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1. Introduction

In clinical trials for drugs or medical devices, statistical significance is widely used to infer

the treatment effect. However, there has been growing recognition that statistical significance

could be misleading when evaluating treatment effect (Jacobson et al., 1984; Jacobson and

Truax, 1991). First, in many trials, the statistical significance of the treatment effect may

have little to do with its clinical significance. It is known that statistical significance only

infers the existence of treatment effect, regardless of the effect size. Further, the statistical

significance could result from a small sample variability or a huge sample size, and thus

provides little information about the clinical meaningfulness of the treatment (Jacobson and

Truax, 1991). Second, the statistical significance for the treatment group compared to the

placebo group ignores the possible heterogeneity among individuals. For instance, in a pain

reduction study, a statistically significant reduction is concluded for a test treatment while

many individual patients in the treatment group actually report little improvement regarding

the pain reduction (Younger et al., 2009).

Clinical significance is desired in practice as it provides a better assessment of the clinically

meaningful improvement. It is often based on the patients’ reports in a community according

to certain external standards (Jacobson and Truax, 1991). One common approach is to collect

patient-reported outcomes (PRO’s; FDA, 2009), such as their satisfaction of a treatment.

Some earlier practice suggested to replace the statistical significance tests by analyzing the

PRO’s only, which is problematic due to the subjective bias in the PRO’s or unreliability of

a poorly designed questionnaire. The minimum clinically important difference (MCID) was

discussed in Jaeschke et al. (1989), which was intuitively defined as a thresholding value in

post-treatment change, and a patient is considered experiencing a clinically meaningful im-

provement if her/his change exceeds the MCID. Copay et al. (2007) suggested to incorporate

both certainty of effective treatment and patients’ satisfactions for determining the MCID.
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The concept of the MCID provides objective reference for clinicians and health policy

makers regarding the effectiveness of the treatment, and has quickly gained its popularity

among the practitioners. In 2012, U.S. Food and Drug Administration (FDA) hosted a special

conference on the MCID for orthopaedic devices (http://www.fda.gov/MedicalDevices/

NewsEvents/Workshops/Conferences/ucm327292.htm). Although the importance of the

MCID has been widely recognized, only a few approaches were proposed for its estimation

based on receiver operating characteristic (ROC) curve. Bennett (1985), Leisenring et al.

(2000) and Turner et al. (2010) discussed the trade-off of sensitivity and specificity, and

formulated the MCID as the cutoff where sensitivity and specificity are equal. Shiu and

Gatsonis (2008) focused on the trade-off of positive predictive value (PPV) and negative

predictive value (NPV) and formulated the optimal cut as the value that maximizes the sum

of PPV and NPV.

In this paper, the MCID is formulated as the thresholding value in post-treatment change

such that the probability of disagreement between the estimated satisfaction based on the

MCID and the PRO is minimized. With this framework, two scenarios are considered:

the population-based MCID and the personalized MCID. The population-based MCID is

the ideal thresholding value for the general population, and the personalized MCID allows

different MCID values for individual patients based on their clinical profiles. Both scenarios

can be formulated in a large margin classification framework, where the population-based

MCID can be estimated via an exhaustive grid search, and the personalized MCID is modeled

in a reproducing kernel Hilbert space and estimated via some non-convex optimization

techniques. Most importantly, the asymptotic properties of the proposed estimation method

are established for both the population-based and the personalized MCID’s, and their fast

convergence rates to the ideal performance are explicitly quantified.

The rest of the paper is organized as follows. In Section 2, a general framework for the
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population-based MCID is presented, and its estimation algorithm and asymptotic properties

are studied. Section 3 extends the framework to the personalized MCID, and discusses the

appropriate large margin loss as well as the efficient non-convex optimization technique.

Section 4 establishes the asymptotic properties of our proposed method for estimating the

personalized MCID. Section 5 conducts numerical experiments of our proposed method in

simulated examples, and Section 6 applies our proposed method to two phase-3 clinical

trial datasets. Section 7 contains some discussion, and the technical proofs are deferred to

supplemental materials which are available online.

2. A general framework of the MCID

2.1 Formulating the MCID

Suppose that a patient’s diagnostic measurement X ∈ R1 is continuously connected, and the

patient-reported outcome (PRO) Y ∈ {−1, 1}, where Y = 1 denotes a clinically meaningful

treatment reported by the patient and Y = −1 otherwise. Let f(x, y) and f(x) be the joint

density of (X, Y ) and the marginal density of X, respectively. The MCID is formulated as

the thresholding value c∗ such that sign(X − c∗) agrees with Y as much as possible, where

sign(u) = 1 if u > 0 and −1 otherwise. Mathematically, c∗ is defined as a solution of

min
c

P{Y 6= sign(X − c)} = min
c

1

2
E {1− Y sign(X − c)} , (1)

where P (·) is evaluated with respect to both X and Y .

The formulation in (1) is closely related to the existing methods in literature. Shiu and

Gatsonis (2008) aims to minimize the distance between predictive receiver operating char-

acteristic (PROC) curve and perfect prediction, and proposes to estimate c by solving

maxc
{
P (Y = 1, X > c)/P (X > c) + P (Y = −1, X < c)/P (X < c)

}
. Turner et al. (2010)

concerns about the simple trade-off between sensitivity and specificity, and defines c as the

solution of P (Y = 1, X > c)/P (Y = 1) = P (Y = −1, X < c)/P (Y = −1). Note that the
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proposed method in (1) can be rewritten as maxc
{
P (Y = 1, X > c) + P (Y = −1, X < c)

}
,

which combines P (Y = 1, X > c) and P (Y = −1, X < c) into the agreement probability.

Furthermore, the following Lemma 1 suggests that the ideal MCID based on (1) appears to

be appropriate.

Lemma 1: Assume that p(x) = P (Y = 1|X = x) is continuous and increasing in x, then

the ideal MCID c∗ satisfies

p(c∗) = P (Y = 1|X = c∗) =
1

2
. (2)

Furthermore, if p(x) is strictly increasing in x, then c∗ is the unique root of (2).

Proofs of all lemmas and theorems are given in Web Appendix A.

Note that it is reasonable to assume p(x) to be increasing in x since patients with better

diagnostic measurements are expected to be more likely to give positive responses. If p(x) is

only non-decreasing, the equation in (2) may have multiple roots and a conservative choice is

to set c∗ as the largest root. Furthermore, the continuity assumption of p(x) can be relaxed

to semi-continuity, and then the equation in (2) may have no root at all. In such scenarios,

it could be proved similarly as Lemma 1 that c∗ = argminc{p(c) > 1/2}.

It is also known that the quality of the PRO’s is largely affected by patients’ subjectivity

(Frost et al., 2007). Such subjectivity is accounted in the proposed formulation of MCID

through p(x), which can be interpreted as the probability of patient’s telling the truth.

For instance, Fang (2011) considered a special case of semi-continuous p(x), and modeled

the subjectivity explicitly as p(x) = Q when x > c∗ and p(x) = 1 − Q otherwise, where

Q > 1
2

measures how trustworthy the PRO’s are. More importantly, the ideal MCID in (2)

is less affected by the subjectivity in the PRO’s, as it relies on p(x) only when x is in the

neighborhood of c∗. This is analogous to the Bayes rule in classification, which only relies on

whether p(x) > 1/2 (Lin, 2002).

In addition, the MCID has an interesting connection with the median lethal dose in
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toxicology research. The median lethal dose refers to the smallest dose required to kill

half of the animals that receive that dose after a specified test duration. To describe the

interaction between dosage and mortality rate, the logistic dose-response curve is popularly

used (Williams, 1986; Alho and Valtonen, 1995; Kelly, 2001). It assumes that the mortality

rate is expected to strictly increase with dose, which coincides with our assumption in Lemma

1.

2.2 Estimating the MCID

The primary interest of this paper is to estimate the MCID, which is in sharp contrast to the

standard classification that focuses on the classification boundary. In (2), the ideal MCID

c∗ is defined based on p(x) that is often unavailable in practice, so the MCID needs to be

estimated based on the training sample (xi, yi)
n
i=1.

Naturally, the expectation in (1) can be approximated by its empirical version, and the

estimated MCID ĉ is defined as a solution of

min
c

1

2n

n∑
i=1

{1− yi sign(xi − c)} . (3)

Note that (3) is a simple 1-dimensional optimization problem, and the objective function

remains the same for x(i) 6 c < x(i+1), where x(i) is the i-th order statistic. Therefore, an

exhaustive grid search scheme can be implemented, and the global minimizer ĉ is simply the

xi that yields the smallest objective function value.

Theorem 1: The estimated MCID ĉ in (3) is a consistent estimate of c∗ if p(x) is

continuous and strictly increasing in x. Further, if there exist positive constants α1, γ1 <

2/α1 + 4/α2
1, a1 and a2, such that for sufficiently small ξ > 0,

P (|p(X)− 1/2| 6 ξ) 6 a1ξ
α1 , (4)

sup
|x−c∗|6ξ

|p(x)− 1/2| 6 a2ξ
γ1 , (5)

then |ĉ− c∗| = Op

(
(n log−2 n)−1/(2(1+2/α1)−α1γ1)

)
.
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Theorem 1 establishes the asymptotic convergence rate of |ĉ − c∗|, and the finite sample

bound for |ĉ− c∗| can also be obtained as in supplementary materials. In Theorem 1, (4) is

similar to the low noise assumption (Polonik, 1995; Bartlett et al., 2003; Tsybakov, 2004)

that describes the behavior of X in the neighborhood of c∗, and (5) is implied by a Hölder

continuity condition on p(x). For illustration, if X is uniformly distributed on [a, b] and (5)

is met with γ1, then (4) can be verified with α1 = 1/γ1 for sufficiently small ξ. Theorem

1 then implies that |ĉ − c∗| = Op

(
(n log−2 n)−1/(1+4γ1)

)
. It leads to a fast convergence rate

when p(x) has a steep derivative at c∗ with γ1 close to 0, and a rate of Op

(
n−1/3(log n)2/3

)
when (5) holds with order γ1 = 1/2.

3. The personalized MCID

In many clinical trials, it is commonly believed that patients’ report could be influenced

by various factors such as their expectation of treatment (Wise, 2004). For instance, in

a shoulder pain reduction study, healthy people demonstrate a higher threshold than those

with chronic conditions due to their expectation of complete recovery. In literature, covariate-

adjusted ROC curve was developed to incorporate the effect of factors (Alonzo and Pepe,

2002), however very little work has been done in estimating covariate-adjusted MCID. To

allow MCID to vary according to patients’ clinical profiles, this section extends the estimation

framework to the personalized MCID.

3.1 Formulation

Let z denote patients’ clinical profiles. The personalized MCID c∗(z) is formulated as a

solution of

min
c
P
[
Y 6= sign{X − c(Z)}

]
= min

c

1

2
E
[
1− Y sign{X − c(Z)}

]
, (6)

where P is taken with respect to (X, Y,Z). Similarly as in (2), we can show that c∗(z) satisfies

pz{c∗(z)} = P{Y = 1|X = c∗(z),Z = z} =
1

2
, (7)
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where pz(x) = P (Y = 1|X = x,Z = z) is assumed to be a continuous and strictly increasing

function in x for any value of z. If only semi-continuity is assumed, the personalized MCID

can be formulated as c∗(z) = argminc{c : pz(c) > 1
2
}. It is worth pointing out that the

personalized MCID in (6) differs from the Bayes rule in classification in that the candidate

function in (6) has to take the form of x− c(z) in order to estimate c∗(z), whereas a Bayes

rule in classification searches for the optimal classification function g(x, z) that may not lead

to an explicit estimator of c∗(z).

The formulation in (6) is similar as in (1) with population-based c∗, but the difficulty arises

in the estimation part. Since the empirical version of (6)

min
c

1

2n

n∑
i=1

[
1− yi sign{xi − c(zi)}

]
, (8)

involves the 0-1 loss L01(u) = 1
2
(1 − sign(u)) and needs to be optimized with respect to

functional c(z), it can no longer be solved by the exhaustive grid search or any other

efficient optimization techniques. Therefore, a surrogate loss function needs to be introduced

to replace the 0-1 loss and facilitate the estimation. The surrogate loss has been widely

studied in machine learning literature. Popularly used surrogate loss functions L(u) include

the hinge loss L(u) = (1 − u)+ (Vapnik, 1998), the logistic loss L(u) = log(1 + exp(−u))

(Zhu and Hastie, 2005), and the ψ-loss min((1 − u)+, 1) (Shen et al., 2003; Liu and Shen,

2006). However, all these losses are not generally Fisher consistent in estimating c∗(z), as the

candidate function in (6) is restricted to the form of x− c(z) for estimating the personalized

MCID. Counter examples are provided in Web Appendix B.

In this paper, we propose a novel surrogate loss, ψδ-loss, which is defined as

Lδ(u) = min

{
1

δ
(δ − u)+, 1

}
. (9)

The ψδ-loss extends the ψ-loss by introducing a new parameter δ that controls the difference

between the surrogate loss and the 0-1 loss. More importantly, Lemma 2 shows that the

ψδ-loss is asymptotically Fisher consistent in estimating c∗(z) when δ converges to 0.
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Lemma 2: For any given z, if the conditional density fz(x) is continuous and pz(x) is

strictly increasing in x, then as δ → 0, E
[
Lδ{Y (X− c)}|Z = z

]
converges to E

[
L01{Y (X−

c)}|Z = z
]

uniformly over a compact set Dz containing c∗(z) and

argmin
c

E
[
Lδ{Y (X − c(z))}|Z = z

]
−→ c∗(z).

With the ψδ-loss, the proposed estimation formulation for the personalized MCID ĉ(z)

solves

min
c∈F

1

n

n∑
i=1

Lδ[yi{xi − c(zi)}] + λJ(c), (10)

where λ is a tuning parameter, J(c) is a penalty term, and F is set as a reproducing kernel

Hilbert space (RKHS) (Wahba, 1990). The final estimation formulation then becomes

min
c∈HK

1

n

n∑
i=1

Lδ[yi{xi − c(zi)}] +
λ

2
‖c‖2HK , (11)

where HK is the RKHS induced by some pre-specified kernel function K(·, ·), and J(c) =

1
2
‖c‖2HK is the associated RKHS norm of c(z). It follows from the representer theorem (Wahba,

1990) that the solution to (11) is of the form ĉ(z) = b+
∑n

i=1wiK(zi, z), and thus ‖c‖2HK =

wTKw with w = (w1, · · · , wn)T and K = (K(zi, zj))
n
i,j=1.

3.2 Non-convex optimization

Note that the cost function in (11) is non-convex, and thus we employ the difference convex

algorithm (DCA) (An and Tao, 1997) to tackle the non-convex optimization. The key idea

of the DCA is to decompose the non-convex cost function into the difference of two convex

functions, and then construct a sequence of subproblems by approximating the second convex

function with its affine minorization function.

In particular, the ψδ-loss is decomposed as

Lδ(u) = min

{
1

δ
(δ − u)+, 1

}
=

1

δ
(δ − u)+ −

1

δ
(−u)+.
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Then the cost function in (11) can be decomposed as s(w̃) = s1(w̃)− s2(w̃), where

s(w̃) =
1

n

n∑
i=1

Lδ{yi(xi − c(zi))}+
λ

2
‖c‖2HK ,

s1(w̃) =
1

n

n∑
i=1

[1

δ
{δ − yi(xi − c(zi))}+

]
+
λ

2
‖c‖2HK ,

s2(w̃) =
1

n

n∑
i=1

[1

δ
{−yi(xi − c(zi))}+

]
,

and w̃ = (w, b) is the coefficient vector for the RKHS representation of c(z).

Next, the DCA constructs a sequence of decreasing upper envelop of s(w̃) by approximating

s2(w̃) with its affine minorization function, s2(w̃
(k)) + 〈w̃ − w̃(k),∇s2(w̃(k))〉, where w̃(k) is

the estimated w̃ at the k-th iteration, and ∇s2(w̃(k)) is the subgradient of s2(w̃) at w̃(k).

The updated w̃(k+1) is then obtained by solving

w̃(k+1) = argmin
w̃

s1(w̃)− s2(w̃(k))− 〈w̃ − w̃(k),∇s2(w̃(k))〉. (12)

The updating scheme is iterated until convergence. Although the DCA cannot guarantee

global optimum, it delivers a superior numerical performance as demonstrated in the exten-

sive simulation study in Liu et al. (2005).

4. Asymptotic theory

This section quantifies the asymptotic behavior of ĉ(z) in estimating the personalized MCID.

Denote eδn(ĉ, c∗) = E
[
Lδn{Y (X − ĉ(Z))} − Lδn{Y (X − c∗(Z)))}

]
with δn > 0, where δ and

λ are rewritten as δn and λn to denote their dependency on n. We make the following four

technical assumptions.

Assumption A. For some positive sequence sn → 0 as n→∞, there exists c0(z) ∈ F , such

that for sufficiently small δn, eδn(c0, c
∗) 6 sn. That is, inf{c∈F} eδn(c, c∗) 6 sn.

Assumption A is standard (Shen et al., 2003; Li et al., 2007), and describes the approxi-

mation error of F in approximating c∗(z).
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Assumption B. There exist constants 0 < α2 < +∞ and a3 > 0 such that for any given z,

P (|pz(X)− pz(c∗(z))| 6 ξ) 6 a3ξ
α2 for sufficiently small ξ.

Assumption B is the low noise assumption that describes the distribution of the diagnostic

outcome X in the neighborhood of c∗(z).

Assumption C. There exist constants 0 < γ2 < +∞ and a4 > 0 such that for any given z,

sup|x−c∗(z)|6ξ |pz(x)− pz(c∗(z))| 6 a4ξ
γ2 for sufficiently small ξ.

Assumption C is implied by a Hölder continuity condition that describes the smoothness

of pz(x) around c∗(z).

Before specifying Assumption D, we first define the metric entropy for any give set. For a

given class B of subsets of S and any ε > 0, {(Gl
1, G

u
1 , · · · , Gl

m, G
u
m)} forms an ε-bracketing

set of B if for any G ∈ B there is a j such that Gl
j ⊂ G ⊂ Gu

j and max{16j6m} d(Gu
j , G

l
j) 6

ε, where d(·, ·) is a distance for any two subsets in S defined as d(G1, G2) = P (G1∆G2)

and G1∆G2 = (G1\G2)
⋃

(G2\G1). Then the metric entropy H(ε,B) of B is defined as the

logarithm of the cardinality of the ε-bracketing set of B of the smallest size. Let G(k) =

{Gc = {(x, z) : x− c(z) > 0}, c ∈ F , J(c) 6 k} ⊂ G(F) = {Gc = {(x, z) : x− c(z) > 0}, c ∈

F , J(c) < +∞}.

Assumption D. For positive constants a5, a6 and a7, there exists some εn > 0 such that

sup
{k>1}

φ(εn, k) 6 a5n
1/2,

where φ(εn, k) =
∫ (8a6)1/2Lα/2(α+γ)

a7L
H1/2(u2/2,G(k))du/L and L = L(εn, C, k) = min(ε2n +

λnJ0(k/2− 1), 1).

Theorem 2: Suppose that Assumptions A-D are met and pz(x) is strictly increasing in

x. For the estimated personalized MCID ĉ(z), there exists positive constants a8 and a9 such

that

P
[
|ĉ(Z)− c∗(Z)| > {β2

n log(1/β2
n)}

α2
α2+2

]
6 3.5 exp

{
− a8n(λnJ(c0))

α2+2
α2+1

}
+ a9{log(1/β2

n)}−1.



Minimum Clinically Important Difference in Medical Studies 11

provided that β2
n > 4λn max(J(c0), 1) with β2

n = min(max(ε2n, 2sn + 2a3a
α2
4 δ

α2γ2
n ), 1) and

fz(c
∗(z)) is bounded away from 0.

Corollary 1: Under the assumptions of Theorem 2, |ĉ(Z)−c∗(Z)| = Op

[
{β2

n log(1/β2
n)}

α2
α2+2

]
,

provided that n{λnJ(c0)}
α2+2
α2+1 is bounded away from 0.

Theorem 2 and Corollary 1 develop upper bounds for the estimation accuracy of the

estimated ĉ(z). The convergence rate β
2α2
α2+2
n in Corollary 1 depends on the values of δn,

ε2n, sn and λn. More importantly, such results can be difficult to establish for the standard

classification function g(x, z) due to its lack of explicit estimation of c∗(z). For illustration,

supposed that c∗(Z) = Z, where Z is uniformly distributed on [−100, 100]. For any given z,

X is uniformly distributed on [z − 1, z + 1] and pz(x) = P (X 6 x|Z = z), and F is set as

{c(z) = wz + b : w, b ∈ R}. All assumptions can be verified with sn = 1/n, α2 = 1, γ2 = 1,

εn = (log n/n)1/2 and β2
n = log n/n when δn is sufficiently small. Then applying Corollary 1

yields that |ĉ(Z)− c∗(Z)| = Op(log2 n/n)1/3. More details could be found in Xu (2013).

5. Simulation

This section examines the proposed estimation methods for estimating the MCID using

simulated examples. Two scenarios are considered. Scenario I focuses on the population-based

MCID for all patients, and scenario II focuses on the personalized MCID that varies among

patients and relies on each patient clinical profile. To assess the estimation performance, we

report the estimated MCID as well as the misclassification error (MCE) based on the testing

set, which is defined as

MCE(ĉ) =
1

ntest

∑
i∈testing set

I{yi 6= sign(xi − ĉ(zi))},

where ntest denotes the size of the testing set, and ĉ(zi) = ĉ for the population-based

MCID. In addition, the sensitivity, specificity, PPV, and NPV are also reported to assess the

classification performance.



12 Biometrics,

5.1 Scenario I: the population-based MCID

Two simulated examples are examined.

Example 1. A random sample {(Xi, Yi); i = 1, · · · , n+ 2000} is generated as follows. First,

Xi is generated from Unif(−1, 1) and then Yi is generated from Bern((xi + 1)/2). Next, a

sample of size n is randomly selected for training and the remaining 2000 observations are

for testing.

Example 2. A random sample {(Xi, Yi); i = 1, . . . , n+ 2000} is generated as follows. First,

Xi is generated from the mixture of two Gaussian distributions 0.7N(−1, 1)+0.3N(1, 1) and

then Yi is generated from Bern(0.75F (xi)), where F (xi) = P (X 6 xi). Next, a sample of

size n is randomly selected for training and the remaining 2000 observations are for testing.

The training sizes are set as n = 250, 500 and 1000, and both examples are replicated 100

times. The averaged performance measures of our proposed method, Turner et al. (2010)

and Shiu and Gatsonis (2008) are summarized in Table 1. In addition, the ideal MCID’s and

their corresponding performance measures are used as baseline for the comparison in Table

1.

[Table 1 about here.]

In both examples, our proposed method yields accurate MCID estimates that are very close

to the ideal MCID’s. The resulting MCE’s are also close to the MCE’s produced by using the

ideal MCID’s. In Example 1, the performance of Turner et al. (2010) is also competitive due

to the fact that P (X > c∗|Y = 1) = P (X < c∗|Y = −1). However, in Example 2 where the

equality is no longer true, the performance of Turner et al. (2010) becomes less satisfactory

for all measures. The MCE of Shiu and Gatsonis (2008) appears to be less competitive. Even

with a large sample size n = 1000, their estimated MCID’s are still considerably different from

the ideal MCID’s. Note that Shiu and Gatsonis (2008) is designed to maximize PPV+NPV,

but Table 1 shows that our proposed method also yields competitive PPV+NPV across all
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scenarios. In addition, the estimated sensitivity and specificity further demonstrate that our

proposed method is superior to this method.

5.2 Scenario II: the personalized MCID

For the personalized MCID, the MCE by using our proposed method with linear and

Gaussian kernels are examined. The linear kernel is defined as K(z1, z2) = zT1 z2, and the

Gaussian kernel is defined as K(z1, z2) = e−‖z1−z2‖
2/2σ2

, where the scale parameter σ2 is

set as the median of pairwise Euclidean distances within the training set. To optimize the

performance of our proposed method, a grid search by 5-fold cross validation is employed to

select the tuning parameter λ. The grid for all examples is set as {10(s−31)/10; s = 1, · · · , 61}.

For illustration, three simulated examples are examined with δ = 0.1.

Example 1. A random sample {(Xi, Yi,Zi); i = 1, · · · , n} is generated as follows. First, Zi’s

are independently generated from N2(µ, I2) with µ = (0, 0)T and I2 = diag(1, 1). Second,

Xi’s are independently generated from N(b + βTzi, 1), where b = 0 and β = (1, 2)T . Next,

the response Yi is generated from Bern(F (xi)), where F (xi) = P (Xi 6 xi).

Example 2. A random sample {(Xi, Yi,Zi); i = 1, · · · , n} is generated as follows. First, Zi’s

are independently generated from N2(µ, I2) with µ = (0, 0)T . Second, Xi’s are independently

generated from N(b + βTzi − βTz2
i , 1), where b = 0 and β = (1, 2)T . Next, the response Yi

is generated from Bern(F (xi)), where F (xi) = P (Xi 6 xi).

Example 3. A random sample {(Xi, Yi,Zi); i = 1, · · · , n} is generated as follows. First,

Zi’s are independently generated from N3(µ, I3)) with µ = (0, 0, 0)T and I3 = diag(1, 1, 1).

Second, Xi’s are independently generated from N(b + cos(βTzi), 1), where b = 0 and β =

(1, 1.5, 2)T . Next, the response Yi is generated from Bern(F (xi)), where F (xi) = P (Xi 6 xi).

For each example, the training sizes are set as 100, 250, 500 and the testing size is set

as 2000. All examples are replicated 50 times, and the averaged test errors are reported in

Table 2.
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[Table 2 about here.]

Our proposed method delivers satisfactory performance in estimating the personalized

MCID in all three examples. In addition, the linear kernel yields slightly better performance

than the Gaussian kernel in Example 1 as the true classification boundary is linear, and it is

outperformed by the Gaussian kernel in the other two examples with nonlinear boundaries.

Therefore, the Gaussian kernel would be suggested if no prior knowledge about the boundary

is available.

For estimating the personalized MCID, the choice of δ may impact the performance

of our proposed method. By Theorem 2, large δ leads to less accurate prediction while

computational instability may occur when small δ is used for the estimation. For illustration,

we conducted a sensitivity analysis on the values of δ in Example 1 with training size 250.

Table 3 consists of the averaged MCE, the estimated coefficients, and the computational

time based on 100 replications.

[Table 3 about here.]

The estimated coefficients and prediction error in a random selected replication as functions

of δ ∈ [0.01, 2] are displayed in Figure 1.

[Figure 1 about here.]

It is clear that the numerical performance is relatively stable when δ is reasonably close to

0. However, when δ is too large or too small, the estimation of c(z) deviates away from the

truth and leads to deteriorated estimation performance. It is also interesting to note that

when δ is too small, the computational instability often leads to early stop of the algorithm,

and thus shorter computing time but less competitive performance. Based on the sensitivity

study, we recommend to set δ as 0.1 in practice.
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6. Real applications

In this section, our proposed method is applied to a phase-3 woman heavy menstrual blood

loss dataset (WHMBL) and a phase-3 hot flush dataset (Hot Flush).

The WHMBL clinical trial aims to develop a treatment for reducing the amount of blood

loss during a menstrual cycle in excessive bleeding women. The primary efficacy variable is

the change from baseline in blood loss volume. The blood loss of each patient is measured

per menstrual cycle and the PRO’s are collected based on a questionnaire answered by

each patient at a post-treatment visit. The WHMBL trial dataset consists of 481 patients

administered either placebo or active doses. Patient profile contains the information of age,

body mass index (BMI), alcohol (Yes/No), tobacco (Yes/No) and baseline value of blood

loss. The 481 patients were randomly split into a training set of 240 patients and a testing

set of 241 patients.

The hot flush clinical trial aims to develop a treatment for reducing hot flush in women

due to menopause. The primary efficacy variable is the change from baseline in average daily

frequency of hot flushes, and the PRO’s are collected based on a questionnaire answered by

each patient at a post-treatment visit. The hot flush clinical trial dataset consists of 1684

patients administered either placebo or active doses. Patient profile contains the information

for age, BMI, race and baseline hot flushes. 300 patients were selected randomly to form the

training set and the remaining 1384 patients were used as the testing set.

Here, δ = 0.1 is used for simplicity and the tuning parameter λ is selected as in Section

5.2. Each example is replicated 50 times, and Table 4 summarizes the averaged performance

measures of the method by Shiu and Gatsonis (2008), Turner et al. (2010), the population-

based MCID, and the personalized MCID with the linear and Gaussian kernels.

[Table 4 about here.]

In both scenarios, our proposed method delivers competitive performance in comparison
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with the methods by Shiu and Gatsonis (2008) and by Turner et al. (2010). In WHMBL

trial, the method by Shiu and Gatsonis (2008) yields a negative MCID which is clinically

misleading. It is also interesting to notice that for the WHMBL trial, the personalized MCID

yields larger MCE when compared with the population-based MCID. It could be due to the

homogeneity among the enrolled patients. For the hot flush trial, patients’ satisfaction on

treatment effect is more accurately estimated when the clinical profiles are included. A closer

investigation of the fitted classification function implies that patients’ satisfaction is highly

affected by the baseline hot flushes. This is reasonable as patients with higher baseline hot

flushes tend to expect better treatment effect.

7. Closing remarks

The concept of MCID has attracted much attention in clinical trials, while little statistical

work has been done for appropriately determining MCID. This paper proposes a general

framework for formulating as well as estimating the population-based and the personalized

MCID’s. Our proposed method unifies both the population-based and the personalized

MCID’s into a large margin classification framework, and delivers superior estimation perfor-

mance in both simulated examples and real applications to two phase-3 clinical trials. More

importantly, the asymptotic properties of our proposed method are established for both the

population-based and the personalized MCID’s.

As for potential extensions, the proposed estimation framework could be extended to

scenarios with multiple diagnostic test outcomes, where a prognostic score function can

be constructed to combine the multiple test outcomes. It is also of interest to extend the

framework to estimation of other types of optimal cut points based on ROC curve such as

the Youden index.
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8. Supplementary materials

The Web Appendices referenced in Sections 2 and 3, and the implemented codes are available

with this paper at the Biometrics website on Wiley Online Library.
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Figure 1. Sensitivity analysis of δ in a randomly selected replication of Example 1 in
Scenario II with n = 250. β1, β2 and b are the coefficients of c(Z).
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Table 1
Simulation I. Averaged MCID, the misclassification error (MCE), sensitivity (SEN), specificity (SPE), positive

predictive value (PPV), negative predictive value (NPV), and their standard errors (in parentheses) for our method
(OUR), the method by Shiu and Gatsonis (SG) and the method by Turner et al. (TU) based on 100 replications.

The ideal performance is included as the baseline for comparison.

n=250 n=500 n=1000 Ideal

Example 1

OUR 0.055(0.0116) -0.021(0.0058) 0.004(0.0032)
MCID SG 0.078(0.0387) -0.065(0.0290) -0.080(0.0222) 0.000

TU 0.004(0.0003) 0.002(0.0002) 0.003(0.0001)

OUR 0.260(0.0010) 0.255(0.0005) 0.253(0.0003)
MCE SG 0.344(0.0045) 0.355(0.0033) 0.374(0.0024) 0.250

TU 0.251(0.0005) 0.251(0.0004) 0.250(0.0003)

OUR 0.713(0.0061) 0.756(0.0030) 0.746(0.0016)
SEN SG 0.618(0.0203) 0.677(0.0152) 0.666(0.0113) 0.750

TU 0.748(0.0017) 0.748(0.0010) 0.748(0.0007)

OUR 0.768(0.0057) 0.735(0.0029) 0.748(0.0016)
SPE SG 0.696(0.0193) 0.613(0.0145) 0.586(0.0114) 0.750

TU 0.751(0.0017) 0.750(0.0011) 0.751(0.0007)

OUR 0.762(0.0029) 0.744(0.0015) 0.750(0.0008)
PPV SG 0.769(0.0097) 0.733(0.0072) 0.730(0.0055) 0.750

TU 0.751(0.0011) 0.750(0.0007) 0.750(0.0005)

OUR 0.736(0.0031) 0.755(0.0016) 0.750(0.0009)
NPV SG 0.731(0.0097) 0.767(0.0073) 0.770(0.0055) 0.750

TU 0.749(0.0012) 0.749(0.0008) 0.749(0.0005)

Example 2

OUR 0.181(0.0269) 0.151(0.0153) 0.141(0.0083)
MCID SG 2.374(0.0949) 2.470(0.0622) 2.762(0.0445) 0.142

TU -0.329(0.0071) -0.338(0.0034) -0.334(0.0018)

OUR 0.298(0.0009) 0.296(0.0005) 0.295(0.0004)
MCE SG 0.367(0.0035) 0.366(0.0020) 0.378(0.0013) 0.291

TU 0.303(0.0007) 0.304(0.0005) 0.304(0.0003)

OUR 0.542(0.0075) 0.568(0.0046) 0.553(0.0027)
SEN SG 0.122(0.0156) 0.134(0.0131) 0.102(0.0082) 0.551

TU 0.695(0.0025) 0.697(0.0011) 0.698(0.0008)

OUR 0.800(0.0046) 0.784(0.0030) 0.797(0.0016)
SPE SG 0.940(0.0105) 0.915(0.0102) 0.935(0.0064) 0.802

TU 0.698(0.0022) 0.695(0.0014) 0.695(0.0006)

OUR 0.626(0.0024) 0.619(0.0017) 0.625(0.0009)
PPV SG 0.714(0.0097) 0.732(0.0089) 0.736(0.0071) 0.626

TU 0.581(0.0012) 0.579(0.0007) 0.579(0.0005)

OUR 0.748(0.0024) 0.755(0.0015) 0.751(0.0008)
NPV SG 0.656(0.0046) 0.655(0.0043) 0.654(0.0027) 0.749

TU 0.793(0.0010) 0.793(0.0007) 0.793(0.0004)
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Table 2
Simulation II. Estimated means and standard deviations (in parentheses) of the misclassification error by using our

proposed method with linear and Gaussian kernels based on 50 replications.

n=100 n=250 n=500 Ideal

Example 1

Linear 0.256(0.0119) 0.254(0.0112) 0.250(0.0108)
Gaussian 0.280(0.0177) 0.270(0.0146) 0.259(0.0130)

0.250

Example 2

Linear 0.412(0.0146) 0.408(0.0140) 0.408(0.0095)
Gaussian 0.290(0.0169) 0.274(0.0133) 0.260(0.0118)

0.250

Example 3

Linear 0.315(0.0132) 0.313(0.0129) 0.318(0.0103)
Gaussian 0.323(0.0182) 0.308(0.0122) 0.293(0.0109)

0.250
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Table 3
Sensitivity analysis of δ of Example 1 in Scenario II with n = 250. The averaged coefficients of c(Z), β1, β2 and b,

the averaged MCE, and the averaged computing time (sec) are reported.

δ MCE β1 β2 b time

10−10 0.437(0.0037) 1.393(0.3734) 1.769(0.3028) -0.099(0.0540) 1.546(0.0157)
10−5 0.255(0.0011) 0.985(0.0078) 1.970(0.0094) 0.005(0.0095) 2.081(0.0251)
0.1 0.254(0.0012) 0.979(0.0096) 1.971(0.0078) 0.000(0.0120) 3.534(0.0726)
0.5 0.266(0.0016) 0.988(0.0245) 1.917(0.0176) -0.051(0.0234) 4.302(0.1403)
1 0.319(0.0050) 0.765(0.0784) 1.553(0.0765) -0.102(0.0937) 6.787(0.3805)
2 0.469(0.0017) 0.473(0.4243) 1.376(0.3528) -0.302(0.3867) 4.621(0.1201)
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Table 4
Real applications. Averaged MCID and misclassification error (MCE) and their standard errors(in parenthesis) by

using the method by Shiu and Gatsonis (SG), Turner et al. (TU), the population-based MCID (OUR) and the
personalized MCID with linear kernel (OURL) and Gaussian kernel (OURG) based on 50 replications.

SG TU OUR OURL OURG

WHMBL

MCID -45.004(3.3011) 37.383(0.4323) 20.610(0.4905) - -
MCE 0.436(0.0016) 0.368(0.0014) 0.358(0.0014) 0.365(0.0186) 0.376(0.0185)

Hot Flush

MCID 5.426(0.4453) 7.073(0.0127) 6.060(0.0229) - -
MCE 0.399(0.0049) 0.302(0.0005) 0.282(0.0005) 0.260(0.0054) 0.268(0.0031)


