
Control Aspects of Quantum Computing Using Pure and Mixed States
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Steering quantum dynamics such that the target states solve classically hard problems is tan-
tamount to quantum simulation and computation. And beyond, quantum control is also essential
to pave the way to quantum technologies. Here, important control techniques are reviewed and
presented in a unified frame covering quantum computational gate synthesis and spectroscopic state
transfer alike. We emphasise that it does not matter whether the quantum states of interest are pure
or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum
states can be exploited in a more recent class of algorithms: it is illustrated by characterising the
Jones polynomial in order to distinguish between different (classes of) knots. Further applications
include Josephson elements, cavitiy grids, ion traps, NV-centres in scenarios of closed as well as
open quantum systems.
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I. INTRODUCTION

Controlling quantum dynamics may provide access to efficiently performing computational tasks or to simulating
the behaviour of other quantum systems that are beyond experimental handling themselves. In particular, quantum
systems can also simulate classical systems efficiently [27, 28] sometimes even separating controllable parameters in
the quantum analogue that classically cannot be tuned independently. Therefore both in simulation and computation
the complexity of a problem may reduce upon going from a classical to a quantum setting [51]. On the computational
end, most prominently, there is the exponential speed-up by Shor’s quantum algorithm of prime factorisation [79, 80]
relating to the ample class of quantum algorithms [14, 41] efficiently solving hidden subgroup problems [24, 44].
Inspired by topological quantum computation exploring braid groups, recently another type of quantum algorithm
has come into focus, to wit the algorithm of Aharonov, Jones, and Landau (AJL) [5] for approximating the Jones
polynomial, i.e. a central invariant in knot theory. For broader context, see also [3]. While classically it is NP-hard to
distinguish two (classes of) knots in terms of their characteristic Jones polynomials, the quantum AJL algorithm, or its
predecessor by Kauffman and Lomonaco (KL) [42, 43], can do so more efficiently with quantum resources. Moreover,
as has been experimentally demonstrated by NMR [63, 68] , these algorithms can be implemented using thermal
mixtures of quantum states. Moreover, it suffices to approximate the trace of a controlled unitary encapsulating
the information of the Jones polynomial. This class of quantum algorithms is equivalent to deterministic quantum
computation with one clean qubit (DQC1) [52], and actually it is even DQC1-complete [39, 78], where general belief
has it that P � DQC1 � BQP, see, e.g., Ref. [78] again. As has nicely been pointed out in Ref. [68], note that DQC1
does not require the quantum bit to be in a pure state.
Since the demands for accuracy (‘error-correction threshold’) in quantum computation may seem daunting at the

moment, the quantum simulation end is by far less sensitive. Thus simulating quantum systems [61]—in particular
at phase-transitions [72]—has shifted into focus [6, 19, 36, 70].
Both quantum computation and simulation are challenging quantum engineering tasks requiring high-level ma-

nipulations of quantum dynamics. To this end, among the mathematical tools [10, 12] optimal control algorithms
have been establishing themselves as indispensable tools [16, 21]. They have matured from principles [11] and early
implementations [15, 69, 85] via spectroscopic applications [37, 47, 88] to advanced numerical algorithms [48, 54] for
state-to-state transfer and quantum-gate synthesis [73, 76, 83] alike as will be illustrated in more detail.
On the practical end of engineering high-end quantum experiments, progress has been made in many areas including

cold atoms in optical lattice potentials [9, 33], trapped ions [8, 20, 31, 32, 38, 59, 87], and superconducting qubits
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[18, 35, 91] to name just a few. At the interface of theory and experiment, optimal control among numerical tools have
become increasingly important, see, e.g., [81] for a recent review. For instance, near time-optimal control may take
pioneering realisations of solid-state qubits being promising candidates for a computation platform [13], from their
fidelity-limit to the decoherence-limit [83]. More recently, open systems governed by a Markovian master equation
have been addressed [73], and even smaller non-Markovian subsystems can be tackled, if they can be embedded into a
larger system that in turn interacts in a Markovian way with its environment [71]. Taking the concept of decoherence-
free subspaces [46, 90] to more realistic scenarios, avoiding decoherence in encoded subspaces [66] complements recent
approaches of dynamic error correction [49, 50].— Along these lines, quantum control is anticipated to contribute
significantly to bridging the gap between quantum principles demonstrated in pioneering experiments and high-end
quantum engineering [21, 86]. Many results from controlling spin systems as can also be found in this special issue
in the contributions by the groups of Laflamme at IQC or Jones in Oxford are paradigmatic for finite-dimensional
quantum systems. So their implications reach far beyond spin systems and in particular beyond ensembles, which is
why we first focus on the general toolbox.

To this end, the paper is structured as follows: Section II casts many of the standard quantum optimal control tasks
into the framework of bilinear control systems. We show that all of them can conveniently be tackled by a unified
progrmme platform dynamo comprising concurrent (grape), sequential (Krotov-type) as well as hybrid algorithms.
In Section III, we outline a number of applications to synthesising quantum gates in closed quantum systems referring
to experimental settings like Josephson charge qubits and cavitiy grids. Section IV departs from quantum circuits and
shows how control applications help to distinguish classes of knots by way of their Jones polynomials. As demonstrated
in Section V, also open quantum systems profit from optimal control, e.g., as a means of error avoidance.

Table I: Bilinear Quantum Control Systems

Setting and Task Drift Controls

Ẋ(t) = −
(
A+

∑
j
uj(t)Bj

)
X(t) A Bj

closed systems:

pure-state transfer X(t) = |ψ(t)〉 iH0 iHj

gate synthesis (with specified global phase) X(t) = U(t) iH0 iHj

state transfer X(t) = ρ(t) iĤ0 iĤj

gate synthesis (with free global phase) X(t) = Û(t) iĤ0 iĤj

open systems:

state transfer X(t) = ρ(t) iĤ0 + Γ iĤj

quantum-map synthesis X(t) = F (t) iĤ0 + Γ iĤj

Here Ĥ represents the Hamiltonian commutator superoperator represented in Liouville space.

II. ALGORITHMIC PLATFORM FOR BILINEAR QUANTUM CONTROL SYSTEMS

In practice, quantum control problems amount to steering a dynamic system such as to maximise a given figure of
merit subject to the constraint of following a given equation of motion. In (finite-dimensional) quantum dynamics,
the pertinent equations of motion are typically linear both in the drift as well as in the control terms, and dynamic
systems of this form are known as bilinear control systems [22, 60, 82]

Ẋ(t) = −(
A+

m∑
j=1

uj(t)Bj

)
X(t) with initial condition X0 := X(0) (1)

with ‘state’ X(t) ∈ CN , drift A ∈ MatN (C), controls Bj ∈ MatN (C), and control amplitudes uj(t) ∈ R thus defining
the Au(t) := A +

∑m
j=1 uj(t)Bj as effective generators. Tab. I elucidates how the six standard tasks encountered in

quantum optimal control take the form of bilinear control systems.
More precisely, the quality function may be expressed via the scalar product as the overlap between the final state



3

(or operator) of the controlled system at time T and the target state so that the common options amount to

f1 := Re g or f2 := |g| with g := 1
N
{X†targetX(T )} . (2)

Define the boundary conditions as X0, Xtarget and fix the total time T . For simplicity, we henceforth assume equal
discretised time spacing Δt := tk − tk−1 for all timeslices k = 1, 2, . . . ,M . So T = MΔt. Then the total generator
(i.e. Hamiltonian H or Lindbladian L) governing the evolution in the time interval (tk−1, tk] shall be labelled by its
final time tk as

Au(tk) := A+
∑
j

uj(tk)Bj (3)

generating the propagator

Xk := e−ΔtAu(tk) (4)

which governs the controlled time evolution in the timeslice (tk−1, tk]. Then the optimal control algorithms proceed
in the following basic steps

1. initialise with a random (or guessed) control vector (pulse sequence) consisting of the piecewise-constant control
amplitudes uj := {uj(t) | 0 ≤ t ≤ T } ;

2. exponentiate Xk = e−iΔtAu(tk) for all k ∈ with Au(tk) := A+
∑

j uj(tk)Bj ;

3. calculate forward-propagation Xk:0 := XkXk−1 · · ·X1X0

4. calculate back-propagation Λ†M+1:k+1 := X†tarXMXM−1 · · ·Xk+1

5. evaluate fidelity say f = |g|, where g := 1
N
tr

{
Λ†M+1:k+1Xk:0

}
= 1

N
tr

{
X†tarXM :0

}
6. evaluate gradients for all k:

∂f(X(tk))
uj

= 1
N
Re tr

{
e−iφgΛ†M+1:k+1

(
∂Xk

∂uj

)
Xk−1:0

}
with ∂Xk

∂uj
of Eqn. (5) or (6) and e−iφg := g∗/|g|;

7. update amplitudes for all k, e.g., by quasi-Newton u
(r+1)
j (tk) = u

(r)
j (tk) + αkH−1

k
∂f(X(tk))

∂uj
,

where αk is a suitable step size and H−1
k is (an l-bfgs-approximation to) the inverse Hessian;

8. re-iterate up to terminal condition (e.g., ∂fk
∂uj

≤ f ′limit for all k).

Here the exact derivative in closed systems (or unital open systems characterised by their normal Lindblad generators)
can be read element-wise from the eigendecomposition (with eigenvectors |λl〉 to the eigenvalues λ�)

〈λl| ∂X
∂uj

λm〉 =
⎧⎨⎩−iΔt 〈λl|Bjλm〉 e−iΔtλl if λl = λm

−iΔt 〈λl|Bjλm〉 e−iΔtλl−e−iΔtλm

−iΔt (λl−λm) if λl �= λm ,
(5)

while in non-unital open systems other methods apply like

∂X

∂uj
� −iΔt Bj e

−iΔtAu (6)

as long as the digitisation by Δt is sufficient to satisfy ‖Au‖2 	 1/Δt, or one will have to resort to finite-differences
etc. (see [62]). This scheme covers all the optimal control problems specified by Tab. I.

Recently we have provided a unified matlab-based programming frame ‘dynamo’ [62] designed in a modular way
such that to the above set of bilinear control problems it embraces the different algorithmic approaches known in
the literature and shown in Fig. 1. While the grape algorithm (gradient-assisted pulse engineering) [48] updates all
timeslices in the pulse sequence (control vector) concurrently, another type of well-established algorithms of Krotov-
type [53–55, 67, 85] do so sequentially. It has turned out that for optimising unitary gate synthesis for quantum
information, concurrent updates of grape type overtake sequential algorithms of Krotov type well before reaching
qualities in the order of the error-correction threshold. This is due to the fact that the recursive scheme (bfgs) to
approximate the inverse Hessian pays when a constant set of time slices is updated as in grape, while sequential
updates preclude full profit from such recursions for second-order methods, and their first-order variants naturally loose
power in the vicinity of critical points. — In the dynamo platform, one may also easily change between the different
schemes, and the switch can actually be done on the fly during te course of an optimisation run, whenever needed to
save computation time. Thus dynamo can readily be kept state-of-the-art with respect to future developments such
as, e.g., improved preconditioning, further Newton-type algorithms, or including incoherent degrees of freedom to the
control parameters.
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(a) concurrent (grape-type)

(b) sequential (Krotov-type)

(c) hybrid

Figure 1: (Colour online) Overview on the update schemes of gradient-based optimal control algorithms unified in the dynamo
platform. They all turn initial guesses for pulse shapes (i.e. piece-wise constant control amplitudes) into optimized shapes. In
grape (a) all the timeslices are updated concurrently. In contrast, sequential update schemes of Krotov-type (b) update a
single timeslice. Hybrid versions (c) can be implemented such as to update a subset of different timeslices before moving to the
next (disjoint) set of timeslices. Optimizations may take total time, power, robustness, smoothness, or excitation bandwidth
into account and may be executed for closed systems or open systems with known relaxation parameters.

III. APPLICATIONS IN CLOSED SYSTEMS

In order to interface theory and experiment, optimal control tools have become increasingly important [21, 74, 81].
The applications reach from ion traps via cold atoms in optical lattices to superconducting qubits [18, 35], the latter
two being of particular interest to quantum electronics.
For instance, in Josephson elements we have shown how to take the pioneering realisation [89] from the fidelity limit

to the decoherence limit [83]. For two capacitively coupled Josephson elements we could speed up the implementation
time to realise a cnot by a factor of five, while in three linearly coupled elements a Toffoli gate can be realised
some 12.5 times faster than by a sequence of nine cnot gates.
More recently, after seminal work of White [56] on exploiting auxiliary levels to speed up the synthesis of quantum

gates, such a Toffoli gate has been implemented in a superconducting circuit by the Wallraff group [26] as elaborated
on in [84]. In our case, the symmetry of the system (real symmetric Hamiltonians that can be expressed in terms σx
and σz Pauli matrices) could be matched with the fact that the target cnot gate is a square root of unity (i.e. the
cnot is self-inverse) in order to exploit optimal control to find a palindromic control sequence. Palindromic sequences
can be synthesised by a cosine fourier series. For the experimental realisation by an electronic LCR-terminal this
means the symmetry of the problem translates into Cauer synthesis without resistive components (R) as shown in all
detail in [83].
On a general level, numerical optimal control lends itself to solve the quantum compilation task of translating

quantum computational components of the high language of a unitary module into the machine language of a sequence
of controlled quantum evolutions of the dynamic system given exerimentally [77]. Thus optimal control allows to
depart from synthesising a unitary target only from local operations plus cnot gates, i.e. from a restricted instruction
set (RISC). Rather one may exploit precompiled few-qubit complex instruction sets (CISC) [75]. Thereby the tight
error-correction threshold of RISC-computations may be relaxed to the CISC modules, which also have the advantage
of being considerably faster. At the same time, we want to emphasise that the algorithms for synthesising unitary
target modules are themselves entirely independent of the experimental realisation in as much as it does not matter
whether the underlying experimental system operates with pure states or with ensemble mixtures [74].
As an example from cavity qed, take the paradigmatic setting of a cavity grid [34], where the qubits are arranged

in the configuration of a square grid as shown in Fig. 2. Here the pair interactions between two qubits in one column
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(resp. row) can be switched on and off in a fashion that only the desired qubit pair interact, while the remaining ones
are left invariant. Now consider the task of implementing an indirect 1-3 quantum gate U13. To this end, common
wisdom would suggest the following sequential decomposition

U13 = swap23 ◦ U12 ◦ swap23 (7)

i.e. to first swap qubits 2 and 3, then perform the 1-2 operation before swapping qubits 2 and 3 again. However, since
there is no experimental limitation that would enforce the row and column operations to be performed sequentially,
one can exploit optimal control to arrive at parallel operations which are much faster. Actually, for a variety of
standard gates the speed-up against sequential decompositions varies between factors of two and nearly four (see also
Tab. II as has been demonstrated in [29].

Figure 2: (Colour online) The superconducting cavity grid [34] with two layers of vertical (bottom) and horizontal (top layer)
transmission line resonators coupled to qubits (small red squares). Two-qubit gates between qubits 1 and 3 are mediated
indirectly via qubit 2, employing the dispersive interaction inside the two highlighted resonators.

Gate Tseq (1/J) Topt (1/J) speedup factor

iswap12 0.5 0.5 -

cnot12 1.0 0.5 2

swap12 1.5 0.75 2

iswap13 3.5 1.00 3.50

cnot13 2.0 1.00 2.00

swap13 4.5 1.15 3.91

Table II: Implementation times for a number of direct and indirect two-qubit gates in cavity grids [29]: Tseq is the time required
for decomposing the gate into sequential two-qubit operations as in Eqn. (7); Topt is the time required by the optimal control
sequence. The time of 2/J for the sequential cnot13 is special in the sense the two swaps can be replaced by iswaps [34].

IV. IMPLEMENTATION FOR ‘UNTYING KNOTS BY NMR’

Many of the well-established quantum algorithms operate by solving the hidden subgroup problem in an efficient way
[24, 44]. Moreover they do so by resorting to the circuit model with its experimentally challenging accuracy demands
(‘error-correction threshold’). In search for different and more robust classes of quantum algorithms, topological
quantum computing with anyonic quasiparticles brought up relations to braid groups [4, 42, 45]. This is because anyonic
world lines in a three-dimensional model of spacetime (consisting two spatial and one temporal dimension) form braids
that can be exploited as quantum gates. These gates have the power of the circuit model with the advantage of being
more robust. — When establishing the relation between topological and ordinary quantum computation, it turned
out that unitary representations of braid groups useful for anyonic topological quantum computing can also be used
to compute invariants of knots and links such as the Jones polynomial.
Thus there is a fruitful interplay between topological and circuit-based algorithms mediated via braid groups of

knots, i.e. by unitary representations of the braid operations. In order to implement these unitaries experimentally,
control aspects are of practical importance once again.
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Therefore, in this section we will illustrate how thermal ensembles can be used for approximating the trace of a
unitary matrix [25]. This paves the way to a recent class of quantum algorithms related to knot theory, because
it allows for efficiently evaluating Jones polynomials over a range of parameters. Since knots with different Jones
polynomials are clearly inequivalent (while the converse does not hold), efficient quantum algorithms determining the
trace of unitaries can be of great help (in the cases distinguishable by the Jones polynomials) to solve the classically
NP-hard decision problem whether two knots are equivalent in the sense they can be transformed into one another
by using only Reidemeister moves and trivial moves, i.e. those which do not change the number of crossings.
More precisely, while a knot is defined as an embedding of the circle in three-space up to ambient isotopy, a link

is an analogous embedding of several disjoint circles again up to isotopy. Now a knot invariant is any function that
remains invariant under Reidemeister (and trivial) moves mentioned already. The Jones polynomial is a special form
of Laurent polynomial (i.e. a polynomial with terms of both positive and negative degrees forming a ring) which itself
has a degree that grows at most linearly with the number of crossings in the corresponding link. Note there is an
important relation to braid groups established by Alexander’s theorem. It says that any link can be constructed as a
plat closure of some braid, namely by moving ‘return’ strands back into the braid, see, e.g., Ref. [78] for details.
Now the algorithm of Aharonov [2, 4, 5] takes the trace of some unitary representation of the corresponding braid

group to give the Jones polynomial. Here the braid group with n strands, Bn, is generated by its n − 1 generators
representing right-handed twists {σ1, σ2, . . . , σn−1}. For evaluating the trace, it is most convenient to exploit the
connection to the Temperley-Lieb algebra [1, 3] and its unitary representation ρ by

ρ(σi) := A1l +A−1Ui , (8)

where A ∈ C is of modulus one and Ui is real symmetric, while σi is the generator of the braid group associated to
the knot of interest [92].
Next, we focus on the three-stranded braid group B3 generated by the elements {σ1, σ2}. It comprises the well

known standard knots Trefoil (up to addition of a circle disjoint from the knot), Figure-Eight, and the Borromean

Rings shown in Fig. 3.

(a) (b) (c)

Figure 3: (Colour online) Standard knots that relate to the braid group with three strands B3. (a) The Trefoil knot can be
represented by the braid group element σ3

1 , (b) the Figure-Eight knot by σ1 · σ
−1
2 · σ1 · σ

−1
2 , and (c) the Borromean rings by

σ1 · σ
−1
2 · σ1 · σ

−1
2 · σ1 · σ

−1
2 .

In the unitary (path model) representation of B3 one ends up with the following unitaries that contain θ (related
to the variable A of the bracket and Jones polynomial)

U1 =

⎛⎜⎝e−iθ 0

0 −eiθ sin(4θ)
sin (2θ) + e−iθ

⎞⎟⎠ and U2 :=

⎛⎜⎜⎝ −eiθ sin(6θ)
sin (4θ) + e−iθ −eiθ

√
sin (6θ) sin (2θ)

sin (4θ)

−eiθ
√

sin (6θ) sin (2θ)

sin (4θ) −eiθ sin(2θ)
sin (4θ) + e−iθ

⎞⎟⎟⎠ . (9)

Now, in order to get hold of the trace of Ui by a quantum measurement, we follow Ref. [25] and enlarge the quantum
register by one ancilla qubit. Then the unitary Ui is translated into a controlled unitary with respect to the ancilla
in the sense

Ui �→ cUi :=

(
1l2 0

0 Ui

)
. (10)
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Based on the thermal ensemble state ρ0 � 1
N
(1l− 1

2

∑
k αkσkz) with αk :=

�ωk

kBT
, it is routine (here on the molecule

chloroform by 1H saturation followed by gradient filters) to prepare the suitable initial state ρ0 =
1
N
(1l− α1

2 σ1z) with

the z-magnetization on the natural abundance 13C used as qubit. With these stipulations it is easy to proceed in
three final steps

1. prepare ρ1 :=
1
N
(1l− α1

2 σ1x) =
1
N
1l− α1

2N

(
0 1ln
1ln 0

)
.

2. let ρ1 evolve under the signature sequence cU :=
∏
seq.

cUi (vide infra) of cUi’s specific to the knot in question.

This gives the total ρ2 := cUρ1cU
† = 1

N
1l− α1

2N

(
0 U †

U 0

)
.

3. measure the expectation value of the phase sensitive ensemble detection operator [93] D := 1
2 (σ1x − iσ1y) as to

give 〈D〉 := tr{D†ρ2} = − α1

2N trU .

In simple cases it is well known how to translate unitary operators into NMR pulse sequences. In the more intricate
case here, similar recipes apply, and backed by grape, one arrives at the pulse sequences shown in Fig. 4, which are
specifically designed to continuously depend on the variable θ via

α :=
π

2
− 2θ β :=

π

2
+ θ γ := arctan

(
cos 4θ√

4 cos2 2θ − 1

)
+
π

2
(11)

so that they can be implemented over a range of values of θ.

Figure 4: NMR pulse sequences implementing the set of controlled unitaries {cU1, cU
−1
1 , cU2, cU

−1
2 } corresponding to the

generators of the three-strand braid group B3 encapsulating the Trefoil knot, the Figure-Eight knot, and the Borromean rings.

Now, for the Trefoil knot the NMR pulse sequence for cU1 has to be applied thrice cUtref := cU3
1 , while for the

Figure-Eight knot it is cU1 · cU−1
2 · cU1 · cU−1

2 and for the Borromean Rings cU1 · cU−1
2 · cU1 · cU−1

2 · cU1 · cU−1
2 to be

read from right to left to give the respective cUfig8 and cUborr.



8

(a) (b) (c)

Figure 5: (Colour online) Experimental results with real parts and imaginary parts of 1

2
tr{U}, from whence one can calculate

the Jones polynomial of the various knots as functions of θ. For the Trefoil, data are given in (a), for the Figure Eight in (b),
and for the Borromean rings in (c). The respective traces compare experimental results, theoretical predictions, and simulated
experiments, where realisitic imperfections like relaxation, B1-field inhomogeneity, and finite length of the pulses are included.

As shown in Fig. 5, the Jones polynomial was experimentally evaluated for each knot or link at 31 values of θ
distributed over a continuous part of the domain accessible by the quantum algorithm. This readily discriminates the
three-stranded knots or links by two qubits, while in Ref. [68] only single values of θ were used. Note the experimental
data nicely follow the theoretical prediction and the functional dependence is so different that the predictive power
of distinguishing knots or links is higher than by mere evaluation of single points.
Yet both experimental demonstrations include an evaluation of the Jones polynomial at a root of unity and thus

implement a DQC1-complete quantum algorithm (see [40]). In Ref. [68], only links that contain disjoint circles were
evaluated. As already mentioned, a much simpler quantum calculation using fewer qubits (here 2 qubits for a 2 strand
braid representation) can calculate the Jones polynomials of the given links equally well. In contrast, the evaluations
for the Figure-Eight knot and the Borromean rings cannot do with fewer than 3 strands and 2 qubits as shown in
Ref. [63].
Note that even moderately intricate molecular hardware with several qubits and realistic coupling topologies goes

beyond pulse sequences as easy as in Fig. 4 for the two-qubit molecule chloroform. Already the four-carbon architecture
of trans-crotonic acid used in Ref. [68] required the optimal control algorithm grape to be efficiently implemented
experimentally. We therefore anticipate that control algorithms will play a major role even for algorithms inspired by
topological quantum computation.

V. APPLICATIONS IN OPEN SYSTEMS

Controlling open systems is a particular challenge, since time-optimal controls need no longer be best adapted to
cope with the specific dissipative process related to a given experimental implementation. As has been shown in more
detail, the reason for this complication roots in the fact that in the controlled Lindblad master equation

Ẋ(t) = −(iĤu + ΓL)X(t) with ΓL :=
∑
k

V̄k ⊗ Vk − 1
2

(
(V †k Vk)

t ⊗ 1l + 1l⊗ (V †k Vk)
)

(12)

the generators of the dissipative part and the coherent part do not commute in the sense

[Ĥu,ΓL] �= 0 . (13)

It is for the same reason that many control problems in open systems are beyond algebraic tractability. On the other
hand this paves the way to benefit from numerical optimal control.
In order to elucidate its power, consider the following example of a physical four-qubit system encoding two logical

qubits: the starting point is the usual encoding of one logical qubit in Bell states of two physical ones

|0〉AB := 1√
2
{|01〉+ |10〉} = |ψ+〉AB and |1〉AB := 1√

2
{|01〉 − |10〉} = |ψ−〉AB . (14)
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The corresonding density operators simply take the form ρ± := |ψ±〉〈ψ±|. So four density-operator elements then
span a Hermitian operator subspace

BAB := spanR {|ψ±〉〈ψ±|}AB , (15)

that is protected against T2-type relaxation. Clearly, an analogous subspace BCD exists for the second logical qubit
{|0〉CD, |1〉CD} on the physical qubits C,D.
Henceforth we use the short hand 1lμν1l := 1

21l2⊗σμ⊗σν⊗1l2 for μ, ν ∈ {x, y, z, 1l}. So one obtains a fully controllable
system over the protected subspace of two logical qubits realised by four physical qubits, where the drift Hamiltonian
reads

H0 := Jxx
(
xx1l1l + 1l1lxx+ yy1l1l + 1l1lyy

)
+ Jxyz

(
1lxx1l + 1lyy1l + 1lzz1l

)
(16)

where the coupling constants are set to Jxx = 2 Hz and Jzz = 1 Hz. In the model system, the control Hamiltonians
amount to the two independent (anti-phase) z-rotations

H1 := z1l1l1l− 1lz1l1l and H2 := 1l1lz1l− 1l1l1lz . (17)

While for both qubit pairs (AB) and (CD) the density operators {ρ±AB, ρ
±
CD} form a fully controllable pair of T2-

protected logical qubits, they are not protected against (the usually much weaker) T1-relaxation mechanisms. Now
the task of finding relaxation-optimised controls implementing the target cnot gate on the logical two qubits is
highly non-trivial, because at the same time the system has to be decoupled from the Hamiltonian components of
Heisenberg-type HXX that otherwise would drive the protected subsystem into fast relaxing modes. In Ref. [73] we
have shown that open-grape produces control sequences which are some 30 times faster than Trotter-based paper-
and-pen decompositions. Moreover, the controls found numerically approximate the target cnot with a fidelity of
≥ 95%, while the paper-and-pen solutions would only work in the absence of T1 processes: already T1 relaxation as
small as 1/170 of the T2 process suffices to limit the fidelity of the paper-and-pen version to less than 15% in this
example as shown in Ref. [73].

0.4 0.6 0.8 1

0.6

0.7

0.8

0.9

1

time   [1/J
iso

]

tr
ac

e 
fid

el
ity

   
( 

F
tr

)

0.4 0.6 0.8 1

0.6

0.7

0.8

0.9

1

time   [1/J
iso

]

T   only2

relax.-opt.

near time-opt.

Figure 6: (Colour online) Left panel: fidelities of implementing a cnot by the control system of Eqns. (16) and (17) versus
time in the absence of relaxation (average ± rmsd over 15 independent runs). Right panel: the middle trace shows the fidelities
obtained, when both T1 and T2 relaxation are taken into account in the optimisation by opengrape. Here the ratio of relxation-
rate constants is T−1

2 : T−1
1 � 170 : 1. The failure of time-optimal controls becomes evident in the lower trace: it shows the

behaviour of the 15 runs optimised in the absence of relaxation (as in the left panel) when T1 and T2 relaxation are actually
present: as expected, the qualities disperse, because some control sequences are—by serendipity—more immune to relaxation
than others (mean over 15 runs with points showing the best and the worst cases), while the relaxation-optimised sequences are
systematically tailored to cope with the relaxation process given in the master equation. For reference: if only T2 relaxation
processes were present, the relaxation-optimised sequences would reach full fidelity as shown in the upper trace. So the only
losses of the relaxation-optimised controls are due to the weak T1 processes.
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Figure 7: (Colour online) The process tomogrophy plots for the opengrape-optimised cnot gate over the T2-protected subspace
shows clean phases in (a), and its square cnot

2 shows a nearly perfect approximation to the identity (b) as is expected for
gates that are a square-root of unity.

In another instance, time-optimal control for a spin- 12 particle in a dissipative environment has been addressed in
[57, 58]. This system provides an illustrative example to show the role of singular extremals in the control of quantum
systems. A simple case where the control law is explicitly determined is analysed and its optimal controls have been
experimentally implemented in nuclear magnetic resonance. To our knowledge, this has been the first experimental
demonstration of singular extremals in quantum systems with bounded control amplitudes.
Also for non-Markovian settings, relaxation-optimised control can be put to good use. In Ref. [71] we showed that

a working qubit dissipatively interacting with a two-level fluctuator in a non-Markovian way, where, however, the
fluctuator itself interacts with a surrounding bosonic bath in a Markovian can be treated likewise. To this end, one
extends the qubit to a qubit-plus-fluctuator system, which by construction dissipates in a Markovian way so that it
can be readily treated as just described above. For the task of implementing a z-gate in such a model system, the
opengrape controls outperform conventional Rabi-based pulses by cutting the residual error (i.e. 1−fidelity) by about
one order of magnitude, even if constraints like smooth pulses have to be respected for experimental reasons [71].
— Actually, the same holds on a very general scale: any non-Markovian system that can be embedded into system-
plus-shell leaving only Markovian relaxation processes with the remaining bath can be tackled likewise as long as the
enlarged system-plus-shell is of tractable dimensionality as expained in all detail in [73]. This idea has found further
recent application in a number of standard gates [30] thus underpinning the guidelines of Tab. III drawn from [73].

Table III: Gain Potential for Relaxation-Optimised Controls versus Time-Optimised Controls

Category Markovian non-Markovian

No encoding:

full Liouville space small–medium medium–big [71]

Encoding:

protected subspace big difficult [94]

VI. CONCLUSIONS

We have discussed control aspects of quantum computation in a universal frame also underlying the unified pro-
gramming platform dynamo [62]. It serves to provide concrete experimental controls for quantum computational
gate synthesis or spectroscopic state transfer in general finite-dimensional control systems. The toolbox comprises
the fastest among the currently known algorithms and owing to its modular structure it will be easy to keep it
state-of-the-art.
Quantum gate synthesis or state transfer can thus be achieved with optimised fidelities for the experimental settings

given no matter whether the implementation is meant to be via pure states or not. In a previous review [74], we
have treated experimental aspects of implementing pure and pseudo-pure states in ensemble spectroscopy. Here, we
have pointed out an ensemble implementation of the quantum algorithm DQC1. By characterising invariants of braid
groups, it provides a bridge to topological quantum computation.
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While in spin systems optimal control methods are well-established (as has become obvious by several other contri-
butions in this issue, see also the review in Ref. [65]), here we have focussed on wider applicability by examples from
Josephson elements and cavity grids, and further implementations in ion traps and NV-centres of diamonds are in
progress. Most often standard decompositions into local gates plus cnot gates are by far less robust and less efficient
than the assembly of effective multi-qubits gates compiled via optimal-control. So on a very general scale, quantum
opimal control can contribute a lot to exploit error-avoidance, thus leaving only the experimentally inevitable errors
to be treated by costly error correction schemes. Therefore we anticipate that the control methods presented will be
widely used in many further implementations of quantum simulation and quantum informationn processing including
topological quantum computation. To this end, the dynamo package will be updated by the latest developments.
This includes most recent Newton-Raphson schemes [17], filtering techniques for fast-modulating Hamiltonians [64]
as well as extending the controls from coherent to encompass incoherent degrees of freedom [7]. The latter will pave
the way to new classes of applications.
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