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Abstract

We propose a flexible nonparametric regression method for ultrahigh-dimensional data. As a first

step, we propose a fast screening method based on the favored smoothing bandwidth of the marginal

local constant regression. Then, an iterative procedure is developed to recover both the important

covariates and the regression function. Theoretically, we prove that the favored smoothing bandwidth

based screening possesses the model selection consistency property. Simulation studies as well as real

data analysis show the competitive performance of the new procedure.
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1. Introduction

High-dimensional data are increasingly available due to the advance of data collection and storage

technology in assorted scientific fields such as biology, medicine, and finance. Such high-dimensional

data provide many opportunities as well as challenges for statisticians. These challenges have moti-

vated extensive research developed in the area of variable selection. In particular, the penalization5

framework for variable selection has been popularized by the lasso (Tibshirani, 1996). See Fan and

Lv (2010) for a selective overview of penalization-based variable selection methods.

These penalization-based variable selection methods have shown to be very effective for variable

selection. Yet their corresponding asymptotic properties typically hinge on stringent conditions. For
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example, Zhao and Yu (2006) established the sign (±) consistency for the lasso estimator under10

the irrepresentable condition. These conditions are challenging especially for the situation with an

ultrahigh dimensionality, namely the dimensionality grows at an exponential rate of the sample size

(Fan and Lv, 2008).

For ultrahigh-dimensional variable selection, Fan and Lv (2008) proposed sure independence

screening for linear regression. Instead of fitting a huge joint model, the central idea of sure in-15

dependence screening is to perform marginal regression for each predictor and rank them according

to marginal utility. Then a refinement step is applied to the top ranked predictors, for example, by

using a penalization-based method. In other words, they proposed a two-scale method for ultrahigh-

dimensional variable selection by coupling a crude large-scale screening with a refined moderate-scale

selection. They further established the sure screening property by proving that the screening retains20

important predictors with probability tending to one.

Since the introduction of sure independence screening, various extensions have been proposed for

more general model settings. They include generalized linear model (Fan and Song, 2010), additive

model (Fan et al., 2011), Cox model (Fan et al., 2010), varying-coefficient model (Liu et al., 2014; Fan

et al., 2014) and binary classification (Mai and Zou, 2012) among many others. There has also been25

work on developing robust screening procedures (Zhu et al., 2011; Li et al., 2012a,b; Chang et al.,

2013, 2016). All of these extensions have been proposed under some specific model assumption. Still

lacking is a fully nonparametric ultrahigh-dimensional variable selection method. Our work fills this

gap.

Stefanski et al. (2014) proposed a very general variable selection by intentionally adding mea-30

surement errors to predictors and devising a data-driven method to locate the best way to add

measurement errors so that the loss of predictive power is minimized. It is named measurement error

model selection likelihood. They proved that it reduces to the lasso when applied to linear regression.

In this sense, it is an extension of lasso. They further illustrated it with nonparametric classification.

In this case, it leads to a sparse version of the kernel discriminant analysis capable of performing35

variable selection for nonparametric classification. In an extension, White et al. (2017) studied the

measurement error model selection likelihood in the context of nonparametric regression. It results in

the Nadaraya–Watson estimator (Nadaraya, 1964; Watson, 1964) with variable selection capability.

Their new method is called measurement error kernel regression operator.

A key observation from sparse kernel discriminant analysis and measurement error kernel regres-40

sion operator is that an important predictor requires a small smoothing bandwidth while unimportant

predictors favor an infinite smoothing bandwidth. This observation is echoed by Wu and Stefanski

(2015). Wu and Stefanski (2015) focused on the additive model and used this key observation repeat-

edly to estimate the set of unimportant predictors, linear predictors, and so on towards polynomial

modeling for additive models.45

In this work, motivated by the above key observation that the smoothing bandwidth favored by

each predictor is inversely connected with the predictor’s importance in nonparametric regression, we

propose a nonparametric screening method. The method is first to perform marginal nonparametric

smoothing on each predictor and use an information criterion to determine its corresponding favored

smoothing bandwidth. To improve the efficiency of the proposed screening method, for each predictor,50

we consider two candidate bandwidths and evaluate the corresponding information criterion values.

The estimated signal set will be the variables that favors the smaller bandwidth. A two-scale fully
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nonparametric ultrahigh-dimensional variable selection is completed by applying the measurement

error kernel regression operator to these top ranked predictors. Our idea of using favored smoothing

bandwidth to rank predictors stands out quite uniquely in the literature of sure independence screen-55

ing since most, if not all, of existing screening methods rank predictors according to correlation in

one form or another.

To ensure the success of screening, we assume that if a variable Xj is important, then the marginal

relationship between Y andXj is also strong in terms of the favored smoothing bandwidth. The details

of this assumption will be described in Condition 7. A condition of such flavor is necessary for any60

screening method to succeed. Although it is by no means a very strong assumption, one could create

scenarios to make it fail. In those scenarios, one possible remedy would be to apply a certain kind of

iterative screening procedure (e.g., the IFBIS procedure to be introduced in Section 4.3) to identify

the important variables sequentially.

The main contribution of this paper is twofold. First, a new nonparametric screening method is65

proposed based on the favored smoothing bandwidth for each predictor. It is shown that this favored

bandwidth-based screening method possesses the model selection consistency property. Second, an

iterative nonparametric variable selection and regression algorithm is developed that can handle

different types of functional forms as well as interaction effects among covariates.

The rest of the paper is organized as follows. In Section 2, we introduce the nonparametric70

screening method via favored bandwidth. Its theoretical justification is provided in Section 3. Im-

plementation issues are discussed and an iterative version is given in Section 4. Section 5 presents

extensive simulation studies to illustrate its performance. Real data analysis are conducted in Section

6. We conclude with a short discussion in Section 7.

2. Method75

Suppose (Xi, Yi), i = 1, . . . , n are i.i.d. copies of (X, Y ) with X = (X1, . . . , Xp)
T and Xi =

(Xi1, . . . , Xip)
T , where p denotes the number of predictors. We assume that the data are generated

from the following very general nonparametric regression model

Y = g(X) + ε, (1)

where E(ε|X) = 0 and Var(ε|X = x) = σ2(x). Denote Var(Y ) = σ2
Y .

Let S ⊂ {1, . . . , p} be the index set containing all the important covariates in predicting the

response and denote XS be the subvector of X with indices in the set S. We assume that Y and XSc

are independent given XS , where Sc denotes the complement of S. In this case, g(X) is a function

of XS only. More explicitly, there exists a function gS(·) such that g(X) = gS(XS). The goal is80

to recover the important variable set S along with the estimation of the nonparametric regression

function g(·).
Consider the scenario when p is potentially much larger than the sample size n (e.g., p =

o(exp(na)), for some 0 < a < 1). For linear regression, Fan and Lv (2008) proposed the sure in-

dependence screening approach by examining each predictor individually and keeping the predictors85

with the largest marginal utility values. Here, we would like to develop a marginal screening procedure

under the general model (1). Since we do not impose any parametric structure assumption on the
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regression function g(·), we consider the univariate nonparametric regression problem of regressing Y

on Xj for each j = 1, . . . , p.

Let Y = gj(Xj) + εj with gj(Xj) = E(Y |Xj) and εj = g(X)− gj(Xj) + ε. When performing the90

univariate nonparametric regression, the function we are recovering is gj(·), which can be thought of

as a projection of g(·) onto the function space spanned by Xj . Note that E(εj |Xj) = 0 by definition.

Consider now the conditional variance of εj given Xj . Denote σ2
j (xj) = Var(εj |Xj = xj). If j ∈ S,

we expect gj(·) to be a nonconstant function and σ2
j (xj) will be smaller than Var(Y ) on average

because Xj explains some of the variation of Y . On the other hand, if j /∈ S, we expect Xj to play95

little role in the marginal nonparametric smoothing, which implies that gj(·) is a nearly constant

function and consequently Eσ2
j (Xj) is very close to σ2

Y . Our approach exploits the differences among

σ2
j (·) for j ∈ S and j 6∈ S to identify the set S. The exact conditions on σ2

j (·) for j ∈ S and j /∈ S
will be delineated in Section 3.

For the univariate nonparametric regression of Y on Xj based on data {(Xij , Yi), i = 1, . . . , n},
we use the Nadaraya–Watson (NW) estimator defined as

ĝj(x) =

∑n
i=1Kh(Xij − x)Yi∑n
i=1Kh(Xij − x)

, (2)

where Kh(x) = h−1K(x/h) for a kernel function K(·) and smoothing bandwidth h > 0.100

Note that the NW estimator defined in (2) is a linear smoother as it linearly transforms the vector

of responses Y = (Y1, . . . , Yn)T to the vector of fitted values Ŷj = (Ŷ1j , . . . , Ŷnj)
T = (ĝj(X1j), . . . , ĝj(Xnj))

T .

The linear transformation can be represented in a matrix form as

Ŷj = SjhY,

where Sjh = {Sjh(i, k), i = 1, . . . , n; k = 1, . . . , n} with

Sjh(i, k) =
Kh(Xkj −Xij)∑n
l=1Kh(Xlj −Xij)

. (3)

Naturally, the residual sum of squaresRSSj(h) =
∑n
i=1{Yi−ĝj(Xij)}2 measures the goodness of fit

for the NW estimator ĝj(·) with smoothing bandwidth h. Except that the smoothing bandwidth is too

small leading to overfitting, if Xj is important, one would expect RSSj(h) to increase when h increases

because a larger smoothing bandwidth introduces bigger smoothing bias. It implies that important

predictors favor a small smoothing bandwidth. On the other hand, if Xj is unimportant, RSSj(h) will105

not change much when h varies except a very small h corresponding to overfitting. Its small change, if

any, is due to stochastic variation. Correspondingly, an infinite smoothing bandwidth should be used

for those unimportant predictors. Based on this intuition, to perform variable screening, a key step

is to differentiate between predictors favoring a small smoothing bandwidth from those predictors

favoring an infinite smoothing bandwidth.110

To extract from data the information about which predictors favor a small smoothing bandwidth

and which predictors favor an infinite smoothing bandwidth, we now introduce the following infor-

mation criteria (IC) for each predictor variable

ICj(h) = log

[
n−1

n∑
i=1

{Yi − ĝj(Xij)}2
]

+ τ [tr(Sjh)− 1](
log p

n
)1/2h1/2, (4)
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where τ > 0 is a factor to control the penalty level, tr(·) represents the trace of a matrix and

Sjh is the smoothing matrix defined in (3). The IC defined in (4) is similar to the form of AIC

and BIC although the penalty term is specifically designed for the current nonparametric regression

setting. This specific penalty helps to achieve the goal of differentiating between predictors favoring

a small smoothing bandwidth from those predictors favoring an infinite smoothing bandwidth. The115

specific order of the penalty term represents the uniform estimation error across p predictors, and the

rationale will become clear after the theoretical properties are established in Section 3. We would

like to comment that if one is considering the classical setting when n� p, it is necessary to replace

the factor log p in (4) with log n to avoid under-penalization. Similar arguments go through for all

the theoretical results to be presented.120

When h =∞, ĝj(Xij) = Ȳ and tr(Sjh)− 1 = 0. As a result, we have

ICj(∞) = log

[
n−1

n∑
i=1

{Yi − Ȳ }2
]
. (5)

For each predictor Xj , we can find its favored bandwidth according to IC as follows

ĥj = arg min
h
ICj(h),

where the optimization is over any h > 0 not corresponding to extrapolation.

We can then use the favored smoothing bandwidth ĥj as a measure of variable importance for

the j-th predictor. The smaller ĥj is, the more important the predictor Xj is in the marginal

nonparametric regression. Consequently, we can rank predictor variables according to their favored

smoothing bandwidth ĥj and keep those with small favored smoothing bandwidths to perform variable125

screening. However, searching over the entire space for the favored smoothing bandwidth h as in (5)

could be time consuming since we need to identify the favored smoothing bandwidth for all predictors.

In practice, as a surrogate, we evaluate the value of ICj(h) at only two candidate bandwidths h = h∗ =

( log p
n )1/5 and h =∞ for each predictor. Here the candidate smoothing bandwidth h∗ is chosen at the

optimal nonparametric rate. Then the estimated signal set is given by Ŝ = {j|ICj(h∗) < ICj(∞)}. Its130

theoretical properties will be studied in the next section. We name our method as favored bandwidth

independence screening (FBIS).

3. Theory

In this section, we establish the theoretical properties of the favored bandwidth independence

screening (FBIS) method. First of all, several technical conditions are introduced.135

Condition 1. supu |K(u)| ≤ K̄ <∞ and
∫
|K(u)|du ≤ µ <∞.

Condition 2. For some 0 < Λ1 < ∞ and 0 < L < ∞, either K(u) = 0 for |u| > L and for all u,

u′ ∈ R,

|K(u)−K(u′)| ≤ Λ1|u− u′|,

or K(u) is differentiable, |(∂/∂u)K(u)| ≤ Λ1, and for some ν > 1, |(∂/∂u)K(u)| ≤ Λ1|u|−ν for

|u| > L.
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Conditions 1 and 2 are standard conditions for kernels in kernel density estimation and Nadaraya-

Watson estimates.140

Condition 3. Assume the number of predictors p ≥ n and p = o(exp(nα)) with 0 < α < 1.

For all j = 1, . . . , p, Xj has marginal density fj(x) with support [0, 1] such that supx fj(x) ≤
B0 < ∞ and supxE(|Y |s|Xj = x)fj(x) ≤ B1 < ∞, for some s > 2. In addition, for δn =

infj=1,...,p infx∈[0,1] fj(x) > 0 and h = o(1), we assume δ−1n a∗n → 0 with a∗n = ( log p
nh )1/2 + h2.

The density assumption is necessary to ensure the proper behavior of the density estimates. A145

similar condition can be found in Hansen (2008). Note that here, we impose a uniform lower bound

on the marginal density for each covariate, while allowing the bound decaying to 0 at a rate depending

on n, p and the bandwidth h.

For i = 1, . . . , n and j = 1, . . . , p, define Uij(x) = YiKh(x−Xij). For covariate j, we consider the

average

Ψ̂j(x) =
1

n

n∑
i=1

Uij(x) =
1

nh

n∑
i=1

YiK

(
x−Xij

h

)
.

Lemma 1 (Bernstein’s inequality, Lemma 2.2.11, Van Der Vaart and Wellner (1996)). Let Y1, . . . , Yn

be independent random variables with zero mean such that E|Yi|m ≤ m!Mm−2vi/2, for every m ≥ 2

(and all i) and some constants M and vi. Then

P (|Y1 + . . .+ Yn| > x) ≤ 2 exp{−x2/(2(v +Mx))},

for v ≥ v1 + . . . vn.

Condition 4. Assume there exist constants M and v, such that E|Uij(x)−EUij(x)|m ≤ m!Mm−2v/2150

holds for all i, j, h, and any x ∈ [0, 1].

This condition is imposed to facilitate the development of the uniform deviation results of Ψ̂j

towards its expectation, which is summarized in the following Theorem.

Theorem 1. Assume Conditions 1-4 are satisfied. For an = ( log p
nh )1/2, we have the uniform deviation

results as follows.

sup
j=1,...,p

sup
x∈[0,1]

|Ψ̂j(x)− EΨ̂j(x)| = Op(an).

Proof. The difficulty of the proof lies in the uniform bound across p different covariates as well as

the region of x ∈ [0, 1]. In order to establish a uniform bound over p covariates, we exploit the large155

deviation bounds for each covariate Xj . In particular, for a fixed j, we consider |Ψ̂j(x)− EΨ̂j(x)|.
We consider intervals of the form Ak = {x : |x − xk| ≤ anh}. By selecting equal spaced xk,

the region [0, 1] can be covered with N ≤ (anh)−1/2 such regions like Ak. Condition 2 implies that

for all |x1 − x2| ≤ δ ≤ L, |K(x2) − K(x1)| ≤ δK∗(x1), where K∗(·) is set as follows depending

on the part of Condition 2 we assumes. If K(u) has compact support and is Lipschitz, we set160

K∗(u) = Λ11{|u| ≤ 2L}. If K(u) satisfies the differentiability condition with the bound on the

derivative, we can set K∗(u) = Λ11{|u| ≤ 2L} + |u − L|−η1{|u| > 2L}. In both cases, K∗(u) is

bounded and integrable and therefore satisfies Condition 1. Note a similar argument can be found in

the proof of Theorem 2 in Hansen (2008).
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For any x ∈ Ak, |x− xk| ≤ anh, then from Condition 2, we have

|K(
x−Xij

h
)−K(

xk −Xij

h
)| ≤ anK∗(

xk −Xij

h
).

Now, define

Ψ̃j(x) =
1

nh

n∑
i=1

YiK
∗(
x−Xij

h
),

which is a version of Ψ̂j(u) with K(u) replaced with K∗(u). Note that by tower property of conditional

expectation along with Condition 3, E|Ψ̃j(x)| ≤ B0B1

∫
R
K∗(u) <∞. Then,

sup
x∈Ak

|Ψ̂j(x)− EΨ̂j(x)| ≤ |Ψ̂j(xk)− EΨ̂j(xk))|+ an[|Ψ̃j(xk)|+ E|Ψ̃j(xk)|]

≤ |Ψ̂j(xk)− EΨ̂j(xk))|+ an|Ψ̃j(xk)− EΨ̃j(xk)|+ 2anE|Ψ̃j(xk)|

≤ |Ψ̂j(xk)− EΨ̂j(xk))|+ |Ψ̃j(xk)− EΨ̃j(xk)|+ 2anM2,

for any M2 > E|Ψj(xk)| since an ≤ 1 for sufficiently large n.165

As a result,

P ( sup
x∈[0,1]

|Ψ̂j(x)− EΨ̂j(x)| > 4M2an)

≤N max
1≤k≤N

sup
x∈Ak

|Ψ̂j(x)− EΨ̂j(x)| > 4M2an)

≤N max
1≤k≤N

P (|Ψ̂j(xk)− EΨ̂j(xk)| > M2an) +N max
1≤k≤N

P (|Ψ̃j(xk)− EΨ̃j(xk)| > M2an) (6)

Recall Uij(x) = YiKh(x − Xij) and define U∗ij(x) = YiK
∗
h(x − Xij). Then, we have Ψ̃j(x) =

n−1
∑n
i=1 U

∗
ij(x). Then, by Condition 4 and applying Bernstein’s inequality in Lemma 1, we have for

any k = 1, . . . , N and n sufficiently large,

P (|Ψ̂j(xk)− EΨ̂j(xk)| > M2an) = P (|
n∑
i=1

Uij(x)| > M2ann)

≤ 2 exp

{
− a2nn

2

2(nv +Mann)

}
≤ 2 exp

{
− a2nn

2(v +Man)

}
≤ 2 exp

{
− log p

4hv

}
, (7)

where we set an = ( log p
nh )1/2. Similarly, we have

P (|Ψ̃j(xk)− EΨ̃j(xk)| > M2an) ≤ 2 exp

{
− log p

4hv

}
. (8)

Combining (6), (7) and (8), we have

P ( sup
x∈[0,1]

|Ψ̂j(x)− EΨ̂j(x)| > 4M2an) ≤ 4N exp

{
− log p

4hv

}
≤ 2(anh)−1 exp

{
− log p

4hv

}
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and

P ( sup
j=1,...,p

sup
x∈[0,1]

|Ψ̂j(x)− EΨ̂j(x)| > 4M2an)

≤2p(anh)−1 exp

{
− log p

4hv

}
≤2 exp

{
− log p

4hv
+ log p− log(anh)

}
Recall an = ( log p

nh )1/2, we have

P ( sup
j=1,...,p

sup
x∈[0,1]

|Ψ̂j(x)− EΨ̂j(x)| > 3M2an)→ 0

as n→∞.

We now consider the NW estimator ĝj(x) defined in (2). The aim is to create a uniform deviation

results of ĝj(x) towards its limit gj(x) over the range of x and j = 1, . . . , p. Before presenting the

result, we need an additional condition adapted from Hansen (2008) to ensure that the NW estimators170

are well behaved.

Condition 5. Assume the second order derivatives of fj(x) are uniformly continuous and bounded

for j = 1, . . . , p. The second order derivatives of fj(x)gj(x) are uniformly continuous and bounded

for j ∈ S.

Theorem 2. Assume Conditions 1-5 hold. For a∗n = ( log p
nh )1/2 + h2, we have the uniform deviation

results as follows,

sup
j=1,...,p

sup
x∈[0,1]

|ĝj(x)− gj(x)| = Op(a
∗
n).

Proof. Set gj(x) = Ψj(x)/fj(x), Ψ̂j(x) = n−1
∑n
i=1 YiKh(x−Xij), and f̂j(x) = n−1

∑n
i=1 YiKh(x−

Xij). Then, we can write

ĝj(x) =
Ψ̂j(x)

f̂j(x)
=

Ψ̂j(x)/fj(x)

f̂j(x)/fj(x)
. (9)

First, applying Theorem 1 by taking Yi ≡ 1, we have

sup
j=1,...,p

sup
x∈[0,1]

|f̂j(x)− fj(x)| ≤ Op(an).

As a result,

sup
j=1,...,p

sup
x∈[0,1]

| f̂j(x)

fj(x)
− 1| ≤ Op(an)

infj=1,...,p infx∈[0,1] fj(x)
≤ Op(δ−1n an). (10)

Again from the result of Theorem 1, we have

sup
j=1,...,p

sup
x∈[0,1]

|Ψ̂j(x)− EΨ̂j(x)| = Op(an).
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We now consider the uniform distance between EΨ̂j(x) and Ψj(x) for each j and any x ∈ [0, 1]. It is

easy to show

EΨ̂j(x) =
1

h
E

(
E(Yi|Xij)K(

x−Xij

h
)

)
=

1

h

∫
K(

x− u
h

)gj(u)fj(u)du

=

∫
K(u)Ψj(x− hu)du

= Ψj(x) +O(h2)

Note that the O(h2) is uniform across all j and x ∈ [0, 1] as we have a uniform bound for the second

order derivative for fjgj from Condition 5. Note that

|Ψ̂j(x)−Ψj(x)| ≤ |Ψ̂j(x)− EΨ̂j(x)|+ |EΨ̂j(x)−Ψj(x)|

≤ Op(an) +O(h2).

As a result, for a∗n = an + h2, we have

sup
j=1,...,p

sup
x∈[0,1]

|Ψ̂j(x)−Ψj(x)| = Op(a
∗
n). (11)

By combining (10), (9) and (11), we arrived at

sup
j=1,...,p

sup
x∈[0,1]

|ĝj(x)− gj(x)| = Op(δ
−1
n a∗n). (12)

175

Theorem 2 shows the uniform consistency results for the Nadaraya-Waston estimator over p pre-

dictors and the domain of x. The result itself is of interest. The theorem is an extension of the results

in Hansen (2008). Note that to incorporate the growing dimensionality p, the uniform bound has a

factor of log p instead of log n.

Next, we study the uniform behavior of the log(RSSj(h)) when we regress Y on Xj . The following180

moment condition is imposed.

Condition 6. Let Lij = {Yi − gj(Xij)}2 − Eσ2
j (X) and Di = (Yi − Ȳ )2 − σ2

Y . Assume E|Lij |m ≤
m!Mm−2vi/2 and E|Di|m ≤ m!Mm−2vi/2, for every m ≥ 2 (and all i) and some constants M and

vi.

This condition is necessary to establish the large probability uniform deviation bound (see equation185

(13) and (14) in the following proposition) of log(RSSj(h)) in the information criteria defined in (4).

Note that here we use the same constant M in both Conditions 4 and 6 to simplify presentation.

Proposition 1 (Uniform Convergence). Assume Conditions 1-6 are satisfied. For j = 1, . . . , p,

define

Lj = n−1
n∑
i=1

{Yi − gj(Xij)}2, L̂j = n−1
n∑
i=1

{Yi − ĝj(Xij)}2,

9



where ĝj is the Nadaraya-Watson estimate of gj with kernel K and bandwidth h. There exists a set

A1 with P (A1) → 1 and a universal constant A1 > 0 (does not depend on n or j) such that on the

set A1, for j = 1, . . . , p,

| log(L̂j)− log(Lj)| ≤ A1δ
−1
n a∗n,

where a∗n = ( log p
nh )1/2 + h2.

In addition, for j = 1, . . . , p,

P(|n−1
n∑
i=1

{Yi − gj(Xij)}2 − Eσ2
j (X)| > δ) ≤ 2 exp{− nδ2

2[EL2
1j +Mδ]

}. (13)

Also,

P(|n−1
n∑
i=1

{Yi − Ȳ }2 − σ2
Y | > δ) ≤ 2 exp{− nδ2

2[ED2
1 +Mδ]

}. (14)

In other words, by taking δ = A2n
−1/2 and A3n

−1/2, there exist sets A2 and A3 with P (A2)→ 1 and

P (A3) → 1, such that, on the event A2 ∩ A3, |n−1
∑n
i=1{Yi − gj(Xij)}2 − Eσ2

j (X)| ≤ A2n
−1/2 and190

|n−1
∑n
i=1{Yi − Ȳ }2 − σ2

Y | ≤ A3n
−1/2 for all j = 1, . . . , p.

Proof. First, we observe that

| log(L̂j)− log(Lj)| ≤ max(1/L̂j , 1/Lj)|L̂j − Lj |.

≤ C1|L̂j − Lj |,

where C1 is a universal constant that does not depend on n or j.

From Theorem 2, there exists a set A1 with P (A1) → 1 such that, on the set A1, for any

i = 1, . . . , n, j = 1, . . . , p,

|ĝj(Xij)− gj(Xij)| ≤ δ−1n a∗n.

Then, we have

|{Yi − ĝj(Xij)}2 − {Yi − gj(Xij)}2| ≤|ĝj(Xij)− gj(Xij)||2Yi − ĝj(Xij)− gj(Xij)|

≤C2δ
−1
n a∗n,

where C2 is a uniform upper bound for |Yi − gj(Xij)| over all i and j pairs. As a result, on the set

A1, |L̂j − Lj | ≤ C2δ
−1
n a∗n and | log(L̂j)− log(Lj)| ≤ C1C2δ

−1
n a∗n.

We now show (13). Note that we have Lj−Eσ2
j (X) = n−1

∑n
i=1 Lij , where Lij = {Yi−gj(Xij)}2−

Eσ2
j (X). It is easy to see that

ELij = E[E[Lij |X]] = 0.

Then, using Lemma 1 with Condition 6, we have,

P(|
n∑
i=1

Lij | > x) ≤ 2 exp{− x2

2[nEL2
1j +Mx]

}.

Choose x = nδ will lead to (13).195

Following a similar argument for Di = (Yi − Ȳ )2 − σ2
Y with Condition 6, we have (14).
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Condition 7. There exist sequences Cn and Dn such that Cn � δ−1n ( log p
n )2/5 ≥ Dn with δn specified

in Condition 3. For all j ∈ S, σ2
Y − E[σ2

j (X)] > Cn and for all j /∈ S, σ2
Y − E[σ2

j (X)] < Dn. Here,

for two sequences an and bn, we write an � bn to represent bn/an = o(1).200

The condition ensures that the signal level of the important covariates are detectable and puts

an upper bound on the signal level of the unimportant variables. It resembles the usual beta-min

condition imposed in the variable selection literature. Note that here we allow the signal level decaying

with the sample size n at certain rate and we do not assume the important covariates and unimportant

covariates to be independent.205

Before presenting the selection consistency results, we introduce the following Lemma for charac-

terizing the uniform order of tr(Sjh) over j = 1, . . . , p. It is an extension of the corresponding results

in Theorem 1 of Zhang (2003).

Lemma 2. Assume Conditions 1, 3 and 5 are satisfied. We have

sup
j=1,...,p

h|tr(Sjh)− K(0)

h
| p→ 0,

where K(0) = K(0)eT1 Ω−1e1 with Ω = (µi+j−2)1≤i,j≤p+1, in which µ` =
∫
t`K(t)dt.

Proof. From Theorem 1 of Zhang (2003), we know that the result of the theorem holds for each fixed210

j. Now, we argue that the result is true for the supreme of p terms.

In the remaining of the proof, we use (Z.A.5) to represent the corresponding (A.5) in Zhang

(2003) for simplicity. First, we examine (Z.A.5), it is clear that we can approximate the summation

in (Z.A.2).

Here, we rewrite (Z.A.2) to emphasize the variable of consideration is Xj

Aij(`, r) = (n− 1)[E(Xj −Xij)
`+r−2Kh(Xj −Xij) + op(1)],

where op(1) is uniform across all i and j = 1, . . . , p. To prove uniformness of the small order, we can

apply the Bernstein’s inequality (Lemma 1) on the empirical average
∑n
k=1(Xik−Xij)

`+r−2Kh(Xik−
Xij) and have a high probability bound on the deviation to the expectation. Note that the high-

probability bound can be taken as a uniform bound for all j due to Conditions 1 and 3. The detailed

proof resembles that of Theorem 1 and is therefore omitted for brevity.

E(Xj −Xij)
`+r−2Kh(Xj −Xij)

=

∫
x

(x−Xij)
`+r−2Kh(x−Xij)fj(x)dx

=

∫
t

(th)`+r−2K(t)f(Xij + th)dt

= h`+r−2
∫
t

t`+r−2K(t)[fj(Xij) + thf ′j(Xij) + 2−1t2h2f ′′j (Xij) + op(h
2)]dt,

where the op(h
2) is uniform across all i and j, due to the uniform bound for the second order derivative215

of fj in Condition 5. As a result, (Z.A.5) holds uniformly for all i and j.

We can use similar arguments for (Z.A.6)-(Z.A.9) to take care of the uniformness in j. Then, we

have the desired uniform order specified in the Lemma for each variable Xj .
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Theorem 3. Assume Conditions 1-7 are satisfied. When τK(0) > (2A1+1)δ−1n with K(0) specified in

Lemma 2, A1 being the universal constant defined in Proposition 1 and τ being the penalty parameter

in the information criteria (4), then, we have the selection consistency result for FBIS

P(Ŝ = S)→ 1,

as n→∞.220

Proof. To show Ŝ = S with high probability, we decompose the event into p terms,

P(Ŝ = S) = P
(
∩j∈S [ICj(h

∗) < ICj(∞)] ∩j /∈S [ICj(h
∗) > ICj(∞)]

)
≥ 1−

∑
j∈S
P(ICj(h

∗) > ICj(∞))−
∑
j /∈S

P(ICj(h
∗) < ICj(∞))

≥ 1−
p∑
j=1

P(Ej).

where Ej = {ICj(h∗) > ICj(∞)} if j ∈ S and Ej = {ICj(h∗) < ICj(∞)} if j /∈ S. It remains to

derive a lower bound of P(Ej) for each j.

Recall the definition for IC in (4). First of all, for h =∞, we have

ICj(∞) = log[n−1
n∑
i=1

(Yi − Ȳ )2]. (15)

On the set A2 introduced in Proposition 1, | log[n−1
∑n
i=1(Yi − Ȳ )2]− log σ2

Y | ≤ A2n
−1/2.

When h = h∗, we would expect the ICj(h) behave differently for j ∈ S and j /∈ S.

Now, consider the case when h = h∗ = ( log p
n )1/5. We have

ICj(h) = log

[
n−1

n∑
i=1

{Yi − ĝj(Xij)}2
]

+ τ [tr(Sjh)− 1](
log p

n
)1/2h1/2,

From Lemma 2, for any give constant A3 > 0, there exists a set A4 with P (A4) → 1 as n → ∞
such that on the set A4, we have

|tr(Sjh)− K(0)

h
| ≤ A3

h
,

for all j = 1, . . . , p.225

From Proposition 1, we have the uniform deviation of log L̂j and logLj as follows. On the set A1,

| log L̂j − logLj | ≤ A1δ
−1
n a∗n.

When h→ 0 and nh→∞, for all j, we have on the set A = A1 ∩ A2 ∩ A3 ∩ A4,

logEσ2
j (X) + τK(0)an −A1δ

−1
n a∗n < ICj(h) < logEσ2

j (X) + τK(0)an +A1δ
−1
n a∗n. (16)

We are now ready to compare the IC for the two choices of bandwidths regarding each variable.

Assuming h→ 0 and nh→∞, for j ∈ S, we have on the set A,

ICj(h)− ICj(∞) < logEσ2
j (X)− log σ2

Y + τK(0)an +A1δ
−1
n a∗n +A2n

−1/2.
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With the choice of h = ( log p
n )1/5, and when p = o(exp(nα)), we have

τK(0)an −A1δ
−1
n a∗n +A2n

−1/2 = τK(0)(
log p

n
)2/5 + 2A1δ

−1
n (

log p

n
)2/5 +A2n

−1/2

for sufficiently large n. Using Condition 7 on the signal level, we have for j ∈ S, ICj(h
∗)−ICj(∞) < 0

with high probability. For this reason, for the important variables, the favored bandwidth would be

h = h∗.

Finally, we evaluate the IC values for j /∈ S. Using (15) and (16), we have for j /∈ S,

ICj(h)− ICj(∞) > logEσ2
j (X)− log σ2

Y + τK(0)an −A1δ
−1
n a∗n −A2n

−1/2. (17)

Now, for h = h∗ = ( log p
n )1/5, for j /∈ S, on the set A, if τK(0) > 2A1δ

−1
n , using Condition 7 for j /∈ S,

we have

ICj(h
∗)− ICj(∞) ≥ (τK(0)− (2A1 + 1)δ−1n )(

log p

n
)2/5 −A2n

−1/2 > 0.

As a result, for the unimportant variables, the favored bandwidth would be h =∞.

230

From Theorem 3, we observe that the proposed screening method can achieve the selection con-

sistency under the ultrahigh-dimensional framework, i.e., p = o(exp(nα)) with 0 < α < 1, in the

sense that P (Ŝ = S) → 1 as n → ∞. However, it is well known that using the one-step marginal

screening method could miss variables that have weak marginal effects but are important given some

other variables. To select those variables and improve finite sample performance, we need to develop235

an iterative version of the screening method, which is described in detail in the next section.

4. Implementation issues and iterative screening

4.1. An importance measure and vanilla screening

In Theorem 3, we showed that the proposed screening method is selection consistent under certain

conditions. However, the proposed information criterion (4) has a super parameter τ that needs240

to be set properly. In practice, finding an appropriate choice of τ can be very challenging as its

optimal choice depends on the unknown quantities as stated in Theorem 3. Consequently, it would

be interesting to develop an importance measure that does not depend on τ , which could then be

used to generate a ranking for all the covariates.

Motivated by the information criterion defined in (4), we propose the following importance measure

IMj =
log
[
n−1

∑n
i=1{Yi − Ȳ }2

]
− log

[
n−1

∑n
i=1{Yi − ĝj,h∗(Xij)}2

]
tr(Sjh∗)( log p

n )1/2(h∗)1/2
(18)

for each predictor Xj , where ĝj,h∗(·) is the corresponding NW estimator with bandwidth h∗ =245

(log p/n)1/5. The importance measure has connection to the likelihood ratio test statistic. The

numerator quantifies the change in terms of the residual sum of squares (therefore likelihood) be-

tween two choices of smoothing bandwidth. This change is then adjusted by taking into account the

degrees of freedom. The predictor variables with a larger value of IM would be regarded as more

“important” in explaining the response.250
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After defining the above importance measure to be used for ranking predictors, the next issue is

to choose an appropriate thresholding value. Fan and Lv (2008) suggested to keep the bn/ log(n)c
or bn/(4 log(n))c top ranked predictors. In practice, those choices may not work very well depending

on the signal strength and sample size. Following Fan et al. (2011), we adopt a data-driven choice

of thresholding value by permuting the sample. More explicitly, we generate a random permutation

π = (π(1), . . . , π(n)) of the indices (1, . . . , n). The random permutation is used to decouple Xi and Yi

so that the resulting data {(Xπ(i), Yi), i = 1, . . . , n} follow a null model. Intuitively, after the random

permutation, the corresponding importance measure would behave like that based on a random noise

predictor variable. We calculate the IM values for {(Xπ(i)j , Yi), i = 1, . . . , n} and denote them by

ĨM j , j = 1, . . . , p. Intuitively, the important predictor variables should have an IM value larger than

the majority of {ĨM j , j = 1, . . . , p}. For a given quantile q ∈ [0, 1), let ω(q) be the q-th quantile of

{ĨM j , j = 1, . . . , p}. Then, our FBIS selects the following variables

A = {j : IMj ≥ ω(q)}. (19)

We refer to this step as the vanilla screening since it is based on marginal information only.

4.2. Refinement

After performing the above vanilla screening based on the favored smoothing bandwidth, we would

like to use some more refined technique to fit the model with predictors in the estimated important

set (19). As we do not impose any specific model assumption, a model-free technique would be highly255

desirable. White et al. (2017) proposed a nonparametric model selection method via measurement

error selection likelihood (MEKRO). While their approach is flexible and works well in a wide range

of settings, the computation cost is large for high-dimensional scenarios. Fortunately, our variable

screening step has already reduced dimensionality to a moderate size, which could be well handled

by MEKRO.260

To be complete, we now provide details for the MEKRO corresponding to the set A selected above.

Let xA = {xj , j ∈ A}. For a kernel K(·) and smoothing bandwidth hj for each j ∈ A, the multivariate

Nadaraya–Watson estimator for the regression of Y on XA based on data {(XiA, Yi), i = 1, 2, . . . , n}
is given by

ĝ(xA; hA) =

∑n
i=1 Yi

∏
j∈AKhj (Xij − xj)∑n

i=1

∏
j∈AKhj

(Xij − xj)
,

where hA = {hj , j ∈ A}. Reparameterize λj = 1/hj for j ∈ A and define λA = {λj , j ∈ A}
accordingly and 1/λA = {1/λj , j ∈ A}. Then the MEKRO achieves variable selection by solving the

following optimization problem

minimizeλj ,j∈A

n∑
i=1

(Yi − ĝ(XiA; 1/λA))2

subject to λj ≥ 0, j ∈ A∑
j∈A

λj ≤ ξ

for some regularization parameter ξ > 0. Denote the optimizer by λ̂ = {λ̂j , j ∈ A}. Then the refined

estimator of the important set is given by M1 = {j : λ̂j > 0, j ∈ A}.265
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4.3. Iterative screening

In linear regression, Fan and Lv (2008) demonstrated that the marginal screening may fail to retain

predictors that are marginally unimportant but jointly important. Such predictors are possibly due to

correlation. To deal with this issue, they proposed an iterative version and showed that the iterative

screening can retain the aforementioned marginally unimportant but jointly important predictors270

very well. Next, we will propose an iterative version of our nonparametric screening.

Suppose the selected set is M1 as defined above after applying FBIS followed by MEKRO. We

would like to create a conditional importance measure for each remaining predictor given those in

M1. To achieve this, we first define Z = Ŷ as a pseudo predictor, where Ŷ is the fitted value of

the nonparametric fit generated by MEKRO with the predictors in M1. The idea is that Z contains

most of the information of all the selected variables in M1. Then for each remaining candidate

predictor Xj , j /∈M1, we consider the Nadaraya-Watson estimates by regressing Y on Z and Xj . In

particular, we denote ĝj,h1,h2(Zi, Xij) as the fitted value using the bandwidths h1 and h2 for Z and

Xj , respectively. Then we define the conditional importance measure corresponding to Xj givenM1

as follows

IMj|M1
=

log
[
n−1

∑n
i=1{Yi − ĝj,h∗,∞(Zi, Xij)}2

]
− log

[
n−1

∑n
i=1{Yi − ĝj,h∗,h∗(Zi, Xij)}2

]
[tr(Sjh∗,h∗)− tr(Sjh∗,∞)]( log p

n )1/2(h∗)1/2
(20)

by mimicking the marginal unconditional importance measure defined in (18).

Note that in the definition of IMj|M1
in (20), we compare two bivariate Nadaraya–Watson smooth-

ing fits: one with smoothing bandwidths h∗ and ∞ for Z and Xj , respectively while the other uses

h∗ for both Z and Xj , where h∗ is a small bandwidth. Since the pseudo predictor Z is the surrogate275

of the selected important predictors inM1, it should be always treated as “important.” That is why

we use a small bandwidth for it in both bivariate smoothing fits used in the definition (20). The

bivariate smoothing fit with smoothing bandwidths h∗ and ∞ is essentially a univariate smoothing

fit with Z only using smoothing bandwidth h∗, while the other bivariate smoothing fit with h∗ and

h∗ corresponds to the fit with both Z and Xj . In (20), the numerator compares the residual sum of280

squares corresponding to these two fits while the denominator adjusts the corresponding difference

in terms of the degrees of freedom. Consequently IMj|M1
measures how effective predictor Xj is in

reducing the residual sums of squares given Z, the surrogate of predictors selected in M1.

Remark 1. Ideally, to measure the conditional importance of Xj given predictors selected in M1,

one should perform two (|M1| + 1)-dimension smoothings with Xj and predictors in M1. In one285

smoothing, a small bandwidth is used for every predictor. The other smoothing uses a small band-

width for all predictors in M1 and an infinity smoothing bandwidth for Xj. Then define the ratio

similarly as in (20). However, it is well known that the nonparametric smoothing suffers the curse

of dimensionality. That is why we introduce the surrogate Z representing variables selected in M1

and use bivariate smoothing to define the conditional importance measure as in (20), which should290

serve as a good approximation. The benefit of using bivariate local constant smoothing is that we only

need two smoothing bandwidths, compared to a general multivariate local constant smoothing with one

smoothing bandwidth for each covariate whose computational load is prohibitive due to the curse of

dimensionality. The bivariate local constant smoothing serves as a good approximation to the multi-

variate smoothing to trade off between bias and variance of the estimate and it is shown to work very295

well in numerical studies based on our limited numerical experience.
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Given data {(Xi, Yi), i = 1, . . . , n}, the iterative favored bandwidth independence screening (IF-

BIS) method works as follows.

Step 1. Perform favored bandwidth independence screening using (19). Denote the selected set by A1.

Step 2. Apply MEKRO to the nonparametric regression of Y on predictors in A1 with the tuning300

parameter selected by BIC. The selected set is called M1.

Step 3. Defined Z = Ŷ as a surrogate predictor representing predictors selected inM1, where Ŷ denotes

the fitted value generated by MEKRO from Step 2.

Step 4. Apply bivariate local constant smoothing for the regression of Y on Z and Xj for each j /∈M1.

Calculate the conditional importance measure given M1 for each j /∈ M1 using (20). Rank305

predictors Xj , j /∈M1 according to the conditional importance measure from the largest to the

smallest and keep the top ranked ones. Denote the selected set by A2.

Step 5. Apply MEKRO to predictors in the setM1 ∪A2 with BIC tuning and the selected set is called

M2.

Step 6. Iterate Steps 3-5 until |Ml| ≥ s0 or Ml =Ml−1.310

5. Numerical Studies

In this section, we evaluate the performance of the proposed Favored Bandwidth Independence

Screening (FBIS) in terms of screening predictors and the iterative FBIS (IFBIS) in terms of both

variable selection and regression function estimation. In particular, to demonstrate the screening

performance of FBIS, we conduct comparison with SIS (Fan and Lv, 2008), NIS (Fan et al., 2011),315

DC-SIS (Li et al., 2012b) and SIRS (Zhu et al., 2011). For the iterative procedure IFBIS, we compare

it with INIS (Fan et al., 2011).

Adapting the settings of Meier et al. (2009), Fan and Song (2010) and Fan et al. (2011), we

consider the following numerical examples. For all examples, we fix p = 1000 and n = 400.

For simplicity of notations, we denote

g1(x) = (2x− 1)2, g2(x) =
sin(2πx)

2− sin(2πx)
, and

g3(x) = 0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin(2πx)2 + 0.4 cos(2πx)3 + 0.5 sin(2πx)3.

Example 1. Data are generated from the following additive model:

Y = 4g1(X1) + 3g2(X2) + 3g3(X3) + ε

with independent error ε ∼ N(0, σ2).320

Example 2. Data are generated from the following single-index model:

Y = g1(X1 +X2 −X3 −X4) + ε

with independent error ε ∼ N(0, σ2).

Example 3. Data are generated from the following model with interaction effects:

Y = 4X1 + 2sin(2πX1)sin(2πX2) + 3sin(2πX2)sin(2πX3) + ε

with independent error ε ∼ N(0, σ2).
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In all three examples, each predictor is marginally uniformly distributed over [0, 1]. The correlation

among the p uniformly distributed covariates is introduced via a monotonically transformed AR

structure. In particular, we first generate multivariate Gaussian vectors (X̃1, . . . , X̃p)
T with mean325

(0, 0, . . . , 0)T and covariance matrix Σ satisfying Σjk = ρ|j−k| for all j and k pairs. Then, set

Xj = Φ(X̃j) for j = 1, . . . , p, where Φ(·) is the cumulative distribution function for the standard

normal distribution. In all examples, we consider two correlation levels with ρ = 0 or 0.5 as well

as two different error variances σ2 = 1 or 2. This gives a total of four different combinations per

example.330

5.1. Performance of vanilla screening

For the screening performance of vanilla screening, we report in Table 1 the mean and standard

error (in parentheses) of the number of selected important variables over 100 repetitions when we

select the top 20 out of the total 1000 predictor variables. From Table 1, it is clear that in Example

2, all screening methods are able to capture all four important predictors. In Example 1, FBIS, DC-335

SIS and NIS perform better than SIS and SIRS. It is easy to understand why SIS is not performing

competitively since it is a linear screening method. On first thought, it is surprising to observe that the

model-free screening method SIRS does not have a good performance. Yet after checking the details,

we found that the SIRS missed X1 most of the time, especially for the independent predictor case

with ρ = 0. The predictor X1 has a symmetric quadratic effect, which is very challenging for sliced340

inverse regression (Li, 1991). The SIRS is based on the sliced inverse regression and consequently has

difficulty in retaining X1. For the correlated predictor case with ρ = 0.5, the correlation helps a lot in

retaining X1. In Example 3, none of these methods delivers a satisfying performance, especially for

the case of independent predictors with ρ = 0. As a result, it would be necessary to conduct iterative

screening to select all the important predictors.345

Table 1: Average number of selected important variables over 100 repetitions with standard errors in corresponding

parentheses.

Ex (ρ, σ2) FBIS SIS DC-SIS SIRS NIS

Ex 1(0,1) 3.00(0.00) 2.03(0.02) 3.00(0.00) 2.02(0.01) 3.00(0.00)

Ex 1(0,2) 3.00(0.00) 2.03(0.02) 3.00(0.00) 2.02(0.01) 3.00(0.00)

Ex 1(0.5,1) 3.00(0.00) 2.96(0.02) 3.00(0.00) 2.94(0.02) 3.00(0.00)

Ex 1(0.5,2) 3.00(0.00) 2.95(0.02) 3.00(0.00) 2.94(0.02) 3.00(0.00)

Ex 2(0,1) 4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00)

Ex 2(0,2) 4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00)

Ex 2(0.5,1) 4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00)

Ex 2(0.5,2) 4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00)

Ex 3(0,1) 1.01(0.01) 1.01(0.01) 1.81(0.07) 1.43(0.05) 1.02(0.01)

Ex 3(0,2) 1.00(0.00) 1.01(0.01) 1.33(0.05) 1.21(0.04) 1.02(0.01)

Ex 3(0.5,1) 2.55(0.05) 2.57(0.05) 2.95(0.02) 2.67(0.05) 2.46(0.05)

Ex 3(0.5,2) 2.41(0.05) 2.41(0.05) 2.74(0.04) 2.47(0.05) 2.37(0.05)
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5.2. Performance of iterative screening

Next we compare the newly proposed iterative procedure, IFBIS, with INIS in terms of three

performance criteria: false positive (FP), false negative (FN) and mean squared prediction error

(MSPE) evaluated on an independent test sample of size 10,000. Results over 100 repetitions are

summarized in Table 2.350

It shows that the IFBIS is able to identify all important variables in Example 1 with 0 false

positive and a very small false negative (only 1 repetition with one important predictor missed out

of 100 repetitions). It is worth noting that the IFBIS has a larger MSPE in Example 1 since the

INIS benefits from the correct model specification by assuming the data is generated from an additive

model, while the IFBIS makes no such assumption and the final fit is based on a multivariate local355

constant smoothing.

For Example 2, it is remarkable that the IFBIS achieves 0 false positive as well as 0 false negative

across all 100 repetitions for all four different combination settings. Although both INIS and IFBIS

are able to capture all the four important predictors, the INIS has a larger FP and a much bigger

MSPE. The bigger MSPE is due to two sources. The first source is the large false positive predictors360

identified by the INIS. The other is due to the wrong additivity assumption used in the INIS since

the true model is a single index model.

Example 3 is a model with complex interaction effects between X1 and X2 as well as X2 and

X3 so that none of the vanilla independence screening methods works well in terms of picking up

all three important predictors as reported in Table 1. By using the IFBIS, we are achieving perfect365

model selection consistency with both FP and FN equal 0. On the other hand, the INIS missed two

important predictors on average when ρ = 0 and approximately 1 important predictor when ρ = 0.5.

In addition, IFBIS leads to a much smaller MSPE than the INIS. In this example, in addition to the

two sources as mentioned above for Examples 1 and 2, a third source, namely the big false negative

predictors due to the INIS, contributes to the INIS’s bad performance in terms of MSPE.370

6. A real data example

In this section, we demonstrate the performance of the iterative favored bandwidth independence

screening (IFBIS) on a real data set from Affymetrix GeneChip Rat Genome 230 2.0 Array. The

data set was first presented in Scheetz et al. (2006) and later analyzed by Huang et al. (2010) and

Fan et al. (2011). In this data set, the sample size is n = 120, representing twelve-week-old male rats375

selected for tissue harvesting from the eyes. The microarrays used to analyze the RNA from the eyes

of these animals contain over 31,042 different probe sets (Affymetrix GeneChip Rat Genome 230 2.0

Array). The intensity values were normalized using the robust multi-chip averaging method (Irizarry

et al., 2003) to obtain summary expression values for each probe set. Gene expression levels were

analyzed on a logarithmic scale.380

Following Huang et al. (2010) and Fan et al. (2011), we would like to identify the genes that are

related to the gene TRIM32, which was found to cause Bardet-Biedl syndrome (Chiang et al., 2006),

a genetically heterogeneous disease of multiple organ systems including the retina. Although over

30,000 probe sets are represented on the Rat Genome 230 2.0 Array, many of them are not expressed

in the eye tissue. Thus, we focus on the 18975 probes which are expressed in the eye tissue. Following385

Huang et al. (2010), we first standardized each probe to have mean 0 and variance 1, then use 1000
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Table 2: (n = 400) Average false positive (FP), false negative (FN) and mean squared prediction error (MSPE) of IBIS

and INIS over 100 repetitions. Standard errors are in parentheses.

Ex (ρ, σ2)
INIS IFBIS

FP FN MSPE FP FN MSPE

Ex 1(0,1) 2.06(0.21) 0.00(0.00) 1.40(0.01) 0.00(0.00) 0.00(0.00) 2.02(0.02)

Ex 1(0,2) 2.12(0.20) 0.00(0.00) 2.52(0.03) 0.00(0.00) 0.01(0.01) 3.32(0.04)

Ex 1(0.5,1) 2.79(0.27) 0.00(0.00) 1.41(0.01) 0.00(0.00) 0.00(0.00) 1.98(0.02)

Ex 1(0.5,2) 2.94(0.29) 0.00(0.00) 2.55(0.03) 0.00(0.00) 0.00(0.00) 3.26(0.03)

Ex 2(0,1) 1.97(0.22) 0.00(0.00) 4.09(0.05) 0.00(0.00) 0.00(0.00) 1.98(0.03)

Ex 2(0,2) 2.03(0.19) 0.00(0.00) 5.22(0.06) 0.00(0.00) 0.00(0.00) 3.25(0.04)

Ex 2(0.5,1) 3.03(0.23) 0.00(0.00) 4.01(0.05) 0.00(0.00) 0.00(0.00) 1.87(0.03)

Ex 2(0.5,2) 2.77(0.23) 0.00(0.00) 5.14(0.06) 0.00(0.00) 0.00(0.00) 3.12(0.04)

Ex 3(0,1) 2.48(0.20) 2.00(0.00) 4.57(0.04) 0.00(0.00) 0.00(0.00) 1.83(0.02)

Ex 3(0,2) 2.62(0.21) 2.00(0.00) 5.67(0.05) 0.00(0.00) 0.00(0.00) 3.06(0.03)

Ex 3(0.5,1) 2.21(0.22) 0.85(0.04) 4.43(0.04) 0.00(0.00) 0.00(0.00) 1.80(0.02)

Ex 3(0.5,2) 2.44(0.24) 0.93(0.04) 5.57(0.06) 0.00(0.00) 0.00(0.00) 3.05(0.03)

Table 3: Median model size (MS) and prediction mean squared error (PMSE) over 100 repetitions and their robust

standard deviations(in parentheses) for IFBIS and INIS.

Method MS PE

INIS 8.00(0.75) 0.384(0.211)

IFBIS 4.00(0.75) 0.377(0.248)

probe sets that are expressed in the eye and have highest absolute marginal correlation with TRIM32

in the analysis. On the subset of the data (n = 120, p = 1000), we apply the IFBIS and INIS to

model the relationship between the expression of TRIM32 and those of the 1000 probes.

To evaluate the performances of the two methods, we first randomly partition the data into a390

training set of 110 observations and a test set of 10 observations. Then we apply the method on the

training data and compare the prediction mean squared error (PMSE) on the test data. During the

process, we also record the number of probes selected by the two methods. This process is repeated

100 times. Table 3 presents the median values and their associated robust estimates of the standard

deviation (RSD=IQR/1.34) over 100 replications. It is clear in the table that by applying the IFBIS395

approach, the number of probes selected is around half of the number selected when the INIS method

is applied. In addition, the IFBIS approach leads to a slightly smaller median prediction error. One

potential explanation of the result is that there may exist certain complicated functional regression

relationship, like interaction effects, among the few selected probes that lead to a better prediction

compared with an additive model.400
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7. Discussion

In this work, we propose a flexible nonparametric screening and selection method which is shown

to work well in a wide range of settings. Here, we assume the smoothness of each marginal predictor

are of the same order, which may not be the case in practice. How to extend the current results to

the case where each predictor can have its own smoothness level will be an interesting future work.405

Another future research topic is to extend the methodology and the associated theory to the case of

classification and categorical response.
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