� K with A

�
A

�
� K B and �A � � < κ(K) + �A � .

With � K as the notion of elementary submodel for such logics as first or-
der logic, Lù1,ù, finite variable logic, classes defined in those logics become
examples of AEC. Note that Lù1,ù(Q) with the standard notion of elemen-
tary submodel is not an AEC (an uncountable union of countable sets can
become uncountable). By interpreting � K in the first way described in Re-
mark 2.0.7, sentences of Lù1,ù(Q) define AEC’s with Löwenheim number

� 1. The generalization to AEC is motivated by the fact that many arguments
for the model theory of Lù1,ù(Q) work as well in the abstract setting. We
discuss a particularly relevant AEC for the Zilber program in Section 4.
By a very straightforward and short argument, Shelah shows in [51] that
for every AEC K with vocabulary L, there is a vocabulary L

�
such that K is

the class of reducts to L of L
�
-structures which omit a certain set of types

(PC (T1, L,Γ)). In particular, by the same argument as in [12] any AEC
in a countable vocabulary with countable Lowenheim number which has a
model of cardinality � (2ù)+ has arbitrarily large models. Moreover, the same
procedure allows the construction of Ehrenfreucht-Mostowski models and
the deduction (modulo some amalgamation hypotheses) of stability from
categoricity [53].
Note the following hierarchy of ease of definition where A > B (read >
as ‘is more general than’) means every B class is an A class:

PC (T1, L,Γ) > AEC > L2κ+ ,ù > EC(T,Γ) = finite diagrams >

EC(T,Atomic) > first order,

for an arbitrary cardinal κ.
The distinction given by the first inequality is very sharp. Silver (Chap-
ter 18 of [31]) gives a simple example of a pseudoelementary class where the
categoricity spectrum and its complement are both cofinal in the class of car-
dinals. Morley’s theorem for AEC and even the weaker conjecture, that the
aberrant behaviour of the last sentence cannot hold in an AEC, remain open.
Orthogonal to this syntactical hierarchy are various kinds of amalgama-
tion hypotheses. There are a number of variants on homogeneity; here
we mean the basic notion of sequential homogeneity. Perhaps the most
important distinction is:

amalgamation over models > homogeneity = set amalgamation.
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The original Keisler hypothesis for the categoricity theorem: that the
model of power � 1 is homogeneous led to an important topic, finite di-
agrams with amalgamation [44], i.e., an EC(T,Γ) class with set amalga-
mation. The term ‘homogeneous model theory’ is used for both this no-
tion (cf. [17], [27]) and a more general context proposed by Buechler and
Lessmann in [11]. Although formally different the techniques and results
of the two areas are ‘morally’ the same. Many of the results of stability
and simplicity theory have been developed in this context. In particu-
lar, one can prove a stablility spectrum theorem very similar to the first
order case. The elaborate development during the last 30 years of the
model theory of Banach spaces is an example of homogeneous model the-
ory (12.5 of [19]). More general than any of the classes discussed here is
the study of classes where structures, which are amalgamation bases for
extensions of the same cardinality, are dense [55], [56]. An early overview
of all these questions is in the hard to locate Lazy Model Theorists guide
[46].

Remark 2.0.9 (Excellence). The notion of excellence as defined in [48]
includes both an amalgamation component and a stability component. The
idea arises from the attempt to construct arbitrarily large models. Vaught
[57] proved that a theory with a countable atomic model M0 that is not
minimal has a model M of power � 1: properly extend M0 to M1 (which
is also atomic). Iterate, taking unions at limits. Shelah transferred the
argument to convert a categorical modelM of size � 1 to a model of size � 2.
The key idea is to analyze how every model can be built up from countable
submodels. Using categoricity, the problem reduces to finding a proper
elementary extension of M . For this, write M as a union of a chain of
countable models Mi and extend each Mi to an Ni . The simplest way to
guarantee � i< �

1
Mi is properly contained in � i< �

1
Ni is to guarantee that

N0 � M = M0, that is, that M and N0 are disjointly amalgamated over
M0. For this, some stability is used. To construct a model of power � 3,
from anM of cardinality � 2 the process is repeated. Now, after writingM
as a union of models of cardinality at most � 1, one tries to again extend
model by model. Each model in the tower is decomposed into a chain of
countable models. To reconstruct the tower one must amalgamate cubes
of countable models and the system must be ‘stable’ to ensure that the
towers expand. Excellence asserts that a free n-dimensional cube of models
can be completed. We have just sketched the use of excellence to build
arbitrarily large models. In Section 3, we will discuss how in a restricted
setting it produces uniqueness. Excellent classes have been explored by a
number of authors. The ‘main gap’ was carried over from first order logic to
excellent classes by Grossberg and Hart [16]; Lessmann [35] expounds the
categoricity situation, explaining the distinction between homogeneous and
excellent categorical classes.
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�
3. Quasiminimality and excellence. In the first subsection we define (a

slight variant of) Zilber’s notion of a quasiminimal excellent class and sketch
his proof that quasiminimal excellent classes are categorical in all uncount-
able powers. A quasiminimal excellent class is a class of structures such
that each structure admits a combinatorial geometry and certain amalgama-
tions over free configurations for this geometry are insured. In the second
subsection, we describe a quasiminimal excellent approximation of complex
exponentiation [60].
The notion of quasiminimality generalizes the first order notion of strong
minimality. In first order logic a � acl(B) if some first order formula φ(x)
with parameters from B has only finitely many solutions, one of which in a.
In a strongly minimal set acl determines a combinatorial geometry—that is,
it satisfies the condition on an abstract cl relationwe describe inAssumptions
3.1.1 and 3.1.5. This easily gives the categoricity in each uncountable power
of a strongly minimal set.

3.1. Abstract quasiminimality. A classK is quasiminimal excellent [63] if it
satisfies the following four conditions. We speak of abstract quasiminimality
because the notion is defined here in terms of an unspecified combinatorial
geometry. A specific application might, for example, define a � cl(A) if a
is in a countable set that is Lù1,ù-definable with parameters from A. This
notion has a fundamental difficulty: in general, one may have elementarily
equivalent sets X and Y whose closures are not isomorphic. In the ordi-
nary notion of algebraic closure, a map can be extended to the algebraic
closure by minimizing the size of the finite set witnessing a � acl(X ); in the
quasiminimal case, the notion of excellence provides such an extension to
the closure by a much more involved argument. Quasiminimal excellence is
to Shelah’s notion of excellence as strongly minimal sets are to the study of
ù-stable first order theories.
Recall that an operator F on sets has finite character if F (X ) is the union
of F (X0) forX0 a finite subset ofX . We adopt the convention here of writing
concatenation for union, XY denotes X � Y .
Assumption 3.1.1 (Condition I). Let K be a class of L-structures which
admit a monotone idempotent closure operation cl which has finite character.
Further, for every X , cl(X ) � K .

LetG be a subset ofH,H
�
and all three be inK . A map from X � H � G

to X
�

� H
�

� G is called a partial G -monomorphism if its union with the
identity map on G preserves quantifier free formulas. Condition 3.1.2.3,
implies, in particular that every member of K is ù-homogeneous.

Assumption 3.1.2 (Condition II). Let G
�
H,H

�
� K with G empty or

in K .

1. If f is a bijection between X and X
�
which are separately cl-independent

(over G) subsets of H and H
�
then f is a partial G -monomorphism.
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2. If f is a partial G -monomorphism from H to H
�
with finite domain X

then for any y � H there is y
�
in an extension H

� �
� K of H

�
such that

f � � � y, y � ��� extends f to a partial G -monomorphism.
3. If f is a partial G -monomorphism from H to H

�
taking X � �

y � to
X

� � �
y

� � then y � cl(XG) iff y
�

� cl(X
�
G).

Condition (3) has an a priori unlikely strength: quantifier free formulas
determine the closure; in practice, the language is specifically expanded to
guarantee this condition. Part 2 of Assumption 3.1.2 implies that each M
with G

�
M � K is finite sequence homogeneous over G .

In the following definition it is essential that � be understood as proper
subset.

Definition 3.1.3. 1. For any Y , cl � (Y ) = � X � Y cl(X ).
2. We call C (the union of ) an n-dimensional cl-independent system if
C = cl � (Z) and Z is an independent set of cardinality n.

To visualize a 3-dimensional independent system think of a cube with the
empty set at one corner A and each of the independent elements z0, z1, z2 at
the corners connected to A. Then each of cl(zi , zj) for i < j < 3 determines
a side of the cube: cl � (Z) is the union of these three sides; cl(Z) is the entire
cube.

Assumption 3.1.4 (Condition III). Let G
�
H,H

�
� K with G empty

or in K . Suppose Z � H � G is an n-dimensional independent system,
C = cl � (Z), and X is a finite subset of cl(Z). Then there is a finite C0
contained in C such that: for every G -partial monomorphism f mapping
X into H

�
, for every G -partial monomorphism f1 mapping C into H

�
, if

f � (f1 � C0) is a G -partial monomorphism, f � f1 is also a G -partial
monomorphism.

Thus Condition III, which is the central point of excellence, asserts (e.g.,
in dimension 3) that the type of any element in the cube over the union of the
three given sides is determined by the type over a finite subset of the sides.
The ‘thumbtack lemma’ of Subsection 3.2 verifies this condition in a specific
algebraic context.

Assumption 3.1.5 (Condition IV). cl satisfies the exchange axiom: y �
cl(Xx) � cl(X ) implies x � cl(Xy).
Zilber omits exchange in the fundamental definition but it arises in the
natural contexts he considers so we make it part of quasiminimal excellence.
Note however that in Section 4, the examples of first order theories with
finite Morley rank greater than 1 (the parameter α of the construction is
greater than 1) fail to satisfy exchange. We say a closure operation satisfies
the countable closure condition if the closure of a countable set is countable.
We easily see:

Lemma 3.1.6. Suppose cl is defined on an uncountable structure M and
satisfies Conditions I and II and the countable closure condition.
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1. For any finite set X
�
H � K , if a, b � H � cl(X ), a, b realize the same

Lù1,ù type over X .
2. For every uncountable M � K , every Lù1,ù definable set is countable or
cocountable. This implies that a � cl(X ) iff it satisfies some φ over X ,
which has only countably many solutions.

Proof. Condition (1) follows directly from (1) and (2) of Assumption 2
by constructing a back and forth. To see condition (2), suppose both φ
and � φ had uncountably many solutions with φ defined over X . Then there
are a and b satisfying φ and � φ respectively and neither is in cl(X ); this
contradicts (1).
The ù-homogenity yields by an easy induction:

Lemma 3.1.7. Suppose Conditions I and II hold. If cl(X ) and cl(Y ) are
countable and X is independent then any isomorphism between X and Y
extends to an isomorphism of cl(X ) and cl(Y )

For algebraic closure the countability restriction is unnecessary. We now
use Assumption 3.1.4 to remove the restriction in excellent classes.

Theorem 3.1.8. Let K be a quasiminimal excellent class and suppose
H,H

�
� K satisfy the countable closure condition. Let � , � �

be cl-independent
subsets ofH,H

�
with cl( � ) = H , cl( � �

) = H
�
, respectively, and ø a bijection

between � and � �
. Then ø extends to an isomorphism of H and H

�
.

Thus, in each uncountable cardinality K has a unique model on which cl
satisfies the countable closure condition.

We sketch the proof of Theorem 3.1.8. Fix a countable subset � 0 of � ;
without loss of generality, we can assume ø is the identity on � 0 and work
over G = cl( � 0). So from now on monomorphism means monomorphism
over G and cl(X ) means cl( � 0X ).
Note that ø is a monomorphism and so is ø0 = ø ��� 0. By Lemma 3.1.7
and induction, for any independent X with �X ��� � 0, ø � X extends to a
isomorphism from cl(X ) to cl(ø(X )). Taking unions of an increasing chain,
we can even assume �X � = � 1.
Note also that H = limX ��� ; �X �<

�
0
cl(X ). We have the obvious directed

system on
�
cl(X ) : X ��� ; �X � < � 0 � . So the theorem follows immediately

if for each finite X we can choose øX : cl(X ) � H �
so that X � Y implies

øX � øY . We prove this by induction on �X � . Suppose �Y � = n + 1 and
we have appropriate øX for �X � < n + 1. We will prove two statements by
induction.

1. ø �Y : cl � (Y ) � H �
defined by ø �Y = � X � Y øX is a monomorphism.

2. ø �Y extends to øY defined on cl(Y ).
The first step is done by induction andù-homogeneity using Lemma 3.1.7.
The exchange axiom is used to guarantee that the mapsø

�

Y forY
���
Y agree

wheremore thanone is defined. The second step followsbyAssumption 3.1.4
and induction using Lemma 3.1.7 and the fact that cl(Y ) is countable. We
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have shown that the isomorphism type of a structure in K is determined by
the cardinality of a basis for the geometry. IfK satisfies the countable closure
condition the size of an uncountable model is the same as its dimension, so
we get categoricity.

�

A natural way to require countable closure condition of all members ofK
is to axiomatize the class in Lù1,ù(Q); for the next example Lù1,ù suffices
because of a clever choice of the closure relation.

3.2. Covers of the multiplicative group of
�
. The first approximation to

a quasiminimal axiomatization of complex exponentiation considers short
exact sequences of the following form.

0 � Z � H � F � � 0. (1)

H is a torsion-free divisible abelian group (written additively), F is an
algebraically closed field, and exp is a homomorphism from (H,+) to (F � , � ),
the multiplicative group of F . We can code this sequence as a structure:

(H,+, E, S),

where E(h1, h2) iff exp(h1) = exp(h2). We pull the additive structure of
the field back to H by the defining H �= S(h1, h2, h3) iff F �= exp(h1) +
exp(h2) = exp(h3). Thus H now represents both the multiplicative and
additive structure of F .

Lemma 3.2.1. There is an Lù1,ù-sentence Σ such that there is a 1-1 corre-
spondence between models of Σ and sequences (1).

The sentence asserts first that the quotient ofH byE with+ corresponding
to � and S to + is an algebraically closed field. We use Lù1,ù to guarantee
that the kernel is isomorphic toZ. This same proviso insures that the relevant
closure condition has countable closures. Now the key result asserts.

Theorem 3.2.2. For an appropriate definition of closure, Σ is quasiminimal
excellent with the countable closure condition and categorical in all uncountable
powers.

In this context the appropriate cl on the domain H of a model of Σ is
defined by

cl(X ) = exp � 1(acl(exp(X ))
where acl is the field algebraic closure in F . It is easy to check that cl gives
a combinatorial geometry such that the countable closure of countable sets
is countable. (Strictly speaking, the language will have to be expanded to
guarantee Assumption 3.1.2.3.) The main algebraic ingredient in this argu-
ment arises from the treatment of the divisible closure (in the multiplicative
group of the field).

Definition 3.2.3. By a divisibly closedmultiplicative subgroup associated
with a �

�
� , a

�
, we mean a choice of a multiplicative subgroup containing a

and isomorphic to the group ( � ,+).
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Definition 3.2.4. We say b
1
m
1 � b

�
1 , . . . , b

1
m
` � b

�
` �

�
� , determine the iso-

morphism type of b
�
1 , . . . , b

�
` �

�
� over the subfield k of

�
if given subgroups

of the form c
�
1 , . . . , c

�
` �

�
� and φm such that

φm : k � b 1m1 . . . , b
1
m
` � � k � c 1m1 . . . , c

1
m
` �

is a field isomorphism, φm extends to

φ � : k � b �
1 , . . . , b

�
` � � k � c �

1 , . . . , c
�
` � .

In the following, � 1 denotes the subgroup of roots of unity. We call this
result the thumbtack lemma based on the following visualization of Kitty
Holland. The various nth roots of b1, . . . , bm hang on threads from the bi .
These threads can get tangled; but the theorem asserts that by sticking in
a finite number of thumbtacks one can ensure that the rest of strings fall
freely. The proof involves the theory of fractional ideals of number fields,
Weil divisors, and the normalization theorem. For a1, . . . , ar in

�
, we

write gp(a1, . . . , ar) for the multiplicative subgroup generated by a1, . . . , ar .
The following general version of the theorem is applied for various sets of
parameters to prove quasiminimal excellence.

Theorem 3.2.5 (thumbtack lemma). [60] Let P �
�
be a finitely gen-

erated extension of � and L1, . . . , Ln algebraically closed subfields of the
algebraic closure of P. Fix multiplicatively divisible subgroups a

�
1 , . . . , a

�
r

with a1, . . . , ar � P � and b
�
1 , . . . , b

�
` �

�
� . If b1 . . . , b` are multiplicatively

independent over gp(a1, . . . , ar) � � 1 � L �1 � � � � � L �n then for somem, the elements

b
1
m
1 � b

�
1 , . . . , b

1
m
` � b

�
` �

�
� , determine the isomorphism type of b

�
1 , . . . , b

�
`

over P(L1, . . . , Ln, � 1, a �
1 , . . . , a

�
r ).

We describe these notions in terms of formulas rather than elements.

Definition 3.2.6. 1. Let V be an irreducible variety over C
�
F . The

sequence associated with V over C is a sequence

� V 1
m : m � ù �

such that V 1 = V and for any m, n � ù, raising to the mth power maps
V

1
nm to V

1
n .

2. If V
� �
V are varieties in n-variables over C , the pair

ô = � V � V
�
, � V 1

m : m � ù � �
is called an almost finite n-type over C .

3. Zilber calls a principal type given by a difference of varieties V � V
�
a

finite n-type over C .

One of the key ideas discovered by Shelah in the investigation of non-
elementary classes is that in order for types to be well-behaved one may have
to make restrictions on the domain. (E.g., we may be able to amalgamate
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types over models but not arbitrary types.) This principle is illustrated by
the following definition and result of Zilber.

Definition 3.2.7. C
�
F is finitary if C is the union of the divisible closure

(in
�

� ) of a finite set and finitely many algebraically closed fields.

To prove the following result, apply the thumbtack lemma with the Li as
the fields and the ai as the finite set.

Corollary 3.2.8. Any almost finite n-type over a finitary set is a finite
n-type.

Sketch of Proof of Theorem 3.2.2. Application of the thumbtack lem-
ma gives directly the homogeneity conditions of Assumption 3.1.2. Ex-
change, Assumption 3.1.5, is immediate from the definition of closure (3.2).
Finitary sets are more general than the n-dimensional independent systems
in the definition of quasiminimal excellence, since the subsets do not have to
be independent. So if X is a sequence associated with a variety V over an
n-dimensional independent system C , Corollary 3.2.8 allows us to reduce
X to a formula over a finite set yielding Assumption 3.1.4. So the class is
quasiminimal and categoricity follows by Theorem 3.1.8.

�

We have shown the expansion of the complex numbers by naming the con-
gruence (on the additive group) induced by exponentiation is quasiminimal
excellent. This argument is rather ad hoc; one just checks the property of
quasiminimal excellence with no specific model theoretic innovations in the
argument. In the next section we see a family of constructions for quasi-
minimal excellent classes.

�
4. The generalized Fraı̈ssé construction. In the 1950’s Fraı̈ssé generalized

the Cantor-Hausdorff proof of the uniqueness of countable dense linear
orders (without endpoints) by showing a class of finite relational structures
that has the amalgamation property over arbitrary substructures gives rise
to a countable homogeneous structure. This construction was generalized to
uncountable cardinals by Jónnson and inspired theMorley-Vaught invention
of saturated models. Shelah generalized the notion still further with various
approximations to his notion of an abstract elementary class; key to this
generalization is replacing the concrete notion of substructure by a ‘strong
submodel’ notion which is described axiomatically. Although the Fraı̈ssé
models were � 0-categorical, all but the most trivial were inherently unstable.
Hrushovski [24], [20] constructs stable examples by defining a notion of
strong submodel in terms of a functionmapping finitely generated structures
into discrete additive subgroups of the reals (or into the integers).

4.1. Weak ranks and strong submodels. We reprise the general construc-
tion in the form we described in [4]. Many explicit examples are discussed
in that paper. Let � K(N ), � , � � be a lattice of substructures of a model N .
For purposes of this paper a rank is a function ä from K(N ) to a discrete
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additive subgroup of the reals that is defined on each N in a class K . This
notion of rank is much weaker than any other rank notion used in stability
theory. We write ä(A/B) = ä(A � B) � ä(B) to indicate the relativization
of the rank. We demand only that ä is monotonic: if B

�
A,C

�
N and

A � C = B ,

ä(A/B) � ä(A/C ).
This requirement can be rephrased as asserting that ä is lower semimodular:
for any A,B ,

ä(A � C ) � ä(C ) � ä(A) � ä(A � C ).

We say ä is modular if the inequality is an equality. Examples of ä include
cardinality, relation size (number of instances of a relation), vector space
dimension, and transcendence degree. All of these but the last are modular.
The simplest example of ‘relation size’ is just the number of edges in a
(symmetric) graph. As in [61] we say the rank is a predimension when the
range of ä is the integers. There aremany variants of this construction. Each
depends on the choice of a class K and a rank function on members of K .
Many of the ranks are obtained by standard combinations of ones that are
already known. If ä1, ä2 are ranks defined on a class K , so are

ä = α ä1 + â ä2

for any positive reals α, â and

ä = α ä1 � â ä2

for any positive reals α, â if ä2 is modular! With this observation, most of
the examples of this construction can be seen as built up from the examples
in the previous paragraph. Irrational α, â correspond to the construction of
strictly stable structures [10], [9], [20] and will play no further role after the
next example.

Example 4.1.1. Let ä = α ä1 � â ä2.
1. The class (K , ä) is called ab initio if K is a universal class of relational
structures, ä1 is cardinality and ä2 is the number of relations. This gives
rise to the new strongly minimal set (α = â = 1) [24], a non-Desarguesian
projective plane (α = 2, â = 1) [3], a strictly stable � 0-categorical
theory (Hrushovski α irrational, â = 1), and theories with infinite weight
(sequence of irrational α) [20] and the almost sure theorey of graphs with
edge probability n � α (α irrational, â = 1 but different K) [9], [10].

2. Bicolored fields (α = k, â = 1) [42], [5], [7] are expansions of a field by a
unary predicate; ä1 = df is transcendence degree; ä2 counts the number
of points in P.

Let T � 1 be a first order theory such that for any subset X of a modelN of
T � 1, there is a minimal submodelM ofN that containsX ; this implies there
is a natural notion of a finitely generated model. We denote this submodel
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� X � N , dropping the subscript N when the choice of N is evident. This
condition is clearly satisfied if T � 1 is universally axiomatized or strongly
minimal and almost all of our examples fall into one of these two classes.
Let K � 1 = mod (T � 1); K � 1 is the finitely generated members of K � 1.
The construction of the homogeneous model is made with respect to a
notion of strong substructure.

Definition 4.1.2. 1. For A,B � K � 1, we say A is a strong substruc-
ture of B and write A � K B if for every B

�
� K � 1 with B

� �
B ,

ä(B
�
/B

�
� A) � 0.

2. We denote by K 0 the set of A � K � 1 which have ä(A
�
) � 0 for each

A
� �
A and by K0 those in K0 which are finitely generated. T0 denotes

the theory of K 0.

Now it is easy to show

Theorem 4.1.3. Any class (K , � K) where � K is defined from a ä-function
and a class K � 1 as in Definition 4.1.2 and that is closed under unions of
increasing chains is anAbstract ElementaryClass. If it has countable similarity
type then the Löwenheim number is � 0 (Definition 2.0.8).
Since � K is imposed by ä, the following properties hold, which are more
special than AEC’s in general or even the analysis of generic models in [33].

� A6. If A,B,C � K(N ), A � K C , B
�
C , then A � B � K B .

We can restrict to K 0 to obtain:� A7. � � K0 and � � K A for all A � K 0.

A predimension ä also allows us to construct a combinatorial geometry.

Definition 4.1.4. 1. For M � K 0, A
�
M , A � K 0, dM (A) =

inf
�
ä(B) : A � B

�
M,B � K 0 � .

2. For A, b containedM , b � cl(A) if dM (bA) = dM (A).

Naturally we can extend to closures of sets that are not finitely generated
by imposing finite character.

Lemma 4.1.5. 1. The closure system defined in Definition 4.1.4 is mono-
tone and idempotent as in Assumption 3.1.1.

2. If, in addition ä is a predimension (integer range) and for any finite
X , dM (X ) � �X � then the closure system satisfies exchange, Assump-
tion 3.1.5.

Definition 4.1.6. 1. The pair (K , � K) has the amalgamation property
if for N,M � K with A � K M,N , there exists N1 � K and embeddings
of M,N as strong submodels of N1, which agree on A. It has the joint
embedding property if any N ,M have a common strong extension.

2. The model M is κ-(K , � K)-homogeneous (or rich [42]) if A � K M,
A � K B � K and �B � � κ implies there exists B �

� K M such that
B �= B

�
over A.
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3. The genericmodel � is the unique countable � 0-(K , � K)-homogeneous-
model that is a union of a chain of finitely generated models, each of which
is a strong extension of its predecessor.

Now standard arguments show:

Theorem 4.1.7. 1. If a class (K 0, � K) has the amalgamation property
and the joint embedding property then there is a countable generic struc-
ture � .

2. Moreover, for every κ, there is a structure Mκ which is κ-(K , � K)-
homogeneous.

Note that we have amalgamation overmodels, not over sets and the homo-
geneity is with respect to strong substructures, not sequential homogeneity.
To determine such properties of the genericmodel asù-saturation and stabil-
ity class requires that we introduce a second notion of closure. The existence
of a ‘unique minimal N ’ in the next definition follows from A6.

Definition 4.1.8. 1. Let A
�
M � K . The intrinsic (or self-sufficient)

closure of A in M , denoted iclM (A) is the unique minimal N such that:
A

�
N , N � K , N � K M .

2. We say B is a minimal intrinsic extension of A if ä(B/A) < 0 but
ä(B

�
/A) � 0 for every B �

with B
�
B

���
A.

It is easy to check that iclM (A) can also be constructed by interatively
taking minimal intrinsic extensions. It is crucial that this notion be defin-
able (in roughly the same sense one says Morley rank is definable). For
example, this is necessary to guarantee that K 0 is axiomatizable. We say
K has ä-formulas for minimal intrinsic extensions if for each pair (B,A)
with B minimal intrinsic over A, there is a formula φAB(x, y), satisfied by
an enumeration of BA, such that if φAB(b

�
, a

�
) and B

�
, A

�
are the structures

generated b
�
, a

�
then ä(B

�
/A

�
) � ä(B/A) (and some other conditions we

won’t spell out here). The existence of ä-formulas is trivial in the ab initio
case [24], routine for bicolored fields [5] and impossible (in full generality)
for fields with a distinguished multiplicative subgroup [23], [43].
The following key facts about intrinsic closure follow from the definition of
K 0 as the class of structures with hereditarily non-negative ä. The key points
for (2) are that any minimal intrinsic extension B of A can have only finitely
many copies inM and this implies that φAB is algebraic and any point in the
intrinsic closure arises through finitely many iterations of minimal intrinsic
extensions. The proofs of these results are not difficult.

Lemma 4.1.9. Suppose K has ä-formulas for minimal intrinsic extensions.
Let A

�
M � K0.

1. If A is finitely generated then iclM (A) is finitely generated.
2. For any A

�
M , iclM (A) is contained in aclM (A).
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Definition 4.1.10. K is set-determined if for every X � A � K there is
(a) a minimal X

�
contained in A with X

�
� K and (b) tp(X/ � ) determines

tp(X
�
/ � ).

In either the ab initio case (see Section 4.2) or if K arises by naming a
subset of an algebraically closed field, the class K is set-determined.
From Lemma 4.1.9 we easily see:

Lemma 4.1.11. Suppose K is set-determined. The countable generic model
� is � 0-homogeneous. More generally, a κ-(K , � K)-homogeneousM is κ-set
homogeneous.

Proof. Let a and b be sequences of length less thanκ fromM which realize
the same first order type and let c � M ; we must find d so that ac and bd
also realize the same type. Part 2 of Lemma 4.1.9 implies icl � (a) �= icl � (b)
and they are finitely generated in the countable case (have cardinality < κ
in the uncountable case.) Since K is set-determined, we can replace these
intrinsic closures by the models they generate. So there is an automorphism
α of G taking one to the other and α(c) is the required d .

�

In [63], Zilber remarks that the categoricity of a structure depends on its
‘dimension’ and ‘homogeneity’. Our countable model � is a candidate; the
dimension theory is given by the geometry and it is homogeneous ifK is set-
determined. We describe below a variant of this construction to construct a
quasiminimal excellent class which is not homogeneous.
We will discuss two strategies for producing categoricity via the Hrushovski
construction: the first order strategy (Subsection 4.2) and the quasiminimal
excellent strategy (Subsection 5.3).
The first order strategy aims to show that the structure � is strongly
minimal in the geometry (α = 1 see 4.1.1) case and at least � 1-categorical
otherwise. (It is often almost strongly minimal; see [6].) When α = 1, for
everyM and for every singleton a, dM (a) � 1. The key idea is to force, by
controlling the primitive extensions, that if dM (a) = 0, then a is algebraic.
From this it is easy to deduce strong minimality.

Definition 4.1.12. Let A,B � K 0. We say A is primitive over B if
ä(A/B) = 0 and for any A

�
with B � A

�
� A, ä(A/A

�
) < 0.

In the ab initio case (see Example 4.1.1) one needs to also minimize the
base B ; in the bicolored field case this falls out from the general theory of
canonical bases.
The following description (accurate in the ab initio case) oversimplifies the
statement in e.g., the bicolored field case, but expresses the spirit of the ar-
gument. Suppose A/B � K 0 is primitive, letM be (K 0, � K)-homogeneous
and let ÷M (A/B) denote the number of copies of A over B inM . To guar-
antee � 1-categoricity of the generic, one studies the subclassK ì ofK0 where
for each primitive A/B ,

÷M (A/B) � ì(A/B)
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for a given function ì from primitive pairs into the integers. If the generic
model for Kì is ù-saturated, categoricity follows easily. Baldwin and Hol-
land [5] provide a sufficient condition for the ù-saturation of the generic.
Another approach is to show that the types which are directly controlled
by the geometry do in fact determine the entire theory. Hrushovski [25]
summarized the goal of this strategy as the production of a Robinson
theory—essentially a universal theory with the amalgamation property.
(Hrushovski gave a syntactic condition equivalent to amalgamation by [2].)
Then [25] proves that (on the existentially closed models of a Robinson
theory) all existential formulas are equivalent to a (possibly infinite) dis-
junction of quantifier-free formulas. Definition 4.1.13 makes the connection
with (K , � K). See also [26].

Definition 4.1.13. Assume K has ä-formulas for minimal intrinsic exten-
sions over subsets. Form the language L+ by adding a relation symbol RAB(x)
for each pair (A,B) where B is a minimal intrinsic extension of A. For any
of our theories, T 0 (see Definition 4.1.2), T 0nat is the L

+-theory extending T 0

which asserts:

[ � yφAB(x, y)] � RAB(x).
We denote the natural expansion of an L-structure N to L+ by N+ and the
collection of expansions of models in a class K by K+.

If the theory of the existentially closed in L+ models of K+ is first order
axiomatizable then it admits quantifier elimination. Thus one technique for
determining ù-stability (or strong minimality) is just to study the quantifier
free L+-types. In fact, as we briefly describe in the next subsection most of
the published work uses two other techniques.

4.2. The first order case. In the first order situation, the first step is:
I. Show K0 =

�
A : ä(A) � 0 � is first order axiomatizable.

Now the aim is to construct a complete first order theory. One approach
is to show
II. the generic model is saturated and take its theory.
An alternative strategy is to show one of

IIIa Show K ec , the class of L-structures that are existentially closed for K 0
is first order.

IIIb Show K ec,+, the class of L+-structures that are existentially closed for
K
+
0 is first order.

IIIc Show that the class of (K 0, �
K 0
)-homogeneous universalmodels is first

order axiomatizable.

If any of Condition II or IIIa, IIIb, IIIC holds, we find a competeù-stable
theory.
If the generic model is saturated then IIIb holds. But there are cases where
IIIb holds but the generic is not saturated. (e.g., the Shelah-Spencer random
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graph [9]). And [1] provides a ‘toy’ example where ä maps into the integers
but the generic is not ù-saturated.
Poizat has introduced the study of an intermediate stage; construct various
expansions of fields with infinite rank by the Hrushovski construction [42],
[43]. This exercise helps to illuminate the situation in a simpler case than
actually finding � 1-categorical structures as in [24], [3], [5], [61]. We briefly
compare the ù-stable case, K , and the � 1-categorical case, Kì, in three
situations.
Ab initio: Hrushovski proved � 1-categoricity of Kì in the seminal [24].
Poizat [14] simplified the argument toK where the structure constructed has
infinite rank. Holland [22] proved that the strongly minimal sets were model
complete. Baldwin and Holland [6] have shown that Baldwin’s projective
plane [3] is model complete after adding some constants.
Bicolored fields: Expand

�
by an infinite unary predicate. For K , the

infinite rank case, Steps IIIc and II are fairly straightforward [42]. Note
that IIIa fails although IIIb follows from II. In the finite rank case, K ì,
the harder Step II is done by Baldwin-Holland [5]. For this, it is essential
that the function ì be finite-to-one. Baldwin and Holland [6] have shown
that the infinite rank bicolored field is not model complete, while the finite
rank bicolored fields are. It is easy to check that bicolored fields are set-
determined. So we get a homogeneous model even if ì is not finite to one.
It is shown in [5] that the generic need not be saturated.
Bad fields: A bad field is a field, possibly with additional predicates, whose
first order theory has finite Morley rank such that there is a proper definable
infinite subgroup of the multiplicative group. The strategy for constructing
one has long been apparent. Expand

�
by naming an infinite (torsion-free)

subgroup of the multiplicative group; try to use the techniques above to
find the desired complete theory. Condition I was proved by Poizat [43]
and independently by Baldwin-Holland (Marker) (unpublished), using the
Zilber-Hrushovski true CIT (see Theorem 5.1.2). Conditions IIIc and II are
sketched by Poizat [43] for the infinite rank caseK . Holland has independent
work [23] which yields a complete proof. For finite rank, K ì, much remains
open. In particular, the thumbtack lemma will play an important role
although Poizat seems to have avoided it in the infinite rank case.

4.3. Analytic models of the Hrushovski construction. Zilber [59] suggested
the following problem, which we noted in the first paragraph of this paper.

Remark 4.3.1 (A thesis of Zilber). Hrushovski models can be obtained
as pseudoanalytic structures.
The notion of pseudoanalytic is not well-defined. The strongest version is
a reduct of an ‘analytic’ expansion of the complex numbers. But this is too
strong and as we note below several weakenings have been proposed.

The term Hrushovski model is deliberately vague; it means an object con-
structed by the general method of Hrushovski. Zilber originally conjectured
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that every strongly minimal set was ‘trivial’, ‘vector space like’ or ‘field like’.
Hrushovski refuted this conjecture. This thesis is an attempt to regain the
conjecture by widening the notion of field-like. The first widening is to
replace first order definable in the complex numbers by the more general,
interpretable in an analytic expansion of the complex field.
Thesis 4.3.1 rests on an article of faith: ‘natural = canonical’. Again,
canonical is read as categorical in some reasonable syntax. The Hrushovski
constructions yield categorical objects, thus they must be representable in a
natural object. Conversely, complex exponentiation is natural; ergo it must
be canonical and so categorical. See Section 5 for progress on verifying this
converse.
Thesis 4.3.1 is false with the given interpretation of pseudoanalytic. It
is certainly impossible to realize strongly minimal sets as structures whose
definable relations are analytic subsets of the complex numbers. (Analytic
functions cannot be finite-to-one.) This leads to a second widening. Zilber
has notions about how to weaken ‘analytic expansion’ to ‘pseudoanalytic
expansion’; some of these are reported in [41]. Roughly, the idea is that
the strongly minimal structure can be found as a restriction of an analytic
structure to a collection of infinitesimal neighborhoods.
However, the infinite rank ù-stable models built by the Hrushovski con-
struction might have analytic models. In particular, there is one fully worked
out exemplar of this conjecture, which is obtained by adding a generic unary
function to the complex numbers. Consider the languageL : +, � , 0, 1,H (x).
Koiran [32], building onWilkie [58], defines the limit theory of generic poly-
nomials as the model completion of the class K 0 arising from

ä(x1, . . . , xn) = df(x1, . . . , xn,H (x1), . . . ,H (xn)) � � (x1, . . . , xn) � ,
where df denotes transcendence degree. He proves:

Theorem 4.3.2 (Koiran). The limit theory of generic polynomials has a
model (

�
,+, � , f) where f is an analytic function.

The function f is

f(x) = Σ
�
i=1

xi

ai

where for every ` � 1, � ai+1 � � � ai � i`, for all sufficiently large i . Intuitively,
the functions obtained by truncating f at xn approximate generic degree n
polynomials.
From the general study of the first orderHrushovski construction outlined
earlier in this section we can see that the limit theory of generic polynomials
is an ù-stable first order theory, but with infinite rank. Zilber pointed out
that the analytic model M is quasiminimal excellent and so the Lù1,ù(Q)
-theory ofM is categorical. Thus among the models with power � 1, we can
choose withL(Q) one which is canonical (categorical); this model has many
small definable sets.
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�
5. Complex exponentiation (

�
,+, � , exp). Zilber’s general program is to

formalize complex exponentiation as a well-behaved (ideally categorical)
theory in some logic. There are several choices of what one takes as ‘com-
plex exponentiation’. They differ in the choice of logical vocabulary to
describe ‘complex exponentiation’ and in the logic in which the theory Σ is
expressed. We considered in Subsection 3.2 one weak approximation, which
was formalized in Lù1,ù: covers of the multiplicative group. In Subsec-
tions 5.2 and 5.3 we report two further versions of the program; the first
considers raising to real powers, the second full complex exponentiation.
Zilber’s work on this program involves several algebraic advances which we
recount in 5.1. In this entire section we restrict to characteristic 0.

5.1. The necessary algebra. There are several algebraic results/conjectures
which are needed for this program. We discussed the thumbtack lemma,
which says that divisibly closed multiplicatively closed subgroups are finitely
determined, as Theorem 3.2.5. We will have a further applications of it
below. Two further assertions concern the rank of the intersection of tori
with varieties.

Definition 5.1.1. 1. In this context, a torus is a variety in kn given by
equations of the form ym11 � � � � � ymnn = c where the mi are integers.

2. The torus is basic if c = 1.
3. LetW

�
C n be an algebraic variety defined over � , T �

(C � )n a torus,
and S an infinite irreducible component ofW � T . We say S is an atypical
component if

dimS > dimW + dimT � n.

In his paper, Conjectures on the Intersection of Tori [62], Zilber proves
one theorem and makes two more ambitious conjectures.

Theorem 5.1.2 (true CIT). [Zilber] Given a variety W
� � n+k defined

over � , there is a finite set A of nonzero elements of � n such that given any
coset T

�
(

�
� )n of a torus and any b �

� k , if S is an atypical component of
W (b) (whereW (b) =

�
a

� �
: ab � W � ) then for some m � A and some ã

from
�
, every element of S satisfies xm = ã.

True CIT is applied to show that certain algebraic geometric concepts can
be expressed by first order axioms. That application is not strictly necessary
for the study of pseudoexponentiation (Subsection 5.3); similar applications
are essential for approaching the construction of a first order finite rank bad
field. The study of real powers (Subsection 5.2) uses the following stronger
conjecture on tori.

Conjecture 5.1.3 (full CIT). For any variety W
� � n defined over � ,

there is a finite collection ô(W ) =
�
T1, . . . , Tk � of proper basic tori in (C � )n

such that for any proper basic torus T
�
(C � )n and any atypical component

ofW � T ,
S

�
Ti for some Ti � ô(W ).
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A still more general version of CIT (replacing tori with semi-Abelian
varieties) can be seen [62] as a generalization of both the Mordell-Lang and
Manin-Mumford conjectures.
Finally, some aspects of the program depend on a conjecture in number
theory that is almost fifty years old.

Conjecture 5.1.4 (Schanuels ’s Conjecture:). If x1, . . . , xn are � -linearly
independent complex numbers then x1, . . . , xn, e

x1 , . . . , exn has transcendence
degree at least n over � .
5.2. Raising to powers. In [64] Zilber considers structures: (D,Ex, R)
where D is an infinite dimensional vector space over a fixed countable field
K of characteristic 0, R is a field of characteristic 0, Ex is a homomorphism
of the additive group of D onto the multiplicative group R � of the field.
He is mainly concerned with the case that D and R are both the complex
numbers, K is the reals, and Ex is interpreted as exponentiation exp. Under
this interpretation, for each real number a, the formula ( � z)z = Ex(z) �
y = exp(a � z) defines a relation which is represented locally by an analytic
function y = za .
The theory Σ is obtained by another first order application of the
Hrushovski construction. The appropriate rank is given by:

ä(X ) = ldK (X ) + df(Ex(X )) � ldQ(X ),

where ld stands for linear dimension.
Here Ex is a unary function that is being axiomatized. Zilber gets positive
solutions for steps I (using Lemma 5.1.2) and IIIb of the first order strategy
and concludes that every completion of the theory is superstable. This
gives an approach to the ideal of a well-behaved theory, with superstability
rather than categoricity. Using Schanuel and Conjecture 5.1.3, and now
interpreting Ex as exp, complex exponentiation, he gets the following result:

Theorem 5.2.1 (Zilber). Assume full CIT and Schanuel’s Conjecture. The
first order theory of the complex numbers with raising to all real powers allows
quantifier elimination in an appropriate language and is superstable.

5.3. Pseudo-exponentiation. A pseudo-exponential is a unary function
from the additive group of a field to the multiplicative group that satisfies
certain conjectural properties of complex exponentiation.
The most ambitious aim of the pseudoanalytic model program is to realize
(

�
,+, � , exp) as a model of an Lù1,ù-sentence discovered by the Hrushovski

construction. This program, the quasiminimal excellent strategy, has two
parts.

Objective A. Model theory: Using a Hrushovski like dimension function,
expand (

�
,+, � ) by a unary function f which behaves like exponentiation.

Prove that there is an Lù1,ù-sentence Σ satisfied by (
�
,+, � , f) that is quasi-

minimal excellent.
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Objective B. Algebra and analysis: Prove (
�
,+, � , exp) is a model of the

sentence Σ found in Objective A.
In this section we outline the argument concerning complex exponenti-
ation from [61] which obtains objective A outright and formulates precise
algebraic conjectures sufficient for objective B. Section 3.2 concerns quasi-
minimal excellent classes without the Hrushovski construction; Sections 4.2
and 5.2 concerns the first order Hrushovski construction. Here the two
methods are joined.
We followZilber and describe Σ by successively presenting classes, denoted
by � with various decorations, culminating in � C �st , which is the quasi-
minimal excellent class. This establishes Objective A. At the conclusion of
this section we discuss the status of Objective B.
Fix the language L to contain +,

� 1
m : m � ù � , E, � V (x) : V a variety � .

Notation 5.3.1. Let � be the class of L-structures F which are reducts of
algebraically closed fields. Naturally + is +, the 1m denote division by natural
numbers, the V (x) are the solution sets of varieties, and E is the graph of
a surjective map exp from F to F � , which is a homomorphism between the
additive and multiplicative group.

Note that we have the graph of multiplication but not the multiplication
function; this allows us to consider partial maps which approximate our
eventual exp. Denote by sub � the class of all substructures A of members
of � such the domain DA of exp is closed under addition and multiplication
by rationals.
This construction varies from the first order case in several respects. One
technical innovation is that the dimension function ä is defined relative to its
ambient structure A. For X a finite subset of A,

äA(X ) = df(X � span(expX )) � ld(X ).

Here df is transcendence degree and ld is additive vector space dimension.
More important, the actual ‘amalgamation class’ is restricted in three ways.
The first is analogous to the earler examples; we restrict to those structures
for which the function exp formally satisfies Schanuel’s Conjecture. These
restrictions use infinitary axioms.

Notation 5.3.2 (Formal Schanuel’s Conjecture). sub � 0 is the class ofA �
sub � such that ä(A) is hereditarily nonnegative.
That is, the assertion that

äA(X ) = df(X � span(expX )) � ld (X ) � 0
amounts for A =

�
and X linearly independent to the Schanuel conjecture

(for exp). At this point, this is only a requirement on an abstract func-
tion exp. A priori the axiom can be expressed in Lù1,ù; using the Holland-
Poizat-Zilber variant on true CIT, the axiom can be made first order.
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For A � sub � , kerA denotes the kernel of the exponential map. That is,
kerA =

�
a : a � A � exp(a) = 1 � . If kerA is isomorphic to the integers we say

it is standard; if DA / kerA, as a subgroup of k � for algebraically closed k � ,
contains all the torsion points we say A has full kernel. Now, the second
restriction is given by:

Notation 5.3.3 (Z-standard). sub � 0st is the class of A � sub � 0 such that
kerA is both standard and full.

Stating this condition is the first of several uses of Lù1,ù. The require-
ment that the kernel of the function f is always Z leads to the failure of
homogeneity.
Let V be a variety in 2n variables and let prxV denote the projection
on x, pry V the projection on y. A variety V contained in F

2n, which is

definable over A � f(C ) � ker(f), is absolutely free of additive dependencies
(of multiplicative dependencies) if for any generic realization a of prxV is
additively (multiplicatively) linearly independent over acl(A). We say free
for free absolutely free of both multiplicative and additive dependencies.
By a linear image of a variety V in F 2n, we mean the result of applying a
linear map additively in the first n-coordinates and multiplicatively in the
second n. V is normal if (very roughly) for k � n, any linear image of V
in F 2k has dimension at least k. A variety defined by a system of polynomial
equations P is non-overdetermined if it is normal. The idea is that a generic
variety in F 2k should have dimension k, (because exp links the additive and
multiplicative group). If the variety itself, or some linear image of it has
dimension less than k then it is over-determined.

Notation 5.3.4 (Existential Closure). � C �st is the members of sub � 0st sat-
isfying this condition: Any free and non-overdetermined irreducible system
of polynomial equations

P(x1, . . . , xn, y1, . . . , yn)

has a generic solution satisfying

yi = f(xi).

To demand a generic solution, Lù1,ù is needed, so for the purposes of
Objectives A and B, there is no gain in showing that the weaker condition
omitting ‘generic’ is first order axiomatizable. But it is. The set of z such
that V (x, y, z) satisfies any of the following conditions is first order defin-
able: exp-irreducible, absolutely additively free, absolutely multiplicatively
free, normal. This fact depends on true CIT and the refining of it proved
independently by Holland, Poizat, and Zilber. It turns out not to be essential
here but the techniques will play a key role if a bad field is constructed.
We say F is strongly exponentially algebraically closed if for any exp-
irreducible, additively and multiplicatively free, normal V defined over a
finite C � F , there is a generic over C realization of V in F . So we can
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rephrase Assumption 5.3.4 as � C �st is the class of strongly exponentially
algebraically closed structures.
Define a closure operation clF (A) from ä exactly as in Definition 4.1.4.

Theorem 5.3.5. A � clF (A) in F � � Cst is a closure operation (with
exchange) and for any A, cl(A) is a strongly exponentially algebraically closed
subset of F .

As in Section 3.1, We say a field F satisfies the countable closure condition
if the closure of any countable subset is countable.
Now, using the thumbtack lemma Lemma 3.2.5 to get excellence as in
Section 3.2, Zilber proves:

Theorem 5.3.6. � C �st (see 5.3.4) is Lù1,ù-axiomatizable and in fact quasi-
minimal excellent.
The members of � C �st with countable closure are categorical in all uncount-
able powers. This class is Lù1,ù(Q)-axiomatizable.

Theorem 5.3.6 concludes the proof of Objective A. Objective B is given by
the following theorem.

Theorem 5.3.7. If the Schanuel conjecture holds in
�
and if the strong

exponential closure axioms hold in
�
, then

1. (
�
,+, � , exp) � � C �st .

2. (
�
,+, � , exp) has the countable closure property.

The hypothesis of this theorem is a research program. Work on Schanuel’s
conjecture has continued for fifty years; Zilber’s existential closure condition
yield new and interesting number theoretic problems. Marker [38] uses
the theory of Hadamard factorization and the Schanuel conjecture to prove
strong exponential closure for the case: V is defined byP(x, y) = Y � X . His
method do not obviously generalize to arbitrary P(x, y) and open questions
arise for any P(x1, x2, y1, y2).
Note that � C �st is an AEC, indeed axiomatized in Lù1,ù . But unlike the
covers example in Section 3.2,Lù1,ù(Q) is needed to axiomaize the countable
closure property.
This program leads to a more general question. Are there general condi-
tions under which an AEC induced from a rank ä as in Definition 4.1.4 must
be excellent?

�
6. Summary. The work discussed in this paper involves many of the

themes of the last 50 years. Shelah’s work in ‘pure’ model theory tries to
develop a structure theory. His attempts to generalize the Morley theorem
to richer logics yield a number of partial results. In particular, the notion
of excellence is isolated as a key to the structure theory of uncountable
models while the notion of Abstract Elementary Class arises naturally in
attempting to prove the categoricity theorem for Lù1,ù(Q). Zilber is more
concerned with classical mathematical structures. But in his attempt to
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identify canonical mathematical structures as those whose theory (in an
appropriate logic) is categorical in all powers, he is led to the same logics
that Shelah investigated and to specialized versions of some of the same
theorems. Hrushovski used a special kind of Abstract Elementary Class to
refute the trichotomy conjecture. In his attempt to regain the conjecture,
Zilber uses an infinitary variant of the techniques. His investigation of
complex exponentiation yields not only excitingmodel theory but new results
and conjectures in algebraic geometry and complex analysis.
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