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Abstract. We consider the dynamical properties of C∞-variations of the flow on an aperiodic Kuperberg

plug K. Our main result is that there exists a smooth 1-parameter family of plugs Kε for ε ∈ (−a, a) and
a < 1, such that: (1) The plug K0 = K is a generic Kuperberg plug; (2) For ε < 0, the flow in the plug Kε

has two periodic orbits that bound an invariant cylinder, all other orbits of the flow are wandering, and the

flow has topological entropy zero; (3) For ε > 0, the flow in the plug Kε has positive topological entropy,
and an abundance of periodic orbits.

1. Introduction

In this paper, we analyze the dynamical properties of flows in a C∞-neighborhood of the Kuperberg flows
introduced in [9], or to be more precise, of generic Kuperberg flows as introduced in [6]. The Kuperberg
flows are exceptional for the simplicity of their explicit construction in [9], and this explicitness makes it a
straightforward process to construct 1-parameter families of C∞-deformations of a given generic Kuperberg
flow. We show in this work that the Kuperberg flows are furthermore remarkable, in that there are C∞-
nearby flows with simple dynamics, and that there are C∞-nearby flows with positive topological entropy
and an abundance of periodic orbits.

The construction of a Kuperberg flow is based on the construction of an aperiodic plug, which we call a
Kuperberg Plug, and is noted in this paper by K0. A plug is a manifold with boundary endowed with a
flow, that enables the modification of a given flow inside a flow-box, so that after modification, there are
orbits that enter the flow-box and never exit. Moreover, Kuperberg’s construction does this modification
without introducing additional periodic orbits. Expository treatments of Kuperberg’s construction were
given by Ghys [4] and Matsumoto [11], and in the first chapters of the authors’ work [6]. Our work also
introduced new concepts for the study of the dynamical properties of the Kuperberg flows, which allows one
to investigate many further remarkable aspects of these flows.

As a consequence of Katok’s theorem on C2-flows on 3-manifolds [8], the topological entropy of a Kuperberg
flow is zero. In [6] we developed a technique based on the introduction of an “almost transverse” rectangle
inside the plug and a pseudogroup modeling the return map of the flow to the rectangle, to make an explicit
computation of the topological entropy. This computation revealed chaotic behavior for the flow, but such
that it evolves at a very slow rate, and thus it does not result in positive topological entropy. We proved that,
under some extra hypotheses, such generic Kuperberg flows have positive “slow entropy”, and that the rates
of chaotic behavior grow at a precise subexponential, but non-polynomial rate, as discussed in the proof of
[6, Theorem 21.10]. The calculation behind the proof of this result suggests that for some Kuperberg-like
flows near to a generic Kuperberg flow, there should be actual chaotic behavior, and also positive entropy.

In this paper we prove the following two theorems which make these remarks more precise.

THEOREM 1.1. There exists a C∞ 1-parameter family of plugs Kε for ε ∈ (−1, 0] such that:

(1) The plug K0 is a Kuperberg plug;
(2) For ε < 0, the flow in the plug Kε has two periodic orbits that bound an invariant cylinder, and every

other orbit belongs to the wandering set, and thus the flow has topological entropy zero.
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The proof of Theorem 1.1 uses the same technical tools as developed in the previous works [9, 10, 4, 11, 6]
for the study of the dynamics of Kuperberg flows, and the result is notable mainly for its contrast with
the following result, that a C∞-neighborhood of a generic Kuperberg flow also contains flows which have
exceptionally wild dynamics. In particular, we obtain the following result:

THEOREM 1.2. There exists a C∞ 1-parameter family of plugs Kε for ε ∈ [0, a), a > 0, such that:

(1) The plug K0 is a generic Kuperberg plug;
(2) For e > 0, the flow in Kε has positive topological entropy, and an abundance of periodic orbits.

The proof of Theorem 1.2 is based on the understanding of the dynamics of standard Kuperberg flows
developed in [6], and in particular uses in a fundamental way the technique of relating the dynamics of a
Kuperberg-like flow to the dynamics of its return map to an almost transverse rectangle.

The construction of the plugs Kε in the proofs of both Theorems 1.1 and 1.2 follows closely the original
construction by K. Kuperberg in [9], which begins with a modified version of the original Wilson Plug [19],
where the modification given in Section 2.2 removes the stable periodic orbits for the flow and replaces them
with unstable periodic orbits. The construction of the 1-parameter family of plugs is described in the first
part of this work, Section 2.3, and closely follows the construction in [6].

The Radius Inequality is the main condition in Kuperberg’s construction that is used to prove that the flow
is aperiodic. The only change in the requirements of the construction of the flows Φεt which we study, is
that the Radius Inequality gets replaced for ε 6= 0 with the Parametrized Radius Inequality, as stated in
Section 2.3. For ε = 0 we recover the original Radius Inequality for Kuperberg flows.

Section 3 introduces some of the main tools for the study of the dynamics of Kuperberg flows, the radius
and level functions, and also gives some of the immediate consequences for the study of the dynamics that
are independent of the value of ε in the Parametrized Radius Inequality.

As we mentioned above, one of the main techniques in [6] is to introduce a pseudogroup modeling the
dynamics of the Kuperberg flow. The other main technique is the study of surfaces tangent to the flow,
known as propellers, that were used to describe the topological properties of the minimal set of a generic
Kuperberg flow. These surfaces are introduced here in Section 4.

The plugs Kε for ε < 0 have rather simple dynamical properties, as stated in Theorem 1.1 and described in
Section 5. The study of these flows does not requires any extra hypothesis in the constructions.

On the other hand, the study of the dynamical properties of plugs Kε which satisfy the Parametrized Radius
Inequality for ε ≥ 0 is extraordinarily complicated. The detailed analysis in [6] of the standard Kuperberg
flows required the introduction of the generic hypothesis in that work (see Hypothesis 6.3 below), in order
to deduce a wide range of properties for the flows. For the case when ε > 0, many of the corresponding
results do not hold, so we consider in this work only the question of the existence of compact invariant sets
for the flows, such that the restricted dynamics of the flow admits a “horseshoe” in its transversal model.
Even with this more restricted goal, it is still necessary to impose geometric hypothesis on the construction
as stated in Hypotheses 6.2 and 9.2, in order to obtain the proof of Theorem 1.2.

The construction of the pseudogroup acting on an almost transverse rectangle R0 ⊂ Kε is done in Section 7.
Instead of introducing a pseudogroup analogous to the one in Chapter 9 of [6], we introduce the simplest
pseudogroup that allows us to prove Theorem 1.2. Section 8 is dedicated to the proof that this pseudogroup
contains “horseshoe maps”, and the proof introduces surfaces analogous to the propellers introduced in [6]
which are used to define these maps. In Section 9 we describe the situation in which these horseshoe maps
can be embedded in the flow Φεt, so that they generate positive entropy for the flow, and not just for the
pseudogroup. Then in Section 9.4, we discuss the construction of examples of C∞-deformations of a generic
Kuperberg flow, such that the hypotheses of Theorem 9.5 are satisfied, completing the proof of Theorem 1.2.

The results in this paper are inspired by the work in the paper [6], and for the sake of brevity, we are forced
to refer occasionally to results in [6]. However, the novel results used in the proof of Theorems 1.1 and 1.2
are explained and proved here. Further questions and open problems concerning the dynamical properties
of the many variations of Kuperberg flows are discussed in the paper [7].
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2. Construction of parametrized families

In this section, we present the construction of the 1-parameter family of plugs Kε for ε ∈ (−a, a), and
introduce some of the techniques used for the study of their dynamical properties. This follows closely the
outline of the construction and study of the usual Kuperberg flows in Chapters 2 and 3 of [6].

In Section 2.2 we give the construction of the modified Wilson plug as introduced by Kuperberg in [9]. The
family of plugs is constructed in Section 2.3, and the Parametrized Radius Inequality is introduced.

2.1. Plugs. A 3-dimensional plug is a manifold P endowed with a vector field X satisfying the following
“plug conditions”. The 3-manifold P is of the form D × [−2, 2], where D is a compact 2-manifold with
boundary ∂D. Set

∂vP = ∂D × [−2, 2] , ∂−h P = D × {−2} , ∂+
h P = D × {2} .

Then the boundary of P has a decomposition

∂P = ∂vP ∪ ∂hP = ∂vP ∪ ∂−h P ∪ ∂
+
h P .

Let ∂
∂z be the vertical vector field on P , where z is the coordinate of the interval [−2, 2].

The vector field X must satisfy the conditions:

(P1) vertical at the boundary : X = ∂
∂z in a neighborhood of ∂P ; thus, ∂−h P and ∂+

h P are the entry and
exit regions of P for the flow of X , respectively;

(P2) entry-exit condition: if a point (x,−2) is in the same trajectory as (y, 2), then x = y. That is, an
orbit that traverses P , exits just in front of its entry point;

(P3) trapped orbit : there is at least one entry point whose entire forward orbit is contained in P ; we will
say that its orbit is trapped by P ;

(P4) tame: there is an embedding i : P → R3 that preserves the vertical direction.

Note that conditions (P2) and (P3) imply that if the forward orbit of a point (x,−2) is trapped, then the
backward orbit of (x, 2) is also trapped.

A semi-plug is a manifold P endowed with a vector field X as above, satisfying conditions (P1), (P3) and
(P4), but not necessarily (P2). The concatenation of a semi-plug with an inverted copy of it, that is a copy
where the direction of the flow is inverted, is then a plug.

Note that condition (P4) implies that given any open ball B(~x, ε) ⊂ R3 with ε > 0, there exists a modified
embedding i′ : P → B(~x, ε) which preserves the vertical direction again. Thus, a plug can be used to change
a vector field Z on any 3-manifold M inside a flowbox, as follows. Let ϕ : Ux → (−1, 1)3 be a coordinate
chart which maps the vector field Z on M to the vertical vector field ∂

∂z . Choose a modified embedding

i′ : P → B(~x, ε) ⊂ (−1, 1)3, and then replace the flow ∂
∂z in the interior of i′(P ) with the image of X . This

results in a flow Z ′ on M .

The entry-exit condition implies that a periodic orbit of Z which meets ∂hP in a non-trapped point, will
remain periodic after this modification. An orbit of Z which meets ∂hP in a trapped point never exits the
plug P , hence after modification, limits to a closed invariant set contained in P . A closed invariant set
contains a minimal set for the flow, and thus, a plug serves as a device to insert a minimal set into a flow.

2.2. The modified Wilson plug W. We next introduce the “modified Wilson Plug”, which was the starting
point of Kuperberg’s construction of her plug. We add to the construction one hypothesis that seems to
be implicitly assumed by certain conclusions stated in [4, 11], and that are part of the generic hypothesis
used in [6]. This hypothesis is not needed to construct Kuperberg’s aperiodic plug, but it seems necessary
in order to prove the results in this paper.

Consider the rectangle, as illustrated in Figure 1,

(1) R = [1, 3]× [−2, 2] = {(r, z) | 1 ≤ r ≤ 3 &− 2 ≤ z ≤ 2} .
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For a constant 0 < g0 ≤ 1, choose a C∞-function g : R → [0, g0] which satisfies the “vertical” symmetry
condition g(r, z) = g(r,−z). Also, require that g(2,−1) = g(2, 1) = 0, that g(r, z) = g0 for (r, z) near the
boundary of R, and that g(r, z) > 0 otherwise. We may take g0 = 1/10 for example.

We make the following additional hypothesis on the function g in the construction.

HYPOTHESIS 2.1. We require the function g satisfy the above conditions, and in addition:

(2) g(r, z) = g0 for (r − 2)2 + (|z| − 1)2 ≥ ε20
where 0 < ε0 < 1/4 is sufficiently small, as will be specified later in Section 2.3. In addition, we also require

that g(r, z) is monotone increasing as a function of the distance
√

(r − 2)2 + (|z| − 1)2 from the special
points where it vanishes, and that g is non-degenerate. Non-degenerate means that the matrix of second
partial derivatives at each vanishing point is invertible.

Define the vector field Wv = g · ∂∂z which has two singularities, (2,±1), and is otherwise everywhere vertical.
The flow lines of this vector field are illustrated in Figure 1.

Figure 1. Vector field Wv

Next, choose a C∞-function f : R→ [−1, 1] which satisfies the following conditions:

(W1) f(r,−z) = −f(r, z) [anti-symmetry in z ]
(W2) f(r, z) = 0 for (r, z) near the boundary of R
(W3) f(r, z) ≥ 0 for −2 ≤ z ≤ 0.
(W4) f(r, z) ≤ 0 for 0 ≤ z ≤ 2.
(W5) f(r, z) = 1 for 5/4 ≤ r ≤ 11/4 and −7/4 ≤ z ≤ −1/4.
(W6) f(r, z) = −1 for 5/4 ≤ r ≤ 11/4 and 1/4 ≤ z ≤ 7/4.

Condition (W1) implies that f(r, 0) = 0 for all 1 ≤ r ≤ 3.

Next, define the manifold with boundary

(3) W = [1, 3]× S1 × [−2, 2] ∼= R× S1

with cylindrical coordinates x = (r, θ, z). That is, W is a solid cylinder with an open core removed, obtained
by rotating the rectangle R, considered as embedded in R3, around the z-axis.

Extend the functions f and g above to W by setting f(r, θ, z) = f(r, z) and g(r, θ, z) = g(r, z), so that they
are invariant under rotations around the z-axes. Define the Wilson vector field on W by

(4) W = g(r, θ, z)
∂

∂z
+ f(r, θ, z)

∂

∂θ
Let Ψt denote the flow of W on W. Observe that the vector field W is vertical near the boundary of W
and horizontal in the periodic orbits. Also, W is tangent to the cylinders {r = cst}. The flow of Ψt on the
cylinders {r = cst} is illustrated (in cylindrical coordinate slices) by the lines in Figures 2 and 3.
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(a) r ≈ 1, 3 (b) r ≈ 0 (c) r = 0

Figure 2. W-orbits on the cylinders {r = const.}

Figure 3. W-orbits in the cylinder C = {r = 2} and in W

Define the closed subsets:

C ≡ {r = 2} [The Full Cylinder ]

R ≡ {(2, θ, z) | −1 ≤ z ≤ 1} [The Reeb Cylinder ]

A ≡ {z = 0} [The Center Annulus]

Oi ≡ {(2, θ, (−1)i)} [Periodic Orbits, i=1,2 ]

Note that O1 is the lower boundary circle of the Reeb cylinder R, and O2 is the upper boundary circle.

We give some of the basic properties of the Wilson flow. Let Rϕ : W→W be rotation by the angle ϕ. That
is, Rϕ(r, θ, z) = (r, θ + ϕ, z).

PROPOSITION 2.2. Let Ψt be the flow on W defined above, then:

(1) Rϕ ◦Ψt = Ψt ◦Rϕ for all ϕ and t.
(2) The flow Ψt preserves the cylinders {r = const.} and in particular preserves the cylinders R and C.
(3) Oi for i = 1, 2 are the periodic orbits for Ψt.
(4) For x = (2, θ,−2), the forward orbit Ψt(x) for t > 0 is trapped.
(5) For x = (2, θ, 2), the backward orbit Ψt(x) for t < 0 is trapped.
(6) For x = (r, θ, z) with r 6= 2, the orbit Ψt(x) terminates in the top face ∂+

hW for some t ≥ 0, and

terminates in ∂−h W for some t ≤ 0.
(7) The flow Ψt satisfies the entry-exit condition (P2) for plugs.

Proof. The only assertion that needs a comment is the last, which follows by (W1) and the symmetry
condition imposed on the functions g and f . �
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2.3. The family of spaces Kε. The construction of the family of Kuperberg Plugs Kε begins with the
modified Wilson Plug W with vector fieldW constructed in Section 2.2, and follows the original construction
of K. Kuperberg, except for the choices of self-embeddings. The parameter ε is a real number, and admits
negative and positive values, though for ε > 0 we will later assume that ε is “sufficiently small”. For ε = 0
we recover the original Kuperberg Plug. Moreover, as proved in Sections 5 and 9, this is the only plug in
the family that has no periodic orbits.

The construction follows the steps in Chapter 3 of [6]. The first step is to re-embed the manifold W in R3

as a folded figure-eight, as shown in Figure 4, preserving the vertical direction.

Figure 4. Embedding of Wilson Plug W as a folded figure-eight

The fundamental idea of the Kuperberg Plug is to construct two insertions of W in itself. The subtlety of
the original construction arises in the precise requirements on this insertion, which were chosen so that the
periodic orbits of the flow are “cut open” by a non-periodic orbit for the inserted plug. Here, we modify
this construction so that for values of ε 6= 0, the self-insertion again intercepts the periodic orbits, but the
resulting variation of the radius inequality results in a family of plugs with much different characteristics
than Kuperberg’s original construction. Finally, in Section 9, we impose further restrictions on the insertion
maps for ε > 0, so that the entropies of the resulting Kuperberg flows can be more readily calculated.

Consider in the annulus [1, 3]×S1 two topological closed disks Li, for i = 1, 2, whose boundaries are composed
of two arcs: α′i in the interior of [1, 3] × S1, and αi in the outer boundary circle {r = 3}, as depicted in
Figure 5. To be precise, let ζ1 = π/4 and ζ2 = −π/4, then let αi be the arcs defined by

α1 = {(3, θ) | |θ − ζ1| ≤ 1/10} , α2 = {(3, θ) | |θ − ζ2| ≤ 1/10}

We let α′i be the curves which in polar coordinates (r, θ) are parabolas with minimum values r = 3/2 and
base the line segment αi, as depicted in Figure 5. We choose an explicit form for the embedded curves, for
example, given by α′i ≡ {r = 3/2 + 300/2 · (θ − ζi)2}.

Figure 5. The disks L1 and L2
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Consider the closed sets Di ≡ Li× [−2, 2] ⊂W, for i = 1, 2. Note that each Di is homeomorphic to a closed
3-ball, that D1 ∩D2 = ∅, and each Di intersects the cylinder C = {r = 2} in a rectangle. We label also the
top and bottom faces of these regions

(5) L±1 = L1 × {±2} , L±2 = L2 × {±2}.

The next step is to define families of insertion maps σεi : Di →W, for i = 1, 2, in such a way that for ε = 0
the periodic orbits O1 and O2 for theW-flow intersect σεi (L

−
i ) in points corresponding toW-trapped points.

Consider the two disjoint arcs β′i in the inner boundary circle {r = 1},
β′1 = {(1, θ) | |θ − (ζ1 + π)| ≤ 1/10}
β′2 = {(1, θ) | |θ − (ζ2 + π)| ≤ 1/10}

Now choose a smooth family of orientation preserving diffeomorphisms σεi : α′i → β′i, i = 1, 2, for −a ≤ ε ≤ a,
where a < ε0 is sufficiently small. Extend these maps to smooth embeddings σεi : Di → W, for i = 1, 2, as
illustrated in Figure 6. We require the following conditions for all ε and for i = 1, 2:

(K1) σεi (α
′
i × z) = β′i × z for all z ∈ [−2, 2], the interior arc α′i is mapped to a boundary arc β′i.

(K2) Dεi = σεi (Di) then Dε1 ∩ Dε2 = ∅;
(K3) For every x ∈ Li, the image Iεi,x ≡ σεi (x× [−2, 2]) is an arc contained in a trajectory of W;
(K4) We have σε1(L1 × {−2}) ⊂ {z < 0} and σε2(L2 × {2}) ⊂ {z > 0};
(K5) Each slice σεi (Li × {z}) is transverse to the vector field W, for all −2 ≤ z ≤ 2.
(K6) Dεi intersects the periodic orbit Oi and not Oj , for i 6= j.

The “horizontal faces” of the embedded regions Dεi ⊂W are labeled by

(6) Lε±1 = σε1(L1 × {±2}) , Lε±2 = σε2(L2 × {±2}).

Note that the arcs Iεi,x are line segments from σεi (x×{−2}) to σεi (x×{2}) which follow theW-trajectory, and
traverse the insertion from one face to another. Since W is vertical near the boundary of W and horizontal
at the two periodic orbits, (K3-K6) imply that the arcs Iεi,x are vertical near the inserted curve σεi (α

′
i) and

horizontal at the intersection of the insertion with the periodic orbit Oi. Thus, the embeddings of the surfaces
σεi (Li × {z}) make a half turn upon insertion, for each −2 ≤ z ≤ 2, as depicted in Figure 6. The turning is
clockwise for the bottom insertion i = 1 as in Figure 6, and counter-clockwise for the upper insertion i = 2.

Figure 6. The image of L1 × [−2, 2] in W under σ1

The first insertion σε1(D1) in Figure 6 intersects the first periodic orbit of W and is disjoint of the second
periodic orbit. The picture of the second insertion σε2(D2) is disjoint from the first insertion and the first
periodic orbit, and it intersects the second periodic orbit.
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The embeddings σεi are also required to satisfy two further conditions:

(K7) For i = 1, 2, the disk Li contains a point (2, θi) such that the image under σεi of the vertical segment
(2, θi)× [−2, 2] ⊂ Di ⊂W is contained in {r = 2 + ε} ∩ {θ−i ≤ θ ≤ θ

+
i }, and for ε = 0 it is contained

in {r = 2} ∩ {θ−i ≤ θ ≤ θ
+
i } ∩ {z = (−1)i}.

(K8) Parametrized Radius Inequality: For all x′ = (r′, θ′,−2) ∈ L−i , let x = (r, θ, z) = σεi (r
′, θ′,−2) ∈ Lε−i ,

then r < r′ + ε unless x′ = (2, θi,−2) and then r = 2 + ε.

Note that by (K3) we have r(σεi (r
′, θ′, z′)) = r(σεi (r

′, θ′,−2)) for all −2 ≤ z′ ≤ 2, so that (K8) holds for all
points x′ = (r′, θ′, z′) ∈ Li × [−2, 2].

Observe that for ε = 0, we recover the Radius Inequality of Kuperberg, one of the most fundamental concepts
of Kuperberg’s construction. Figure 7 represents the radius inequality for ε < 0, ε = 0, and ε > 0. Note
that in the third illustration (c) for the case ε > 0, the insertion as illustrated has a vertical shift upwards.
This is not required by conditions (K7) and (K8), but will be used to prove Theorem 1.2 as explained in
Section 8.2. (The vertex points {vε1, vε2} defined in (31) correspond to this vertical offset.)

(a) ε < 0 (b) ε = 0 (c) ε > 0

Figure 7. The modified radius inequality for the cases ε < 0, ε = 0 and ε > 0

REMARK 2.3. We add the following hypothesis relating the value of ε0 in (2) and the insertions: let ε0
as introduced in Hypothesis 2.1 be sufficiently small so that the ε0-neighborhood of the periodic orbits Oi
intersects the insertion regions Dεi on the interior of their faces for all ε considered.

Finally, define Kε to be the quotient manifold obtained from W by identifying the sets Di with Dεi . That is,
for each point x ∈ Di identify x with σεi (x) ∈W, for i = 1, 2.

The restricted W-flow on the inserted disk Dεi = σεi (Di) is not compatible with the restricted W-flow on
Di. Thus, to obtain a smooth vector field Xε from this construction, it is necessary to modify W on each
insertion Dεi . The idea is to replace the vector field W on the interior of each region Dεi with the image
vector field. This requires a minor technical step first.

Smoothly reparametrize the image of W|Di under σεi on an open neighborhood of the boundary of Dεi so
that it agrees with the restriction of W to the same neighborhood. This is possible since the vector field W
is vertical on a sufficiently small open neighborhood of ∂Di ∩ ∂W, so is mapped by σεi to an orbit segment
of W by (K3). We obtain a vector field W ′i on Dεi with the same orbits as the image of W|Di .

Then modify W on each insertion Dεi , replacing it with the modified image W ′i. Let W ′ denote the vector
field on W after these modifications, and note that W ′ is smooth. By the modifications made above, the
vector field W ′ descends to a smooth vector field on Kε denoted by Kε. Let Φεt denote the flow of the
vector field Kε on Kε. The resulting space Kε ⊂ R3 is illustrated in Figure 8. Note that the flow of Kε on
Kε clearly satisfies the plug conditions (P1) and (P4) of Section 2, while Proposition 3.3 below will show
that the condition (P2) is also satisfied. For the cases ε < 0, the trapped orbit condition (P3) is shown by
Corollary 3.4, so that the flow of Kε on Kε is a plug in the sense of Section 2.
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Figure 8. The Kuperberg Plug Kε

3. Level and radius functions

In this section we recover some of the results on the orbit behaviors of the flows Kε that are independent of ε
and that will be useful for the study of their dynamics in the plugs Kε. As with the study of the Kuperberg
flow K0, an orbit in Kε is formed by concatenating pieces of orbits of the Wilson plug, where these orbit
segments are the result of the construction of Kε via the insertion maps σεi . Thus, understanding the way
these arcs concatenate is a fundamental aspect of understanding the dynamics of of the flow in Kε.

We start by introducing notations that will be used throughout this work, and also some basic concepts which
are fundamental for relating the dynamics of the two vector fields W and Kε. These results are contained
in the literature [4, 6, 9, 10, 11], though in a variety of differing notations and presentations. We adopt the
notation of [6], and parts of the following text is also adapted from this work.

Recall that Dεi = σεi (Di) for i = 1, 2 are solid 3-disks embedded in W. Introduce the sets:

(7) W′ε ≡ W− {Dε1 ∪ Dε2} , Ŵε ≡ W− {Dε1 ∪ Dε2} .

The closure Ŵε of W′ε is the piège de Wilson creusé as defined in [4, page 292]. The compact space Ŵε ⊂W
is the result of “drilling out” the interiors of Dε1 and Dε2, as the terminology creusé suggests.

For x, y ∈ Kε, we say that x ≺Kε y if there exists t ≥ 0 such that Φεt(x) = y. Likewise, for x′, y′ ∈W, we say
that x′ ≺W y′ if there exists t ≥ 0 such that Ψt(x

′) = y′.

Let τ : W → Kε denote the quotient map, which for i = 1, 2, identifies a point x ∈ Di with its image
σεi (x) ∈ Dεi . Even if τ depends on ε, we will denote it simply by τ . Then the restriction τ ′ : W′ε → Kε is
injective and onto. Let (τ ′)−1 : Kε →W′ε denote the inverse map, which followed by the inclusion W′ε ⊂W,
yields the (discontinuous) map τ−1 : Kε →W, where i = 1, 2, we have:

(8) τ−1(τ(x)) = x for x ∈ Di , and σεi (τ
−1(τ(x))) = x for x ∈ Dεi .

For x ∈ Kε, let x = (r, θ, z) be defined as the W-coordinates of τ−1(x) ⊂ W′ε. In this way, we obtain
(discontinuous) coordinates (r, θ, z) on Kε.

In particular, let r : W′ε → [1, 3] be the restriction of the radius coordinate on W, then the function is
extended to the radius function of Kε, again denoted by r, where for x ∈ Kε set r(x) = r(τ−1(x)). The
flow of the vector field W on W preserves the radius function on W, so x′ ≺W y′ implies that r(x′) = r(y′).
However, x ≺Kε y need not imply that r(x) = r(y), and the points of discontinuity are the transition points
defined below.
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Let ∂−h Kε ≡ τ(∂−h W \ (L−1 ∪ L
−
2 )) and ∂+

h Kε ≡ τ(∂+
hW \ (L+

1 ∪ L
+
2 )) denote the bottom and top horizontal

faces of Kε, respectively. Note that the vertical boundary component ∂vKε ≡ τ(Ŵε ∩ ∂vW) is tangent to the
flow.

Points x′ ∈ ∂−h W and y′ ∈ ∂+
hW are said to be facing, and we write x′ ≡ y′, if x′ = (r, θ,−2) and y′ = (r, θ, 2)

for some r and θ. There is also a notion of facing points for x, y ∈ Kε, if either of two cases are satisfied:

• For x = τ(x′) ∈ ∂−h Kε and y = τ(y′) ∈ ∂+
h Kε, if x′ ≡ y′ then x ≡ y.

• For i = 1, 2, for x′, y′ ∈ ∂±W and x = σεi (x
′) and y = σεi (y

′), if x′ ≡ y′ then x ≡ y.

The context in which the notation x ≡ y is used dictates which usage applies.

Consider the embedded disks Lε±i ⊂ W defined by (6), which appear as the faces of the insertions in W.
Their images in the quotient manifold Kε are denoted by:

(9) Eε1 = τ(Lε−1 ) , Sε1 = τ(Lε+1 ) , Eε2 = τ(Lε−2 ) , Sε2 = τ(Lε+2 ) .

Note that τ−1(Eεi ) = L−i , while τ−1(Sεi ) = L+
i . The transition points of an orbit of Kε are those points

which meet the Eεi , S
ε
i , ∂

−
h Kε or ∂+

h Kε, for i = 1, 2. They are then either primary or secondary transition
points, where x ∈ Kε is:

• a primary entry point if x ∈ ∂−h Kε;
• a primary exit point if x ∈ ∂+

h Kε;
• a secondary entry point if x ∈ Eε1 ∪ Eε2;
• a secondary exit point x ∈ Sε1 ∪ Sε2.

If a Kε-orbit contains no transition points, then it lifts to a W-orbit in W which flows from ∂−h W to ∂+
hW.

A W-arc is a closed segment [x, y]Kε ⊂ Kε of the flow of Kε whose endpoints {x, y} are the only transition
points in [x, y]Kε . The open interval (x, y)Kε is then the image under τ of a unique W-orbit segment in W′ε,
denoted by (x′, y′)W (see Figure 9.) Let [x′, y′]W denote the closure of (x′, y′)W in Ŵε, then we say that
[x′, y′]W is the lift of [x, y]Kε . Note that the radius function r is constant along [x′, y′]W .

The properties of the Wilson flow W on Ŵε determine the endpoints of lifts [x′, y′]W . We state the six cases
which arise explicitly, as they will be cited in later arguments. For a proof we refer to Lemma 4.1 of [6].
Figure 9 helps in visualizing these cases.

LEMMA 3.1. Let [x, y]Kε ⊂ Kε be a W-arc, and let [x′, y′]W ⊂ Ŵε denote its lift.

(1) (p-entry/entry) If x is a primary entry point, then x′ ∈ ∂−h W\ (L−1 ∪L
−
2 ), and if y an entry point,

then y is a secondary entry point and y′ ∈ Lε−i for i = 1 or 2.
(2) (p-entry/exit) If x is a primary entry point, then x′ ∈ ∂−h W \ (L−1 ∪L

−
2 ), and if y is an exit point,

then y′ ∈ ∂+
hW \ (L+

1 ∪ L
+
2 ) is a primary exit point, and by the entry/exit condition on W we have

x ≡ y.
(3) (s-entry/entry) If x is a secondary entry point, then x′ ∈ L−i , for i = 1 or 2, and if y is an entry

point, then we have y′ ∈ Lε−j where j = 1, 2 is not necessarily equal to i.

(4) (s-entry/exit) If x is a secondary entry point, then x′ ∈ L−i , for i = 1 or 2, and if y is an exit
point, then y is a secondary exit point, y′ ∈ L+

i and x ≡ y by the entry/exit condition of W.
(5) (s-exit/entry) If x is a secondary exit point, then x′ ∈ Lε+i , for i = 1 or 2, and if y is an entry

point, so that y′ ∈ Lε−j then j = 2 if i = 2, and j = 1, 2 if i = 1.

(6) (s-exit/exit) If x is a secondary exit point, then x′ ∈ Lε+i , for i = 1 or 2, and if y is a primary
exit point, y′ ∈ {∂+

hW \ (L+
1 ∪ L

+
2 )}. If y is a secondary exit point, then y′ ∈ L+

j , where j = 1 or 2
is not necessarily equal to i.

Figure 9 illustrates some of the notions discussed in this section. The disks L−1 and L−2 contained in ∂−h W
are drawn in the bottom face, though they are partially obscured by the inner cylindrical boundary {r = 1}.
The image of L−1 under σε1 is the entry face of the insertion region in the lower half of the cylinder, while
the image of L−2 under σε2 is the entry face of the insertion region in the upper half of the core cylinder.
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Analogously, the disks L+
1 and L+

2 in ∂+
hW are mapped to the exit region of the insertion regions. The

intersection of the W-periodic orbits Oi with the insertions in W are illustrated, as well as two W-arcs in
W′ε that belong to the same orbit. One W-arc goes from ∂−h W to Lε−1 , hence from a principal entry point

to a secondary entry point (as in Lemma 3.1(1)). The second W-arc goes from Lε+1 to Lε−1 , thus from a
secondary exit point to a secondary entry point (as in Lemma 3.1(5)).

Figure 9. W-arcs lifted to W′ε

Introduce the radius coordinate function along Kε-orbits, where for x ∈ Kε, set ρεx(t) ≡ r(Φεt(x)). Note
that if Φεt(x) is not a transition point then the function ρεx(t) is locally constant at t, and thus if a Kε-arc
{Φεt(x) | t0 ≤ t ≤ t1} contains no transition point, then ρεx(t) = ρεx(t0) for all t0 ≤ t ≤ t1.

The level function along an orbit indexes the discontinuities of the radius function. Given x ∈ Kε, set
nx(0) = 0, and for t > 0, define

(10) nx(t) = # {(Eε1 ∪ Eε2) ∩ Φεs(x) | 0 < s ≤ t} −# {(Sε1 ∪ Sε2) ∩ Φεs(x) | 0 < s ≤ t} .
That is, nx(t) is the total number of secondary entry points, minus the total number of secondary exit points,
traversed by the flow of x over the interval 0 < s ≤ t.

The function can be extended to negative time by setting, for t < 0,

(11) nx(t) = # {(Sε1 ∪ Sε2) ∩ Φεs(x) | t < s ≤ 0} −# {(Eε1 ∪ Eε2) ∩ Φεs(x) | t < s ≤ 0} .

We use throughout this work a Riemannian metric on the tangent bundle to Kε. The Wilson plug W has
a natural product Riemannian metric, where the rectangle R in (1) has the product euclidean metric, and
the circle factor S1 has length 2π. Then modify this metric along the insertions σεi to smooth them out, and
so obtain a Riemannian metric on Kε.

For x′ ≺W y′ in W, let dW(x′, y′) denote the path length of the W-orbit segment [x′, y′]W between them.
Similarly, for x ≺Kε y in Kε, let dKε(x, y) denote the path length of the Kε-orbit segment [x, y]Kε . Note that
if [x, y]Kε is a W-arc with lift [x′, y′]W then we have dKε(x, y) = dW(x′, y′) by the choice of the metric on W.

In Chapter 4 of [6] (Lemmas 4.3 and 4.4 and Corollary 4.5) the following basic length estimates are established
for the Kuperberg Plug K0, and the proofs for this case carry over directly to the flows on the plugs Kε:

(1) Let 0 < δ < 1. There exists L(δ) > 0 such that for any ξ ∈W with |r(ξ)− 2| ≥ δ, the total W-orbit
segment [x′, y′]W through ξ has length bounded above by L(δ).

(2) There exists 0 < dmin < dmax such that if [x′, y′]W ⊂ Ŵε is the lift of aW-arc [x, y]Kε , then we have
the uniform estimate

(12) dmin ≤ dW(x′, y′) ≤ dmax .
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Thus for [x, y]Kε ⊂ Kε a W-arc, there is a uniform length estimate

(13) dmin ≤ dKε(x, y) ≤ dmax .

We end this section by recalling some technical results, which are key to analyzing the orbits of the flows Φεt
on Kε. For a proof of the first of these, we refer to [6, Proposition 5.5], whose proof carries over directly to
the case of the flow Φεt on Kε.

PROPOSITION 3.2. Let x ∈ Kε. For n ≥ 3, assume that we are given successive transition points
x` = Φεt`(x) for 0 = t0 < t1 < · · · < tn−1 < tn. Let [x′`, y

′
`+1]W be te lift of the W-arc [x`, x`+1]K for all

0 ≤ ` ≤ n − 1. Suppose that nx0(t) ≥ 0 for all 0 ≤ t < tn, and that nx0(tn−1) = 0. Then x′0 ≺W y′n, and
hence r(x′0) = r(y′n). Moreover, if x0 is an entry point and xn is an exit point, then x0 ≡ xn.

For a proof of the next result, we refer to the proof of [6, Proposition 5.6].

PROPOSITION 3.3. Let x ∈ ∂−h Kε be a primary entry point, and label the successive transition points
by x` = Φεt`(x) for 0 = t0 < t1 < · · · < tn−1 < tn. If xn is a primary exit point, then x ≺W xn and hence
x ≡ xn. Moreover, nx(t) ≥ 0 for 0 ≤ t < tn.

Note that this implies the flow of Kε on Kε satisfies condition (P2) of Section 2. The following result proves
that Kε satisifies condition (P3) for all ε, implying that Kε is a plug.

COROLLARY 3.4. Let x ∈ ∂−h Kε be a primary entry point with r(x) = 2. Then the forward Kε-orbit of
x is trapped.

Proof. Assume that the forward Kε-orbit of x is not trapped, and let x` = Φεt`(x) for 0 = t0 < t1 < · · · <
tn−1 < tn be the transition points. Then xn is a primary exit point and by Proposition 3.3, x ≺W xn, which
is a impossible since r(x) = 2. �

4. Propellers and double propellers in W

Propellers, simple and double, as defined in Chapters 11, 12 and 13 of [6], are obtained from the Wilson flow
of selected arcs in ∂−h W. Double propellers are formed by the union of two (simple) propellers, as described
below. These geometric structures associated to the Kuperberg flows Φεt are an essential tool for analyzing
their dynamical properties.

Consider a curve in the entry region, γ ⊂ ∂−h W, with a parametrization γ(s) = (r(s), θ(s),−2) for 0 ≤ s ≤ 1,

and assume that the map γ : [0, 1] → ∂−h W is a homeomorphism onto its image. We use the notation
γs = γ(s) when convenient, so that γ0 = γ(0) denotes the initial point and γ1 = γ(1) denotes the terminal
point of γ. For δ > 0, assume that r(γ0) = 3, r(γ1) = 2 + δ, and 2 + δ < r(γs) < 3 for 0 < s < 1.

TheW-orbits of the points in γ traverse W from ∂−h W to ∂+
hW, and hence the flow of γ generates a compact

invariant surface Pγ ⊂W. The surface Pγ is parametrized by (s, t) 7→ Ψt(γ(s)) for 0 ≤ s ≤ 1 and 0 ≤ t ≤ Ts,
where Ts is the exit time for the W-flow of γ(s). Observe that as s→ 1 and δ → 0, the exit time Ts →∞.

The surface Pγ is called a propeller, due to the nature of its shape in R3. It takes the form of a “tongue”
wrapping around the core cylinder C(2 + δ) which contains the orbit of γ1. To visualize the shape of
this surface, consider the case where γ is topologically transverse to the cylinders C(r0) = {r = r0} for
2 + δ ≤ r0 ≤ 3. The transversality assumption implies that the radius r(γs) is monotone decreasing as s
increases. Figure 10 illustrates the surface Pγ as a “flattened” propeller on the right, and its embedding in
W on the left. As δ → 0 the surface approaches the cylinder C = {r = 2} in an infinite spiraling manner.

We comment on the details in Figure 10. The horizontal boundary ∂hPγ is composed of the initial curve
γ ⊂ ∂−h W, and its mirror image γ ⊂ ∂+

hW via the entry/exit condition on the Wilson Plug. The vertical
boundary ∂vPγ is composed of the vertical segment γ0× [−2, 2] in ∂vW, and the orbit {Ψt(γ1) | 0 ≤ t ≤ T1}
which is the inner (or long) edge in the interior of W. One way to visualize the surface, is to consider the
product surface γ × [−2, 2], and then start deforming it by an isotopy which follows the flow lines of W, as
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Figure 10. Embedded and flattened finite propeller

illustrated in Figure 10. In the right hand side of the figure, some of the orbits in the propeller are illustrated,
while in the left hand side, just the boundary orbit is illustrated.

Consider the orbit {Ψt(γ1) | 0 ≤ t ≤ T1} of the endpoint γ1 with r(γ1) = 2 + δ. The path t 7→ Ψt(γ1)
makes a certain number of turns in the positive S1-direction before reaching the core annulus A at z = 0.
The Wilson vector field W is vertical on the plane A, so the flow of γ1 then crosses A, after which the orbit
Ψt(γ1) starts turning in the negative direction and ascending until it reaches ∂+

hW. The point where the
flow Ψt(γ1) intersects A is called the tip of the propeller Pγ .

The anti-symmetry of the vector field W implies that the number of turns in one direction (considered as
a real number) equals the number of turns in the opposite direction. To be precise, for γ1 = (r1, θ1,−2) in
coordinates, let Ψt(γ1) = (r1(t), θ1(t), z1(t)) in coordinates. The function z1(t) is monotone increasing, and
by the symmetry, we have z1(T1/2) = 0. Thus, the tip is the point ΨT1/2(γ1).

Next, for fixed 0 ≤ a < 2π, consider the intersection of Pγ with a slice

(14) Ra ≡ {ξ = (r, a, z) | 1 ≤ r ≤ 3 , −2 ≤ z ≤ 2} .

Each rectangle Ra is tangent to the Wilson flow along the annulus A, and also near the boundaries of W,
but is transverse to the flow at all other points. The case when a = θ1(T1/2) is special, as the tip of the
propeller is tangent to Ra.

Assume that a 6= θ1(T1/2), then the orbit Ψt(γ1) intersects Ra in a series of points on the line C(2 + δ)∩Ra

that are paired, as illustrated in the right hand side of Figure 11. Moreover, the intersection Pγ ∩Ra consists
of a finite sequence of arcs between the symmetrically paired points of Ψt(γ1) ∩Ra. The number of such
arcs is equal to, plus or minus one, the number of times the curve Ψt(γ1) makes a complete turn around the
cylinder C(2 + δ).

We comment on the details of Figure 11, which illustrates the case of R0 where a = θ0. The vertical line
between the points (2, θ0,−1) and (2, θ0, 1) (marked in the figure simply by z = −1 and z = 1, respectively)
is the trace of the Reeb cylinder in R0. The trace of a propeller in R0 is a collection of arcs that have their
endpoints in the vertical line {r = 2+δ}. In the left hand figure, r(γ1) = 2 and the propeller in consideration
is infinite, as defined below. The curves form an infinite family, here just four arcs are shown, accumulating
on the vertical line. The right hand figure illustrates the case r(γ1) > 2, and the propeller is finite.

Finally, consider the case where δ → 0, so that the endpoint γ1 of γ lies in the cylinder C. Then for 0 ≤ s < 1,
we have r(γ(s)) > 2, so the Ψt-flow of γs ∈ ∂−h W escapes from W. Define the curve γ in ∂+

hW to be the

trace of these facing endpoints in ∂+
hW, parametrized by γ(s) for 0 ≤ s < 1, where γ(s) ≡ γ(s). Define

γ1 = lim
s→1

γ(s) so that γ1 ≡ γ1 also.
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(a) Infinite propeller Pγ (b) Finite propeller Pγ

Figure 11. Trace of propellers in R0

Note that the forward Ψt-orbit of γ1 is asymptotic to the periodic orbit O1, while the backward Ψt-orbit of
γ1 is asymptotic to the periodic orbit O2. Introduce their “pseudo-orbit”,

(15) Zγ = Z−γ ∪ Z+
γ , Z−γ = {Ψt(γ1) | t ≥ 0} and Z+

γ = {Ψt(γ1) | t ≤ 0}

Each curve Z±γ traces out a semi-infinite ray in C which spirals from the bottom or top face to a periodic
orbit, and thus Zγ traces out two semi-infinite curves in C spiraling to the periodic orbits O1 ∪ O2.

For 0 < δ ≤ 1, denote by γδ the curve with image γ([0, δ]), parametrized by

(16) γδ(s) = γ(δ · s).

DEFINITION 4.1. Let γ be a curve parametrized by γ : [0, 1]→W as above, with r(γ0) = 3 and r(γ1) = 2.
Introduce the infinite propeller and its closure in W:

(17) Pγ ≡ Zγ ∪
⋃
δ>0

Pγδ , P γ ≡
⋃
δ>0

Pγδ

As observed in [6], the closure P γ of an infinite propeller contains the Reeb cylinder R, with P γ = Pγ ∪ R.

We now introduce the notion of double propellers in W. Consider a smooth curve Γ ⊂ ∂−h W parametrized

by Γ: [0, 2]→ ∂−h W, with the notation Γs = Γ(s), such that:

(1) r(Γs) ≥ 2 for all 0 ≤ s ≤ 2;
(2) r(Γ0) = r(Γ2) = 3, so that both endpoints lie in the boundary ∂−h W ∩ ∂vW;
(3) Γ is topologically transverse to the cylinders C(r) for 2 ≤ r ≤ 3, except at the midpoint Γ1.

It then follows that r(Γs) ≥ r(Γ1) = 2+ δ for all 0 ≤ s ≤ 2, and some δ ≥ 0. See Figure 12 for an illustration
in the case when δ = 0.

Assume that δ > 0, so that r(Γs) > 2 for all 0 ≤ s ≤ 2, then theW-orbit of each Γs traverses W. The Ψt-flow
of the points in Γ form a compact surface embedded in W, whose boundary is contained in the boundary of
W, and thus the surface separates W into two connected components. This surface is denoted PΓ and called
the double propeller defined by the Ψt-flow of Γ.

Consider the curves γ, κ ⊂ ∂−h W obtained by dividing the curve Γ into two segments at the midpoint s = 1.
Parametrize these curves as follows:

γ = Γ | [0, 1] , Γ(s) for 0 ≤ s ≤ 1

κ = Γ | [1, 2] , Γ(2− s) for 0 ≤ s ≤ 1

The orbit {Ψt(Γ1) | 0 ≤ t ≤ T1} forms the long boundary of the propellers Pγ and Pκ generated by the
W-flow of these curves. Then PΓ is viewed as the gluing of Pγ and Pκ along the long boundary, hence the
notation “double propeller” for PΓ.
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Figure 12. A curve Γ = γ ∪ κ in ∂−h W

If δ = 0, define two infinite propellers Pγ and Pκ as in Definition 4.1, and then define PΓ = Pγ ∪ Pκ, where
the Ψt-orbit Zγ of the midpoint Γ1, defined as in (15), is again common to both Pγ and Pκ, and PΓ is viewed
as the gluing of the two propellers along an “infinite zipper”.

DEFINITION 4.2. Let Γ be as above with r(Γ1) = 2. Let γδ and κδ for 0 < δ ≤ 1 be the curves as defined
in (16). The infinite double propeller is the union:

(18) PΓ ≡ Zγ ∪
⋃
δ>0

{
Pγδ ∪ Pκδ

}

5. Global dynamics for ε < 0

We now analyze the global dynamics of the flows Φεt on Kε for the case when ε < 0. Recall that the assumption
ε < 0 means that the self-insertion maps σεi for i = 1, 2 of the Wilson Plug W do not penetrate far enough
into W to break the two periodic orbits of the Wilson flow Ψt by trapping them with the attracting orbits
to these periodic orbits, as is the case when ε = 0. As a consequence, we show that the flow Φεt has simple
dynamics: there is an invariant set that is a cylinder whose boundary components are the two periodic orbits,
and these are the only periodic orbits of the flow in the plug Kε.

On the technical level, by the Parametrized Radius Inequality condition (K8), we have the strict inequality
r′ < r, as illustrated in Figure 7(A). That is, the radius coordinate is strictly increasing at a secondary entry
point and strictly decreasing at a secondary exit point. Thus, there exists some ∆ > 0, depending on ε, such
that whenever an orbit hits an entry point, the radius increases by at least ∆. The main consequence of this
fact is that, unless an orbit hits the cylinder τ(C) where is C is the cylinder of radius 2 in W, its behavior
is the same as in the Wilson plug. In spite of the simplicity of this portrait of the dynamics of the flow Φεt,
the proofs of these claims uses key aspects on the analysis of the flow Φ0

t that were developed in [6].

Note that as ε < 0 tends to 0, the constant ∆ also tends to zero, and as a consequence the length of a given
non-trapped orbit in Kε grows increasingly long, as the number of possible reinsertions of the orbit through
the faces of the insertions increases to infinity. The geometry of the parametrized flow Φεt as a function of
ε < 0 is reminiscent of the Moving Leaf Lemma in [2] which is the key to analyzing the dynamics of flows in
counter-examples to the Periodic Orbit Conjecture, as constructed in [3, 17].

5.1. Orbit lifting property. The first step in the analysis the dynamics of the flow Φεt is to establish the
following key technical result, which should be compared with Propositions 6.5 and 6.7 of [6]. Recall that
we defined ρεx(t) ≡ r(Φεt(x)).

PROPOSITION 5.1. Let x be a primary or secondary entry point of Kε and y an exit point with x ≡ y.
Assume that either:

(1) r(x) > 2,
(2) r(x) < 2 and ρεx(t) 6= 2 for all t ≥ 0,
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then x ≺Kε y. Moreover, the collection of W-arcs which are lifts of the Kε-arcs in [x, y]Kε contains all the

W-arcs of the W-orbit of x′ that are in Ŵε, where τ(x′) = x.

Proof. Let x = x0 and 0 = t0 < t1 < · · · < tn < · · · with x` = Φεt`(x) be the transition points for the
positive Kε-orbit of x = x0. Note that if the forward orbit of x0 is finite, meaning that there exists t > 0
such that Φεt(x0) is a primary exit point, then there are a finite number of transitions points. For ` ≥ 0, let

[x′`, y
′
`+1]W ⊂ Ŵε be the lift of the Kε-arc [x`, x`+1]Kε ⊂ Kε.

First, we show that y is in the Kε-orbit of x0. Suppose not, then we prove that this implies that there exists
s > 0 such that for every t ≥ s we have nx0(t) > 0, and deduce a contradiction from this.

Suppose that x1 is an exit point, then [x′0, y
′
1]W is a complete W-orbit traveling from ∂−h W to ∂+

hW. Thus,
by definition we have x′0 ≡ y′1, or equivalently that x0 ≡ x1 = y and we obtain a contradiction to our
assumption. Thus, we can assume that x1 is a secondary entry point and nx0

(t1) = 1.

Next, we prove that nx0
(t) ≥ 0 for all t > 0. Suppose not, then there exists t > 0 such that nx0

(t) < 0. Let
` > 1 be the first index such that nx0

(t`) = 0 and nx0
(t`+1) = −1. Then x` and x`+1 are both exit points,

so by Proposition 3.2 we obtain that x′0 ≺W y′`+1 and x0 ≡ x`+1, implying that x`+1 = y which contradicts
the assumption that y is not in the Kε-orbit of x0. Thus, we may assume that nx0(t) ≥ 0 for all t > 0. In
particular, if we assume that that r(x) > 2 as in case (1), then we obtain that ρεx(t) 6= 2 for all t ≥ 0. It thus
suffices to make this latter assumption, which includes case (2), and show the conclusion of Proposition 5.1.

Suppose there exists ` > 1 such that nx0(t`) = 0, then let ` > 1 be the least such index. If x` is a primary
exit point, then by Proposition 3.3, we have that x ≺W x` and hence y = x`, and the claim of Proposition 5.1
follows. Thus, we may assume that x` is a secondary exit point, and x`+1 is defined. As both x`−1 and
x` are exit points, Proposition 3.2 implies that x′0 ≺W y′`+1 and x1 ≡ x`−1, from which it follows that the

W-arc [x′`, y
′
`+1]W is the W-arc following [x′0, y

′
1]W in the intersection of the W-orbit of x′0 with Ŵε.

We then apply this argument repeatedly for each ` such that nx0(s) = 0 for t` ≤ s < t`+1, to conclude that

the lift [x′`, y
′
`+1]W ⊂ Ŵε of the Kε-arc [x`, x`+1]Kε is contained in the W-orbit of x′0, and hence for distinct

` > 0 these W-arcs are disjoint. On the other hand, the W-orbit of x′0 is finite as r(x′0) 6= 2 by assumption.
We conclude that there is at most a finite number of indices ` such that nx0

(t`) = 0. Thus, we may assume
that there exists s0 > 0 such that nx0

(t) > 0 for all t ≥ s0.

There are now two possible cases to analyze: either the Kε-orbit of x0 is finite and thus exits Kε at a primary
exit point, or the Kε-orbit of x0 is infinite.

Assume first that the Kε-orbit of x0 is finite. Then there exists ` > 1 such that x` is a primary exit point.
Let n = nx0

(t`−1) ≥ 0. Since nx0
(t) > 0 for t ≥ s0 we can assume that n > 0. Then x`−1 must be a

secondary exit point. Otherwise, the W-arc [x′`−1, y
′
`]W goes from an entry to an exit point in W, which

must then be facing. This would imply that x`−1 is a primary entry point, contrary to assumptions.

Thus, x`−1 is a secondary exit point and therefore nx0
(t`−2) = n+1. Then there exists k > 0, chosen to be the

smallest index such that nx0
(tk) = n and nx0

(t) ≥ n for every tk ≤ t < t`, implying that nx0
(tk−1) = n− 1.

Then xk is an entry point and Proposition 3.2 applied to the Kε-arc [xk, x`]Kε implies that xk ≡ x`. But
then xk is a primary entry point and thus xk = x0, which is again a contradiction as we assumed that
nx0

(tk) = n > 0.

Finally, consider the case where the Kε-orbit of x0 is infinite. Recall that we may assume that nx0(t) > 0
for all t ≥ s0. We then have to consider the two following situations: either the level function nx0

(t) admits
an upper bound for t ≥ 0, or the function nx0

(t) is unbounded.

If nx0
(t) grows without bound, then we show that this leads to a contradiction. Let `i be the first index

such that nx0
(t`i) = i, thus `0 = 0, `1 = 1 and all the points x`i are secondary entry points. We claim that

(19) ρεx0
(t`i) ≥ r(x) + nx0

(t`i) ·∆ = r(x) + i ·∆ .

Let us prove the claim by recurrence on i. For i = 1, condition (K8) in the construction of Kε implies that
ρεx0

(t1) ≥ r(x) + ∆. Assume that for i = k − 1 the inequality is satisfied. If `k = `k−1 + 1 the claim follows
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from (K8). If not, observe that nx0(t`k−1) = k−1, thus by Proposition 3.2 we have that x′`k−1
≺W y′`k−1 and

ρεx0
(t`k−1

) = ρεx0
(t`k−1). Since x`k is a secondary entry point we have that ρεx0

(t`k) ≥ r(x) + k ·∆ proving
the claim. Since ∆ > 0 and the function ρεx0

(t) is bounded above by 3, the condition (19) is impossible, and
thus the level function nx0

(t) must be bounded.

It remains to consider the case where there exists some N > 0 such that nx0
(t) ≤ N for all t ≥ 0. Then there

exists 0 ≤ n0 ≤ N which is the least integer such that there exists 0 < `0 < `1 < · · · < `k < · · · such that
nx0

(t`j ) = n0. That is, n0 = lim inf
`>0

nx0
(t`) ≤ N . Since n0 is the least such integer, there exists k ≥ 0 such

that n0 ≤ nx0
(t) ≤ N for all t ≥ t`k . This implies that nx`k (t`j ) = 0 for all j ≥ 0, and 0 ≤ nx`k (t) ≤ (N −n)

for all t ≥ t`k .

Note that the segment [x`k , x`k+1+1]Kε satisfies the hypotheses of Proposition 3.2, so we have x′`k ≺W y′`k+1+1.

Moreover, arguing as above, we have that the lifted W-arcs [x′`m , y
′
`m+1]W for m ≥ k belong to the W-orbit

of x′`k . Since r(x`k) = r(x′`k) 6= 2 by assumption, the W-orbit of x′`k is finite, and thus there is a finite
number of W-arcs [x′`m , y

′
`m+1]W in its orbit, leading to a contradiction.

We have proved so far that x ≺Kε y. Observe that x1 is a secondary entry point and assume y = xn, for some
n > 0. Let `i be all the indices 1 ≤ `i ≤ n such that nx0

(t`i) = 0. Then nx0
(t`i−1) = 1 and Proposition 3.2

implies x1 ≡ x`1−1. Thus the W-arc [x′`1 , y
′
`1+1]W is the second arc in the W-orbit of x′ that belongs to Ŵε.

The same argument proves that x`1+1 ≡ x`2−1 and [x′`2 , y
′
`2+1]W is the third arc in the W-orbit of x′ that

belongs to Ŵε. We conclude that the arcs [x′`i , y
′
`i+1]W , for all i, are all the arcs in the W-orbit of x′ that

belong to Ŵε. �

REMARK 5.2. Proposition 5.1 case (2) is not valid for ε = 0, since in this case ∆ = 0 and the level
function nx0

(t) can grow without bound. This implies that the trapped set of K0 has non-empty interior as
proved in Chapter 7 of [6].

We point out two important corollaries of Proposition 5.1 and its proof.

COROLLARY 5.3. Let x ∈ Kε be such that ρεx(t) 6= 2 for every t ≥ 0. If x is not a transition point, then
the forward Kε-orbit of x exits Kε.

Proof. Let x ∈ Kε be such that ρεx(t) 6= 2 for every t ≥ 0, and assume that the forward orbit never exits Kε.
Since for every t ≥ 0 the W-orbit of τ−1(Φεt(x)) is finite, the assumption implies that the forward Kε-orbit
of x has infinitely many transition points. Then either the level function nx0

(t) is upper and lower bounded,
or is not. The proof of Proposition 5.1 gives a contradiction in both cases. �

COROLLARY 5.4. The Kε-orbit Oεi containing τ(Oi), for i = 1, 2, is periodic.

Proof. The arc τ(Oi), for i = 1, 2, intersects the entry region Eεi at a point p−i ∈ Eεi whose radius coordinate
satisfies r(p−i ) > 2, as illustrated in Figure 7(A). Then by the proof of Proposition 5.1, the Kε-orbit of xi
contains the facing point yi ∈ Sεi , which is by construction the other endpoint of the arc τ(Oi). �

We end this section with a brief discussion of the trapped set of Kε for ε < 0. Corollary 3.4 states that for
x ∈ ∂−h Kε with r(x) = 2 the Kε-orbit of x is trapped. The same argument can be applied to secondary entry
points with radius 2. Thus if x is a primary entry point with r(x) 6= 2 and such that there exists t > 0 with
ρεx(t) = 2, the orbit of x is trapped. Thus the trapped set changes with ε: it is composed of the curve

{τ(x′) ∈ ∂−h Kε | x
′ = (2, θ,−1)},

and the curve of primary entry points x ∈ ∂−h Kε such that the Kε-orbit of x hits Eεi in a point with radius
2. Observe that these conclusions hold for negative orbits also.

5.2. Existence of exactly two periodic orbits. Corollary 5.4 implies that the plugs Kε have at least two
periodic orbits, corresponding to the periodic orbits of the Wilson plug W. We next show that these are
the only periodic orbits of the flow Φεt. Moreover, these orbits form the boundary of an invariant cylinder
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Mε ⊂ Kε, whose limit as ε→ 0 is the invariant open set M0 ⊂ K0, introduced in [6] and discussed in further
detail below.

The proof of the following result is based in spirit, and also in many details, on the proof of the aperiodicity
of the plug K0 as given in [6, Theorem 8.1].

THEOREM 5.5. For ε < 0, the flow Φεt has exactly two periodic orbits, Oε1 and Oε2.

Proof. Suppose there exist a periodic orbit inside Kε and let x be a point on it. Let 0 ≤ t0 < t1 < · · · <
tn < · · · with x` = Φεt`(x) be the transition points for the Kε-orbit {Φεt(x) | t ≥ 0}, and suppose that tn > 0
is the first subsequent transition point with xn = Φεtn(x0) = x0, so that Φεt+tn(x) = Φεt(x) for all t.

Let [x′`, y
′
`+1]W ⊂ Ŵε be the lift of the Kε-arc [x`, x`+1]Kε ⊂ Kε, for 0 ≤ ` ≤ n and let r` be the radius

coordinate of the arc [x′`, y
′
`+1]W . Periodicity of the orbit implies that [x′0, y

′
1]W = [x′n, y

′
n+1]W . Moreover,

the r-coordinate is constant on each W-arc [x′`, y
′
`+1]W , so it has a minimal value r0. Without loss, assume

this minimum occurs for [x′0, y
′
1]W .

Observe that since the radius is minimum on [x′0, y
′
1]W and the radius strictly increases at secondary entry

points, x0 is a secondary exit point and x1 is a secondary entry point. Assume that nx0
(tn−1) = k for some

integer k, we next analyze the different situations depending on the value of k.

First, suppose that k < 0, then let ` > 1 be the first index such that nx0
(t`) = −1. Then nx0

(t`−1) = 0
and Proposition 3.2 implies that x′0 ≺W y′`. Thus r`−1 = r0 and r` < r0, contradicting the fact that r0 is
minimum. Thus we may assume that nx0

(t) ≥ 0 for all t ≥ 0.

Next, suppose that k = 0, then Proposition 3.2 implies that x′0 ≺W y′n, and thus rn−1 = r0 = rn, which is a
contradiction because the orbit cannot pass a transition point with the radius coordinate staying constant.

Now, suppose that k > 0 and consider the special case where the level is strictly increasing. That is, we
assume that nx0

(t`) is strictly increasing for 0 ≤ ` < n, and thus all of the transition points x` for 1 ≤ ` < n
are secondary entry points. Since x0 = xn is a secondary exit point and x−1 = xn−1 is a secondary entry
point, Proposition 3.2 implies that xn−1 = x−1 ≡ xn and x′n−2 ≺W y′n+1 = y′1. Thus rn−3 < rn−2 = rn = r0,
contradicting the minimality of r0.

Finally, suppose that k > 0 and assume the level function nx0
(t`) is not strictly increasing for 0 ≤ ` < n.

For the case when k > 1, we use a technique introduced by Ghys in [4, page 299]. The idea is to introduce a
sub-indexing function denoted by i(a), chosen so that the values of the level function nx0(ti(a)) are strictly
increasing, for 0 ≤ a ≤ k − 1. The precise definition of i(a) is as follows. Set i(0) = 0. Let 0 < i(1) < n be
the least integer such that nx0

(ti(1)) = 1, and nx0
(t) ≥ 1 for all ti(1) ≤ t < tn. Then recursively define i(a) so

that i(a−1) < i(a) < n, nx0
(ti(a)) = a, and nx0

(t) ≥ a for all ti(a) ≤ t < tn. Figure 13 illustrates a particular
example of the choice of such a function. Thus, we obtain that 0 = i(0) < i(1) < · · · < i(k − 1) < i(k) = n,
and it follows by the construction of i(a) that each transition point xi(a) is a secondary entry point. Moreover,
xi(k−1) ≺W xn, by Proposition 3.2, and thus ri(k−1) = rn = r0. Then r0 = ri(0) < ri(1) < · · · < ri(k−1) = r0,
which is a contradiction.

Figure 13. The functions nx0 and i(a)

It remains to consider the case when k = 1 and nx0
(tn) = 0. Then we have 1 = nx0

(t1) = nx0
(tn−1)

and thus x′1 ≺W y′n. Moreover, since x1 is a secondary entry point and xn is a secondary exit point, then
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x1 ≡ xn = x0. This implies x′0 ≺W x′1 ≺W x′0 and hence the arc [x′0, y
′
1]W is one of the arcs Oi ∩W′ε for

i = 1, 2, which is impossible.

Thus the only periodic orbits are the Kε-orbits of τ(Oi) for i = 1, 2. �

The discussion of the trapped set at the end of Section 5.1 and Theorem 5.5, yields the following assertion
in Theorem 1.1.

COROLLARY 5.6. All orbits of the flow Φεt are wandering, except for the periodic orbits τ(Oi) for i = 1, 2.

5.3. Invariant sets. The flow Ψt on the modified Wilson Plug W preserves the Reeb cylinder R ⊂ W
introduced in Section 2.2. The restriction of the flow to this invariant set consists of the two periodic orbits
Oi, i = 1, 2, for the flow, along with orbits asymptotic to these orbits, as illustrated by the restriction of the
flow to the central band in Figure 2(C).

Consider the intersection R′ε = R ∩ Ŵε, where Ŵε is the closure of W′ε as defined in (7). Then R′ε is a
compact submanifold of R with boundary, which is the union of the two arcs Oi∩W′ε which are contained in
theW-periodic orbits, and the boundary of the “notches”, that is the intersections of R with Dεi for i = 1, 2.
This set is illustrated in Figure 14. We consider in this section the image of τ(R′ε) under the flow Φεt.

First, recall that for ε = 0, the images τ(Oi ∩ Ŵε) ⊂ K0 of these orbits are not periodic. One of the main
results in [6] is that under some generic assumptions, the unique minimal set for the flow Φ0

t equals the closure
of the K0-flow of the image of the Reeb cylinder τ(R′0), and has the structure of a zippered lamination. For
a precise definition of a zippered lamination we refer to [6, Chapter 19].

Figure 14. The notched cylinder R′ embedded in W

Observe that the set τ(R′ε) ⊂ Kε is not invariant under the flow Φεt since the Reeb cylinder R intersects the
inserted regions Dεi for i = 1, 2. Instead, we must consider the submanifold Mε obtained by applying the
flow Φεt to the image τ(R′ε):

(20) Mε ≡ {Φεt(τ(R′ε)) | −∞ < t <∞} ⊂ Kε .

For ε < 0, Corollary 5.4 implies that Kε-orbits of the boundary segments τ(Oi ∩W′ε) are periodic orbits. In
fact, a much stronger statement is true.

PROPOSITION 5.7. For ε < 0, the set Mε is homeomorphic to a cylinder.

Proof. Consider the intersections of R with Dεi for i = 1, 2. The notches formed by deleting the intersection
Dε1 contains 3 boundary curves: label the curve in Lε−1 by γ′ε. The facing curve transverse to the flow is
labeled by γ′ε. Analogously, the notches formed by deleting the intersection Dε2 contains 3 boundary curves,

where λ′ε labels the curve transverse to the flow in Lε−2 , and λ
′
ε is the facing curve. These curves are illustrated

in Figure 14.
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The projections of the curves γ′ε and λ′ε to Kε are denoted by γε = τ(γ′ε) and λε = τ(λ′ε). These are curves

in the entry regions Eε1 and Eε2, respectively. In the same way consider the curves γε = τ(γ′ε) and λε = τ(λ
′
ε)

which are contained in the exit regions Sε1 and Sε2.

The Parametrized Radius Inequality for ε < 0 implies that each point on these four curves lies in the region
{r > 2}. Thus, by Proposition 5.1 the Kε-orbit of each point x ∈ γε passes through the facing point y ∈ γε.
Thus, the Φεt-flow of the curve γε generates a compact surface denoted by Σγε ⊂ Kε that “fills the notch”
created by deleting the rectangular region R ∩ Dε1. Analogously, the Φεt-flow of the curve λε generates a
compact surface denoted by Σλε ⊂ Kε that “fills the notch” created by deleting the rectangular region
R∩Dε2. Both of these surfaces with boundary are diffeomorphic to a rectangular region, but the embeddings
of this region in Kε becomes increasingly “twisted” as ε → 0. In any case, the surface Mε obtained by
attaching these surfaces Σγε and Σλε along their boundary to the boundary of the notches in the image
τ(R′ε) is homeomorphic to a cylinder whose boundary components are the periodic orbits Oεi for i = 1, 2. �

Let us describe the surfaces Σγε and Σλε . The description below proceeds analogously to the surface M0

obtained from the Φ0
t -flow of the Reeb cylinder R′0 ⊂ K0 which is described in complete detail in Chapter 12

of [6]. We describe the surface Σγε below, and the description of the surface Σλε is exactly analogous.

Consider the curve γε ∈ Eε1 and the corresponding curve γ′′ε = τ−1(γε) ⊂ L−1 . Note that the curves γ′ε and
γ′′ε satisfy τ(γ′ε) = τ(γ′′ε ) = γε, but the curve γ′ε lies in the cylinder of points r = 2 in W, while the curve γ′′ε
is contained in the bottom face of W. In particular, the radius coordinate along γ′′ε is strictly greater than 2.
Let r1 ≥ 2 + ∆ be the minimum radius attained along the curve. Then the Ψt-flow of γ′′ε generates a finite
propeller Pγε as described in Section 4. Consider the notched propeller P ′γε = Pγε ∩W′ε. Thus τ(P ′γε) ⊂Mε

and is attached to τ(R′ε) via the insertion map σε1.

Since this propeller is finite, its intersection with Eε1 and Eε2 is along a finite number of curves, whose radius
coordinate is bounded below by r1 + ∆. Each of these curves generates a finite propeller, simple or double,
that is attached to τ(P ′γε) via the map σεi , for i = 1 or 2. Iterating this process a finite number of steps,
we construct the compact surface Σγε . Analogously, we obtain the surface Σλε . We conclude that Mε is
formed from the union of τ(R′) with a finite number of finite propellers. An important observation is that
the points in Mε with radius coordinate equal to 2 are exactly those in τ(R′ε).

REMARK 5.8. The propellers in the construction might have “bubbles” formed by double propellers, as
described in Chapters 15 and 18 of [6]. These are compact surfaces that are attached to internal notches,
which are notches in a propeller that do not intersect the boundary of the propeller.

Observe that as ε → 0, the first propeller attached to τ(R′ε) becomes arbitrarily long, and when ε = 0 we
obtain an infinite propeller. The set M0 is no longer a cylinder, and has a very complicated structure. We
can thus see M0 as the limit of the embedded cylinders Mε. This phenomenon is analogous to the behavior
of the leaves for a compact foliation as they approach its bad set, as described in [2].

To complete the proof of Theorem 1.1, choose a C∞-family of embeddings σεi which satisfy the Parametrized
Radius inequality, for −1 ≤ ε ≤ 0. Let Φεt be the resulting flows on the plug Kε. Then the results of Section 5
show that these flows satisfy the assertions of Theorem 1.1.

6. Geometric hypotheses for ε ≥ 0

The dynamical properties of the Kuperberg flows Φεt when ε ≥ 0 are far more subtle than when ε < 0,
and to obtain our results on the global dynamics of Φεt when ε ≥ 0 requires that we impose a variety
of additional hypotheses on the construction of Φεt. In this section, we formulate some basic additional
geometric assumptions for the insertion maps σεi beyond what we specified in Section 2.3. The basic point
is to require that they have the geometric shape which is intuitively implicit in Figures 5, 6 and 7(C).

First, we note a straightforward consequence of the Parametrized Radius Inequality (K8) in Section 2.3.
Recall that θi is the radian angle coordinate specified in (K8) such that for x′ = (2, θi,−2) ∈ Li we have
r(σεi (2, θi,−2)) = 2 + ε.
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LEMMA 6.1. For ε > 0 there exists 2 + ε < rε < 3 such that r(σεi (rε, θi,−2)) = rε.

Proof. Since r(σεi (2, θi,−2)) = 2 + ε and r(σεi (3, θi,−2)) < 3, by the continuity in r of the function
r(σεi (r, θi,−2)) we conclude that there exists 2 + ε < rε < 3 such that r(σεi (rε, θi,−2)) = rε. �

We then add an additional assumption on the insertion maps σεi for i = 1, 2 that the radius is decreasing
under the insertion map, for r ≥ rε.

HYPOTHESIS 6.2. If rε is the smallest 2 + ε < rε < 3 such that r(σεi (rε, θi,−2)) = rε, then assume that
r(σεi (r, θi,−2)) < r for r > rε.

Next, we introduce an hypothesis on the insertion maps σεi for i = 1, 2 which, in essence, guarantees that
the images of the level curves for r′ = c are “quadratic” for c near the value r = 2, as pictured in Figure 7.
Recall our notational conventions. For i = 1, 2, let x′ = (r′, θ′,−2) ∈ L−i denote a point in the domain of σεi
and denote its image by (r, θ, z) = σεi (x

′) ∈ Lε−i ⊂W.

Let πz : W→ ∂−h W denote the projection along the z-coordinate, so πz(r, θ, z) = (r, θ,−2).

We first assume that σεi restricted to the bottom face, σεi : L−i → L
ε−
i ⊂ W, has image transverse to the

vertical fibers of πz. Then πz ◦ σεi : L−i → W is a diffeomorphism into the face ∂−h W. Denote the image set

of this map by Di ⊂ ∂−h W. Then we can define the inverse map

(21) Υε
i = (πz ◦ σεi )−1 : Di → L−i .

In particular, express the inverse map x′ = Υε
i(x) in polar coordinates as:

(22) x′ = (r′, θ′,−2) = Υε
i(r, θ,−2) = (r(Υε

i(r, θ,−2)), θ(Υε
i(r, θ,−2)),−2) = (Rεi,r(θ),Θ

ε
i,r(θ),−2) .

In the following hypothesis, we impose uniform conditions on the derivatives of the maps Υε
i . Recall that

0 < ε0 < 1/4 was specified in Hypothesis 2.1, and we assume that 0 < ε < ε0.

HYPOTHESIS 6.3 (Strong Radius Inequality). For i = 1, 2, assume that:

(1) σεi : L−i →W is transverse to the fibers of πz;
(2) r = r(σεi (r

′, θ′,−2)) < r + ε, except for x′ = (2, θi,−2) and then r = 2 + ε;
(3) Θε

i,r(θ) is an increasing function of θ for each fixed r;
(4) For 2− ε0 ≤ r ≤ 2 + ε0 and i = 1, 2, assume that Rεi,r(θ) has non-vanishing derivative, except when

θ = θi as defined by Υε
i(2 + ε, θi,−2) = (2, θi,−2);

(5) For 2− ε0 ≤ r ≤ 2 + ε0 and θi − ε0 ≤ θ ≤ θi + ε0 for i = 1, 2, assume that

(23)
d

dθ
Θi,s(θ) > 0 ,

d2

dθ2
Ri,s(θ) > 0.

Thus for 2− ε0 ≤ r ≤ 2 + ε0, the graph of Ri,r(θ) is parabolic with vertex θ = θi.

Consequently, each surface Lε−i is transverse to the coordinate vector fields ∂/∂θ and ∂/∂z on W.

REMARK 6.4. Hypotheses 6.2 and 6.3 combined, imply that rε is the unique value of 2 + ε < rε < 3 for
which r(σεi (rε, θi,−2)) = rε. It follows that the radius function ρεx at a secondary entry point x with r(x) > rε
is strictly increasing.

7. A pseudogroup model

The analysis of the dynamical properties of the standard Kuperberg flow Φt, as made in [6], was based on
the introduction of an “almost transverse” rectangle R0 ⊂ K, and a detailed study of the dynamics of the

induced pseudogroup for the return map Φ̂ of the flow to R0. Our analysis of the dynamics of the flows
Φεt for the case when ε > 0 follows a similar approach. We utilize the same rectangle R0 as defined in (24)
below, which is the same as in [6], but we use a simplified model for the pseudogroup, which incorporates

the induced return maps to R0 for both of the flows Ψt and Φεt. The dynamics for the induced map Ψ̂ from

the Wilson flow is fairly straightforward to analyze, while that of the induced map Φ̂ε from the Kuperberg
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flow is extraordinarily complicated, so we restrict to analyzing the dynamics of selected maps defined by Φ̂ε,
and the task is then more manageable.

The goal is to show that for ε > 0, the dynamics of the return map Φ̂ε contains disjoint families of “horse-
shoes”, as will be proved in Section 8, which then yields the conclusions of Theorem 1.2. The first step is to

introduce the pseudogroup Ĝε and the pseudo?group Ĝ∗ε in this section, as Definitions 7.2 and 7.3 below. In

the next Section 8, we show that the action of Ĝ∗ε ⊂ Ĝε contains invariant horseshoe dynamical subsystems.

7.1. A good rectangle. We introduce the “almost transversal” rectangle to the flows Ψt and Φεt which is
used for the study of the return dynamics of their flows, and for the construction of associated pseudogroups.

Choose a value of θ0 such that the rectangle R0 as defined in cylindrical coordinates,

(24) R0 ≡ {ξ = (r, θ0, z) | 1 ≤ r ≤ 3 , −2 ≤ z ≤ 2} ⊂W′ε ,

is disjoint from both the regions Di and their insertions Dεi for i = 1, 2, as defined in Section 2.3. For
example, for the curves αi and β′i defined in Section 2.3, we take θ0 = π so that R0 is between the embedded
regions Dεi for i = 1, 2 as illustrated in Figure 15.

Figure 15. The rectangle R0 in the Kuperberg plug Kε

As R0 ⊂ W′ε, the quotient map τ : W → Kε is injective on R0. We use a slight abuse of notation, and also
denote the image τ(R0) ⊂ Kε by R0 with coordinates r = r(ξ) and z = z(ξ) for ξ ∈ R0.

The periodic points in R0 for the Wilson flow are denoted by

(25) ω1 = O1 ∩R0 = (2, θ0,−1) , ω2 = O2 ∩R0 = (2, θ0, 1) .

For i = 1, 2, the first transition point for the forward orbit of ωi is denoted by p−i = τ(Lε−i ∩ Oi), and for
the backward orbit the first transition point is the special exit point p+

i = τ(Lε+i ∩ Oi).

Define a metric on R0 by dR0(ξ, ξ′) =
√

(r′ − r)2 + (z′ − z)2, for ξ = (r, θ0, z) and ξ′ = (r′, θ0, z
′).

We next introduce the first return map Ψ̂ on R0 for the Wilson flow Ψt. The map Ψ̂ is defined at ξ ∈ R0

if there is a W-orbit segment [ξ, η]W with η ∈ R0 and its interior (ξ, η)W is disjoint from R0. We then set

Ψ̂(ξ) = η. Thus, the domain of Ψ̂ is the set:

(26) Dom(Ψ̂) ≡ {ξ ∈ R0 | ∃ t > 0 such that Ψt(ξ) ∈ R0 and Ψs(ξ) /∈ R0 for 0 < s < t} .

The radius function is constant along the orbits of the Wilson flow, so that r(Ψ̂(ξ)) = r(ξ) for all ξ ∈ Dom(Ψ̂).

Also, note that the points ωi for i = 1, 2 defined in (25) are fixed-points for Ψ̂. For all other points ξ ∈ R0

with ξ 6= ωi, it was assumed in Section 2.2 that the function g(r, θ, z) > 0, so theW-orbit of ξ has a “vertical
drift” arising from the term g(r, θ, z) ∂∂z in the formula (4) for W.

The precise description of the domain Dom(Ψ̂) is discussed in detail in Chapter 9 of [6], to which we refer

the reader for further details. For our applications here, it suffices to note that the domain Dom(Ψ̂) contains
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an open neighborhood of the vertical line segment R∩R0. The dynamical properties of Ψt on Dom(Ψ̂) are
described in Proposition 2.2, and illustrated in Figures 2 and 3.

Next, let Φ̂ε denote the first return map on R0 for the Kuperberg flow Φεt. The domain of Φ̂ε is the set:

(27) Dom(Φ̂ε) ≡ {ξ ∈ R0 | ∃ t > 0 such that Φεt(ξ) ∈ R0 and Φεs(ξ) /∈ R0 for 0 < s < t} .

The precise description of the domain Dom(Φ̂ε) is very complicated, due to the nature of the orbits of

Φεt as the union of W-arcs for the Wilson flow. Moreover, the map Φ̂ε : Dom(Φ̂ε) → R0 has many points
of discontinuity, which arise when an orbit is tangent to section R0 along the line R0 ∩ A. An extensive

discussion of the properties of the return map Φ̂ε for the case ε = 0 is discussed in detail in Chapter 9 of [6].
We adapt these results as required, for the case ε > 0.

7.2. The pseudogroup Ĝε. A key idea, introduced in the work [6], is to associate a pseudogroup GK to the

return map Φ̂ and study the dynamics of this pseudogroup. This approach allows a more careful analysis

of the interaction of the return maps Ψ̂ and Φ̂ in determining the dynamics of Φεt. In this paper, we work

with a pseudogroup Ĝε generated by the return maps for both flows, and then show that under the proper

hypotheses, the orbits of Ĝε in an invariant “horseshoe” subset of R0 agrees with the orbits of Φ̂ε.

First, we recall the formal definition of a pseudogroup modeled on a space X.

DEFINITION 7.1. A pseudogroup G modeled on a topological space X is a collection of homeomorphisms
between open subsets of X satisfying the following properties:

(1) For every open set U ⊂ X, the identity IdU : U → U is in G.
(2) For every ϕ ∈ G with ϕ : Uϕ → Vϕ where Uϕ, Vϕ ⊂ X are open subsets of X, then also ϕ−1 : Vϕ → Uϕ

is in G.
(3) For every ϕ ∈ G with ϕ : Uϕ → Vϕ and each open subset U ′ ⊂ Uϕ, then the restriction ϕ | U ′ is in G.
(4) For every ϕ ∈ G with ϕ : Uϕ → Vϕ and every ϕ′ ∈ G with ϕ′ : Uϕ′ → Vϕ′ , if Vϕ ⊂ Uϕ′ then the

composition ϕ′ ◦ ϕ is in G.
(5) If U ⊂ X is an open set, {Uα ⊂ X | α ∈ A} are open sets whose union is U , ϕ : U → V is a

homeomorphism to an open set V ⊂ X and for each α ∈ A we have ϕα = ϕ | Uα : Uα → Vα is in G,
then ϕ is in G.

We first introduce a map which encodes a part of the insertion dynamics of the return map Φ̂ε. The reader
interested in more more complete development of these ideas can consult Chapter 9 of [6].

Let Uφ+
1
⊂ Dom(Φ̂ε) be the subset of R0 consisting of points ξ ∈ Dom(Φ̂ε) with η = Φ̂ε(ξ), such that the

Kε-arc [ξ, η]Kε contains a single transition point x, with x ∈ Eε1.

Note that for such ξ, we see from Figures 9 and 15, that its Kε-orbit exits the surface Eε1 as the W-orbit of
a point x′ ∈ L−1 with τ(x′) = x, flowing upwards from ∂−h W until it intersects R0 again. If the Kε-orbit of ξ
enters Eε1 but exits through Sε1 before crossing R0, then it is not considered to be in the domain Uφ+

1
as it

contains more than one transition point between ξ and η.

Let φ+
1 : Uφ+

1
→ Vφ+

1
denote the map defined by the restriction of Φ̂ε. As the Kε-arcs [ξ, η]Kε defining φ+

1 do

not intersect A, the restricted map φ+
1 is continuous. Observe that the action of the map φ+

1 corresponds to
a flow through a transition point which increases the level function nx(t) by +1.

We can now define the pseudogroup Ĝε acting on R0 associated to the return maps Ψ̂ and Φ̂ε.

DEFINITION 7.2. Let Ĝε denote the pseudogroup generated by the collection of all maps formed by com-
positions of the maps

(28) {Id, φ+
1 , Ψ̂|U | U ⊂ Dom(Ψ̂) is open and Ψ̂|U is continuous}

and their restrictions to open subsets in their domains.
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The notion of a pseudo?group was introduced by Matsumoto in [12], which is a subset of the maps in a
pseudogroup that satisfy conditions (1) to (4) of Definition 7.1, but need not satisfy the condition (5) on
unions of maps.

DEFINITION 7.3. Let Ĝ∗ε denote the collection of all maps formed by compositions of the maps in (28)
above, and their restrictions to open subsets in their domains.

Note that Ĝ∗ε is a pseudo?group contained in Ĝε but is not a pseudogroup itself. A key point in the proof of
Proposition 8.2 later in this work, is that for appropriately chosen k ≥ `(ε), there is a well-defined non-trivial

element ϕk = Ψ̂k ◦ φ+
1 ∈ Ĝ∗ε which is a concatenation of a power of the Wilson return map Ψ̂ with the first

return map φ+
1 of the flow Φεt.

We conclude with an observation and a fundamental technical result which relates the orbits of the map Ψ̂

with those of the map Φ̂ε, that encodes the existence of “shortcuts” as given in Proposition 3.2. We require
the following result, which is analogous to Proposition 5.1. Recall that the constant rε > 2 was introduced
in Lemma 6.1, and that we assume that Hypothesis 6.2 is satisfied.

PROPOSITION 7.4. Let x be a primary or secondary entry point of Kε and y the exit point with x ≡ y.
Assume that r(x) ≥ rε, then x ≺Kε y, and the collection of lifts of the W-arcs in [x, y]Kε contains all the

W-arcs of the W-orbit of x′ that are in Ŵε, where τ(x′) = x.

Proof. The proof follows in the same way as that of Proposition 5.1, where we note that for r > rε the radius
strictly grows along any orbit of Φεt when entering a face of one of the insertions. �

Introduce the local coordinate function r̃(ξ) which is defined for points in R0 whose forward orbit hits Eεi ,
for i = 1, 2, before reaching any other transition point or returning to R0. Let x ∈ Eεi be the first secondary

entry point in the forward orbit ξ, set r̃(ξ) = r(x). Then, for ξ in the domain Uφ+
1
⊂ R0 of the map φ+

1 ∈ Ĝε,
we have r̃(ξ) = r(φ+

1 (ξ)). Recall that ξ ∈ Uφ+
1

if the forward Kε-orbit of ξ hits Eε1 before returning to R0, so

in particular Uφ+
1

contains an open neighborhood of the set {r̃ = 2} ⊂ R0. Next, define the subset

(29) Urε = {ξ ∈ D(Φ̂ε) | r̃(ξ) > rε} ⊂ R0 .

COROLLARY 7.5. Let ξ ∈ Urε be such that η is contained in the forward W-orbit of ξ. Then there exists

some ` > 0 such that η = (Φ̂ε)`(ξ).

Proof. If the W-arc [ξ, η]W does not intersect an entry region Lε−i then it is also a K-arc, and so the result
follows. Otherwise, let x ∈ Lε−i be the first transition point along [ξ, η]W and let y ∈ Lε+j be the last exit

point. Then x ≡ y, and ξ ∈ Urε implies that r(x) > rε, so by Proposition 7.4 we have that y and η are in

the forward Kε-orbit of ξ. Thus, there exists some ` > 0 such that η = (Φ̂ε)`(ξ). �

8. Horseshoes for the pseudogroup dynamics

In this section, we show that for 0 < ε < ε0 sufficiently small, the pseudo?group Ĝ∗ε contains a map ϕ with
“horseshoe dynamics”. In fact, the precise statement, Theorem 8.6 below, gives an even stronger conclusion,
showing that there exists a countable collection of such maps, each with an invariant Cantor set for which
the action is coded by a shift map, and each disjoint from the others. The proof of Theorem 8.6 will be via

a construction, which uses the relations between the action of the maps Ψ̂ and φ+
1 on R0, and the geometry

of the traces of propellers and double propellers in R0.

8.1. Traces of propellers. We describe the surfaces in the Wilson plug W that are generated by the Wilson
flow of curves in the bottom face ∂−h W, and especially those curves which cross the circle {r = 2} ⊂ ∂−h W.
These surfaces are similar to the double propellers introduced in Definition 4.2.

Let Γ : [0, 2]→ L−1 ⊂ ∂
−
h W be a curve such that:

• r(Γ(0)) = r(Γ(2)) = 3;
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• r(Γ(t)) > r(Γ(1)) for all t 6= 1 and r(Γ(1)) < 2;
• Γ is transverse to the circle {r = 2}.

We will call such a curve a traversing curve. Let t1 < t2 be such that r(Γ(t1)) = r(Γ(t2)) = 2. We can divide
Γ in three overlapping parts, as illustrated in Figure 16:

• γ the curve Γ([0, t1]);
• γ̃ the curve Γ([t1, t2]);
• κ the curve Γ([t2, 2]).

Figure 16. The curve Γ = γ ∪ γ̃ ∪ κ in ∂−h W

Label the interior endpoints of these curves as q′1 = Γ(t1) ∈ γ ∩ γ̃ and q′2 = Γ(t2) ∈ γ̃ ∩ κ. Note that the
forward orbits of the points {q′1, q′2} ⊂ ∂−h W by the flow Ψt spiral upward to the periodic orbit O1, and so
are trapped in the Wilson plug W.

Recall from Section 3 that we say points x′ ∈ ∂−h W and y′ ∈ ∂+
hW are facing, and we write x′ ≡ y′, if

x′ = (r, θ,−2) and y′ = (r, θ, 2) for some r and θ. Let Γ ⊂ ∂+
hW be the facing curve to Γ, and denote by γ, κ

and γ̃ the corresponding segments of Γ facing to the curves γ, κ and γ̃. Then also define q′1 = Γ(t1) ∈ γ ∩ γ̃
and q′2 = Γ(t2) ∈ γ̃ ∩ κ. The antisymmetry assumption on the vector field W implies that the forward Ψt

flow of a point Γ(t) ∈ ∂−h W terminates in the facing point Γ(t) ∈ ∂+
hW, except for the cases when t = t1, t2.

Now consider the surface PΓ ⊂W generated by the Ψt-flow of a traversing curve Γ. The flows of the points
q′1, q

′
2 ∈ Γ are trapped in W, hence the surface PΓ is non-compact. On the other hand, by the conditions

(W1) to (W6) on the function f in the definition of the Wilson flow W in Section 2.2, the vector field W
is transverse to R0 away from the boundary cylinders r = 1 and r = 3, and the annulus {z = 0} = A. It
follows that each connected component of PΓ ∩R0 is a closed embedded curve in R0. We next analyze the
properties of these curves.

Observe that the Ψt-flows of the curve segments γ and κ generate infinite propellers Pγ and Pκ as in
Definition 4.1, and illustrated in Figure 10, whose trace on R0 is pictured in Figure 11(A). We denote the
curves in Pγ ∩R0 by γ0(`), for ` > 0 and unbounded. Recall that these are simple arcs whose endpoints lie
on the vertical line {r = 2} ∩R0. The lower endpoint p−1 (1) of γ0(1) is the first intersection of the forward

W-orbit of q′1 with R0. Then for ` > 1, the lower endpoint p−1 (`) of γ0(`) is Ψ̂`−1(p−1 (1)). Likewise, the
upper endpoint p+

1 (1) of γ0(1) is the first intersection of the backward W-orbit of q′1 with R0, and for ` > 1

the upper endpoint of γ0(`) is Ψ̂1−`(p+
1 (1)).

Analogously, we denote the curves in Pκ ∩R0 by κ0(`), for ` > 0 and unbounded. Again, these are simple
arcs whose endpoints lie on the vertical line {r = 2} ∩R0. The lower endpoint p−2 (1) of κ0(1) is the first
intersection of the forward W-orbit of q′2 with R0. Then for ` > 1, the lower endpoint p−2 (`) of κ0(`) is

Ψ̂`−1(p−2 (1)). Likewise, the upper endpoint p+
2 (1) of κ0(1) is the first intersection of the backward W-orbit

of q′2 with R0, and for ` > 1 the upper endpoint of κ0(`) is Ψ̂1−`(p+
2 (1)).

Note that these two infinite families of curves {γ0(`) | ` ≥ 1} and {κ0(`) | ` ≥ 1} are interlaced: between two
γ0-curves there is a κ0-curve, and vice-versa. To be more precise, the geometry of the Wilson flow maps the
lower endpoint q′2 of the “upper” curve κ in Figure 16 to the point p−2 (1) ∈ R0 , while he lower endpoint q′1 of
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the “lower” curve γ is mapped to p−1 (1) ∈ R0 which lies above p−2 (1). That is, we have z(p−1 (1)) > z(p−2 (1)).
The return map of the Wilson flow then preserves this local order, so that we have

(30) z(p−2 (1)) < z(p−1 (1)) < z(p−2 (2)) < z(p−1 (2)) < · · · < z(p−2 (`)) < z(p−1 (`)) < · · · < −1 .

In order to complete the description of the curves in PΓ∩R0 we must consider the Ψt flow of the third curve
segment γ̃, and how the endpoints of the curves in its intersections with R0 are attached to the endpoints
of the curves γ0(`) and κ0(`) for ` ≥ 1.

The curve γ̃ coincides with Γ ∩ {r ≤ 2} and its endpoints are q′1, q
′
2 ∈ Γ. These points are trapped in W for

the forward Ψt flow, hence the forward flow of γ̃ under Ψt defines a non-compact surface Pγ̃ in the region
{r ≤ 2} ⊂W.

We denote the curves in Pγ̃ ∩R0 by γ̃0(`), for ` > 0 and unbounded. Consider the point Γ(1) ∈ γ̃, whose
radius coordinate is less than 2. It follows that the W-orbit of Γ(1) is finite, thus intersects R0 in a finite
number of points n. The integer n depends on the choice of the insertion map σε1, but we omit this dependence
from the notation, as it simplifies the presentation and does not impact the results below.

Moreover, without loss of generality, we may assume that the intersection of the W-orbit of Γ(1) with the
annulus A is not contained in R0. The symmetry of the Wilson flow with respect to the annulus A implies
that the trace of the W-orbit of Γ(1) on R0 forms a symmetric pattern, where points of intersection are
paired, each point below the center line {z = 0} ∩R0 paired with a symmetric copy above this line. Hence,
n is an even number.

The intersection Pγ̃ ∩ R0 consists of an infinite collection of arcs, with endpoints in {r = 2} ∩ R0. For

1 ≤ ` ≤ n/2 label the curve containing with endpoints {p−1 (`), p−2 (`)} by γ̃0(`). Thus, γ̃0(`) is a “parabolic
curve” in the region {z < 0} ∩R0, as illustrated in Figure 17.

By the anti-symmetry of the flow Ψt, for each 1 ≤ ` ≤ n/2 there is a corresponding “parabolic curve” γ̃0(`)
in the region {z > 0} ∩R0 with endpoints {p+

1 (`), p+
2 (`)}. Let Γ0(`) ⊂ R0 denote the closed curve obtained

by joining the endpoints of the curve γ̃0(`) with the endpoints of the curve γ̃0(`) via the curves {γ0(`), κ0(`)}.
The curves Γ0(`) for 1 ≤ ` ≤ n/2 are illustrated in Figure 17 as the closed curves that do not contain the
vertical arc R∩R0 in their interiors.

The trace of Pγ̃ on R0 contains also an infinite number of connected arcs that do not contain points of

the orbit of Γ(1), and each of these arcs is again symmetric with respect to {z = 0}. For each point p−1 (`)
with ` > n/2 we obtain an arc in R0 with p−1 (`) as the lower endpoint, and p+

1 (`) as the upper endpoint.
When joined with the arc γ0(`) having the same endpoints, we obtain a closed curve Γγ0(`) for ` > n/2, that
contains the vertical arc R∩R0 in its interior.

Similarly, for each point p−2 (`) with ` > n/2 we obtain an arc in R0 with p−2 (`) as the lower endpoint, and
p+

2 (`) as the upper endpoint. When joined with the arc κ0(`) having the same endpoints, we obtain a closed
curve Γκ0 (`) for ` > n/2, that also contains the vertical arc R∩R0 in its interior. Moreover, the closed curves
Γγ0(`) and Γκ0 (`) are nested for ` > n/2. These curves are illustrated in Figure 17 as the infinite sequence of
nested closed curves that contain the vertical arc R∩R0 in their interiors.

The curves Γ0(`) ⊂ R0 for 1 ≤ ` ≤ n/2, and Γγ0(`),Γκ0 (`) ⊂ R0 for ` > n/2, can be visualized in terms of
a modification of the illustration of a standard propeller in Figure 10. Since the curve Γ crosses the circle
{r = 2} ∩ ∂−h W, the flow of the curves γ ∪ γ̃ and γ̃ ∪ κ each develops a singularity along this circle, which
results in an infinite cylinder attached to the surface pictured in Figure 10. This infinite cylinder wraps
around and is asymptotic to the Reeb cylinder R in W. Its intersections with R0 yields the nested family
Γγ0(`) for ` > n/2. A similar statement holds for the flow of the curve κ, yielding the nested curves Γκ0 (`) for
` > n/2. The curves Γ0(`) for 1 ≤ ` ≤ n/2, are obtained from the flow of the point Γ(1), which now lies in
the region r < 2.

8.2. The transverse hypotheses. We formulate the conditions on a Kuperberg plug Kε for ε > 0 which
will be assumed in the following sections of the text, where horseshoe dynamics are exhibited for the action

of the pseudo?group Ĝ∗ε on R0.
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Figure 17. Trace of the surface PΓ on R0 - PΓ ∩R0

Assume that the flow Ψt on the Wilson Plug satisfies Hypothesis 2.1, and that the construction of the flow
Φεt on Kε satisfies the conditions (K1) to (K8) in Section 2.3, and Hypotheses 6.2 and 6.3.

Observe that for a plug Kε defined by the embeddings σεi satisfying the Parametrized Radius Inequality
(K8), the curve θ′ 7→ σε1(2, θ′,−2) in Lε−1 contains two points with r = 2. In other words, the image under
σεi of the circle of radius r = 2 intersects twice the cylinder C ⊂ W of points with radius r = 2. Thus the
curve r̃ = 2 is R0 intersects the vertical line r = 2 in two points, as in Figure 18.

Figure 18. The points vε1 and vε2 in R0

Hypothesis 6.2 and 6.3 imply that the parabolic curve of points in R0 whose forward orbit hits Eε1 in points
of radius rε is tangent to the vertical line of radius equal to rε. That is, the curve r̃ = rε is tangent to the
vertical line r = rε. Moreover, by the Parametrized Radius Inequality, the parabolic curve of points r̃ = 2 is
tangent to the vertical line of radius equal to 2+ ε, and by Lemma 6.1, we have that rε > 2+ ε, as illustrated
in Figure 18.

Next, assume that ε > 0 is sufficiently small so that 2 + ε < rε < 2 + ε0/2. This implies that the parabolic
curves r̃ = 2 and r̃ = rε in Figure 18 intersect the vertical line r = 2 transversally. Recall that the orbits of
the points ξ ∈ R0 such that r̃(ξ) = rε hit Eε1 in points of radius rε.

Label the points of intersection of the curve r̃ = rε with the vertical line r = 2 by

(31) {r = 2} ∩ {r̃ = rε} ∩R0 = {vε1, vε2} ,
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where z(vε1) < z(vε2) < 0 by the Hypothesis (K4). We will assume in addition that z(vε1) > −1, so that the
curve r̃ = rε has a vertical offset. Note that for ε = 0, the Radius Inequality implies that rε = 2 and vε1 = vε2
is the unique point ω1 ∈ R0 defined by (25), so that z(vε1) + 1 = 0.

Observe that Hypothesis 6.2 implies that if r(ξ) ≥ rε then r̃(ξ) ≥ rε, while condition (K8) implies that if
r(ξ) < rε then r̃(ξ) ≥ r(ξ) − ε. Moreover, Hypothesis 6.3 implies that the curves {r̃ = cst} are parabolic,
that is the r-coordinate depends quadratically on the z-coordinate.

Finally, the domain Uφ+
1

of the map φ+
1 contains a neighborhood of the set {r̃ = 2}, and thus we can assume

that for ε > 0 sufficiently small we have that

(32) V0 = {x ∈ R0 | r(x) ≥ 2, r̃(x) ≤ rε} ⊂ Uφ+
1
.

That is, the set bounded by the vertical line of radius 2 and the parabolic curve of points whose forward
orbit hit Eε1 in points of radius rε, is contained in Uφ+

1
.

8.3. Invariant Cantor sets. We assume that the conditions of Section 8.2 are satisfied.

Let Γ′ ⊂ Lε−1 be the intersection of the cylinder {r = 2} ∈ W and Lε−1 , and set Γ = (σε1)−1(Γ′) ⊂ L−1 .
Observe that Γ is a traversing curve with parabolic shape, with its endpoints in the circle {r = 3}, and
admits a parametrization as in Section 8.1. In particular, we can divide it in three parts, Γ = γ ∪ γ̃ ∪ κ with
Γ ∩ {r ≥ 2} = γ ∪ κ, as in Figure 16.

Let V ⊂ L−1 be the compact subset bounded by Γ and the circle {r = rε}, as illustrated in Figure 19. Let
V ′ = τ(V ) ⊂ Eε1 ⊂ K be its image in the entry region Eε1. Then the set V0 defined in (32) is identified with
the set of points in R0 for which the first transition point of their Φεt-flow lies in V ′ ⊂ Eε1.

Figure 19. The shaded region V in L−1

Recall that the trace of the Reeb cylinder in R0 is the line segment R∩R0 = {(r, z) | r = 2,−1 ≤ z ≤ 1}.

Let PΓ ⊂ W be the propeller surface generated by the Ψt flow of the traversing curve Γ. Let n > 0 denote
the number of intersections of the flow of the point Γ(1) with the surface R0, which we assume is an even
integer as discussed in Section 8.1. Then the trace PΓ ∩R0 consists of an infinite collection of closed curves,
what we call the Γ0-curves. Recall that these have two types: the closed curves that do not contain the trace
of the Reeb cylinder in their interior, and are denoted by Γ0(`) ⊂ R0 for for 0 < ` ≤ n/2. We also have the
two infinite families of closed curves {Γγ0(`) | ` > n/2} and {Γκ0 (`) | ` > n/2} which contain the trace of the
Reeb cylinder in their interior, as illustrated in Figure 17. For ` > n/2, set Γ0(`) = Γγ0(`) ∪ Γκ0 (`).

By the symmetry of the Wilson flow, each Γ0 curve is symmetric with respect to {z = 0}, so that the
observations for the forward Ψt flow of curves in ∂−h W also apply to the reverse flow of curves in ∂+

hW.

The traversing curve Γ = γ ∪ γ̃ ∪ κ intersects the circle {r = 2} ∩ L−1 twice, in the points {q′1, q′2}, where
q′1 is the inner endpoint of γ, and q′2 is the inner endpoint of κ. The W-orbits of these points intersect the
vertical segment {r = 2, z < −1} in an increasing sequence of interlaced points, as in (30), which limit to
p−1 as ` → ∞. For each ` > 0, the lower intersection point p−2 (`) is the lower endpoint of the curve κ0(`),
and the upper intersection point p−1 (`) is the lower endpoint of the curve γ0(`).
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By Hypothesis 6.3, the curves γ0(`) and κ0(`) have parabolic shape near their intersection with the vertical
line r = 2; that is, the z-coordinate depends quadratically on the r-coordinate. As the points in the
intersection Γ0(`) ∩ {r = 2} tend to p−1 , the curves γ0(`) and κ0(`) accumulate on the trace of the Reeb
cylinder, R ∩ R0, which is a vertical line segment, and these curves become increasingly vertical as they
approach R∩R0.

We next require a technical result, that states that the curves γ0(`) and κ0(`) are in “general position” with
respect to the curves r̃ = 2 and r̃ = rε. Recall that we assume the conditions of Section 8.2 are satisfied by
the given map σε1, and in particular, the vertical offset z(vε1) > −1 for the points defined by (31).

LEMMA 8.1. For ε > 0 sufficiently small, there exists `(ε) > 0 such that for ` ≥ `(ε), the curves γ0(`) and
κ0(`) intersect the curves r̃ = 2 and r̃ = rε in four points, where the intersections are transverse.

Proof. The assumption that the vertical coordinate z(vε1) > −1 implies that for ` sufficiently large, the curves
γ0(`) and κ0(`) intersect the curve in R0 defined by r̃ = 2 transversely. Let `(ε) be the first index for which
this holds. Then by the nested properties of the curves γ0(`) and κ0(`), the transversality property holds for
all ` ≥ `(ε) as well. �

The conclusion of Lemma 8.1 is illustrated in Figure 20. Note that the constant `(ε) depends also on the
choice of the embedding σε1 but for simplicity of notation we omit this dependence from the notation.

PROPOSITION 8.2. Let ε > 0, and let V0 and `(ε) > 0 be defined as above. Fix k ≥ `(ε), and define

ϕk = Ψ̂k ◦ φ+
1 ∈ Ĝ∗ε . Then for V0 as defined in (32), the following results hold :

(1) Uk = ϕk(V0) ∩ V0 6= ∅;
(2) Uk intersects the curve {r̃ = 2} along two disjoint arcs α and β.

Proof. The image φ+
1 (V0) ⊂ R0 is the set of first intercept points in R0 for the Ψt-flow of the region V ⊂ L−1 ,

where V is illustrated in Figure 19. Then the trace on R0 ⊂W of the W-orbits of V is the union of the sets

V` = Ψ̂` ◦ φ+
1 (V0) ⊂ R0 for ` > 0. The region V` is bounded by a segment in the vertical line {r = rε} ∩R0,

and by the curve Γ0(`), where we identify the rectangles R0 in W and Kε.

For k ≥ `(ε), Γ0(k) intersects the curves {r̃ = 2} and {r̃ = rε} transversely, and each intersection consists of
four points. Then Vk intersects the region bounded by the curve {r̃ = rε}, implying that Uk 6= ∅ and that
Uk ∩{r̃ = 2} has two connected components, which are labeled α for the lower one, and β for the upper one,
as in Figure 20. Then Uk is bounded by γ0(k), κ0(k), the vertical line {r = 2} and the curve {r̃ = rε}.

Observe that Uk is bounded by parts of the curves γ0(k) and κ0(k). In Figure 20 we are assuming that
k ≤ n/2, and the case k > n/2 is analogous since the shape of γ0(k) and κ0(k) near V0 is analogous for the
two cases of k, as depicted in Figure 17. �

REMARK 8.3. A priori, the boundary of Uk is contained in the union of γ0(k), κ0(k), the curve {r̃ = rε}
and the vertical line {r = 2}. The assumption that z(vε1) > −1 implies that this region is disjoint from the
vertical line {r = 2}.

8.4. The shift map. Let ε > 0, and let V0 and `(ε) > 0 be defined as in Section 8.3. Fix k ≥ `(ε) and define

ϕk = Ψ̂k ◦ φ+
1 and Uk = ϕk(V0) ∩ V0, as in Proposition 8.2. We describe in detail the set Uk ∩ ϕk(Uk) and

show that it is composed of two connected components, and give some of the details of the description of the
set Uk ∩ ϕk(Uk ∩ ϕk(Uk)). The recursive construction will then give us a collection of 2n disjoint compact
regions in the image of ϕnk , and their infinite intersection defines a Cantor set invariant under the action of
ϕk, for which the restricted action is conjugate to the full shift.

Observe that Uk ⊂ V0 ⊂ Uφ+
1

. The forward Φεt-flow of Uk intersects the secondary entry region Eε1 in the

subset U ′k ⊂ Eε1. Then U ′k is bounded by the curve {r = rε}, and the curves γ′(1, k) and κ′(1, k), obtained
by flowing forward to Eε1 the curves γ0(k) and κ0(k), respectively. Set U ′′k = τ−1(U ′k) ⊂ L−1 , bounded by the
circle {r = rε} and the curves γ(1, k) = τ−1(γ′(1, k)) and κ(1, k) = τ−1(κ′(1, k)). By construction, γ(1, k)
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Figure 20. The region Uk and the curves α and β in R0

Figure 21. The region U ′′k and parts of the curves κ(1, k) and γ(1, k) in L−1

intersects twice the circle {r = 2} and κ(1, k) also intersects twice {r = 2}, thus both γ(1, k) and κ(1, k) are
traversing curves, as in Figure 21.

The surfaces Pγ(1,k) and Pκ(1,k) in W, generated by the curves γ(1, k) and κ(1, k), intersect the rectangle R0

in a similar manner as PΓ, as in Figure 17. Let γ0(1, k; `) and κ0(1, k; `) for ` ≥ 1 and unbounded be the
curves in the trace of the surfaces Pγ(1,k) and Pκ(1,k) on R0. The shape of these curves is analogous to the
one of the curves Γ0(`) in the trace of PΓ. Observe that for each ` > 0, the curves γ0(1, k; `) and κ0(1, k; `)
are contained in the region bounded by Γ0(`) and as `→∞ these curves accumulate on R∩R0.

Since U ′′k ⊂ L
−
1 is bounded by γ(1, k), κ(1, k) and the circle {r = rε}, the region Ψ̂` ◦ φ+

1 (Uk) is bounded by
the curves γ0(1, k; `), κ0(1, k; `) and the vertical line {r = rε}.

Consider now the case ` = k ≥ `(ε). Then ϕk(Uk) = Ψ̂k ◦ φ+
1 (Uk) intersects the set {r < 2} along one

connected component that is U-shaped and bounded by γ0(1, k; k)∩ {r < 2} and κ0(1, k; k)∩ {r < 2}. Also,
ϕk(Uk) has two connected components in {r ≥ 2}, each corresponding to one of the connected components
in γ0(1, k; k) ∩ {r ≥ 2}. Hence Uk ∩ ϕk(Uk) has two connected components. Let W0 be the component on
the left and W1 the component on the right as in Figure 22. The sets W0 and W1 depend on k, but we omit
this dependence in the notation.

LEMMA 8.4. For i = 0, 1, the sets Wi are non-empty and intersect the curve {r̃ = 2} along two arcs
αi ⊂ α and βi ⊂ β.
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Figure 22. The regions W0 and W1 in R0

Proof. The discussion above implies that the sets Wi are non-empty. Also, by construction Wi∩α and Wi∩β
are non-empty for i = 0, 1, set αi = Wi ∩ α and βi = Wi ∩ β, for i = 0, 1. �

We can now iterate the construction. For i1 = 0, 1, consider the set ϕk(Wi1) = Ψ̂k ◦ φ+
1 (Wi1). Since the

curves bounding Wi1 cross the curve {r̃ = 2}, the set ϕk(Wi1) ⊂ ϕk(Uk) intersects the side {r < 2} in a
U-shaped set and ϕk(Wi1)∩ {r ≥ 2} has two connected components one inside W0 and the other inside W1.
Thus we can define the four sets

Wi1,i2 = ϕk(Wi1) ∩Wi2 ⊂ Wi2 for i1, i2 = 0, 1.

In complete analogy with Lemma 8.4, we have that each Wi1,i2 is non-empty and intersects {r̃ = 2} along

two arcs αi1,i2 ⊂ αi2 and βi1,i2 ⊂ βi2 . Observe that ϕ−1
k (Wi1,i2) ⊂Wi1 .

Iterating this construction, we conclude that for any n > 0 and for any sequence I = {i1, i2, . . . , in} ∈ {0, 1}n
the set WI = Wi1,i2,...,in satisfies that:

• WI is non-empty;
• WI intersects the curve {r̃ = 2} along two arcs αI and βI .

We make two observations. For a sequence I ∈ {0, 1}n, I = {i1, i2, . . . , in} and a point ξ ∈WI , we have

ϕ−1
k (ξ) ∈ Wi1,i2,...,in−1

(33)

ϕ−2
k (ξ) = ϕ−1

k ◦ ϕ
−1
k (ξ) ∈ Wi1,i2,...,in−2

,(34)

and so forth, so that by induction we have ϕ
−(n−1)
k (ξ) ∈Wi1 . Also by construction,

WI ⊂Wi2,i3,...,in ⊂Wi3,i4,...,in ⊂ · · · ⊂Win .

We can now define

(35) W (ϕk) =
⋂
n≥1

⋂
I={i1,i2,...,in}

WI

which is a Cantor set that is invariant under the map ϕk.

Observe that each ξ ∈ W (ϕk) is uniquely defined by an infinite string Iξ = {i1, i2, . . . , in, . . .} ∈ {0, 1}N,
which we call the shift coordinates on W (ϕk). The identities (33), (34) and their generalization imply that
under this identification, the map ϕk acts on the points of W (ϕk) via the right shift on the shift coordinates.
We then have the standard observation about such maps:

LEMMA 8.5. The periodic orbits for the restricted action ϕk : W (ϕk)→W (ϕk) are dense in W (ϕk).
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Finally, observe that for k′ > k ≥ `(ε), the regions bounded by the curves Γ0(k′) and Γ0(k) are disjoint,
hence we have that W (ϕk′) ∩W (ϕk) = ∅.

Combining the above results and observations, we have shown:

THEOREM 8.6. For 0 < ε < ε0 sufficiently small, let V0 and `(ε) > 0 be defined as above. Then for each

k ≥ `(ε), define ϕk = Ψ̂k ◦φ+
1 ∈ Ĝ∗ε , and let W (ϕk) be defined by (35). Then W (ϕk) is a Cantor set which is

invariant under the action of ϕk, and the action admits a dynamical coding as a full-shift space. Thus, the

action of the pseudo?group Ĝ∗ε on R0 contains an infinite number of disjoint horseshoe dynamical systems,
each with a dense set of periodic orbits.

9. Topological entropy for ε > 0

The pseudogroup Ĝε acting on R0 was introduced in Definition 7.2, with generators obtained from the return

maps Ψ̂ and Φ̂ε. Then in Section 8, for ε > 0 sufficiently small and after imposing a sequence of assumptions

on the geometry of the construction of the flow Φεt, it was shown that the action of Ĝε contains disjoint
families of invariant Cantor sets. In this section, we impose one further condition on the construction of the
flow Φεt which suffices to imply that each of these “horseshoe dynamical systems” is realized by the flow Φεt.
It follows immediately from this that the flow Φεt has positive topological entropy and has infinite families
of periodic orbits.

Recall that the map ϕk = Ψ̂k ◦ φ+
1 was introduced in Proposition 8.2, and realizes a part of the dynamical

properties of the action of the pseudo?group Ĝ∗ε on R0. However, the map ϕk need not be realized by

the return map of the flow Φεt. Recall that the map φ+
1 = Φ̂ε|Uφ+

1
, where φ+

1 is defined at ξ ∈ Uφ+
1

with

η = φ+
1 (ξ), if there is a Kε-arc [ξ, η]Kε which contains a single transition point x ∈ Eε1. On the other hand,

we have that ζ = Ψ̂k(η) if there exists a W-arc [η, ζ]W in W, which is independent of the return map Φ̂ε.

The strategy in this section is to apply Corollary 7.5 to conclude that there is also a Kε-arc [η, ζ]Kε in Kε
between η and ζ. When applied to points ξ ∈ W (ϕk), this will imply that the map ϕk : W (ϕk) → W (ϕk)

represents a subsystem of the return map Φ̂ε, and hence gives information about the dynamics of the flow
Φεt. The difficulty is that Corollary 7.5 assumes that η ∈ Urε where Urε is defined by (29). We first obtain
conditions on the map σε1 which will imply that this requirement is satisfied for ξ ∈ W (ϕk), so that we can
then use Theorem 8.6 to obtain a proof of Theorem 1.2.

9.1. Wilson dynamics. The orbits of the map Ψ̂ on R0 are simple to describe, in that for any point ξ ∈ R0

with r(ξ) 6= 2, the orbit is finite in both forward and backward directions. However, as the value of r(ξ) tends
to r = 2, the lengths of these finite orbits increase, as condition (2) implies that the vertical distance between

the iterations Ψ̂`(ξ) becomes arbitrarily small for r(Ψ̂`(ξ)) near to 2 and its vertical coordinate z(Ψ̂`(ξ)) near

to either z = ±1. We give an approximation of the distance between points Ψ̂`(ξ) and Ψ̂`+1(ξ), following the
same approach as in Chapter 17 of [6]. These estimates are then used to impose restrictions on the insertion
maps σε1 so that Corollary 7.5 can be applied.

Recall the functions f and g were chosen in Section 2.2, which are constant in the coordinate θ, with

(36) W = g(r, θ, z)
∂

∂z
+ f(r, θ, z)

∂

∂θ
.

Hypothesis 2.1 and condition (2) imply there exists constants Ag, Bg, Cg such that the quadratic form
Qg(u, v) = Ag · u2 + 2Bg · uv + Cg · v2 defined by the Hessian of g at ω1 is positive definite. Set

Q0(r, z) = (dR0((r − 2), (z + 1)))
2

= (r − 2)2 + (z + 1)2

then it follows that there exists Dg > 0 such that

(37) |g(r, θ, z)−Qg(r − 2, z + 1)| ≤ Dg · (|r − 2|3 + |z + 1|3) for Q0(r, z) ≤ ε20
where ε0 is the constant defined in (2). The condition (37) implies that for (r, z) sufficiently close to (2,−1),
the error term on the right-hand-side can be made arbitrarily small relative to the distance squared from the
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special point ω1 = (2,−1). We also observe that (37) implies there exists constants 0 < λ1 ≤ λ2 such that

(38) λ1 ·Q0(r, z) ≤ g(r, θ, z) ≤ λ2 ·Q0(r, z) for Q0(r, z) ≤ ε20 .

Next, consider the action of the maps Ψ̂` for ` > 0. Let ξ ∈ R0 with 2 ≤ r(ξ) ≤ 2 + ε0 and −7/4 ≤ z(ξ) ≤
−1/4, such that Ψ̂(ξ) is defined and z(Ψ̂(ξ)) < 0. Let T (ξ) > 0 be defined by Ψ̂(ξ) = ΨT (ξ)(ξ). Then the

z-coordinate of Ψ̂(ξ) is given by

(39) z(Ψ̂(ξ))− z(ξ) =

∫ T (ξ)

0

g(Ψs(ξ)) ds ≥ 0 .

If ξ 6= ω1 then g(Ψs(ξ)) is positive along the orbit segment for 0 ≤ s ≤ T (ξ), hence z(Ψ̂(ξ)) − z(ξ) > 0.
Moreover, combining the estimates (38) and (39) and the estimate T (ξ) ≥ 4π on the return time for the flow
Ψt to R0 for r(ξ) ≥ 2, we obtain:

LEMMA 9.1. For δ > 0, suppose that ξ = (r, z) ∈ R0 satisfies δ < dR0
((r − 2), (z + 1)) < ε0. Then

(40) z(Ψ̂(ξ))− z(ξ) ≥ 4π · λ1δ
2 .

9.2. Admissible deformations. We assume that for 0 < ε < ε0 the conditions of Section 8 are satisfied,
so that the hypotheses of Proposition 8.2 and Theorem 8.6 are satisfied.

Recall that for the insertion map σε1 the points {vε1, vε2} ⊂ R0 are defined by (31) and satisfy

(41) r(vε1) = r(vε2) = 2 , −1 < z(vε1) < z(vε2) < 0 .

Define

(42) δ(σε1) = z(Ψ̂−1(vε1)) + 1 > 0 .

HYPOTHESIS 9.2. Assume that ε > 0 is sufficiently small so that

(43) z(vε2)− z(vε1) < 4π · λ1 · δ(σε1)2 .

Hypothesis 6.3 implies that the boundary curve {r̃ = rε} ⊂ R0 of the region V0 is parabolic, as illustrated
in Figure 18, which implies that for a fixed vε1 ∈ R0 then for ε > 0 sufficiently small, the condition (43) will
be satisfied.

Let V0 and `(ε) > 0 be as defined as in Theorem 8.6. Fix k ≥ `(ε), and define ϕk = Ψ̂k ◦ φ+
1 . Set

Uk = ϕk(V0) ∩ V0 as defined in Proposition 8.2. Then let W (ϕk) be defined by (35). By Theorem 8.6 we
have that ϕk : W (ϕk)→W (ϕk).

PROPOSITION 9.3. Assume that Hypothesis 9.2 holds for the insertion map σε1. Then for each ξ ∈
W (ϕk) with η = ϕk(ξ), there exists a Kε-arc [ξ, η]Kε in Kε. Thus, there exists `ξ ≥ 1 such that η = Φ̂ε

`ξ
(ξ).

Proof. Let (r, z) ∈ R0 satisfy Q0(r, z) ≤ ε20 and z ≥ z(Ψ̂−1(vε1)). Then Q0(r, z) ≥ Q0(2, z) ≥ δ(σε1)2, so that
by (40) we have

(44) z(Ψ̂(r, z))− z ≥ 4π · λ1 · δ(σε1)2 > z(vε2)− z(vε1) .

Now let η ∈ V0, for V0 defined by (32). Then z(vε1) ≤ z(η) ≤ z(vε2) by the convexity of the region V0. It then
follows from (40) applied to (r, z) = η that

(45) z(Ψ̂−1(η)) = z +
(
z(Ψ̂−1(η))− z

)
≤ z − 4π · λ1 · δ(σε1)2 < z(vε2)− (z(vε2)− z(vε1)) = z(vε1) .

That is, the image Ψ̂−1(V0) lies below the line {z = z(vε1)}, and hence lies outside the region bounded by
the curve r̃ = rε whose lower edge lies on this line by the choice of vε1 in (31) and the convexity of the region

V0. That is, for all η ∈ V0 we have r̃(Ψ̂−1(η)) > rε.

Let ξ ∈ W (ϕk) and set η = ϕk(ξ) = Ψ̂k ◦ φ+
1 (ξ) ∈ W (ϕk) ⊂ V0. Then for the point ζ = Ψ̂−1(η) we have

r̃(ζ) > rε by the above estimates.

Following the Kε-orbit of ζ backwards and applying Proposition 7.4 and Corollary 7.5 we obtain that ξ and
ζ are in the same Kε-orbit.
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Now consider the W-orbit segment [ζ, η]W . If [ζ, η]W does not contain any transition points, then η is in the
Kε-orbit of ζ and thus in the Kε-orbit of ξ. If [ζ, η]W contains transition points, let x1 be the first transition
point. Then x1 is a secondary entry point in Eε1 with r(x1) > rε and Corollary 7.5 implies that its Kε-orbit
contains the facing point y1 ∈ Sε1. The Kε-orbit of y1 continues to the first intersection with R0 which is the
point η. Hence η is in the Kε-orbit of ξ. �

We next deduce an important consequence of Proposition 9.3. Observe that for every ξ ∈ W (ϕk) we have
z(ξ) < 0 and thus the flows Ψt and Φεt intersect the set W (ϕk) ⊂ R0 transversally. Let `ξ ≥ 1 be the integer

defined in Proposition 9.3 so that ϕk(ξ) = Φ̂ε
`ξ

(ξ). Then both maps are continuous at ξ and there is an

open neighborhood Uξ ⊂ V0 for which the identity ϕk(ξ′) = Φ̂ε
`ξ

(ξ′) holds for all ξ′ ∈ Uξ. The set W (ϕk) is
compact, so there exists a finite collection of such open sets which cover W (ϕk). Hence, there exists Nk so

that for all ξ ∈W (ϕk) there exists 1 ≤ `ξ ≤ Nk for which ϕk(ξ) = Φ̂ε
`ξ

(ξ). As a consequence, we have:

COROLLARY 9.4. Assume that Hypothesis 9.2 holds for the insertion map σε1. Then there exists Tk > 0
such that for each ξ ∈W (ϕk) there exists 0 < tξ ≤ Tk such that ϕk(ξ) = Φεtξ(ξ).

9.3. Topological entropy. We define the entropy of a flow ϕt on a compact metric space (X, dX) using a
variation of the Bowen formulation of topological entropy [1, 18]. The definition we adopt is symmetric in
the role of the time variable t. For T > 0, define a metric on X by

(46) dTX(x, y) = max {dX(ϕt(x), ϕt(y)) | −T ≤ t ≤ T} , for x, y ∈ X .

Two points x, y ∈ X are said to be (ϕt, T, δ)-separated if dTX(x, y) > δ. A set E ⊂ X is (ϕt, T, δ)-separated
if all pairs of distinct points in E are (ϕt, T, δ)-separated. Let s(ϕt, T, δ) be the maximal cardinality of a
(ϕt, T, δ)-separated set in X. Then the topological entropy is defined by

(47) htop(ϕt) =
1

2
· lim
δ→0

{
lim sup
T→∞

1

T
log(s(ϕt, T, δ))

}
.

It is a standard fact that for a compact space X, the entropy htop(ϕt) is independent of the choice of the
metric dX on X.

Given a ϕt-invariant subset K ⊂ X, we can define the restricted topological entropy htop(ϕt,K) by the same
formula (47), where we now require that the (ϕt, T, δ)-separated sets in the definition must be subsets of K.
It follows immediately that we have the estimate

(48) htop(ϕt) ≥ htop(ϕt,K) .

Let ε > 0 be given, and assume that Φεt is a Kuperberg flow as constructed above which satisfies the generic
hypotheses of Section 6, the geometric hypotheses of Section 8, and the Hypothesis 9.2 above. Then we have:

THEOREM 9.5. The topological entropy htop(Φ
ε
t) > 0.

Proof. Let V0 and `(ε) > 0 be defined as in Theorem 8.6. Choose k ≥ `(ε), and define ϕk = Ψ̂k ◦ φ+
1 ∈ Ĝ∗ε .

Then let W (ϕk) ⊂ R0 be the ϕk-invariant Cantor set defined by (35). By Proposition 9.3, the set W (ϕk) is

invariant under the return map Φ̂ε for the flow Φεt. Let Ŵ (ϕk) denote the flow saturation of W (ϕk) which

is then a compact invariant set for Φεt. By (48) it will suffice to show that htop(Φ
ε
t, Ŵ (ϕk)) > 0.

Note that W (ϕk) ⊂ Ŵ (ϕk) is a transverse section for the flow Φεt restricted to Ŵ (ϕk), and by Corollary 9.4
the flow has bounded return times to the section W (ϕk).

LEMMA 9.6. The map ϕk : W (ϕk)→W (ϕk) is the first return map for the flow Φεt restricted to Ŵ (ϕk).

Proof. Note that Φ̂ε is the first return map of the flow Φεt to the section R0. Given ξ ∈W (ϕk), Proposition 9.3

states that there is some least `ξ such that ϕk(ξ) = Φ̂ε
`ξ

(ξ) ∈W (ϕk). Thus, it suffices to show the Kε-orbit

segment [ξ, ϕk(ξ)]Kε is disjoint from Ŵ (ϕk) ⊂ Uk except at the endpoints. In fact, we prove that for any
ξ ∈ Uk such that ϕk(ξ) ∈ Uk, the Kε-orbit segment [ξ, ϕk(ξ)]Kε does not intersect Uk.
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Since ξ ∈ W (ϕk) ⊂ Uk ⊂ Uφ+
1

, we have that Φ̂ε(ξ) = φ+
1 (ξ) = η and thus r(η) ≤ rε since Uk ⊂ V0 and

the points in V0 have r̃-coordinate smaller or equal to rε. Consider the Kε-orbit segment [η, Ψ̂(η)]Kε . If

[η, Ψ̂(η)]Kε does not contains transition points, then it does not intersect R0 in its interior. If not, let x1

be the first transition point that is a secondary entry point in Eε1. Since z(η) < z(Φ̂k−1(η)), then by the
arguments in the proof of Proposition 9.3, we have

z(η) < z(Φ̂k−1(η)) < z(vε1),

thus x1 is a secondary entry point outside the region U ′ ⊂ Eε1. In particular, r(x1) > rε. Let y1 ∈ Sε1 be the

secondary exit point such that x1 ≡ y1, then by construction y1 is the last transition point in [η, Ψ̂(η)]Kε . By

Proposition 7.4 and Hypothesis 6.2 all the W-arcs in the Kε-orbit segment [η, Ψ̂(η)]Kε have radius greater

than rε. Hence any point in the intersection of the interior of the orbit segment [η, Ψ̂(η)]Kε with R0 has

radius greater than rε and thus does not belongs to Uk, in particular does not belongs to Ŵ (ϕk).

Repeating the argument, consider the Kε-orbit segment [Ψ̂`(η), Ψ̂`+1(η)]Kε for any 1 ≤ ` ≤ k − 1. If

[Ψ̂`(η), Ψ̂`+1(η)]Kε does not contains transition points, then it does not intersects R0 in its interior. If not,

let x1 be the first transition point that is a secondary entry point in Eε1. Since z(Ψ̂`(η)) ≤ z(Φ̂k−1(η)), then
we have

z(Ψ̂`(η)) ≤ z(Φ̂k−1(η)) < z(vε1),

thus x1 is a secondary entry point outside the region U ′ ⊂ Eε1. In particular, r(x1) > rε. Let y1 ∈ Sε1
be the secondary exit point such that x1 ≡ y1, then by construction y1 is the last transition point in

[Ψ̂`(η), Ψ̂`+1(η)]Kε . Then all theW-arcs in the Kε-orbit segment [Ψ̂`(η), Ψ̂`+1(η)]Kε have radius greater than

rε. Hence any point in the intersection of the interior of the orbit segment [Ψ̂`(η), Ψ̂`+1(η)]Kε with R0 has

radius greater than rε and thus does not belongs to Uk, in particular does not belongs to Ŵ (ϕk). �

We claim that the restricted map ϕk : W (ϕk)→W (ϕk) has positive entropy, and it then follows by standard

techniques that htop(Φ
ε
t, Ŵ (ϕk)) > 0.

In the following, we use Proposition 8.2 and the labeling system in Section 8.4. In particular, let W0,W1 ⊂ R0

be the disjoint sets introduced in Lemma 8.4. Let δ > 0 be such that the dR0
-distance between the sets W0

and W1 is greater than δ. We obtain a lower bound estimate on the maximum number s(ϕk, n, δ) of points
in an (ϕk, n, δ)-separated subset of W (ϕk) as a function of n.

For a sequence I ∈ {0, 1}n, recall that WI = Wi1,i2,...,in is a closed and open cylinder set in the Cantor set
W (ϕk). For any pair of distinct sequences I, J ∈ {0, 1}n, choose points

(49) ξ ∈WI ∩W (ϕk) , η ∈WJ ∩W (ϕk) .

Let 1 ≤ m ≤ n be the largest index such that im 6= jm. Then

ϕ
−(n−m)
k (ξ) ∈ Wi1,i2,...,im ⊂ Wim

ϕ
−(n−m)
k (η) ∈ Wj1,j2,...,jm ⊂ Wjm .

Fix n ≥ 1 and let En ⊂ Uk ⊂ R0 be a collection of 2n points obtained by choosing one point from each of
the sets WI ∩W (ϕk) = Wi1,i2,...,in ∩W (ϕk) where I ∈ {0, 1}n. Then En is a (ϕk, n, δ)-separated set, and so
s(ϕk, n, δ) ≥ 2n. It follows that s(ϕk, n, δ) ≥ 2n, and thus htop(ϕk,W (ϕk)) ≥ ln(2) > 0. �

We point out another consequence of Theorem 8.6 and Proposition 9.3.

COROLLARY 9.7. The restriction of the flow Φεt to Ŵ (ϕk) has a countably dense set of periodic orbits.

Proof. The restriction of the map ϕk to Ŵ (ϕk) has horseshoe dynamics by Theorem 8.6, and hence has a

dense set of periodic orbits. Each of these orbits for ϕk is also a periodic orbit for the return map Φ̂ε by
Proposition 9.3. �
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Note that the conclusions of Theorem 8.6 apply to the map ϕk for any choice of k ≥ `(ε), and for each such
flow the set W (ϕk) ⊂ Uk as illustrated in Figure 20. See also Remark 8.3. In particular, the set W (ϕk) is
contained in the region between the curves γ0(k), κ0(k) ⊂ R0. As remarked in Section 8.3, these curves are
asymptotic to the trace R∩R0 of the Reeb cylinder as k increases, so the Cantor sets W (ϕk) also limit to
subsets of R.

Now assume that the flow Φεt also satisfies the offset Hypothesis 9.2, and let Pε denote the union of all
periodic orbits of Φεt and let Pε denote the closure of Pε in Kε. It then follows from Corollary 9.7 that the
intersection Pε ∩ R is non-empty. It would be interesting to be able to describe the closure Pε, or at least
the trace Pε ∩ R of this closure on R, as some sort of analog of the bad set for compact flows as discussed
in [2, 3], though that seems like a rather difficult task.

9.4. Smooth admissible deformations. Suppose that we are given a standard Kuperberg flow Φt = Φ0
t

on K constructed starting with a Wilson flow Ψt on the Wilson Plug W which satisfies Hypothesis 2.1, and
that the construction of the flow Φt on K satisfies the conditions (K1) to (K8) in Section 2.3, and the Strong
Radius Inequality in Hypotheses 6.3 for ε = 0. We construct a family of flows Φεt for 0 < ε < ε0 sufficiently
small, which give a smooth deformation of Φt such that for each ε > 0, the flow Φεt satisfies the hypotheses
of Theorem 9.5.

The construction of the flows Φεt uses a two-step process. In the first step, we introduce a small vertical
offset to the insertion map σεi : D1 →W. After this, we modify the insertion by increasing the radius of the
insertion of the vertex of the parabola as in Figure 7(C).

Recall that (2, θ1,−1) ∈ R is the special point on the Reeb cylinder defined in Hypotheses 6.3, for the case
ε = 0. Let 0 < ε′ < ε0 and choose a point v1(ε′) ∈ R which satisfies z(v1(ε′)) = −1 + ε′ and θ(v1(ε′)) = θ1.
That is, v1(ε′) is a perturbation of the special point (2, θ1,−1) in the vertical direction along R. Let

σ̃ε
′

1 : D1 →W denote the vertical translate of σ1 so that the vertex of the image curve σ̃ε
′

1

(
{r = 2} ∩ L−1

)
is

the point v1(ε′).

Next, slide the map σ̃ε
′

1 along the parabolic curve σ̃ε
′

1

(
{r = 2} ∩ L−1

)
so that the vertex now lies on the

cylinder {r = 2 + ε} where ε is sufficiently small so that the offset Hypothesis 9.2 is satisfied for the
given Wilson flow Ψt on W. This yields the embedding σε1 : D1 → W for which v1(ε′) is W-flow of the
lower intersection point defined in (31). Intuitively, the value of ε is proportional to (ε′)2 as the graph of

σ̃ε
′

1

(
{r = 2} ∩ L−1

)
as illustrated in Figure 7(C) is quadratic. This yields our family of insertion maps σε1.

The smooth family of second insertion maps σε2 : D2 → W can then be defined similarly. However, we now
point out that in the proof of Theorem 9.5, and its preparatory results, the role of the second insertion only
arises in one manner. We require that the entry/exit condition for orbits of Kε entering a face of the second
insertion be satisfied for points ξ ∈ Eε2 when r(ξ) > rε. In particular, this condition will be satisfied if the
insertion σε2 = σ2 is the given map for the construction of the flow Φ0

t , which satisfies the original radius
inequality, and thus as noted previously, has corresponding value of rε = 2. Thus, in order to obtain the
claim of Theorem 9.5, it is not even necessary to modify the upper insertion.

Thus, we obtain a smooth family of deformations of Φt where each map Φεt satisfies the hypotheses of
Theorem 9.5, and hence has positive entropy with infinitely many periodic orbits, as asserted in Theorem 1.2.
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