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Abstract

The water wave problem models the free–surface evolution of an ideal fluid under the
influence of gravity and surface tension. The governing equations are a central model in
the study of open ocean wave propagation, but they possess a surprisingly difficult and
subtle well–posedness theory. In this paper we establish the existence and uniqueness
of spatially periodic solutions to the water wave equations augmented with physically
inspired viscosity suggested in the recent work of Dias, Dyachenko, and Zakharov (Phys.
Lett. A, 372, 2008). As we show, this viscosity (which can be arbitrarily weak) not only
delivers an enormously simplified well–posedness theory for the governing equations,
but also justifies a greatly stabilized numerical scheme for use in studying solutions of
the water wave problem.
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1 Introduction

One of the central problems in fluid mechanics is the accurate modeling of the free–surface
motion of a large body of water (e.g., a lake or an ocean) [Lam93, Sto92, Ach90]. It is
not only a problem of classical interest [Rus44, Air45, Sto47, Bou71, KdV95], but also one
of present importance due to its role in a number of applications from the formation and
movement of sandbars, to the forces generated by waves on open–ocean oil rigs, to the
propagation of tsunamis. The “water wave equations” are the most faithful and successful
model for this problem, but they have a surprisingly difficult and subtle well–posedness
theory [Wu97, Wu99, Amb03, AM05, Lan05]. We refer the interested reader to these papers,
their extensive bibliographies, and the recent collection [BGN16] for the state of the art in
the field (in particular, see the chapters by Ambrose [Amb16] and Wu [Wu16]).

Due to the extremely important role of this model, we were inspired to find a new proof
of well–posedness which did not rely on the sophisticated technology required in the papers
mentioned above. While this has proven elusive, we now demonstrate that if a physically
motivated viscosity is added, then a straightforward existence and uniqueness result can
be established. For this we imitate the second author’s previous program [ABN12] where
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such a philosophy was pursued for a weakly nonlinear approximation of the full water wave
problem.

For the incorporation of viscosity, as in [ABN12] we follow the lead of Dias, Dyachenko,
and Zakharov [DDZ08] who advocated for, essentially, (2.1) below. These equations describe
potential flow with dissipation featuring a dispersion relation which, in the small viscosity
limit, corresponds to that presented in the classic book of Lamb [Lam93]. They also admit
the fundamental problem with “viscous potential flow,” that the modeling assumptions
inherent in potential flow are incompatible with the presence of viscosity. However, the
model has proven useful and we believe that this is a natural way to add viscosity to the
water wave problem with the goals we have in mind. We also note the work of one of
the authors and Kakleas [KN10] who used this approach to build a stabilized numerical
scheme to model surface wave propagation in the weakly nonlinear regime. It is our intent
to implement such a scheme for the full water wave equations, but delay our description for
a future publication.

Before proceeding, we point out that our method of proof is rather different from the
standard techniques, e.g., described in [MB02, ABN12]. Rather than seeking a fixed point
of a contraction mapping, we follow the approach of Friedman and Reitich to free boundary
problems, more specifically in the contexts of the classical Stefan problem [FR01] and the
capillary drop problem [FR02]. Friedman and Reitich’s method is perturbative in nature,
expanding the solution in a Taylor series in a parameter which characterizes the deformation
of the free interface from a simple, separable geometry. Their proof uses, very strongly, the
unique solvability of the governing equations on a fixed, trivial domain (using separation of
variables) to show that higher order corrections satisfy appropriate bounds which demon-
strate the strong convergence of the Taylor series for the solution. The difficulties here
are certain algebra properties of the relevant function spaces and trace lemmas; these are
different in the current context, but we show that their demonstrations can be extended.

Additionally, we point out that due to the nature of the function spaces we introduce,
the conclusion of our theorem is not only the well–posedness of our model of viscous water
waves, but also the very strong stability of our solutions. Our function spaces demand
exponential decay in time with the rate determined by the value of the viscosity. Thus, not
only do unique solutions exist, they persist globally in time and decay exponentially fast to
zero. We can state all of this rather informally in the following result.

Theorem 1.1. There exists a unique solution to the water wave problem with viscosity
provided that the initial data resides in a Sobolev space akin to L2

t (e
2αt)Hs

xH
s
y , s ≥ 4. The

solutions are analytic with respect to a parameter which measures the deformation of the
fluid interface from its rest value, and the nature of the function classes demands that
solutions decay at an exponential rate in time 0 < α < 2µ, where µ is the constant of
(surface) viscosity.

The rest of the paper is organized as follows. In § 2 we recall the governing equations
of Dias, Dyachenko, and Zakharov [DDZ08] which we modify slightly to suit our purposes.
In § 3 we follow the lead of our previous work on free boundary problems [NR01, NR03] by
applying a domain flattening change of variables which maps the moving problem domain
to a fixed one. In § 4 we introduce the function spaces we require to establish our well–
posedness result, together with crucial lemmas on algebra properties of functions in these
spaces, and trace estimates on the same. In § 5 and 6 we state and prove fundamental
estimates on the elliptic and parabolic problems which arise in the linearization of our
governing equations about the trivial configuration which we analyze in § 7. In § 8 we state

2



and prove an inductive lemma which enables the proof of our central well–posedness result
which is established in § 9. We make concluding remarks in § 10. We collect the proofs of
the trace lemma in § A and a lemma on products of analytic functions in § B.

2 Governing Equations

The well–known [Lam93, Sto92, Ach90] equations governing the motion of two dimensional
laterally periodic gravity–capillary water waves on a fluid of depth h are

∆ϕ = 0, − h < y < η,

∂yϕ = 0, y = −h,
∂tη = ∂yϕ− (∂xη)∂xϕ, y = η,

∂tϕ = −gη + σ∂2xη + σ∂x [(∂xη)H(∂xη)]− 1

2
(∂xϕ)2 − 1

2
(∂yϕ)2, y = η,

where ϕ is the velocity potential (u = ∇ϕ), y = η is the free air–fluid interface,

H(∂xη) :=
1√

1 + (∂xη)2
− 1,

and g > 0 and σ > 0 are the constants of gravity and surface tension, respectively. These
are supplemented with the boundary conditions

ϕ(x+ 2π, y, t) = ϕ(x, y, t), η(x+ 2π) = η(x),

and initial conditions

η(x, 0) = η(0)(x), ϕ(x, η(0), 0) = ξ(0)(x),

where standard elliptic theory [Eva10] reveals that specifying the initial velocity potential
at the surface is sufficient. We supplement this with viscous terms first introduced by Dias,
Dyachenko, and Zakharov [DDZ08] resulting in the “water wave equations with viscosity”

∆ϕ = 0, − h < y < η, (2.1a)

∂yϕ = 0, y = −h, (2.1b)

∂tη = ∂yϕ+ 2µ∂2xη − (∂xη)∂xϕ, y = η, (2.1c)

∂tϕ = −gη + σ∂2xη − 2µ∂2yϕ+ σ∂x [(∂xη)H(∂xη)]

− 1

2
(∂xϕ)2 − 1

2
(∂yϕ)2, y = η, (2.1d)

ϕ(x, η, 0) = ξ(0)(x), (2.1e)

η(x, 0) = η(0)(x), (2.1f)

for a surface viscosity parameter µ > 0. In these we have slightly modified Dias, Dyachenko,
and Zakharov’s equations by dropping the bottom viscosity terms included in [DD07]. We
will show that this problem is well–posed with analytic solutions.

Remark 2.1. We make two important observations: First, the mass

M =

∫ 2π

0
η(x, t) dx,
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is conserved by the flow. Indeed, it is well–known in the inviscid case (see, e.g., [Cra96])
that

∂t[M ]µ=0 = ∂t

∫ 2π

0
η(x, t) dx =

∫ 2π

0
∂tη(x, t) dx =

∫ 2π

0
[∂yϕ− (∂xη)∂xϕ]y=η = 0.

The addition of viscosity introduces only the term
∫ 2π
0 µ∂2xη dx to this computation, which

is zero as it features an exact derivative and η is periodic.
Second, one can arrange for the mean of the surface velocity

ξ(x, t) := ϕ(x, η(x, t), t),

to remain zero if it is initially set that way. For this one must remember that the velocity
potential is only meaningfully defined up to a time–dependent constant [Lam93, Sto92,
Ach90],

ϕ(x, y, t) = ϕ̃(x, y, t) + C(t).

With this we can consider the average surface velocity potentials

Ξ(t) =

∫ 2π

0
ϕ(x, η, t) dx, Ξ̃(t) =

∫ 2π

0
ϕ̃(x, η, t) dx = Ξ(t)− 2πC(t).

So, if we choose C(t) = Ξ(t)/(2π) and drop the tildes we are done. Thus we restrict our
function spaces by requiring M = Ξ = 0.

3 Reformulation on a Fixed Domain

It was shown in [NR01, NR03, HN05] how a simple change of variables could be used
to demonstrate the analyticity of Dirichlet–Neumann Operators (DNOs) with respect to
sufficiently small and regular surface deformations η = εf . The problem of computing
DNOs for Laplace’s equation is closely related to the water wave problem and, in fact, our
equations could be equivalently restated at the fluid surface in terms of these operators (see,
e.g., [CS93, CSS97, Nic98]), though we do not pursue it here.

To imitate this success for DNOs in the context of the water wave problem with viscosity,
we follow the lead of [NR01] and perform the domain–flattening change of variables (known
as σ–coordinates [Phi57] and the C–Method [CMR80])

x′ = x, y′ = h

(
y − η
h+ η

)
, t′ = t,

from which we define

u(x′, y′, t′) := ϕ

(
x′,

(
h+ η

h

)
y′ + η, t′

)
.

It is not difficult to show [Nic16b] that derivatives change as

M(x, t)∂x = M(x′, t′)∂x′ +N(x′, y′, t′)∂y′ ,

M(x, t)∂t = M(x′, t′)∂t′ + P (x′, y′, t′)∂y′ ,

M(x, t)∂y = h∂y′ ,
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where

M(x, t) = h+ η(x, t),

N(x, y, t) = −(∂xη(x, t))(y + h),

P (x, y, t) = −(∂tη(x, t))(y + h).

The governing equations (2.1) transform, upon dropping the primes, to

∆u = F, − h < y < 0, (3.1a)

∂yu = 0, y = −h, (3.1b)

∂tη = ∂yu+ 2µ∂2xη +Q, y = 0, (3.1c)

∂tu = −gη + σ∂2xη − 2µ∂2yu+R, y = 0, (3.1d)

u(x, 0, 0) = ξ(0)(x), (3.1e)

η(x, 0) = η(0)(x). (3.1f)

The form for F can be shown [Nic16b] to be

h2F = −div
[
A(1)(η)∇u

]
− div

[
A(2)(η)∇u

]
+ (∂xη)B(0) · ∇u+ (∂xη)B(1)(η) · ∇u,

where

A(1)(η) =

(
A(1),xx A(1),xy

A(1),yx A(1),yy

)
:=

(
2hη −h(y + h)∂xη

−h(y + h)∂xη 0

)
,

A(2)(η) =

(
A(2),xx A(2),xy

A(2),yx A(2),yy

)
:=

(
η2 −(y + h)η(∂xη)

−(y + h)η(∂xη) (y + h)2(∂xη)2

)
,

B(0) =

(
B(0),x

B(0),y

)
:=

(
h
0

)
, B(1)(η) =

(
B(1),x

B(1),y

)
:=

(
η

−(y + h)∂xη

)
.

Therefore,

h2F = −∂x [2hη∂xu] + ∂x [h(y + h)(∂xη)∂yu] + ∂y [h(y + h)(∂xη)∂xu]

− ∂x
[
η2∂xu

]
+ ∂x [(y + h)η(∂xη)∂yu] + ∂y [(y + h)η(∂xη)∂xu]

− ∂y
[
(y + h)2(∂xη)2∂yu

]
+ h(∂xη)∂xu+ η(∂xη)∂xu− (y + h)(∂xη)2∂yu.

Furthermore, multiplying (2.1c) by M and evaluating at y = 0, we find

hQ = −η(∂tη) + 2µη(∂2xη)− h(∂xη)∂xu− η(∂xη)∂xu+ h(∂xη)2∂yu,

where we have used the fact that, since η is independent of y, we have

∂tη = ∂t′η, ∂xη = ∂x′η.

Finally, multiplying (2.1d) by M2 and evaluating at y = 0, we discover

h2R = −2hη∂tu− η2∂tu+ h2(∂tη)∂yu+ hη(∂tη)∂yu− 2ghη2 − gη3

+ 2σhη(∂2xη) + ση2(∂2xη)

+ σh2∂x [(∂xη)H(∂xη)] + 2σhη∂x [(∂xη)H(∂xη)] + ση2∂x [(∂xη)H(∂xη)]

− 1

2

{
h2(∂xu)2 + 2hη(∂xu)2 + η2(∂xu)2 − 2h2(∂xη)(∂xu)∂yu

−2hη(∂xη)(∂xu)∂yu+ h2(∂xη)2(∂yu)2
}
− 1

2
h2(∂yu)2.
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Our procedure for establishing well–posedness is to seek solutions of the form

η = η(x, t; ε) =

∞∑
n=1

ηn(x, t)εn, u = u(x, y, t; ε) =

∞∑
n=1

un(x, y, t)εn, (3.2)

given initial data {η(0)(x), ξ(0)(x)}. We will show that if this data lies in appropriate Sobolev
spaces, then the {ηn, ϕn} also exist in (different) Sobolev classes satisfying estimates which
justify the strong convergence of the series (3.2). Upon insertion of these into (3.1) we find
that, at each perturbation order,

∆un = Fn, − h < y < 0, (3.3a)

∂yun = 0, y = −h, (3.3b)

∂tηn = ∂yun + 2µ∂2xηn +Qn, y = 0, (3.3c)

∂tun = −gηn + σ∂2xηn − 2µ∂2yun +Rn, y = 0. (3.3d)

un(x, 0, 0) = δn,0ξ
(0)(x), (3.3e)

ηn(x, 0) = δn,0η
(0)(x), (3.3f)

where δn,k is the Kronecker delta function. In these Fn, Qn, and Rn can be shown, using the
notation J·Kn from Appendix B which connotes the n–th coefficient in the formal Cauchy
product expansion, to be

h2Fn = −∂x [2h Jη∂xuKn] + ∂x
[
h(y + h) J(∂xη)∂yuKn

]
+ ∂y [h(y + h) J(∂xη)∂xuKn]

− ∂x
[q
η2∂xu

y
n

]
+ ∂x

[
(y + h) Jη(∂xη)∂yuKn

]
+ ∂y [(y + h) Jη(∂xη)∂xuKn]

− ∂y
[
(y + h)2

q
(∂xη)2∂yu

y
n

]
+ h J(∂xη)∂xuKn

+ Jη(∂xη)∂xuKn − (y + h)
q
(∂xη)2∂yu

y
n
, (3.4a)

hQn = − Jη(∂tη)Kn+2µ
q
η(∂2xη)

y
n
−h J(∂xη)∂xuKn−Jη(∂xη)∂xuKn+h

q
(∂xη)2∂yu

y
n
, (3.4b)

and

h2Rn = −2h Jη∂tuKn −
q
η2∂tu

y
n

+ h2 J(∂tη)∂yuKn + h Jη(∂tη)∂yuKn
− 2gh

q
η2

y
n
− g

q
η3

y
n

+ 2σh
q
η(∂2xη)

y
n

+ σ
q
η2(∂2xη)

y
n

+ σh2 J∂x [(∂xη)H(∂xη)]Kn + 2σh Jη∂x [(∂xη)H(∂xη)]Kn + σ
q
η2∂x [(∂xη)H(∂xη)]

y
n

− 1

2

{
h2

q
(∂xu)2

y
n

+ 2h
q
η(∂xu)2

y
n

+
q
η2(∂xu)2

y
n
− 2h2 J(∂xη)(∂xu)∂yuKn

−2h Jη(∂xη)(∂xu)∂yuKn + h2
q
(∂xη)2(∂yu)2

y
n

}
− 1

2
h2

q
(∂yu)2

y
n
. (3.4c)

Remark 3.1. For the expansion of H we recall that

H(ψ) =
1√

1 + ψ2
− 1,

which, upon squaring, can be written as

(H2 + 2H + 1)(1 + ψ2) = 1,

or

H = −1

2

{
ψ2 +H2 + 2ψ2H + ψ2H2

}
. (3.5)
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If we make the expansion, c.f. (3.2),

ψ = ψ(x, t; ε) =

∞∑
n=1

ψn(x, t)εn,

then it is easy to see that

H = H(x, t; ε) =
∞∑
n=2

Hnε
n.

In fact, from (3.5) we have

Hn = −1

2

{q
ψ2

y
n

+
q
H2

y
n

+ 2
q
ψ2H

y
n

+
q
ψ2H2

y
n

}
, (3.6)

and it is clear that Hn depends only on {∂xη1, . . . , ∂xηn−1}.

4 Function Spaces

Following Friedman and Reitich [FR01, FR02] we define, for the function g = g(t), the
norm

[g]2t :=

∫ t

0
e2αu |g(u)|2 du,

for some α > 0, and recall, for the function f = f(x), the classical Sobolev norm [LU68,
Ada75, Eva10], for real s ≥ 0,

‖f‖2Hs([0,2π]) :=

∞∑
p=−∞

〈p〉2s
∣∣∣f̂p∣∣∣2 , 〈p〉2 := 1 + |p|2 , f̂p :=

1

2π

∫ 2π

0
f(x)e−ipx dx.

With these, for the function U = U(x, t), we define, for real s ≥ 4,

‖U‖2Xs :=
[
‖U‖2Hs([0,2π])

]2
∞

+
[
‖∂tU‖2Hs−2([0,2π])

]2
∞

+
[∥∥∂2t U∥∥2Hs−4([0,2π])

]2
∞

=

∫ ∞
0

e2αu
∞∑

p=−∞
〈p〉2s

∣∣∣Ûp(u)
∣∣∣2 du+

∫ ∞
0

e2αu
∞∑

p=−∞
〈p〉2(s−2)

∣∣∣∂tÛp(u)
∣∣∣2 du

+

∫ ∞
0

e2αu
∞∑

p=−∞
〈p〉2(s−4)

∣∣∣∂2t Ûp(u)
∣∣∣2 du,

where the second time derivative is required for the algebra property (Lemma 4.1 below)
to be valid, c.f. [FR01, FR02].

In addition, in the next section we require volumetric norms. For the function v =
v(x, y), the classical Sobolev norm is [LU68, Ada75, Eva10], for integer s ≥ 0,

‖v‖2Hs([0,2π]×[−h,0]) :=

s∑
`=0

∞∑
p=−∞

〈p〉2(s−`)
∫ 0

−h

∣∣∣∂`yv̂p(y)
∣∣∣2 dy.
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Finally, for the function w = w(x, y, t), we define the following norm for integer s ≥ 4,

|||w|||2V s :=
[
‖w‖Hs([0,2π]×[−h,0])

]2
∞

+
[
‖∂tw‖Hs−2([0,2π]×[−h,0])

]2
∞

+
[∥∥∂2tw∥∥Hs−4([0,2π]×[−h,0])

]2
∞

=

∫ ∞
0

e2αu
s∑
`=0

∞∑
p=−∞

〈p〉2(s−`)
∫ 0

−h

∣∣∣∂`yŵp(y, u)
∣∣∣2 dy du

+

∫ ∞
0

e2αu
s−2∑
`=0

∞∑
p=−∞

〈p〉2(s−2−`)
∫ 0

−h

∣∣∣∂`y∂tŵp(y, u)
∣∣∣2 dy du

+

∫ ∞
0

e2αu
s−4∑
`=0

∞∑
p=−∞

〈p〉2(s−4−`)
∫ 0

−h

∣∣∣∂`y∂2t ŵp(y, u)
∣∣∣2 dy du.

With these norms we define the function spaces, for real s ≥ 0,

Hs([0, 2π]) :=
{
f(x) ∈ L2([0, 2π])

∣∣∣ ∫ 2π

0
f(x) dx = 0, ‖f‖Hs([0,2π]) <∞

}
,

and, for real s ≥ 4,

Xs([0, 2π]× [0,∞)) :=
{
U(x, t) ∈ L2([0, 2π]× [0,∞))

∣∣∣∫ 2π

0
U(x, t) dx = 0, ‖U‖Xs <∞

}
,

and, for integer s ≥ 0,

Hs([0, 2π]× [−h, 0]) :=
{
v(x, y) ∈ L2([0, 2π]× [−h, 0])

∣∣∣ ‖v‖Hs([0,2π]×[−h,0]) <∞
}
,

and, for integer s ≥ 4,

V s([0, 2π]× [−h, 0]× [0,∞)) :=
{
w(x, y, t) ∈ L2([0, 2π]× [−h, 0]× [0,∞))

∣∣∣
|||w|||V s <∞

}
.

From this point we suppress the domain dependence unless there is danger of confusion.
Of fundamental importance to our proof are the following algebra properties which are

straightforward generalizations of Friedman and Reitich’s Theorem A.4 in [FR01].

Lemma 4.1. If s ≥ 4; f, g ∈ Xs; v, w ∈ V s; then there is a constant M > 0 such that

‖fg‖Xs ≤M ‖f‖Xs ‖g‖Xs , (4.1a)

|||fv|||V s ≤M ‖f‖Xs |||v|||V s , (4.1b)

|||vw|||V s ≤M |||v|||V s |||w|||V s . (4.1c)

Remark 4.2. While the lemma above is true for any real s ≥ 4 by interpolation [FR01],
we will only utilize (4.1b) and (4.1c) for integer s, and (4.1a) for integer s or s = m+ 1/2
for m integer.
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In addition, we require a temporal trace theorem due to Friedman and Reitich [FR01]
(see (4.53) on page 360 and the following discussion) suitably modified to our space Xs.

Lemma 4.3. If s ≥ 4 and σ(x, t) ∈ Xs then there exists a constant Ct > 0 such that

max {‖σ(x, 0)‖Hs−1 , ‖∂tσ(x, 0)‖Hs−3} ≤ Ct ‖σ‖Xs . (4.2)

Finally, we recall two auxiliary lemmas from [NR03].

Lemma 4.4. If s ≥ 4 and w ∈ V s then there exists a constant Y = Y (s) such that

|||(y + h)w|||V s < Y |||w|||V s .

Lemma 4.5. There exists a universal constant Σ > 0 such that

max

{
N∑
m=0

(N + 1)2

(N −m+ 1)2(m+ 1)2
,

N∑
m=0

m∑
`=0

(N + 1)2

(N −m+ 1)2(m− `+ 1)2(`+ 1)2
,

N∑
m=0

m∑
`=0

∑̀
q=0

(N + 1)2

(N −m+ 1)2(m− `+ 1)2(`− q + 1)2(q + 1)2

 < Σ.

5 A Fundamental Lemma for the Elliptic Problem

To prove our well–posedness result, Theorem 9.1, we must establish the following elliptic
estimate which generalizes the results found in [NR01] to the spaces V s and Xs.

Theorem 5.1. Given an integer s ≥ 4, if F ∈ V s+1 and ψ ∈ Xs+5/2, then there exists a
unique solution of

∆w = F, − h < y < 0, (5.1a)

w(x, 0, t) = ψ(x, t), (5.1b)

∂yw(x,−h, t) = 0, (5.1c)

in V s+3 satisfying

max {‖w(x, 0, t)‖Xs+5/2 , |||w|||V s+3} ≤ Ke {|||F |||V s+1 + ‖ψ‖Xs+5/2} , (5.2)

where Ke > 0 is a universal constant.

Proof. In a recent publication [Nic16a] one of the authors proved a similar result for the
Helmholtz equation and we follow those developments here. To begin, we use the lateral
periodicity of the solution to express

{w(x, y, t), F (x, y, t), ψ(x, t)} =
∞∑

p=−∞

{
ŵp(y, t), F̂p(y, t), ψ̂p(t)

}
eipx,
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and note that (5.1) then demands that

∂2yŵp − |p|
2 ŵp = F̂p, − h < y < 0, (5.3a)

ŵp(0, t) = ψ̂p(t), (5.3b)

∂yŵp(−h, t) = 0. (5.3c)

Existence and Uniqueness: To show the existence and uniqueness of a solution we
appeal to the classical results of Keller [Kel69], later extended in the “Integrated Solution
Method” of Zhang [Zha81a, Zha81b] (see also [CLW13]). Using the notation of [CLW13]
we consider, after a trivial change of variables y → y + h, the problem

u′(y) + M(y)u(y) = f(y), 0 < y < h,

A0u = r0, y = 0,

B1u = s1, y = h,

where
f(y) ∈ Cm, r0 ∈ Cm1 , s1 ∈ Cm2 ,

are vector fields (m = m1 +m2). Further,

M(y) ∈ Cm×m, A0 ∈ Cm1×m, B1 ∈ Cm2×m,

are full rank matrices. Let Φ(y) be the fundamental matrix solution of the system

Φ′(y) + M(y)Φ(y) = 0, Φ(0) = Im,

where Im is the m × m identity matrix. Keller shows [Kel69] that the two–point value
problem above has a unique solution if and only if

det

(
A0

B1Φ(h)

)
6= 0.

In this instance we have m = 2, m1 = m2 = 1, and

u =

(
ŵp
∂yŵp

)
, M(y) =

(
0 −1

− |p|2 0

)
, f(y) =

(
0

F̂p

)
,

A0 =
(
0 1

)
, B1 =

(
1 0

)
, r0 = 0, s1 = ψ̂p.

There are two cases of p to consider.

1. The case p = 0: Here we may show that

Φ(y) =

(
1 y
0 1

)
,

and

det

(
A0

B1Φ(h)

)
= det

(
0 1
1 h

)
= −1 6= 0.

Thus, a unique solution exists in this case.
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2. The case p 6= 0: Here one can see that

Φ(y) =

(
cosh(|p| y) sinh(|p| y)/ |p|
|p| sinh(|p| y) cosh(|p| y)

)
,

and

det

(
A0

B1Φ(h)

)
= det

(
0 1

cosh(|p|h) sinh(|p|h)/ |p|

)
= − cosh(|p|h) 6= 0.

Again, a unique solution exists in this case.

We note that existence and uniqueness of solutions can also be verified by simply (but less
elegantly) writing down the exact solution as in [NR01].

Estimates: In order to accommodate Sobolev spaces with very low smoothness, we
consider the slightly generalized form of (5.1)

∆w = ∂xF
(1) + ∂yF

(2) + F (3), − h < y < 0,

w(x, 0, t) = ψ(x, t),

∂yw(x,−h, t) = 0,

which, upon Fourier transform, becomes

∂2yŵp − |p|
2 ŵp = (ip)F̂ (1)

p + ∂yF̂
(2)
p + F̂ (3)

p , − h < y < 0,

ŵp(0, t) = ψ̂p(t),

∂yŵp(−h, t) = 0.

Following the developments of [NR01], we set

ŵp(y, t) = ŵ(0)
p (y, t) + ŵ(1)

p (y, t) + ŵ(2)
p (y, t) + ŵ(3)

p (y, t),

where, for j = 0, 1, 2, 3,

∂2yŵ
(j)
p − |p|

2 ŵ(j)
p = δj,1(ip)F̂

(1)
p + δj,2∂yF̂

(2)
p + δj,3F̂

(3)
p , − h < y < 0, (5.4a)

ŵ(j)
p (0, t) = δj,0ψ̂p(t), (5.4b)

∂yŵ
(j)
p (−h, t) = 0. (5.4c)

It can be shown (see Lemma A.2 of [Nic16a]) from the solution formula for ŵp(y, t), that
the following volumetric estimates hold for the unique solution when ` = 0, 1,∥∥∥∂`yŵ(0)

p (y, t)
∥∥∥2
L2(dy)

≤ Ke〈p〉−1+2`
∣∣∣ψ̂p(t)∣∣∣2 , (5.5a)∥∥∥∂`yŵ(1)

p (y, t)
∥∥∥2
L2(dy)

≤ Ke〈p〉−2+2`
∥∥∥F̂ (1)

p (y, t)
∥∥∥2
L2(dy)

, (5.5b)∥∥∥∂`yŵ(2)
p (y, t)

∥∥∥2
L2(dy)

≤ Ke〈p〉−2+2`
∥∥∥F̂ (2)

p (y, t)
∥∥∥2
L2(dy)

, (5.5c)∥∥∥∂`yŵ(3)
p (y, t)

∥∥∥2
L2(dy)

≤ Ke〈p〉−4+2`
∥∥∥F̂ (3)

p (y, t)
∥∥∥2
L2(dy)

, (5.5d)
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for some Ke > 0. In addition, the subsequent boundary estimates hold for ` = 0, 1∣∣∣∂`yŵ(0)
p (0, t)

∣∣∣2 ≤ Ke〈p〉2`
∣∣∣ψ̂p(t)∣∣∣2 , (5.6a)∣∣∣∂`yŵ(1)

p (0, t)
∣∣∣2 ≤ Ke〈p〉−1+2`

∥∥∥F̂ (1)
p (y, t)

∥∥∥2
L2(dy)

, (5.6b)∣∣∣∂`yŵ(2)
p (0, t)

∣∣∣2 ≤ Ke〈p〉−1+2`
∥∥∥F̂ (2)

p (y, t)
∥∥∥2
L2(dy)

, (5.6c)∣∣∣∂`yŵ(3)
p (0, t)

∣∣∣2 ≤ Ke〈p〉−3+2`
∥∥∥F̂ (3)

p (y, t)
∥∥∥2
L2(dy)

, (5.6d)

with Ke > 0 sufficiently large. Furthermore, as the governing equations (5.4) treat time as
a parameter, by simply applying time derivatives one can achieve the same estimates with

{ŵ(j)
p , F̂

(j)
p , ψ̂p} replaced by {∂tŵ(j)

p , ∂tF̂
(j)
p , ∂tψ̂p}, and {∂2t ŵ

(j)
p , ∂2t F̂

(j)
p , ∂2t ψ̂p}.

Consider the H1–type norm of w[
‖w‖2H1

]2
∞

=

∫ ∞
0

e2αu
1∑
`=0

∞∑
p=−∞

〈p〉2(1−`)
∥∥∥∂`yŵp(y, u)

∥∥∥2
L2(dy)

du,

and the H−1 analogue for F[
‖F‖2H−1

]2
∞

=

∫ ∞
0

e2αu
∞∑

p=−∞

3∑
j=1

∥∥∥F̂ (j)
p (y, u)

∥∥∥2
L2(dy)

du, F = ∂xF
(1) + ∂yF

(2) + F (3),

for some F (j) ∈ L2([−h, 0]) (see Chapter 6 of Evans [Eva10]). Using the estimates above
(and being a little wasteful in our estimate of F (3)) we have[

‖w‖2H1

]2
∞
≤

3∑
j=0

[∥∥∥w(j)
∥∥∥2
H1

]2
∞

≤
∫ ∞
0

e2αu
1∑
`=0

∞∑
p=−∞

〈p〉2(1−`)Ke

{
〈p〉−1+2`

∣∣∣ψ̂p(u)
∣∣∣2

+

3∑
j=1

〈p〉−2+2`
∥∥∥F̂ (j)

p (y, u)
∥∥∥2
L2(dy)

 du.

Rearranging this we find[
‖w‖2H1

]2
∞
≤ Ke

∫ ∞
0

e2αu
∞∑

p=−∞
〈p〉1

∣∣∣ψ̂p(u)
∣∣∣2 du

+Ke

∫ ∞
0

e2αu
∞∑

p=−∞

3∑
j=1

∥∥∥F̂ (j)
p (y, u)

∥∥∥2
L2(dy)

du

≤ Ke

{
‖ψ‖2H1/2 + ‖F‖2H−1

}
.

Either by conducting the tedious manipulations to produce the higher–order analogues of
(5.5) and (5.6), or by proceeding as in Chapter 6 of Evans [Eva10], we can deduce[

‖w‖2Hs+3

]2
∞
≤ CKe

{[
‖F‖2Hs+1

]2
∞

+
[
‖ψ‖2Hs+5/2

]2
∞

}
.
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Applying this estimate to ∂tw and ∂2tw, and recalling that s ≥ 4, we discover[
‖∂tw‖2Hs+1

]2
∞
≤ CKe

{[
‖∂tF‖2Hs−1

]2
∞

+
[
‖∂tψ‖2Hs+1/2

]2
∞

}
,

and [∥∥∂2tw∥∥2Hs−1

]2
∞
≤ CKe

{[∥∥∂2t F∥∥2Hs−3

]2
∞

+
[∥∥∂2t ψ∥∥2Hs−1/2

]2
∞

}
,

which, upon summation, delivers the conclusion of the theorem.

6 A Fundamental Lemma for the Parabolic Problem

To state our next result we recall the definition of an order–k Fourier multiplier.

Definition 6.1. Suppose that ψ ∈ L2([0, 2π]) then the equation

m(D)ψ(x) :=
∞∑

p=−∞
m(p)ψ̂pe

ipx,

defines the Fourier multiplier m(D). If, for some k ∈ R, we have for any s real

‖m(D)ψ‖Hs ≤ C ‖ψ‖Hs+k ,

then we say that m(D) is order–k.

Remark 6.2. The classical derivative, ∂x, is clearly an order–one Fourier multiplier with
symbol (iD). Of relevance to the current contribution are the order–one multiplier

G0 := |D| tanh(h |D|),

which is the flat–interface DNO for Laplace’s equation on a strip [CS93, CSS97, Nic98], the
order–three–halves (iωD) operator

(iωD)ψ(x) =

∞∑
p=−∞

(iωp)ψ̂pe
iαpx :=

∞∑
p=−∞

i

√
(g + σ |p|2)

∣∣∣Ĝ0,p

∣∣∣ψ̂peiαpx,

which comes from the dispersion relation for water waves [Lam93, Sto92, Ach90], and the
order–two operator (− |D|2) = ∂2x.

We require the following parabolic estimate for our inductive proof to proceed.

Theorem 6.3. Given a real number s ≥ 4, if Q ∈ Xs+1, R ∈ Xs+1/2, η(0) ∈ Hs+2, and
ξ(0) ∈ Hs+3/2 then there exists a unique solution of

∂tη = G0[ξ] + 2µ∂2xη +Q, η(x, 0) = η(0)(x), (6.1a)

∂tξ = −gη + σ∂2xη − 2µ |D|2 ξ +R, ξ(x, 0) = ξ(0)(x), (6.1b)

satisfying

max {‖η‖Xs+3 , ‖∂tη‖Xs+1 , ‖ξ‖Xs+5/2 , ‖∂tξ‖Xs+1/2}

≤ Kp

{
‖Q‖Xs+1 + ‖R‖Xs+1/2 +

∥∥∥η(0)∥∥∥
Hs+2

+
∥∥∥ξ(0)∥∥∥

Hs+3/2

}
, (6.2)

where Kp > 0 is a universal constant.
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To establish this we require the following result from Friedman and Reitich [FR02]
(Lemma 7.1).

Lemma 6.4. Consider the initial value problem

Ḃ(t) + (K + iM)B(t) = F (t), t > 0,

B(0) = B0,

where K,M ∈ R; K > 0; and F ∈ L2(0, T ) for any T > 0. If 0 < α < K then the following
inequalities hold

[B]2t ≤
2

(K − α)2
[F ]2t +

|B0|2

K − α
, (6.3a)[

Ḃ
]2
t
≤ 2

(
2K2

(K − α)2
+ 1

)
[F ]2t +

2K2

K − α
|B0|2 . (6.3b)

To prove Theorem 6.3 we establish a similar result for a decoupled version of (6.1).

Theorem 6.5. Given a real number s ≥ 4, if W ∈ Xs, f ∈ Hs+1 then there exists a unique
solution of

∂tU =
[
−2µ |D|2 ± (iωD)

]
U +W, U(x, 0) = f(x), (6.4)

satisfying
max {‖U‖Xs+2 , ‖∂tU‖Xs} ≤ K̃p {‖W‖Xs + ‖f‖Hs+1} , (6.5)

where K̃p > 0 is a universal constant.

Proof. We focus on the case of (6.4) with the minus sign in front of (iωD); the other case
is handled similarly. We expand W and f in Fourier series

W (x, t) =
∞∑

p=−∞
Ŵp(t)e

ipx, f(x) =
∞∑

p=−∞
f̂pe

ipx,

where Ŵ0(t) ≡ 0 and f̂p = 0 by the definitions of Xs and Hs, respectively, and seek a
solution

U(x, t) =
∞∑

p=−∞
Ûp(t)e

ipx.

Inserting these into (6.4) we find

∂tÛp(t) = −Ω(p)Ûp(t) + Ŵp(t), (6.6a)

Ûp(0) = f̂p, (6.6b)

where
Ω(p) :=

(
2µ |p|2 + iωp

)
= O(p2), p→∞.

It is clear that Û0(t) ≡ 0 is the unique solution in the case p = 0 so we now concentrate on
p 6= 0. Using Lemma 6.4 we find[

Ûp

]2
∞
≤ C0,W (p)

[
Ŵp

]2
∞

+ C0,f (p)
∣∣∣f̂p∣∣∣2 , (6.7a)[

∂tÛp

]2
∞
≤ C1,W (p)

[
Ŵp

]2
∞

+ C1,f (p)
∣∣∣f̂p∣∣∣2 , (6.7b)
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with, since p 6= 0,

K = Kp := 2µ |p|2 > 0, 0 < α < 2µ |1|2 ≤ min
p6=0

Kp,

for some α. In these

C0,W (p) :=
2

(2µ |p|2 − α)2
= O(p−4), p→∞

C0,f (p) :=
1

(2µ |p|2 − α)
= O(p−2), p→∞

C1,W (p) := 2

[
2(2µ |p|2)2

(2µ |p|2 − α)2
+ 1

]
= O(1), p→∞

C1,f (p) :=
2(2µ |p|2)2

(2µ |p|2 − α)
= O(p2), p→∞.

Differentiating (6.6a) once with respect to t yields

∂t(∂tÛp)(t) = −Ω(p)(∂tÛp)(t) + ∂tŴp(t), (6.8a)

∂tÛp(0) = −Ω(p)f̂p + Ŵp(0), (6.8b)

where we have used (6.6a) and (6.6b) for the initial condition. Again, appealing to Lemma 6.4
we find[

∂tÛp

]2
∞
≤ C0,W (p)

[
∂tŴp

]2
∞

+ C0,f (p) |Ω(p)|2
∣∣∣f̂p∣∣∣2 + C0,f (p)

∣∣∣Ŵp(0)
∣∣∣2 , (6.9a)[

∂2t Ûp

]2
∞
≤ C1,W (p)

[
∂tŴp

]2
∞

+ C1,f (p) |Ω(p)|2
∣∣∣f̂p∣∣∣2 + C1,f (p)

∣∣∣Ŵp(0)
∣∣∣2 . (6.9b)

Differentiating (6.8a) once with respect to t yields

∂t(∂
2
t Ûp)(t) = −Ω(p)(∂2t Ûp)(t) + ∂2t Ŵp, (6.10a)

∂2t Ûp(0) = Ω(p)2f̂p − Ω(p)Ŵp(0) + ∂tŴp(0), (6.10b)

where we have used (6.8a) and (6.8b) for the initial condition. Appealing to Lemma 6.4 as
before we find [

∂2t Ûp

]2
∞
≤ C0,W (p)

[
∂2t Ŵp

]2
∞

+ C0,f (p) |Ω(p)|4
∣∣∣f̂p∣∣∣2

+ C0,f (p) |Ω(p)|2
∣∣∣Ŵp(0)

∣∣∣2 + C0,f (p)
∣∣∣∂tŴp(0)

∣∣∣2 , (6.11a)[
∂3t Ûp

]2
∞
≤ C1,W (p)

[
∂2t Ŵp

]2
∞

+ C1,f (p) |Ω(p)|4
∣∣∣f̂p∣∣∣2

+ C1,f (p) |Ω(p)|2
∣∣∣Ŵp(0)

∣∣∣2 + C1,f (p)
∣∣∣∂tŴp(0)

∣∣∣2 . (6.11b)

If we multiply (6.7a) by 〈p〉2s+4, (6.9a) by 〈p〉2s, and (6.11a) by 〈p〉2s−4 and sum over p
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we find

‖U‖Xs+2 =
∞∑

p=−∞

[
〈p〉2s+4

[
Ûp

]2
∞

+ 〈p〉2s
[
∂tÛp

]2
∞

+ 〈p〉2s−4
[
∂2t Ûp

]2
∞

]

≤
∞∑

p=−∞

[
C0,W (p)

{
〈p〉2s+4

[
Ŵp

]2
∞

+ 〈p〉2s
[
∂tŴp

]2
∞

+ 〈p〉2s−4
[
∂2t Ŵp

]2
∞

}
+ C0,f (p)

{
〈p〉2s+4

∣∣∣f̂p∣∣∣2 + 〈p〉2s |Ω(p)|2
∣∣∣f̂p∣∣∣2 + 〈p〉2s

∣∣∣Ŵp(0)
∣∣∣2

+〈p〉2s−4 |Ω(p)|4
∣∣∣f̂p∣∣∣2 + 〈p〉2s−4 |Ω(p)|2

∣∣∣Ŵp(0)
∣∣∣2 + 〈p〉2s−4

∣∣∣∂tŴp(0)
∣∣∣2}] .

From this we easily find that

‖U‖Xs+2 ≤ K0 [‖W‖Xs + ‖f‖Hs+1 + ‖W (·, 0)‖Hs−1 + ‖∂tW (·, 0)‖Hs−3 ] . (6.12)

In a similar way, if we multiply (6.7b) by 〈p〉2s, (6.9b) by 〈p〉2s−4, and (6.11b) by 〈p〉2s−8
and sum over p we find

‖∂tU‖Xs ≤ K0 [‖W‖Xs + ‖f‖Hs+1 + ‖W (·, 0)‖Hs−1 + ‖∂tW (·, 0)‖Hs−3 ] . (6.13)

We now appeal to Lemma 4.3 (which requires s ≥ 4) and use this and estimate (6.12)
to deliver

‖U‖Xs+2 ≤ K̃p [‖W‖Xs + ‖f‖Hs+1 ] ,

and (6.13) to give
‖∂tU‖Xs ≤ K̃p [‖W‖Xs + ‖f‖Hs+1 ] ,

for some K̃p > 0 and we are done.

Proof. (Theorem 6.3) To establish this result we express our initial value problem, (6.1),
on the Fourier side by using

η(x, t) =
∞∑

p=−∞
η̂p(t)e

ipx, ξ(x, t) =
∞∑

p=−∞
ξ̂p(t)e

ipx,

which, upon insertion into (6.1), delivers

∂tη̂p = Ĝ0,pξ̂p − 2µ |p|2 η̂p + Q̂p, η̂p(0) = η̂(0)p, (6.14a)

∂tξ̂p = −(g + σ |p|2)η̂p − 2µ |p|2 ξ̂p + R̂p, ξ̂p(0) = ξ̂(0)p, (6.14b)

or

∂t

(
η̂p
ξ̂p

)
=

(
−2µ |p|2 Ĝ0,p

−(g + σ |p|2) −2µ |p|2
)(

η̂p
ξ̂p

)
+

(
Q̂p
R̂p

)
.

If we use ωp =
√

(g + σ |p|2)Ĝ0,p, define

P̂p :=

(
−iωp iωp

g + σ |p|2 g + σ |p|2
)
, P̂−1p =

1

2

(
−1/(iωp) 1/(g + σ |p|2)
1/(iωp) 1/(g + σ |p|2)

)
,
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and make the change of variables(
ζ̂p
χ̂p

)
:= P̂−1p

(
η̂p
ξ̂p

)
=

1

2

(
−η̂p/(iωp) + ξ̂p/(g + σ |p|2)
η̂p/(iωp) + ξ̂p/(g + σ |p|2)

)
,

we find

∂tζ̂p =
(
−2µ |p|2 + iωp

)
ζ̂p + V̂p

∂tχ̂p =
(
−2µ |p|2 − iωp

)
χ̂p + Ŵp,

where (
V̂p
Ŵp

)
:= P̂−1p

(
Q̂p
R̂p

)
=

1

2

(
−Q̂p/(iωp) + R̂p/(g + σ |p|2)
Q̂p/(iωp) + R̂p/(g + σ |p|2)

)
.

We note that

η = −(iωD)ζ + (iωD)χ,

ξ = (g − σ∂2x)ζ + (g − σ∂2x)χ,

so

max {‖η‖Xs+3 , ‖∂tη‖Xs+1 , ‖ξ‖Xs+5/2 , ‖∂tξ‖Xs+1/2 , }
≤ C {‖ζ‖Xs+9/2 + ‖∂tζ‖Xs+5/2 + ‖χ‖Xs+9/2 + ‖∂tχ‖Xs+5/2} .

From Theorem 6.5 we have

max {‖η‖Xs+3 , ‖∂tη‖Xs+1 , ‖ξ‖Xs+5/2 , ‖∂tξ‖Xs+1/2}

≤ CK̃P

{
‖V ‖Xs+5/2 +

∥∥∥ζ(0)∥∥∥
Hs+7/2

+ ‖W‖Xs+5/2 +
∥∥∥χ(0)

∥∥∥
Hs+7/2

}
.

Now, since

V =
1

2

{
(iωD)−1Q+ (g − σ∂2x)−1R

}
,

W =
1

2

{
(iωD)−1Q+ (g − σ∂2x)−1R

}
,

ζ(0) =
1

2

{
(iωD)−1η(0) + (g − σ∂2x)−1ξ(0)

}
,

χ(0) =
1

2

{
(iωD)−1η(0) + (g − σ∂2x)−1ξ(0)

}
,

we have

max {‖η‖Xs+3 , ‖∂tη‖Xs+1 , ‖ξ‖Xs+5/2 , ‖ξ‖Xs+1/2}

≤ CK̃P C̃
{
‖Q‖Xs+1 + ‖R‖Xs+1/2 +

∥∥∥η(0)∥∥∥
Hs+2

+
∥∥∥ξ(0)∥∥∥

Hs+3/2

}
,

and we are done if we choose KP = CK̃P C̃.
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7 A Fundamental Lemma for the Linearized Water Wave
Problem with Viscosity

We require the following estimate of the linearization of water wave problem (3.1) in order
to proceed.

Lemma 7.1. Given an integer s ≥ 4, if F ∈ V s+1, Q ∈ Xs+1, R ∈ Xs+1/2, η(0) ∈ Hs+2,
and ξ(0) ∈ Hs+3/2 then there exists a unique solution of

∆u = F, − h < y < 0, (7.1a)

∂yu = 0, y = −h, (7.1b)

∂tη = ∂yu+ 2µ∂2xη +Q, y = 0, (7.1c)

∂tu = −gη + σ∂2xη − 2µ∂2yu+R, y = 0, (7.1d)

u(x, 0, 0) = ξ(0)(x), (7.1e)

η(x, 0) = η(0)(x), (7.1f)

satisfying

max {‖η‖Xs+3 , ‖∂tη‖Xs+1 , ‖u(x, 0, t)‖Xs+5/2 , ‖∂tu(x, 0, t)‖Xs+1/2 , |||u|||V s+3}

≤ K
{
|||F |||V s+1 + ‖Q‖Xs+1 + ‖R‖Xs+1/2 +

∥∥∥η(0)∥∥∥
Hs+2

+
∥∥∥ξ(0)∥∥∥

Hs+3/2

}
, (7.2)

for a universal constant K > 0.

Proof. Using the periodicity of solutions we write

{u, F} = {u, F}(x, y, t) =
∞∑

p=−∞
{ûp, F̂p}(y, t)eipx,

{η,Q,R} = {η,Q,R}(x, t) =
∞∑

p=−∞
{η̂p, Q̂p, R̂p}(t)eipx,

{η(0), ξ(0)} = {η(0), ξ(0)}(x) =

∞∑
p=−∞

{η̂(0)p, ξ̂(0)p}eipx,

which transforms (7.1) into

∂2y ûp − |p|
2 ûp = F̂p, − h < y < 0, (7.3a)

∂yûp = 0, y = −h, (7.3b)

∂tη̂p = ∂yûp − 2µ |p|2 η̂p + Q̂p, y = 0, (7.3c)

∂tûp = −gη̂p − σ |p|2 η̂p − 2µ∂2y ûp + R̂p, y = 0, (7.3d)

ûp(0, 0) = ξ̂(0)p, (7.3e)

η̂p(0) = η̂(0)p. (7.3f)

We now decompose the solution into two parts

{ûp, η̂p} = {UP , HP }+ {UE , HE},
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which essentially solve the parabolic (§ 6) and elliptic (§ 5) problems respectively, and we
have suppressed the p subscript for clarity. More specifically, {UP , HP } solves (7.3) in the
case F̂p ≡ 0,

∂2yU
P − |p|2 UP = 0, − h < y < 0, (7.4a)

∂yU
P = 0, y = −h, (7.4b)

∂tH
P = ∂yU

P − 2µ |p|2HP + Q̂p, y = 0, (7.4c)

∂tU
P = −gHP − σ |p|2HP − 2µ∂2yU

P + R̂p, y = 0, (7.4d)

UP (0, 0) = ξ̂(0)p, (7.4e)

HP (0) = η̂(0)p, (7.4f)

while {UE , HE} solves (7.3) where Q̂p ≡ R̂p ≡ ξ̂(0)p ≡ η̂(0)p ≡ 0,

∂2yU
E − |p|2 UE = F̂p, − h < y < 0, (7.5a)

∂yU
E = 0, y = −h, (7.5b)

∂tH
E = ∂yU

E − 2µ |p|2HE , y = 0, (7.5c)

∂tU
E = −gHE − σ |p|2HE − 2µ∂2yU

E , y = 0, (7.5d)

UE(0, 0) = 0, (7.5e)

HE(0) = 0. (7.5f)

It is not difficult to show that the solution of (7.4a) and (7.4b) is

UP (y, t) = UP (0, t)
cosh(|p| (y + h))

cosh(|p|h)
.

Upon insertion of this form into (7.4c)–(7.4f) we find

∂tH
P = |p| tanh(h |p|)UP − 2µ |p|2HP + Q̂p, y = 0,

∂tU
P = −(g + σ |p|2)HP − 2µ |p|2 UP + R̂p, y = 0,

UP (0, 0) = ξ̂(0)p,

HP (0) = η̂(0)p.

Upon inverse Fourier transform we find that this equation is identical to that appearing in
Theorem 6.3 with ξ̂p(t) = UP (0, t). From this we learn that

max
{∥∥HP

∥∥
Xs+3 ,

∥∥∂tHP
∥∥
Xs+1 ,

∥∥UP (x, 0, t)
∥∥
Xs+5/2 ,

∥∥∂tUP (x, 0, t)
∥∥
Xs+1/2

}
≤ Kp

{
‖Q‖Xs+1 + ‖R‖Xs+1/2 +

∥∥∥η(0)∥∥∥
Hs+2

+
∥∥∥ξ(0)∥∥∥

Hs+3/2

}
. (7.6)

Turning to (7.5) it is easy to see that (7.5c)–(7.5f) demand that

UE(0, t) ≡ HE(t) ≡ 0,

so that we are left to solve

∂2yU
E − |p|2 UE = F̂p, − h < y < 0,

∂yU
E = 0, y = −h,

UE = 0, y = 0.
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However, upon inverse Fourier transform, we realize that this is simply the system of equa-
tions in Theorem 5.1 with ψ ≡ 0. Thus, we conclude that

max
{∥∥UE(x, 0, t)

∥∥
Xs+5/2 ,

∣∣∣∣∣∣UE∣∣∣∣∣∣
V s+3

}
≤ Ke |||F |||V s+1 . (7.7)

Combining (7.6) and (7.7) to estimate η̂p = HP +HE and ûp = UP + UE we realize (7.2)
for some K > 0.

8 An Inductive Lemma

To complete the proof of our theorem we require the following recursive estimates.

Lemma 8.1. For an integer s ≥ 4, suppose for some C,B > 0 we have

max {‖ηn‖Xs+3 , ‖∂tηn‖Xs+1 , ‖un(x, 0, t)‖Xs+5/2 , ‖∂tun(x, 0, t)‖Xs+1/2 , |||un|||V s+3}

≤ C Bn−1

(n+ 1)2
, ∀n < N,

then the functions FN , QN and RN satisfy

max {|||FN |||V s+1 , ‖QN‖Xs+1 , ‖RN‖Xs+1/2} ≤ CiC
{

BN−2

(N + 1)2
+

BN−3

(N + 1)2
+

BN−4

(N + 1)2

}
,

for a universal constant Ci > 0.

Proof. To begin, we consider (3.4a) and estimate

h2 |||FN |||V s+1 ≤ 2h |||Jη∂xuKN |||V s+2 + hY
∣∣∣∣∣∣J(∂xη)∂yuKN

∣∣∣∣∣∣
V s+2

+ hY |||J(∂xη)∂xuKN |||V s+2 +
∣∣∣∣∣∣qη2∂xuyN ∣∣∣∣∣∣V s+2

+ Y
∣∣∣∣∣∣Jη(∂xη)∂yuKN

∣∣∣∣∣∣
V s+2 + Y |||Jη(∂xη)∂xuKN |||V s+2

+ Y 2
∣∣∣∣∣∣q(∂xη)2∂yu

y
N

∣∣∣∣∣∣
V s+2 + h |||J(∂xη)∂xuKN |||V s+1

+ |||Jη(∂xη)∂xuKN |||V s+1 + Y
∣∣∣∣∣∣q(∂xη)2∂yu

y
N

∣∣∣∣∣∣
V s+1 .

From Theorem B.1 we find, since s+ 2, s+ 1 ≥ 4,

h2 |||FN |||V s+1 ≤ {2hC[η, ∂xu] + hY C[∂xη, ∂yu]

+hY C[∂xη, ∂xu] + hC[∂xη, ∂xu]} BN−2

(N + 1)2

+ {C[η, η, ∂xu] + Y C[η, ∂xη, ∂yu] + Y C[η, ∂xη, ∂xu]

+Y 2C[∂xη, ∂xη, ∂yu] + C[η, ∂xη, ∂xu] + Y C[∂xη, ∂xη, ∂yu]
} BN−3

(N + 1)2
,

where we have used η ∈ Xs+3 and u ∈ V s+3. Since we have chosen the same constant C
for the estimates above we find

h2 |||FN |||V s+1 ≤ (3h+ 2hY )C2MΣ
BN−2

(N + 1)2

+ (2 + 3Y + Y 2)C3M2Σ
BN−3

(N + 1)2
,
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and we are done provided

Ci >
1

h2
max{(3h+ 2hY )CMΣ, (2 + 3Y + Y 2)C2M2Σ}.

We continue by considering (3.4b) and estimate

h ‖QN‖Xs+1 ≤ ‖Jη(∂tη)KN‖Xs+1 + 2µ
∥∥qη(∂2xη)

y
N

∥∥
Xs+1 + h ‖J(∂xη)∂xuKN‖Xs+1

+ ‖Jη(∂xη)∂xuKN‖Xs+1 + h
∥∥q(∂xη)2∂yu

y
N

∥∥
Xs+1 ,

From Theorem B.1 we find, since s+ 1 ≥ 4,

h ‖QN‖Xs+1 ≤
{
C[η, ∂tη] + 2µC[η, ∂2xη] + hC[∂xη, ∂xu]

} BN−2

(N + 1)2

+ {C[η, ∂xη, ∂xu] + hC[∂xη, ∂xη, ∂yu]} BN−3

(N + 1)2
,

where we have used ηn ∈ Xs+3, ∂tηn ∈ Xs+1, and un(x, 0, t) ∈ Xs+5/2. Again, as we have
chosen the same constant C for the estimates above, we find

h ‖QN‖Xs+1 ≤ (1 + 2µ+ h)C2MΣ
BN−2

(N + 1)2
+ (1 + h)C3M2Σ

BN−3

(N + 1)2
,

and we are done provided

Ci >
1

h
max{(1 + 2µ+ h)CMΣ, (1 + h)C2M2Σ}.

Finally, we consider RN and for this we require the following estimate on HN from (3.6).
If

‖ηn‖Xs+3 ≤ C
Bn−1

(n+ 1)2
, ∀n < N,

then

‖HN‖Xs+2 ≤ CiC
BN−2

(N + 1)2
.

This can be established either by an argument analogous to the one given here for {FN , QN , RN},
or by simply appealing to the fact that the composition of two analytic functions is analytic.
With this fact we return to (3.4c) and estimate

h2 ‖RN‖Xs+1/2 ≤ 2h ‖Jη∂tuKN‖Xs+1/2 +
∥∥qη2∂tuyN∥∥Xs+1/2 + h2

∥∥J(∂tη)∂yuKN
∥∥
Xs+1/2

+ h
∥∥Jη(∂tη)∂yuKN

∥∥
Xs+1/2 + 2gh

∥∥qη2y
N

∥∥
Xs+1/2 + g

∥∥qη3y
N

∥∥
Xs+1/2

+ 2σh
∥∥qη(∂2xη)

y
N

∥∥
Xs+1/2 + σ

∥∥qη2(∂2xη)
y
N

∥∥
Xs+1/2

+ σh2 ‖J∂x [(∂xη)H(∂xη)]KN‖Xs+1/2 + 2σh ‖Jη∂x [(∂xη)H(∂xη)]KN‖Xs+1/2

+ σ
∥∥qη2∂x [(∂xη)H(∂xη)]

y
N

∥∥
Xs+1/2

+
1

2

{
h2
∥∥q(∂xu)2

y
N

∥∥
Xs+1/2 + 2h

∥∥qη(∂xu)2
y
N

∥∥
Xs+1/2

+
∥∥qη2(∂xu)2

y
N

∥∥
Xs+1/2 + 2h

∥∥J(∂xη)(∂xu)∂yuKN
∥∥
Xs+1/2

+2h
∥∥Jη(∂xη)(∂xu)∂yuKN

∥∥
Xs+1/2 + h2

∥∥q(∂xη)2(∂yu)2
y
N

∥∥
Xs+1/2

}
+

1

2
h2
∥∥q(∂yu)2

y
N

∥∥
Xs+1/2 .
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Once again using Theorem B.1 we find, since s+ 1/2 ≥ 4,

h2 ‖RN‖Xs+1/2 ≤
{

2hC[η, ∂tu] + h2C[∂tη, ∂yu] + 2ghC[η, η] + 2σhC[η, ∂2xη]

+σh2C[∂xη,H] +
h2

2
C[∂xu, ∂xu] +

h2

2
C[∂yu, ∂yu]

}
BN−2

(N + 1)2

+
{
C[η, η, ∂tu] + hC[η, ∂tη, ∂yu] + gC[η, η, η] + σC[η, η, ∂2xη]

+2σhC[η, ∂xη,H] + hC[η, ∂xu, ∂xu] + hC[∂xη, ∂xu, ∂yu]} BN−3

(N + 1)2

+

{
σC[η, η, ∂xη,H] +

1

2
C[η, η, ∂xu, ∂xu] + hC[η, ∂xη, ∂xu, ∂yu]

+
h2

2
C[∂xη, ∂xη, ∂yu, ∂yu]

}
BN−4

(N + 1)2
,

where we have used ηn ∈ Xs+3, ∂tηn ∈ Xs+1, un(x, 0, t) ∈ Xs+5/2, and ∂tun(x, 0, t) ∈
Xs+1/2. Finally, as above, since we have chosen the same constant C for the estimates
above we find

h2 ‖RN‖Xs+1/2 ≤
(
2(1 + g + σ)h+ (2 + σ)h2

) BN−2

(N + 1)2
+ (1 + 3h+ σ + g + 2σh)

BN−3

(N + 1)2

+

(
σ +

1

2
+ h+

h2

2

)
BN−4

(N + 1)2
,

and we are done provided

Ci >
1

h2
max

{(
2(1 + g + σ)h+ (2 + σ)h2

)
CMΣ, (1 + 3h+ σ + g + 2σh)C2M2Σ,(

σ +
1

2
+ h+

h2

2

)
C3M3Σ

}
.

9 Well–Posedness Proof

At last we are in a position to establish our main result.

Theorem 9.1. Given an integer s ≥ 4, if η(0) ∈ Hs+2 and ξ(0) ∈ Hs+3/2 then there exists
a unique solution, of (3.1) of the form (3.2) satisfying

max {‖ηn‖Xs+3 , ‖∂tηn‖Xs+1 , ‖un(x, 0, t)‖Xs+5/2 , ‖∂tun(x, 0, t)‖Xs+1/2 , |||un|||V s+3}

≤ C Bn−1

(n+ 1)2
, ∀n > 0, (9.1)

for universal constants C,B > 0.
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Proof. We work by induction on n and begin at order n = 1 where (3.3) gives us

∆u1 = 0, − h < y < 0,

∂yu1 = 0, y = −h,
∂tη1 = ∂yu1 + 2µ∂2xη1, y = 0,

∂tu1 = −gη1 + σ∂2xη1 − 2µ∂2yu1, y = 0,

u1(x, 0, 0) = ξ(0)(x),

η1(x, 0) = η(0)(x).

This can be solved explicitly and we set

C := max {‖η1‖Xs+3 , ‖∂tη1‖Xs+1 , ‖u1(x, 0, t)‖Xs+5/2 , ‖∂tu1(x, 0, t)‖Xs+1/2 , |||u1|||V s+3} ,

which, of course, depends upon
∥∥η(0)∥∥

Hs+2 and
∥∥ξ(0)∥∥

Hs+3/2 . We now assume estimate (9.1)
for all n < N , and apply Lemma 7.1 to (3.3) at order N to realize

max {‖ηN‖Xs+3 , ‖∂tηN‖Xs+1 , ‖uN (x, 0, t)‖Xs+5/2 , ‖∂tuN (x, 0, t)‖Xs+1/2 , |||uN |||V s+3}
≤ K {‖QN‖Xs+1 + ‖RN‖Xs+1/2 + |||FN |||V s+1} ,

where we have used that η(0) ≡ ξ(0) ≡ 0 for n > 1. From Lemma 8.1 we have

max {‖ηN‖Xs+3 , ‖∂tηN‖Xs+1 , ‖uN (x, 0, t)‖Xs+5/2 , ‖∂tuN (x, 0, t)‖Xs+1/2 , |||uN |||V s+3}

≤ KCiC
{

BN−2

(N + 1)2
+

BN−3

(N + 1)2
+

BN−4

(N + 1)2

}
,

and we are done if we choose B > max{KCi, 1}/3.

Remark 9.2. Before closing, we remark on a limitation of our method of proof. There is
clearly a very specific choice of function spaces for the unknowns: ηn ∈ Xs+3, ξn ∈ Xs+5/2,
un ∈ V s+3. One can wonder if these can be changed. However, we believe that these choices
are fixed for the following reasons:

1. Since un represents the field in the solution of an elliptic equation and ξn is its trace,
it must be the case that

un ∈ V t ⇐⇒ ξn ∈ Xt−1/2.

2. Our change of variables induces a relationship between the field and the surface de-
formation, namely, since ∆un = Fn and Fn involves the second derivative of ηn, c.f.
(3.4a), it appears that

un ∈ V t ⇐⇒ ηn ∈ Xt.

3. Finally, the parabolic estimate with capillarity features the balance

ηn ∈ Xt ⇐⇒ ξn ∈ Xt−1/2.
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So, if we select t = s+3 we can satisfy all three demands. However, if we drop the capillarity
term the final balance in Point 3 becomes

ηn ∈ Xt ⇐⇒ ξn ∈ Xt+1/2,

and our argument falls apart. However, it is quite possible that a different change of
variables or a more subtle analysis could “improve” the relationship in Point 2 and allow
us to consider waves without capillarity.

Remark 9.3. We mention that another motivation for this work is the goal of modeling the
Faraday wave experiment [Far31] which considers the motion of the free air–fluid interface
of a container of fluid which is being periodically shaken from below. We believe that the
viscous water waves problem presented here will be a reasonable model of this physical
problem provided that a periodically modulated gravity is introduced, e.g., g replaced by
g + gφ(t), φ(t + Ω) = φ(t). If the forcing is small, e.g. φ = O(ε), then our new theorem
can be used to establish existence and uniqueness of solutions; a couple of additional terms
appear in the definition of Rn which are readily estimated. However, this is not completely
satisfying as our results conclude that solutions decay exponentially as time evolves which
is not the interesting regime of the Faraday wave experiment. To address the situation
where φ = O(1) requires an analysis of a new linearized parabolic problem which has the
character of a Mathieu equation. We save such considerations for a future publication.

10 Conclusions

In this contribution we have established the existence and uniqueness of solutions to the
capillary–gravity water wave problem supplemented with physically motivated viscosity.
Our method of proof follows that of Friedman and Reitich in the contexts of the classical
Stefan problem [FR01] and the capillary drop problem [FR02] which produces somewhat
different results than those which can be attained by more standard techniques. It should
be noted that due to the nature of the function spaces, the conclusion of the theorem is
not only the well–posedness of our model, but also the stability of our solutions. More
specifically, we discover exponential decay in time with the rate determined by the value of
the viscosity. Thus, not only do unique solutions exist, they persist globally in time and
decay exponentially fast to zero.
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A Proof of the Trace Inequality

The goal in this appendix is the proof of Lemma 4.3.

Proof. [Lemma 4.3] We begin by showing that

‖σ(x, 0)‖Hs−1 ≤ Ct ‖σ‖Xs . (A.1)
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Following [FR01] we specify a function ρ(x, t), defined for 0 ≤ x ≤ 2π and −∞ < t < ∞,
which agrees with σ for 0 ≤ t ≤ 1 and vanishes for t ≤ −1 and t ≥ 2, such that

M2 :=

∫ 2

−1

∞∑
p=−∞

[
〈p〉2s |ρ̂p(u)|2 + 〈p〉2s−4 |∂tρ̂p(u)|2 + 〈p〉2s−8

∣∣∂2t ρ̂p(u)
∣∣2] du

=

∫ ∞
−∞

∞∑
p=−∞

[
〈p〉2s |ρ̂p(u)|2 + 〈p〉2s−4 |∂tρ̂p(u)|2 + 〈p〉2s−8

∣∣∂2t ρ̂p(u)
∣∣2] du

=

∫ ∞
−∞

∞∑
p=−∞

{
〈p〉2s + 〈τ〉2〈p〉2s−4 + 〈τ〉4〈p〉2s−8

}
|ρ̃p(τ)|2 dτ

≤ C ‖σ‖2Xs ,

where ρ̃p(τ) is the space–time Fourier transform of ρ, and the penultimate equality comes
from Parseval’s relation. Since ‖σ(x, 0)‖Hs−1 = ‖ρ(x, 0)‖Hs−1 , to prove (A.1) it suffices to
show that

‖ρ(x, 0)‖Hs−1 ≤ CtM.

Now, by interpolation [Ada75], we have

‖ρ(x, 0)‖2Hs−1 ≤ C
{
‖ρ(x, 0)‖2L2 +

∥∥∂s−1x ρ(x, 0)
∥∥2
L2

}
,

and, from the classical trace theorem [Ada75], we can bound the right hand side to deliver

‖ρ(x, 0)‖2Hs−1 ≤ C
{
‖ρ‖2H1/2(dx,dt) +

∥∥∂s−1x ρ
∥∥2
H1/2(dx,dt)

}
≤ C

∫ ∞
−∞

∞∑
p=−∞

(
1 + |p|2 + |τ |2

)1/2 (
1 + |p|2(s−1)

)
|ρ̃p(τ)|2 dτ, (A.2)

Next, since
√

1 + x2 ≤ 1 + x for any x > 0, we have[
1 + |p|2 + |τ |2

]1/2
≤ 1 +

[
|p|2 + |τ |2

]1/2
= 1 + |p|

[
1 +

(
|τ |
|p|

)2
]1/2

≤ 1 + |p|
[
1 +
|τ |
|p|

]
= 1 + |p|+ |τ | .

Thus we can conclude that

‖ρ(x, 0)‖2Hs−1 ≤ C
∫ ∞
−∞

∞∑
p=−∞

(1 + |p|+ |τ |)
(

1 + |p|2(s−1)
)
|ρ̃p(τ)|2 dτ

= C

∫ ∞
−∞

∞∑
p=−∞

(
1 + |p|2s−2 + |p|+ |p|2s−1 + |τ |+ |τ | |p|2s−2

)
|ρ̃p(τ)|2 dτ.

Now, all of the terms on the right hand side will be bounded by M2 provided, for |p| , |τ | > 1,

1 ≤ C |p|2s requires s ≥ 0

|p|2s−2 ≤ C |p|2s requires s ≥ 0

|p| ≤ C |p|2s requires s ≥ 1/2

|p|2s−1 ≤ C |p|2s requires s ≥ 0

|τ | ≤ C |τ |2 |p|2s−4 requires s ≥ 2,
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and
|τ | |p|2s−2 ≤ C |τ |2 |p|2s−4 ,

which requires more analysis. We note that

|τ | |p|2s−2 = |τ | |p|a |p|b ≤ 1

2

(
|τ |2 |p|2a + |p|2b

)
,

where a + b = 2s − 2. For our estimate we set 2a = 2s − 4 which demands that b =
2s− 2− a = 2s− 2− 2s+ 4 = 2. In light of this we have the estimate

|τ | |p|2s−2 ≤ 1

2

(
|τ |2 |p|2s−4 + |p|4

)
,

and we are done provided that 2s ≥ 4, or s ≥ 2.
We now move to establishing

‖∂tσ(x, 0)‖Hs−3 ≤ Ct ‖σ‖Xs . (A.3)

The proof is identical to that presented above save that we must bound(
1 + |p|2 + |τ |2

)1/2 (
1 + |p|2(s−3)

)
|τ |2 ,

c.f., (A.2). All of the terms on the right hand side will be bounded by M provided

|τ |2 ≤ C |τ |2 |p|2s−4 requires s ≥ 2

|τ |2 |p|2s−6 ≤ C |τ |2 |p|2s−4 requires s ≥ 0

|τ |2 |p| ≤ C |τ |2 |p|2s−4 requires s ≥ 5/2

|τ |2 |p|2s−5 ≤ Cτ2 |p|2s−4 requires s ≥ 0

|τ |3 ≤ C |τ |4 |p|2s−8 requires s ≥ 4,

and
|τ |3 |p|2s−6 ≤ C |τ |4 |p|2s−8 ,

which requires more analysis. We note that, from Hölder’s Inequality,

|τ |3 |p|2s−6 = |τ |3 |p|a |p|b ≤ 3

4

(
|τ |3 |p|a

)4/3
+

1

4

(
|p|b
)4

=
3

4
|τ |4 |p|4a/3 +

1

4
|p|4b

where a + b = 2s − 6. For our estimate we set 4a/3 = 2s − 8, or a = (3/2)s − 6, which
demands that b = 2s− 6− a = 2s− 6− (3/2)s+ 6 = (1/2)s, or 4b = 2s. In light of this we
have the estimate

|τ |3 |p|2s−6 ≤ 3

4
|τ |4 |p|2s−8 +

1

4
|p|2s

and we are done provided that s ≥ 4.
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B Products of Analytic Functions

In this section we collect some identities involving the products of analytic functions in
terms of their Taylor series. To begin let suppose that A,B,C,D are analytic functions of
ε so that the following Taylor series are convergent

D = D(ε) =
∞∑
n=1

Dnε
n, E = E(ε) =

∞∑
n=1

Enε
n, (B.1a)

F = F (ε) =

∞∑
n=1

Fnε
n, G = G(ε) =

∞∑
n=1

Gnε
n. (B.1b)

It is not difficult to see that

D(ε)E(ε) =
∞∑
n=2

JDEKn ε
n, JDEKn :=

n−1∑
m=1

Dn−mEm, (B.2a)

and

D(ε)E(ε)F (ε) =
∞∑
n=3

JDEF Kn ε
n, JDEF Kn :=

n−1∑
m=2

m−1∑
`=1

Dn−mEm−`F`, (B.2b)

and

D(ε)E(ε)F (ε)G(ε) =

∞∑
n=4

JDEFGKn ε
n, JDEFGKn :=

n−1∑
m=3

m−1∑
`=1

`−1∑
q=1

Dn−mEm−`F`−qGq.

(B.2c)
For the results above to be true, the quantities {D,E, F,G} need not be scalars and

may be members of any normed linear space, Z. From these expansions we can prove the
following fundamental result provided that the norm, ‖·‖Z , satisfies the algebra property

‖DE‖Z ≤M ‖D‖Z ‖E‖Z , (B.3)

for some M > 0, e.g., the spaces Hs, Xs, and V s provided that s is large large enough
(s ≥ 4 is certainly sufficient), c.f. Lemma 4.1.

Theorem B.1. Suppose that D,E, F,G ∈ Z, a normed linear space with norm satisfying
the algebra property (B.3). If D,E, F,G are all analytic in ε with Taylor series expansions
(B.1) such that

‖Dn‖Z < CD
Bn−1

(n+ 1)2
, ‖En‖Z < CE

Bn−1

(n+ 1)2
,

‖Fn‖Z < CF
Bn−1

(n+ 1)2
, ‖Gn‖Z < CG

Bn−1

(n+ 1)2
,

for constants CD, CE , CF , CG, B > 0. Then DE,DEF,DEFG ∈ Z are all analytic in ε as
well, satisfying

‖JDEKn‖Z < C[D,E]
Bn−2

(n+ 1)2
, ‖JDEF Kn‖Z < C[D,E, F ]

Bn−3

(n+ 1)2
, (B.4a)

‖JDEFGKn‖Z < C[D,E, F,G]
Bn−4

(n+ 1)2
, (B.4b)
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where

C[D,E] = CDCEMΣ, C[D,E, F ] = CDCECFM
2Σ,

C[D,E, F,G] = CDCECFCGM
3Σ,

c.f. Lemma 4.5.

Proof. The proof is straightforward and we only present it for the final estimate (B.4b).
From (B.2c) we have

‖JDEFGKn‖Z ≤
n−1∑
m=3

m−1∑
`=1

`−1∑
q=1

‖Dn−mEm−`F`−qGq‖Z

≤
n−1∑
m=3

m−1∑
`=1

`−1∑
q=1

M3 ‖Dn−m‖Z ‖Em−`‖Z ‖F`−q‖Z ‖Gq‖Z

≤
n−1∑
m=3

m−1∑
`=1

`−1∑
q=1

M3CD
Bn−m−1

(n−m+ 1)2
CE

Bm−`−1

(m− `+ 1)2

× CF
B`−q−1

(`− q + 1)2
CG

Bq−1

(q + 1)2

≤ CDCECFCGM3 Bn−4

(n+ 1)2

×
n−1∑
m=3

m−1∑
`=1

`−1∑
q=1

(n+ 1)2

(n−m+ 1)2(m− `+ 1)2(`− q + 1)2(q + 1)2

≤ CDCECFCGM3Σ
Bn−4

(n+ 1)2
,

from Lemma 4.5. The estimates (B.4) can readily used in an inductive proof of the analyt-
icity of all of the products DE, DEF , and DEFG.
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and Lipschitz domains. SIAM J. Math. Anal., 37(1):302–320, 2005.

[KdV95] D.J. Korteweg and G. de Vries. On the change of form of long waves advancing
in a rectangular channel, and on a new type of long stationary waves. Philos.
Mag., 5(39):422–443, 1895.

[Kel69] Herbert B. Keller. Accurate difference methods for linear ordinary differential
systems subject to linear constraints. SIAM J. Numer. Anal., 6:8–30, 1969.

[KN10] M. Kakleas and D. P. Nicholls. Numerical simulation of a weakly nonlinear model
for water waves with viscosity. Journal of Scientific Computing, 42(2):274–290,
2010.

[Lam93] Horace Lamb. Hydrodynamics. Cambridge University Press, Cambridge, sixth
edition, 1993.

[Lan05] David Lannes. Well-posedness of the water-waves equations. J. Amer. Math.
Soc., 18(3):605–654 (electronic), 2005.

[LU68] Olga A. Ladyzhenskaya and Nina N. Ural’tseva. Linear and quasilinear elliptic
equations. Academic Press, New York, 1968.

[MB02] Andrew J. Majda and Andrea L. Bertozzi. Vorticity and incompressible flow,
volume 27 of Cambridge Texts in Applied Mathematics. Cambridge University
Press, Cambridge, 2002.

[Nic98] D. P. Nicholls. Traveling water waves: Spectral continuation methods with par-
allel implementation. J. Comput. Phys., 143(1):224–240, 1998.

[Nic16a] D. P. Nicholls. On analyticity of linear waves scattered by a layered medium.
submitted, 2016.

[Nic16b] David P. Nicholls. High–order perturbation of surfaces short course: analyticity
theory. In Lectures on the theory of water waves, volume 426 of London Math.
Soc. Lecture Note Ser., pages 32–50. Cambridge Univ. Press, Cambridge, 2016.

[NR01] D. P. Nicholls and F. Reitich. A new approach to analyticity of Dirichlet-Neumann
operators. Proc. Roy. Soc. Edinburgh Sect. A, 131(6):1411–1433, 2001.

[NR03] D. P. Nicholls and F. Reitich. Analytic continuation of Dirichlet-Neumann oper-
ators. Numer. Math., 94(1):107–146, 2003.

[Phi57] N. A. Phillips. A coordinate system having some special advantages for numerical
forecasting. Journal of the Atmospheric Sciences, 14(2):184–185, 1957.

[Rus44] J.S. Russell. Report on waves. In Report of the Fourteenth Meeting of the British
Association for the Advancement of Science, pages 311–390. 1844.

[Sto47] G.G. Stokes. On the theory of oscillatory waves. Transactions of the Cambridge
Philosophical Society, 8:441–473, 1847.

30



[Sto92] J. J. Stoker. Water waves. John Wiley & Sons Inc., New York, 1992. The
mathematical theory with applications, Reprint of the 1957 original, A Wiley-
Interscience Publication.

[Wu97] Sijue Wu. Well-posedness in Sobolev spaces of the full water wave problem in
2-D. Invent. Math., 130(1):39–72, 1997.

[Wu99] Sijue Wu. Well-posedness in Sobolev spaces of the full water wave problem in
3-D. J. Amer. Math. Soc., 12(2):445–495, 1999.

[Wu16] Sijue Wu. Wellposedness and singularities of the water wave equations. In Lectures
on the theory of water waves, volume 426 of London Math. Soc. Lecture Note Ser.,
pages 171–202. Cambridge Univ. Press, Cambridge, 2016.

[Zha81a] Guan Quan Zhang. Integrated solutions of ordinary differential equation system
and two-point boundary value problems. I. Integrated solution method. Math.
Numer. Sinica, 3(3):245–254, 1981.

[Zha81b] Guan Quan Zhang. Integrated solutions of ordinary differential equations sys-
tem and two-point boundary value problems. II. Stability. Math. Numer. Sinica,
3(4):329–339, 1981.

31


