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ABSTRACT. In contrast to the many examples of convex divisible domains in
real projective space, we prove that up to projective isomorphism there is only
one convex divisible domain in the Grassmannian of p-planes in R?? when
p > 1. Moreover, this convex divisible domain is a model of the symmetric
space associated to the simple Lie group SO(p, p).
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1. INTRODUCTION

The Lie group PGL44+1(R) acts naturally on real projective space P(Rd+1) and
for an open set 2 C P(Rd+1) we define the automorphism group of () as

Aut(2) = {p € PGL411(R) : Q2 = Q}.

An open set Q is then called a conver divisible domain if it is a bounded convex open
set in some affine chart of P(RY™!) and there exists a discrete group I' < Aut(Q)
which acts properly, freely, and cocompactly on 2. The fundamental example of
a convex divisible domain comes from the Klein-Beltrami model of real hyperbolic
d-space Hg:

Example 1.1. Let B € P(R*™) be the unit ball in some affine chart. The group
PSO(d,1) € PGL4(R) acts transitively (and by projective transformations) on
B, and the stabilizer of a point is PSO(d). This gives a natural identification
B = PS0O(d, 1)/ PSO(d).

Further, there is a natural metric on B, called the Hilbert metric, such that
PSO(d, 1) = Isom(B)°. Equipped with this metric, B is isometric to hyperbolic
d-space. Any torsion-free cocompact lattice T’ in PSO(d, 1) will act properly dis-
continuously, freely, and cocompactly on B.

There are many more examples of convex divisible domains, for instance:
(1) The symmetric spaces associated to SLy(R), SLq(C), SLq(H), and Eg(_z6)
can all be realized as convex divisible domains. For instance, consider the
convex set

P ={[X] € P(Sq,q) : X is positive definite}

where Sg 4 is the vector space of real symmetric d-by-d matrices. Then the
group SL4(R) acts transitively on P by g - [X] = [¢X¢'] and the stabilizer
of a point is SO(d). Hence, if I' < PSL4(R) is a cocompact torsion-free
lattice then I' acts properly, freely, and cocompactly on P.

(2) Let B C P(R*™) be the Klein-Beltrami model of H%. Results of Johnson-
Millson [JMS8T7] and Koszul [Kos68| imply that the domain B can be de-
formed to a divisible convex domain € where Aut () is discrete (see [Ben00,
Section 1.3] for d > 2 and [Gol90] for d = 2).

(3) There are many examples in low dimensions (see for instance [Vin71l, VKGT]).

(4) For every d > 4, Kapovich [Kap07] has constructed divisible convex do-
mains Q C P(RdH) such that Aut(Q) is discrete, Gromov hyperbolic, and
not, quasi-isometric to any symmetric space.

(5) Benoist [Ben06] and Ballas-Danciger-Lee [BDL18] have constructed divisi-
ble convex domains Q C P(R*) such that Aut(Q) is discrete, not Gromov
hyperbolic, and not quasi-isometric to any symmetric space.

(6) For d =4,5,6, Choi-Lee-Marquis [CLM16a] have constructed divisible con-
vex domains Q C P(R?) such that Aut(f) is discrete, not Gromov hyper-
bolic, and not quasi-isometric to any symmetric space.

More background can be found in the survey papers by Benoist [Ben08], Choi-Lee-
Marquis [CLM16b], Marquis [Marl4], and Quint [Quil0].

There is a more general setting in which convex divisible domains can be studied,
namely in flag manifolds: Suppose G is a connected semi-simple Lie group with
trivial center and compact factors. If P < G is a parabolic subgroup then G acts
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by diffeomorphisms on the compact manifold G/P, which is called a flag manifold.
Given an open set 2 C G/P we define the automorphism group of § to be

Aut(Q) ={g € G: g2 = Q}.

The manifold G/P admits natural affine charts given by translates of a Bruhat big
cell, and a domain 2 is convez if it is convex in some affine chart. There are many
examples of convex divisible domains in flag manifolds coming from symmetric
spaces: The Harish-Chandra embedding shows that every noncompact Hermitian
symmetric space X embeds as a domain Qx into a flag manifold G/P (and this
flag manifold can be identified with the compact dual of X) such that Aut(Qx) =
Isomg(X), see e.g. [Hel78| 8.7.14]. More generally, Nagano [Nag65, Theorem 6.1]
has characterized all the noncompact symmetric spaces X whose compact dual
X* can be identified with a flag manifold G/P and X embeds as a domain Qx
into G/P such that Aut(Q2x) = Isomg(X). In all these examples the images are
bounded convex domains in some affine chart of G/P [Nag65, Theorem 6.2].
There also exist examples of symmetric spaces which embed into a flag manifold
which cannot be identified with their compact dual. In particular, we have already
seen above that the symmetric spaces associated to SLg(R), SL4(C), SL4(H), and
Eg(_26) can all be realized as convex divisible domains in real projective spaces.
Given theses examples it is natural to ask:

Question 1.2. If G/P is a flag manifold, are there non-symmetric convex divisible
domains in G/P?

Outside of the case when G/P can be identified with real projective space or
the complex projective plane we suspect that the answer is no. In particular,
outside of those two cases the action of G on G/P usually preserves some special
structure. For instance: if G = PSL,44(R) and P is the stabilizer of a p-plane
then G/ P can be identified with Gr,(R?*9) the Grassmanians of p-planes in R?9,
In this case the action of G on G/P preserves an “algebraic distance” given by
d(V,W) = dim(V N W). Despite this source of rigidity, the above question seems
difficult to answer in full generality.

In this paper we specialize to the particular case of real Grassmannians. As above
let G = PSL,{4(R) and P is the stabilizer of a p-plane then G/P can be identi-
fied with Gr,(RP*?) the Grassmanians of p-planes in RP*?. The set of g-by-p real
matrices M, ,(R) can be naturally identified with an affine chart of Gr,(R’*?) via
X < Im I;l(p . Now let By, be the unit ball (with respect to the Euclidean opera-
tor norm) in M, ,(R). As in the real projective setting By, is a symmetric domain:
In fact By, can be identified with the symmetric space PSO(p, ) /PS(O(p) x O(q)).
Further under the above identification we have Aut(B,,) = PSO(p, q).

In contrast to the many examples of convex divisible domains in real projective
space, we prove that every convex divisible domain in Gr, (Rzp ) is symmetric and
even more precisely that up to projective isomorphism B, is the only convex
divisible domain in Gr,(R?"). The following is our main result.

Theorem 1.3. Suppose p > 1 and Q C Gr,(R?") is a bounded convex open subset
of some affine chart, and there exists a discrete group I' < Aut(Q) such that T’ acts
cocompactly on §). Then Q is projectively isomorphic to By .
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Remark 1.4. There is much more flexibility for domains which are not bounded in
an affine chart:

(1) If Q is an entire affine chart, there exists a discrete group I' < Aut(€2) which
acts freely, properly, and cocompactly on Q (see Subsection below).

(2) If P C @Q are parabolic subgroups in G, then there is a natural projection
7 : G/P — G/Q. Then for any divisible domain Q C G/Q, the preim-
age 7 1(Q) is a divisible domain in G/P. This shows that for many flag
manifolds, classifying divisible domains is at least as difficult as classifying
divisible domains in real projective spaces.

(3) There are recent constructions by Guichard-Wienhard [GWO08, [GW12],
Guéritaud-Guichard-Kassel-Wienhard [GGKW17], and by Kapovich-Leeb-
Porti [KLP18] of open domains Q in certain flag manifolds where there
exists a discrete group I' < Aut(Q) that acts properly, freely, and cocom-
pactly on €. These constructions come from the theory of Anosov rep-
resentations, and give many examples of nonsymmetric divisible domains
). However, these constructions often produce domains whose complement
has positive co-dimension and hence are not bounded in any affine chart
(see for instance [GW12, Proposition 8.2]).

Remark 1.5. 1t is well-known that convex domains in real projective space are very
similar to nonpositively curved Riemannian manifolds (see for instance [Ben04l
Ben06,, [Cra09, [CLT15]). In particular the flexibility of domains in real projective
space and the rigidity of domains in Grp(RQ” ) when p > 1 can be compared to
the well-known dichotomy for the rigidity of a nonpositively curved metric based
on its Fuclidean rank. Nonpositively curved metrics of rank one are very flexible
(e.g. negatively curved metrics), but in higher rank there is an amazing amount
of rigidity. Namely, the Higher Rank Rigidity Theorem of Ballmann [Bal85] and
Burns-Spatzier [BS87al [BS87h| states that any nonpositively curved, irreducible,
closed Riemannian manifold whose Euclidean rank is at least two, is isometric to a
locally symmetric space. In this sense convex divisible domains in Gr,,(R*”) behave
like irreducible nonpositively curved manifolds of higher Euclidean rank.

Remark 1.6. In Theorem we only assume that there is a discrete group I' <
Aut(92) acting cocompactly on 2. However this implies that there exists a discrete
group Iy < Aut(Q) that acts freely, properly discontinuously, and cocompactly
on 2. Namely, we construct an invariant metric for the action of Aut(Q2) (see
Step 1 below and Proposition , and hence Aut(Q2) acts properly on Q. Thus
if I' < Aut(Q) is a discrete group and I' acts cocompactly on 2 then I" is finitely
generated (by the Svarc-Milnor lemma, see [BH99, Chapter 1.8 Proposition 8.19]).
Then Selberg’s lemma (see [Alp87]) implies that I has a finite-index torsion-free
subgroup I'g < T'. Then I'y acts freely, properly discontinuously, and cocompactly
on €.

1.1. Outline of the proof of Theorem The proof of Theorem [I.3] uses a
variety of techniques from real projective geometry, several complex variables, Rie-
mannian geometry, Lie theory, and algebraic topology. Here is an outline of the
three mains steps:

Step 1: Constructing an invariant metric. A convex domain 2 in an affine
chart of P(R™!) that is proper (that is, does not contain any affine real lines) has
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a complete metric called the Hilbert metric. One of the main steps in the proof is
the construction of a metric K¢ that generalizes this classical construction.

We say a convex domain 2 in an affine chart of Gr,(R? +4) is R-proper if it does
not contain any “rank-one affine real lines” (see Definition below).

Theorem 1.7. (Theorem and Theorem below) Suppose Ml C Gr,(RPH?) 4s
an affine chart and Q C M is an R-proper convex open subset of M. Then there
exists a complete length metric Kq with the following properties:

(1) (Invariance) the group Aut(Q) acts by isometries on (2, Kq).
(2) (Equivariance) if ® € PGLy44(R), then

KQ($7y) = K@Q((I)w7 (I)y)7

(8) (Continuity in the local Hausdorff topology) if 2, C M is a sequence of
R-proper convex open sets converging in the local Hausdorff topology to an
R-proper convex open set ) C M, then Kq, converges to Kq uniformly on
compact subsets of ), and

(4) if p=1, then Kq coincides with the classical Hilbert metric.

The above theorem allow us to establish an analogue of the powerful “rescaling”
method from several complex variables (see the survey articles [Fra91l, [KK08|). See
Remark below for further details on this analogy (or lack thereof). We prove:

Theorem 1.8. (Theorem below) Suppose Ml C Gr,,(RPT9) is an affine chart,
Q C M is an R-proper convez open subset of M, and Aut(Q) acts cocompactly on
Q. If A, € AME (M) NPGLp44(R) and A,Q is a sequence of R-proper convex sets
converging in the local Hausdorff topology to an R-proper convexr open set ﬁ, then
there exists some ® € PGL,14(R) such that ®(Q) = Q.

Remark 1.9. An affine chart Ml C Gr,,(RP"?) can be identified with the vector space
M, »(R) of g-by-p real matrices in a way that is unique up to an affine automorphism
of M, »(R) (see Subsection [3.3|for details). In particular, the group Aff(M) of affine
transformations of M is well-defined (see Definition .

To explain how the properties of the metric K imply Theorem[I.8] let us sketch
the proof:

Proof Sketch. Suppose that A,Q — Q. Fix a point zg € . Since Aut(2) acts
cocompactly on €, we can pass to a subsequence and find ¢,, € Aut(Q2) such that
Anpnro = Zo € Q. Now consider the maps fn := Apen,. By part (1) and (2) of
Theorem [1.7] each f, induces an isometry (€2, Kq) — (4, Ko, ). Then by part (3)
of Theorem one can pass to a subsequence such that f,, — f and f will be an
isometry (Q, Kq) — (SA), Kg). A simple argument then shows that f is actually the
restriction of a element in PGL,4(R). O

Theorem should also be compared to a theorem of Benzécri from real pro-
jective geometry. Let X; be the space of proper convex open sets in P(Rd) with
the Hausdorff topology. Then Xy is closed in the Hausdorff topology and PGL4(R)
acts on Xy. With this notation Benzécri proved:

Theorem 1.10. [Ben60] Suppose Q is a proper convex open set in P(R?). If Aut(Q)
acts cocompactly on €, then PGL4(R) - Q is a closed subset of X4.
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It is important to note that unlike in the real projective setting, when p,q > 1,
convexity is not invariant under the action of PGL,;4(R) on Gr,(RPT?): If Q
is a convex subset of some affine chart M C Gr,(RP"?) and #(Q) C M for some
¢ € PGL,(RPT9), then () may not be a convex subset of M. Thus to preserve con-
vexity we are forced to consider the orbit of  under the group Aff(M)NPGL,1,(R).
We compute this group and its action in Observation .

Step 2: The automorphism group is non-discrete. In the second step of the
proof we use the rescaling theorem (Theorem from Step 1 to show that Aut(2)
is non-discrete when Q C Gr,(R?") is a convex divisible domain.

We can identify M, ,(R) with the affine chart

1] xemum}

of Gr,(R?). Recall that the unit ball B, , C M, ,(R) (with respect to the Euclidean
operator norm) can be identified with the symmetric domain PSO(p, p)/PS(O(p) x
O(p)). Note that B, , is a convex set and the extreme points of B, , are exactly the
orthogonal matrices. Given an orthogonal matrix A € 9B, ,, define the projective
transformation
—Id, A7} -1 -1 -1
F(X):= | X=(ATX+1d)(A™ X —1d,) .
Id, A

Then we see that
F(Bpp) ={X e M,,(R): X+ X > 0}

and F(A) = 0. Now F(B,,) is a cone and in particular Aut(F(B,,)) contains
a one-parameter group of homotheties. Translating this back to B, , shows that
A € 0B, ), is the attracting fixed point of a one-parameter group of automorphisms
of By p.

Using the rescaling theorem (Theorem from Step 1 we will recover these one-
parameter groups for a general divisible domain. The key result is the following:

Theorem 1.11. (Theorem below) Suppose Ml C Gr,(R??) is an affine chart,
Q C M is an R-proper convez subset of M, and Aut(§2) acts cocompactly on Q. If
e € 0N is an extreme point, then the tangent cone of Q at e is R-proper.

Now the tangent cone of 2 at e is precisely the limit of the rescaled domains
n(Q—e)+e

in the local Hausdorff topology. In particular combining Theorem and Theo-
rem [[.11] implies the following:

Corollary 1.12. (Corollary below) Suppose Ml C Gr,(R??) is an affine chart,
Q C M is an R-proper convex subset of M, and Aut(Q) acts cocompactly on €.
Then Aut(Q) is non-discrete.

Remark 1.13. In the several complex variable setting, rescaling can also be used to
find one-parameter groups of automorphisms (see [Fra89, Section 6] or [Kim04]).
However, in this setting one obtains these automorphisms by rescaling at a point in
the boundary with either C' or C? regularity. This procedure actually finds auto-
morphisms because a complex line has two real dimensions (see the proof of [Fra91l
Lemma 6.8]). In contrast we find a one-parameter group of automorphisms by
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rescaling at a point where the tangent cone is R-proper and hence very far from
being C!. Finally, we should observe that the rescaling method cannot be used to
find one-parameter groups of automorphisms in the real projective setting.

Remark 1.14. If p # g, an explicit computation for B, ; shows that Theorem [L.11]
fails in this setting. This is one of the main problems that prevent us from extending
our methods to the general case.

Step 3: Showing the automorphism group is simple and acts transitively.
In the final part of the proof we show that Aut(f2), the connected component of
the identity of Aut(f?), is a simple Lie group which acts transitively on .

Our approach for this step is based on work of Farb and Weinberger [FWO08] who
prove a number of remarkable rigidity results for compact aspherical Riemannian
manifolds whose universal covers have non-discrete isometry groups. In particular,
we combine their approach with the representation theory of Lie groups to establish:
Whenever (Q is a bounded and convex domain in an affine chart and T' C Aut(9) is
discrete such that T'\§2 is compact, at least one of the following holds (see Theorem
52):

(1) a finite-index subgroup of I' has non-trivial centralizer in PGLy,(R),

(2) there exists a nontrivial abelian normal unipotent group U < Aut(2) such
that I'N U is a cocompact lattice in U,

(3) p = 2 and there exists a finite-index subgroup G’ of Aut(Q2) such that
G’ = Autp(Q) x A for some discrete group A. Further up to conjugation

Auto(Q) = {{6‘ 31] Ae SLQ(R)}

and

aId2 bId2 . o
A< {|:Cld2 dIdJ .ad—bc-l}.

(4) p =2, Auto(Q) < Aut(Q2) has finite-index and acts transitively on 2, and
up to conjugation

Autto(Q) = {[‘zﬁ Zﬁ] . A € SLy(R), ad — be = 1}.

(5) Auto(Q) is a simple Lie group with trivial center that acts transitively on
Q.

In Sections [9] and |11] we use the dynamics of the action of PGLgy,(R) on
Cr,,(R?) to show that the first four cases are impossible. Finally in Section [12|we
use the classification of simple Lie groups and the representation theory of simple
Lie groups to complete the proof Theorem 1.3
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many helpful conversations. The first author gratefully acknowledges support from
the University of Chicago and the University of Michigan while part of this work
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2. PRELIMINARIES

2.1. Notations. Given some object o we will let [o] be the projective equiva-
lence class of o, for instance: if v € R*™\{0} let [v] denote the image of v in
P(RY™); if ¢ € GLgy1(R) let [¢] denote the image of ¢ in PGLgy1(R); if T €
Hom (R R%T1)\ {0} let [T] denote the image of T in P(Hom(R™ ™ R%=F1)),

2.2. The Hilbert metric. The Hilbert metric is classically only defined for convex
domains in real projective space, but Kobayashi [Kob77] gave a construction that
works for any open connected domain in real projective space. In this subsection
we recall Kobayashi’s construction.

Given four points a,z,y,b € P(R?) that are collinear, that is contained in a
projective line, one can define the cross ratio by

|z —blly —a
a;x;y; b = log —————.
O =8
The cross ratio is PGL4(R)-invariant in the sense that

[a; 25 93 b] = [a; ;5 y; @b]
for any ¢ € PGL4(R).
Next consider the interval
I:={[1:1] €P@®R?:|t| <1}
and the function Hr : I x I — R>q given by
Hiy(s,t) = log[—1;s;t;1]].
Then Hy is a complete Aut(I)-invariant length metric on 1.
Now suppose that Q C P(R?) is an open connected set. Let
Proj(I,Q) c P(End(R? R?))

be the set of projective maps T such that I NkerT = () and T(I) C Q. Then define
a function pgq : 2 x @ — RU{oo} as follows:

pa(z,y) == 1inf {H(s,t) : there exists f € Proj(I,) with f(s) =z and f(t) = y}.

Finally, using pq, one defines the pseudometric Kq as

N—1

Kq(z,y) = inf{z pa(xi,xiv1) : N > 0,z9,..., 28 € Qa0 =2, 28 = y} )
i=0

Note that if x,y € Q are such that the projective line through = and y has

unbounded intersection with €, then Kq(x,y) = 0. Kobayashi proved the following:

Theorem 2.1. [Kob77] Suppose 2 C P(Rd) is an open connected set. Then

(1) Kq is an Aut(2)-invariant pseudometric on ), i.e. Kq is finite, symmet-
ric, and satisfies the triangle inequality.

(2) If Q is bounded in an affine chart, then Kq is a metric.

(3) If Q is convex and bounded in some affine chart, then Kq coincides with
the Hilbert metric.

(4) Kq is a complete metric if and only if Q is convex and bounded in some
affine chart.
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3. THE GRASSMANNIANS

In this expository section we recall the two standard models of the Grassmanni-
ans, define affine charts, and describe the projective lines contained in the Grass-
mannians.

3.1. The matrix model. We can identify Gr,(R"*?) with the quotient
{X € My14,(R) : rank X = p}/ GL,(R)

where GL,(R) acts on M, ,(R) by multiplication on the right and the identifica-
tion with Gr,(RPT9) is given by X + Im(X). Note that in this model the action
of PGL,44(R) on Gry(R) is given by the action by multiplication on the left on

MP'HLP (R)

3.2. The projective model. We have a natural embedding Gr, (RPT?) — P(AP RP1Y)
defined by

Span(vi,...,vp) = [v1 A=+ Avy).

Remark 3.1. The image of Gr,(R? *9) is a closed smooth algebraic subvariety of
dimension pq in P(AP? RP*9), which has dimension (p ;q) — 1. Nevertheless, if O C
Gr,(RP*9) is open, then the cone over the image of O in P(A? RP*?) spans AP RPT,
Remark 3.2. The following characterization of the image will also be useful: For

x € APRPT? e have that [z] belongs to Gr,(RPT9) if and only if the linear map
T, : RPT? — APFLRPTY given by T, (v) = v A x has rank q.

It is also straightforward to describe the action of PGL,1,(R) on Gr,(RP*7): Any
element g € PGL,,(R) induces a natural projective linear map APg of P(AP RPT9)
defined by

APl A=+ Aoyl i= [gur A -+ A gyl
The image of Gr,(RP*?) in P(AP RP*7) is invariant under the action of PGL,4(R).
3.3. Affine charts. Suppose Wy is a ¢g-dimensional subspace of RPT9. Then con-
sider the set
M := {U € Gr,(R""9) : U N W, = (0)}.
Note that M is an open dense subset of Gr,(RP*?). We call M an affine chart.
If we fix a subspace Uy € M, we can identify M with the set Hom(Uy, Wy) via
HOID(U(), Wo) — M
T — Graph(T') := {(Id+T)u : u € Up}.
Fixing bases of Uy and W, gives an identification of M with the space of ¢g-by-p

real matrices. Notice that a different choice of bases or of Uy only changes this
identification by a map of the form

(3.1) X AXB+C

where A € GL,(R), B € GL,(R), and C is a ¢-by-p matrix. This observation leads
to the next definition:

Definition 3.3. For an affine chart M C Gr,(RP*?) let Aff(M) be the transforma-
tions of M that are affine maps with respect to some (and hence any) identification
of M with the space of g-by-p real matrices.
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We end this subsection with some basic facts about affine charts.

Observation 3.4. For an affine chart M C Gr,(R"*?), the group Aff(M)NPGL,+,(R)
coincides with the stabilizer of M in PGLy,,(R).

Proof. 1t is straightforward to see that

AfE(M) N PGL, 4 o(R) = { [/01 g} . A€ GL,(R),C € M, ,(R),D € GLq(R)}
and that Aff(M) N PGL,1,(R) stabilizes M. So suppose that g(M) = M and
(A B
9=|c D

for some A € GL,(R), B € M, ,(R), C € M,,(R), and D € GLy(R). Then
det(A + BX) # 0 for every X € M, ,(R) which is only possible if B = 0. Thus
g € AfE(M) N PGL,. o (R). 0

If M is an affine chart then there exists g € PGLp4(R) such that

Id
gM = {{Xp} X € qu(R)}
in the matrix model. Moreover, if ey, ..., eyt is the standard basis of RPT4 then

(32) gM=A{[les+v1)A---A(ep+vp)]:v1,...,0p € Span{ept1,...,€psq}}

in the projective model.

3.4. Projective lines in the two models. The description of an affine chart of
Gr,(RP*9) as a subset of P(AP RP*Y), given by Equation , shows that a generic
line in M is not contained in a projective line in P(AP RP*9). However, there is a
natural set of lines in Ml which are. In this subsection we characterize these lines.

Lemma 3.5. If ( is a projective line in P(AP RPT?) contained in Gr,(RP*Y), then

there exist vy, ..., vy, w € RPTY such that

Z:{[vl/\n'/\vp,l/\(vp—i—tw)]:teR}U{[vl/\~-/\vp,1/\w]}.

Proof. Recall that for x € AP RPTY, we have that [z] belongs to Gr,(RPT9) if and
only if the linear map T}, : RPt? — APTIRPH given by T, (v) = v A = has rank g.

Now since ¢ is a projective line there exist wi,...,wp,v1,...,vp € RP*4 such
that

E:{[(v1/\---/\vp)+t(w1A---/\wp)] :teR}U{[wl/\-~-/\wP]}.
Let
V = Span{vy,...,v,} N Span{ws,...,wp}

and r = dim V. We claim that r =p — 1.
We can assume that v; = w; for 1 <4 <7 and thus vi,...,vp, Wry1,...,wp are
all linearly independent. So if

= (V1 A Avp) +HtH(wr A Awp)
and v A z; = 0 then either v € V or
VAULA - Avp =—t(vAwr A Awp) # 0.
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This last case is only possible when r = p—1 and v = v, —tw,,. Since dimker T, = p
and dimV = r < p — 1 this implies that r = p — 1. Then

(Vi A= Awp) FE(wr A= Awp)] = [v1 A+ Avp_1 A (vp + twy)]
for all ¢ € R, which implies the lemma. O

Corollary 3.6. Suppose z,y € Gr,(RPT9). Then the following are equivalent:

(1) There exists a projective line £ in P(AP RPT9) contained in Gr,(RP*?) such
that x,y € L.
(2) dim(zNy) >p—1.

Lemma 3.7. Suppose M is an affine chart in Grp(Rp+q) and we identify M with
the set of q-by-p matrices. Then
(1) if € is a projective line in P(AP RPT9) contained in Gr,(RPT?) and (NM # 0,
then
MM ={X+1tS:teR}

for some X, S € M with rank(S) = 1.
(2) Conversely, if X, S € M and rank(S) =1 then the closure of
(X +tS:teR}
in P(AP RPT9) is a projective line contained in Gr,(RFPT).

Proof. First suppose that £ is a projective line contained in Gry(R? +4) and £NM #
(). There exists some Wy € Gry(RP*?) such that M = {U € Gr, (V) : UNW, = (0)}.
By Lemma [3.5] we can assume

E:{[vl/\~~~/\vp_1/\(vp+tw)]:tER}U{[vl/\«-«/\vp_l/\w]}.

for some w,vq,...,v, € RP*Y. By modifying these vectors we can assume that
[vi A---Avp] € M and w € Wy (in particular [w A vg A --- Avp] ¢ M). Let
Up = Span{vs, ..., vp} and identify M with Hom(Uy, Wy). Under this identification
[v1 A -+ Avp_1 A (vp + tw)] corresponds to the homomorphism ¢S where S is the
linear map

p
S <Z aivi> = w.
i=1

Then ¢ NM = {tS : t € R}. Then the first part of the lemma follows from the
change of coordinates formula .

Next suppose that X, S € M and rank(S) = 1. There exists a basis v1,...,v, €
R? such that vq,...,vp—1 € ker S and Sv, # 0. Then X + ¢S corresponds to the
subspace

Span{vi + X (v1),...,p—1 + X (vp_1),vp + X(vp) +tS(vp)}
and hence in the projective model the line
[(vl + X(v1)> Aee A (vp,l + X(v,,,l)) A (up + X (v,) + tS(up))] .
So the closure of {X + ¢S : t € R} in P(APRPT?) is a projective line. O

Since the lines in M that arise from projective lines in P(A? RPT?) will play an
important role, it is convenient to make the following definition.
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Definition 3.8. A rank-one line is a line £ in Gr,(RP9) of the form of Lemma

i.e. such that the image of £ in P(A? R?™) is a line.

3.5. A Trivial Example. In this subsection we observe that an entire affine chart
is an example of a convex divisible domain. Using the matrix model of Gr,(RP"9)

let
0= { Bﬂ X e Mq,p(R)} .

Then

r— { [Igp ng] Y e MW(Z)} < Aut(Q)

is a discrete group which acts freely, properly discontinuously, and cocompactly on
Q. Notice that the quotient I'\{2 can be identified with the torus of dimension pq.

Part 1. An invariant metric
4. THE METRIC

The purpose of this section is to extend Kobayashi’s definition of the Hilbert
metric to domains in Gr,(RP*9).

Suppose that Q C Gr,(RP*?) is open and connected. Recall from Subsection
that I C P(R?) is the open interval

I:={[1:1] €P®R?:|t| <1}

and Hj is the Hilbert metric on I. Using the projective model of the Grassmannians,
view € as a subset of P(AP RPT?) and let

Proj(I,Q) C P(End(R?, AP RPT9))

be the set of projective maps such that I Nker T = @) and T'(I) C Q. Then define a
function pq : 2 x @ — RU{oco} as follows:

pa(z,y) :=inf {H(s,t) : there exists f € Proj(I,Q) with f(s) = and f(t) =y} .
We then define

=0

n—1
Kéz")(x,y) := inf {Z pa(Ti, Tip1) : € =20, T1, ..., Typ—1,Tn =Y € Q} .

In particular KS()”) (z,y) is finite precisely when there is a path in Q from z to y
consisting of at most n segments of projective lines. Further we evidently have
Ks(zn) < Kgﬂ'l) for any n, so we set

Ko(z,y) = lim K5 (@,y).

Note that at the moment it is not clear that K¢ is finite, but we will prove this in
Proposition 4.2} (4).

Remark 4.1. For x,y € Q it is possible to explicitly compute po(z,y):
(1) if dim(z Ny) < p—1 then po(z,y) = oo,
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(2) if dim(zNy) > p—1, let £ be the projective line in Gr,(R?*9) containing x
and y. If z,y are in different connected components of /NS, then po(x,y) =

oo. Finally, if z,y are contained in the same connected component O of
2N €, then

pa(r,y) = [logla; z; y; b]|
where a, b are the endpoints of O.

Proposition 4.2. If Q C Gr,(RP*?) is an open connected set then:
(1) if ¢ € PGLp44(R) then Ko(z,y) = Kea(pz, py) for all x,y € Q,
(2) Ko(r.y) < Ka(z.2) + Ko(=.y) for any 1.y, € 2,
(3) if Q1 C Qa2 then Kq,(v,y) < Kq, (,y) for all x,y € 4,
(4) for any compact set K C ) there exists N > 0 such that ng)(:zz,y) < 00
for every x,y € K,
(5) Kq is continuous.

Proof. Parts (1)-(3) follow from the definition of Ko and the invariance of the
cross-ratio.
To establish part (4) it is enough to show the following: for any = € € there exist

an open neighborhood U of = and a number n = n(z) such that K&")(z,y) < 00
for any z,y € U. Suppose that © = [v1 Ava A--- Avp]. Then there exists € > 0 such
that

U:i={[wi Awa A~ Awp) : |lv; —w;]| <efor 1l <i<p}CQ.

But then clearly Kg(zp_l)(z,y) < oo for any z,y € U.
To establish part (5), first observe that

|Ka(zo0,y0) — Ka(z,y)| < Ka(zo, ) + Ka(y, Yo)
so it is enough to show that the map = — Kq(zo,) is continuous at zy. But if
xo = [v1 Avg A -+ Awvy] then there exists € > 0 such that
U:={wi Awa A+ ANwp] : [Jlv; —w;|| <efor 1 <i<p}cCQ.

But then for [wq A--- Aw,] € U we have

P
Kq(xo, [wr Awa A--- Awp]) < Ky (o, [wi Awe A--- Awpl) < Zlog
=2

€+ [Jvi — wi|
€ — |lvi — wl

and so

lim Kq(zg,z) = 0.

T—xT0

O

The above Proposition shows that Kq is an Aut(€)-invariant pseudometric. We
will next show that K¢ is a complete metric for certain convex subsets.
Definition 4.3.

(1) Let £ be the space of rank one lines in Gr,(RP*?), that is the space of
projective lines in P(AP RP*7) which are contained in Gr,(RP*?).
(2) An open connected set  C Gr,,(RPT9) is called R-proper if
[\NLNQ>1
for all £ € L.
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Remark 4.4. The definition of R-properness should be compared to properness of
a convex domain U C P(RPT!), which can be characterized by the property that
[\ ¢NU| > 1 for every projective line ¢. Since in projective geometry, every line
has rank one, R-properness is thus a generalization of properness in projective
space.

Example 4.5. If M C Gr,(RP"?) is an affine chart and  is a bounded subset of
M, then € is an R-proper subset of Gr,(R”*?) (see Lemma above).

Theorem 4.6. Suppose M C Gr,,(RP"9) is an affine chart and @ C M is an open
convex set. Then the following are equivalent:

(1) Q is R-proper,

(2) Kq is a complete length metric on €2,

(3) Kq is a metric on €.

Remark 4.7. The above theorem should be compared to two well-known results in
real projective geometry and several complex variables:
(1) For an open convex set 2 C R4*! the Hilbert metric is complete if and only
if Q does not contain any real affine lines.
(2) For an open convex set Q C C™ the Kobayashi metric is complete if and
only if © does not contain any complex affine lines (Barth [Bar80]).

Proof. Clearly (2) implies (3). Moreover, if there exists a projective line ¢ € £ such
that

e\ LNQl <1

then pq(z,y) = 0 for all z,y € £N Q. Thus if Q is not R-proper then K is not
a metric. Thus (3) implies (1). The proof that (1) implies (2) can be found in
Appendix [4] (]

The existence of an invariant metric implies that the action of Aut(2) on € is
proper:

Proposition 4.8. Suppose M C Grp(R’”q) is an affine chart and Q C M is an
open convex set. If € is R-proper, then

(1) Aut(Q?) is a closed subgroup of PGL,14(R),

(2) Aut(Q) is a closed subgroup of Isom(Q2, Kq), and

(3) Aut(Q) acts properly on S.

Proof. We first observe that Aut(Q) is closed in PGL,44(R). Suppose that ¢, €
Aut(Q) and ¢, — ¢ in PGL,14(R). Then ¢(2) C Q. Since © is convex in an affine
chart int(€2) = Q. Then since ¢ induces a homeomorphism Gr, (R?*?) — Gr,(RP"9)
we must have

P(Q) Cint(Q2) = Q.

But the same argument implies that ¢ =1(Q2) C Q. So p(Q) = Q and p € Aut(Q).
We next show that the action of Aut(2) on Q is proper. Suppose that ¢, €
Aut(Q) is a sequence of automorphisms such that
pnto € {y € Q1 Ko(zo,y) < R}

for some g € 2 and R > 0. We need to show that a subsequence of ¢,, converges
in PGL,14(R).
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Since Aut(f2) acts by isometries on the metric space (2, Kq), by the Arzela-
Ascoli theorem there exist an isometry f : (Q, Kq) — (2, Kq) and a subsequence
ng — oo such that

fla) = lim ¢y, (2)

for all x € €. Since f is an isometry it is injective.

Now let Ty € GL(AP RPT9) be representatives of APy,, € PGL(APRPT?). We
normalize T}, such that || T;|| = 1, where ||-|| denotes the operator norm. By passing
to another subsequence we can suppose that Ty, — T € End(AP RP1?) with || T|| = 1.
Now for z € 2\ ker T" we have

T(x) = lim gn, () = f(2)

and so T is injective on © \ ker 7. This implies that 7 € GL(A? RPT9), see Remark
Hence ¢,, — ¢ in PGL,.,(R) for some ¢ with APp = [T]. So Aut(f2) acts
properly.

Notice that the above argument to prove that T = f, also implies that Aut(Q)
is a closed subgroup of Isom(2, Kq). |

5. LIMITS IN THE LOCAL HAUSDORFF TOPOLOGY AND RESCALING

Given a set A € R?, let N(A) denote the e-neighborhood of A with respect to
the Euclidean distance. The Hausdorff distance between two bounded sets A, B is
given by

dg(A,B)=inf{e>0: ACNB) and BCN.(A)}.
Equivalently,
dy (A, B) = max {sup inf ||a — b||,sup inf ||a — b||} .
a€cAbeB beBacA

The Hausdorff distance is a complete metric on the space of compact sets in RY.

The space of closed sets in R? can be given a topology from the local Hausdorff
seminorms. For R > 0 and a set A C R? let A := AN Bg(0). Then define the
local Hausdorff seminorms by

A\ (A, B) = d (AR, BW),

Finally we say that a sequence of open convex sets A,, converges in the local Haus-
dorff topology to an open convex set A if there exists some Ry > 0 such that

d{P (A, A) = 0 for all R > Ry.

Theorem 5.1. Let M be an affine chart of Gr,(RP*9) and suppose Q,, C M is a
sequence of R-proper conver open sets converging to an R-proper convexr open set
Q C M in the local Hausdorff topology. Then

Ko(z,y) = lim Ko, (z,y)
for all x,y € Q uniformly on compact sets of Q2 x €.

We provide the proof of Theorem in Appendix [B]
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Theorem 5.2. Let M be an affine chart of Gr,(RP*T9) and suppose Q C M is
an R-proper open convex subset. Assume in addition that there exist a subgroup
H < Aut(Q) and a compact set K C Q such that H - K = Q.

If there exists a sequence A,, € Aff(M) N PGL,+,(R) such that A, converges
in the local Hausdorff topology to an R-proper open convez set Qc M, then there
exist ny — oo and hy € H such that

¢ = lim A,, hy
k—o0
exists in PGLy44(R) and Q= ¢(Q).

Proof. Fix yg € Q. Then we have Yo € A, for n sufficiently large. Pick h,, € H
and k,, € K such that yo = Ap@nky. Let T, := Ap@, € PGLyy4(R). Then

QO 1= T () = An(Q)

is an R-proper open convex subset and T}, is an isometry (Q, Kq) — (2, Kq,).
By Theorem
KQn — Kﬁ

uniformly on compact sets on (AZ, so we can pass to a subsequence such that T,
converges uniformly on compact sets to an isometry T : (Q, Kq) — (SA), Kg). Since
T is an isometry it is injective. On the other hand since the metrics converge and
closed metric balls are compact we also see that T is onto.

Now we can pick a representative ®, € GL(AP RPT?) of APT,, € PGL(AP RPTY)
such that ||®,| = 1. By passing to a subsequence we can assume that ®,, — &
in End(APRPT?). The set AP End(RPT?) C End(AP RPT?) is closed and so & =
AP¢ for some ¢ € End(RPT?). Moreover ®(x) = T(x) for any = ¢ ker ®. Since
Gr,(RPT9)\ ker @ is an open dense set and (2 is open, this implies that ® is injective
on Gr,(RP*?) \ ker . It follows that ® € GL(AP RP*?) and hence ¢ € GL,4(R).
Finally, we have that ¢ = T on §, so that Q= d(9). O

6. THE GEOMETRY NEAR THE BOUNDARY

For the classical Hilbert metric on a convex divisible domain in real projective
space, there are many connections between the shape of the boundary and the
behavior of the metric (see e.g. [Ben04l, Ben03bl, [KN02|). In a similar spirit, we will
prove some basic results connecting the geometry of Kq with the geometry of 9.

As before, let £ be the set of projective lines ¢ C P(AP RP*9) which are contained
in Gr,(RP).

Definition 6.1. Suppose 2 C Grp(Rp+q) is an open connected set.

(1) Two points z,y € I are adjacent, denoted x ~ y, if either x = y or there
exists a projective line £ € £ such that x,y are contained in a connected
component of the interior of £N 9N in £.

(2) The R-face of x € 99, denoted R F(z), is the set of points y € 90 where
there exists a sequence x = yg,y1,...,yx =y with y; ~ y;41.

(3) A point z € 99 is called an R-extreme point if R F(z) = {z}.

(4) Let Extg(92) C 09 denote the set of R-extreme points of 2.

As the next two results show this relation on the boundary is connected with
the asymptotic geometry of the intrinsic metric.
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Proposition 6.2. Suppose M C Grp(R’”q) is an affine chart and Q C M is an
R-proper open convex set. If x,,y, € Q are sequences such that x, — x € 0 and
Yn — Yy € 0N), and there exists N > 0 such that

lim inf KézN) (s Yn) < 00,

n— oo
then R F(x) = R F(y).
Proof. For each n, choose a sequence x,, = x%o)7 x&”, . ,xﬁ,N) =y, with
E (2) ,.(i+1)
hnrr_l)lgf Z palzy,xy ™) < oo.
0<i<N-1

By passing to subsequences, we can assume that ng) — 2 foreach 1 <7< N—1.
By inducting on N, it therefore suffices to consider the case N = 1 and y = z") so
that

. (1) T
nlggo KQ (Invyn) - nlggo pQ(xnvyn) <00

and x # y. For each n let ¢,, be the projective line in P(AP R’H'q) containing z,, and
Yn. Also let {an,b,} = €, N ON with labeling such that the ordering of the points
along ¢, is given by an,, Tn, Yn, bn. Then

|Zn, = bn| [yn — an|

|20 — an| |yn — bn|”

By passing to a subsequence we can suppose that a,, — a and b, — b. Then by the
hypothesis we must have that a # x and b # y. So z ~ y. O

pﬂ(wna yn) = log

Corollary 6.3. Suppose M C Gr,(RP*?) is an affine chart, Q C M is an R-proper
open convex set, and Aut(Q) acts cocompactly on Q. If x,,y, € Q are sequences
such that x,, = x € 0Q, y, — y € 0Q, and

liminf Ko (zn, yn) < 00,
n—oo

then R F(z) = R F(y).

Proof. By passing to a subsequence we can suppose that

M = sup Kq(Tn,yn) < 00.
neN

For R > 0 and = € Q, let Br(z) denote the ball of radius R and center = with
respect to the metric Kq. Since Aut(Q) acts cocompactly on €2 there exists R > 0
such that

Aut(Q) . BR(.’L'()) =Q.
Let B := By (o) be the ball with center 2y and radius R+ M. By compactness
of B and Proposition we know there exists N > 0 such that

sup KézN)(m,y) < oo
z,yeB

for all z,y € B. But this implies that

sup KS()N) (Tn,yn) < 00
neN

because for any n € N there exists some ¢ € Aut(Q2) such that pz,, oy, € B. O
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Part 2. The automorphism group is non-discrete
7. EXTREME POINTS AND SYMMETRY

7.1. The geometry of extreme points. In this subsection we provide a number
of characterizations of R-extreme points for domains Q C Gr,(R*”) where Aut(Q)
acts cocompactly. But first a few definitions.

Suppose € is a convex set in a vector space and x € 952, then the tangent cone
of Q at x is the set

TCQ:=x+ | Q- 2).
>0
Notice that the sets x +¢(Q2 — z) converge to TC,{ in the local Hausdorff topology
as t — oo.
We will also define natural hypersurfaces in Gr,(RP*9).

Definition 7.1. Given ¢ € Gr,(RP*9) define the hypersurface
Ze = {z € Grp,(R**) 1z n ¢ # (0)}.

Remark 7.2. Tn the case in which p = 1, then Z; C P(R?"!) = Gr;(R?"!) is the
image of ¢ in P(RY™). In particular, if a set © C P(R%) is convex and bounded in
an affine chart then for any = € 9Q there exists & € Grg_1(R%) such that = € Z;
and Ze N Q=0.

In [Zim15], the second author proved that symmetry also implies the existence
of such “supporting hypersurfaces:”

Theorem 7.3. [ZimI5, Theorem 1.12] If Q C Gr,(R?™9) is a bounded connected
open subset of some affine chart and Aut(QY) acts cocompactly on ), then for all
x € 0N there exists £ € Gry(RPT?) such that v € Z¢ and Ze N Q = (.

Henceforth we will only consider the case p = ¢q. With these notations we will
prove the following:

Theorem 7.4. Supposep > 1 and M C Grp(R2p) is an affine chart, Q is a bounded
open convex subset of M, and Aut(Q2) acts cocompactly on Q. If e € I, then the
following are equivalent:

(1) e € O is an R-extreme point,

(2) Z.NQ =10,

(8) T C. is an R-proper cone,

(4) there exist @, € Aut(Q) and representatives @, € GL(APR?*P) such that

Bn — S in End(AP R?P) and Im(S) = e.

Remark 7.5.

(1) The implication (1)=>(3) fails for the symmetric domains B,, , C Gr,(R*?)
when p # ¢, see Remark

(2) The implication (4)=-(1) fails for convex divisible domains in real projective
space. In particular by a result of Benoist [Ben06]: if Q C P(R*) is a convex
divisible domain and x € 91, then there exist ¢, € Aut()) and representa-
tives $, € GL4(R) such that 3, — S in End(R*) and Im(S) = z. However,
there are examples of convex divisible domains in P(R*) whose boundary
contains non-extreme points (see [Ben06], [BDLIS], and [CLM16al).
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Proof. We first show that (1) = (4). Suppose that e € I is an R-extreme point.
Pick a sequence z,, € Q such that x,, — e. Since Aut(f2) acts cocompactly on 2 we
can find R > 0 and ¢, € Aut(£2) such that

Ko(wp, pnwo) < R
for all n > 0. Now for any x € ) we have
KQ((,Onx,xn) S KQ(SOnJ), @nxo) + R= KQ(JT,.’EO) + R

and so by Corollarywe see that @,z — e. Pick representatives 3,, € GL(A? R?)
of APy, such that |, || = 1. By passing to a subsequence we can suppose that @,, —
S in End(A? R?"). Now if 2 € O := Gr,(R*) \ ker S then S(z) = lim, o @na.
Since O is open and dense, we see that 2N O is dense in €. In particular 2 N O
contains a basis of AP R*. However for every z € QN O we have S(z) = e. So
Im(S) =e. So (1) = (4).

We next show that (4) = (2). So suppose there exist ¢,, € Aut(Q) and represen-
tatives @, € GL(A? R?") such that @, — S in End(A? R*) and Im(S) = e. Notice
that if # € O := Gr,(R?) \ ker S then S(x) = lim,, 00 n (). Now similar to the
case of properly convex sets in projective space, we can consider the dual of €2

Q" :={€ € Crp(R*) : Z: N Q = 0}.

Note that, unlike the case of domains in projective space, 2 and * are both subsets
of Gr,(R?"). Since 2 is open, Q* is compact. Moreover since (2 is bounded in an
affine chart Q* has non-empty interior: M = Gr,(R?") \ Z¢ for some ¢ and since Q
is bounded in M we see that 0* contains an open neighborhood of £. In particular,
2* N O is non-empty. But then for n € Q* N O we have e = S(n) = lim,—, 00 ©n(n).
Since Q* is Aut(§2)-invariant we then see that e € Q*. So (4) = (2).

We next show that (2) = (3). So suppose that e € 9Q and Z, N Q = (). We can
assume that

QCM:= { {I;i(p} X e Mw,(]R)}

and e = 0 in M. Then since Z, N ) = () we see that
Qc { [1;1(,3} : det(X) # 0} .

Since (2 is connected, by making an affine transformation, we may assume that

QC {[1;1(”} sdet(X) > 0}.

Then, since TCyf2 is open, we see that

TCod C { {I;i(p} :det(X) > 0} .

Now suppose for a contradiction that TCyf2 is not R-proper. Then by Lemma
and convexity there exists a rank-one endomorphism S such that

Id, | .
(] res) crao

whenever [Id, T]t € TCo2. So
det(T + £S) > 0
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for any [Id,, T]t € TCof2 and t € R. Now
det(T +tS) = det(T) det(Id, +tT'S) = det(T)(1 + t tr(T*S))

since 7715 has rank one. But since TCyf) is open there exists some [Idp To}t €
TCof2 such that tr T, 1S is non-zero. But then

det(To + tS) =0

when t = —(tr T; *S)~!. So we have a contradiction and so (2) = (3).

Finally we show that (3) = (1) by contraposition. If e € 9Q is not an R-
extreme point then 7 C. () contains an entire rank-one line. Since T C. €2 is convex
and open this implies that 7 C. {2 contains an entire rank-one line and so T C. € is
not R-proper. ([

Corollary 7.6. Supposep > 1 and M C Grp(IRQP) is an affine chart, Q is a bounded
open convez subset of M, and Aut(Q) acts cocompactly on Q. Then Extr () C 00
1s closed.

Remark 7.7. This corollary fails for convex divisible domains in real projective
space. In particular by a result of Benoist [Ben06]: if @ C P(R*) is a convex
divisible domain then the extreme points of ) are dense in J€2. However, there
are examples of convex divisible domains in ]P’(R4) whose boundary contains non-
extreme points (see [Ben06], [BDL1S], and [CLM16al).

Proof. By the above proposition, the set of extreme points coincides with
{e€dN:Z,NQ =0}
which is obviously closed. ([l

7.2. Constructing extreme points.

Proposition 7.8. Suppose M C Gr,(RP*?) is an affine chart and Q C M is an
open bounded convex set. Then Extr(Q) spans AP RPT,

Proof. Identify M with M, ,(R). For x € 02 let
Vy =z + Span{v € M, ,(R) : v+ x is adjacent to =} C M, ,(R).

See Definition for the notion of adjacency. Notice that z € 9 is an R-extreme
point if and only if dim V,, = 0.

Now, since rank-one lines in M, ,(R) are mapped to projective lines in P(AP RPT9),
we have the following: if v is a rank-one matrix, ¢t < 0 < s, and a, b, c € P(AP RPT)
are the images of x+tv, x, x4+ sv € M, ,(R) respectively, then the line b is contained
in the span of the lines a and ¢. Thus it is enough to show: for any x € 0 with
dim V,, > 0 there exist a rank-one matrix v € M, ,(R) and ¢ < 0 < s such that
x+tv,x + sv € 0N and

(71) dim Vz+t7j, Vx+s’u < dim VI

Let F, = 022N V,. This is a convex set which has non-empty interior in V..

We claim that V,, C V, for y € F,. Suppose that v+y € V,,, that is v € M, ,(R)
and v + y is adjacent to y. Then there exists € > 0 such that tv +y € 00
for t € (—e,1+ ¢€). Moreover, since y € 9Q NV, there exists 6 > 0 such that
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Az + (1 — Ay € 99 for A € [0,1 + 6]. Then by convexity, there exists ¢; > 0 such

that x + tv € 99 for t € (—ey,€1). Thus z + v € V.. Since y € V,, we then see that
r+v+y—xz)=x+yeV,.

Since v 4+ y € V,, was arbitrary, we then see that V,, C V.

Notice that the above claim implies that if y € 0F,, then dim V, < dim V.

So for x € 90 and dim V, > 0, pick a rank-one matrix v such that x + Rv C V.
Then if

{4+ sv,z+tv} =0F, N (z+Ro)

we have
dim Vw—‘,—tvv Vw+sv < dim Va:a
which establishes Equation (7.1) and thereby completes the proof. O

Suppose that ¢ € PGL4(R). Let € GLg(R) be a representative of ¢ with
det(p) = +1. Next let

AL(p) = Aa(p) > - > Aalp)

be the absolute values of the eigenvalues (counted with multiplicity) of @ (notice
that this does not depend on the choice of p). Let m™*(p) be the size of the
largest Jordan block of i whose corresponding eigenvalue has absolute value A (y).
Next let Ea' (p) C C? be the span of the eigenvectors of % whose eigenvalue have
absolute value Ai(p) and are part of a Jordan block with size m™(¢). Then let
Et(p) = Ef(p) NR™ Since ¢ is a real matrix, the non-real eigenvalues come in
conjugate pairs and so we always have

E{(p) = E*(p) +iE™ (p).

Also define E~(p) = E*(¢71).
Given y € P(RY) let L(p,y) € P(R?) denote the limit points of the sequence
{¢"Yy}nen. With this notation we have the following observation:

Proposition 7.9. Suppose ¢ € PGL4(R) and {¢"}nen C PGL4(R) is unbounded,
then there exists a proper projective subspace P C ]P’(Rd) such that L(p,y) C
[E*(p)] for all y € P(RY) \ P.

Proof. We can write = gJg~! where g € GL4(C) and J is a Jordan matrix. We

can further assume that
_(J1 O
=(5 )

where J; consists of the blocks of J whose eigenvalues have absolute value A1 (y)
and have size m*(¢). Then let

_ md Ji 0
V=R ﬂ(gker(o 0>)

and P = [V] ¢ P(R?). A straightforward calculation then shows that L(p,y) C
[E*(p)] for all y € P(RY)\ P. O
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Corollary 7.10. Suppose ) is an open connected set of Grp(RQP), there exists an
affine chart which contains 2 as a bounded convex set, and Aut(2) acts cocompactly
on Q. If p € Aut(Q) and {¢" }nen C PGLoy(R) is unbounded, then E™(APp) N O
is non-empty and contains an R-extreme point.

Proof. Let P C P(A? R?) be as in the above proposition for APp. Since the set
of R-extreme points of I spans A? R?” there exists an R-extreme point e € 9
such that e ¢ P. Then any limit point of p™e belongs to ET(APg) and is also an
R-extreme point by Corollary [7.6] O

7.3. Finding symmetry. Our goal is now to use Theorems [5.2] and Theorem
to show that for suitable domains €2, the group Aut(f2) is not discrete.

Corollary 7.11. Suppose 2 C Grp(]R2p) is an R-proper open convex set in the
affine chart

M = { [Ifg] X e MM,(R)}

and H < Aut(Q) acts cocompactly on Q. If e = Idp} € 092 is an R-extreme point,

Xo
then there exist h,, € H and t,, — oo such that

o 1d,, 0
o= [(1 —efn) Xy el IdJ fon

exists in PGLgp(R) and o(Q) = TCN. In particular, Q is invariant under the
one-parameter group

1 Id, 0 |.
4 {{(1&)){0 ela,] PERy P
Proof. Let

" 0
¢ (1 — et)XO €t Idp

then

A [Igc] B Lt(x X+ XJ |

So A, € Aff(M) NPGLg,(R) and A;Q converges in the local Hausdorff topology to
TC.Qast— oco. So the corollary follows from Theorem [5.2] and Theorem[7.4 O

Part 3. The automorphism group is simple
8. INITIAL REDUCTION

For the rest of this section suppose p > 1 and M C Grp(Rzp ) is an affine chart,
) C M is a bounded convex open subset of M, and there exists a discrete group
I' < Aut(Q) such that T' acts cocompactly on €. Set G := Aut(2) and let G° be
the connected component of the identity of G.

Warning 8.1. Note that unlike in the introduction, henceforth G does not a priori
denote a connected semisimple Lie group.
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By Corollary we know that G° # 1. The goal of this section is to use the
fact that G° # 1 to obtain that either G is simple and acts transitively on €, or we
are in one of four very constrained situations (Cases (1)-(4) in Theorem [8.2 below).
In Sections [0 and we will prove that Cases (1)-(4) cannot occur.

Theorem 8.2. With the notation above, at least one of the following holds:
(1) A finite-index subgroup of I' has non-trivial centralizer in PGLq,(R).
(2) There exists a nontrivial abelian normal unipotent group U < G such that
I'NU is a cocompact lattice in U.
(3) p =2 and there exists a finite-index subgroup G’ of G such that G' = G° x A
for some discrete group A. Further up to conjugation

GO — H‘g 21] L Ae SLQ(R)}

and
aId2 bIdg . . o
A< {leQ dId2:| s ad bc-l}.
(4) p = 2, G° < G has finite-index and acts transitively on Q, and up to
conjugation
a0 — {[‘zﬁ Zﬂ . A€ SLo(R), ad — be = 1}.

(5) G° is a simple Lie group with trivial center that acts transitively on ).

Since the statement of Theorem may seem unmotivated at first, let us sketch
the argument. First suppose that G° is not semisimple. Let G*°! < G be the
solvable radical of G° (that is, the maximal connected, closed, normal, solvable
subgroup of G°), and let N be the nilpotent radical of G*° (that is, the maximal
connected normal closed nilpotent subgroup of G*°).

Note that N contains the unipotent radical R,(G°) of G® (i.e. all unipotent
elements of G*°!), and hence is an extension

1 = R,(G°) = N = N/R,(G°) — 1.

The group N/R,(G°) is the subgroup of G*°'/R,(G°) whose action on the Lie
algebra v,(g) is unipotent. Let Z be the center of N. We distinguish two cases
depending on whether Z is contained in R, (G):

(1) If Z only consists of unipotent elements, we will show that I" intersects
some normal unipotent subgroup in a lattice. This corresponds to Case (2)
in Theorem [R.2

(2) Otherwise, we show that a finite-index subgroup of T' centralizes some
semisimple torus in the Zariski closure of Z. This corresponds to Case
(1) in Theorem 8.2

Suppose now that GO is semisimple. We want to show G° actually has to be
simple and acts transitively on 2. We do this by using the virtual cohomological
dimension ved(T) of T' (see below for more information). We know that ved(T") =
dim(Q) = p?. Then we relate ved(I') to the structure of GY to show that G has to
have finitely many components, and G° is simple. This latter argument only fails
if p = 2, in which case we obtain very specific information on the structure of G°
and its action on €2 (Cases (3) and (4) in the above Theorem [8.2)).
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We start with the following lemma.

Lemma 8.3. T is a cocompact lattice in G and I'g := T'NG° is a cocompact lattice
in G.

Proof. Since T' acts cocompactly on £ and G acts properly on  (see Proposi-
tion j we see that I' < G is a cocompact lattice. Since G° < G is a connected

component the set I' - G° is closed in G. So I'g\GY is closed in I'\G. Then since
I'\G is compact so is T'o\GP. O

The rest of this section will be devoted to the proof of Theorem [8.2] We will
assume that Cases (1), (2), (3), and (4) do not hold and show that Case (5) occurs.

Lemma 8.4. T°N Z is a cocompact lattice in Z.

Proof. Let G** < G be a semisimple subgroup such that G = G**G*°! is a Levi-
Malcev decomposition of G°. Then let o : G** — Aut(G*°!) be the action of G**
by conjugation on G*°. If ker o has no compact factors in its identity component,
then T N IV is a cocompact lattice in N (see [Genl5, Theorem 1.3.(i)]). In this
case, '’ N Z < Z is a cocompact lattice by [Rag72, Proposition 2.17].

Therefore it suffices to show ker o contains no compact factors. Since ker o < G*
is a normal subgroup, we see that ker ¢ is semisimple. So there is a unique maximal
connected compact normal subgroup Ky in ker 0. Assume for a contradiction that
dim Ky > 0. Then K is also a connected normal subgroup of G** and hence of G°
which is impossible by an argument of Farb and Weinberger [FWO08| Claim II]. Let
us sketch this proof for completeness.

Let K be a maximal compact factor of G°. Since dim Ky > 0 we see that
dim K > 0. Consider the natural quotient map Q — Q/K. Since I' permutes the
maximal compact factors of G, we see that a finite-index subgroup of I normalizes
K. Then it is not hard to see that there is a continuous quasi-isometric inverse €2/
K — Q to this quotient map. Consider the maps induced by the composition

Q- Q/K—Q

on locally finite simplicial homology. On the one hand, since this composition is a
bounded distance from the identity map, the induced map on locally finite simplicial
homology is the identity map. On the other hand, since €2 is the universal cover of
a closed aspherical manifold, there is a fundamental class in top degree. But since
dim K > 0, the image of this fundamental class in H,(2/K) vanishes. This is a
contradiction. For full details, see the proof of Claim II in [FWO0S]. g

Lemma 8.5. G is semisimple.

Proof. As above let N be the nilpotent radical of G°°* and Z the center of N. If
N =1, then G° is semisimple. So suppose for a contradiction that N # 1. Then
Z # 1. Next let C be the Zariski closure of Z in PSLg,(R) and let C° be the
connected component of the identity in C'. Since G normalizes Z it also normalizes
C and C°.

Since Z is abelian so is C°. Then since C? is an abelian real algebraic group, we
can write

C° = Cy5C,,

where C,, is the subset of semisimple elements in C° and C, is the subset of
unipotent elements of C? (see e.g. [Bor91, Theorem 4.7]). By [Bor91, Corollary 4.4]
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both Cy, and C, are actually groups. Since G normalizes C? it also normalizes C
and C,,.

If Cys = 1, then each element of C° is unipotent and thus each element of Z is
unipotent. Thus we are in Case (2), which is a contradiction. Therefore we have
Css # 1. But the normalizer of any semisimple torus T in PGLs,(R) contains the
centralizer of T" with finite-index [Bor91l, Corollary 8.10.2], so we know that a finite-
index subgroup of G centralizes Cs,. Hence we are in Case (1) which contradicts
our initial assumption. Thus GV is semisimple. (]

Lemma 8.6. G° has trivial center.

Proof. Let Z be the center of G°. First, we observe that Z is finite. Indeed, the
center of any connected semisimple linear group is finite (see e.g. [OV94] p. 146]).
We already know that G is connected and semisimple, and GP is linear because it
is a subgroup of the linear group PGLg,(R).

Next we show Z is trivial. Since G normalizes G°, G also normalizes Z. Since Z
is finite, a finite-index subgroup of G centralizes Z. Thus if Z # 1 we are in Case
(1), which has been excluded by assumption. ([l

Next we use an argument of Farb and Weinberger to deduce:

Lemma 8.7. [FWO08| Proposition 3.1] G has a finite-index subgroup G’ such that
G' = GY x A for some discrete group A and T has a finite-index subgroup I such
that TV = Ty x A. Moreover, by possibly passing to a finite-index subgroup of G' we
may assume that A is either trivial or infinite.

Remark 8.8. The above Lemma follows from the “triviality of the extension” part
of the proof of Proposition 3.1 in [FWO08|. This part of their proof only involves
the groups and not the Riemannian metric in the statement of Proposition 3.1. In
particular, this part of the argument adapts to our situation verbatim.

Now let
SL3, (R) = {g € GLg,(R) : det g = +1}.

Then let G be the inverse image of G under the map 7 : SL;tp (R) — PGLg,(R) and

let G be the connected component of the identity of G.
Decompose the representation GO ~ R?? as a direct sum of irreducible represen-
tations of the semisimple group G°:

2p ~ np
(8.1) sz@vp .

Here the direct sum is over nonlsomorphlc irreducible representations p of GY and

» = 0 is the multiplicity of p. Now since G normalizes G° we see that G preserves
each 745

First let us consider the situation that multiple irreducible representations con-
tribute, say p1,...,pr where k > 1. Consider the 1-parameter group {b; : t € R}
where b; acts by e’ on the Vpri" ! factor and by the identity on all other factors.
Then b, is not a scalar matrix, and centralizes G, so we are in Case (1).

Therefore there is only one irreducible representation and R?P = V,! for some
irreducible representation p and some n.

Lemma 8.9. n = 1.
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Proof. Suppose for a contradiction that n > 1. We first claim that p = 2. Let
us now consider the wvirtual cohomological dimension ved(T') of T'. Recall that the
cohomological dimension cd(I") of ' is the supremum of all numbers m such that
H™(T, M) # 0 for some I'-module M (see for instance [Bro94, Chapter VIII] for
more information). We will only need the following properties of c¢d(T'):

(1) cd(T) >0if IT" # 1.

(2) If T acts freely and properly discontinuously on a contractible CTW-complex

X, then ¢d(T") < dim(X), with equality if and only if X/T" is compact.

(3) If A CT, then cd(A) < cd(T).

(4) T =Ty x T'y, then cd(T") < cd(Ty) + cd(T').
The virtual cohomological dimension of I" is then the infimum of cd(A) as A ranges
over finite-index subgroups of I'.

Now write dimV,, = d. Since I'y can be identified with a discrete subgroup of
PGL(V,), we have by Property above

d(d+1)
2

Further, since A commutes with G® and p is an irreducible representation of G°,
we can identify A with a discrete subgroup of PGL,,(R). Therefore

n(n+1)
2
On the other hand ved(T') = dim Q = p? by Property (2) above. Combining this
with Property () and Equations (8.2)) and (8.3), we have
2p? = 2ved(T) < 2 (ved(Ty) + ved(A))
<dd+1)—2+n(n+1)—2
=d*+d+n®+n—4.

(8.2) ved(To) < dim SLg(R)/ SO(d) = ~ 1.

(8.3) ved(A) < dim SL, (R)/SO(n) = —1.

Using that 2p = dn (from the dimension count in R* = V'), we find that

42 2
o< L 4222y
n

S e

The right-hand side is a convex function of n, so that on the interval [2,p], it is

maximal at one of the endpoints. At either endpoint the inequality reduces to
p*—p—-2<0,

which is only possible if p = 2.

Then (n,d) € {(2,2),(1,4),(4,1)}. We assumed that n > 1 and since the repre-
sentation GY < SL(V,,) is injective we must have d > 1. Son =d = 2.

Thus GY is a semisimple Lie group which has a faithful irreducible representation
into SLy(R). Thus G° has to be isomorphic to SLy(R) and p = Id. With respect
to the decomposition R* = V & V we have

G° = {(¢.) € SL(V) x SL(V)}
and hence we are in Case (3) which is a contradiction. O

Since n = 1, we have that G° ~ R? is an irreducible representation. Note that
A centralizes G° in PGLg,(R), and hence any element of GLo,(R) lying over A
has to be scalar by Schur’s Lemma. It follows that A is trivial, so that G’ = G°
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and thus G° has finite-index in G. Then I'y has finite-index in I' and hence acts
cocompactly on Q. Thus ved(Ty) = dim(Q2) = p?.

Lemma 8.10. G° acts transitively on Q.

Proof. Let z € Q be any point and let K, denote its stabilizer in G°. Then K, is a
compact subgroup of G° by Propositionand the G%-orbit X of z is diffeomorphic
to GY/K,. Now let K be a maximal compact subgroup of G* containing K,. Then
I'0\G°/K is a closed aspherical manifold with fundamental group I'g so by Property
of cohomological dimension we have ved(I'g) = dim(GY/K). On the other hand
since K, < K and G°/K, = X C
ved(Tp) = dim(G°/K) < dim(G°/K,)

= dim(X) < dim(Q?)

= VCd(Fo).
We conclude that any dim(X) = dim(Q2), so that X is a codimension 0 closed
submanifold of 2. Connectedness of 2 then implies that X = 2, as desired. O

Remark 8.11. The above proof shows that the stabilizer of any point z € Q has
finite-index in a maximal compact subgroup of Aut((2).

Lemma 8.12. G° is simple.

Proof. Since G has trivial center either G° is simple or G® = G; x G for some
semisimple nontrivial Lie groups G; and Gs.

So suppose that G° 2 G x G. Let G; be the inverse image of G; x {Id} under
the map SLo,(R) — PSLy,(R). Next decompose the representation Gi A R¥ as a
direct sum of irreducible representations of the semisimple group @1:

R?P = @ A

Here the direct sum is over nonisomorphic 1rredu01ble representatlons T of Gl, and
ny > 0 is the multiplicity of 7. Using the fact that G2 centralizes G1 and arguing
as in Lemma we see that p = 2 and R* = V2 for some irreducible representation

7 of G;. So dim V. = 2 and thus G is isomorphic to SLs(R). Applying the same
argument to G5 shows that G is also isomorphic to SLs(R). Up to conjugation,

we have
~ A 0

An easy computation shows that the centralizer of CAv'l is exactly

aIdg bldg . _ ~
{(cIdg dIdg) tad —be = 1} ~ SLy(R).

Since 62 centralizes él and is isomorphic to SLs(R), we must have that

~ aIdQ bIdQ . _
Gz_{(cIdg dIdg)'ad_bC_l}'

Hence we are in Case (4), which is a contradiction. O
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9. THE CENTRALIZER

In this section we prove that Case (1) in Theorem is impossible. For a
subgroup H < PGL,14(R), let
(1) H={h e GL,y4(R): [h] € H,det h = +1},
(2) Cpg = {c € End(RPT?) : ch = he for all h € ﬁ}, and
(3) let C% be the connected component of Id,;, in Ciy N GL,44(R).

Remark 9.1. Note that Cy is the centralizer in End(R*?), and hence is a subal-
gebra of End(RP*?), whereas CY is a subgroup of GL,14(R).

With this notation we will prove the following:

Theorem 9.2. Suppose ) C Grp(RQP) 18 an open set which is convex and bounded
in some affine chart. If T < Aut(Q) is a discrete group that acts cocompactly on
Q, then CIQ‘ = R>0 Idgp.

9.1. The centralizer in the general case. We begin by proving the following
(which holds for any Grassmannian):

Theorem 9.3. Suppose Q C Gr,(RPT9) is an open R-proper set that is conver in
some affine chart. If H < Aut(Q) acts cocompactly on Q, then C% < Aut(Q) and
there is a decomposition RPtY = @™ | V; such that

Cr = PRIdy, .
i=1
Remark 9.4. In the special case where p = 1 the above Theorem is due to Vey [Vey 70,
Theorem 5]. In both proofs the main step is to show that the elements of C% are
real diagonalizable, however the methods for accomplishing this are very different.

For the rest of this subsection assume that Q C Gr,(RPT9) and H < Aut(Q)
satisfy the hypothesis of Theorem [0.3]

Lemma 9.5. With the notation above, C% < Aut(Q)

Proof. Vey [VeyT0}, pg. 645] proved this lemma in the case when p = 1 and his proof
works verbatim here: Fix a compact set K C € such that HK = €. Then there
exists a neighborhood O of Id,4, in CY such that O generates C% and uK C Q
for all u € O. Without loss of generality, we can assume that O is symmetric, i.e.
for any u € O, we have u~! € O. Then for u € O, we have

uQ=uHK = HuK C HQ = Q.

Since O is symmetric we also see that u='Q C Q. Thus u restricts to a diffeo-
morphism Q@ — Q and u € Aut(2). Since O generates C% we then see that
CY% < Aut(9Q). O

Lemma 9.6. With the notation above, if c € C% then

sup Kq(cz, ) < co.
e

Proof. Fix some g € €. Since H acts cocompactly on 2, there exists R > 0 such
that

U BR(h:L‘()) =QO.

heH
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If x € Q pick h € H such that Kq(z, hzo) < R. Then
Kq(ex,z) < Kq(cx, chxg) + Ko(chzo, hxo) + Kao(hzo, x)
< Kq(z, hzo) + Ka(czo,x0) + R
< 2R+ Kq(cxo, x0).
O
Lemma 9.7. With the notation above, if ¢ € CY then c fizes every R-extreme
point of 1.

Proof. For an R-extreme point = € 0f2, choose points p, €  with p, — =. By
Lemma [9.6] we have

lim sup dg (Cpn7p7L) < 0.

n—roo

Then by Corollary we have ¢p,, — z. Since c¢ acts continuously on Grp(R2p )
and p, — z, we must have that cx = . (I

We will need the following elementary facts.

Lemma 9.8. Letp,q > 0. Then the homomorphism AP : GL,4,(R) — GL(AP RPT9)

(i) maps unipotents to unipotents and semisimple elements to semisimple ele-
ments, and
(i) has kernel given by {Idp44} if p is odd and {£1Id,4,} if p is even.

Proof. Assertion (i) is obvious from the definition of AP. To see (ii), consider some
g € GLp4q(R) with APg = 1. Let Aq,..., A\ptq be the eigenvalues of g (listed with
multiplicity). Then the eigenvalues of APg are exactly given by the product of p
eigenvalues of g, i.e. A; ---\;, for any choice of 1 <y < -+ <ip < p+q. We

claim that Ay = Ap = -+ = Ap14. To see this fix 1 < 4,5 < p+ ¢ distinct and then
fix some 41, ...,%p—1 such that ¢,5,41,...,7,—1 are all distinct. Since APg =1, we
have

Aidiy Ay = 1=, A,
so that A\; = A;. Since 7, j were arbitrary, we then have Ay = Ay =--- = Ay 4. So

A=Ay dp = 1

In addition, A; is real, so it follows that A\ € {—1,1}. We conclude that g =
+1Idy4g O

Lemma 9.9. With the notation above, every ¢ € C% is semisimple and C% is
abelian.

Proof. Fix a basis vy,...,vp of AP RPT? such that each [v;] is an R-extreme point
of  (this is possible by Proposition . Then for any ¢ € CY%, each v; is an
eigenvector of APc and so APc is diagonalizable with respect to the basis vy, ..., vp
of AP RPF?. Hence APCY, is an abelian group.

Now since APCY is an abelian group, we see that AP[C%,C%] = 1. Then, since
ker AP C {£1d,;,}, we see that [C%,C%] C {£1d,4,}. But since CY% is connected,
[C%, CY%] is connected and hence must be trivial. We conclude that CY% is abelian.

Next, we claim that any ¢ € CY is semisimple. If ¢ = su is the Jordan de-
composition of ¢ then APc = (APs)(APu) and by uniqueness this is the Jordan
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decomposition of APc. It follows that APu = 1, and hence u = 1. We conclude that
¢ = s is semisimple. ([

Lemma 9.10. With the notation above, every c € C% has all real eigenvalues.

Let us comment briefly on the strategy of the proof of Lemmal[9.10| before carrying
out the algebraic manipulations. Notice that the proof of Lemma [9.9] implies that
if ¢ € CY%, then APc has all real eigenvalues. Therefore the product of any p
distinct eigenvalues of ¢ (counted with multiplicity) is real. Unfortunately this does
not directly imply that the eigenvalues of ¢ are real; for example if g € GL4(R)
has eigenvalues +i, each with multiplicitly 2, then A%g has eigenvalues £1. The
strategy in the proof of Lemma[0.10]is to argue by contradiction, i.e. assume there
exists some element ¢ € C% which has a non-real eigenvalue and then use ¢ to
construct some other ¢’ € C% where APc’ has a non-real eigenvalue.

Proof. Forn € N, A > 0, and 0 € [0, 27) let E,, (), 0) be the 2n-by-2n block diagonal
matrix whose blocks are

Acosf —Asinf

Asinf  Acosf )’

Now suppose for a contradiction that there exists some ¢ € C% with a non-
real eigenvalue. Then there exist g € SLp4q(R); n1,...,n6 € N; Aq,..., A > 0;
01,...,0. €0,2m); and ppi1, ..., pr € R such that

E,, (A1,61)

Enr (>\r; er) —1
Hr41 Idnr,»+1 ’

Kk Idnk

We can further assume that the pairs (A, 6;) are all distinct and the u; are all
distinct. Then we have
Ay
H<{g g7 A; € GL,,,(R)
Ak
Which implies that

g En, (A.0) g NI ERY <CY.
oo, !

Then it is easy to construct some ¢’ € CY% such that APc¢/ has a non-real eigenvalue.
So we have a contradiction. O

Lemma 9.11. With the notation above, there is a decomposition RPTY = @m V;
such that

CHzéRIdw.

i=1
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Proof. Since CY is abelian and every element in CY is semisimple with all real

eigenvalues, there exist some g € SLy44(R) and nq,...,n; € N such that
p Idn,
C% <<y g Yo, e >0
ok Ids,
We may further assume that for every 1 < i < j < k there exists ¢ € C% such that
pa Idy,
c=g g
e Id,
and p; # pj. Then we have
Ay
H<<g g ' A; € GL,,(R)
Ay
and hence
M1 Idm
C%: g g g, >0
e Idy,
Now if X € Cpy, then there exists some ¢ € R such that Id, 4, +¢tX € CY. Hence
p Idp,
Cu=4y9 g ipr,.. e €R
pue Id
which implies the lemma. ([

9.2. The centralizer in Grp(R2p). We now specialize to the case in which p = ¢
and prove Theorem We begin by showing that we can assume that €2 is a cone
in some affine chart.

Proposition 9.12. Suppose Q C Grp(Rp+q) is an open set which is conver and
bounded in some affine chart. If H < Aut(Q) acts cocompactly on Q and C% #
R 1dgy, then there exists ¢ € PGLg,(R) such that

PQCM= {[Iip] : X € M,,},,(R)}

and p§) is a convex cone in M based at 0. Moreover we can select ¢ such that either

t
0 . (& Idp 0 .
CWHW_1{< 0 esldp .S,th .

or Oc?:ngl contains the subgroup

etIde 0 .
{( 0 e 1d,_, :s5,teR

for some 0 < £ < p.
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Remark 9.13. By Corollary there exists ¢ € GLg,(R) such that ¢Q C M and
©§) is a convex cone in M based at 0. The key part of the proposition is that we

can pick ¢ such that the centralizer C, -1 has a subgroup of a particularly nice
form.

Proof. We can assume that € is a convex bounded subset of M. Throughout the
argument we will replace € by translates of the form

A 0
[ - C} 0.
This transformation preserves the affine chart M and acts on M by affine transfor-

mations.
By Theorem there exist gg € GL2y(R) and 0 < ¢ < p such that

L 6t1dp+g 0 -1 . 0
T.—{g0< 0 e 1d,_g gy :s,teR, <Ch.

Notice that we can choose £ > 0 except when

et1d 0 _
C?—I{go< Op sld) ! S,tGR}.

So in the case when ¢ = 0 we can also assume that C%, =T
Now let W := go Span{es,...,ep1¢}. Notice that hW = W for all h € H. We
claim that there exists an R-extreme point e of 2 in Gr,(WW). Consider some

€t Idp+g 0 -1
CgO( 0 €SIdp_¢ 90 el

with et > e*. Then ET(APc) N Gr,(R*) C Gr,(W) and by Corollary there is
an R-extreme point e of Q in E*(APc) NI C Gry(W).
Now by replacing € with an affine translate we can assume that

[

which implies that Span{es,...,e,} C W. By construction, if ¢ € T then a|lw =
e Idy, for some t € R. So any a € T can be written as

_ (e'ld, B
“=\ o0 cC

for some t € R and B, C € GL,(R).
Since e is an extreme point, by Corollary there exist t, — oo and h,, € H

such that
s Id, 0
“p_nhiﬂo[o et"Id]h”

in PGLy,(R) and ¢(2) = T Co Q. Let 92 € GLg,(R) be a representative of ¢ and
for each n € N, choose a representative h,, € GL2p (R) of h,, such that

0= lm, < tn Id )

in GLgp (R)
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Then if
e'ld, B
a= ( 0 C’) eT
we have
. (14, 0 \+ (etld, B\~_,(Id, 0
pay _nlinéo<o enld,) 0" o)t o e,

g (0 (€1, BY(1d, 0
n—00 0 eln Idp 0 C 0 e tn Idp

_(e'ld, 0
- 0 c)

In the second equality we used that a € C.
Then since T is abelian, we can find some go € GL,(R) such that if

_(Id, O
g—(o 90)’

t
~ ~N—1 e Idp+£ 0 .
9¢T(99)"" = {( 0 e, ) StER)

So replacing ¢ by ge (and hence replacing @ by g@) we can assume

t
~pa—1 € Idp+,€ 0 .
QDTSD _{< 0 esIdp_g S,tER .

Since pTp~1 < CgHw_l this completes the proof. O

then

Proof of Theorem[9.3. By Proposition [0.12] we can assume that
Id
QCM:{{XP} :XEMW(]R)}
is a convex cone in M based at 0, and that C2 contains the subgroup

BtIdp+g 0 .
{( 0 e 1d,_g :s,teR

for some 0 < ¢ < p. Then

r< { {6‘ g] . A€ GL,(R),B e GLP_Z(R)} .

Throughout the argument we will write a matrix X € M, ,(R) as

<= (%)

where X, € Mgvp(R) and X5 € Mp_g,p(R). Let

Id, Id,
Oy = 0 | : there exists X; such that [ X;| € Q
X2 X2

Lemma 9.14. Q5 is a proper convex cone in M, i.e. Qo does not contain any
affine lines.
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Proof. Since ()5 is open and convex, it is easy to see that
{z+tv:t e R} CQy for some z € Ny & {x+tv:te€R} CQy forall z € Q.

Hence Q5 contains an affine line if and only if there exists some nonzero v € M such
that

d, 0 0
0 Id, 0 | eAut().
v 0 Idp_g

Thus to complete the proof, it suffices to show that

Id 0
{Idgp} = { { }T;‘f‘f Idpe:| 1Y € Mp_&p_,_g(R)} N Aut(9Q).

So suppose that

— |Tdpre 0
g:= [ v Idp_g] € Aut(2)

for some Y € M,_¢ p+¢(R). Since I is a cocompact lattice in Aut(f2), there exist

A, O
Yn = { 0 BJ el
such that {v,, ¢"}» is bounded in PGL5,(R). By picking representatives of -y, and
g™ in GLg,(R) correctly we can assume that

Ay 0\ (Idpy 0\ [ Ay O
0 B,)\ny 1d,,) " \nB.,Y B,

is a bounded sequence in GLg,(R). This implies {B,,},, and {nB,Y },, are bounded
sequences in GL,_¢(R) and M,_¢ ,+¢(R) respectively. Therefore we must have
Y =0, as desired. ([

Since Proposition [9.12] yields different conclusions depending on whether ¢ = 0
or £ > 0, we will consider these two situations separately below.

Case 1: First suppose that £ = 0. Then 2 = s is a proper convex cone and by
Proposition [9.12 we may assume that

¢
o J(e'ld, 0 .
C’F—{< 0 e 1d, :s,teRp.

r< {[‘g g] :A,BeGLp(R)}.

So I' acts by linear transformations on 2. We will now use the theory of linear
automorphisms of a proper convex cone to establish a contradiction.
Define a homomorphism

Then

o : {[A 0] € PGLyy(R) : A, B € GLP(R)} ~ GL(M)

0 B
@([‘g g]>(X):BXA‘1.

Notice that ® is injective and well-defined.

by
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Then A := ®(T") acts cocompactly on Q@ C M. Let T7 be the Zariski closure of
I' in PGLg,(R) and A7 the Zariski closure of A in GL(M). Then

o (fz> =17

By possibly passing to a finite-index subgroup we can assume that fz is connected
in the Zariski topology.

Recall that a convex cone C C V in a real finite-dimensional vector space V is
called reducible if there exist a pair of proper subspaces V; C V and convex cones
C;CcVifori=1,2suchthat V=V, & V5 and C =C;+Cs. A convex cone C C V
is called irreducible if it is not reducible.

Let Cy < GL(M) denote the centralizer of A in GL(M). By a result of Vey [Vey70|
Theorem 5] either € is an irreducible cone and Cp = R*Idy or dimCy > 1.
By [Ben03al, Theorem 1.1], we see that C < 7. Now if [CP] is the image of CY
in PGLy,(R) we see that

®~1(Cy) C [Cr]-

Since dim[CP] = 1, so we see that dim Cy = 1. Thus  is an irreducible cone. Then
by [Vey70, Theorem 3] (see also [Ben03a]) there exists a simple group H < GL(M)
such that

A7 = (R*1d)H.

SoT7 ~R* xH.
Now consider the projections

T, T fz — PGL,(R)

(8 ) -ame((f s

. . —Z
Since H is simple, we see that kerm; =" or

given by

_ []et1d, 0O )
ker m; = {{ 0 eSIdp] € PGLy,(R) .s,tER}.

Since
ker(my x m2) = {[et(I)dp es?dp} € PGLy,(R) : s,t € R}
we must have that ker m; # T7 for some i € {1,2} . Then we see that
mo® ' H— PGL,(R)
is an injection and thus we obtain an injective homomorphism
7 < R x PGL,(R).
But then

p* = dim(Q2) = ved(T) < 1 + dim(SL,(R)/SO(p)) = @ = %pZ + %p < p?

which is a contradiction.
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Case 2: Suppose that Cf contains the subgroup

etIde 0 .
{( 0 e 1d,_y :s5,teR

for some 0 < £ < p.

Let
Id, 1d,
0= X1 | : there exists X5 such that | X, | € Q
0 X5

Lemma 9.15. Q = Q; + Q5.

Proof. By construction

QcC Q1+ Qy
Now
Id Id
(Idf’“ o ) Xi| = | X1
0 € Idp,g X, e Xo

So by sending s — —oo we see that
Q> 1-
On the other hand,

Id, 0 Id, ¢ 0 I, 1d,
0 e*Id 0 ¢eId X = etk
P p—L X, X,

So sending s — oo we see that
Q20
Then if X; € Q; and X5 € Q, we have

1 1
X1+ Xy = 5(2X1) + 5(2X2) e Q.

Thus Q = Q1 + Qo which by convexity implies that

Q=0+ Q.
O
Now if v € I then we can write
Ay Ay O
’}/ = A3 A4 0
0O 0 B

for some A; € M, ,(R), Ay € M, ,(R), A3 € My,(R), Ay € My (R), and B €
GL,_¢(R). With this decomposition

A A, 0] [Id, 1d,
As Ag O - |X1| = |(As+ AsX1) (A + A X))t
0 0 B Xs BXy(Ar 4+ A2 X))t
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Now by identifying M,_;,(R) with R?~97 we can view €3 as a convex subset
of P(RP=YPF1) Let e be an extreme point of Qy in P(RP~IPH1) \ RP=OPFHL Fix
a sequence of points y,, € 23 which converges to e in P(R(p_e)p"‘l)

Next fix some zg € €7 and consider the sequence

Id,
zn= | xo | € Q.
y’!l
where we view 2o € M ,(R) and y, € M,_¢,(R).

Since I' acts cocompactly on €2, there exist v, € I' and a compact subset K of
Q such that

Yotz € K.
Suppose
A Al o
= | [l a0
0 0 B™
Now let

GL(€22) =A{T € GL(Mp—¢p(R)) : T(Q22) = 2o}

Since Q2 C Mp_4,(R) is a proper convex cone, the Hilbert metric Hq, is a complete
GL(9)-invariant metric on Q9. Moreover, since 2 = Q; + s we see that the linear
map

To(X) = BMX (A" + Al )
is in GL(£22) for all n > 0, where we again view zo € Mp_;,(R). So there exists
R > 0 such that
Ha, (yn, B yo (AT + A5V0) 1) < R

for all n > 0. Since y,, converges to an extreme point of Qs we see that [T,] €
P(End(M,_, ,(R))) converges to some T, € P(End(M,_,,(R))) and rank T, =1
(see either Vey [Vey70, Lemma 4] or Theorem [7.4] above).

Now if UYL) > > Ul(fi)e are the singular values of B and ,ugn) > > ué”)

are the singular values of (A(ln) + Aén)xo)*l then T;, has singular values

{oMplm 1<i<p-6,1<5<p)

Then since [T},] = Too and rank T, = 1 we must have
o
B S ()
n— 00 o, :u‘j
forall 1 <i<p—1¢,1<j<pwith (i,5) # (1,1).
In particular,

=00

L) ()
Jim 3™ /s = o0

So we will finish the proof by establishing the following:
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Lemma 9.16.
(9.1) lim sup ugn)/ugn) < 00
n—oo
Proof. Now view 0y as an open subset of Gr,(V) where V' = Span{es,...,epte}.

By construction €2 is an R-proper convex open subset of some affine chart of
Grp(V). Thus Kq, is a proper metric and there exists R; > 0 such that

Ko, (z0, (AY" + AV 20) (ATY + ASV20)"1) < Ry

{

is relatively compact in PGL(V). So we can pass to a subsequence and pick repre-

sentatives such that
A A (A A
A A Az Ay

in GL(V). Now we claim that (A1 + Asxg) is an invertible matrix. Suppose this is
not the case. Then for each n we can find a unit eigenvector v,, € C? such that

So the set
Agn) A(2n)

‘n € N} C PGL(V)

(Agn) + Aén)mo)vn —0

Since (Ag”) + Afln)xo)(Ag") + Ag")xo)*l stays within a compact subset of s, we
must have that (Agn) + Afln)mo)vn — 0. Then we can pass to a subsequence such
that v,, — v. We have

om i () A (o Y= (4 ) ()
n— o0 Agﬂ) Ain) ToUp A3 A4 qov ’

which contradicts the fact that

A A
( A; Ai)eGLW(R).

So (A1 + Asqo) is an invertible matrix. But this implies that there exists C' > 0
such that

{1 1< < p} € [1/C,C]
which implies Equation (9.1).

10. UNIPOTENT SUBGROUPS

In this section we show that Case (2) of Theorem is impossible.

Theorem 10.1. Suppose Q) C Grp(RQP) is an open set which is bounded and convex
in some affine chart. If T < Aut(Q) is a discrete group which acts cocompactly on (2,
then there does not exist a nontrivial abelian normal unipotent group U < Aut(fQ)
such that T NU is a cocompact lattice in U.
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For the rest of the section suppose Q C Gr,(R*) and I' < Aut(Q) satisfy the
hypothesis of Theorem Assume for a contradiction that there exists a non-
trivial abelian normal unipotent group U < Aut(£2) such that 'NU is a cocompact
lattice in U.

Since I’ is finitely generated, by passing to a finite-index subgroup we can assume
that ' is torsion-free. Then, since I" acts properly on €2, we see that I' acts freely
on €. Then, using the fact that IT'\Q is compact, we see that

(10.1) inf  Kq(yz,z) > 0.
yel',zeQd

The basic idea of the following argument is that if w € U N T, then the translation
distance

inf Kq(uz,x)
€N

should be zero, which then implies that U NT" = 1. This approach is motivated by
Lemma 2.8 in [Ben06] and Proposition 2.13 in [CLTI5].
The group APU < PGL(APR?P) is also unipotent so the set

E; = {v € P(A\PR??) : (APu)v = v for all u € U}

is non-empty. Note that APU can be conjugated such that it is upper triangular.
Since U N T is a lattice in U, we can choose ug € U N T such that its Jordan
decomposition is generic among elements of U, that is to say

E; = {v € P(A\PR?P) : (APug)v = v}.
Then with the notation of Proposition
E+(/\pUQ) Cc Eq

and by Corollary there exists an R-extreme point e € ET(APug) N ON.
Now suppose that 2 is a bounded convex open set in the affine chart

M = { {Ifg} X MM,(R)} .

Without loss of generality we can assume e = 0 in this affine chart. Then by
Corollary [7.11] there exist v, € I' and ¢,, — oo such that

g Id, 0
PN 0 etnId,| T
exists in PGLg,(R) and ¢ C M is an R-proper convex open cone based at 0. In
particular, Aut(¢€2) contains the one-parameter subgroup

W4, o
W= etld,|

_ [, 0
mT o etnld,)

Now if

then
ont(e) =, (e) € v "EL Ny L ET (APug) = By N EY (AP, ugyn)
SO

onl(e) € By N (uueU E+(Apu))
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so sending n — oo we see that
o 1 (e) € By NUuer ET(APu).
And thus

e € (E1) NUyepup-1 ET(APu).

In particular, since e = Span{es,...,e,} C ¢(E1), we have
eUp™t < {[61 g] :A,B,C e Mpvp(R)}.

Lemma 10.2. If

Id, X 1
v eve
then X = 0.
L . Id, X 1
Proof. Suppose for a contradiction that there exists u = 0 1d € oUp
P

with X # 0. We claim there exist ny — oo and v, € o(I' N U)p~! such that
vglu"’“ — Idgy. Indeed, consider the group A := (p(I'NU)ep~ 1, u). If A is discrete,
some power of u belongs to p(I' N U)p~L, in which case the claim obviously holds.
If A is not discrete, we can find ’yk_lu"k = A, € A such that Ay — Idg,. Further it
is clear that nj; — oo, for otherwise Ag lie in a union of finitely many translates of
o(T'NU)p~ 1, which is a discrete set. This proves the claim.

So let yx € (T NU)p~! and ny — oo such that fyk_lu"k — Idy,. By picking
representatives correctly we can assume that

_ |Ar By
and

At —ATBE (Id, X\ (ALY AL X — A'By (1 0
0 cyt 0 Id, ) \ 0 o 0 Id,

in GLgp(R). So Ap — Id, and Cj — Id,. But then there exist ¢, — oo such that
), Vea—t, — ldg,. But then for any p € ¢Q

lim Koo(yka—,p,a—y,p) = lim Keo(ay, vea—y,p,p) =0

k—o0 k—o0
which contradicts Equation (10.1). O
Lemma 10.3.

_ A 0
eUp™ ! < {[0 B] :A, B¢ GLP(R)}.
Proof. Suppose for a contradiction that there exists
A C _1
U = {0 B} c Uy
with C # 0.
Then

A 0
I I 1 —1
V=[5 B| =l o
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and so
Id, A‘lC} N1 1
=(u) "uepU
{ 0 14, |~ pUyp
which we just showed is impossible. O

Lemma 10.4. Ifu € pUgp™! is non-trivial then
E*(APu) N Gr,p(R?P) C Gr,(R?) \ M,

Proof. Suppose u = [A 0

0 B} . Then both A, B are unipotent and

w 1] [ 14
CUlx | T BrxAT

Since both B and A are unipotent, for a generic X € M, ,(R) we have
lim [[B"XA™"| = .

m— 00
Which implies that E*(APu) N Gr,(R*?) C Gr,(R*) \ M. O
Now we have a contradiction because

e € Grpy(R?) NUye o1 BF(APu) C Gry(R*) \ M

and e € M.

11. WHEN p =2
In this section we show that Cases (3) and (4) of Theorem are impossible.

Theorem 11.1. Suppose Q C Gry(R*) is a bounded convex open subset of some
affine chart of Gra(R*) and there exists a discrete group T' < Aut(Q) such that T\Q
is compact. Then the connected component of the identity in Aut(Q) is a simple
Lie group with trivial center that acts transitively on €.

For the rest of the section let © C Gry(R*) and I' < Aut(Q) be as in the
hypothesis of Theorem As in Section |8 let G := Aut(Q2) and let G° be the
connected component of the identity of G.

Define the subgroups
A 0
Gy :—{[0 A} :AGSLQ(R)}

L aId2 bId2 . _ _
Gy '_{[cldg dIdJ sad bc-l}.

By Theorem [8.2] we may assume that either

(1) G° is a simple Lie group with trivial center that acts transitively on Q, or

(2) there exists a cocompact lattice A < G5 such that Gy x A has finite-index
in Aut(Q2), or

(3) Gy x G4 has finite-index in Aut(2) and acts transitively on .

and

Lemma 11.2. With the notation above, Case (2) cannot occur.
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Proof. Suppose not. Then there exists a cocompact lattice A < G2 such that
G1 x A has finite-index in Aut(€2). By possibly changing I', we may also assume
that I' = I'; x A for some cocompact lattice I'y < Gj.

For a subgroup H < Aut(2) let £L(H) denote the set of points z € 90 where
there exist some y € Q and sequence h, € H such that h,y — z. Recall that
Extgr (Q) C 0 is the set of R-extreme points of 2. Then define

Extgr(H) := L(H) NExtg(9).

Let eq, ... eq be the standard basis of R*. Then a direct computation (using Part
(4) of Theorem shows that

Extr(G1) = {[(cae1 + Be2) A (ces + Beq)] : a, B € R}
and

Extr(A) C {[(aer + Bes) A (aezx + Beq)] : o, 5 € R}

This description implies that Extr(G1) and Extg (A) are disjoint and I'-invariant
sets. Moreover since A < (G5 is a cocompact lattice there exists some A € A such
that A2) has a unique eigenvalue of maximum absolute value (see [Pra94]). Then
part (4) of Theorem implies that Extg (A) # 0. So suppose that e € Extg (A).

Now up to a projective isomorphism we can assume that {2 is a convex subset of
the affine chart

M = { F;Q] X € MM(R)} :

and e = [Idg O}t € 02. Then by Corollary there exist v, € I" and ¢, = oo
such that

g |20
PR 00 eteldy| ™

exists in PGL4(R) and () = TC.Q. In particular, Q is invariant under the

one-parameter group
Id 0
-1 P .
") {[0 etIdJ.teR}go.

This implies that ¢~!(e) € Extg (G1). But

Vo sz . IdJ e =1, e C Extr(A)
and thus
0 1(e) € Extr(G1) NExtg(A).
This is a contradiction. (]

We rule out Case (3) above by proving the following;:
Lemma 11.3. With the notation above, Case (3) cannot occur.

Proof. Suppose not, then G1 X G has finite-index in Aut(Q2). By possibly changing
I', we may assume that I' = I'y x I's for some cocompact lattices I'y < G; and
Fg S GQ.
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Define the subgroups

Ky = H*S‘ 2] :AGSO(Q)}

aId2 bId2 a b
K2 = {LIdQ dIdJ : (c d) € SO(Z)}'

Then K; x Ky < G; X (G2 is a maximal compact connected subgroup. Moreover
the action of K; x Ky on GrQ(R4) has no fixed points.

Next let K, < Aut(Q2) be the connected component of the stabilizer of some
x € Q. Since Aut(Q) acts properly on Q (see Proposition |4.8)), K, is a compact
subgroup. Moreover, since G = G x G, we see that K, < Gy x G. Thus, since
maximal compact subgroups are conjugate in semisimple Lie groups, there exists
some g € G1 X G5 such that

and

gK.g7!' < K| x Ks.
But dim(K; x Ks) = 2. Moreover
6 — dim(K,) = dim(G; x Go/K,) < dim(Q2) =4

so dim K, > 2. Thus gK,¢g ! = K; x K,. This contradicts the fact that K; x K,
has no fixed points in Gra(R?). O

12. FINISHING THE PROOF OF THEOREM [L.3]

Theorem [8:2] Theorem [9.2] Theorem and Theorem reduce the proof
of Theorem [I.3] to the following:

Theorem 12.1. Suppose p > 1 and Q C Gr,(R??) is a bounded convex open subset
of some affine chart of Cr,(R*). If the connected component of the identity of
Aut(Q) is a simple Lie group with trivial center which acts transitively on Q, then
2 is projectively isomorphic to By p.

For the rest of the section suppose that ) satisfies the hypothesis of Theo-
rem As in Section [8] let G := Aut(Q2) and let G° be the connected component
of the identity of G. Also let e1,..., ez € R? be the standard basis.

Throughout the argument we will replace 2 with translates g2 for some g €
PGLo,(R). This will have the effect of replacing G with gGg~!.

Fix some zg € Q and let K < G° be the identity component of the stabilizer
of zg. By Remark K is a finite-index subgroup of some maximal compact
subgroup of G°. Moreover, since K is compact, by translating { we may assume
that K < PSO(2p). Then since PSO(2p) acts transitively on Gr,(R*) we can
translate Q and assume that g = [e1 A --- A ep]. Then using the fact that K is

connected
A 0
KS{[O B].A,BESO(p)}.

In particular, dim(K) < p(p — 1).
Now let rankg (G?) be the real rank of G°.

Lemma 12.2. With the notation above, rankR(GO) > p.
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Proof. Using the Cartan decomposition, we see there exists a connected abelian
group A < G° such that dim(A) = rankg(G°) and KAK = G°. In particular, in
the matrix model of Gr,(R*")

Q= KAK - [Idp] — KA. Pdp} .
0 0
Thus we must have
(12.1) dim(K) + dim(A) > dim(Q) = p?.
Since dim(K) < p(p — 1) we then have
rankg (G°) = dim(4) > p.

Lemma 12.3. With the notation above, G° is isomorphic to PSO(p, p).

Proof. Now
dim (G°/K) = dim(Q2) = p?
and
rankg (G°) > p.

In particular

rankg (G?) > /dim (G°/K).

The only two simple Lie groups of non-compact type and with trivial center with
this property are PSLg11(R) for d > 3 and PSO(d, d) for d > 2 (see the classification
of simple Lie groups in [Hel78, Chapter X]).

If GO is isomorphic to PSLgy1(R) then K is isomorphic to PSO(d + 1). In
particular K is a simple Lie group and
d(d+1)
—

dim K =

Next consider the natural projections,
71,2 : K — PSO(p)

(8 8))-smin([§ 5)-

Now since K is simple either (m x72) : K — PSO(p) x PSO(p) is trivial or injective.

But
Id, —Id,,
ker(m x ma) < {Id?pa { —Idp} ’ [ Idzj }

so m X me is injective. Thus at least one m; has non-trivial image. Then by the
simplicity of K we see that K = m;(K) < PSO(p). So

given by

1
ding%

and so
d(d+1) <p(p—1).
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Thus d < p+ 1. But then we have a contradiction, because by Equation (12.1]), we

have

(p—1) _p*+p
2 2

-1
p2grank(GO)—i-dim(K)gd—i—%gp—i—l—i—p +1

which is only true when p = 2. Then d =p+ 1 = 3, but
dim PSL4(R)/ PSO(4) =9 # 4 = dimQ

so this case is impossible.
Thus we must have that G is isomorphic to PSO(p, p). O

Now the inclusion GY < PGLs,(R) induces a representation ¢ : PSO(p,p) —
PGLs,(R). Notice that replacing Q with g for some g € PGLg,(R) has the effect
of replacing ¢ with Ad(g) o ¢.

At this point there is a number of ways to deduce that this representation
is conjugate to the standard inclusion, but we will use the representation the-
ory of SO(2p,C) because it is appears explicitly in standard references (for in-
stance [FHO1]).

Now since K has finite-index in a maximal compact subgroup of G° = PSO(p, p)

and
Kg{[gl Jg] :A,BESO(p)}.

K:{[g‘ g] :A,BeSO(p)}.

Then since maximal compact subgroups are conjugate in G° we may translate 2
to assume that

so we see that

¢(P(SO(p) x 5O(p))) = P(SO(p) x SO(p))-

Now if K1 = P(SO(p)x{Id,}) and K2 = P(SO(p)x{1d,}) then, using the simplicity
of K7, K3 and the fact that ¢(K7), p(K2) commute, we see that

{6(K1), 9(K2)} = { K1, Ka}.

So by translating 2 we may assume that ¢(K;) = Ky and ¢(K3) = Ky. Now each
K; is isomorphic to SO(p).

It is well-known that any automorphism of SO(p) is given by conjugation by
some element of O(p) (e.g. because such an automorphism is determined by the
automorphism of the Dynkin diagram). Therefore by translating €2, we can assume
that ¢(k) =k for all k € K1 U K>.

Now let d(¢) : so(p,p) — slap(R) be the corresponding Lie algebra representa-
tion. We can complexify to obtain a representation d(¢) : so(2p,C) — sly,(C).
But then by the classification of irreducible representations of SO(2p,C) (see for
instance [FH9I, Chapter 19]) we see that there exists g € SLg,(C) such that

Ad(g)d(¢) =

where ¢ : 50(2p, C) < sly,(C) is the standard inclusion representation. Since

P05 s 9)-(5 2)
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for all X1, X € so(p) it is easy to see that

_ (ald, 0
9= 0o a1,

A B -1 _ A O[2B
9\c¢ p)? “\a2c D
and gd(¢)(so(p,p))g~! = so(p,p). So a? € R. So either & € R* or a = \i for some
A € R*. In the latter case, we also have

Ad(—ig)d(¢) = Ad(g)d(¢) = v.

So by possibly replacing g by —ig we can assume that g € SLy,(R).

Then if we replace © by ¢, then ¢ : PSO(p,p) — PGL2p(R) is the standard
inclusion representation and so G = PSO(p, p).

Finally

for some o € C*. Now

0=a° “ Xy = PSO(p»p) : |:I(ép:| = Bp,p

and so Theorem is proven.

Part 4. Appendices
APPENDIX A. PROOF OF THEOREM
In this section we prove that (1) implies (2) in Theorem

Theorem A.1. Suppose M C Gr,(RP*9) is an affine chart and Q C M is an open
convez set. If Q is R-proper, then Kq is a complete length metric on €.

We will use some basic properties of the Hilbert metric He on a convex set
C c R%. In particular we will use:

(1) (equivariance) If A € Aff(R?) then H,c(Az, Ay) = He(z,y).
(2) (properness) If x € 9C and x,, € C is a sequence with z,, — x, then

He(xg, ) — 00.

(3) (completeness) If C contains no affine lines then He is a complete metric,
(4) If ¢ =R* x ', then

He((w1,91), (2,92)) = Her (Y1, y2)-

All these properties follow immediately from the cross ratio definition of the Hilbert
metric.

Proof. Identify M with the set of g-by-p matrices and let Ml; C M be the subset of
rank-one matrices. Define a function dq : © x M; — R>¢ by

da(z;v) =inf{|ly —z|| : y € 02N (z + Ro)}.

Since (2 is R-proper, we must have that dg(x;v) < oo for all z € Q and v € M;.
Moreover, since € is convex, dq is a continuous function.
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We will first show that K is a metric, using Proposition [£:2] we only need show
that Kq(z,y) > 0 for z,y € Q distinct. Now we can find € > 0 such that the closed
Euclidean ball

B (z)={zeM: ||z —z| <€}

is contained in  but y ¢ B.(z). Since dq is continuous, there exists M > 0 such
that

do(zv) <M
for all z € B.(z) and v € M;.

We claim that if [z1,22] C Be(z), then po(z1,22) > |21 — 22|l /(e + M). If
20 — 21 € My, then pq(z1,22) = 0co. So we may assume that 2o — z; € M. Then
let (a,b) = z1z2 N Q labeled such that a, z1, 22, b is the ordering along the line. By
relabeling we may assume that ||a — z1|| = da (21,21 — 22) < M. Then

Iz1 = all |22 — bl l[22 — af

pa(z1,22) = ‘log > log
Iz = bl |22 — all 21 —a
lz2=all g4 1
- [ Gzl - al — - al).

llz1—all |22 — al|

Since z1, 22, a are all collinear and ||z; — 22|] < € we then have

> — .

palen 22) 2 s — 2|

Now we wish to show that Kq(x,y) > 0. We claim that
n—1

Pﬂ(xaal)Jr;Pﬂ(ai,ai+1)+ﬂﬂ(amy) > Y

for any as,...,a, € Q. This will imply that dg(z,y) > 0. Now by definition if
a,b €M and ¢ € [a,b] then

pa(a,b) + po (b’ C) = P (a7 C)'
So without loss of generality there exists 1 < ¢ < n such that aj,...,as € Be(x)
and agy1 € 0B(x). Then by the above calculation

€

¢ 4
1
Pﬂ(m,a1)+;pﬂ(ai7ai+1) 2 e <||x—a1| +;||ai —ai+1||> > e

This shows that Kq is a metric.
We will next show that K¢ is a length metric. This follows from the fact that if
z,y € Qand x —y € My, then

pa(z,y) = palz, 2) + pa(z,y)

for any z € [x,y]. Thus when x —y € My, there is a curve of length at most pq(z,y)
joining z to y. Then by definition for any z,y € (2 there exists a sequence of curves
oy, joining z to y and whose length converges to Kq(z,y).

Next we show that K¢ is proper, that is for any x¢ € Q and R > 0 the closed
metric ball B = {z € Q: Kq(x,z9) < R} is compact. Let x, € B be a sequence.
We will show that a subsequence of z,, converges in B. By passing to a subsequence
we can suppose that z,, — = € M or z,, — oo (that is, x,, leaves every compact
subset of M).
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First suppose that ©, - = € M. If z € Q, then « € B by part (5) of Proposi-
tion[4.2] Otherwise z € 9. Let Hq be the Hilbert metric on ©, then Ho < Kq by
Kobayashi’s construction of the Hilbert metric (described in Subsection 2.2). So

Ko(zo,x,) > Ho(zg, Tpn) = 00

which is a contradiction.
Finally suppose that the sequence z,, leaves every compact subset of Q. If Q
contains no affine lines, then Hg, is a proper metric and so

Ko(zo,zn) > Ho(zo,2,) — 00.

If © is not proper, then we can identify M with RP where D = pq and find an affine
map ¢ € APE(RD) such that ®Q = R? x€’ where ' is a proper convex set and
d < D. Notice that Hq(21, 22) = Hoq (P21, P29) for all 21, 29 € Q, but the metrics
Kaq and Kq have no clear relationship because ® will in general not preserve the
rank-one lines. Since (2 is R-proper we must have that d < D. Let 7 : R? — RP~¢
be the projection onto the second factor. Next let o, : [0, 1] — Q be a curve joining
o to x, with Kg-length less than R + €.

We claim that the set {m(®o,(t)) : n € N,t € [0,1]} is a compact subset of .
This follows from the fact that

R+ ¢ 2 Ko(@o,0n(t) = Ha(20,00(t)) = Haa(@0, Do, (1))
= HQ/(W((I>£Z}0),7T((I)Un(t)))

and the fact that Hq is a proper metric on Q. So if x,, = ®~(y,, 2,), we must
have y,, — co. But then notice that

0o (z + a;v) = do(z;v)
for all a € =1 (R? x{0}) and v € M. And so there exists M > 0 such that
da(on(t);v) < M
for alln € N, all t € [0, 1], and v € M. But then arguing as before we see that

1
length(o,) > i lzo — x| -

Since x,, leaves every compact subset of Q and length(c,) < R + ¢ we have a
contradiction.

Finally we observe that Kq is a complete metric on . If (2, )nen is a Cauchy
sequence in (2, Kg), then we can pass to a subsequence such that

o0
Z |zn, — Zpt1] = R < o0.

n=1
But then z, € {z € Q: Kq(z1,2) < R} which is a compact subset of (2. ]
APPENDIX B. PROOF OF THEOREM [5.1]
In this section we prove Theorem [5.1}

Theorem B.1. Let M be an affine chart of Gr,(RP9) and suppose 0, C M is a
sequence of R-proper convexr open sets converging to an R-proper convexr open set
Q C M in the local Hausdorff topology. Then

Kﬂ(xa y) = nlL)ngo KQn (ZL', y)
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for all x,y € Q uniformly on compact sets of 2 x €.

It will be helpful to introduce an infinitesimal version of pg. As in the proof of
Theorem identify M with the vector space of ¢-by-p matrices and let M; C M
be the space of rank one matrices. Next for a R-proper convex open set 2 C M|
define a function kg : Q x My — R>U{oco} by

1 1
ka(z;v) = s + =

where t7,¢7 € RsoU{oo} satisfy z+ttv, 2+t~ (—v) € 9Q and we define 1/00 = 0.
Notice, that by definition kq(x; Av) = |A| kq(z;v) for any A € R.
Now if z,x + tv € Q, v € My, and t > 0, then it is easy to show that

t
(B.1) palx,x +tv) = / kq(x + sv;v)ds.
0
The following lemma is a simple consequence of this formulation of pgq.

Lemma B.2. With the notation in Theorem[B.1], for any compact subset K C Q
and € > 0 there exists N > 0 such that

(1 =€)pa,(@,y) < palz,y) < (1+€)pa, (z,y)
forallxz,y € K andn > N.

Proof. By possibly increasing K, we can assume that K is convex. We first claim
that there exists NV > 0 such that
(1 =€)k, (z;v) < ka(z;v) < (1+ €)ka, (z;v)

foral m > N, x € K, and v € M;. Suppose not, then there exist ny — oo,
Zn, € K, and vy, € M; such that

k ngy Un

Faltwitn) o1y 1yq
an (mnk ) v’ﬂk)

We can assume that ||v,, || = 1 (where ||-|| is the operator norm). Then we can pass
to a subsequence and assume that z,,, - € K and v,, — M;. But using the fact
that 2,, converges to 2 in the local Hausdorff topology we have

ko(Tn,;vn,)  ka(z;v)

li = =1
el kq, (n,;0n,)  kal(z;v)
So we have a contradiction.
Then the Lemma follows from Equation (B.1)). O

Proof of Theorem[B.1 Now suppose that K C € is compact. Then we can pick
R > 0 and g € Q such that K C {x € Q: dq(z,z9) < R}. Let

K ={zeQ: Kq(z,z0) < (1+€¢)*(R+1)+R+¢}.
Next pick N > 0 such that
(1 —€)pa,(z,y) < palz,y) < (1+€)pa, (z,y)
for all z,y € K’ and n > N. Now we claim that
Ko, (z,y) < (1 + 6)Ka(z,y)
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for x,y € K and n > N. For z,y € K and § € (0,1) pick x = ap,a1,...,am =y
such that
pa(z,a1) + palar, az) + -+ + palam-1,y) < Ko(z,y) + 0.
Then ag,...,a,, € K’ and so
pe, (T, a1) + po, (a1, a2) + - + po, (am-1,y) < (1 +€)(Ka(z,y) + )
for n > N. Since § > 0 was arbitrary we see that
Ko, (z,y) < (14 €)Ko(z,y)

for z,y € K and n > N.
Now suppose n > N, z,y € K, § € (0,1), and = = ag,a1,...,a, =y € Q, such
that

pa, (z,a1) + pa, (a1, a2) + -+ pa, (am-1,y) < Ka, (2,y) + 0.
If ag,ai,...,a, € K’ then we immediately see that
Ko(z,y) < pa(r,a1) + palar, az) + -+ + palam-1,y) < (1 +€)(Kq, (z,y) + )

Otherwise we can assume that there is some ay such that ay € 0K’. Then Kq(ae, z¢) =
(14+€)?(R+1)+ R+ € and so

(1+e)*(R+1)+e < Kq(wo,ap) — Ka(zo,7) < Ko(z,ar)
< pa(z,a1) + palar, a2) + - + palac—1, ar)
< (1+(Ka, (2,9) +6) < (1 +((1 + ) Ka(z,y) +1)
<(1+e*R+1)
which is a contradiction. Thus ag,aq,...,a, € K’ and
Kao(z,y) < (1 +¢€)(Kq, (x,y) +9).
Since § € (0,1) was arbitrary we see that

Kﬂ(xvy) < (1 + E)Kﬂn ($7y)

(I
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