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Abstract

Posterior probabilistic statistical inference without priors is an important but so
far elusive goal. Fisher’s fiducial inference, Dempster–Shafer theory of belief func-
tions, and Bayesian inference with default priors are attempts to achieve this goal
but, to date, none has given a completely satisfactory picture. This paper presents a
new framework for probabilistic inference, based on inferential models (IMs), which
not only provides data-dependent probabilistic measures of uncertainty about the
unknown parameter, but does so with an automatic long-run frequency calibration
property. The key to this new approach is the identification of an unobservable
auxiliary variable associated with observable data and unknown parameter, and the
prediction of this auxiliary variable with a random set before conditioning on data.
Here we present a three-step IM construction, and prove a frequency-calibration
property of the IM’s belief function under mild conditions. A corresponding opti-
mality theory is developed, which helps to resolve the non-uniqueness issue. Several
examples are presented to illustrate this new approach.

Keywords and phrases: Belief function; plausibility function; predictive random
set; score function; validity.

1 Introduction

In a statistical inference problem, one attempts to convert experience, in the form of
observed data, to knowledge about the unknown parameter of interest. The fact that ob-

∗Published in Journal of the American Statistical Association, 108, 301–313. A note correcting and
improving Theorems 1 and 3 below has also been published in the journal, 108, 1138–1139.
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served data is surely limited implies that there will be some uncertainty in this conversion,
and probability is a natural tool to describe this uncertainty. But a statistical inference
problem is different from the classical probability setting because everything—observed
data and unknown parameter—is fixed, and so it is unclear where these probabilistic as-
sessments of uncertainty should come from, and how they should be interpreted. For ex-
ample, the classical frequentist approach assigns probabilistic assessments of uncertainty
(e.g., confidence levels) by considering repeated sampling from the super-population of
possible data sets. These uncertainty measures do not depend on the observed data, so
their meaningfulness in a given problem is questionable. The Bayesian approach, on the
other hand, is able to produce meaningful data-dependent probabilistic measures of un-
certainty, but the cost is that a prior probability distribution for the unknown parameter
is required. Early efforts to get probabilistic inference without prior specification include
Fisher’s fiducial inference (Zabell 1992) and its variants (Hannig 2009, 2013; Hannig and
Lee 2009), confidence distributions (Xie and Singh 2013; Xie et al. 2011), Fraser’s struc-
tural inference (Fraser 1968), and the Dempster–Shafer theory (Dempster 2008; Shafer
1976). These methods generate probabilities for inference, but these probabilities may
not be easy to interpret, e.g., they may not be properly calibrated across users or ex-
periments. So recent efforts have focused on incorporating a frequentist element. In
particular, objective Bayes analysis with default/reference priors (Berger 2006; Berger
et al. 2009; Bernardo 1979; Ghosh 2011) attempts to construct priors for which certain
posterior inferences, such as credible intervals, closely match that of a frequentist (Fraser
2011; Fraser et al. 2010). Calibrated Bayes (Dawid 1985; Little 2011; Rubin 1984) has
similar motivations. But difficulties remain in choosing good reference priors for high-
dimensional problems so, despite these efforts, a fully satisfactory framework of objective
Bayes inference has yet to emerge.

The goal of this paper is to develop a new framework for statistical inference, called
inferential models (IMs). The seeds for this idea were first planted in Martin et al.
(2010) and Zhang and Liu (2011); here we formalize and extend these ideas towards a
cohesive framework for statistical inference. The jumping off point is a simple association
of the observable data X and unknown parameter θ ∈ Θ with an unobservable auxiliary
variable U . For example, consider the simple signal plus noise model, X = θ + U , where
U ∼ N(0, 1). If X = x is observed, then we know that x = θ + u?, where u? is some
unobserved realization of U . From this it is clear that knowing u? is equivalent to knowing
θ. So the IM approach attempts to accurately predict the value u? before conditioning on
X = x. The benefit of focusing on u? rather than θ is that more information is available
about u?: indeed, all that is known about θ is that it sits in Θ, while u? is known to be
a realization of a draw U from an a priori distribution, in this case N(0, 1), that is fully
specified by the postulated sampling model. However, this a priori distribution alone
is insufficient for accurate prediction of u?. Therefore, we adopt a so-called predictive
random set for predicting u?, which amounts to a sort of “smearing” of this distribution
for U . When combined with the association between observed data, parameters, and
auxiliary variables, these random sets produce prior-free, data-dependent probabilistic
assessments of uncertainty about θ.

To summarize, an IM starts with an association between data, parameters, and auxil-
iary variables and a predictive random set, and produces prior-free, post-data probabilistic
measures of uncertainty about the unknown parameter. The following associate-predict-
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combine steps provide a simple yet formal IM construction. The details of each of these
three steps will be fleshed out in Section 2.

A-step. Associate the unknown parameter θ to each possible (x, u) pair to obtain a
collection of sets Θx(u) of candidate parameter values.

P-step. Predict u? with a valid predictive random set S.

C-step. Combine X = x, Θx(u), and S to obtain a random set Θx(S) =
⋃
u∈S Θx(u).

Then, for any assertion A ⊆ Θ, compute the probability that the random set Θx(S) is a
subset of A as a measure of the available evidence in x supporting A.

The A-step is meant to emphasize the use of unobservable but predictable auxiliary
variables in the statistical modeling step. These auxiliary variables make it possible to
introduce posterior probability-like quantities without a prior distribution for θ. The
P-step is new and unique to the inferential model framework. The key is that Θx(S)
contains the true θ if and only if S contains u?. Then the validity condition in the P-step
ensures that S will hit its target with large probability which, in turn, guarantees that
probabilistic output from the C-step has a desirable frequency-calibration property. This,
together with its dependence on the observed data x, makes the IM’s probabilistic output
meaningful both within and across experiments.

The remainder of the paper is organized as follows. Section 2 provides the details of the
IM analysis, specifically the three-step construction outlined above, as well as a descrip-
tion of calculation and interpretation of the IM output: a posterior belief function. These
ideas are illustrated with a simple Poisson mean example. After arguing, in Section 2,
that the IM output provides a meaningful summary of one’s uncertainty about θ after
seeing X = x, we prove a frequency calibration property of the posterior belief functions
in Section 3 which establishes the meaningfulness of the posterior belief function across
different users and experiments. As a consequence of this frequency-calibration property,
we show in Section 3.4 that the IM output can easily be used to design new frequentist
decision procedures having the desired control on error probabilities, etc. Some basic but
fundamental results on IM optimality are presented in Section 4. Section 5 gives IM-
based solutions to two non-trivial examples, both involving some sort of marginalization.
Nonetheless, these examples are relatively simple and they illustrate the advantages of the
IM approach. Concluding remarks are given in Section 6, and R codes for the examples
are available on the first author’s website: www.math.uic.edu/~rgmartin.

2 Inferential models

2.1 Auxiliary variable associations

If X denotes the observable sample data, then the sampling model is a probability distri-
bution PX|θ on the sample space X, indexed by a parameter θ ∈ Θ. Here X may consist
of a collection of n (possibly vector-valued) data points, in which case both PX|θ and X
would depend on n. The sampling model for X is induced by an auxiliary variable U , for
given θ. Let U be an (arbitrary) auxiliary space, equipped with a probability measure
PU . In applications, U can often be a unit hyper-cube and PU Lebesgue measure. The
sampling model PX|θ shall be determined by the following “algorithm:”

sample U ∼ PU and set X = a(U, θ), (2.1)
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for an appropriate mapping a : U × Θ → X. The key is the association of the observ-
able X, the unknown θ, and the auxiliary variable U through the relation X = a(U, θ).
This particular formulation of the sampling model is not really a restriction. In fact,
the two-step construction of the observable X in (2.1) is often consistent with scientific
understanding of the underlying process under investigation; linear models form an in-
teresting class of examples. As another example, suppose X = (X1, . . . , Xn) consists of
an independent sample from a continuous distribution. If the corresponding distribution
function Fθ is invertible, then a(θ, U) may be written as

a(θ, U) =
(
F−1θ (U1), . . . , F

−1
θ (Un)

)
, (2.2)

where U = (U1, . . . , Un) is a set of independent Unif(0, 1) random variables.
The notation X = a(θ, U) chosen to represent the association between (X, θ, U) is

just for simplicity. In fact, this association need not be described by a formal equation.
As the Poisson example below shows, all we need is a recipe, like that in (2.1), describing
how to produce a sample X, for a given θ, based on a realization U ∼ PU .

Gaussian Example. Consider the problem of inference on the mean θ based on a single
sample X ∼ N(θ, 1). In this case, the association linking X, θ, and an auxiliary variable U
may be written as U = Φ(X−θ) or, equivalently, X = θ+Φ−1(U), where U ∼ Unif(0, 1),
and Φ is the standard Gaussian distribution function.

Poisson Example. Consider the problem of inference on the mean θ of a Poisson
population based on a single observation X. For this discrete problem, the association
for X, given θ, may be written as

Fθ(X − 1) ≤ 1− U < Fθ(X), U ∼ Unif(0, 1), (2.3)

where Fθ denotes the Pois(θ) distribution function. This representation is familiar for
simulating X ∼ Pois(θ), i.e., one can first sample U ∼ Unif(0, 1) and then choose X so
that the inequalities in (2.3) are satisfied. But here we also interpret (2.3) as a means to
link data, parameter, and auxiliary variable.

It should not be surprising that, in general, there are many associations for a given
sampling model. In fact, for a given sampling model PX|θ, there are as many associations
as there are triplets (U,PU , a) such that PX|θ equals the push-forward measure PUa

−1
θ ,

with aθ(·) = a(θ, ·). For example, if X ∼ N(θ, 1), then each of the following defines an
association: X = θ + U with U ∼ N(0, 1), X = θ + Φ−1(U) with U ∼ Unif(0, 1), and

X =

{
θ + U if θ ≥ 0,

θ − U if θ < 0,
with U ∼ N(0, 1).

Presently, there appears to be no strong reason to choose one of these associations over
the other. However, the optimality theory presented in Section 4 helps to resolve this
non-uniqueness issue, that is, the optimal IM depends only on the sampling model, and
not on the chosen association. From a practical point of view, we prefer, for continuous
data problems, associations which are continuous in both θ and U , which rules out the
latter of the three associations above. Also, we tend to prefer the representation with a
uniform U , any other choice being viewed as just a reparametrization of this one. It will
become evident that this view is without loss of generality for simple problems with a
one-dimensional auxiliary variable. The case when U is moderate- to high-dimensional is
more challenging and we defer its discussion to Section 6.
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2.2 Three-step IM construction

2.2.1 Association step

The association (2.1) plays two distinct roles. Before the experiment, the association
characterizes the predictive probabilities of the observable X. But once X = x is ob-
served, the role of the association changes. The key idea is that the observed x and the
unknown θ must satisfy

x = a(u?, θ) (2.4)

for some unobserved realization u? of U . Although u? is unobserved, there is information
available about the nature of this quantity; in particular, we know exactly the distribution
PU from which it came.

Of course, the value of u? can never be known, but if it were, the inference problem
would be simple: given X = x, just solve the equation x = a(u?, θ) for θ. More generally,
one could construct the set of solutions Θx(u

?), where

Θx(u) = {θ : x = a(u, θ)}, x ∈ X, u ∈ U. (2.5)

For continuous-data problems, Θx(u) is typically a singleton for each u; for other prob-
lems, it could be a set. In either case, given X = x, Θx(u

?) represents the best possible
inference in the sense that the true θ is guaranteed to be in Θx(u

?).

Gaussian Example (cont). The Gaussian mean problem is continuous, so the as-
sociation x = θ + Φ−1(u) identifies a single θ for each fixed (x, u) pair. Therefore,
Θx(u) = {x− Φ−1(u)}. In this case, clearly, if u? were somehow observed, then the true
θ could be determined with complete certainty.

Poisson Example (cont). Integration-by-parts reveals that the Pois(θ) distribution
function Fθ satisfies Fθ(x) = 1−Gx+1(θ), where Ga is a Gamma(a, 1) distribution function.
Therefore, from (2.3), we get the u-interval Gx+1(θ) < u ≤ Gx(θ). Inverting this u-
interval produces the following θ-interval:

Θx(u) =
(
G−1x (u), G−1x+1(u)

]
. (2.6)

If u? was available, then Θx(u
?) would provide the best possible inference in the sense

that the true value of θ is guaranteed to sit inside this interval. But even in this ideal
case there is no information available to identify the exact location of θ in Θx(u

?).

2.2.2 Prediction step

The above discussion highlights the importance of the auxiliary variable for inference. It
is, therefore, only natural that the inference problem should focus on accurately predicting
the unobserved u?. To predict u? with a certain desired accuracy, we employ a so-called
a predictive random set. First we give the simplest description of a predictive random set
and provide a useful example. More general descriptions will be given later.

Let u 7→ S(u) be a mapping from U to a collection of PU -measurable subsets of U; one
decent example of such a mapping S is given in equation (2.7) below. Then the predictive
random set S is obtained by applying the set-valued mapping S to a draw U ∼ PU , i.e.,
S = S(U) with U ∼ PU . The intuition is that if a draw U ∼ PU is a good prediction
for the unobserved u?, then the random set S = S(U) should be even better in the sense
that there is high probability that S 3 u?.
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Gaussian Example (cont). In this example we may predict the unobserved u? with a
predictive random set S defined by the set-valued mapping

S(u) =
{
u′ ∈ (0, 1) : |u′ − 0.5| < |u− 0.5|

}
, u ∈ (0, 1). (2.7)

As this predictive random set is designed to predict an unobserved uniform variate, we
may also employ (2.7) in other problems, including the Poisson example.

There are, of course, other choices of S(u), e.g., [0, u), (u, 1], (0.5u, 0.5 + 0.5u) and
more. Although some other choice of S = S(U) might perform slightly better depending
on the assertion of interest, (2.7) seems to be a good default choice. See Sections 3 and
4 for more on the choice predictive random sets.

For the remainder of this paper, we shall mostly omit the set-valued mapping S
from the notation and speak directly about the predictive random set S. That is, the
predictive random set S will be just a random subset of U with distribution PS . In the
above description, PS is just the push-forward measure PUS

−1.

2.2.3 Combination step

For the time being, let us assume that the predictive random set S is satisfactory for
predicting the unobserved u?; this is actually easy to arrange, but we defer discussion
until Section 3. To transfer the available information about u? to the θ-space, our last
step is to combine the information in the association, the observed X = x, and the
predictive random set S. The intuition is that, if u? ∈ S, then the true θ must be in the
set Θx(u), from (2.5), for at least one u ∈ S. So, logically, it makes sense to consider, for
inference about θ, the expanded set

Θx(S) =
⋃
u∈S Θx(u). (2.8)

The set Θx(S) contains those values of θ which are consistent with the observed data and
sampling model for at least one candidate u? value u ∈ S. Since θ ∈ Θx(S) if and only
if the unobserved u? ∈ S, if we are willing to accept that the predictive random set S is
satisfactory for predicting u?, then Θx(S) will do equally well at capturing θ.

Now consider an assertion A about the parameter of interest θ. Mathematically, an
assertion is just a subset of Θ, but it acts much like a hypothesis in the context of classical
statistics. To summarize the evidence in x that supports the assertion A, we calculate
the probability that Θx(S) is a subset of A, i.e.,

belx(A) = PS{Θx(S) ⊆ A | Θx(S) 6= ∅}. (2.9)

We refer to belx(A) as the belief function at A. Naturally, belx also depends on the choice
of association and predictive random set, but for now we suppress this dependence in the
notation. There are some similarities between our belief function and that of Dempster–
Shafer theory (Shafer 1976). For example, belx is subadditive in the sense that if A is a
non-trivial subset of Θ, then belx(A)+belx(A

c) ≤ 1 with equality if and only if Θx(S) is a
singleton with PS-probability 1. However, our use of the predictive random set (and our
emphasis on validity in Section 3) separates our approach from that of Dempster–Shafer;
see Martin et al. (2010).
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Here we make two technical remarks about the belief function in (2.9). First, in
the problems considered in this paper, the case Θx(S) = ∅ is a PS-null event, so the
belief function can be simplified as belx(A) = PS{Θx(S) ⊆ A}, no conditioning. This
simplification may not hold in problems where the observation X = x can induce a
constraint on the auxiliary variable u. For example, consider the Gaussian example from
above, but suppose that the mean is known to satisfy θ ≥ 0. In this case, it is easy to check
that Θx(S) = ∅ iff Φ−1(inf S) > x, an event which generally has positive PS-probability.
So, in general, we can ignore conditioning provided that

Θx(u) 6= ∅ for all x and all u. (2.10)

The IM framework can be modified in cases where (2.10) fails, but we will not discuss
this here; see Ermini Leaf and Liu (2012). Second, measurability of belx(A), as a function
of x for given A, which is important in what follows, is not immediately clear from the
definition and should be assessed case-by-case. However, in our experience and in all
examples herein, belx(A) is a nice measurable function of x.

Unlike with an ordinary additive probability measure, to reach conclusions about A
based on belx one must know both belx(A) and belx(A

c); for example, in the extreme case
of “total ignorance” about A, one has belx(A) = belx(A

c) = 0. It is often more convenient
to work with a different but related function

plx(A) = 1− belx(A
c) = PS{Θx(S) 6⊆ Ac | Θx(S) 6= ∅}, (2.11)

called the plausibility function at A; when A = {θ} is a singleton, we write plx(θ) instead
of plx({θ}). From the subadditivity of the belief function, it follows that belx(A) ≤ plx(A)
for all A. In what follows, to summarize the evidence in x supporting A, we shall report
the pair belx(A) and plx(A), also known as lower and upper probabilities.

Gaussian Example (cont). With the predictive random set S in (2.7), the random set
Θx(S) is given by

Θx(S) =
⋃
u∈S{x− Φ−1(u)}

=
(
x− Φ−1(0.5 + |U − 0.5|), x− Φ−1(0.5− |U − 0.5|)

)
=
(
Θx(U), Θx(U)

)
, say,

where U ∼ Unif(0, 1). For a singleton assertion A = {θ}, it is easy to see that the belief
function is zero. But the plausibility function is

plx(θ) = 1− PU
{

Θx(U) > θ
}
− PU

{
Θx(U) < θ

}
= 1− |2Φ(x− θ)− 1|. (2.12)

A plot of plx(θ), with x = 5, as a function of θ, is shown in Figure 1(a). The symmetry
around the observed x is apparent, and all those θ values in a neighborhood of x = 5 are
relatively plausible. See Section 3.4 for more statistical applications of this graph.

Poisson Example (cont). With the same predictive random set as in the previous
example, the random set Θx(S) is given by

Θx(S) =
⋃
u∈S
(
G−1x (u), G−1x+1(u)

]
=
(
G−1x

(
0.5− |U − 0.5|

)
, G−1x+1

(
0.5 + |U − 0.5|

))
=
(
Θx(U), Θx(U)

)
, say,
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Figure 1: Plot of the plausibility functions plx(θ), as functions of θ, in (a) the Gaussian
example and (b) the Poisson example. In both cases, X = 5 is observed.

where U is a random draw from Unif(0, 1). For a singleton assertion A = {θ}, again the
belief function is zero, but the plausibility function is

plx(θ) = 1− PU
{

Θx(U) > θ
}
− PU

{
Θx(U) < θ

}
= 1−max{1− 2Gx(θ), 0} −max{2Gx+1(θ)− 1, 0}. (2.13)

A graph of plx(θ), with x = 5, as a function of θ is shown in Figure 1(b). The plateau
indicates that no θ values in a neighborhood of 5 can be ruled out. Like in the Gaussian
example, θ values in an interval around 5 are all relatively plausible.

Dempster (2008) gives a different analysis of this same Poisson problem. His plau-
sibility function for the singleton assertion A = {θ} is rx(θ) = e−θθx/x!, which is the
Poisson mass function treated as a function of θ. This function has a similar shape to
that in Figure 1(b), but the scale is much smaller. For example, r5(5) = 0.175, suggesting
that the assertion {θ = 5} is relatively implausible, even though X = 5 was observed.
Compare this to pl5(5) = 1. We would argue that, if X = 5 is observed, then no plau-
sibility function threshold should be able to rule out {θ = 5}; in that case, pl5(5) = 1
makes more sense. Furthermore, as Dempster’s analysis is similar to ours but with an
invalid predictive random set, namely, S = {U}, with U ∼ Unif(0, 1), the corresponding
plausibility function is not properly calibrated for all assertions.

2.3 Interpretation of the belief function

It is clear that the belief function depends on the observed x and so must be meaningful
within the problem at hand. But while it is data-dependent, belx(A) is not a posterior
probability for A in the familiar Bayesian sense. In fact, under our assumption that θ is
fixed and non-random, there can be no non-trivial posterior distribution on Θ. The way
around this limitation is to drop the requirement that posterior inference be based on a
bona fide probability measure (e.g., Heath and Sudderth 1978; Walley 1996; Wasserman
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1990). Therefore, we recommend interpreting belx(A) and belx(A
c) as degrees of belief,

rather than ordinary probabilities, even though they manifest from PU -probability calcu-
lations. More precisely, belx(A) and belx(A

c) represent the knowledge gained about the
respective claims θ ∈ A and θ 6∈ A based on both the observed x and prediction of the
auxiliary variable.

2.4 Summary

The familiar sampling model appears in the A-step, but it is the corresponding associa-
tion which is of primary importance. This association, in turn, determines the auxiliary
variable which is to be the focus of the IM framework. We propose to predict the un-
observed value of this auxiliary variable in the P-step with a predictive random set S,
which is chosen to have certain desirable properties (see Definition 1 below). This use of
a predictive random set is likely the aspect of the IM framework which is most difficult to
swallow, but the intuition should be clear: one cannot hope to accurately predict a fixed
value u? by an ordinary continuous random variable. With the association, predictive
random set, and observed X = x in hand, one proceeds to the C-step where a random
set Θx(S) on the parameter space is obtained. As this random set corresponds to a set of
“reasonable” θ values, given x, it is natural to summarize the support of an assertion A by
the probability that Θx(S) is a subset of A. This probability is exactly the belief function
that characterizes the output of the IM and an argument is presented that justifies the
meaningfulness of belx(A) and plx(A) as summaries of the evidence in favor of A.

Finally, we mention that the predictive random set S can depend on the assertion A of
interest. That is, one might consider using one predictive random set, say SA, to evaluate
belx(A), and another predictive random set, say SAc , to evaluate plx(A) = 1 − belx(A

c).
In Section 4 we show that this is actually a desirable strategy, in the sense that the
optimal predictive random set depends on the assertion in question. In what follows, this
dependence of the predictive random set on the assertion will be kept implicit.

3 Theoretical validity of IMs

3.1 Intuition

In Section 2 we argued that belx(A;S) and plx(A;S) together provide a meaningful sum-
mary of evidence in favor of A for the given X = x; our notation now explicitly indicates
the dependence of these function on the predictive random set S. In this section we show
that belX(A;S) and plX(A;S) are also meaningful as functions of the random variable
X ∼ PX|θ for a fixed assertion A. For example, we show that belX(A) is frequency-
calibrated in the following sense: if θ 6∈ A, then PX|θ{belX(A;S) ≥ 1 − α} ≤ α for each
α ∈ [0, 1]. In other words, the amount of evidence in favor of a false A can be large with
only small probability. This property means that the belief function is appropriately
scaled for objective scientific inference. A similar property also holds for plX(A). We
refer to this frequency-calibration property as validity (Definition 2). Bernardo (1979),
Rubin (1984) and Dawid (1985) give similar investigations of frequency-calibration and
of objective priors for Bayesian inference.
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3.2 Predictive random sets

We start with a few definitions, similar to those found in Martin et al. (2010) and Zhang
and Liu (2011). Set QS(u) = PS{S 63 u}, for u ∈ U, which is the probability that
the predictive random set S misses the specified target u. Ideally, S will be such that
the random variable QS(U), a function of U ∼ PU , will be probabilistically small. This
suggests a connection between PS and PU which will be made precise in Theorem 1.

Definition 1. A predictive random set S is valid for predicting the unobserved auxil-
iary variable if QS(U), as a function of U ∼ PU , is stochastically no larger than Unif(0, 1),
i.e., for each α ∈ (0, 1), PU{QS(U) ≥ 1 − α} ≤ α. If “≤ α” can be replaced by “= α,”
then S is efficient.

In words, validity of S implies that the probability that it misses a target u is large for
only a small PU -proportion of possible u values. The predictive random set S defined by
the mapping (2.7) is both valid and efficient. Indeed, it is easy to check that, in this case,
QS(u) = |2u− 1|. Therefore, if U ∼ Unif(0, 1) then QS(U) ∼ Unif(0, 1) too. Corollary 1
below gives a simple and general recipe for constructing a valid and efficient S.

There is an important and apparently fundamental concept related to validity of
predictive random sets, namely, nesting. We say that a collection of sets S ⊆ 2U is nested
if, for any pair of sets S and S ′ in S, we have S ⊆ S ′ or S ′ ⊆ S. We shall also implicitly
assume, without loss of generality, that PU(S) > 0 for some S ∈ S; the user can easily
arrange this. The following theorem shows that if the predictive random set S is nested,
i.e., if S is supported on a nested collection of sets S, then it is valid.

Theorem 1. Let S ⊆ 2U be a nested collection of PU -measurable subsets S of U.
Define a predictive random set S with distribution PS , supported on S, such that

PS{S ⊆ K} = sup
S∈S:S⊆K

PU(S), K ⊆ U,

where PU(·) = PU(·)/ supS∈S PU(S). Then S is valid in the sense of Definition 1.

Proof. The idea of the proof is that QS(u) = PS{S 63 u} is large iff u sits outside a
set that contains most realizations of S. To make this formal, take any α ∈ (0, 1) and
let Sα =

⋂
{S ∈ S : PU(S) ≥ 1− α} be the smallest set in S with PU -probability no less

than 1−α; here, the intersection over an empty collection of sets is taken to be U. Since
S is nested, Sα ∈ S, PU(Sα) ≥ 1− α, and

PS{S ⊆ Sα} = sup
S∈S:S⊆Sα

PU(S) = PU(Sα) ≥ PU(Sα) ≥ 1− α.

Therefore, since QS(u) > 1 − α iff u 6∈ Sα, we get PU{QS(U) > 1 − α} = PU(Scα) =
1− PU(Sα) ≤ α. Finally, validity follows since α was arbitrary.

It is clear that, if PU is absolutely continuous and the nested support S is sufficiently
rich, then the predictive random set defined above is also efficient. Specifically, if U ∈ S
and, for Sα defined in the proof above, PU(Sα) = 1− α for every α ∈ (0, 1). This vague
argument for efficiency is made more precise in the next important special case.

10



Corollary 1. Suppose the PU is non-atomic, and let h be a real-valued function on
U. Then the predictive random set S = {u ∈ U : h(u) < h(U)}, with U ∼ PU , is valid. If
h is continuous and constant only on PU -null sets, then it is also efficient.

Proof. Validity is a consequence of Theorem 1 and the fact that this S is nested. To
prove the efficiency claim, let H be the distribution function of h(U) when U ∼ PU .
Then, for u ∈ U, QS(u) = PU{h(U) ≤ h(u)} = H(h(u)). If h satisfies the stated
conditions, then h(U) is a continuous random variable. Therefore, if U ∼ PU , then
QS(U) = H(h(U)) ∼ Unif(0, 1), so efficiency follows.

The above results demonstrate that nesting is a sufficient condition for predictive
random set validity. But nesting is not a necessary condition (Martin et al. 2010). The
real issue, however, is the performance of the corresponding IM. We show in Section 4
that for any non-nested predictive random set S, there is a nested predictive random set
S ′ such that the IM based on S ′ is “at least as good” as that based on S.

3.3 IM validity

Validity of the underlying predictive random set S is essentially all that is needed to
prove the meaningfulness of the corresponding IM/belief function. Here meaningfulness
refers to a calibration property of the belief function.

Definition 2. Suppose X ∼ PX|θ and let A be an assertion of interest. Then the IM
with belief function belx is valid for A if, for each α ∈ (0, 1),

sup
θ 6∈A

PX|θ
{
belX(A;S) ≥ 1− α

}
≤ α. (3.1)

The IM is valid if it is valid for all A.

By (2.11), the validity property can also be stated in terms of the plausibility function.
That is, the IM is valid if, for all assertions A and for any α ∈ (0, 1),

sup
θ∈A

PX|θ
{
plX(A;S) ≤ α

}
≤ α. (3.2)

Theorem 2. Suppose the predictive random set S is valid, and Θx(S) 6= ∅ with
PS-probability 1 for all x. Then the IM is valid.

Proof. For any A, take (x, u, θ) such that θ 6∈ A and x = a(θ, u). Since A ⊆ {θ}c,
belx(A;S) ≤ belx({θ}c;S) = PS{Θx(S) 63 θ} = PS{S 63 u} by monotonicity. Validity
of S implies that the right-hand side, as a function of U ∼ PU , is stochastically smaller
than Unif(0, 1). This, in turn, implies the same of belX(A;S) as a function of X ∼ PX|θ.
Therefore, PX|θ{belX(A;S) ≥ 1− α} ≤ P{Unif(0, 1) ≥ 1− α} = α. Taking a supremum
over θ 6∈ A on the left-hand side completes the proof.

A key feature of the validity theorem above is that it holds under minimal conditions
on the predictive random set. Validity of the IM does not depend on the particular form
of predictive random set, only that it is valid. Recall that the condition “Θx(S) 6= ∅ with
PS-probability 1” holds whenever (2.10) holds. See, also, Ermini Leaf and Liu (2012).
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The following corollary states that the validity theorem remains true even after a
suitable—possibly θ-dependent—change of auxiliary variable. In other words, the va-
lidity property is independent of the choice of auxiliary variable parametrization. This
reparametrization comes in handy in examples, including those in Section 5.

Corollary 2. Consider a one-to-one transformation v = ϕθ(u) such that the push-
forward measure PV = PUϕ

−1
θ on V = ϕθ(U) does not depend on θ. Suppose S is valid

for predicting v? = ϕθ(u
?), and Θx(S) 6= ∅ with PS-probability 1 for all x. Then the

corresponding belief function satisfies (3.1) and the transformed IM is valid.

3.4 Application: IM-based frequentist procedures

In addition to providing problem-specific measures of certainty about various assertions
of interest, the belief/plausibility functions can easily be used to create frequentist pro-
cedures. First consider testing H0 : θ ∈ A versus H1 : θ ∈ Ac. Then an IM-based
counterpart to a frequentist testing rule is of the following form:

Reject H0 if plx(A) ≤ α, for a specified α ∈ (0, 1). (3.3)

According to (3.2) and Theorem 2, if the predictive random set S is valid, then the
probability of a Type I error for such a rejection rule is supθ∈A PX|θ{plX(A) ≤ α} ≤ α.
Therefore, the test (3.3) controls the probability of a Type I error at level α.

Next consider the class of singleton assertions {θ}, with θ ∈ Θ. As a counterpart to
a frequentist confidence region, define the 100(1− α)% plausibility region

Πx(α) = {θ : plx(θ) > α}. (3.4)

Now the coverage probability of the plausibility region (3.4) is

PX|θ{ΠX(α) 3 θ} = PX|θ{plX(θ) > α} = 1− PX|θ{plX(θ) ≤ α} ≥ 1− α,

where the last inequality follows from Theorem 2. Therefore, this plausibility region has
at least the nominal coverage probability.

Gaussian Example (cont). Suppose X = 5. Then, using the predictive random set S
in (2.7), the plausibility function is pl5(θ) = 1 − |2Φ(5 − θ) − 1|. The 90% plausibility
interval for θ, determined by the inequality pl5(θ) > 0.10, is 5 ± Φ−1(0.05), the same as
the classical 90% z-interval for θ given in standard textbooks.

Poisson Example (cont). For the predictive random set determined by S in (2.7), the
plausibility function plx(θ) is displayed in (2.13). For observed X = 5, a 90% plausibility
interval for θ, characterized by the inequality pl5(θ) > 0.10, is (1.97, 10.51). This interval
is not the best possible; in fact, the one presented in Section 4.3.2 is better. But these
plausibility intervals have exact coverage properties, which means that they may be too
conservative at certain θ values for practical use. This is the case for all exact intervals
in discrete data problems (e.g., Brown et al. 2003; Cai 2005).
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4 Theoretical optimality of IMs

4.1 Intuition

Martin et al. (2010) showed that Fisher’s fiducial inference and Dempster–Shafer theory
are special cases of the IM framework corresponding to a singleton predictive random set.
But it is easy to show that, for some assertions A, the fiducial probability is not valid
in the sense of Definition 2. To correct for this bias, we propose to replace the singleton
with some larger S. But taking S to be too large will lead to inefficient inference. So the
goal is to take S just large enough that validity is achieved.

4.2 Preliminaries

Throughout the subsequent discussion, we shall assume (2.10), i.e., Θx(u) 6= ∅ for all x
and u. This allows us to ignore conditioning in the definition of belief functions.

For the predictive random set S0 = {U}, with U ∼ Unif(0, 1), the belief function at
A is belx(A;S0) = PU{Θx(U) ⊆ A}, where Θx(u) = {θ : x = a(θ, u)} as in (2.5). This
is exactly the fiducial probability for A given X = x. For a general predictive random
set S, we have belx(A;S) = PS{Θx(S) ⊆ A}, where Θx(S) =

⋃
u∈S Θx(u) is defined in

(2.8). In light of the discussion in Section 4.1, we shall compare the two belief functions
belx(A;S) and belx(A;S0). Towards this, we have the following result which says that
the fiducial probability is an upper bound for the belief function.

Proposition 1. If (2.10) holds and the predictive random set S is valid in the sense
of Definition 1, then belx(A;S) ≤ belx(A;S0) for each fixed x.

Proof. Let Ux(A) = {u : Θx(u) ⊆ A}; note that S ⊆ Ux(A) iff Θx(S) ⊆ A. Also, put
b = belx(A;S) and b0 = belx(A;S0) ≡ PU{Ux(A)}. If u 6∈ Ux(A), then

QS(u) = PS{S 63 u} ≥ PS{S ⊆ Ux(A)} = PS{Θx(S) ⊆ A} = b.

Therefore, PU{QS(U) ≥ b} ≥ PU{Ux(A)c} = 1 − b0. Also, validity of S implies
PU{QS(U) ≥ b} ≤ 1− b. Consequently, 1− b0 ≤ 1− b, i.e., belx(A;S) ≤ belx(A;S0).

For given assertion A and predictive random set S, consider the ratio

RA(x;S) = belx(A;S)/belx(A;S0), x ∈ X. (4.1)

We call this the relative efficiency of the IM based on S compared to fiducial. Propo-
sition 1 guarantees that this ratio is bounded by unity, provided that the denominator
belx(A;S0) is non-zero. Our main goal is to choose S to make this ratio large in some
sense. Towards this goal, we have the following “complete-class theorem” which says that
nested predictive random sets—which, by Theorems 1 and 2, produce valid IMs—are the
only kind of predictive random sets under consideration.

Theorem 3. Fix A ⊆ Θ and assume (2.10). Given any predictive random set S,
there exists a nested predictive random set S ′ such that RA(x;S ′) ≥ RA(x;S) for each x.
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Proof. Given S, construct a collection S = {Sx : x ∈ X} as follows:

Sx =
⋂

x′:belx′ (A;S)≥belx(A;S)

Ux′(A),

where Ux(A) is defined in the proof of Proposition 1. This collection S, which will serve
as the support for the new S ′, is clearly nested. Indeed, if belx1(A;S) ≤ belx2(A;S), then
Sx2 ⊆ Sx1 . The distribution PS′ of S ′ is defined as

PS′{S ′ ⊆ K} = sup
x:Sx⊆K

b̄(x), K ⊆ U,

where b̄(t) = belt(A;S)/ supx belx(A;S) is the normalized belief function. In particular,
for K = Sx, we have PS′{S ′ ⊆ Sx} = b̄(x) ≥ belx(A;S). Then we have

belx(A;S ′) = PS′{Θx(S ′) ⊆ A}
= PS′{S ′ ⊆ Ux(A)}
≥ PS′{S ′ ⊆ Sx}
≥ belx(A;S),

where the second equality is due to the fact that Θx(S ′) ⊆ A iff S ′ ⊆ Ux(A), and the
first inequality is by monotonicity of PS′{S ′ ⊆ ·} and the fact that Sx ⊆ Ux(A) for each
x. Therefore, RA(x;S ′) can be no less than RA(x;S) for each x, proving the claim.

We omit the details, but if the collection Ux(A) in the proof of Proposition 1 is itself
nested, then, in general, one can construct an “optimal” S such that RA(X;S) ≡ 1. This
is done explicitly for the special case in Section 4.3.1 below.

4.3 Optimality in special cases

Throughout this section, we will focus on scalar X and θ. However, this is just for
simplicity, and not a limitation of the method; see Section 5. Indeed, special dimension-
reduction techniques, akin to Fisher’s theory of sufficient statistics, are available to reduce
the dimension of observed X to that of θ within the IM framework; see Martin and Liu
(2013a,b). Also, there is no conceptual difference between scalar and vector θ problems
so, since the ideas are new, we prefer to keep the presentation as simple as possible.

4.3.1 One-sided assertions

Here we consider a one-sided assertion, e.g., A = {θ ∈ Θ : θ < θ0}, where θ0 is fixed. This
“left-sided” assertion is the kind we shall focus on, but other one-sided assertions can be
handled similarly. In this context, we can consider a very strong definition of optimality.

Definition 3. Fix a left-sided assertion A. For two nested predictive random sets
S and S ′, the IM based on S is said to be more efficient than that based on S ′ if, as
functions of X ∼ PX|θ for any θ ∈ A, RA(X;S) is stochastically larger than RA(X;S ′).
The IM based on S? is optimal, or most efficient, if RA(X;S?) is stochastically largest,
in the sense above, among all nested predictive random sets.
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That optimality here is described via a stochastic ordering property is natural in light
of the notion of validity used throughout. This definition particularly strong because it
concerns the full distribution of RA(X,S) as a function of X ∼ PX|θ, not just a functional
thereof. Next we establish a strong optimality result for one-sided assertions; when the
assertion is not one-sided, it may not be possible to establish such a strong result.

Theorem 4. Let A = {θ ∈ Θ : θ < θ0} be a left-sided assertion. Suppose that Θx(u),
defined in (2.5), is such that, for each x, the right endpoint sup Θx(u) is a non-decreasing
(resp. non-increasing) function of u. Then, for the given A, the optimal predictive random
set is S? = [0, U ] (resp. S? = [U, 1]), where U ∼ Unif(0, 1).

Proof. First observe that both forms of S? are nested. We shall focus on the non-
decreasing case only; the other case is similar. Since sup Θx(u) is non-decreasing in u, it
follows that sup Θx([0, U ]) = sup Θx(U). Therefore,

belx(A;S?) = PU{sup Θx([0, U ]) < θ0} = PU{sup Θx(U) < θ0} = belx(A;S0).

This holds for all x, so RA(·;S?) ≡ 1, its upper bound. Consequently, RA(X;S?) is
stochastically larger than RA(X;S) for any other S, so optimality of S? obtains.

Gaussian Example (cont). We showed previously that Θx(u) = {x − Φ−1(u)}. If we
treat this as a degenerate interval, then we see that the right endpoint x − Φ−1(u) is a
strictly decreasing function of u. Therefore, by Theorem 4, the optimal predictive random
set for a left-sided assertion is S? = [U, 1], U ∼ Unif(0, 1).

As an application, consider the testing problem H0 : θ ≥ θ0 versus H1 : θ < θ0. If
we take A = (−∞, θ0), then the IM-based rule (3.3) rejects H0 iff 1 − belx(A;S?) ≤ α.
With the optimal S? = [U, 1] as above, we get belx(A;S?) = Φ(θ0 − x). So the IM-based
testing rule rejects H0 iff Φ(θ0 − x) ≥ 1 − α or, equivalently, iff x ≤ θ0 − Φ−1(1 − α).
The reader will recognize this as the uniformly most powerful size-α test based on the
classical Neyman–Pearson theory.

Poisson Example (cont). In this case, Θx(u) = (G−1x (u), G−1x+1(u)]; see (2.6). The
right endpoint G−1x+1(u) is strictly increasing in u. So Theorem 4 states that, for left-
sided assertions, the optimal predictive random set is S? = [0, U ], U ∼ Unif(0, 1). The
same connection with the Neyman–Pearson uniformly most powerful test in the Gaussian
example holds here as well, but we omit the details.

4.3.2 Two-sided assertions

Consider the case where A = {θ0}c is the two-sided assertion of interest, with θ0 a fixed
interior point of Θ ⊆ R. This is an important case, which we have already considered
in Section 2, just in a different form. These problems are apparently more difficult than
their one-sided counterparts, just like in the classical hypothesis testing context. Here we
present some basic results and intuitions on IM optimality for two-sided assertions.

Assume PX|θ is continuous. Then the fiducial probability belX({θ0}c;S0) for the two-
sided assertion is unity, and so the relative efficiency (4.1) is simply belx({θ0}c;S). Here
we focus on predictive random sets S with the property that belX({θ0}c;S) ∼ Unif(0, 1)
under PX|θ0 ; see Corollary 1. Based on the intuition developed in Section 2, belX({θ0}c;S)
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should be smallest (probabilistically) under PX|θ for θ = θ0. We shall, therefore, impose
the following condition on the predictive random set S:

PX|θ{belX({θ0}c;S) ≤ α} < α, ∀ θ 6= θ0, ∀ α ∈ (0, 1). (4.2)

Roughly speaking, condition (4.2) states that the belief function at {θ0}c is stochastically
larger under PX|θ than under PX|θ0 . There is also a loose connection between (4.2) and the
classical unbiasedness condition imposed to construct optimal tests when the alternative
hypothesis is two-sided (Lehmann and Romano 2005, Ch. 4). Our goal in what follows
is to find a “best” predictive random set that satisfies (4.2).

To make things formal, suppose that both X and Θ are one-dimensional, that PX|θ
is continuous with distribution function Fθ(x) and density function fθ(x), and that the
usual regularity conditions hold; in particular, we assume that the order of expectation
with respect to PX|θ and differentiation with respect to θ can be interchanged. Let
Tθ(x) = (∂/∂θ) log fθ(x) be the score function, an important quantity in what follows.
Also, let Vθ(x) = Tθ(x)2 + (∂/∂θ)Tθ(x). Then, under the usual regularity conditions, we
have EX|θ{Tθ(X)} = 0 and EX|θ{Vθ(X)} = 0 for all θ.

In Appendix A we argue that a good predictive random set S must have a support
with certain symmetry or balance properties with respect to the sampling distribution of
Tθ0(X). In particular, let B = {Bt : t ∈ T} be a generic collection of nested measurable
subsets of T = Tθ0(X). The collection B shall be called score-balanced if

EX|θ0{Tθ0(X)IBt(Tθ0(X))} = 0, ∀ t ∈ T. (4.3)

For a score-balanced collection B = {Bt} satisfying (4.3) we can define a corre-
sponding score-balanced predictive random set S = SB as follows. Define the class
S = {St : t ∈ T} of subsets of U = [0, 1] given by

St = Fθ0
(
{x : Tθ0(x) ∈ Bt}).

For simplicity, and without loss of generality, assume S contains ∅ and U. Now take a
predictive random set SB, supported on S, such that its measure PSB satisfies

PSB{SB ⊆ K} = sup
t:St⊆K

PU(St), K ⊆ [0, 1],

where PU is the Unif(0, 1) measure. (The set St is PU -measurable for all t by the assumed
measurability of Bt, Tθ0 , and Fθ0 .) The corresponding score-balanced belief function is

belx({θ0}c;SB) = PSB{SB 63 Fθ0(x)}
= PX|θ0{BTθ0 (X) 63 Tθ0(x)}
= PX|θ0{Tθ0(X) ∈ BTθ0 (x)

},

where the last equality follows from the assumed nesting of {Bt}. Proposition 3 in
Appendix A shows that predictive random sets which are good in the sense that (4.2)
holds (at least locally) must be score-balanced.

But there are many such SB to choose from, so we now consider finding a “best”
one. A reasonable definition of optimal score-balanced predictive random set is one that
makes the difference between the right- and left-hand sides of (4.2) as large as possible
for each θ in a neighborhood of θ0. Then, for two-sided assertions, we have
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Definition 4. Let B? = {B?
t : t ∈ T} be such that, for each t,∫
Tθ0 (x)∈B

?
t

Vθ0(x)fθ0(x) dx (4.4)

is minimized subject to the score-balance constraint (4.3). Then S? = SB? is the optimal
score-balanced predictive random set.

Here we give a general construction of an an optimal score-balanced predictive random
sets. Proving that the predictive random sets satisfy the conditions of Definition 4 will
require assumptions about the model. Start with the following class of intervals:

B?
t =

(
ξ−(t), ξ+(t)

)
, t ∈ Tθ0(X), (4.5)

where the functions ξ−, ξ+ (which depend implicitly on θ0) are such that (4.3) holds. In
addition, we shall assume these functions are continuous and satisfy

• ξ−(t) is non-positive, ξ−(t) = t for t ∈ (−∞, 0) and is decreasing for t ∈ [0,∞);

• ξ+(t) is non-negative, ξ+(t) = t for t ∈ [0,∞) and is increasing for t ∈ (−∞, 0).

The functions ξ−, ξ+ describe a sort of symmetry/balance in the distribution of Tθ0(X):
they satisfy ξ+(ξ−(t)) = t and ξ−(ξ+(−t)) = −t for all t ≥ 0. In some cases, for given t,
expressions for ξ−(t) and ξ+(t) can be found analytically, but typically numerical solutions
are required. Set S? = SB? . We claim that, under certain conditions on Vθ0(x), S? is
optimal in the sense of Definition 4.

Before we get to the optimality considerations, we first verify the assumption that
belX({θ0}c;S?) ∼ Unif(0, 1) under PX|θ0 . From the definition of B?

t , it is clear that

T ∈ B?
t ⇐⇒ ξ−(t) < T < ξ+(t)

⇐⇒ ξ−(t) < ξ−(T ) < ξ+(T ) < ξ+(t)

⇐⇒ ξ+(T )− ξ−(T ) < ξ+(t)− ξ−(t).

Consequently, if Dθ0(X) = ξ+(Tθ0(X))− ξ−(Tθ0(X)), then

belx({θ0}c;S?) = PX|θ0{Tθ0(X) ∈ B?
Tθ0

(x)} = PX|θ0{Dθ0(X) < Dθ0(x)}.

Therefore, since Dθ0(X) is a continuous random variable, an argument like that in Corol-
lary 1 shows that belX({θ0}c;S?) ∼ Unif(0, 1) under PX|θ0 .

We are now ready for optimality of S?. Write V (t) for Vθ0(x), when treated as a
function of t = Tθ0(x). The condition to be imposed is:

V (t) is uniquely minimized at t = 0, and V (0) < 0. (4.6)

This condition holds, e.g., for all exponential families with θ the natural parameter.

Proposition 2. Under condition (4.6), the score balanced predictive random set S? =
SB?, with B? described above, is optimal in the sense of Definition 4.
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Proof. The proof is simple but tedious so here we just sketch the main idea. Under
(4.6), the intervals B?

t which are “balanced” around Tθ0(x) = 0, make most efficient use of
the space where Vθ0(x) is smallest in the following sense. They are exactly the right size
to make SB? efficient, so any other efficient score-balanced predictive random set SB must
be determined by sets B = {Bt} other than intervals concentrated around Tθ0(x) = 0.
Since such intervals are where Vθ0(x) is smallest, the integral in (4.4) corresponding to
Bt must be larger than that corresponding to B?

t . Therefore, S? satisfies the conditions
of Definition 4 and, hence, is optimal.

Unfortunately, (4.6) is not always satisfied. For example, it can fail for exponential
families not in natural form. But we claim that (4.6) is not absolutely essential. Assume
V (t) is convex and V (0) < 0. This relaxed assumption holds, e.g., for all exponential
families. To keep things simple, suppose that V (t) is minimized at t̂ > 0. Although
the argument to be given is general, Figure 2(a) illustrates the phenomenon for the
exponential distribution with mean θ0 = 1. The heavy line there represents V (t), and
the thin lines represent th(t) (black) and V (t)h(t) (gray), where h(t) is the density of T .
The horizontal lines represent the intervals B?

t in (4.5) for select t. By convexity of V (t),
there exists t0 such that t̂ ∈ (0, t0) and V (t) < V (0) for each t ∈ (0, t0); this is (0, 0.5)
in the figure. For t ∈ (0, t0), the intervals B?

t do not contain (0, t0); these intervals are
shown in black. In such cases, the integral (4.4) can be reduced by breaking B?

t into two
parts: one part takes more of (0, t0), where V (t) is smallest, and the other part is chosen
to satisfy the score-balance condition (4.3). But when t ≥ t0, no improvement can be
made by changing B?

t ; these cases are shown in gray. So, in this sense, the intervals B?
t

in (4.5) are not too bad even if (4.6) fails.
On the other hand, violations of (4.6) are due to the choice of the parametrization.

Indeed, under mild assumptions, there exists a transformation η = η(θ) such that the
corresponding V (t) function for η satisfies (4.6). Then the predictive random set S? in
Proposition 2 is the optimal for this transformed problem.

Gaussian Example (cont). This is a natural exponential family distribution, so Propo-
sition 2 holds, and S? is the optimal score-balanced predictive random set. Here the score
function is Tθ(x) = x − θ. Under X ∼ N(θ, 1), the distribution of Tθ(X) is symmetric
about 0. Therefore, B?

t = (−|t|, |t|), and the corresponding predictive random set is
supported on subsets St given by

St = Fθ0
(
{x : |x− θ0| ≤ |t|}

)
=
(
Φ(−|t|),Φ(|t|)

)
,

with belief function belx({θ0}c;S?) = 2Φ(|x − θ0|) − 1. This is exactly one minus the
plausibility function in (2.12) based on the default predictive random set (2.7). Therefore,
we conclude that the (2.7) is, in fact, the optimal score-balanced predictive random set in
the Gaussian problem. This is consistent with our intuition, given that the results based
on this default choice in the Gaussian example match up with good classical results.

Exponential Example. Suppose X is an exponential random variable with mean θ, as
discussed above. Unlike the Gaussian, this distribution is asymmetric, so, for the optimal
score-balanced IM, a numerical method is needed to identify the set BTθ0 (x)

for each
observed x. Plots of the corresponding plausibility functions plx(θ;S) = 1− belx({θ}c;S)
for two different predictive random sets based on X = 5 are shown in Figure 2(b). The

18



−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
1

.0
0

.0
0

.5
1

.0
1

.5
2

.0

t

V
(t

)

(a) Plot of V (t) vs. t.

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

θ

p
l x
(θ

)

(b) Plausibility functions

Figure 2: Specifics of Panel (a) are discussed in the text. Panel (b) shows plx(θ;S), as a
function of the exponential scale parameter θ, for two predictive random sets S: optimal
score-balanced (black) and default (gray). Vertical line marks the observed X = 5.

black line is based on the optimal score-balanced predictive random set, and the gray
line is based on the default predictive random set in (2.7). 90% plausibility intervals,
determined by the horizontal line at α = 0.1, are much shorter for the score-balanced IM
compared to the default in this case. For comparison, one might consider a crude nominal
90% confidence interval for θ, namely, (Xe−1.65, Xe1.65), based on a variance-stabilizing
transformation and normal approximation. These intervals tend to be shorter than both
plausibility intervals, but their coverage probability (≈ 0.82) is too small.

Poisson Example (cont). Although the theory above holds only for continuous models,
the score-balanced predictive random set performs well in discrete problems too. For the
sake of space, we refer the reader to Martin et al. (2012) for the details.

5 Two more examples

5.1 A standardized mean problem

Suppose that X1, . . . , Xn are independent N(µ, σ2) observations. The goal is to make in-
ference on ψ = µ/σ, the standardized mean, or signal-to-noise ratio. Following Dempster
(1963), we start with a reduction of the full data to the sufficient statistics for θ = (µ, σ2),
namely (X,S2), the sample mean and variance. Formal IM-based justification for this
reduction is available, though we shall not discuss this here.

For the A-step, we take the association to be

X = µ+ n−1/2σU1 and S = σU2, (5.1)

where U = (U1, U2) ∼ PU = N(0, 1)×{ChiSq(n− 1)/(n− 1)}1/2. After replacing σ in the
left-most identity in (5.1) with S/U2, a bit of algebra reveals that

n1/2X/S = (n1/2ψ + U1)/U2 and S = σU2.
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For θ = (ψ, σ), make a change of auxiliary variable v = ϕθ(u), given by

v1 = Fψ

(n1/2ψ + u1
u2

)
and v2 =

exp(u2)

1 + exp(u2)
,

where Fψ is the distribution function for tn−1(n
1/2ψ), a non-central Student-t distribution

with n − 1 degrees of freedom and non-centrality parameter n1/2ψ. Note that the full
generality of the parameter-dependent change-of-variables in Corollary 2 is needed here.
Then the transformed association is

n1/2X/S = F−1ψ (V1) and S = σ log{V2/(1− V2)},

and the measure PV on the space of V = (V1, V2) has a Unif(0, 1) marginal on the V1-space;
the distribution on V1-slices of the V2 space can be worked out, but it is not needed in
what follows. For the P-step, we predict v? = ϕθ(u

?) with a rectangle predictive random
set S defined by the following set-valued mapping, similar to (2.7):

v = (v1, v2) 7→
{
v′1 : |v′1 − 0.5| < |v1 − 0.5|

}
× [0, 1]. (5.2)

Optimality considerations along the lines in Section 4.3.2 could be pursued here, but we
choose to keep things simple since analysis of the non-central Student-t distribution is
non-trivial. An important direction of future research is to develop numerical methods
for evaluating optimal IMs. Using a predictive random set that spans the entire v2-
space for each v has the effect of “integrating out” the nuisance parameter σ. For the
predictive random set S in (5.2), if z = n1/2x/s, then the C-step gives the following set
Θx(S) = Ψx(S)× Σx(S) of candidate (ψ, σ) pairs:{

ψ : |Fψ(z)− 0.5| < |V1 − 0.5|
}
×
{
σ : σ > 0

}
, V ∼ PV . (5.3)

For assertions A = {(ψ, σ) : σ > 0} the plausibility function is given by

plx(A) = PS{Θx(S) 6⊆ Ac} = PS{Ψx(S) 3 ψ} = 1− |2Fψ(z)− 1|.

In this case, the 100(1 − α)% plausibility interval Πx(α) for ψ is obtained by inverting
the inequality 1− |2Fψ(z)− 1| > α, i.e., Πx(α) = {ψ : α/2 < Fψ(z) < 1− α/2}.

This is exactly the usual frequentist confidence interval based on the sampling distri-
bution of the standardized sample mean; it also agrees with the fiducial intervals obtained
by Dempster (1963) and Dawid and Stone (1982). The standard frequentist approach re-
lies on an informal “plug-in style” marginalization, whereas the IM approach above shows
exactly how σ is ignored via cylinder assertions. More sophisticated IM marginalization
techniques are available, but we do not discuss these here.

5.2 A many-exponential-rates problem

For our last example, we consider a high-dimensional problem. Suppose that X =
(X1, . . . , Xn) consists of independent observations Xi ∼ Exp(θi), i = 1, . . . , n, with un-
known rates θ1, . . . , θn. The goal is to give a probabilistic measure of the support in
X = x for the assertion A = {θ1 = · · · = θn} that the rates are equal. A version of this
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problem was also discussed in Martin et al. (2010), but here we simplify the presentation,
emphasize the three-step IM construction, and produce much better results.

Start, in the A-step, with the association Xi = Ui/θi, i = 1, . . . , n, where PU is the
product measure Exp(1)×n. Make a change of auxiliary variables v = ϕ(u):

v0 =
∑n

i=1 ui and vi = ui/v0, i = 1, . . . , n.

The new vector v = (v0, v1, . . . , vn) takes values in V = (0,∞)× Pn−1, where Pn−1 is the
(n− 1)-dimensional probability simplex in Rn, and PV = PUϕ

−1 is the product measure
Gamma(n, 1)× Dirn(1n). Then the modified association is

Xi = V0Vi/θi, i = 1, . . . , n, where V = (V0, V1, . . . , Vn) ∼ PV . (5.4)

For the P-step, we shall consider the following predictive random set S characterized by
V ∼ PV and the set-valued mapping v 7→ {v′ : h(v′) < h(v)}. In this case, we take

h(v) = −
n−1∑
i=1

[
ai log ti(v) + bi log{1− ti(v)}

]
,

with ti(v) =
∑i

j=1 vi, ai = 1/(n − i − 0.3), and bi = 1/(i − 0.3). A few remarks on this
choice of S are in order. First, it follows from Corollary 1 that S is efficient. Second, the
random vector (t1(V ), . . . , tn−1(V )), for V ∼ PV , has the distribution of a vector of n− 1
sorted Unif(0, 1) random variables, and Zhang (2010, Sec. 3.4.2) shows that S provides an
easy-to-compute alternative to the well-performing hierarchical predictive random set for
predicting sorted uniforms used in Martin et al. (2010). Finally, that the first component
v0 of v is essentially ignored in S is partly for convenience, and partly because v0 is related
to the overall scale of the problem which is irrelevant to the assertion A of interest.

For the C-step, combining the observed data, the association model (5.4), and the
predictive random set S above, we get the following random set for θ:

Θx(S) = {θ : h(v(x, θ)) < h(V )}, V ∼ PV ,

where v(x, θ) = (θ1x1, . . . , θnxn)/
∑n

j=1 θjxj. Since the assertion A = {θ1 = · · · = θn} is a
one-dimensional subset of Θ, the belief function is zero. It is also important to note that
when θ is a constant vector, v(x, θ) is independent of that constant, i.e., v(x, θ) = v(x, 1n),
which greatly simplifies computation of the plausibility function at A. Indeed,

plx(A) = PV {h(V ) > h(v(x, 1))},

which can easily be evaluated using Monte Carlo. As described in Section 3.4, the level
α IM-based tests rejects the assertion A if and only if plx(A) ≤ α.

For illustration, we compare our results with those of Martin et al. (2010). They con-

sider the basic likelihood ratio test, which is based on the test statistic
{(∏n

i=1 xi
)1/n

/x
}n

.
They also consider a different sort of IM solution, based on thresholding the plausibility
function, but with a default type of predictive random set that uses a Kullback–Leibler
neighborhood for predicting the component (V1, . . . , Vn) of V . We compare the power of
these three tests in several different cases. In each setup, n = n1 +n2 = 100 observations
are available, but the first n1 exponential rates equal 1 while the last n2 equal θ. Figure 3
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Figure 3: Estimated powers of the likelihood ratio and two IM-based tests for the simu-
lation described in Section 5.2. Here θ is the ratio of the rate of the last n2 observations
to that of the first n1.

shows the power functions over a range of θ values for two configurations of (n1, n2).
Here we see that, in both cases, the likelihood ratio and old IM tests have similar power,
possibly because of the common connection to the Kullback–Leibler divergence. On the
other hand, the new IM-based test presented above has strikingly larger power than the
other two. This substantial improvement in power is likely due to the close relationship
between our choice of S and the assertion of interest. So while the comparison between
the new IM results and those of the other “default” methods is not entirely fair, it is
interesting to see that an assertion-specific choice of predictive random set can lead to
drastically improved performance.

6 Discussion

The conversion of experience to knowledge is fundamental to the advancement of science,
and statistical inference plays a crucial role. For ages, there has been disagreement about
which statistical paradigm to choose. Both the frequentist and Bayesian paradigms have
their own set of advantages and disadvantages, so it would be worthwhile to identify some-
thing new which combines the respective advantages but loses, or at least weakens, the
disadvantages. Here we have described a three-step procedure to construct IMs for prior-
free, post-data probabilistic inference, and proved that IMs yield frequency-calibrated
probabilities under very general conditions. The point is that the values of the corre-
sponding belief/plausibility function are meaningful both within and across experiments,
accomplishing both the frequentist and Bayesian goals simultaneously.

The proposed IM approach is surely new, but since new is not always better, it is
natural to ask what is the benefit of using IMs. Our response is that, although it will
take time for users to familiarize themselves with the thought process, the IM framework is
logical, intuitive, and able to produce meaningful and frequency-calibrated probabilistic
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measures of uncertainty about θ without a prior distribution. The latter property is
something that no other inferential framework is able to achieve.

Admittedly, the final IM depends on the user’s choice of association and predictive
random set, but we do not believe that this is particularly damning. Section 4 laid the
foundation for a theory of optimal predictive random sets, and further efforts to develop
“default” predictive random sets are ongoing, particularly for multi-parameter problems.
But a case can be made to prefer the ambiguity of the choice of predictive random set over
that of a frequentist’s choice of statistic or Bayesian’s choice of prior. The point is that
neither a frequentist sampling distribution nor a Bayesian prior distribution adequately
describes the source of uncertainty about θ. As we argued above, this uncertainty is
fully characterized by the fact that, whatever the association, the value of u? is missing.
Therefore, it seems only natural to prefer the IM framework that features a direct attack
on the source of uncertainty over another that attacks the problem indirectly. Moreover,
as was demonstrated in Section 5.2, choosing the predictive random set that depends on
the problem and/or assertion of interest can lead to drastically improved results.

We note that differences between IM outputs from different predictive random sets are
slight for assertions involving one-dimensional quantities. However, for high-dimensional
auxiliary variables, the choice of predictive random set deserves special attention. In
such cases, our approach is to construct predictive random sets for functions of auxiliary
variables that are most relevant to the assertions of interest. This leads to a practically
useful auxiliary variable dimension reduction. It is interesting that this approach has
some close connections to Fisher’s theory of sufficient statistics (Martin and Liu 2013a).
For nuisance parameter problems, like those in Section 5, there is a different form of
dimension reduction required (Martin and Liu 2013b).

Of course, compared to the well-developed Bayesian and frequentist methods, IMs
have many open problems. Both theoretical work and applications have shown that
the IM framework is promising. Given the attractive properties of IMs developed here
and in the references above, we expect to see more exciting advancements in IMs or
new inferential frameworks (e.g., Martin 2012) that are probabilistic and have desirable
frequency properties.
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A Details from Section 4.3.2

If we assume that belX({θ0}c;S) ∼ Unif(0, 1) under PX|θ0 , then there exists a collection
of measurable subsets X(α) ⊆ X, depending implicitly on θ0 and S, such that, for each
α, PX|θ0{X(α)} = α, and belx({θ0}c;S) ≤ α iff x ∈ X(α). It follows that, for any θ,

PX|θ{belX({θ0}c;S) ≤ α} = ψα(θ) :=

∫
X(α)

fθ(x) dx.
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By definition, ψα(θ0) = α. Now, (4.2) is equivalent to ψα(θ) < ψα(θ0) for all α, or, to
put it another way, ψα(θ) is maximized at θ = θ0 for all α. Under the stated regularity
conditions, this maximization is equivalent to the claim that, for all α ∈ (0, 1), the first
and second derivatives of ψα(θ) at θ = θ0 satisfy

ψ′α(θ0) =

∫
X(α)

Tθ0(x)fθ0(x) dx = 0, (A.1)

ψ′′α(θ0) =

∫
X(α)

Vθ0(x)fθ0(x) dx < 0. (A.2)

Since Tθ0(X) has mean zero under PX|θ0 , we can see that (A.1) requires X(α) to be some-
how symmetric, or balanced, with respect to the distribution of Tθ0(X). We, therefore,
refer to (A.1) as the score-balance condition. This condition, expressed in terms of X(α)
in (A.1), can be traced back to a corresponding condition on the predictive random set.

Let us now assume that SB is such that belX({θ0}c;SB) ∼ Unif(0, 1) under PX|θ0 ; in
the main text we construct a particular score-balanced predictive random set and show
that that this assumption holds. Then, as we argued above, for any α ∈ (0, 1), there
exists t(α) ∈ T such that belx({θ0}c;SB) ≤ α iff Tθ0(x) ∈ Bt(α). In this case, for any θ,

PX|θ{belX({θ0}c;SB) ≤ α} =

∫
Tθ0 (x)∈Bt(α)

fθ(x) dx,

and the right-hand side is ψα(θ) as defined previously. From the definition of B, differ-
entiating under the integral sign reveals that (A.1) holds. We can now prove

Proposition 3. Focus on predictive random sets S such that belX({θ0}c;S) ∼ Unif(0, 1)
under PX|θ0. Then condition (4.2) holds for all θ in a neighborhood of θ0 iff the predictive
random set S = SB is score-balanced and∫

Tθ0 (x)∈Bt
Vθ0(x)fθ0(x) dx < 0, ∀ t ∈ T. (A.3)

Proof. Take θ close enough to θ0 such that the remainder terms in a second-order
Taylor approximation of ψα(θ) about θ = θ0 can be ignored. That is, for any α,

ψα(θ)− ψα(θ0) =

∫
Tθ0 (x)∈Bt(α)

Tθ0(x)fθ0(x) dx · (θ − θ0)

+
1

2

∫
Tθ0 (x)∈Bt(α)

Vθ0(x)fθ0(x) dx · (θ − θ0)2.

The first terms vanishes and the second term is negative by (A.3). Therefore ψα(θ) <
ψα(θ0) for all α and, hence, (4.2) holds for all θ in a neighborhood of θ0.
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