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Abstract

We consider the incompressible magneto-hydrodynamic system with fractional
powers of the Laplacian in the three-dimensional case. We discover a wide
range of spaces where the norm inflation occurs and hence small initial data
results are out of reach. The norm inflation occurs not only in scaling invariant
(critical) spaces, but also in supercritical and, surprisingly, subcritical ones.
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spaces, interactions of plane waves
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1. Introduction

In this paper we study the three dimensional incompressible magneto-hydrodynamic (MHD)
system with fractional powers of the Laplacian:
U+ -Vyu—b-V)b+Vp =—v(—A)u,
by+w-V)b—(b-Vu=—u(—A)"b, (1.1
M(.X,O) = Uo, b(-xao) Zb(),
where x € R3, ¢ > 0, u is the fluid velocity, p is the pressure of the fluid and b is the magnetic
field. The parameter v denotes the kinematic viscosity coefficient of the fluid and & denotes
the reciprocal of the magnetic Reynolds number. The initial data uy and by are divergence free.

The power a; = ay = 1 corresponds to the classical MHD system. A vast amount of literature
has been devoted to these equations, for background we refer the readers to [3, 7, 11-14].
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Solutions to the generalized MHD system (1.1) are scaling invariant when o) = oy =
o > 0. In this case, if (u(x,t), p(x,1),b(x,t)) solves system (1.1) with the initial data
(uo(x), bo(x)), then

wp(x, 1) = 22, A2%),  palx, 1) = 223V p(ax, A%1)
by (x, 1) = A2 "b(rx, M%)

solves system (1.1) with the initial data
ug. = 22 ug(Ax), by = 12" by(hx).

A space that is invariant under the above scaling is called a critical space. The largest critical
space for the generalized MHD system (1.1) when oy = o = « is the Besov space B;O’gg‘
(see [2]). '

In the case b = 0, (1.1) reduces to the generalized Navier—Stokes system that has been
studied extensively. Since the global regularity is only known for oy > 5/4, the question
of global well-posedness in various critical spaces is of great interest. In the classical case
o1 = 1 the best small initial data result is due to Koch and Tataru. In [8], they established
the global well-posedness of the Navier—Stokes equations with small initial data in the space
BMO~'. In the case ; € (1/2, 1) the situation is better as Yu and Zhai [16] showed global
well-posedness for small initial data in the largest critical space B;;ggl, which is out of reach
for oy € [1,5/4). Obstacles here are illustrated by some Ill-posedness results: Bourgain and
Pavlovic¢ [1] showed the norm inflation for the classical Navier-Stokes equations in B(;o{oo in
case a; = 1, Cheskidov and Shvydkoy [5, 6] proved the existence of discontinuous Leray—
Hopf solutions of the Navier—Stokes equations in B;Ofgg“ with arbitrarily small initial data for
o € [1,5/4), and Yoneda [15] showed the norm inflation for the classical Navier—Stokes
equation in a generalized Besov space near BM O~!.

Recently, Cheskidov and Dai [4] showed the norm inflation in subcritical spaces Bo‘o‘foo
forall s > oy, @) > 1. This provides a wide range of spaces where a small initial data result is
not expected. Note that the natural space for the norm inflation B, is only scaling invariant
in the classical case &; = 1, and is subcritical for &; > 1. This explains why small initial data
results are only available for o; < 1.

The goal of this paper is to find natural norm inflation spaces for the generalized MHD
system (1.1) and show that in general they are not scaling invariant, even in the classical case.
Namely, we prove that

Theorem 1.1. Letay, ap > 1. Assume 01 +0, = 2w, for 6y, 6, > 0. Forany § > 0 there exists
a smooth space-periodic solution (u(t), b(t)) of (1.1) with period 2m and the initial data

140+ 15Oz S 8

that satisfies, for some 0 < T < § and all s > 0,

1
16(D)ll3z, 2 -

oc.ocN(S

We refer the readers to the beginning of section of Preliminaries for the definition of the

symbol <. Note that the homogeneous and non-homogeneous Besov norms are equivalent for

periodic functions. Therefore, for the space-periodic solution in theorem 1.1 we have
16Oz, S Wbz SOy <8 forall s> 65,

o000 NV

which means that the norm inflation for b occurs in all the spaces Bc;f o>

we have the following.

s > 0. More precisely,
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Corollary 1.2. Let a1, a2 > 1. Forany s > 0, § > 0, and positive 6 such that 0 > 2a; — s
there exists a smooth space-periodic solution (u(t), b(t)) of (1.1) with the initial data

el gz, + 16O, S8

00,00 MY

that satisfies, for some 0 < T < 4,

1
b T e —.
16(Dll g, 5

In a previous work of Dai ef al [7], the authors obtained norm inflations for the classical
MHD system, i.e. «; = o = 1in (1.1). More precisely, the main result reads that initial data
can be constructed such that

lu )t + 16O 5, < 5.

00,00 MY

while

16l 2 for some 0 < T < 4.

o | =

One can see the above result is a particular case of corollary 1.2 corresponding to oy = oty =
0 = s = 1. In fact, taking &; = «, = 1, corollary 1.2 guarantees that the magnetic field b
develops norm inflation in all the spaces Bo_of 00> 8 > 0, not only the critical one B;ofgg‘.

We point out another difference with [7]. For the classical MHD system, the proof of the
norm inflation is based on the continuity of the bilinear operator (see (2.7) in [7]) associated with
the heat kernel on certain Koch—Tataru space to control the nonlinear interactions in the error
terms. For the bilinear operator corresponding to the fractional heat kernel, as discussed in [4],
the continuity property on a modified Koch—Tataru adapted space is not available. Instead, the
bilinear operator is estimated in L°° in order to control the error terms in section 4.3.

The rest of the paper is organized as follows. In section 2 we introduce some notations that
shall be used throughout the paper and some auxiliary results; in section 3 we describe how
the diffusions of plane waves interact in the fractional MHD system; in section 4 we devote to
proving theorem 1.1.

2. Preliminaries

2.1. Notation

We denote by A < B an estimate of the form A < C B with some absolute constant C, and by
A ~ B an estimate of the form C;B < A < (C, B with some absolute constants C;, C,. For
simplification of the notation, we denote || - |[, = || - IIz.

2.2. Norm of Besov spaces

We recall the definitions of norms for the homogeneous and non-homogeneous Besov spaces
B and B} (see [9])

5 —t(=A)
I fllgs, = suptaa e T2 £l e,
t>0

S (=AY
I, = sup 13 [le™" T2 fl .

O<t<l1

Note that for the periodic functions the homogeneous and non-homogeneous norms are
equivalent (see [10]). It is then easy to observe that

Il sz ersy < I llzeoersys (2.2)

since [le ™" A" fll e < |1 f Nl
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2.3. Bilinear operator

Let IP denote the projection on divergence-free vector fields, which acts on a function ¢ as
P(¢) = ¢ +V - (—A) dive.
Define the bilinear operator for & > 1

t
By (u, v) = / e TIEAPY L (4 @ v) dr. (2.3)
0

As shown in [4] the following estimate for the bilinear operator 3, holds.

Lemma 2.1. Letu,v € L' (0, T; L™) be such thatu ®v € L'(0, T; L*®). Then foralla > 0,
the bilinear operator satisfies

! 1
Ill’>’oz(u,v)lloo,S/O mllﬂ(f)llmllv(f)llmdf- 2.4

3. Interactions of plane waves

3.1. The first iteration approximation of a mild solution

Let (u, b) be a solution to (1.1). We write it in the form

u=e A ugo—ur+y, 3.5
b= e_t(_A)azb() — by +z, (3.6)
where
uy(x, 1) = By, 7 T8 up(x), e T8 g (x))
—Ba, (7 T8 by (x), eI T by (x)), (3.7
bi(x, 1) = By, (e T ug(x), e T by (x))
—B, (e TN by (x), e TV g (x)). (3.8)
A simple calculation shows that
t
) = — f DA Go(2) + Gy (1) + Ga ()] dr, (3.9)
0
t
z(t) = —/ e TOENR K (T) + K (1) + Ka(7)] dT, (3.10)
0
where

Go=Ple™" " ug - Vyuy + (uy - Ve ug + (uy - V]
=Pl by - V)b + (by - V)eT TV by + (by - V)by],
G =Pl uo- V)y+ - V)y+ (- Ve T up+ (y - Vyu]
— Pl T by - V)z+ (b1 - V)z+ (z- V)e ' T by + (z- V)by],
G, =Pl(y-V)y] = Pl(z- V)zl, (3.11)
and
Ko =Pl T ug - V)b + (u1 - V)e ™ T bg + (uy - V)by]
=Pl by - Vyuy + (b1 - V)e " TV ug + (by - Vuyl,
Ky =Pl "®%ug - V)z+ ;- Vz+(y - Ve "2 + (y - V)b ]
— Pl by - V)y + (b - V)y + (- V)e" TV up+ (2 - Vyuyl,
Ky =P[(y-V)z] = P[(z - V)y]. (3.12)
Note that G, Ky do not depend on y or z, G|, K are linear, and G,, K, are quadratic in
y and z.
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Remark 3.1. Note that although the second equation in system (1.1) has no pressure, since
u and b are both divergence free, the term u - Vb — b - Vu is automatically divergence free.
Hence the projector [P acting on this term does not change the second equation and hence we
can write b; and K;’s as described above.

In this section we show how the diffusions of plane waves interact in the generalized
MHD system. These interactions are the basis for the constructions of initial data to produce
the norm inflation.

3.2. Diffusion of a plane wave
Suppose k € R*, v € S> and k - v = 0. Let
uy = vcos(k - x).
Then V - ug = 0 and
e "Ny cos(k - x) = e * Ty cos(k - x). (3.13)
It is also important to notice that for s > 0

v costk - x)ll g, ~ kI,

3.3. Interaction of plane waves

Now we consider the interaction of two different single plane waves. Suppose k; € R?, v; € S?
and k; -v; =0, fori =1, 2. Let

up = COS(k] 'x)vl, Uy = COS(kz 'x)vz.

To simplify our calculations we assume that k, - v; = % It then follows from a straightforward
calculation that

Ba(e™ " g, 7N )

t
= lvl sin((ky — ky) .x)/ o~ (ki +ka )T o ~lka—ki P*(1=) 47
4 0
1 t
+—vy sin((k; +kp) ~x)/ e—(lkn\2”+\kz\2“)re—|k1+kz\“(t—r) dr.
4 0

Therefore, the interaction of the two plane waves is small in B;foo if neither the sum nor the
difference of their wave vectors is small in magnitude. In the contrary, the interaction is sizable
in B, if either the sum or the difference of their wave vectors is small in magnitude.

4. Proof of theorem 1.1

In this section we follow the ideas from [1, 4] to construct initial data that produce norm
inflation for solutions to the fractional MHD system. From the discussions in section 3.3 we
see that the interaction of two plane waves is not enough to show the norm inflation, which
requires a large number of waves. We also make sure that the initial data is space-periodic
and smooth, which ensures the local existence of a smooth periodic solution to the fractional
MHD system. As we control its L* norm, the solution will remain smooth until the time of
the norm inflation.
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4.1. Construction of initial data for the fractional MHD system

For a fixed small number § > 0 that we will specify later, the initial data will be as follows:

uo=r="> " |ki|"v cos(k; - x), (4.14)

i=1
r

bg=r"" Z |k} |%2v cos(k] - x),
i=1

where Bi, 82, 61,60, > 0 to be determined later. We expect for each i the interaction of the

two plane waves v cos(k; - x) and v’ cos(k; - x) to be sizable in Bgof > While the interactions

of plane waves corresponding to different indexes i to be small. Hence, we choose

o Wave vectors. Let ¢ = (1,0,0) and n = (0, 0, 1). The wave vectors k; € 7.3 are parallel
to ¢. Let K be a large integer dependent on . The magnitude of k; is defined by

|k;| =27'K, i=1,2,3,...,r (4.15)
The wave vectors k| € Z> are defined by

ki = ki +n. (4.16)

o Amplitude vectors. Let

v=1(0,0,1), v = (0, 1,0). (4.17)
Hence

ki-v=k;-vV'=0
which ensures that the initial data is divergence free.

The initial data construction here is not the same as the one used for the classical MHD
system in [7]. We still use the fact that the interaction of the high-high frequencies waves
produces low frequency wave, which is the essential part to develop the norm inflation in
Besov spaces with negative indexes. However, thanks to the coupling of the velocity field and
the magnetic field, we have the flexibility of having more admissible values of g;, 8, 6; and
6,, which allows us to obtain a wider range of spaces where the system (1.1) develops norm
inflation (see theorem 1.1 and corollary 1.2).

We recall the following simple facts whose proof can be found in [4].

Lemma 4.1. Let y, 0 > 0. With the choices (4.15)—(4.17), the following holds:

ki-v =0, ki-v=1, V i=12,...,r (4.18)
DUkl ~ ki l” and K ~ 1k 17 (4.19)
j<i j<i

ke M <mE and Y ke <k (4.20)

i=1 i=1
Next we estimate the norms of the initial data.
Lemma 4.2. Let (ug, by) be given in (4.14) and 0, 6, > 0. Then

lwollyon, S P Mbollyn <P 21)
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Proof. Due to (3.13), we have that,

e Uy = 173 kv cos(k; - x)e T (4.22)

i=1
Hence by lemma 4.1,

,
1 120 _
””0”3;920 ~ B sup 12 Z |ki|01e—\k,| ¥ <r i

O<t<1 o
i=1

The estimate of by in B;O%O can be obtained similarly. g

Lemma 4.3. Let (19, by) be given in (4.14) and o« > 0. Then

(AN g 9 (A g, 9
e 2 ugllo S r P, e~ 2 bylloe S r P

Proof. By (4.22) and lemma 4.1, we infer that

,
o |2 _B,.,-4
—t(=A) rB Z |k; |Pre kil <r Bry=m

i=1

u()”oo <

~

lle

The estimate for by can be obtained similarly. 0

4.2. Analysis of uy and by
As demonstrated in section 3.1 we consider the decomposition

—1(=A)

u==e Uy —up+y,

b= eit(iA)%bo — by +z.
Recall the definition (3.7) and (3.8)
up(x, 1) = By, (67 " ug(x), e g (x))

— By, (67 T by (x), e A by (x)),

bi(x, 1) = By, (e T ug(x), e by (x))

— B, (€7 T by (x), e TV ug (x)).
By the fact that k; - v = klf v =0foralli =1,2,...,r,itis immediately seen
(e—t(—A)‘Xl o - V) e M = (e—z(—A)"’l bo - V) e A ),
hence u; = 0. Againsince k; - v/ = 0foralli = 1,2, ..., r by (4.18), it follows
(e—t(—A)“2 b - V) e—z(—A)“‘2M0 =0,
hence
bi(x, 1) = B, (¥ ug(x), eV by (x)). (4.23)
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By (4.17), (4.18), (4.22) and a straightforward calculation, it follows that
(e Dy - V) e D

r r
—Bi— 6 6 o — (ki P22+ [k |22 :
=—rh ﬂ222|ki| K| Prem D0 cos (k; - x) sin(K] - x)

i= 1j 1
_ " 1 |02 o= (ki 241K 2 1
= Zlkl ke sin(ip - x)v/
—prts =l (4.24)
20y /7a
-~ D kil k2o G sin (k) — ki) - x)”
t#/
—Bi—B2
r o /|20
S 3 PR e P ik + k)
i=1 j=I
=FEy+ E| + E>,

where we used the formula cos x sin y = [sin(x + y) — sin(x — y)]/2.
Recall that - v/ = 0, (k; +k)-v =0and (k} —k;) - v/ = 0forall i, j due to (4.18).
Hence Ey, E| and E; are divergence free vectors. Thus we can write

t t
b = / e TIEN2E(7) dT + / e TIENTE (1) dr
0 0

t
+ / e (T E,(t)dt := big + b11 + b1s. (4.25)
0
We have the following estimates.

Lemma 4.4. Let by be defined in (4.25) and s > 0. Assume 0; + 0, = 2a. Then
610G, Dll g, 2 P77, for |k <1< T,
110G, oo S P17, forall > 0.

Proof. From (4.24) and (4.25) it follows by a straightforward calculation

—Bi—B2
r 120 2a; 2a
bip= — / Z'k |0‘|k |2 e IKF2 K P2 =2 (1=0) i (9 . x)0' dT
2 0 i=1
r=h=p _ e (k24K 2 =1yt

a 1
sin(n - ) Y k| k]| e

a P Ty P = 1

rﬁl B2

2
sin(n - x)v’ Ze (1 — e~ Ihl™2ry

where the assumption 6 + 6, = 20(2 implies
i |7 1% ~ 1P+ Tl P2 = 1.
Hence for |k;|7™>> <t < T ands > 0,

s 2a
1b10Cs Dl gz, 2 P75 1 sup prme T 2 plohoh,
O<r<l

On the other hand,
r—Pi=bH2

Ib1oC. D)lloe < < b,

forallt > 0. U
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Lemma 4.5. Let by; and by, be defined in (4.25). Then
1511, Dlloo + 1b12C, )llao S 7P Frg I =0t 2,

~

forallt > 0.

Proof. Thanks to (4 24) and (4.25), it follows that

r—Bi— , e
by = / Z'k 19 ook P2 P e K=k P20 in (k! — ;) - ) d
0 izj
~Bi—p2 _ o (ki P2k P2 kK P2yt
SRR o T e e —
kil 22 + [k, |22 — |k — k|22
i=1 j<i J J
. sin((k’- — ki) - x)v
—Bi—B2
r 2a
~ ZZm 171K Pt e ™ sin (K — ki) - x)v),

i=1 j<i

where we used the fact that
infer that

.
—pi— O (17 102 5 ki
111Gy D lloe S 777 ﬂZZZIkiI k| re ki1

i=1 j<i

1=¢ is bounded for x > 0. Hence, by (4.19) and (4.20) we

-
2
5 Fbi=p Z |ki|91 |kl{|92te—lk,\ 2t

i=1
r
< FPi—p Z |ki|91+9zte*\ki|2‘y2t
i=1
S, pP1=Pap1=01+02) /202
Similarly, we have

—B1—B2
r oy (1 |20 120
b12 — / Z Z |k |91 |k/ 6, 7(\]{ |2 +\k |*2)t 7\]{ +k |2 2(t—1) Sln((k +k/) . x)v/ dT

i=1 j=1

— U+ P2 = P2 i P2 )1
33 o e L= :
|k +k/ |20(') |kl|20(2 — |k;|20{2

i=1 j=I

rﬁl B2

-sin((k; + &) - x)v’
r
PPN kG | rem D sin (K + k) - x).
i=1 j<i
Thus,

,
2a
1612, )l S PP ZZ |ki|91|k;|92tef\ki| :
i=1 j<i
.
i1
5 r_lsl—ﬁztl—(01+9z)/2a2‘
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4.3. Analysis of y and z

In this section we analyse the parts y and z of the solution. The idea is to control y, z using
the estimate (2.4) of the bilinear operator 53, in the space L*.
Recall from section 3.1 that

t
y(t) = — / e TN Go(T) + G () + Ga(r)]dT, 1 €]0,T]. (4.26)
0
t
(1) = — / e TOENT K (T) + K (1) + Ka(7)] d7, t€[0,T]. (4.27)
0
Lemma 4.6. Let oy, o € [1, 00) and By, B> € (%, %). Assume additionally that
491 + 92 = 20(2,
1 <6 <20 —1, (4.28)

1 < 92 < 20[1 — 1.
Then
_L_ % L
1Y oo + 112 0o S./ rl—ﬁl—zﬁztl ay 2y +r2(1—131—f32)t1 2u;
b1

L _
+ rl—251—ﬁ2t1_2u2 2y (4.29)

forall0 <t < T, provided T is small and r is large enough.

Proof. Recall that u; = 0. It follows from (3.11) and (4.26) that
1y )lloo < 1Bay (€7 Y by, by (1)) lloo + |1 Bay (b1 (1), b1 (1))l oo
+11Bay (€7 T8 ug, y(1)) oo + 1B, (€7 b, 2(1) [l
+ (1B, (B1(1), 2(t) llo + 11Beey (3 (@), Y(t) oo + 1Bey (2(2), 2(t)) |l oo
Applying the bilinear estimate (2.4), lemmas 4.3, 4.4, and 4.5 we infer

t
—1(—A) 1 r(—A)®
1By (7 bo, b1(1) 1 s/ G e bollalibi (Dl dr
L

) 0
,Srl_ﬂ‘_zﬁzf (t—1) 2T = dr
0

< rl—ﬂ1—2ﬂ2t1*ﬁ*z%
~ 9

0

where we used the boundedness of Beta function for ¢ > 1/2 and 0 < e < 1:
! 1 _h e 0 1 _1_h

/(t—t) mip T dr = ¢ B(1— 21— ——) < Cf' T

0 2061 20[1

Similarly, using the estimates obtained in previous two subsections, we obtain

1

t
1 1
10, 10 byl £ [ i W () e P20,
=

'
1
—1(=A) —T(=A)
| Ba, (e ug, Y () lloo §/0 =)/l lle”" uolloo |y (D) lloo d7

t | [
5,—&1/ (t —7) Ft = dr sup |y(0)]leo
0

O<t<t

-8 R
S sup ||y (o)l

O<t<t
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t
o 1 —r(=A)
1Bu, € o, 2() oo 5/ mlle CH%bollool2(T) lloo de
) (f—

t Y
5 r—ﬂz/ (t _ -,;) 221 7 209 dg sup ||Z(T)||oo
0

O<t<t

.y .
S = sup [12(7) floos

O<t<t
! 1
IIBal(bl(t),Z(t))llooS/O m”bl(f)“oonz(f)”oodf

! 1
Sr“ﬂ“‘ﬁ/ (t —7) = dt sup [2(7)lloo
0

O<t<t

__1
SR sup (12(0) oo

O<t<t

1Ba, (1), Y ) loo + 1By (1), ()l
! 1
S / 7 (V@5 + 12013, de

0o t—1)
< Jma 2 2
St osup [[y(0)lis + sup llz(D% ) -
O<t<t O<t<t

Thus we have
1

_1_fn e
”y(t)”oo 5 Vliﬁ]izﬁzt] 20 20 +7’2(17ﬁ]7ﬂ2)tl 20

1—

1o _1_&
+r7 P TETE sup |y (D) lleo + 7P TETE sup (J2(0) o

O<t<t O<t<t

—-L
+r1 PP m sup [12(0) o
O<t<t

__1
+1' 7 (sup ly(0)lI%, + sup ||z(r>||io). (4.30)

O<t<t O<t<t

By (3.12), (4.27) and the fact u; = 0, we have
2o S 1Bay (€7 T8 g, by (1)) lloo + 11Be, €7 T4 ug, 2(t) [l
+[1Ba, (67 T by, y (1)) lloo + I1Bay (b1(1), Y() oo + 1Bay (3(2), 2(1)) |l o

Foroay > 1/2and 0 < 2%, 29—2 < 1, a similar calculation shows that
2 (%)
6 6
le@)lloe < r'720 P2 " 4 P TE TR sup 2(0)
O<t<t
1 [ 1
+r 7P TE T sup (@)oo + T sup 3@l
O<t<t O<t<t
1—-L
+1 2 sup [[y(D)lleo SUP [12(7)loo- (4.31)
O<t<t O<t<t
Let w(?) = ly®)lloo + lz(*)lloc and w = supy_, -, |y (D)lloc + SUPg; -, 12()[loc. Adding
(4.30) and (4.31) yields

P 0
w(t) S plmP=2b = m g p20B B 2B he |
_ - L _ 0 _ - Lt —p1— -5
+<r TR T e T 2"’2> sup [[y(7)lleo
O<t<t
L _ 0

g 1—-L g g 1-L g 1—L_ o
+<r Bogt =z T3y g p BBy Ty B T g 2112) sup [1z(0)]lso
O<t<t
1—-L 1—-L
+ (t 0+ f 2‘*2) w?
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= C1+Ca sup [[Y(D)]loo +C3 sup [[2(7)]loc + Caw?

O<t<t O<t<t
< Cp+(Ch + C)w + Cyw?
= C1+(Cr+C3+ Caw) w. (4.32)
We shall choose large enough r and small enough T > 0, such that
Co:=C+C3+C1Cs k1 (4.33)
for 0 < ¢ < T. We claim the following estimate holds:

9

_1_ 6 . 1
lw®) oo S C §rl_ﬂl_2/32t1 oy 2a +r2(1—ﬂ1—ﬂ2)t1 b7 +r1—2ﬁ1—ﬁ2t1 T

forall 0 < r < T. Indeed, since w(0) = 0, and w(t) is continuous, ||w(?)||s cannot cross
2C}. Otherwise, at certain time fy, we have w(ty) = 2C;. Combining with (4.32), it implies

2C, 5 Cy +2(C2 + C3 +2C1C4) C,y
and hence
C2+C3 +C1C4 ,2 1,

which contradicts (4.33).
Now we choose r and T to guarantee (4.33). Note that the powers of ¢ in Cy are all
non-negative by the hypothesis of the lemma. Thus,

Co < riPPp'=m qplbifop! oy 4 p20-=p !~ ay (T"ﬁ +T"i).

Let T = r~7. It follows

Co < rlmPPryimay) | JA-Bi=Proy(=gp) | 2(0=Pi=p—yQ=gp) | 20=i—p)—y Q= =)
(4.34)
We choose y such that
1—-8— 1—81—
) > B ,32, . B ﬂz’ 435)
1—1/Qay) - 1/Qa)
which guarantees all the powers of r are negative in (4.34). Hence (4.33) is satisfied for  large
enough. It proves the conclusion of the lemma. O

4.4. Finishing the proof

Now we are ready to complete the proof of theorem 1.1. Since u( and by are smooth and
space-periodic, there exists 7* > 0 and a smooth space-periodic solution (u(t), b(t)) to (1.1)
on [0, T*) with u(0) = ug, b(0) = by, such that either T* = +00 or

lim sup ([|u(2) [[oc + 16() [loo) = +00.

t—>T*—

Lemmas 4.4, 4.5, and 4.6 imply that T* > T. Now using (3.6), we combine the imbedding
estimate (2.2), lemmas 4.3, 4.4, 4.5 and 4.6 to obtain that, for |k; |_2"‘2 <t<T

— (=AW
16C. Dl gz, ZNb10C, Dl s, = D11 L Dlloo = 1B12C, Dlloe — 67T bolloe — l12¢ D)oo
> 1=pi-p: (1 LBl b m i _ —Bihay ,—mg—ﬁ—ﬁ,—‘ﬁ
_1L_ 65 _
> pl-pi=pr (1 Bk — T T b ! 2&1)’ (4.36)
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10 . . .
where in the last step we used the fact rh I T %, since the power of r is negative
and the power of ¢ is non-negative. We will choose parameters so that

0
A= Pk g P T g B ), 4.37)
Let |k;| = r¢ with positive ¢, and T = r~7 as in lemma 4.6. Then
Y

A = P10 By (g2 | =ipry (= gp)

To make (4.37) hold for large enough r, it is sufficient to choose ¢, y such that

0<¢ < %,
—l_ﬂl_ﬂ2< < 208
1—1/Qay 7 =% (4.38)
_ L% o,
20{1 2051

Moreover, the condition y < 2a,¢ in (4.38) guarantees that |k, |72%2 < T, which is required
in lemma 4.4. We verify that there exist 8, 82, 01 and 6, such that the assumption (4.28) in
lemma 4.6 and conditions (4.35) (4.38) are compatible. Indeed, one can take 8; = 8, = % —€
for0 < e < % Since ay, ay > 1, it follows

1— 8 — — B —
B ,32<4’ 1— B ,32<
1= 1/Qa) 1= 1/Qa)
On the other hand, due to the relation 6, + 6, = 2w in (4.28), we have
1—p

20[2

1
1— —+e.
% > ,31>2 €

Thus, the first two conditions in (4.38) are compatible. Straightforward computation shows

all the other conditions among (4.28), (4.35) and (4.38) are also compatible.

Given any § > 0 in theorem 1.1, we now choose a suitable large » such that
pl-pipr > 1
)

Therefore, it follows from (4.36) and (4.37) that

1
luC, Dl g, 2 P77 > 5

Finally, lemma 4.2 implies that the initial data u satisfies

luoll - S 7P <8, bollye Sr77 <6

This competes the proof of theorem 1.1.
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