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Abstract

Using depth of coherent sheaves on noetherian algebraic stacks, we construct non-
Azumaya maximal orders in unramified central simple algebras over schemes of
dimension at least 3.
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Let X be a regular noetherian integral scheme, and assume that dim(X) ≤ 2. Let A
be a central simple algebra over the function field K of X with class α ∈ Br(X) ⊆ Br(K).
Auslander and Goldman showed in [3] that every maximal order A in A is in fact an
Azumaya algebra. What happens in higher dimensions has remained unexplored. The
following theorem provides a stark contrast to their result.

Theorem 0.1. Suppose that X is a Japanese integral noetherian scheme with function
field K and a regular point of codimension ≥ 3. Let α ∈ Br(X) be a Brauer class, and
let A be a central simple algebra with Brauer class α ∈ Br(K). If deg(A) ≥ 2, then there
exist non-Azumaya maximal orders on X in A.

Recall that an integral locally noetherian scheme X is Japanese if for every non-
empty affine open Spec R ⊆ X the ring R is Japanese. A noetherian domain R with
function field K is Japanese if for every finite field extension K ⊆ L the integral
closure S of R in L is a finitely generated R-module. This condition holds for integral
quasi-excellent schemes, and hence for almost all rings that one encounters in practice.
Similarly, if X is quasi-excellent, then the regular locus of X is open, so that the existence
of a regular point of codimension at least 3 can be determined by the codimension of
the non-regular locus.

We use Yu’s result [14] that every order over a Japanese scheme is contained in a
maximal order, while the regular point hypothesis is a convenient condition to impose to
guarantee that the endomorphism algebra of a coherent sheaf which is not locally free at
some regular point of X is not Azumaya.
∗Benjamin Antieau was supported by NSF Grant DMS-1358832.
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To prove the theorem, we will briefly develop some notions of depth and reflexivity
for coherent sheaves on an algebraic stack. These are straightforward generalizations of
depth and reflexivity for schemes, but we do not know of a reference for what we need.

We should remark that from the beginning we had a choice of whether to attack this
problem from a purely ring-theoretic perspective or from the perspective of gerbes. We
chose the latter as it seemed to be of interest to work out some of the machinery of depth
for gerbes, but the proof is philosophically identical to the corresponding algebraic proof.
The algebraic case could lead to greater generality in the setting of maximal orders in
Azumaya algebras as in the work of Chan-Ingalls [5]. These provide a noncommutative
direction as opposed to a stacky direction in which to study twisted sheaves. In any case,
we do not know of a source for the theory of depth of modules on Azumaya algebras,
so the material in Sections 2 and 3 would be presented in some form regardless. An
alternative approach to ours might be to define the depth of F as the depth of p∗F when
p : X→ X is a coarse moduli space with X an algebraic space.

We prove a local depth criterion for reflexivity on algebraic stacks. Once in hand,
this criterion will let us check that certain X-twisted coherent sheaves of projective
dimension one are in fact reflexive. Taking the endomorphism algebras of these modules
produces the desired orders.

More specifically, we can assume that α is represented by an Azumaya algebra A

that is a maximal order in A, for otherwise there already exists a non-Azumaya maximal
order. We can also assume that X is the spectrum of a regular local ring of dimension
at least 3. Indeed, any maximal order we construct over such a local ring will extend
to a maximal order over the entire scheme under the hypothesis of the theorem. Then,
A � End(E), where E is an X-twisted locally free sheaf of rank n > 1 and X is a
Gm-gerbe representing α. For general f , g ∈ A, we prove that the X-twisted sheaf F
with presentation

0→ E

 f
g


−−−→ E2 → F → 0

is reflexive but not locally free. Indeed, since A is noncommutative we can take f , g
locally noncommuting homomorphisms, but where the vanishing locus of ( f , g) has
codimension 3 in X. Then, End(F) is an example of a non-Azumaya maximal order.

This paper arose as a simple first step to better understand the examples constructed
by Antieau and Williams in [1]. They gave an example of a 6-dimensional smooth
complex affine variety X and a Brauer class α ∈ Br(X) with the following properties:
the class α is represented by a degree 2 division algebra D over the function field K,
and no maximal order in D over X is Azumaya. The methods in [1] are topological in
nature, and this paper in showing the ubiquity of non-Azumaya maximal orders moves
us one step closer to understanding how to construct purely algebraic examples and to
answer the question of whether this phenomenon can occur in dimension 3.

Remark 0.2. The theorem is false if deg(A) = 1. Indeed, if X is normal and A

is a maximal order in K, then A is in particular reflexive, and hence normal by [7,
Proposition 1.6]. This means that if U ⊆ X is an open subset with codimX(X − U) ≥ 2,
then A(X)→ A(U) is an isomorphism. Since there is such a U with AU Azumaya, we
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find that OX(U) → A(U) is an isomorphism for this choice of U, which implies that
OX → A is an isomorphism.

In the final section of the paper, we return to the Auslander-Goldman result men-
tioned above, namely that all maximal orders in unramified central simple algebras
on regular 2-dimensional schemes are Azumaya. We show that this property in fact
characterizes regular integral 2-dimensional schemes.

Theorem 0.3. Let X be a 2-dimensional integral noetherian surface with field of
fractions K. Then, X is regular if and only if every maximal order over X in a central
simple K-algebra with unramified Brauer class is Azumaya.

Acknowledgements. We thank Max Lieblich for showing us the second example in
Section 1 and the anonymous referee for several suggestions about how to improve the
paper.

1 Two examples
The starting points of our investigation were the following two examples, showing that,
at least in certain cases, Theorem 0.1 holds for regular noetherian schemes.

Consider the example of [1]. There is a smooth affine complex scheme X with
dim(X) = 6 and a Brauer class α ∈ Br(X) such that there are no Azumaya maximal
orders in the degree 2 division algebra over K representing α. On the other hand, by
Yu [14], there are maximal orders A in D, because X is normal and noetherian. By
construction, these are not Azumaya. The non-Azumaya locus of such an order A in
X is closed and has codimension at least 3. We can localize at a closed point in the
non-Azumaya locus to obtain examples over regular noetherian local rings of dimension
6.

A more geometric example was explained to us by Max Lieblich. Let S be a smooth
projective surface over an algebraically closed field k, and let S → S be a µn-gerbe,
where n is prime to the characteristic of k. The moduli space Tw(n, L, c) of semi-stable
torsion-free S-twisted sheaves of rank n, determinant L, and second Chern class c
is proper, and the open locus of locally free sheaves inside is properly contained in
Tw(n, L, c) for c sufficiently large. It follows from the valuative criterion that there
is a discrete valuation ring R and a map Spec R → Tw(n, L, c) sending to the generic
point to the locally free locus and the closed point to the boundary. This classifies a
torsion-free but non-locally free S-twisted sheaf E on XR, which is reflexive by the
following argument. By definition of Tw(n, L, c), E is torsion-free. Because EX/m is
torsion free, where m is the maximal ideal of R, it follows that if P is a point of XR of
height at least 2 lying in the special fiber XR/m, then depthP E ≥ 2. If P is a height 2
prime not in the special fiber, then E is locally free at P, so that depthP E = 2. Hence, E
is reflexive by the depth criterion for reflexivity. See Proposition 3.5 below. Taking the
endomorphism algebra End(E) yields a maximal order over the 3-dimensional scheme
XR, which is non-Azumaya by [2, Theorem 4.4].
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2 Local cohomology and depth on an algebraic stack
We begin by briefly recalling some preliminaries on algebraic stacks, and then we
prove that the depth criterion for reflexivity [7, Proposition 1.6] holds in this setting.
A good reference is the book of Laumon and Moret-Bailly [9] or, for another account,
see [13]. The following definitions are either standard, or are obvious extensions of the
scheme-theoretic definitions pertaining to local cohomology which can be found, for
example, in [6].

Definition 2.1. An algebraic stack over a base scheme S is a stack admitting a smooth
atlas p : U → X, where U is a scheme and p is representable (in algebraic spaces),
smooth and surjective, such that the diagonal morphism X→ X ×S X is representable.

Definition 2.2. We say that X is locally noetherian if it has a smooth atlas p : U → X

where U is locally noetherian.

Given an algebraic stack X, we study sheaves of OX-modules, which are by defini-
tion sheaves of OX-modules on the associated ringed site (Xfppf ,OX).

Definition 2.3. An OX-module F is quasi-coherent if for every f : Spec R → X the
pullback f ∗F is quasi-coherent. As usual, it is equivalent to ask for p∗F to be quasi-
coherent where p : U → X is a smooth atlas. If X is locally noetherian, an OX-module
F is coherent if p∗F is coherent for some (and hence every) locally noetherian smooth
atlas p : U → X.

Lemma 2.4 ([13, Tag 0781]). The abelian category QCoh(X) has enough injectives.

Now we can give the definitions of local cohomology and depth.

Definition 2.5. Given a closed substack Z ⊆ X and a quasi-coherent sheaf on X, we
define H0

Z
(F), the sheaf of sections with support in Z, as the quasi-coherent sheaf

( f : Spec R→ X) 7→ H0
Spec R×XZ( f ∗F).

The functor H0
Z

: QCoh(X)→ QCoh(X) is left-exact.

Definition 2.6. The local cohomology functors with supports in Z are Hi(−), the
right derived functors of H0

Z
(−). These can also be defined by sheafifying the local

cohomology functors restricted to affine schemes.

Definition 2.7. The depth of F along Z is defined to be

depthZ F = max{n : Hi
Z(F) = 0 for i < n}.

We will only apply this definition to coherent sheaves.

It follows immediately from the definitions that we can compute depth on an atlas
for X. The goal is eventually to relate depth to reflexivity, to introduce another notion of
depth in the special case of gerbes, and to show that this secondary notion agrees with
the definition just given.
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Definition 2.8. Let F be a coherent sheaf on a locally noetherian algebraic stack X. We
say that F is reflexive if the natural map F → F∨∨ is an isomorphism.

Just as the depth can be computed on an atlas p : U → X, reflexivity can also be
checked on U.

Definition 2.9. 1. An algebraic stack is locally irreducible if there is a smooth atlas
p : U → X with U a disjoint union of integral schemes.

2. An algebraic stack X is reduced if U is reduced for some (and hence every)
smooth atlas p : U → X.

3. An algebraic stack is integral if it is reduced and locally irreducible.

4. An algebraic stack is normal if U is normal for some (and hence every) smooth
atlas p : U → X.

The definition of a locally irreducible stack is somewhat touchy. For example,
another definition could be that the space of points of X with the Zariski topology, as
defined in [9, Chapter 5], is irreducible. However, it is probably not the case that such
a stack admits a smooth atlas p : U → X with U irreducible. The definition we give
suffices for the applications we have in mind below.

Definition 2.10. A quasi-coherent sheaf F on an algebraic stack is torsion-free if p∗F
is torsion free for some (and hence every) smooth atlas p : U → X.

Recall that for a scheme U, a quasi-coherent sheaf G is torsion-free if the stalk Gx is
a torsion free OU,x-module for each point of U. If F is any coherent sheaf on a locally
noetherian algebraic stack, then the dual sheaf F∨ is torsion-free. Indeed, since this is
true on noetherian local rings, it is true on X.

Lemma 2.11. If X is locally noetherian and reduced, then a coherent sheaf F is
torsion-free if and only if F → F∨∨ is injective.

Proof. As subsheaves of torsion-free sheaves are torsion-free, and since F∨∨ is torsion-
free, we see that the condition is sufficient. So, suppose that F is torsion-free. Then,
p∗F is torsion-free for some smooth atlas p : U → X. Since U is reduced, the canonical
map p∗F → p∗F∨∨ is an isomorphism when restricted to the scheme of generic points
of U. In particular, the kernel of this map is a torsion submodule of p∗F. �

Proposition 2.12 (Hartshorne [7, Proposition 1.6]). Let F be a coherent sheaf on a
normal integral locally noetherian algebraic stack X. Then, F is reflexive if and only if
it is torsion-free and H1

Z
(F) = 0 for all closed substacks Z ⊆ X with codimX Z ≥ 2.

Proof. If F is reflexive, it is torsion-free by Lemma 2.11. Hence, H0
Z

(F) = 0 for all
proper closed substacks Z ⊆ X. Let p : U → X be a smooth atlas where U is a
disjoint union of integral (normal, locally noetherian) schemes. By definition, Z ⊆ X

has codimX Z ≥ 2, if codimU ZU ≥ 2, where ZU = U ×X Z. Hence, since p∗F is
reflexive, the schematic version of the present proposition [7, Proposition 1.3] implies
that p∗H1

Z
(F) � H1

ZU
(p∗F) = 0. As p is faithfully flat, this shows that H1

Z
(F) = 0.
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Now, suppose that F is torsion-free. If F is not reflexive, then the cokernel G of
F → F∨∨ is a non-zero coherent sheaf on X. Since all torsion-free sheaves on a normal
scheme are locally free in codimension 1, it follows that the support of G is a closed
substack Z codimension at least 2. The long exact sequence in local cohomology yields

0→ H0
Z(G)→ H1

Z(F)→ H1
Z(F∨∨),

since H0
Z

(F) = H0
Z

(F∨∨) = 0. As H0
Z

(G) = G, this shows that H1
Z

(F) , 0. Now, it
follows by applying p∗ that F is not reflexive. �

3 Reflexivity on gerbes
We specialize to the case that X → X is an A-gerbe where A is a smooth affine
commutative group scheme over X, and we fix a character χ : A→ Gm. In particular,
the natural map H2

ét(X, A)→ H2
fppf(X, A) is an isomorphism. It follows that there is an

étale cover U → X and a section p : U → X, which is a smooth atlas. Recall that when
X→ X has a section, there is non-canonical equivalence X ' BA, and BA � [X/A].

Assumption 3.1. In this section X = Spec R is a normal integral noetherian affine
scheme, I ⊆ R is a proper ideal, and X→ X is an A-gerbe where A is a smooth affine
commutative group scheme with a fixed character χ : A→ Gm.

In this case an A-gerbe X → X as above is a normal integral locally noetherian
algebraic stack. The abelian category QCoh(Xfppf) is R-linear, so we can give an
alternate definition of depth in this case, which we show reduces to the definition in the
previous section.

Definition 3.2. 1. We say that r ∈ I is a non-zero divisor on F if ker(F
r
−→ F) = 0.

2. A coherent sheaf F on X is R-torsion-free if r : F → F is injective for all
0 , r ∈ R.

3. An F-regular sequence in I is a sequence of elements x1, . . . , xd of I such that
xi : F/(x1, . . . , xi−1)F → F/(x1, . . . , xi−1)F is injective for 1 ≤ i ≤ d.

4. The I-depth of F is the maximal length of an F-regular sequence in I; we denote
this integer by depthI F.

Note that since R is integral, the definition of torsion-free given here is equivalent to
the more standard definition that asks for the stalks Fx to be torsion-free OX,x-modules
for all points x of X.

The next lemma is an exact analogue of a standard fact about modules over commu-
tative rings.

Lemma 3.3. If r ∈ I is a non-zero divisor on F, then depthI F/r = depthI F − 1.

Proof. Define H0
I (F) = ∩r∈I ker(F

r
−→ F), and let Hn

I (F) be the right derived functors
of H0

I (F). Note that depthI F = 0 if and only if H0
I (F) , 0. If H0

I (F) , 0, then by
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definition every element of I is a zero-divisor on F, whence depthI F = 0. On the other
hand, if depthI F = 0, then

I ⊆
⋃
r∈I

ann
(
ker(F

r
−→ F)

)
.

It follows that I ⊆ ann
(
ker(F

r
−→ F)

)
for some r ∈ I. Since r is a zero-divisor on F, it

follows that H0
I (F) , 0.

Now, we claim that, just as for finitely generated modules over noetherian commu-
tative rings, we have depthI F ≥ d if and only if Hi

I(F) = 0 for i < d. The previous
argument proves this for d = 1. If Hi

I(F) = 0 for i < d, then for any 0 , r ∈ I we have
Hi

I(F/r) = 0 for i < d − 1 from the long exact sequence in local cohomology. It follows
inductively that depthI F ≥ d.

We are reduced to proving the following. Suppose that depthI F = d + 1, and
assume that for all coherent OX-modules G and all i ≤ d we have depthI G ≥ i if and
only if H j

I (G) = 0 for 0 ≤ j < i. Then, Hd
I (F) = 0. Suppose that Hd

I (F) is non-zero.
Since this sheaf is I-torsion, the kernel of multiplication by r is non-zero for any F-
regular element of I. In particular, if r is part of an F-regular sequence of length at
least d + 1, then we see that F/r satisfies depthI F/r ≥ d, while Hd−1

I (F/r) , 0. This
contradicts the assumptions. The lemma now follows from the long exact sequence in
local cohomology. �

Lemma 3.4. Suppose that U = Spec S → X is an étale cover with a section p : U → X.
If Z = Spec R/I ×X X, then depthI F = depthZ F = depthIS p∗F.

Proof. Since depthZ F is computed using the local cohomology sheaves, and as p is
faithfully flat, it follows that depthZ F = depthIS p∗F. So, we will prove by induction
on d = depthI F that depthI F = depthIS p∗F.

If d = 0, so that F is I-torsion, we have that H0
I (F) → F is an isomorphism.

But, then by faithful flatness, we have that p∗H0
I (F) → p∗F is an isomorphism. But,

p∗H0
I (F) � H0

IS (p∗F). That is, depthIS p∗F = 0.
So, assume that the lemma is true for all coherent sheaves on X with depth at most

d, and assume that depthI F = d + 1. Let r be a non-zero divisor on F in I. Then,
depthI F/r = depthIS p∗(F/r) = depthIS (p∗F)/r. The lemma now follows from the fact
that depthI F = 1 + depthI F/r and depthIS (p∗F)/r = 1 + depthIS p∗F. �

Putting this all together, we prove the following proposition.

Proposition 3.5. Let X → X be an A-gerbe on a normal integral noetherian affine
scheme X = Spec R, and let χ : A → Gm be a character. Then, a coherent χ-twisted
OX-module F is reflexive if and only if it is torsion-free and depthP F ≥ 2 for all prime
ideals P such that ht P ≥ 2.

Proof. The necessity follows immediately from Lemma 3.4 since p∗F is reflexive for
any smooth atlas p : U = Spec S → X. Suppose that F is torsion-free and depthP F ≥ 2
for all primes P with ht P ≥ 2. We let G be the cokernel of the injective map F → F∨∨;
it is another χ-twisted coherent sheaf, and G has support consisting of primes of height
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at least 2. For these primes P, we can use the faithful flatness of RP → S PS to argue that
H1

P(F) , 0. Indeed, S PS is a semi-local ring faithfully flat and étale over RP. As GP , 0,
it follows that q∗GP is non-zero, where q : XS → X. But, the section p : U → X

induces a map r : U → XS that induces an equivalence r∗ : QCohχ(XS )→ QCoh(U).
Since p = r ◦ q, it follows that p∗GP is a non-zero coherent sheaf on S PS . Therefore, for
some maximal ideal Q of S PS , which necessarily satisfies ht Q ≥ 2 by the going-down
theorem for flat extensions [11, Theorem 9.5], we have (p∗GP)Q , 0. Hence, F is not
reflexive, by Proposition 2.12. �

Using the proposition, we can prove a twisted form of the Auslander-Buchsbaum
formula.

Definition 3.6. Let X = Spec R be an affine scheme, X → X an A-gerbe where A
is a smooth affine X-group scheme, and χ : A → Gm a character. Then, a χ-twisted
quasi-coherent sheaf F has homological dimension ≤ n if Exti(F,G) = 0 for all i > n and
all quasi-coherent χ-twisted sheaves G. Write hdimF for the homological dimension of
F, the smallest n such that F has homological dimension ≤ n.

Theorem 3.7. Suppose that X→ X is an A-gerbe where X = Spec R is the spectrum of
an integral noetherian local ring with maximal ideal M. If F is a χ-twisted sheaf with
finite homological dimension, then

hdimF + depthM F = depthM R. (1)

Proof. This follows immediately by using an étale splitting Spec S → Spec R for the
gerbe X. All three numbers are stable under faithfully flat étale maps, and over Spec S
there is an equivalence of categories QCohχ(XS ) � QCoh(Spec S ). �

Remark 3.8. A version of the Auslander-Buchsbaum formula for a Gorenstein order
Λ is given in [8, Lemma 2.16]. This formula is the same as (1) in the case where Λ is
Azumaya and R is Cohen-Macaulay.

4 The proof
We prove the main theorem of the paper.

Proof of Theorem 0.1. By Yu’s result, any order on X is contained in a maximal order.
By assumption, there exists a regular point p of codimension ≥ 3. Therefore, if we
construct a non-Azumaya maximal order in A over SpecOX,p and extend it to X, it is
contained in a maximal order that is not Azumaya at p. Thus, we now assume that
X = Spec R is a regular local ring of dimension at least 3 with field of fractions K and
that A is a central simple algebra with unramified Brauer class α ∈ Br(X) ⊆ Br(K).

We distinguish two cases. If α = 0 in Br(K), then we need to construct a non-
Azumaya maximal order in the matrix algebras Mn(K) for n > 1. If R is exactly
3-dimensional, then the first syzygy of a minimal free resolution of R/M, where M
is the maximal ideal, is a non-locally free reflexive R-module of rank 2. If R is of
dimension more than 3, then one can extend a syzygy such as the one above from a
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3-dimensional localization. The upshot is that if R is a regular local ring of dimension at
least 3, then there are reflexive but not locally free R-modules of any rank more than 1.
Taking the endomorphisms of these we gain non-Azumaya maximal orders in Mn(K)
for all n > 1 by [2, Theorem 4.4] using the fact that the Azumaya locus of a maximal
order in an unramified central simple algebra is the locally free locus [3, Theorem 2.1,
Proposition 4.6].

If α ∈ Br(K) is non-zero, then by Wedderburn’s theorem we can assume that A is a
division algebra of degree at least 2. Indeed, given a non-Azumaya maximal order A in
a division algebra A, Mn(A) is a non-Azumaya maximal order in Mn(A). Wedderburn’s
theorem tells us that we can assume that A is a division algebra. Moreover, by work of
Panin on purity [12], we know that there is an Azumaya maximal order A in A over X.

Let g : X → X be a Gm-gerbe with obstruction class α (for background on Gm-
gerbes and X-twisted sheaves, see Lieblich [10]). It is the gerbe of trivializations of A.
There is a locally free X-twisted sheaf F such that End(F) � g∗A. We will construct a
non-locally free X-twisted sheaf E of the same rank as F. Consider elements f , g ∈ A,
and assume that they are not both zero. We define E as the cokernel

0→ F

 f
g


−−−→ F2 → E→ 0. (2)

Since f , g are not both zero, and since A is a division ring, the map F → F2 is injective.
Now, we search for satisfiable conditions on the pair f , g that ensures that E is reflexive
but not locally free. The latter is easy: it suffices to assume that we cannot solve
a f + bg = 1 for a, b in A. In other words, since A is a division algebra, we assume that
( f , g) is contained in the maximal ideal MA. In this case, E has homological dimension
1.

Now, E is torsion-free if and only if the two-sided ideal ( f , g) is not contained in PA
for any height 1 prime P of R. To prove this, note that by the snake lemma there is an
exact sequence

0→ ker(r : E→ E)→ F/r

 f
g


−−−→ F2/r

for any r ∈ R. Thus, if ( f , g) ⊆ (r), the kernel is non-zero. On the other hand, if ( f , g) is
not contained in (r) for some irreducible r, then, say, f is a non-zero section of A/(r),
and it follows that ker(r : E→ E) = 0 since the reduced norm Nrd( f ) does not vanish
identically along Spec R/r ⊆ X.

Finally, suppose that ht P ≥ 2. We must ensure that depthP EP ≥ 2. If ht P > 2,
then this holds by the twisted Auslander-Buchsbaum formula of Theorem 3.7 since
hdimEP ≤ 1. In other words, we must ensure that EP is locally free for all height 2
primes P. This occurs if and only if ( f , g) is not contained in PA for a height 2 prime of
R. In other words, at least one of f or g needs to be a unit in AP for all height 2 primes
P.

As deg(A) ≥ 2, there are two non-commuting units x, y of A. Let t1, t2, t3 be elements
of R such that I = (t1, t2, t3) has codimension at least 3. Then for f = t1x+ t2 and g = t3y,
the X-twisted sheaf E defined in (2) is reflexive and not locally free. The maximal
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order End(E) is then non-Azumaya. Indeed, we can take an étale cover Y → X which
splits α. Then f ∗EndX(E) � EndY ( f ∗E). Since f is faithfully flat, f ∗E is reflexive (or
locally free) if and only if E is too. Since α is trivial on Y , there is an α−1-twisted line
bundle L such that tensoring by this line bundle gives an equivalence of categories
Cohα(Y ×X X)→ Coh(Y). Then EndY ( f ∗E) � EndY ( f ∗E⊗L). By [2, Theorem 4.4], the
latter is not locally free, since f ∗E ⊗ L is reflexive but not locally free. Hence EndX(E)
is not locally free. �

The underlying reason for our ability to construct these examples is that the van-
ishing locus of a non-central section x of an Azumaya algebra A can be smaller than
a hypersurface. For instance, in the notation above, the vanishing locus of f has
codimension 2.

5 Surfaces
Now we prove our converse to the result of Auslander and Goldman on maximal orders
on regular surfaces.

Proof of Theorem 0.3. Assume that X is regular. Any maximal order A is reflexive,
hence is locally free since X is regular of dimension 2. Therefore, A is Azumaya exactly
where it is unramified by [3, Proposition 4.6].

Assume that X is not regular, we will construct a non-Azumaya maximal order in an
unramified central simple algebra. To begin, we can assume that X = Spec R, where R
is a 2-dimensional noetherian local domain.

If R is not normal, let R→ S be the integral closure of R in K. Then, S is a maximal
order in K over Spec R. As normalization is never flat if it is non-trivial, it follows that
S is not locally free over Spec R, and hence not Azumaya.

Now, assume that R is in addition normal. Since dim X = 2, we can assume X has
isolated singularities so the singular locus of X is the closed point. By a theorem of
Buchweitz [4], we have Dsg(X) � MCM(R). The triangulated category Dsg(X) is the
Verdier quotient Db(Coh(X))/Perf(X) where Perf(X) is the full subcategory of perfect
complexes. Hence Dsg(X) is trivial if and only if X is regular. The category MCM(R) is
a triangulated category whose objects are maximal Cohen-Macaulay R-modules and
morphisms are R-module morphisms modulo those which factor through a projective
module. Since R is not regular, there exists a non-projective maximal Cohen-Macaulay
R-module M. Let A = EndR(M). Now dim X = 2, so M is reflexive as an R-module. By
[2, Proposition 4.1], A is reflexive. Moreover, M is locally free in codimension 1, hence
A is maximal in codimension 1. So A is a maximal order. The order A is in EndK(V,V)
where V = M ⊗R K, and hence is unramified.

The maximal order A might be Azumaya. To produce a maximal order which is not
Azumaya, consider the order

A′ = EndR(R ⊕ M) '
(

R M∗

M A

)
.

Again A′ is unramified since A′ is contained in EndK(K ⊕ V). It is reflexive since
A,M,M∗ are all reflexive as R-modules. Finally, M,M∗ are free in codimension 1,
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hence A′ is maximal in codimension 1. This shows that A′ is again a maximal order.
However, A′ is not Azumaya since M is not locally free.

�
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