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Abstract. Let λd(p) be the p monomer-dimer entropy on the d-dimensional integer lattice Zd, where p ∈
[0, 1] is the dimer density. We give upper and lower bounds for λd(p) in terms of expressions involving

λd−1(q). The upper bound is based on a conjecture claiming that the p monomer-dimer entropy of an

infinite subset of Zd is bounded above by λd(p). We compute the first three terms in the formal asymptotic

expansion of λd(p) in powers of 1
d

. We prove that the lower asymptotic matching conjecture is satisfied for

λd(p).
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1. Introduction

The first aim of this paper is to discuss an asymptotic expansion of the monomer-dimer p-entropy, denoted
by λd (p), where p ∈ [0, 1] is the density of dimers, on the integer d-dimensional lattice Zd. The study of
the existence of this entropy, some of its properties and its estimates, was initiated in a series of papers by
Hammersley and his collaborators [19, 20, 21, 22]. It was shown by Minc [24] that the d-dimensional dimer
entropy λd (1) satisfies

1

2
log (2d)− 1

2
≤ λd (1) ≤ log (2d)!

4d
≤ 1

2
log (2d)− 1

2
+

log 2π (2d)

4d
+

1

48d2
. (1.1)

The lower bound is implied by the proof of the van der Waerden conjecture [5, 6], or its weak form [15]. The
first upper bound follows from the Bregman ineqality [2]. The last upper bound follows from a sharp form
of the Stirling formula for (2d)! [13, p 52]. In a series of papers [7] – [11], the first author studied a possible
asymptotic expansion of

λd (1) ∼ 1

2
log (2d)− 1

2
+

∞∑
k=1

ck
dk
. (1.2)

This is derived assuming that an argument employing a formal cluster expansion could be made rigorous. He
was able to compute the values of c1, c2, c3, equal to 1

8 ,
5
96 ,

5
64 respectively. In this paper we show that the

methods in [7] – [11] can be also applied to the asymptotic expansion of λd (p) for any p ∈ [0, 1]. The lower
and the upper bounds for λd (p) given in [17, (5.3)] and [16, (7.5)] respectively yield

1

2
(p log 2d− p log p− 2 (1− p) log (1− p)− p) ≤ λd (p) ≤ (1.3)

1

2

(
p

log (2d)!

2d
− p log p− 2 (1− p) log (1− p)

)
≤ (1.4)

1

2
(p log 2d− p log p− 2 (1− p) log (1− p)− p) + p

(
log 2π (2d)

4d
+

1

48d2

)
.

Assuming valid the same formal procedure as in [7] or [11], we show that

λd (p) ∼ 1

2
(p log 2d− p log p− 2 (1− p) log (1− p)− p) +

∞∑
k=1

ck (p)

dk
, (1.5)
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where each ck (p) is a polynomial in p. This polynomial, ck(p), is built of powers ps with k < s ≤ 2k ( as
follows from the form of equation (5.22) below ).

We compute the polynomials c1 (p) , c2 (p) , c3 (p),

c1 (p) = 1
8p

2 (1.6)

c2 (p) =
(
2p3 + 3p4

)
/96 (1.7)

c3 (p) =
(
−5p4 + 12p5 + 8p6

)
/192. (1.8)

While studying λd (p) we made a heuristic observation

λd (p) ∼= λd−1

(
p
(
1− 1

d

))
+
(
1− p

(
1− 1

d

))
log
(
1− p

(
1− 1

d

))
− p

2d log
(
p
2d

)
+
(
1− p

2d

)
log
(
1− p

2d

)
− (1− p) log (1− p) , (1.9)

for large d. We also substituted the ansatz

λd (p) =
1

2
p log (2d)− p

2
log p− (1− p) log (1− p)− p

2
+
ap2

d
+
bp4 + cp3

96d2
(1.10)

into both sides of (1.9), and found the value of the right side of the equation minus the left side of the
equation is equal to

−1

8
(−1 + 8a)

p2

d2
− 1

96
(−2 + 2bp+ c)

p3

d3
+O

(
1

d4

)
(1.11)

The correct values a = 1
8 and c = 2 are determined to achieve accuracy up to order p4

d3 (other choices would

have terms with lower powers of p or 1
d ). We view this result as both a measure of how good an approximation

(1.9) is, and a verification that the series (1.5) is correct (to a certain order).
We show in this paper that (1.9) is actually a recursive inequality

λd (p) ≥ λd−1

(
p
(
1− 1

d

))
+
(
1− p

(
1− 1

d

))
log
(
1− p

(
1− 1

d

))
− p

2d log
(
p
2d

)
+
(
1− p

2d

)
log
(
1− p

2d

)
− (1− p) log (1− p) . (1.12)

We also show the validity of some upper bounds on λd (p) in terms of the function λd−1 (p):

λd (p) ≤

max
u∈[0, pd ]

{(
1− u

2

)
log
(
1− u

2

)
− u

2 log u
2 − (1− u) log (1− u) + (1− u)λd−1

(
p− u
1− u

)}
(1.13)

and

λd (p) ≤

max
u∈[0, pd ]

{(
1− p+ u

2

)
log
(
1− p+ u

2

)
− u

2 log u
2 − (1− p) log (1− p) +

(
1− u

2

)
λd−1

(
p− u
1− u

2

)}
(1.14)

if the following conjecture holds.

Conjecture 1.1. Let S = {Si, i ∈ N} be an increasing sequence of finite sets in Zd. We can define its p
monomer-dimer entropy λS (p) similar to the definition of λd (p). We conjecture that λS (p) ≤ λd (p).

This conjecture will be precisely stated in Section 2 which contains some preliminary formalism. The lower
bound is studied in Section 3. Section 4 deals with the upper bounds, and goes a long way towards proving
that the bound of (1.14) is always better than the bound of (1.13), as we believe. The asymptotic expansion
is developed in Section 5. Section 6 studies some implications of our inequalities, in particular proving the
LAMC for the monomer-dimer problem on a rectangular lattice, see [16]. Section 7 studies numerical tests of
our bounds and expansion for d = 1, 2, 3. Although our expansion was developed as an asymptotic expansion
in 1/d it has surprising validity for small d.



AN ASYMPTOTIC EXPANSION AND RECURSIVE INEQUALITIES FOR THE MONOMER-DIMER PROBLEM 3

2. Preliminary Results

Let Zd be the d-dimensional integer lattice in Rd. Two points x = (x1, . . . , xd) ,y = (y1, . . . , yd) ∈ Zd are

called neighbors if ‖x− y‖1 =
∑d
i=1 |xi − yi| = 1. Let G =

(
Zd, Ed

)
be the infinite graph whose vertices are

Zd, and whose edges, Ed, are the set of pairs (x,y) where x,y are neighbors.
Note that the degree of each vertex is 2d. Set [m] = {1, . . . ,m} for a positive integer m. Then [m] =

[m1]× [m2]×· · ·× [md] is a box containing # [m] = m1m2 . . .md points in Zd, where m = (m1, . . . ,md) ∈ Nd
has positive integer coordinates. We view the finite lattice [m] as a graph G (m) = ([m] , E ([m])) where
x,y ∈ [m] are neighbors, i.e. (x,y) ∈ E (m) if and only if ‖x− y‖ = 1. Let T (m) be a d-dimensional torus
on the finite lattice [m], where T (m) is obtained from the infinite graph G =

(
Zd, Ed

)
by considering the

quotient Zd/ ((m1Z)× · · · × (mdZ)). So T (m) is a 2d regular graph, and G (m) is a subgraph of T (m).
A monomer-dimer tiling of [m], also called a configuration φ in [m], consists of ` nonoverlapping dimers

placed on the neighboring lattice points in [m]. Other lattice points in [m] are viewed as covered by
monomers. Denote by C ([m] , `) the space of monomer-dimer tilings φ of [m] with ` dimers. Denote by
Cper ([m] , `) all monomer-dimer tilings of T (m) with ` dimers. Clearly, C ([m] , `) ⊆ Cper ([m] , `). Let
#C ([m] , `) ,#Cper ([m] , `) be the cardinalities of C ([m] , `) , Cper ([m] , `) respectively. It was shown by
Hammersley [19]

λd (p) = lim
mi→∞

logC ([mi] , `i)

# [mi]
= lim

mi→∞

logCper ([mi] , `i)

# [mi]
(2.1)

where mi = (mi,1, . . . ,mi,d) ∈ Nd, limi→∞mi,k = ∞, k ∈ [d], lim 2`i
#[mi]

= p ∈ [0, 1]. This equality does

not depend on a particular choice of sequences mi, `i, i ∈ N which satisfy the stated conditions. For more
detailed analysis of the above limit and upper and lower bounds of λd (p) see [17].

We now discuss the notion of p monomer-dimer entropy λS (p) of a sequence S = {Si, i ∈ N} of finite sets
in Zd. Assume that we have a sequence of increasing boxes [mi] , i ∈ N, where mi = (m1,i, . . .md,i) , i ∈ N
and for each k ∈ [d] the sequence mi,k, i ∈ N increases to infinity. Without loss of generality we may assume
that Si ⊆ [mi]. Then Si = [mi] \Ui, for a sequence of subsets Ui ⊆ [mi] , i ∈ N. Let U = {([mi] , Ui) , i ∈ N}.
It would be convenient to replace S by U . With Si we associate a subgraph Gi of T (mi) induced by the set
of vertices Si = [mi] \Ui. (So ui,vi ∈ [mi] \Ui are neighbors if and only if they are neighbors in T (mi).)
Let G = {Gi, i ∈ N}. Then λS (p) = λU (p) is defined as equal to λG (p) as in [16, §2]. We now state this
definition.

Let [m] ⊂ Nd,m = (m1, . . . ,md) ∈ Nd be a box in Zd. Assume that U ⊆ [m]. Denote by # ([m] \U) the

cardinality of the set [m] \U . Denote by C ([m] \U, `) all tilings of [m] \U with exactly `
(
≤ #[m]\U

2

)
dimers,

when we view [m] as the graph G (m). (It is possible that #C ([m] \U, `) = 0). Then

λU (p) =

lim sup
i→∞

log #C ([mi] \Ui, `i)
# ([mi] \Ui)

provided lim
i→∞

2`i
# ([mi] \Ui)

= p. (2.2)

Note that it is possible that λU (p) = −∞ for some p ∈ [0, 1]. We now state a conjecture, which seems to be
very reasonable.

Conjecture 2.1. Let d ∈ N, [mi] ,mi = (m1,i, . . . ,md,i) , i ∈ N be a sequence of increasing boxes [mi] , i ∈ N,
where limi→∞mk,i = ∞, k = 1, . . . , d. Assume that Ui ⊆ [mi] , i ∈ N and denote U = {([mi] , Ui) , i ∈ N}.
Then

λU (p) ≤ λd (p) for each p ∈ [0, 1] . (2.3)

Proposition 2.1. Conjecture 2.1 holds for d = 1.

Proof. Clearly [m] \U consists of at most #U + 1 disjoint paths, P1, . . . , Pk. Let m′ = # ([m] \U) and
view G ([m′]) obtained from P1, . . . , Pk by connecting by an edge the last vertex of Pi and the first vertex of
Pi+1 for i = 1, . . . , k− 1. Hence, each monomer-dimer tiling of [m] \U is a monomer-dimer tiling of [m′]. �

We assume that d ≥ 2 and follow the discussion in [17]. Let m = (m1, . . . ,md) and denote m′ =
(m1, . . . ,md−1) , N ′ = # [m′] ,md = n. Then the (d− 1)-dimensional box of the form ([m′] , j) is called the
jth layer, for j = 1, . . . , n. So n = 1 corresponds to the (d− 1)-dimensional case. Assume that n ≥ 2 unless
stated otherwise. We view the adjacency graph G (m) as composed of n layers of G (m′) plus the edges
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between the adjacent layers ([m′] , j) and ([m′] , j + 1) for j = 1, . . . , n− 1. Let us consider one tiling of [m]
with ` dimers: φ ∈ C ([m] , `). Each layer ([m′] , j) has hi horizontal, (transversal), dimers for j = 1, . . . , n.
Let vj be the number of vertical dimers connecting the levels ([m′] , j) and ([m′] , j + 1) for j = 1, . . . , n− 1.
Let us assume that v0 = vn = 0. We have the following conditions for n ≥ 2.

n∑
j=1

(hj + vj) = `, vj−1 + vj + 2hj ≤ N ′ for i = 1, . . . , n. (2.4)

More precisely, the location of vj vertical dimers connecting the level j and j+1 are (Vj , j) for a corresponding
subset Vj ⊂ [m′] for j = 1, . . . , n− 1. So vj = #Vj . We assume that V0 = Vn = ∅. Then Vj−1 ∩ Vj = ∅ for
j = 1, . . . , n. Denote h = (h1, . . . , hn), v = (v1, . . . , vn−1), v0 = vn = 0. Let C ([m] ,h,v) ⊂ C ([m] , `) be all
configurations of tilings of [m] ,m = (m1, . . . ,md−1, n) with ` tiles, where h and v are the distributions of
horizontal and vertical tiles. (It is possible that C ([m] ,h,v) = ∅.) Denote by C (m, `) the set of all possible
(h,v) satisfying (2.4) and the corresponding above stated conditions. So

C ([m] , `) = ∪(h,v)∈C(m,`)C ([m] ,h,v) ,

#C ([m] , `) =
∑

(h,v)∈C(m,`)

#C ([m] ,h,v) . (2.5)

We claim that

#C (m, `) ≤ (N ′)
2n
. (2.6)

Clearly hi ∈
[
0, N

′

2

]
, vi ∈ [0, N ′]. Hence the number of choices of hi, vi is at most (N ′ + 1) N

′

2 , which is not

greater than (N ′)
2
. So (2.6) is a big overestimate, since we ignored (2.4).

We now show that to compute λd (p) we need only to consider one sequence hi,vi, k ∈ N of dimer
distributions.

Lemma 2.1. Let d ≥ 2 be an integer. Assume that mi ∈ Zd, `i, i ∈ N satisfies the conditions for (2.1). Then
there exists a sequence

hi =
(
h1,i, . . . , hmi,d,i

)
∈ Zmi,d+ , vi =

(
v1,i, . . . , v(mi,d−1),i

)
∈ Z(mi,d−1),

vi,0 = vi,mi,d = 0,

mi,d∑
j=1

hj,i + vj,i = `i, i ∈ N. (2.7)

such that

lim
i→∞

log #C ([mi] ,hi,vi)

# [mi]
= λd (p) (2.8)

Proof. Let
(
h̃i, ṽi

)
, i ∈ N be an allowable sequence satisfying (2.7). The equalities (2.1) and (2.5) yield

the inequality

lim sup
i→∞

log #C
(

[mi] , h̃i, ṽi

)
# [mi]

≤ λd (p) . (2.9)

Choose

(hi,vi) = argument of max
{

#C
(

[mi] , h̃i, ṽi

)
,
(
h̃i, ṽi

)
∈ C (mi, `i)

}
, i ∈ N (2.10)

i.e. a value of
(
h̃i, ṽi

)
for which maximum is achieved. Combine (2.5) and (2.6) to deduce that

#C ([mi] , `i) ≤ (# [m′i])
2mi,d #C ([mi] ,hi,vi) , i ∈ N. (2.11)

Observe next that

lim
i→∞

log (# [m′i])
2mi,d

# [mi]
= lim
i→∞

2 log # [m′i)

# [m′i]
= 0 (2.12)
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(2.11) and (2.12) yield

lim inf
i→∞

log #C
(

[mi] , h̃i, ṽi

)
# [mi]

≥ λd (p) . (2.13)

Combine this inequality with (2.9) to deduce the lemma.

3. A Lower Estimate of λd (p)

The main result of this section is:

Theorem 3.1. Let d ≥ 2 be an integer and p ∈ [0, 1]. Then

λd (p) ≥
(
λd−1 (q) + (1− q) log (1− q)−

(
p− q

2

)
log

(
p− q

2

)
+ (3.1)(

1− p− q
2

)
log

(
1− p− q

2

)
− (1− p) log (1− p)

)
for each q ∈ [0, p] .

In particular (1.12) holds.

We prove the theorem using a number of known results and straightforward lemmas. Recall that λd (p) ≥
λd−1 (p). Hence to show (3.1) we need to consider the case q < p. Next we recall the inequality

λk

(
2`

# [m]

)
≥ logC ([m] , `)

# [m]
, k ∈ N. (3.2)

This follows by considering boxes [jm] tiled with jd` dimers for j = 1, . . . , [19, 17].
Fix a rational number q ∈ (0, 1) and ε > 0. Then there exists m′ ∈ Nd−1, `′ ∈ N such that

q :=
2`′

# [m′]
, λ′d−1 (q) :=

logC ([m′] , `′)

# [m′]
> λd−1 (q)− ε. (3.3)

See [19]. Let

p =
2L

# [m′]
where 2`′ < 2L ≤ # [m′] . (3.4)

We will show for these choices of p and q the following inequality holds.

λd (p) ≥
(
λ′d−1 (q) + (1− q) log (1− q)−

(
p− q

2

)
log

(
p− q

2

)
+ (3.5)(

1− p− q
2

)
log

(
1− p− q

2

)
− (1− p) log (1− p)

)
.

Since λk (x) is continuous for each x ∈ [0, 1] and each k ∈ N [19], this will imply (3.1).

Lemma 3.1. Let U be the set of all subsets of [m′] of cardinality L− `′. Then

#C ([m′] , `′) = f0

∑
U∈U

#C ([m′] \U, `′) , #U =

(
N ′

L− `′
)

(3.6)

where N ′ = # [m′] , f0 =

(
N ′ − 2`′

L− `′
)−1

.

Proof. Take a tiling of [m′] by `′ dimers. The monomers of this tiling are located on the subset V of
[m′]. Clearly #V = N ′ − 2`′. This tiling appears exactly in all C ([m′] \U, `′), where U ⊂ V . The number

of choices of these U is

(
N ′ − 2`′

L− `′
)

. The formula for #U is clear. We have implicitly used the fact that

L− `′ < N ′ − 2`′. �
We now consider the d-dimensional box [m], where m = (m′, n) and n ≥ 2. So [m] is viewed to have n

horizontal levels consisting of [m′]. Let hn = (`′, . . . , `′) ∈ Nn,vn = (L− `′, . . . , L− `′) ∈ Nn−1. For each
U ∈ U we denote by C ([m] ,hn,vn, U) a subset of tilings in C ([m] ,hn,vn) such that no dimer (vertical or
horizontal) covers a spot in U on the first level ([m′] , 1).
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Lemma 3.2. Let n ≥ 2, m = (m′, n), hn = (`′, . . . , `′) ∈ Nn, vn = (L− `′, . . . , L− `′) ∈ Nn−1. Then

#C ([m] ,hn,vn) = f
∑
U∈U

#C ([m] ,hn,vn, U) , where f =

(
N ′ − (L+ `′)

L− `′
)−1

(3.7)

Proof. Take a tiling φ ∈ C ([m] ,hn,vn). The monomers of this tiling, located on the first level ([m′] , 1),
form a subset W of [m′]. Clearly #W = N ′ − (L+ `′). This tiling appears exactly in all C ([m] ,hn,vn, U),

where U ⊂W . The number of choices of these U is

(
N ′ − (L+ `′)

L− `′
)

. �

Lemma 3.3. For n ∈ N

#C ([(m′, 2n)] ,h2n,v2n) =
∑
U∈U

#C ([(m′, n)] ,hn,vn, U)
2
, (3.8)

where C ([(m′, 1)] ,h1,v1, U) := C ([m′] \U, `′).

Proof. Observe that any tiling in φ ∈ C ([(m′, 2n)] ,h2n,v2n) can be obtained from exactly two tilings of
C ([(m′, n)] ,hn,vn, U), where U is the location of L− `′ vertical tiles from level n to level n+ 1 in φ. �

Using Lemmas 3.1 – 3.3, (3.3) and the Cauchy-Schwarz inequality we obtain:

Corollary 3.1.

#C ([(m′, 2)] ,h2,v2) ≥ e2N ′λ′d−1(q)

Mf2
0

, M = #U =

(
N ′

L− `′
)
, (3.9)

#C ([(m′, 2n)] ,h2n,v2n) ≥ (#C ([(m′, n)] ,hn,vn))
2

Mf2
, for n ≥ 2. (3.10)

Let s ∈ N and consider C ([(m′, 2s)] ,h2s ,v2s). Use the above corollary to deduce

#C ([(m′, 2s)] ,h2s ,v2s) ≥Mf2

(
eN
′λ′d−1(q)

Mff0

)2s

. (3.11)

Note that each configuration in C ([(m′, 2s)] ,h2s ,v2s) has 2sL− (L− `′) dimers. Let ps =
2(2sL−(L−`′))

2sN ′ . So
lims→∞ ps = p. (3.2) yields that

λd (ps) ≥
log #C ([(m′, 2s)] ,h2s ,v2s)

N ′2s
. (3.12)

Combine the above inequality with (3.11) and let s→∞ to deduce

λd (p) ≥ λ′d−1 (q)− logMff0

N ′
. (3.13)

Let N ′ →∞, i.e. m′ →∞, while keeping the values of q and p fixed, to deduce (3.5).

4. An Upper Estimate of λd (p)

In this section we use the notation from Section 2. We will study a sequence of cubes and use Lemma 2.1
so that with each of these cubes, say mi, we need consider only a single hi and vi. We turn to considering
a single such cube, m, suppressing the index i since we spend much time with this single cube.

Recalling notation from Section 2,

m = (m1, . . . ,md) , here all mi = n (4.1)

m′ = (m1, . . . ,md−1) (4.2)

h = (h1, . . . , hn) (4.3)

v = (v1, . . . , vn−1) (4.4)
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hi is the number of horizontal dimers in the ith layer, and vi the number of vertical dimers connecting the

ith and (i+ 1)
th

layers. Vi is the location in m′ of the vertical dimers connecting the ith and (i+ 1)
th

layer.
We set as before

N ′ = #m′ = nd−1 (4.5)

and take ` to be the total number of dimers. We then have the following.

Vi ∩ Vi+1 = ∅ i = 1, . . . , n− 2 (4.6)

vi + vi+1 ≤ N ′ i = 1, . . . , n− 2 (4.7)

2hi + vi−1 + vi ≤ N ′ i = 2, . . . , n− 2 (4.8)∑
hi +

∑
vi = ` (4.9)

(There are slight obvious modifications of (4.6) – (4.8) for i = 1, n− 1, n.)
For our given v we count the possible choices of V1, . . . , Vn−1 such that #Vi = vi for i = 1, . . . , n− 1. We

can choose V1 in

(
N ′

v1

)
ways, V2 in

(
N ′ − v1

v2

)
, etc. Thus we arrive at

α (N ′,v) =

(
N ′

v1

) n−1∏
i=2

(
N ′ − vi−1

vi

)
(4.10)

for the total number of choices. Using this enumeration, and recalling Lemma 2.1, we will get an upper
bound for λd (p) as the limit as n→∞ of the maximum possible value of

1

nd

(
logα

(
nd−1,v

)
+ log

n∏
i=1

C ([m′] \Vi−1 ∪ Vi, hi)

)
(4.11)

We define

p =
2`

nd
(4.12)

ui =
2vi
nd−1

, ti =
2hi
nd−1

(4.13)

u =
1

n

n∑
i=1

ui, t =
1

n

n∑
i=1

ti (4.14)

t̃i =
2hi

nd−1
(
1− 1

2 (ui + ui−1)
) (4.15)

There follows

u+ t = p (4.16)

u is the density of vertical dimers and t the density of horizontal dimers. t̃i is the fraction of the vertices in
[m′] \ (Vi−1 ∪ Vi) covered by dimers.

Using Conjecture 2.1 we may effectively assert

logC ([m′] \ (Vi−1 ∪ Vi) , hi)(
1− ui−1+ui

2

)
nd−1

≤ λd−1

(
t̃i
)
. (4.17)

Hence

log
∏n
i=1 C ([m′] \ (Vi−1 ∪ Vi) , hi)

nd
≤

n∑
i=1

1− ui−1+ui
2

n
λd−1

(
t̃i
)
. (4.18)

Recall that λd−1 (p) is a concave function. (See [16] for a sharper statement.) Since 1
n

∑n
i=1

(
1− ui−1+ui

2

)
=

1− u it follows that
n∑
i=1

1− ui−1+ui
2

n
λd−1

(
t̃i
)
≤ (1− u)λd−1 (t′) , t′ =

n∑
i=1

1− ui−1+ui
2

(1− u)n
t̃i. (4.19)
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In view of (4.15) we obtain

t′ =

n∑
i=1

1− ui−1+ui
2

(1− u)n

2hi

nd−1
(

1− ui−1+ui
2

) =
1

(1− u)nd

n∑
i=1

2hi =
t

(1− u)
. (4.20)

We combine with the previous inequalities to deduce that

log
∏n
i=1 C ([m′] \ (Vi−1 ∪ Vi) , hi)

nd
≤ (1− u)λd−1

(
t

(1− u)

)
. (4.21)

To bound the first term in (4.11) it is straightforward to show the maximum is achieved with all vi equal,

vi = N ′u
2 . This yields

lim sup
n→∞

logα
(
nd,v

)
nd

≤
(

1− u

2

)
log
(

1− u

2

)
− u

2
log

u

2
− (1− u) log (1− u) . (4.22)

In conclusion we derive the following.

λd (p) ≤ max
u

{(
1− u

2

)
log
(

1− u

2

)
− u

2
log

u

2
− (1− u) log (1− u) + (1− u)λd−1

(
p− u
1− u

)}
(4.23)

Because the expected value of u is p
d , by the symmetry of the cube, one can show one can restrict the range

of u in taking the maximum in (4.23) to either
[
0, pd

]
or
[
p
d , 1
]
. This leads to two formulas for an upper

bound. Unless these are equal, one gets a better bound restricting to one or the other of these ranges.
One can employ the argument behind Lemma 3.1 in the construction of this section, obtaining an alternate

upper bound:

λd (p) ≤ max
u

{
−u

2
log

u

2
− (1− p) log (1− p) +

(
1− p+

u

2

)
log
(

1− p+
u

2

)
+
(

1− u

2

)
λd−1

(
p− u
1− u

2

)}
(4.24)

Again the range of u may be restricted to either
[
0, pd

]
or
[
p
d , 1
]
. We outline this alternate development,

closely following the previous route, and using the same notation.
We let Wr (Vr) be the number of configurations in the portion of the lattice living in layers r + 1, r +

2, . . . , n (summing over both vertical and horizontal dimers). This will involve summing over Vr+1, . . . , Vn−1

compatible with # (Vi) = vi, Vi ∩ Vi+1 = ∅, and hi horizontal dimers in layer i for i = r + 1, . . . , n.
Vr, hr+1, . . . , hn, vr+1, . . . , vn−1 are fixed. Then we have

Wn−1 (Vn−1) ≤ C ([m′] \Vn−1, hn)

≤ en
d−1(1−un−1/2)λd−1(t̃n) ≡ bn−1 (4.25)

with

t̃i =
2hi

nd−1 (1− ui−1/2)
(4.26)

We find the bounds bi inductively. Assume we have bounds br+1, br+2, . . . , bn−1. We seek br.

Wr (Vr) ≤
∑
Vr+1

# (Vr+1) = vr+1

Vr+1 ∩ Vr = ∅

C ([m′] \Vr ∪ Vr+1, hr+1) br+1 (4.27)

By the argument of Lemma 3.1

≤ C ([m′] \Vr, hr+1) br+1

(
N ′ − 2hr+1 − vr

vr+1

)
(4.28)

≤ en
d−1(1−ur/2)λd−1(t̃r+1)br+1

(
N − 2hr+1 − vr

vr+1

)
(4.29)
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As before

λd (p) ≤ I · II

I =
∑ 1

n

(
1− ui

2

)
λd−1

(
t̃i+1

)
(4.30)

which by a counting argument

≤ t

1− u
2

(4.31)

and

II =
1

nd

∑
log

(
N ′ − 2hr+1 − vr

vr+1

)
(4.32)

The maximum in II occurs where all vi are equal and all hi equal (at least for i = 2, . . . , n− 2, just as good).
This leads to (4.24).

We now study the relation between (1.13) and (1.14) (or (4.23) and (4.24)). We take λd (p) to be given
by its approximate form

λ̃d (p) =
1

2
p log (2d)− p

2
log p− (1− p) log (1− p)− p

2
(4.33)

and substitute this into{(
1− u

2

)
log
(

1− u

2

)
− u

2
log
(u

2

)
− (1− u) log (1− u) + (1− u)λd−1

(
p− u
1− u

)}
−{(

1− p+
u

2

)
log
(

1− p+
u

2

)
− u

2
log
(u

2

)
− (1− p) log (1− p) +

(
1− u

2

)
λd−1

(
p− u
1− u

2

)}
(4.34)

Surprisingly, by a simple computation this comes out to be

1

2
(p− u) log

(
1− u

2

1− u

)
(4.35)

In the region u < p this is positive. This shows that the expression in braces in (1.13) is pointwise (in u)
greater than the expression in braces in (1.14). Thus (1.14) is a better upper bound than (1.13) for λd (p) as
given by (4.33).

For 0 ≤ u ≤ p/d and d ≥ 2 we have

1

2
(p− u) log

(
1− u

2

1− u

)
> c1pu (4.36)

We let the actual λd (p) be related to the approximate form, (4.33), as

λd (p) = λ̃d (p) + Ed (p) (4.37)

We assume for d > d0 one has

|Ed (p)| ≤ c2
p

d
(4.38)

and ∣∣∣∣ ddpEd (p)

∣∣∣∣ ≤ c3 1

d
(4.39)

Then there is a d̄ such that if d > d̄ then (1.14) provides a better upper bound than (1.13). That is if one
substitutes (for d > d̄) (4.37) into the right side of (1.13) one gets a larger value than if one substitutes into
the right side of (1.14). One has used the bound∣∣∣∣(1− u)Ed−1

(
p− u
1− u

)
−
(

1− u

2

)
Ed−1

(
p− u
1− u

2

)∣∣∣∣ ≤ (4.40)

c4u |Ed−1 (p∗)|+ c5pu
∣∣E′d−1 (p∗∗)

∣∣ (4.41)

Provided (4.38) and (4.39) are satisfied by Ed (p) it is easy to deduce, using (4.36) and (4.40), that (1.14) is
a better bound than (1.13) for d large enough. One looks at the u∗ that maximizes the expression in braces
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in (1.14). By (4.36) and (4.40), for large enough d, the expression in braces in (1.13) evaluated at u∗ is larger
than the expression in braces in (1.14) at u∗. Thus the bound (1.14) beats the bound (1.13).

5. The Asymptotic Expansion

This section largely parallels the development in [11], with modifications appropriate to the monomer-
dimer problem. We do not assume familiarity with [11].

We work with a periodic cubical lattice, Λ, of even edge length. We denote the volume, or equivalently
the number of vertices, by either V or N . A fraction p of the vertices are covered by dimers, thus pN/2
dimers are used in each covering. We will be using the terms ‘p-tiling’ and ‘p-cover’ to describe coverings of
a fraction p of the vertices.

In d dimensions there are d ‘kinds’ of dimers, each kind oriented in one of the d lattice directions. Each
kind of dimer may be ‘located’ at some place on the lattice. We generalize this situation as follows. A ‘located
tile’ is a two element subset of the lattice. A ‘tile’ is an equivalence class of located tiles, with equivalence
given by setting two subsets equivalent if one is a translation of the other. (A ‘tile’ is a generalization of a
‘kind of dimer’.) Notice that tiles need not be connected.

We consider tiles with a ‘weighting’, a function on tiles. We normalize the weightings we consider, by
requiring, if g is the weighting function, ∑

t

g (t) = 1/2, (5.1)

the sum over all tiles, t. We let f be the weighting function given by

f (t) =

{
1
2d if t is a dimer,

0 otherwise,
(5.2)

that clearly satisfies the normalization condition (5.1).
A ‘p-tiling’ Ti of Λ is a set of two element subsets of Λ,

Ti =
{
si1, s

i
2, . . . , s

i
pN/2

}
, (5.3)

where the sik are disjoint, they are located tiles.
We now realize the sum over all possible dimer p-covers of Λ, the goal of our study, as

(2d)
pN/2

Z (5.4)

with

Z =
∑
Ti

∏
sα∈Ti

f (s̄α) , (5.5)

where the sum is over all p-tilings of Λ; the product over the f ’s selects those tilings in which all the tiles
employed are dimers. The bar over a subset indicates the equivalence class of the subset as defined previously.

We let f0 be a constant function on tiles with value 1
N−1 , to satisfy the normalization condition (5.1). We

write

f = f0 + (f − f0) ≡ f0 + v, (5.6)

f , f0, and v all functions on tiles. Z becomes

Z =
∑
Ti

∏
sα∈Ti

(f0 + v (s̄α)) , (5.7)

Z = Z0 + Z1 + Z2 + · · · (5.8)

having expanded Z in powers of v.
We note

eNλd(p) = (2d)
Np/2

Z. (5.9)

Here λd (p) is understood to be a function of N , the usual λd (p) the infinite volume limit

λd (p) =
p

2
log (2d) +

1

N
logZ. (5.10)
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If one replaces Z by Z0, the mean field approximation in a natural nomenclature, one gets taking the infinite
volume limit

λd (p) ∼=
p

2
log (2d)− p

2
log p− (1− p) log (1− p)− p

2

=
p

2
log (2d) + lim

N→∞

1

N
logZ0 (5.11)

by an easy calculation.
We return to (5.8) and introduce some convenient notations:

Z = Z0Z
∗, (5.12)

Z∗ = 1 + Z∗1 + Z∗2 + · · · , (5.13)

Z∗i = Zi/Z0. (5.14)

There is a natural factorization of Zi into a contribution from the factors of v in (5.7) which we call Z̄∗i and
the factors of f0 in (5.7) which we call β (N, i)Z0 so that

Z∗i = β (N, i) Z̄∗i (5.15)

with

β (N, jN) ∼ eNH(p,j) (5.16)

where

H (p, j) = (1− 2j) log (1− 2j) + j +
p

2
log p−

(p
2
− j
)

log (p− 2j) . (5.17)

Equations (5.16) and (5.17) follow from a short computation, always working in the large N limit.

We let Z̃∗ be Z∗ with β (N, i) replaced by 1,

Z̃∗ = 1 + Z̄∗1 + Z̄∗2 + · · · , (5.18)

where a detailed specification of Z̄∗i is given by

Z̄∗i =
1

i!

∑
s1, s2, . . . , si

disjoint

i∏
α=1

v (s̄α) . (5.19)

Now referring to [3] we may write a cluster expansion for Z̃∗

log Z̃∗ =
∑
s

1

s!
Js, (5.20)

Js =
∑

s1,s2,...,ss

v (s̄1) · · · v (s̄s)ψ
′
c (s1, s2, . . . , ss) , (5.21)

where we may identify Eq. (2.5a) of [3] with Z̃∗, and (5.20), (5.21) with Eq. (2.7) of [3]. The located
tiles in the sum of (5.21) are forced to overlap so they cannot be divided into two disjoint sets. ψ′c is a
numerical factor depending on the overlap pattern. To make our computations mathematically rigorous it
will be necessary to study the convergence properties of sums such as in (5.20). At present this appears very
difficult, and we by no means see yet a clear route to a proof. It is a challenging problem for the mathematical
physicist.

It is easy to show J1 = 0 and it is proven in [9] that

Js =
Cs,r
dr

+
Cs,r+1

dr+1
+ · · ·+ Cs,s−1

ds−1
(5.22)

with r ≥ s/2. We also find it convenient to define

NJ̄i = (1/i!) Ji. (5.23)

From (5.13), (5.15), (5.18), (5.20) one gets

Z∗ =
∑

α1,...,αs+1

β
(
N,
∑

iαi

)
J̄α1

1 · · · J̄
αs+1

s+1

N
∑
αi

α1! · · ·αs+1!
. (5.24)
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We approximate the sum in (5.24) by its largest term, in the limit N → ∞. If all the J̄ ’s are positive this
is a reasonable way to extract the dominant asymptotic limit. In [10] an argument is given that our results
will hold even if some of the J̄ ’s are negative.

Most important to observe is that the J ’s of this paper are the same as the J ’s of the dimer problem! The
Ji were computed through J6 as follows, see [11]:

J̄1 = 0, (5.25)

J̄2 =
1

8

1

d
, (5.26)

J̄3 =
1

12

1

d2
, (5.27)

J̄4 = − 3

32

1

d2
+

3

64

1

d3
, (5.28)

J̄5 = −1

8

1

d3
− 3

80

1

d4
, (5.29)

J̄6 =
7

48

1

d3
− 5

64

1

d4
− 1

6

1

d5
. (5.30)

The computations were done in integral arithmetic using Maple. Because of (5.22), to compute the Ji
through J6 for all d, it is sufficient to compute these Ji for one, two, and three dimensions. The most
complicated computation of these involved placing down six dimers in three dimensions, in all possible
ways where overlaps make it impossible to disconnect into two disjoint subsets of dimers. One is using an
exponential time algorithm, J5’s computation took 3 seconds and J6’s two weeks. To compute the 1/d4 terms
in (1.2) would require knowledge of J7 and J8 also, we think unless a new method is found one will never do
this computation!

We return to computing the largest term in (5.24). We differentiate with respect to the α’s in (5.24), using
(5.16) and (5.17) to deal with the factor of β. Finally scaling αi → 1

N αi we find

logαk = log J̄k +
∂

∂αk
H
(
p,
∑

iαi

)
= log J̄k + Fk (5.31)

and

Z∗ ∼ eN{−
∑
αiFi+

∑
J̄ie

Fi+H(p,
∑
iαi)}. (5.32)

From these two equations, and (5.10), (5.11), (5.12), one can find λd (p) as a formal power series in the J ’s,
and then a formal power series in 1/d using the expressions (5.25) through (5.30) for the J ’s. This algebra
we did using a 40-line Maple program, resulting in (1.5) – (1.8).

In [12] the first named author shows that if the terms in the formal expansion (1.5) are rearranged as a
power series in p, then for sufficiently small p this series converges.

6. The LAMC and Other Conclusions

For any infinite graph G = (V,E) on a countable number of vertices V , where each vertex V has at most
degree r, one can define the notion of the p-entropy λG(p), similarly to the definition of the entropy λU (p)
defined in §2. The Lower Asymptotic Matching Conjecture for infinite regular r-bipartite graphs claims that
λG(p) is bounded below by a universal function ωr(p), see equations (1.3) and (1.4) of [16]. ωr(p) can be
considered as the p-entropy of a random r-regular infinite bipartite graph. The formula for ω2d(p) is given
by the right-hand side of (6.1). We first prove the LAMC for a rectangular lattice,

Theorem 6.1. The LAMC is true for a rectangular lattice. That is

λd (p) ≥ 1

2

[
p log (2d)− p log p− 2 (1− p) log (1− p) + (2d− p) log

(
1− p

2d

)]
(6.1)

Proof. We prove this by induction. It is true for d = 1 by [16] eq (1.1) or [17] § 4. In the inductive step
we are given

λd−1 (p) ≥ 1

2

[
p log (2 (d− 1))− p log p− 2 (1− p) log (1− p) + (2 (d− 1)− p) log

(
1− p

2 (d− 1)

)]
(6.2)
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We substitute this into (the right side of) (1.12), proven in Theorem 3.1, and arrive by a simple computation
at exactly (6.1).

We turn to a study of the relation between our upper and lower recursive bounds and the asymptotic
expansion. We assume that λd (p) is given by an asymptotic expansion in inverse powers of d, whose first
few terms are as in (1.10).

λd (p) ∼ 1

2
p log (2d)− p

2
log (p)− (1− p) log (1− p)− p

2
+
ap2

d
+
bp4 + cp3

96d2
+ . . . (6.3)

Theorem 6.2.

A) a ≥ 1
8

B) If a = 1
8 , then (−2 + 2bp+ c) ≥ 0

C) If a = 1
8 and c = 2, then b ≥ 0

D) Then values of a, b, c as given in (1.6) and (1.7) ensure that the asymptotic expansion in (1.5) satisfies
the implications of the lower recursive inequality (1.12).

Proof. If we substitute (6.3) into the recursive inequality (1.12), then the value of the right side minus
the left side is given in (1.11) which we rewrite

−1

8
(−1 + 8a)

p2

d2
− 1

96
(−2 + 2bp+ c)

p3

d3
+O

(
1

d4

)
(6.4)

The requirement that (6.4) is asymptotically ≤ 0 yields parts A, B, and C of the theorem. The values of
a, b, c as given in (1.6) and (1.7) ensure (6.4) is asymptotically negative.

In short our asymptotic expansion for λd (p), (1.5), satisfies the lower recursive inequality.
The upper recursive inequalities we have (1.13), (1.14) are not strong enough to put conditions on the

coefficients of the asymptotic series, such as parts A,B, and C of Theorem 6.2.

7. Numerical tests for d = 1, 2, 3

In the last section we saw our expansion satisfied the implications of the lower recursive bound asymptot-
ically. Here we study this expansion and our bounds for small d, d = 1, 2, 3.

We find it convenient to rearrange our expansion for λd(p) as a power series in p, perhaps this is always a
better form to work with.

λd(p) ∼
1

2
(p ln(2d)− p ln p− 2(1− p) ln(1− p)− p) +

∑
k=2

ak(d)pk (7.1)

where we see from (1.5) – (1.8) that

a2(d) =
1

8

1

d
(7.2)

a3(d) =
1

48

1

d2
(7.3)

a4(d) =
1

32

1

d2
− 5

192

1

d3
. (7.4)

using the fact mentioned after (1.5) that ck (p) is built up of powers ps with k < s ≤ 2k. Knowing J̄i for
i ≤ 6 we can also compute:

a5(d) =
1

16

1

d3
− 39

640

1

d4
(7.5)

a6(d) =
1

24

1

d3
− 1

32

1

d4
− 19

1920

1

d5
(7.6)

7.1 d = 1

Recall the exact formula for λ1(p), e.g. [17, end of §4]

λ1(p) =
(

1− p

2

)
log
(

1− p

2

)
− p

2
log
(p

2

)
− (1− p) log(1− p). (7.7)
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Expand log
(
1− p

2

)
in power series in p to deduce that

λ1 (p) =
1

2
p log (2)− p

2
log (p)− (1− p) log (1− p)− p

2
+

∞∑
k=2

pk

(k − 1)k2k
. (7.8)

It is easy to check the values of ak(1) are correctly given to match (7.8) for k = 2, . . . , 6. (We have not
tried to prove this to all orders, the J̄i for d = 1 can all be computed, but it probably can be done.) This is
a remarkable validation of our procedure to compute λd(p).

7.2 The Expansion for λ2(1) and λ3(1)

In eq. (7.1) we consider putting the upper limit in the sum to be n. Then for n = 2, . . . , 6 we get a
sequence of “approximations” to λd(p). Setting d = 2, p = 1 we get the sequence

.2556, .2609, .2654, .2694, .2724 (7.9)

and setting d = 3, p = 1 we get

.4375, .4399, .4424, .4439, .4450. (7.10)

The exact value for λ2(1) is given as

λ2(1) = .2915 . . . (7.11)

by [14] and [23], and λ3(1) satisfies

.440075 ≤ λ3(1) ≤ .457547 (7.12)

by [4] and [16]. We may well believe the sequence (7.9) extended converges to λ2(1) and (7.10) extended
converges to λ3(1). We now believe (7.1) converges for all physical p, not just small p as proved in [12]!

7.3 The Expansion and Bounds for λ2(p)

We present a table of values for λ2(p), its bounds and approximations. The first column gives the value
of p. The second column, the expansion value, is the result of keeping in (7.1) the ak(2) from k = 2 to
k = 6, the known values. The third column is the rigorous lower bound (1.12). The fourth column presents
the “exact” value for λ2(p), actually a very good approximation from [17] and [1]. Looking at the table
on page 654 of Baxter’s paper [1], a row with the three column entries c1, c2, c3 corresponds to p = 2c3,
λ2(p) = ln (c2)− (1− p) ln (c1). The values of p thus in this table led to the choices for p in our table. The
final column is the upper bound from (1.14), actually rigorous for d = 2.

p exp lb exact ub
0 0 0 0 0
.14870 .30887 .30887 .30887 .31030
.26030 .45283 .45281 .45284 .45734
.50426 .63492 .63449 .63495 .65274
.77053 .62983 .62678 .63086 .67319
1 .27236 .26162 .29156 .34657

We are struck by how much better the lower bound is than the upper bound, and how good an approximation
is the expansion, keeping the terms we know, for p . .5.

8. Future Directions

We leave to future research three compelling problems: prove that the “asymptotic” expansion expressed
as a power series in p converges for all physical p and d, find better upper bounds pure or recursive, prove
Conjecture 2.1.
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