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Abstract. Linear sections of Grassmannians provide important examples of varieties. The geometry
of these linear sections is closely tied to the spaces of Schubert varieties contained in them. In this

paper, we describe the spaces of Schubert varieties contained in hyperplane sections of G(2, n). The

group PGL(n) acts with finitely many orbits on the dual of the Plücker space P∗(
V2 V ). The orbits are

determined by the singular locus of H ∩G(2, n). For H in each orbit, we describe the spaces of Schubert

varieties contained in H ∩G(2, n). We also discuss some generalizations to G(k, n).
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1. Introduction

Linear sections of Grassmannians provide examples that play an important role in many
branches of algebraic geometry, including the classification of varieties, derived equivalences
and mirror symmetry. For example, general codimension four linear sections of G(2, 5) are
Del Pezzo surfaces of degree five (see [C1]) and general codimension seven linear sections of
G(2, 7) are Calabi-Yau threefolds (see [BC], [R]). The geometry of a linear section X of a
Grassmannian is closely tied to the spaces of Schubert varieties contained in X, which provide
crucial information about the cohomology and Hodge structure of X (see [D] and Chapter 6 of
[GH]). In this paper, we will describe the spaces of Schubert varieties contained in a hyperplane
section of a Grassmannian.

Let G(k, n) denote the Grassmannian parameterizing k-dimensional subspaces of a fixed n-
dimensional vector space V . Let λ denote a partition whose parts satisfy

n− k ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.

When writing a partition, the parts that are equal to zero are often omitted. For many purposes,
it is more convenient to group together the parts of λ that are equal. We will write λ also as
λ = (µi11 , · · · , µ

it
t ) and set ks =

∑s
j=1 ij , where µ1 > µ2 > · · · > µt and

µ1 = λ1 = · · · = λk1 , µ2 = λk1+1 = · · · = λk2 , . . . , µt = λkt−1+1 = · · · = λk.
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Given a partition λ and a flag F• : F1 ⊂ F2 ⊂ · · · ⊂ Fn = V, the Schubert variety Σλ(F•) is
defined as

(1) Σλ(F•) = {[W ] ∈ G(k, n) | dim(W ∩ Fn−k+i−λi) ≥ i}.

We will often abuse notation by dropping the reference to the flag. When we would like to
emphasize the flag elements Fn−k+i−λi imposing rank conditions, we will write Σλ(Fn−k+1−λ1 ⊂
· · · ⊂ Fn−λk). The cohomology class σλ of the Schubert variety depends only on the partition λ
and not on the choice of flag. The Schubert classes σλ, as λ varies over all allowed partitions,
form a Z-basis for the cohomology of G(k, n) [GH, §1.5].

The Plücker map embeds the Grassmannian G(k, n) in P(
∧k V ). Let H be a hyperplane in

P(
∧k V ). Let

X(λ,H) = {Σλ(F•) | Σλ(F•) ⊂ G(k, n) ∩H}
denote the space of Schubert varieties with class σλ contained in G(k, n)∩H. In the next section,
we will see that X(λ,H) is a closed algebraic subset of a suitable partial flag variety (X(λ,H)
may be reducible). The purpose of this paper is to describe X(λ,H) in detail when k = 2 and
H is arbitrary. We will also discuss some generalizations to larger k.

There is a natural incidence correspondence

I(λ) = {(Σλ(F•), H) | Σλ(F•) ⊂ H}

parameterizing pairs of a Schubert variety Σλ(F•) and a hyperplane H in the Plücker space
containing Σλ(F•). Let π2 denote the natural projection to P∗(

∧k V ). The first problem we
address is characterizing the image of π2. Before stating our theorems, we recall the case of
G(2, 4).

Example 1.1 (Spaces of Schubert varieties in G(2, 4)). The Plücker map embeds G(2, 4) in P5 as a
smooth quadric hypersurface Q. The dual of Q is a smooth quadric hypersurface in P5∗ [H, §15].
Since smooth quadric hypersurfaces are homogeneous, it is easy to see that a hyperplane section
of Q is either smooth or singular at exactly one point. A codimension one Schubert variety
Σ1(V2 ⊂ V4) is singular at the point of G(2, 4) corresponding to V2 (see §2). By homogeneity, we
conclude that a hyperplane section of G(2, 4) is either smooth or a codimension one Schubert
variety.

The image of a Schubert variety Σ2,1 is a line on Q. Conversely, every line on Q is a Schubert
variety with class σ2,1. Therefore, the Fano variety F1(Q) parameterizing lines onQ is isomorphic
to the flag variety F (1, 3; 4) [H, §6].

Let X = G(2, 4)∩H be a smooth hyperplane section of G(2, 4). Then X is a smooth quadric
threefold. The Fano variety F1(X) parameterizing lines on X is the orthogonal Grassmannian
OG(2, 5), which is isomorphic to P3.

On the other hand, let Y = Σ1(V2 ⊂ V4) be a singular hyperplane section of G(2, 4). Then
Y is a cone over a smooth quadric surface whose vertex is the point corresponding to the
two dimensional vector space V2. The Fano variety F1(Y ) parameterizing lines on Y has two
irreducible components Z1 and Z2. Both Z1 and Z2 are isomorphic to the blow-up of P3 along
a line. The two components Z1 and Z2 intersect exactly along the exceptional divisors of the
two blow-ups. The components Z1 and Z2 can be geometrically described as follows. Let
l = Σ2,1(F1 ⊂ F3) be a line on G(2, 4). The line l is contained in Y if all the two-dimensional
subspaces parameterized by l intersect V2 defining Σ1(V2 ⊂ V4) non-trivially. There are two
possibilities. Either V2 ⊂ F3 and F1 is an arbitrary one-dimensional subspace of F3; or F3 is
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arbitrary and F1 = F3 ∩ V2. These two possibilities correspond to the two components Z1 and
Z2.

The image of a Schubert variety Σ1,1 or Σ2 under the Plücker map is a plane on the quadric
hypersurface Q. Conversely, every plane on Q is a Schubert variety of the form Σ1,1 or Σ2.
These varieties are parameterized by P3∗ and P3, respectively. By the Lefschetz Hyperplane
Theorem [GH, §1.2], a smooth quadric threefold does not contain any planes. Therefore, the
smooth hyperplane section X of G(2, 4) does not contain any Schubert varieties Σ1,1 or Σ2. On
the other hand, Y is a cone over a quadric surface. Such a threefold has two one-dimensional
families of planes both parameterized by P1. The two components are distinguished by the
cohomology class of the planes they parameterize. Hence, the space of Schubert varieties of the
type Σ1,1 or Σ2 on Y are both parameterized by P1. Notice that in these two cases the incidence
correspondences I(1, 1) and I(2) both have dimension 5 = dim(P∗(

∧2 V )); however, the second
projection is not surjective [H, Example 12.5].

In general, PGL(n) acts with finitely many orbits on P∗(
∧2 V ) [D, §2] (see Proposition 2.5).

The equation of a hyperplane H in the Plücker space P(
∧2 V ) can be expressed as

∑
ai,jei∧ej =

0. Therefore, H may be viewed as a skew-symmetric matrix QH . The dimension of the kernel of
QH is the invariant that determines the orbits of PGL(n) on P∗(

∧2 V ) [D, §2] (see the discussion
in §2 preceding Proposition 2.5). The dense open orbit corresponds to hyperplanes H such that
G(2, n)∩H is smooth. The dual variety G(2, n)∗ parameterizing hyperplanes tangent to G(2, n)
decomposes into finitely many orbits depending on the singular locus of H ∩G(2, n). Following
Lemma 2.4, we will see that, for H ∈ G(2, n)∗, the singular locus of G(2, n) ∩H is a Schubert
variety of the form Σ2r,2r for some 1 ≤ r ≤ bn−2

2 c [D, §2]. Let Sr denote the locus in P∗(
∧2 V )

parameterizing hyperplanes H such that the singular locus of G(2, n) ∩H contains a Schubert
variety of the form Σ2r,2r. By convention, we set Sdn−1

2
e to be P∗(

∧2 V ). We thus have

S1 ⊂ S2 ⊂ · · · ⊂ Sdn−1
2
e

and the PGL(n) orbits on P∗(
∧2 V ) are the locally closed subsets Sr/Sr−1 (see [D, §2] and

Proposition 2.5).

Our first theorem characterizes the image of π2(I(λ)) when k = 2.

Theorem 1.2. Let λ = (a, b) be a partition for G(2, n). The image of the map

π2 : I(a, b)→ P∗(
2∧
V )

contains Sr if and only if da+b
2 e ≥ r. In particular, the map π2 is surjective if and only if

da+b
2 e >

n−2
2 .

Theorem 1.2 implies that if H ∈ Sr/Sr−1, then X((a, b), H) is not empty if and only if
da+b

2 e ≥ r. This raises the question of describing X((a, b), H) in cases it is not empty. Our
second theorem addresses this question.

Let Q be a skew-symmetric form on an n-dimensional vector space V . If Q is non-degenerate,
then n = 2r has to be even. A linear space W is called isotropic with respect to Q if the
restriction of Q to W is identically zero. Given a vector space W , let W⊥ denote the set of
vectors v ∈ V such that vTQw = 0 for every w ∈ W . If Q is non-degenerate, the variety
parameterizing the k-dimensional isotropic subspaces of V is called the isotropic Grassmannian
SG(k, 2r). The isotropic Grassmannian SG(k, 2r) is a homogeneous variety for the symplectic
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group Sp(2r). An isotropic subspace of a non-degenerate skew-symmetric form has at most half
the dimension, hence k ≤ r.

Theorem 1.3. Let H be a hyperplane in P(
∧2 V ) such that [H] ∈ P∗(

∧2 V ) is contained in the
PGL(n) orbit Sr/Sr−1. Let Fn−2r be the kernel of the corresponding skew-symmetric form QH .
Let (a, b) be a partition for G(2, n) such that da+b

2 e ≥ r. Let

M = max (0, n− 1− a−min(r, b)) and N = min
(
n− a− 1, n− r − a+ b+ 1

2

)
.

(1) Assume that a 6= b. Then the irreducible components Zj of X((a, b), H) are in one-to-one
correspondence with integers M ≤ j ≤ N . The irreducible component Zj parameterizes
pairs (Vn−a−1 ⊂ Vn−b) in F (n−a−1, n−b;n) such that Vn−a−1 is a QH-isotropic subspace
with dim(Vn−a−1 ∩ Fn−2r) ≥ j and Vn−b is a linear space Vn−a−1 ⊂ Vn−b ⊂ V ⊥n−a−1 with
dim(Vn−b ∩ Fn−2r) ≥ 2n− 2r − a− b− 1− j. The dimension of Zj is given by

dim(Zj) = (a+ 1− b)(a+ b+ j − n+ 1)− j (4r + 3a+ 3j − 3n+ 4)
2

+
(n− a− 1)(3a+ j − n+ 4)

2
.

(2) Assume that a = b. Then X((a, a), H) parameterizes QH-isotropic subspaces of dimen-
sion n− a. In particular, X((a, a), H) is irreducible and

dim(X((a, a), H)) =


r2+r

2 + (n− a)(a− r) if n ≥ a+ r

(n−a)(3a−n+1)
2 if n < a+ r

Some special cases of the theorem are worth highlighting for the beauty of the geometry.

Corollary 1.4. Let [H] ∈ Sr/Sr−1. Then X((r, r), H) is isomorphic to the Lagrangian Grass-
mannian SG(r, 2r). In particular, X((r, r), H) is irreducible of dimension

(
r+1

2

)
.

Corollary 1.5. Let [H] ∈ Sr/Sr−1 and a + b + 1 = 2r, then X((a, b), H) is isomorphic to
the isotropic Grassmannian SG(b, 2r). In particular, X((a, b), H) is irreducible of dimension
b(2a−b+3)

2 .

Corollary 1.6. Let [H] ∈ Sr/Sr−1 and a + 1 ≥ 2r. Then X((a, 0), H) is isomorphic to the
Grassmannian G(n− a− 1, n− 2r), hence it is irreducible of dimension (n− a− 1)(a+ 1− 2r).

Corollary 1.7. Let a be odd. Then π2 is a birational map from I(a, 0) to S(a+1)/2. In particular,
when n is odd, a smooth hyperplane section of G(2, n) contains a unique linear space of dimension
n − 2. Geometrically, this linear space corresponds to two-dimensional subspaces that contain
the kernel of QH . Consequently, when n is odd, the largest dimensional linear space on a general
codimension two linear section of G(2, n) has dimension n− 3.

Corollary 1.8. Let [H] ∈ S1 be the hyperplane defining the Schubert variety Σ1(Fn−2 ⊂ Fn)
and let a > b > 0. Then X((a, b), H) is the union of the following two Schubert varieties in
F (n− a− 1, n− b;n)
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(1) {(Vn−a−1 ⊂ Vn−b) | Vn−a−1 ⊂ Fn−2},
(2) {(Vn−a−1 ⊂ Vn−b) | dim(Vn−b ∩ Fn−2) ≥ n− b− 1}.

When n − 2 > k > 2, PGL(n) no longer acts with finitely many orbits on P∗(
∧k V )(except

when k = 3 and n = 6, 7 or 8 [D, §2.1]). It is, therefore, unrealistic to hope for as complete a
classification of the spaces X(λ,H). However, X(λ,H) can be easily described for H in certain
orbits of PGL(n). We will give some examples below.

Proposition 1.9. Let λ be a partition for G(k, n) such that λ1 < n− k and λk = 0. Then the
image of the second projection π2(I(λ)) is contained in the dual variety G(k, n)∗. In particular,
π2 is not surjective. On the other hand, let λ be a partition such that either λk−1 = n − k and
λk > 0; or λ1 = n− k and λk = n− k − 1. Then π2 is surjective.

A corollary of the proof of the proposition is worth mentioning.

Corollary 1.10. Let λ be the partition λ1 = · · · = λk−1 = n − k − 1 and λk = 0. Then
π2(I(λ)) = G(k, n)∗.

It is very rare to have an explicit, concrete resolution of singularities of a variety. Corollary
1.10 provides such a resolution for the dual of the Grassmannian in its Plücker embedding.

Corollary 1.11. Let n − 2 > k > 2. Let λ be the partition λ1 = · · · = λk−1 = n − k − 1 and
λk = 0. Let N =

(
n
k

)
− k(n − k) − 2. Then the incidence correspondence I(λ) is a PN -bundle

over G(k, n) and is smooth. The map π2 is a birational map from I(λ) onto G(k, n)∗ and gives
a resolution of singularities of G(k, n)∗.

Finally, we state the analogue of Corollary 1.8 for arbitrary k.

Proposition 1.12. Let H be the hyperplane in P(
∧k V ) defining the codimension one Schubert

variety Σ1(Fn−k ⊂ Fn−k+2 ⊂ · · · ⊂ Fn). Let λ = (µi11 , . . . , µ
it
t ) be a partition. Let δ denote the

Krönecker delta function. Then X(λ,H) has t−δ0,µt irreducible components Zj with 1 ≤ j ≤ t−
δ0,µt. The component Zj is the Schubert variety in F (n−k+k1−µ1, . . . , n−µt;n) parameterizing
flags (Vn−k+k1−µ1 ⊂ · · · ⊂ Vn−µt) such that dim(Vn−k+kj−µj ∩ Fn−k) ≥ n− k − µj + 1.

The organization of the paper is as follows. In §2, we will recall basic facts about the geometry
of Grassmannians, Schubert varieties and the dual variety to the Grassmannian in its Plücker
embedding. In §3, we will prove Theorem 1.2, Proposition 1.9 and their corollaries. In §4, we
will prove Theorem 1.3 and discuss its corollaries.

Acknowledgements: This paper is part of the first author’s thesis. We would like to thank
Lawrence Ein for helpful discussions and the anonymous referee for many excellent suggestions.
The starting point of this work was Ron Donagi’s beautiful work on the dual of G(2, n) [D].

2. Preliminaries about the geometry of Grassmannians

In this section, we recall some basic facts about the geometry of Grassmannians and Schu-
bert varieties. For the reader’s convenience, we sketch the proofs of some classical facts about
G(2, n)∗. We refer the reader to [GH] and [H] for facts about Grassmannians and Schubert
varieties, to [D] and [PVdV] for facts about the dual variety G(2, n)∗, to [BL] and [C2] for facts
about singularities of Schubert varieties.
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In order to minimize confusion, we will denote the point in the Grassmannian G(k, n) corre-
sponding to a k-dimensional subspace W by [W ].

Parameter spaces of Schubert varieties. Although it is standard in the literature to define
a Schubert variety by Equation (1), the Schubert variety does not determine the flag. In fact,
the Schubert variety does not even determine the elements of the flag Fn−k+i−λi that impose
the rank conditions defining the Schubert variety.

For example, Σ1,1(F2 ⊂ F3) and Σ1,1(F ′2 ⊂ F3) define the same Schubert variety in G(2, 4)
for any two F2 and F ′2, two-dimensional subspaces contained in F3. Once a two-dimensional
subspace W is contained in F3, then W automatically intersects any two dimensional subspace
of F3 non-trivially.

In order to characterize the flags that define the same Schubert variety, it is more convenient
to group the repeated parts in the partition λ. Recall that we express λ as λ = (µi11 , . . . , µ

it
t ),

where

λ1 = · · · = λi1 = µ1, λi1+1 = · · ·λi1+i2 = µ2, · · · , λi1+···+it−1+1 = · · · = λk = µt

and
n− k ≥ µ1 > µ2 > · · · > µt ≥ 0.

For simplicity, set ks =
∑s

j=1 ij . In particular, kt = k. The Schubert variety Σλ(F•) can
equivalently be defined as

(2) Σλ(F•) = {[W ] ∈ G(k, n) | dim(W ∩ Fn−k+kj−µj ) ≥ kj for 1 ≤ j ≤ t}.

Once W intersects Fn−k+ks−µs in a ks-dimensional subspace, it intersects Fn−k+ks−µs−j in a
subspace of dimension at least ks − j. Consequently, the rank conditions in Equation (2) imply
all the rank conditions in Equation (1). Conversely, it is easy to see that the Schubert variety
determines the linear spaces Fn−k+ks−µs for 1 ≤ s ≤ t. Consequently, we can use the partial flag
variety F (n− k + k1 − µ1, . . . , n− µt;n) as a parameter space for Schubert varieties in G(k, n)
with cohomology class σλ. The space X(λ,H) is then naturally a closed algebraic subset of
F (n− k + k1 − µ1, . . . , n− µt;n).

We have a natural incidence correspondence I(λ)

I(λ) = {(Σλ(F•), H) | Σλ(F•) ⊂ H}
π1 ↙ ↘ π2

F (n− k + k1 − µ1, . . . , n− µt;n) P∗(
∧k V )

consisting of pairs of a Schubert variety Σλ(F•) and a hyperplane containing it. The first
projection π1 realizes I(λ) as a projective bundle over the partial flag variety F (n − k + k1 −
µ1, . . . , n− µt;n). The fibers are isomorphic to PH0(IΣλ(1)), where IΣλ denotes the ideal sheaf
of Σλ, and are all projective spaces of the same dimension. Consequently, I(λ) is irreducible
and smooth [S, Theorem I.6.8]. Note, however, that the second projection π2 is rarely flat and
much harder to understand.

The Plücker embedding of the Grassmannian. The Grassmannian G(k, n) is a smooth,
projective variety of dimension k(n− k). The Plücker map embeds G(k, n) into P(

∧k V ). The
image of the Grassmannian under this embedding is the space of totally decomposable wedges.
In the Plücker embedding, the linear subspaces of G(k, n) have a concrete description. A line
on G(k, n) corresponds to a family of k-dimensional subspaces of V that contain a fixed (k− 1)-
dimensional subspace and are contained in a fixed (k+1)-dimensional subspace. More generally,
a linear space of dimension s on G(k, n) corresponds to either a family of k-dimensional subspaces
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that contain a fixed (k − 1)-dimensional space and are contained in a fixed (k + s)-dimensional
subspace; or a family of k-dimensional subspaces that are contained in a fixed (k+1)-dimensional
subspace and contain a fixed (k−s)-dimensional subspace [H, §6]. Of course, the first possibility
can only exist when k + s ≤ n and the second possibility can only exist when s ≤ k.

The tangent space T[W ]G(k, n) is naturally isomorphic to Hom(W,V/W ) [H, §16]. We can
also explicitly describe the projectivized tangent space to G(k, n) in the Plücker embedding.
Choose a basis e1, . . . , en for V so that W is given as the span of the vectors e1, . . . , ek. Then
under the Plücker embedding, the image of [W ] is e1 ∧ e2 ∧ · · · ∧ ek. Let i1 < · · · < ik be a set of
indices such that the cardinality of the set {i1, . . . , ik} − {1, 2, . . . , k} is at most one. Since we
can replace any of the elements 1 ≤ i ≤ k by one of the elements k < j ≤ n, there are k(n−k)+1
such sets. The projectivized tangent space to G(k, n) at W is spanned by the k(n−k)+1 points
ei1 ∧ · · · ∧ eik in P(

∧k V ) defined by setting all the Plücker coordinates but pi1,...ik equal to zero.
To prove this description of the tangent space, observe that the line spanned by ei1 ∧ · · · ∧ eik
and e1 ∧ · · · ∧ ek is contained in the Grassmannian G(k, n). Since the tangent space at [W ]
contains every line in G(k, n) passing through [W ], we conclude that the projectivized tangent
space at [W ] contains the span of the points ei1 ∧ · · · ∧ eik . Since both these projective spaces
have dimension k(n− k), we conclude that they are equal.

Let Σλ be a Schubert variety in G(k, n). Then Σλ is cut out on G(k, n) by hyperplanes.
These hyperplanes can be explicitly written as follows. Suppose we choose our flag so that Fi is
the span of the vectors e1, . . . , ei. Then the Schubert variety Σλ(F•) is cut out by the Plücker
coordinates pi1,...,ik = 0, where at least for one j, ij > n − k + j − λj [HP]. Specializing to the
case k = 2, we obtain the following lemma.

Lemma 2.1. The dimension of the vector space of linear spaces containing a Schubert variety
Σa,b in G(2, n) is given by

h0(IΣa,b(1)) =
(
n

2

)
−
(
n− b

2

)
+
(
a− b+ 1

2

)
.

Applying the Theorem on the Dimension of Fibers [S, Theorem I.6.7] to the first projection
π1 : I(a, a)→ F (n− a− 1, n− b;n), we obtain the following corollary.

Corollary 2.2. If a = b, then the first projection

π1 : I(a, a)→ F (n− a;n) = G(n− a, n)

exhibits I(a, a) as a projective space bundle over G(n− a, n) with fibers of dimension(
n

2

)
−
(
n− a

2

)
− 1.

In particular, I(a, a) is smooth, irreducible and

dim(I(a, a)) =
a(4n− 3a− 1)

2
− 1.

If a > b, then the first projection

π1 : I(a, b)→ F (n− a− 1, n− b;n)

exhibits I(a, b) as a projective space bundle over F (n− a− 1, n− b;n) with fibers of dimension(
n

2

)
−
(
n− b

2

)
+
(
a− b+ 1

2

)
− 1.
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In particular, I(a, b) is smooth, irreducible and

dim(I(a, b)) = n(a+ b+ 1)− a2 + 3a
2

− b2 − 2.

Singularities of Schubert varieties. Given a partition λ, a singular partition λs associated
to λ is obtained by adding a hook to the partition λ. More explicitly, if λ = (µi11 , . . . , µ

it
t ), then

λs is any of the partitions

(µi11 , . . . , µ
iu−2

u−2 , (µu−1 + 1)iu−1+1, µiu−1
u , µ

iu+1

u+1 , . . . , µ
it
t )

provided that they are admissible for G(k, n), where it is understood that if µu−1 + 1 = µu−2

those parts have to be grouped together. For example, if (5, 3, 2, 2, 1) is a partition for G(5, 11),
then the singular partitions are (6, 6, 2, 2, 1), (5, 4, 4, 2, 1) and (5, 3, 3, 3, 3). The singular locus
of the Schubert variety Σλ(F•) is the union of Σλs(F•) as λs varies over all allowable singular
partitions associated to λ. In particular, Σa,b in G(2, n) is smooth if and only if a = n − 2 or
a = b. Otherwise, the singular locus of Σa,b(Fn−1−a ⊂ Fn−b) is Σa+1,a+1(Fn−2−a ⊂ Fn−1−a)
[BL].

Lemma 2.3. Let H be a hyperplane in P(
∧k V ). Let V1 be a linear space with dim(V1) ≥ k

such that H ∩G(k, n) is singular at every [W ] ∈ G(k, n) such that W ⊂ V1. Then for any linear
space U such that dim(U ∩ V1) ≥ k − 1, [U ] ∈ G(k, n) ∩H.

Proof. If U ⊂ V1, the lemma is immediate by assumption. Observe that if a line l on G(k, n)
intersects the singular locus of H ∩G(k, n), then by Bezout’s Theorem [Ha, I.7.7], l is contained
in H ∩G(k, n). We may assume that U 6⊂ V1. Let Fk−1 = U ∩ V1 and let W be a k-dimensional
subspace of V1 containing Fk−1. Then the k-dimensional subspaces contained in Span(U,W )
and containing Fk−1 are parameterized by a line l in G(k, n). The line l contains [W ] which is
a singular point of H ∩G(k, n) by assumption. Hence l ⊂ H ∩G(k, n). Since [U ] is also a point
on l, we conclude that [U ] ∈ H ∩G(k, n). This concludes the proof of the lemma. �

Lemma 2.4. Let H be a hyperplane in P(
∧2 V ). Let V1, V2 be two linear subspaces of V such

that dim(Vi) ≥ 2. Assume that H ∩ G(2, n) is singular along every two-dimensional subspace
contained in Vi, 1 ≤ i ≤ 2. Then H ∩ G(2, n) contains every two-dimensional subspace that
intersects Span(V1, V2) non-trivially and is singular along every two-dimensional subspace that
is contained in Span(V1, V2).

Proof. Let W be a two-dimensional subspace that intersects Span(V1, V2) in a one-dimensional
subspace F1. Then there exists a two-dimensional subspace W ′ such that F1 ⊂W ′, W ′ ∩V1 6= 0
and W ′ ∩ V2 6= 0. To construct W ′, take the span of two one-dimensional subspaces G1 ⊂
V1 ∩ Span(F1, V2) and G′1 ⊂ V2 ∩ Span(F1, G1). Let F3 = Span(W,W ′). The two-dimensional
subspaces contained in F3 are parameterized by a plane P in G(2, n). There are two special lines
l1 and l′1 on the plane P , parameterizing two-dimensional subspaces containing G1, respectively,
G′1 and contained in F3. Since each of these two-dimensional spaces intersects V1 or V2 non-
trivially, by Lemma 2.3, l and l′ are contained in H∩G(2, n). By Bezout’s Theorem, we conclude
that P ⊂ H∩G(2, n). Therefore, [W ] ∈ H∩G(2, n). Since H∩G(2, n) is projective and contains
the dense open subset of the Schubert variety of [W ] such that dim(W ∩ Span(V1, V2)) = 1, we
conclude that H ∩G(2, n) contains every [W ] such that W ∩ Span(V1, V2) 6= 0. This proves the
first part of the lemma.

Next, we prove that a hyperplane section of G(2, n) that contains a Schubert variety of the
form Σa,0(Fn−1+a ⊂ Fn) is singular along a Schubert variety of the form Σa+1,a+1(Fn−2+a ⊂
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Fn−1+a). This will conclude the proof of the second part of the lemma. Let v ∧w represent the
Plücker point of a two-dimensional subspace contained in Fn−1+a. Choose coordinates for V so
that Fn−1+a is spanned by e1, . . . , en−1+a with e1 = v and e2 = w. Then a hyperplane containing
Σa,0 is a linear combination of the Plücker coordinates pi,j with n − 1 + a < i < j ≤ n. The
tangent space to G(2, n) in its Plücker embedding at the point e1∧e2 is given by the span of the
points e1 ∧ ei and e2 ∧ ej with 2 ≤ i ≤ n and 3 ≤ j ≤ n. All the Plücker coordinates containing
Σa,0 vanish at all these points spanning the tangent space to the Grassmannian. Hence, all
these hyperplanes contain the tangent space at all the points of Σa+1,a+1. We conclude that the
linear section H ∩G(2, n) is singular along v ∧ w. By homogeneity, it follows that H ∩G(2, n)
is singular along Σa+1,a+1. This concludes the proof of the lemma. �

One can also prove the previous lemma using the correspondence between hyperplanes and
skew-symmetric forms. By assumption, V1 and V2 are in the kernel of the skew-symmetric form
QH . Therefore, the span of V1 and V2 is also in the kernel. The lemma then follows by observing
that H ∩G(2, n) is singular along [W ], where W is in the kernel of QH .

It follows from Lemma 2.4 that the singular locus of a hyperplane section H ∩ G(2, n) is
either empty or a Schubert variety of the form Σa,a parameterizing two-dimensional subspaces
contained in a vector space Fn−a. Simply let Fn−a be the span of all the two dimensional
subspaces W such that [W ] is a singular point of G(2, n) ∩H. Furthermore, a has to be even.
To see this we use the correspondence between the hyperplane H and the skew-symmetric form
QH . The codimension of the kernel of a skew-symmetric form is even since the restriction of the
skew-symmetric form to a complementary linear space is non-degenerate. Hence, a has to be
even. Conversely, every Σ2r,2r occurs as the singular locus of some hyperplane section of G(2, n).
This can be seen by explicitly writing the skew-symmetric form e1∧e2 +e3∧e4 + · · ·+e2r−1∧e2r,
whose kernels has codimension 2r. Finally, Darboux’s Theorem [MS, §2] guarantees that the
hyperplanes corresponding to the skew-symmetric forms with the same dimensional kernel form
one orbit under PGL(n). This recalls the proof of the following beautiful statement from Ron
Donagi’s paper [D] alluded to in the Introduction.

Proposition 2.5. ([D, §2]) The group PGL(n) acts with finitely many orbits on P∗(
∧2 V ). The

orbits are indexed by an integer 1 ≤ r ≤ dn−1
2 e. The orbit corresponding to r < dn−1

2 e consists
of hyperplanes H such that the singular locus of H ∩ G(2, n) is a Schubert variety of the form
Σ2r,2r. The open orbit corresponding to r = dn−1

2 e is the complement of the dual variety G(2, n)∗

parameterizing hyperplanes H such that H ∩G(2, n) is smooth.

Let r ≤ n−2
2 . Since a hyperplane [H] ∈ Sr/Sr−1 is singular along Σ2r,2r parameterizing linear

spaces contained in Fn−2r, by Lemma 2.3, H ∩ G(2, n) contains the Schubert variety Σ2r−1,0

parameterizing linear spaces intersecting Fn−2r. Conversely, we saw in the proof of Lemma
2.4 that a hyperplane containing Σ2r−1,0(Fn−2r ⊂ Fn) is singular along the Schubert variety
Σ2r,2r parameterizing linear spaces that are contained in Fn−2r. We conclude that H contains
a unique Σ2r−1,0. In particular, the map π2 : I(2r − 1, 0) → Sr is birational and a resolution
of singularities of Sr. Furthermore, the Theorem on the Dimension of Fibers and Corollary 2.2
then imply the following corollary.

Corollary 2.6. ([§2][D]) The codimension of Sr in P∗(
∧2 V ) is

(
n−2r

2

)
.

In particular, we have the following well-known corollary.

Corollary 2.7. ([§2][D] or [PVdV]) When n is even, then the dual G(2, n)∗ is a hypersurface.
When n is odd G(2, n)∗ has codimension three.
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Finally, recall that if n − 2 > k > 2, then the dual of G(k, n) in its Plücker embedding
is a hypersurface and at a general point [H] ∈ G(k, n)∗ the singular locus of H ∩ G(k, n)
consists of one singular point. For the convenience of the reader, we briefly sketch an elementary
proof. Since G(k, n) is isomorphic to G(n − k, n), we may further assume that 2k ≤ n. First,
observe that the projective tangent spaces PT[W1] ∩ PT[W2] = ∅ if dim(W1 ∩ W2) < k − 2,
PT[W1]∩PT[W2] = P3 if dim(W1∩W2) = k−2 and PT[W1]∩PT[W2] = Pn−1 if dim(W1∩W2) = k−1.
Let U = G(k, n)×G(k, n)−∆ be the complement of the diagonal ∆ in G(k, n)×G(k, n). Consider
the incidence correspondence

J = {([W1], [W2], H) | PT[W1],PT[W2] ⊂ H}

consisting of a point ([W1], [W2]) in U and a hyperplane H containing the projective tangent
spaces to G(k, n) at both points. Let π1 and π2 denote the projection to U and P∗(

∧k V ),
respectively.

Let U1 be the locus in U parameterizing {([W1], [W2]) | dim(W1 ∩W2) < k − 2}. Then the
fibers of π1 over U1 are projective spaces of dimension

(
n
k

)
−2k(n−k)−3. Since U1 has dimension

2k(n− k), the Theorem on the Dimension of Fibers implies that π2(π−1
1 (U1)) has codimension

at least two in P∗(
∧k V ).

Let U2 be the locus in U parameterizing {([W1], [W2]) | dim(W1 ∩ W2) = k − 2}. Then
the fibers of π1 over U2 are projective spaces of dimension

(
n
k

)
− 2k(n − k) + 1. Since U2 has

dimension k(n− k) + 2n− 4, the Theorem on the Dimension of Fibers implies that π−1
1 (U2) has

dimension
(
n
k

)
−k(n−k)+2n−3. Hence, π2(π−1

1 (U2)) has codimension at least two in P∗(
∧k V )

if k ≥ 4 or if k = 3 and n ≥ 9. If k = 3 and n = 6, 7 or 8, we observe that the dimension of
the fibers of π2 on π−1

1 (U2) is at least 6,4 and 2, respectively. Let W1 = Span(e1, e2, e3) and
let W2 = Span(e1, e4, e5). A hyperplane H containing PT[W1] and PT[W2] can be expressed as∑n

i=6(aip24i + bip34i + cip25i + dip35i) = 0 in Plücker coordinates. Consider two-dimensional
subspaces Y in Span(e2, e3, e4, e5) that satisfy aie2∧ e4 + · · ·+die3∧ e5 = 0 for 6 ≤ i ≤ n. Then
H contains the tangent space to the three-dimensional subspace Span(e1, Y ). The claim about
the fiber dimension of π2 follows. Hence, π2(π−1

1 (U2)) has codimension at least two in P∗(
∧k V )

in these cases as well.
Let U3 be the locus in U parameterizing {([W1], [W2]) | dim(W1 ∩W2) = k − 1}. Then the

fibers of π1 over U2 are projective spaces of dimension
(
n
k

)
− 2k(n − k) + n − 3. The locus

U2 consists of pairs of points ([W1], [W2]) such that the line spanned by them is contained in
G(k, n). Hence, dim(U2) = 2k + (k + 1)(n − k − 1). Note that if a hyperplane H is tangent
to G(k, n) at both W1 and W2, then it is tangent at all points along the line spanned by [W1]
and [W2]. Consequently, the fibers of π2 over π−1

1 (U2) have dimension at least two. By the
Theorem on the Dimension of Fibers, the codimension of π2(π−1

1 (U2)) will be less than two if
2k+ (k+ 1)(n− k− 1)− 2k(n− k) +n− 2 > 0. Rewriting this inequality, 0 > (k− 2)n− k2 + 3.
Using n ≥ 2k, we immediately see that this inequality cannot be satisfied if k ≥ 4. When k = 3,
the inequality becomes 6 > n. Hence, we conclude that the inequality is not satisfied for k ≥ 3
and n ≥ 2k. It follows that if n − 2 > k > 2, G(k, n)∗ is a hypersurface and a general tangent
hyperplane is tangent at a unique point. We have proved the following well-known fact for which
we could not find a convenient reference.

Proposition 2.8. If 2 < k < n− 2, then G(k, n)∗ in P∗(
∧k V ) is a hypersurface. Furthermore,

a general hyperplane parameterized by G(k, n)∗ is tangent to G(k, n) at one point.
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3. The proof of Theorem 1.2

In this section, we prove Theorem 1.2 and discuss its generalizations to G(k, n).

Proof of Theorem 1.2. Let Σa,b(Fn−1−a ⊂ Fn−b) be a Schubert variety with class σa,b in G(2, n).
Suppose that H is a hyperplane in P(

∧2 V ) containing Σa,b(Fn−1−a ⊂ Fn−b). Notice that
Σa,b(Fn−1−a ⊂ Fn−b) ⊂ G(2, Fn−b). There are two possibilities. Either G(2, Fn−b) ⊂ H; or
H ∩ G(2, Fn−b) is a hyperplane section of G(2, Fn−b) that contains Σa,b(Fn−1−a ⊂ Fn−b). We
will now analyze each of these possibilities.

First, assume that H ∩G(2, Fn−b) is a hyperplane section of G(2, Fn−b). A linear embedding
V ′ ↪→ V , induces an embedding G(2, V ′) ↪→ G(2, V ). The following lemma analyzes the relation
between the singular loci of H ∩G(2, V ) and H ∩G(2, V ′).

Lemma 3.1. Let G(2, n) ↪→ G(2, n + 1) be the embedding induced by the embedding of Vn ↪→
Vn+1. Let H ∩G(2, n) be a linear section of G(2, n) in P(

∧2 Vn) with singular locus Σ2k,2k. Let
H ′ be a general hyperplane in P(

∧2 Vn+1) such that H ′ ∩ G(2, n + 1) restricts to H ∩ G(2, n).
Then the singular locus of H ′ ∩G(2, n+ 1) is Σ2(k+1),2(k+1).

Proof. Pick a basis e1, . . . , en+1 of Vn+1 such that Vn is spanned by the first n vectors and the
singular locus of H ∩ G(2, n) parameterizes two-dimensional subspaces contained in the span
Fn−2k of the first n− 2k vectors. Then H is defined by a linear equation L(pi,j) = 0, where L is
a linear combination of the Plücker coordinates pi,j for i < j and n− 2k < j ≤ n. A hyperplane
in P(

∧2 Vn+1) that contains H may be expressed as L(pi,j) +
∑n

i=1 aipi,n+1 = 0.
By Bertini’s Theorem [Ha, III.10.9], the singular locus of H ′ ∩ G(2, n + 1) for a general

hyperplane containing H is contained in H ∩ G(2, n). Let W be the (n − 2k − 1)-dimensional
linear space cut out on Fn−2k by the linear equation

∑n
i=1 aixi = 0. Then H ′ ∩ G(2, n + 1)

contains the tangent space to G(2, n + 1) at any two-dimensional space contained in W . At a
point, u ∧ v with u, v ∈ W , the tangent space is spanned by replacing at most one of u or v by
elements of a basis. All the Plücker coordinates defining H ′ clearly vanish at all these points.
Hence, H ′∩G(2, n+1) is singular along two-dimensional subspaces contained in W . We conclude
that the singular locus of H ′∩G(2, n+1) contains a Σ2(k+1),2(k+1) of two-dimensional subspaces
contained in W . Conversely, for a two-dimensional space not contained in that hyperplane, there
exists a vector v such that

∑
aivi 6= 0. Hence, the point v ∧ en+1 is not contained in H ′, but it

is contained in the tangent space to a line w ∧ v. Hence, the singular locus does not contain all
of Σk,k. The lemma follows. �

We are now ready to prove the theorem in the case H does not contain G(2, Fn−b). There
are two cases that we need to analyze separately. First, assume that a = n − 2. Since the
Grassmannian contains linear spaces of the form Σn−2,0, any hyperplane section contains linear
spaces Σn−2,1 of one smaller dimension. Hence, π2 is surjective for λ = (n− 2, i) for i > 0. We
now have to analyze the case λ = (n−2, 0). In this case, the flag variety F (1, n;n) is isomorphic
to Pn−1. Hence, dim(I) =

(
n
2

)
− 1. If n is even, then the general singular hyperplane section

X of G(2, n) is singular along a point [Λ] ∈ G(2, n). Furthermore, in this case the dual variety
G(2, n)∗ is a hypersurface, hence has dimension

(
n
2

)
− 2. By Lemma 2.4, if F1 ⊂ Λ, then every

two-dimensional subspace containing F1 is contained in X. Since the space of one-dimensional
subspaces of Λ is isomorphic to P1, the general fiber of π2 over G(2, n)∗ has dimension greater
than or equal to one. By the Theorem on the Dimension of Fibers, dim(π−1

2 (G(2, n)∗) ≥
(
n
2

)
−1.

However, since π−1
2 (G(2, n)∗) ⊂ I(n − 2, 0), dim(π−1

2 (G(2, n)∗) ≤
(
n
2

)
− 1. We conclude that

π−1
2 (G(2, n)∗) = I(n− 2, 0) and consequently, π2 is not surjective.
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If n is odd, then the skew-symmetric form QH corresponding to any hyperplane H in P(
∧2 V )

must have non-trivial kernel. Let v be a vector in the kernel of QH . Then any two-dimensional
subspace W such that v ∈ W is isotropic with respect to QH . Consequently, H contains
the Schubert variety Σn−2,0 parameterizing the two-dimensional subspaces containing v. For a
general hyperplane H, the kernel of QH is one-dimensional and H contains a unique Schubert
variety of the form Σn−2,0.

Now we can discuss the case Σa,0 with a < n − 2. Let X be a general hyperplane section
containing Σa,0. Then the singular locus of X contains Σa+1,a+1. If a is odd, then by Proposition
2.5, there exists hyperplane sections whose singular locus is Σa+1,a+1. By Lemma 2.3, such
hyperplane sections contain a Schubert variety of the form Σa,0. We conclude that π2(I(a, 0)) =
S(a+1)/2. If a is even, then a + 1 is odd. Since, by Proposition 2.5, the singular locus of
a hyperplane section has the form Σ2k,2k, the singular locus of X contains but cannot equal
Σa+1,a+1. We conclude that the singular locus of X has to contain a larger Schubert variety of
the form Σa,a. Conversely, a hyperplane section whose singular locus has the form Σa,a contains
a Schubert variety of the form Σa,0. We conclude that the image of π2 is Sa/2.

Returning to the original argument, if b > 0, then Σa,b is a Schubert variety with class σa−b,0
in G(2, n− b). Hence, any hyperplane section of G(2, n− b) containing σa−b,0 is singular along
a Schubert variety of the form Σa−b+1,a−b+1 if a − b is odd or Σa−b,a−b if a − b is even. Using
Lemma 3.1 b-times, we conclude that if a − b is even, then the general hyperplane containing
Σa,b is smooth if a + b > n − 3 or singular along a Schubert variety of the form Σa+b+1,a+b+1

when a + b ≤ n − 3. Similarly, when a − b is odd, then a hyperplane section of G(2, n − b)
containing Σa−b,0 is singular along Σa−b,a−b. Using Lemma 3.1 b-times, we conclude that a
general hyperplane containing Σa,b is smooth when a + b > n − 2 or singular along Σa+b,a+b

when a+ b ≤ n− 2.
Finally, we analyze the cases when the hyperplane contains G(2, n−b) or when a = b. The first

observation is that the only hyperplanes containing a Schubert variety of the form Σ1,1(Fn−2 ⊂
Fn−1) are Schubert varieties Σ1(Gn−2 ⊂ Gn). The flag variety F (n − 1;n) ∼= (Pn−1)∗, hence
has dimension n− 1. The fiber dimension of π1 over a point in F (n− 1;n) is n− 2. Hence the
dimension of I(1, 1) is 2n−3. The locus of Schubert varieties in P∗(

∧2 V ) has dimension 2(n−2).
If Fn−1 contains Gn−2, then Σ1,1(Fn−2 ⊂ Fn−1) ⊂ Σ1(Gn−2 ⊂ Gn). Hence, the fiber of π2 over
a hyperplane corresponding to a Schubert variety has dimension at least one. We conclude
that dim(π−1

2 (S1)) = 2n − 3 = dim(I(1, 1)). Hence, π2(I(1, 1)) = S1 and every hyperplane
containing a Schubert variety Σ1,1 is a Schubert variety Σ1. Applying Lemma 3.1 (b− 1)-times,
we conclude that a general hyperplane section containing Σb,b is smooth if 2b > n−2 or singular
along a Schubert variety of the form Σ2b,2b if 2b ≤ n − 2. This also concludes the discussion
of the case a 6= b. Let H and H ′ be two hyperplanes containing Σa,b. If G(2, Fn−b) ⊂ H and
G(2, Fn−b) 6⊂ H ′, then we have just proved that the dimension of the singular locus of G(2, n)∩H
is greater than or equal to the dimension of the singular locus of H ′ ∩ G(2, n). This concludes
the proof of the theorem. �

Since the proof of Proposition 1.9 uses similar techniques, we include it in this section.

Proof of Proposition 1.9. Let λ be a partition of the form λ1 = λk−1 = n− k and λk > 0, then
the Plücker image of Σλ is a linear space. Since the Grassmannian contains linear spaces with
cohomology class σµ, where µ = ((n− k)k−1, 0), every hyperplane section contains linear spaces
with cohomology class σλ. The same argument applies for a partition λ with λ1 = n − k and
λk ≥ n− k− 1 by considering linear spaces with cohomology class σν , where ν = ((n− k− 1)k).
This proves the second part of the proposition.
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To prove the first part of the proposition, we will show that if λ is a partition such that
λ1 < n− k and λk = 0, then any hyperplane H containing Σλ is singular. Fix a basis e1, . . . , en
of V . Let F• be the flag where the flag element Fi is the span of the basis vectors e1, . . . , ei.
Let H be a hyperplane containing Σλ(F•). Then the equation defining H must be a linear
combination of the Plücker coordinates defining Σλ(F•). Recall that the Plücker coordinates
vanishing on Σλ(F•) are pi1,....ik with i1 < · · · < ik such that ij > n− k+ j − λj for at least one
j. Since by assumption λk = 0 and we cannot have ik > n, there must exist j < k such that
ij > n− k + j − λj . In particular, ik−1 > n− k + j − λj + k − j − 1 = n− λj > k.

It follows that H ∩G(k, n) is singular at the point p = e1 ∧ e2 ∧ · · · ∧ ek. The tangent space
to G(k, n) at p is spanned by Plücker coordinates pi1,...,ik where the set {i1, . . . , ik} differs from
{1, . . . , k} in at most one element. On the other hand, the Plücker coordinates occurring in
the equation of H have indices that differ from {1, . . . , k} in at least two elements. Hence,
H vanishes at all the points spanning the tangent space to G(k, n) at p. We conclude that
H ∩G(k, n) is singular at p. This concludes the proof of the proposition. �

Proofs of Corollaries 1.10 and 1.11. When λ is the partition λ1 = · · · = λk−1 = n − k − 1
and λk = 0, then, by Proposition 1.9, for any hyperplane H containing Σλ the hyperplane
section H ∩ G(k, n) is singular at a point. Conversely, if H ∩ G(k, n) is singular at a point
p = e1 ∧ · · · ∧ ek, then by Lemma 2.3 the Schubert variety Σλ parameterizing k-dimensional
subspaces that intersect Span(e1, . . . , ek) in a subspace of dimension at least k − 1 is contained
in H. In this case, we conclude that the image of π2(I(λ)) is precisely the dual variety.

Note that h0(IΣλ(1)) =
(
n
k

)
−k(n−k)−1 = N. Hence, the incidence correspondence I(λ) is a

projective space bundle over G(k, n) with fibers of dimension N − 1. In particular, dim(I(λ)) =(
n
k

)
−2. When n−2 > k > 2, the dual variety G(k, n)∗ is a hypersurface and the general tangent

hyperplane to G(k, n) is tangent at a unique point. Therefor, π2 is a birational map. Hence,
π2 : I(λ)→ G(k, n)∗ gives a resolution of singularities of G(k, n)∗. This concludes the proofs of
Corollary 1.10 and Corollary 1.11. �

4. The proof of Theorem 1.3

In this section, we prove Theorem 1.3 and discuss some generalizations to G(k, n).

Proof of Theorem 1.3. Let H be a hyperplane in P(
∧2 V ) such that [H] ∈ Sr/Sr−1. Then

H∩G(2, n) is singular along a Schubert variety Σ2r,2r parameterizing two-dimensional subspaces
of V contained in a linear subspace Fn−2r. First, suppose that a 6= b. Let (Vn−a−1 ⊂ Vn−b) be the
partial flag defining a Schubert variety Σa,b ⊂ H∩G(2, n). Suppose that dim(Vn−a−1∩Fn−2r) =
j. Then clearly

0 ≤ j ≤ min(n− a− 1, n− 2r).

Consider the restriction of H to G(2, Vn−b). Either H identically vanishes on G(2, Vn−b); or H
defines a hyperplane section of G(2, Vn−b).

If H identically vanishes on G(2, Vn−b), then both Vn−a−1 and Vn−b are QH -isotropic. Hence,
trivially Vn−a−1 ⊂ Vn−b ⊂ V ⊥n−a−1. Take a linear space S2r of dimension 2r complementary to
Fn−2r. Then the restriction of QH to S2r is non-degenerate. Since Span(Vn−a−1, Fn−2r) ∩ S2r

is isotropic with respect to the restriction of QH to S2r, its dimension n− a− 1− j must be less
than or equal to r. Equivalently, n−a−1−r ≤ j. Similarly, since Vn−b is isotropic, n−b ≤ n−r.
In particular, b ≥ r. Hence, the inequality n− a− 1−min(r, b) ≤ j holds.
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Next, suppose that H defines a hyperplane section of G(2, Vn−b). By our assumption that
Σa,b(Vn−a−1 ⊂ Vn−b) ⊂ H ∩ G(2, n), we must have that [W ] ∈ H ∩ G(2, n) for every two-
dimensional subspace W that intersects Vn−a−1 non-trivially and is contained in Vn−b. In par-
ticular, [W ] is contained in H ∩ G(2, n) for every two-dimensional subspace W contained in
Vn−a−1. We conclude that the skew-symmetric form QH vanishes identically on Vn−a−1. Hence,
Vn−a−1 is QH -isotropic. Hence, Span(Vn−a−1, Fn−2r) is also QH -isotropic. The dimension of
this vector space, which by assumption is n− a− 1 + n− 2r− j, has to be less than or equal to
n− r. We conclude that n− a− 1− r ≤ j.

Finally, since the restriction of QH to Vn−b must contain Vn−a−1 in its kernel, we must
have that Vn−b ⊂ V ⊥n−a−1. By assumption, the dimension of V ⊥n−a−1 is n − 1 − a − j. Hence,
n− a− 1− j ≤ b. Combining all these inequalities, yields the inequality

max(0, n− a− 1−min(b, r)) ≤ j ≤ min(n− a− 1, n− 2r).

Note that by assumption 2r ≤ a + b + 1, so for j satisfying the assumptions of the theorem,
these inequalities hold.

Conversely, suppose j satisfies the inequalities

max(0, n− a− 1−min(b, r)) ≤ j ≤ min(n− a− 1, n− 2r).

Then every Schubert variety Σa,b(Vn−a−1 ⊂ Vn−b) is contained in H ∩G(2, n) provided Vn−a−1

is QH isotropic and Vn−b ⊂ V ⊥n−a−1. This is clear since the kernel of QH restricted to V ⊥n−a−1

contains Vn−a−1. Hence, every two-dimensional space intersecting Vn−a−1 non-trivially is QH
isotropic.

Furthermore, there exists flags (Vn−a−1 ⊂ Vn−b) such that dim(Vn−a−1 ∩ Fn−2r) = j. To
construct such a flag, let S2r be a linear space complementary to Fn−2r. Pick a QH isotropic
subspace W of dimension n − a − 1 − j in S2r. This is possible since n − a − 1 − j ≤ r. Pick
a j-dimensional subspace W ′ of Fn−2r. Let Vn−a−1 = Span(W,W ′). Then Vn−a−1 is isotropic
and has dimension n− a− 1. Next, consider V ⊥n−a−1, which has dimension a+ 1 + j. Since by
assumption n − a − 1 − b ≤ j, n − b ≤ a + 1 + j. Therefore, there exists n − b dimensional
subspaces of V ⊥n−a−1 containing Vn−a−1.

Let Zj denote the locus of two-step flags (Vn−a−1 ⊂ Vn−b) in F (n− a− 1, n− b;n) such that
Vn−a−1 is QH isotropic, dim(Vn−a−1 ∩Fn−2r) ≥ j and Vn−b ⊂ V ⊥n−a−1 and dim(Vn−b ∩Fn−2r) ≥
2n − 2r − a − b − 1 − j. It is clear from the construction in the previous paragraph that Zj is
irreducible. Recall the following definitions from the statement of the theorem

M = max (0, n− 1− a−min(r, b)) and N = min
(
n− a− 1, n− r − a+ b+ 1

2

)
.

We have shown that

X((a, b), H) =
min(n−a−1,n−2r)⋃

j=M

Zj

and in this range each Zj is non-empty. Finally, there remains to check that Zj is an irreducible
component of X((a, b), H) if M ≤ j ≤ N and X((a, b), H) =

⋃N
j=M Zj .

The dimension dim(Vn−a−1 ∩ Fn−2r) is an upper-semi-continuous function. Consequently, if
j1 > j2, then linear spaces intersecting Fn−2r in a j1-dimensional subspace cannot specialize
to linear spaces intersecting Fn−2r in a j2-dimensional subspace. Therefore, Zj2 cannot be
contained in Zj1 . On the other hand, dim(Vn−b ∩ Fn−2r) is also an upper-semi-continuous
function. By construction, for a general point (Vn−a−1, Vn−b) in Zj , dim(Vn−b ∩ Fn−2r) =
max(j, 2n − 2r − a − b − 1 − j) since Vn−b is an arbitrary linear space containing Vn−a−1 and
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contained in the (a + j + 1)-dimensional space V ⊥n−a−1. Suppose n − r − a+b+1
2 ≥ j1 > j2,

then the dimension of Vn−b ∩ Fn−2r for a general point in Zj1 , respectively, Zj2 is given by
2n− 2r − a− b− 1− j1 < 2n− 2r − a− b− 1− j2. Hence, Zj1 cannot be contained in Zj2 . We
conclude that for M ≤ j ≤ N , Zj form irreducible components of X((a, b), H).

There remains to show that when 2j > 2n− 2r− a− b− 1, then Zj is contained in Zj−1. Let
(Vn−a−1 ⊂ Vn−b) be a point of Zj such that dim(Vn−a−1 ∩Fn−2r) = dim(Vn−b ∩Fn−2r) = j. Let
E be a codimension one linear space in V containing the vector space Span(Vn−b, Fn−2r). By
assumption,

dim(Span(Vn−b, Fn−2r)) = 2n− 2r − b− j < a+ 1 + j ≤ n.
Hence, we can always find a codimension one linear space E containing Span(Vn−b, Fn−2r). Since
a non-degenerate skew-symmetric form can only exist in an even dimensional vector space, the
dimension of the kernel of QH restricted to E has to have dimension greater than or equal
to n − 2r + 1. Denote this kernel by KE . Let Va+1−b be a general subspace in Vn−b comple-
mentary to Vn−a−1. Pick a pencil of linear spaces Vn−a−1(t) such that Vn−a−1(0) = Vn−a−1,
Vn−a−1(t) ⊂ KE and Vn−a−1(t) 6⊂ Fn−2r for t 6= 0. Consider the pencil of flags (Vn−a−1(t) ⊂
Span(Vn−a−1(t), Va+1−b)). First, notice that when t = 0, this is simply (Vn−a−1 ⊂ Vn−b). Hence,
except for finitely many t, these flags are contained in F (n− a− 1, n− b;n). By construction,
dim(Vn−a−1(t)∩Fn−2r) = j−1. Since Vn−a−1(t) ⊂ KE , Span(Vn−a−1(t), Va+1−b) ⊂ Vn−a−1(t)⊥.
Hence, the general member of this family is contained in Zj−1. We conclude that Zj ⊂ Zj−1.

The computation of the dimension of Zj is standard. We have to choose a QH isotropic
subspace Vn−a−1 that intersects the kernel of QH in a subspace of dimension j. The reader can
easily check that the dimension of the space of such isotropic subspaces is

(n− a− 1)(3a+ j − n+ 4)
2

− j (4r + 3a+ 3j − 3n+ 4)
2

.

Then we need to choose an (n− b)-dimensional subspace in the (a+ j+1)-dimensional subspace
V ⊥n−a−1 containing Vn−a−1. The dimension of the space of such linear spaces Vn−b is

(a+ 1− b)(a+ b+ j − n+ 1).

This immediately yields the dimension formula for Zj .
Next, suppose that a = b. In this case, the Schubert variety is determined by one flag element

Vn−a. Since Σa,a ⊂ H ∩G(2, n), Vn−a is QH isotropic. Conversely, if Vn−a is QH -isotropic, then
[W ] ∈ H∩G(2, n) for every two dimensional subspace W ⊂ Vn−a. We conclude that X((a, a), H)
is the space of QH -isotropic linear spaces of dimension n − a. It is standard that this space is
irreducible and has the claimed dimension. �

Example 4.1. Let H be a hyperplane in P(
∧2 V8) such that [H] ∈ S2. Let H ∩ G(2, 8) be the

corresponding hyperplane section of G(2, 8). Then the space X((5, 4), H) parameterizing Schu-
bert varieties of the form Σ5,4(V2 ⊂ V4) has two irreducible components Z0 and Z1. The singular
locus of H∩G(2, 8) consists of two-dimensional subspaces contained in a four-dimensional vector
space F4. The component Z0 parameterizes pairs (V2 ⊂ V4) such that [V2] ∈ H ∩ G(2, 8) and
V4 ⊂ V ⊥2 and dim(V4∩F4) ≥ 2. The component Z1 parameterizes V2 such that dim(V2∩F4) ≥ 1
and V4 ⊂ V ⊥2 . Note that Z1 contains the pairs where V2 ⊂ F4 and V4 ⊂ V ⊥2 .

The corollaries are obtained by specializing the numbers a and b.

Proof of Corollary 1.4. When a = b = r, we are in Case (2) of Theorem 1.3. X((a, a), H) param-
eterizes (n−a)-dimensional isotropic subspaces of QH . These are maximal dimensional isotropic
subspaces, hence they all contain the kernel Fn−2r of QH . Passing to the quotient V/Fn−2r, we
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see that X((a, a), H) parameterizes r-dimensional isotropic subspaces of a 2r-dimensional vector
space under a non-degenerate skew-symmetric form. We conclude that X((a, a), H) is isomor-
phic to SG(r, 2r). This variety is irreducible of dimension

(
r+1

2

)
. �

Proof of Corollary 1.5. When a+ b+ 1 = 2r, we are in Case (1) of Theorem 1.3. The integers a
and b must satisfy the inequalities b < r ≤ a. Hence n−a−b−1 = n−2r ≤ j ≤ n−r− a+b+1

2 =
n − 2r. We conclude that j = n − 2r and that X((a, 2r − a − 1), H) is irreducible. The linear
space Vn−a−1 must contain the kernel of QH , which by assumption has dimension n − 2r = j.
Furthermore, dim(V ⊥n−a−1) = n − 2r + a + 1 = n − b. Hence, Vn−b = V ⊥n−a−1. Therefore,
X((a, 2r − a− 1), H) can be identified with SG(b, 2r). �

Proof of Corollary 1.6. When b = 0, we are in Case (1) of Theorem 1.3. In this case, n−a−1 ≤
j ≤ n−a−1. Hence, there is only one component and Vn−a−1 is contained in Fn−2r. Therefore,
in this case, X((a, 0), H) parameterizes linear spaces Vn−a−1 contained in Fn−2r. This is the
Grassmannian G(n− a− 1, n− 2r), which has dimension (n− a− 1)(a+ 1− 2r). �

Proof of Corollary 1.7. If a is odd and λ = (a, 0), then we are in Case (1) of Theorem 1.3 and
j = n− a− 1. Hence, Vn−a−1 = Fn−2r and Vn−b = V . Hence, π2 is a birational map from I(λ)
to Sa+1

2
. In particular, when n is odd a smooth hyperplane section contains a unique linear

space of the form Σn−2,0. The rest of the corollary is obvious. �

Finally, we prove Proposition 1.12, which clearly specializes to Corollary 1.8 when k = 2.

Proof of Proposition 1.12. Let H = Σ1(Fn−k ⊂ Fn−k+2 ⊂ · · · ⊂ Fn). A Schubert variety Σλ is
contained in H if and only if every k-dimensional subspace parameterized by Σλ intersects Fn−k
non-trivially. Let Vn−k+k1−µ1 ⊂ Vn−k+k2−µ2 ⊂ · · · ⊂ Vn−µt be the linear spaces defining Σλ. Let
W be any k-dimensional subspace such that [W ] ∈ Σλ. If for some j, dim(Vn−k+kj−µj ∩Fn−k) ≥
n − k − µj + 1, then we can estimate dim(W ∩ Fn−k ∩ Vn−k+kj−µj ) as follows. dim(W ∩
Vn−k+kj−µj ) ≥ kj since [W ] ∈ Σλ. Hence, dim(W ∩ Fn−k ∩ Vn−k+kj−µj ) ≥ kj + n − k −
µj + 1− (n− k + kj − µj) = 1. We conclude that [W ] ∈ H ∩G(k, n), hence Σλ ⊂ H ∩G(k, n).
Note that if µt = 0, then the condition dim(Vn−µt ∩ Fn−k) ≥ n− k + 1 is impossible to satisfy.
Therefore, that case has to be treated separately.

Conversely, suppose that dim(Vn−k+kj−µj ∩ Fn−k) = n − k − µj for every 1 ≤ j ≤ t. Then
there exists a k1-dimensional subspace in Vn−k+k1−µ1 that does not intersect Fn−k. This can be
extended to a k2-dimensional subspace in Vn−k+k2−µ2 that does not intersect Fn−k. Continuing
this way, we construct a k-dimensional subspace W such that [W ] ∈ Σλ, but [W ] 6∈ H ∩G(k, n).

Let Sj be the Schubert variety in the flag variety F (n− k+ k1− µ1, . . . , n− µt;n) defined by

Sj = {(Vn−k+k1−µ1 ⊂ · · · ⊂ Vn−µt | dim(Vn−k+kj−µj ∩ Fn−k) ≥ n− k − µj + 1}.

We have shown that X(λ,H) = ∪t−δ0,ti=1 Sj . Since the Schubert varieties Sj 6⊂ Si for i 6= j, we
conclude that the t − δ0,t Schubert varieties Sj form the irreducible components of X(λ,H).
This concludes the proof of the proposition. �
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