
LOCAL HOLOMORPHIC DE RHAM COHOMOLOGY

RONG DU AND STEPHEN YAU∗

A. Local holomorphic De Rham cohomology introduced in this
paper and punctured local holomorphic De Rham cohomology intro-
duced by Huang-Luk-Yau are two important local invariants for vari-
eties with isolated singularities. We find some relations between these
two invariants and the invariants defined by Steenbrink on surface singu-
larities, and from which we use these two invariants to describe when a
Gorenstein singularity is quasi-homogeneous.

1. I

Let M be a complex manifold. The q-th holomorphic De Rham coho-
mology of M, Hq

h(M), is defined to be the d-closed holomorphic q-forms
modulo the d-exact holomorphic q-forms. Holomorphic De Rham coho-
mology was studied by Hörmander [Hö]. In the paper [Hu-Lu-Ya], the
authors introduce the notion of q-th punctured local holomorphic De Rham
cohomology Hq

h(V, x) as the direct limit of Hq
h(U − {x}) where U runs over

strongly pseudoconvex neighborhoods of isolated singularity x in a com-
plex variety V . This is an important local invariant which can be used to
tell when the hypersurface singularity is quasi-homogeneous (see section
2). The purpose of this paper is to generalize the result in [Hu-Lu-Ya] to
Gorenstein surface singularities, i.e. the following theorem.

Main Theorem Let (V, x) be an isolated Gorenstein surface singularity.
For a given smoothing, let µ and τ be the generalized Milnor number and
Tjurina number of (V, x) respectively. Then

dimH2
h(V, x) − dimH1

h(V, x) = µ − τ.

In particular the singularity is quasi-homogeneous if and only if

dimH1
h(V, x) = dimH2

h(V, x).
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In §2, we recall the basic notions and results that are needed for the proof
of our main theorem. We also introduce the notion local holomorphic De
Rham cohomology. In §3, we establish some relations between our new
invariant and the invariants defined by Steenbrink. We also prove our main
theorem in this section.

2. P

Let V be an n-dimensional complex analytic subvariety in CN with only
isolated singularities. There are two kinds of sheaves of germs of holomor-
phic p-forms defined on V (cf [Ya]):

(1) Ω̄p
V := π∗Ω

p
M, where π : M −→ V is a resolution of singularities of

V .
(2) ¯̄Ωp

V := θ∗Ω
p
V\Vsing

where θ : V\Vsing −→ V is the inclusion map and
Vsing is the singular set of V .

Clearly Ω̄p
V is a coherent sheaf because π is a proper map. ¯̄Ωp

V is also a
coherent sheaf by a Theorem of Siu [Si]. In case V is a normal variety, the
dualizing sheaf ωV of Grothendieck is actually the sheaf ¯̄Ωn

V .

Definition 2.1. The Siu complex is a complex of coherent sheaves J• sup-
ported on the singular points of V which is defined by the following exact
sequence

0 −→ Ω̄• −→ ¯̄Ω• −→ J• −→ 0. (2.1)

Definition 2.2. Let V be an n-dimensional Stein space with x as its only
singular point. Let π : (M, A) → (V, x) be a resolution of the singularity
with A as exceptional set. The geometric genus pg and the irregularity q of
the singularity are defined as follows (cf. [Ya2], [St-St]):

pg := dimΓ(M\A,Ωn)/Γ(M,Ωn), (2.2)

q := dimΓ(M\A,Ωn−1)/Γ(M,Ωn−1), (2.3)

The s-invariant of the singularity is defined as follows

s := dimΓ(M\A,Ωn)/[Γ(M,Ωn) + dΓ(M\A,Ωn−1)]. (2.4)

Lemma 2.3 (Lu-Ya). Let V be an n-dimensional Stein space with x as its
only singular point. Let J• be the Siu complex of coherent sheaves sup-
ported on x. Then

(1) dimJn = pg,
(2) dimJn−1 = q,
(3) dimJi = 0, for 1 ≤ i ≤ n − 2,
(4) s = dimHn(J•) = pg − q and dimHn−1(J•) = 0.
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In analogous to the definition of the q-th punctured local holomorphic De
Rham cohomology, we can similarly define local holomorphic De Rham co-
homology Hq

h(V)x to be the direct limit of Hq
h(U) where U runs over strongly

pseudoconvex neighborhoods of x in V .

Definition 2.4. Let x be a singularity of V. Consider the complexes

0 −→ C −→ OV,x
d̄0

−→ Ω̄1
V,x

d̄1

−→ Ω̄2
V,x

d2

−→ · · · . (2.5)

0 −→ C −→ OV,x

¯̄d0

−→ ¯̄Ω1
V,x

¯̄d1

−→ ¯̄Ω2
V,x

¯̄d2

−→ · · · . (2.6)

Then the generalized Poincaré number p̄(i)
x , ¯̄p(i)

x are defined by dim kerd̄i/Imd̄i−1

and dim ker ¯̄di/Im ¯̄di−1 respectively.

Lemma 2.5. Let (V, x) be an isolated singularity. The the local holomorphic
De Rham cohomology Hq

h(V)x and punctured local holomorphic De Rham
cohomology Hq

h(V, x) are isomorphic to q-th cohomology of the following
complex

0 −→ C −→ OV,x
d̄0

−→ Ω̄1
V,x

d̄1

−→ Ω̄2
V,x

d2

−→ · · · . (2.7)
and

0 −→ C −→ OV,x

¯̄d0

−→ ¯̄Ω1
V,x

¯̄d1

−→ ¯̄Ω2
V,x

¯̄d2

−→ · · · . (2.8)
respectively.

The main theorem in [Hu-Lu-Ya] is

Theorem 2.6 (Hu-Lu-Ya). Let (V, x) = {(z0, · · · , zn) ∈ Cn+1 : f (z0, · · · , zn) =
0} be a hypersurface with origin as isolated singularity. Then

(1) dimHq
h(V, x) = 0 for q ≤ n − 2

(2) dimHn
h(V, x) − dimHn−1

h (V, x) = µ − τ where

µ = dimC{z0, · · · , zn}/(∂ f /∂z0, · · · , ∂ f /∂zn)

is the Milnor number and

τ = dimC{z0, · · · , zn}/( f , ∂ f /∂z0, · · · , ∂ f /∂zn)

is the Tjurina number of the singularity (V, x) respectively.

For isolated surface singularities, we can generalize above theorem to
Gorenstein case. Before doing that, we recall some basic notions.

Let (V, x) be a normal surface singularity. Let π : M −→ V be a good
resolution of singularity. Let π−1(x) = A = ∪Ai, 1 ≤ i ≤ n, be the irreducible
decomposition of the exceptional set A into irreducible components. Let gi

be the genus of Ai, g =
∑

gi and denote by Ã the disjoint union of Ai. Let Γ
be the dual graph of A and b is the number of loops in Γ.
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The sheaf of germs of logarithmic 1-forms Ω1
M(logA) is defined by the

kernel of the restriction map.

0 −→ Ω1
M(logA)(−A) −→ Ω1

M −→ Ω
1
Ã
−→ 0 (2.9)

It follows that ∧2Ω1
M(logA) = Ω2

M(A), and there is an exact sequence

0 −→ Ω1
M −→ Ω

1
M(logA) −→ O1

Ã
−→ 0 (2.10)

The following Lemma can be found in [Wa].

Lemma 2.7.
(1) The composition H0(OÃ)→ H1(Ω1

M)→ H1(Ω1
Ã
) is an isomorphism.

(2) H0(Ω1
M)→̃H0(Ω1

M(logA)).

Recall that n is the number of the components of A.
Since H0

A(OÃ)→̃H0(OÃ), the map H0(OÃ)→ H1(Ω1
M) factors via H1

A(Ω1
M).

Therefore, by Lemma 2.7, Steenbrink define an nonnegative integer

γ := rk(H1
A(Ω1

M)→ H1(Ω1
M)) − n. (2.11)

Besides γ, Steenbrink introduces two other invariants

α := dimH0(Ω2
M)/dH0(Ω1

M(logA)(−A)) (2.12)

β := dimH0(Ω1
Ã
)/ImH0(Ω1

M). (2.13)

Next let us recall the definition of smoothable singularities, generalized
Milnor number and Tjurina number.

Definition 2.8. If there exists a flat morphism π : V → T of local analytic
spaces such that π−1(t0) ' V and π−1(t) ' Vt is nonsingular for t , t0, then
the singularity (V, x) is called smoothable.

More generally, let (V, x) be a local analytic variety with isolated singu-
larity of pure dimension n. To any smoothing π : V → T of V , one can
attach a Milnor fibre F := Bε ∩ π−1(t), where Bε is a ball in some CN con-
taining V and t ∈ T (cf. [Tr]). F is a 2n-manifold with boundary, with
the homotopy type of a finite complex of dimension n. We define Milnor
number µ = rkHn(F).

As is well known, any complex analytic germ (V, x) with isolated singu-
larity admits a semi-universal deformation

(V, x) ↪→ (Y , y)
F
−→ (S , s)

(cf. Grauert [Gr] and Bingener [Bi]). Given a semi-universal deformation
of (V, x), we call an irreducible component (S ′, s) of (S , s) a smooth com-
ponent if the general fibre of F over this component is smooth. In general
however, the germ (S , s) is not smooth and indeed, it may have irreducible
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components of various dimensions. Any smooth component has dimension
between dimCT 1

V − dimCT 2
V and dimCT 1

V , where T 1
V , T 2

V are respectively the
first order deformation and obstruction spaces.

For a smoothing, π : V → T of (V, x) and a smooth component (S ′, s) on
which π : V → T lies, Wahl had a conjecture in [Wah1]:

dimC(S ′, s) = dimCCoker(ΘV/T ⊗ OV → ΘV).
Wahl himself verified his conjecture for special cases. Later Greuel and
Looijenga ([G-L]) proved this conjecture completely.

We define τ = dimCT 1
V . If (V, x) has no obstructed deformations (e.g.

(V, x) is a complete intersection), then (S , s) is nonsingular and

dimC(S , s) = dimCT 1
V .

So τ generalizes the usual Tjurina number.

3. P M T

Denote

hi
h(M) = dimHi

h(M), hi(M,F ) = dimHi(M,F ), hi(M) = dimHi(M,C),

where M is a manifold, F is a sheaf on M.

Proposition 3.1. Let (V, x) be a normal surface singularity. Then

dimH2
h(V)x − dimH1

h(V)x = α + β − g.

Proof. Let π : M −→ V be a good resolution of singularity. Let π−1(x) =
A = ∪Ai, 1 ≤ i ≤ n, be the irreducible decomposition of the exceptional set
A into irreducible components. Since dimH2

h(V)x and dimH1
h(V)x are local

invariants, we can suppose that V is sufficiently small and is contractible to
the singular point without loss of generality.

We have the spectral sequence

Ep,q
1 = Hq(M,Ωp

M)⇒ Hp+q(M,Ω•M) � Hp+q(M,C). (3.14)

The spectral sequence induces an exact sequence of small order terms

0→ H1
h(M)→ H1(M,C)→ E0,1

2 → H2
h(M)→ H2(M,C)→ E1,1

2 → 0,
(3.15)

where
E0,1

2 = ker(H1(M,OM)→ H1(M,Ω1
M)), (3.16)

E1,1
2 = coker(H1(M,OM)→ H1(M,Ω1

M)). (3.17)
So

h1
h(M) − h1(M) + dimE0,1

2 − h2
h(M) + h2(M) − dimE1,1

2 = 0. (3.18)
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Since
dimE0,1

2 − dimE1,1
2 = h1(M,OM) − h1(M,Ω1

M), (3.19)
we have

h1
h(M) − h1(M) − h2

h(M) + h2(M) + h1(M,OM) − h1(M,Ω1
M) = 0. (3.20)

From [Wa], we know

h1(M,Ω1
M) = γ + q + n
= pg − g − b − α − β + n.

(3.21)

And

h1(M) = dimH1(A,C) = 2g + b, h2(M) = n, h1(M,OM) = pg.

So
h2

h(M) − h1
h(M) = α + β − g.

Since dimH2
h(V)x and dimH1

h(V)x are independent on the choice of the pseu-
doconvex domains containing the singularity,

dimH2
h(V)x − dimH1

h(V)x = p̄(2)
x − p̄(1)

x

= h2
h(M) − h1

h(M)
= α + β − g.

(3.22)

Q.E.D.

Proposition 3.2. Let (V, x) be an isolated normal surface singularity. Then
¯̄p(1)

x = p̄(1)
x , ¯̄p(2)

x = p̄(2)
x + s

Proof. Let π : M −→ V be a good resolution of singularity. Let π−1(x) = A,
be the exceptional set. Since dimHi

h(V)x and Hi
h(V, x), i = 1, 2, are local

invariants, we can suppose that V is sufficiently small and is contractible to
the singular point without loss of generality.

According to the short exact sequence (2.1) and Cartan Theorem A, have
the following exact sequence of complexes

0 −→ Γ(V, Ω̄•) −→ Γ(V, ¯̄Ω•) −→ Γ(V, J•) −→ 0. (3.23)
In view of Lemma 2.3 (4), (3.23) gives

0 −→ H1(Γ(V, Ω̄•)) −→ H1(Γ(V, ¯̄Ω•)) −→ H1(Γ(V, J•))

−→ H2(Γ(V, Ω̄•)) −→ H2(Γ(V, ¯̄Ω•)) −→ H2(Γ(V, J•)) −→ 0
(3.24)

Since J• is supported on x, we have

H2(Γ(V, J•)) = H2(J•), H1(Γ(V, J•)) = H1(J•). (3.25)

So from Lemma 2.3 (4), we get

H1
h(M) � H1

h(M\A)
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and

0 −→ H2(Γ(V, Ω̄•)) −→ H2(Γ(V, ¯̄Ω•)) −→ H2(Γ(V, J•)) −→ 0 (3.26)

Observe that

H2(Γ(V, Ω̄•)) = H2(Γ(M,Ω•M)) = H2
h(M),

H2(Γ(V, ¯̄Ω•)) = H2(Γ(M\A,Ω•M)) = H2
h(M\A).

It follows from (3.26) and Lemma 2.3 (4) that

h2
h(M\A) = h2

h(M) + s

Since dimHi
h(V)x and dimHi

h(V, x), i = 1, 2, are independent on the choice
of the pseudoconvex domains containing the singularity,

¯̄p(1)
x = p̄(1)

x , ¯̄p(2)
x = p̄(2)

x + s.

Q.E.D.

Proposition 3.3. Let (V, x) be an isolated normal surface singularity. Then

dimH2
h(V, x) − dimH1

h(V, x) = ¯̄p(2)
x − ¯̄p(1)

x = 2α + 2β + γ + b ≥ 0.

Proof. From Proposition 3.1 and 3.2, and

s = α + β + γ + g + b (3.27)

from Steenbrink (cf [Wa]), we can get the result. Q.E.D.

Theorem 3.4. ([Wa]) Let (V, x) be an isolated Gorenstein surface singular-
ity. For a given smoothing, let µ and τ be the generalized Milnor number
and Tjurina number of (V, x) respectively. Then

µ − τ = 2α + 2β + γ + b.

Theorem 3.5. Let (V, x) be an isolated Gorenstein surface singularity. For a
given smoothing, let µ and τ be the generalized Milnor number and Tjurina
number of (V, x) respectively. Then

dimH2
h(V, x) − dimH1

h(V, x) = µ − τ.

In particular the singularity is quasi-homogeneous if and only if

dimH1
h(V, x) = dimH2

h(V, x).

Proof. The theorem follows from Proposition 3.3 and Theorem 3.4. Q.E.D.
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[Gr] Grauert, H., Über die Deformation isolierter Singularitäten analytischer Men-
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