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Abstract. A congruence relation θ on an algebra A is fully invariant if every endo-

morphism of A preserves θ. A congruence θ is verbal if there exists a variety V such

that θ is the least congruence of A such that A/θ ∈ V. Every verbal congruence rela-
tion is known to be fully invariant. This paper investigates fully invariant congruence

relations that are verbal, algebras whose fully invariant congruences are verbal, and

varieties for which every fully invariant congruence in every algebra in the variety is
verbal.

1. Introduction

One of the central tools of universal algebra, in fact, all of algebra, is the

free object. Every variety contains free algebras. This fact is a component of

countless arguments in the subject.

In the usual construction we start with an algebra of terms and take an

appropriate quotient. The congruence inducing this quotient is the smallest

one yielding a member of the desired variety.

But there is no reason to restrict our attention to term algebras. Applying

this strategy to an arbitrary algebra A and variety V yields the “most general”

homomorphic image of A that lies in V. This technique is very familiar to

group-theorists. For example, the abelianization of A, i.e., the largest Abelian

quotient of A, is an instance of this construction. In group theory, the normal

subgroups that induce these quotients are collectively called verbal. We adopt

that terminology in this paper.

Definition 1.1. Let A be an algebra and V a variety with the same similarity

type as A.

• ΛA
V := {θ ∈ Con A : A/θ ∈ V}.

• λAV :=
⋂

ΛA
V .

• A congruence relation of the form λAV is called a verbal congruence relation

of the algebra A.

• Conve A denotes the set of all verbal congruences of A.

Since V is closed under subdirect products, A/λAV lies in V. Furthermore,

by definition, λAV is the least congruence relation on A with this property. Put

another way, ΛA
V consists of the congruences in the interval sublattice [λAV , 1A]
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of Con A. In any algebra A we have 1A = λAT and 0A = λAV(A), where T is

the trivial variety and V(A) is the variety generated by A. If the algebra A

is understood from the context, then we suppress the superscripts and write

ΛV and λV .

For arbitrary varieties V and W we have

λV ∨ λW = λV∧W

λV ∧ λW ⊇ λV∨W
(1)

although equality in the second of these need not hold in general (see Exam-

ple 2.12). Thus the set Conve A is the universe of a complete join subsemilat-

tice of Con A.

There is another way to approach the definition of verbal congruence rela-

tion. Let A be an algebra and Σ a set of equations of the same similarity type

as A. Define

λAΣ := CgA
{(
s(a1, . . . , an), t(a1, . . . , an)

)
: s ≈ t ∈ Σ, a1, . . . , an ∈ A

}
.

It is easy to see that if V = Mod(Σ), then the congruence λAV of Definition 1.1

coincides with λAΣ . This usage explains the origin of the term “verbal”.

Let us return to the abelianization example we mentioned earlier. Suppose

G is a group and A is the variety of Abelian groups. The congruence λGA
corresponds to a normal subgroup on G. This normal subgroup is usually

written [G,G] and is called the derived subgroup.

As another example, consider the set Σn consisting of the group identities

together with xn ≈ e, where e denotes the identity element. Then G/λΣn is

the largest quotient of G of exponent n. Since exponent 2 implies Abelian, we

have λGA ≤ λGΣ2
.

Although the concept of verbal congruence is a natural one, there are aspects

that are a bit awkward. For one thing, the property of being verbal is not

completely internal to the algebra since it refers to a variety, which may not be

closely related to the algebra. For another, as we noted earlier, the intersection

of two verbal congruences may not be verbal. However, there is a second

notion, closely related to verbality, that addresses these concerns.

Definition 1.2. Let A be an algebra and End(A) the set of endomorphisms

of A.

• A congruence relation θ on A is called fully invariant if and only if every

e ∈ End(A) preserves θ, i.e., (a, b) ∈ θ =⇒ (e(a), e(b)) ∈ θ.
• Confi A denotes the set of all fully invariant congruences of A.

Note that Confi A is the congruence lattice of the algebra A+ obtained

from A by adjoining every endomorphism of A as a fundamental operation of

A+. Hence Confi A = Con(A+) is a complete sublattice of Con A and is an

algebraic lattice.

The following proposition is well-known. A proof can be found in [1, The-

orem 4.59].
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Proposition 1.3. Let V be a variety and A an algebra of the same similarity

type. Then λV is a fully invariant congruence of A.

The converse of Proposition 1.3 is known to be false in general as Examples

4.1, 4.6, and 4.8 below show. The converse does hold for free algebras and

this fact about free algebras is a central component in Birkhoff’s theorem on

the equality of varieties and equational classes. Proposition 1.4 follows from

Theorem 3.4 below.

Proposition 1.4. Let V be a variety, F a free algebra in V, and θ a fully

invariant congruence on F. Then θ = λW for some subvariety W of V.

This paper is motivated by our attempt to understand the circumstances

under which the converse of Proposition 1.3 holds. To that end, we make the

following definition.

Definition 1.5. An algebra A is called verbose if every fully invariant con-

gruence relation on A is verbal. A variety V is verbose if every algebra in V is

verbose.

Section 2 contains some general facts about fully invariant congruences and

verbal congruences. The focus is on necessary and sufficient conditions for

a given congruence to be fully invariant or verbal. Section 3 deals with ver-

bose algebras, and Section 4 with verbose varieties. Section 5 contains results

concerning arithmetical semisimple varieties.

In general we follow the notational conventions of [1] or [15]. For a map-

ping f , we use
−→
f (X) to denote the direct image of the subset X under f ,

i.e., { f(x) : x ∈ X }. Similarly, for a binary relation θ, we write
−→
f (θ) =

{ (f(x), f(y)) : (x, y) ∈ θ }. Thus, a congruence θ is fully invariant if −→e (θ) ⊆ θ,
for all endomorphisms e. For the inverse image of a subset Y under f we write←−
f (Y ) = {x : f(x) ∈ Y }.

2. Fully invariant and verbal congruences

We begin with some tools that can be used to determine whether a congru-

ence is fully invariant.

Lemma 2.1. Let A be an algebra with e ∈ End(A) and θ ∈ Con A.

(1) If ker e ≥ θ, then −→e (θ) ⊆ θ.

(2) If e is one-to-one, then −→e (θ) is a congruence relation of the subalgebra
−→e (A).

(3) If e is an automorphism of A, then −→e : Con A → Con A is a lattice

isomorphism of Con A.

(4) Suppose −→e (θ) ⊆ θ. Then eθ : A/θ → A/θ, given by (eθ)(a/θ) =

e(a)/θ, is an endomorphism.

(5) Suppose θ ≤ τ in Con A. If θ is fully invariant on A and τ/θ is fully

invariant on A/θ, then τ is fully invariant on A.
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Proof. The proofs of these facts are straightforward. We only prove item (5).

Let e ∈ End(A) be arbitrary. Then eθ is an endomorphism of A/θ by

Lemma 2.1(4). Thus −→eθ(τ/θ) ⊆ τ/θ. If (x, y) ∈ τ , then (x/θ, y/θ) ∈ τ/θ,

and so (eθ(x/θ), eθ(y/θ)) ∈ τ/θ. Hence (e(x)/θ, e(y)/θ) ∈ τ/θ and therefore

(e(x), e(y)) ∈ τ . �

In general, the property of being fully invariant does not behave well with

respect to the formation of subalgebra, products or homomorphic image. Prop-

erty (5) above is the only positive assertion we can find.

On the other hand, the location of a congruence in the congruence lattice

does sometimes imply full invariance. Obviously, both the smallest and largest

congruences have this property. The next two theorems tell us a bit more in

this regard.

Theorem 2.2. The monolith of any finite subdirectly irreducible algebra is

fully invariant.

Proof. Let A be a finite subdirectly irreducible algebra with monolith µ. Con-

sider e ∈ End(A). Suppose ker e 6= 0. Then, since A is subdirectly irreducible,

ker e ≥ µ, so −→e (µ) ⊆ µ by Lemma 2.1.

If ker e = 0A < µ, then e is one-to-one and hence an automorphism since A

is finite. Because e is an automorphism, it follows that −→e (µ) is a congruence

relation of A, and it is an atom in the congruence lattice of A by Lemma 2.1.

Hence −→e (µ) must be µ, the unique atom of Con A. So in all possible cases,
−→e (µ) ⊆ µ. �

Theorem 2.3. Let A be a finite algebra. Suppose θ0, θ1, . . . , θm ∈ Con A with

0A = θ0 ≺ θ1 ≺ · · · ≺ θm and θm < τ for all τ ∈ Con A \ {θ0, θ1, . . . , θm}.
Then each θi is fully invariant.

Proof. The congruence θ0 = 0A is always fully invariant, and θ1 is fully in-

variant by Theorem 2.2. To show that θ2 is fully invariant, observe that θ1

is fully invariant in A and that θ2/θ1 is fully invariant in A/θ1, since A/θ1

is subdirectly irreducible with monolith θ2/θ1. Therefore θ2 is fully invariant

by Lemma 2.1(5). By iterating this argument each θi is shown to be fully

invariant. �

Corollary 2.4. If A is any finite algebra whose congruence lattice is a chain,

then every congruence relation of A is fully invariant.

The finiteness hypothesis in Theorem 2.2 is necessary as the following ex-

ample shows.

Example 2.5. Let Nω be the infinite lattice in Figure 1. This lattice is

discussed in [14] and [3] where Nω is observed to be subdirectly irreducible

with monolith µ, and µ has exactly one nontrivial congruence class {a0, b0}.
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Figure 1. Nω

The lattice join operation on Nω is given by

ai ∨ ak = amin{i,k}, bi ∨ bk = bmax{i,k}, ci ∨ ck = bmax{i,k},

ai ∨ bk = bk, bi ∨ ck = bmax{i,k}, ai ∨ ck =

{
ck, if i ≥ k,
bk, if i < k,

and lattice meet behaves in a dual manner. Suppose e : Nω → Nω is defined

by e(ai) = ai+1, e(bi) = bi+1 and e(ci) = ci+1. It is easily checked that e is an

endomorphism of Nω. For example,

e(ai) ∨ e(ck) = ai+1 ∨ ck+1 =

{
ck+1, if i+ 1 ≥ k + 1,

bk+1, if i+ 1 < k + 1
=

{
e(ck), if i ≥ k,
e(bk), if i < k

= e(ai ∨ ck).

Then µ is not fully invariant since (e(a0), e(b0)) 6∈ µ.

The next lemma provides a sufficient condition for a principal congruence

relation to be fully invariant. It will be useful in showing that the monoliths

of certain infinite subdirectly irreducible algebras are fully invariant.

Lemma 2.6. Let A be an algebra and θ = CgA(a, b).

(1) If (e(a), e(b)) ∈ θ for each e ∈ End(A), then θ is fully invariant.

(2) Let 0 ∈ A be the value of a constant term on A. Suppose there is a

unary term f and an element a ∈ A such that f(a) = 0 and

f(x) = 0 =⇒ (x, 0) ∈ CgA(a, 0).

Then CgA(a, 0) is fully invariant.
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Proof. For the first item observe that if there is a Malcev chain of unary

polynomials witnessing (x, y) ∈ CgA(a, b), then there is a Malcev chain of

unary polynomials witnessing (e(x), e(y)) ∈ CgA(e(a), e(b)). So (e(x), e(y)) ∈
CgA(e(a), e(b)) ⊆ CgA(a, b).

For the second item, write θ = Cg(a, 0). By (1) we must show that for

any endomorphism e of A, we have (e(a), e(0)) ∈ θ. Since 0 is a constant,

e(0) = 0. Since f(a) = 0 we get e(f(a)) = e(0) = 0. On the other hand,

f(e(a)) = e(f(a)) = 0, so by assumption e(a) ≡ 0 (mod θ). �

Is the monolith of a finite subdirectly irreducible algebra always verbal?

The answer to this question is affirmative for the variety of groups, as shown

by L. Kovács and M. Newman in [12, 13]. We extend the Kovács and New-

man result to finite subdirectly irreducible algebras in congruence-modular

varieties. Our proof adapts that of Kovács and Newman to the more general

congruence-modular case by utilizing a result of E. Kiss [11].

A section of A is an algebra B/θ in which B ≤ A and θ ∈ Con(B). The

section is proper unless B = A and θ = 0. We shall write (HS)∗(A) for

the set of proper sections of A. The algebra A is critical if A is finite and

A /∈ V
(
(HS)∗(A)

)
.

A set, S, of algebras is closed under monolithic sections if every subdirectly

irreducible section of a member of S is already in S. The monolith of a

subdirectly irreducible algebra A is denoted µA. The class of all subdirectly

irreducible members of a variety V is denoted Vsi.

Lemma 2.7 (Kiss). Let S be a finite set of finite subdirectly irreducible alge-

bras, closed under monolithic sections. Assume that V = V(S) is congruence-

modular. Then for every A ∈ Vsi we have

A/µA ∈ V{B/µB : B ∈ S}.

Theorem 2.8. Let A be a finite subdirectly irreducible algebra generating a

congruence-modular variety. Then the monolith of A is verbal.

Proof. By the nature of the monolith, proving the theorem amounts to showing

that A /∈ V(A/µA). If A is critical, this holds a fortiori. So we can assume

that A is noncritical. Let T be the set of proper monolithic sections of A, i.e.,

the subdirectly irreducible members of (HS)∗(A). Then (HS)∗(A) ⊆ V(T ).

To see this, observe that a proper section of A is of the form B/θ. Write

θ = θ1 ∧ · · · ∧ θn, in which each θi is completely meet-irreducible. Then

B/θi ∈ T , for each i ≤ n, so B/θ ∈ V(T ). Thus, since A is noncritical,

A ∈ V((HS)∗(A)) = V(T ).

Let S be a minimal subset of T , closed under monolithic sections, and such

that A ∈ V(S). Let D be of maximal order in S and set S0 = S − {D}.
Then S0 is still closed under monolithic sections, so by the minimality of S,

A /∈ V(S0). By Lemma 2.7, A/µA ∈ V{B/µB : B ∈ S}. Let B ∈ S. Write

µB = θ1 ∧ · · · ∧ θn, in which each θi is completely meet-irreducible. By the
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choice of D, |D| ≥ |B|, so |D| > |B/µB| ≥ |B/θi|, for i = 1, . . . , n. Thus each

B/θi ∈ S0, so B/µB ∈ V(S0). It follows that A/µA ∈ V(S0), and therefore

V(A/µA) excludes A. �

Congruence-modularity is necessary to Theorem 2.8 as the next example

shows.

Example 2.9. We recall Example 14 from [2]. Consider the algebra

A =
〈
{0, 1, 2}, ·, f, g, 0, 1, 2

〉
of type 〈2, 1, 1, 0, 0, 0〉 in which

x · y =

{
0, if x = 0,

y, if x 6= 0,

f(0) = f(1) = 0, f(2) = 2,

g(0) = g(2) = 0, g(1) = 1,

and 0, 1, 2 are nullary operations naming the corresponding elements of A.

Let V be the variety generated by A. It is shown in [2] that V is equa-

tionally complete. There is a congruence θ on A×A with a single non-trivial

equivalence class: {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0)}. Let B = A2/θ. The con-

gruence lattice of B is a 3-element chain: 0 < µ < 1. Certainly B/µ ∈ V(A),

so by the equational completeness, V(B/µ) = V = V(B), showing that µ is

not verbal on B.

Theorem 2.8 also fails for infinite algebras. Indeed, the class of pseudo-

simple algebras provides a rich class of such examples. An algebra A is called

pseudo-simple if it is nontrivial and if every nontrivial homomorphic image of

A is isomorphic to A. Thus, the only verbal congruences of A are 0A and

1A. As shown by D. Monk [16], every pseudo-simple algebra is subdirectly

irreducible and has a congruence lattice that is either a 2-element chain or is

order isomorphic to ωβ + 1 for some ordinal β.

If A is a pseudo-simple algebra whose congruence lattice is order isomorphic

to ω+ 1, and if the monolith µ of A is fully invariant, then Lemma 2.1(5) may

be applied as in the proof of Theorem 2.3 to prove that every congruence

relation of A is fully invariant. For some familiar pseudo-simple algebras

whose congruence lattices are order isomorphic to ω + 1, Lemma 2.6 may be

used to show that the monolith is fully invariant and therefore every one of its

congruences is fully invariant, but none, except for 0 and 1, are verbal.

For example, the Prüfer group Z(p∞), p a prime, has congruence lattice

0 < θ1 < θ2 < · · · < 1, and, for every positive integer n, Z(p∞)/θn ∼= Z(p∞).

So Z(p∞) is pseudo-simple. The monolith θ1 is the principal congruence re-

lation generated by (0, 1
p ). The elements 0 and 1

p and the term operation

f(x) = px satisfy the hypotheses of Lemma 2.6. Note that this algebra is sub-

directly irreducible and generates a congruence-modular variety. Every one
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of its congruences is fully invariant but none, except for 0 and 1, are verbal.

Thus the finiteness condition of Theorem 2.8 is necessary.

Another pseudo-simple algebra A for which all congruences are fully invari-

ant but only 0A and 1A are verbal is the algebra 〈{0, 1, 2, . . . }, f〉 where f is

a unary operation given by f(0) = 0 and f(n) = n− 1 for n > 0. Lemma 2.6,

using 0, 1, and f , shows that the monolith is fully invariant.

With an eye towards investigating fully invariant congruences that are ver-

bal, we present some facts about verbal congruences.

As stated in Definition 1.1, a congruence θ is verbal if there exists a variety

V such that θ = λV =
⋂

ΛV . If θ is verbal, then there may exist more than one

variety W for which θ = λW . However, we can always assert that θ is verbal

if and only if θ = λV(A/θ) and, if θ = λW for some variety W, then A/θ ∈ W.

We commented earlier that full invariance does not behave well with respect

to the formation of subalgebras, products, or homomorphic images. Verbal

congruences do better under homomorphic images, as the next proposition

shows, but just as badly under subalgebras or products. Corollary 2.11 can be

seen as a counterpart to Lemma 2.1(5).

Proposition 2.10. Let f : A → B be a surjective homomorphism with ker-

nel θ. Then for any variety V we have
←−
f (λBV ) = λAV ∨ θ.

Proof. Let τ =
←−
f (λBV ) and ψ = λAV ∨θ. Then τ ≥ θ and A/τ ∼= B/λBV ∈ V, so

τ ≥ λAV . This shows τ ≥ ψ. On the other hand, let τ ′ =
−→
f (ψ). Since ψ ≥ λAV ,

we see that B/τ ′ ∼= A/ψ ∈ V. Thus τ ′ ≥ λBV . Consequently, ψ ≥ τ . �

Corollary 2.11. Suppose θ ≤ τ ∈ Con A. If θ is verbal on A, and τ/θ is

verbal on A/θ, then τ is verbal on A.

Proof. Let B = A/θ and f : A→ B be the canonical map. By assumption, θ

and τ/θ =
−→
f (τ) are verbal, i.e., θ = λAV and

−→
f (τ) = λBW for varieties V and

W. By Proposition 2.10, τ =
←−
f (
−→
f (τ)) = λAW ∨ θ = λAV∧W by the formula

λV ∨ λW = λV∧W of display (1). �

We promised an example to show that the inclusion in (1)

λV ∧ λW ⊇ λV∨W
can be sharp. Here it is.

Example 2.12. Let s denote the unary identity operation and r denote com-

plementation on {0, 1}. Our similarity type will have two unary operation

symbols, f and g. Define the algebras

A = 〈{0, 1}, s, r〉
B = 〈{0, 1}, r, s〉.

Let θ be the congruence on A ×B that identifies (0, 0) with (1, 1) and (0, 1)

with (1, 0). Let C = (A × B)/θ. The algebra C has two elements, so it is

simple.
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We observe that V = V(A) satisfies the identity f(x) ≈ x, whileW = V(B)

satisfies g(x) ≈ x. Clearly, C ∈ V ∨W, so λCV∨W = 0C . But C fails to satisfy

the identities defining either V or W, so, since C is simple, we must have

λCV = λCW = 1C . Consequently, λCV ∧ λCW ) λCV∨W .

Here is a simple observation. Suppose that σ, τ, θ ∈ Con A, θ is verbal and

A/σ ∼= A/τ . Then τ ≥ θ implies σ ≥ θ. In order to utilize this principle we

introduce some notation.

Definition 2.13. For algebras A and B define

∆(A,B) = {τ ∈ Con A : A/τ ∼= B} and δB =
∧

∆(A,B).

Furthermore, for a set T of algebras let δT denote
∧
{δB : B ∈ T }.

If θ ∈ Con A is verbal, then for τ ∈ Con A either θ ≤ δA/τ or θ 6≤ τ .

An alternate phrasing of this observation in terms of subdirectly irreducible

algebras is that if θ is a verbal congruence, then θ = δT , where T is the

set of subdirectly irreducible homomorphic images of A/θ. Thus, if a fully

invariant congruence relation, θ, of A, were to be verbal, then θ ≤ δA/τ for

every τ ≥ θ and θ =
∧
{δA/γ : γ ≥ θ, γ completely meet irreducible}. The

next lemma shows that if θ ∈ Con A is fully invariant, and if τ ≥ θ is such

that A/τ is a retract of A, then θ ≤ δA/τ .

Definition 2.14. An algebra B is a retract of an algebra A if there is a

homomorphism f : B → A and a homomorphism r : A → B such that rf is

the identity on B. The homomorphism r is called a retraction. The map f is

necessarily one-to-one and r is onto.

Suppose that r is a retraction of A on B as in the definition. Let r′ = f ◦ r.
Then r′ is an endomorphism of A and r′ is idempotent, that is, r′ ◦ r′ = r′.

Conversely, any idempotent endomorphism, r′, is a retraction of A onto the

image of r′ with the inclusion map as the one-sided inverse.

Lemma 2.15. If r is a retraction of A on B and if θ is a fully invariant

congruence of A with θ ≤ ker r, then θ ≤ δB.

Proof. Since r is a retraction, let f : B → A be a homomorphism for which

r ◦ f = idB . Consider any homomorphism s : A→ B. Let s = f ◦ s. Then s is

an endomorphism of A. Now suppose that θ is fully invariant and θ ≤ ker r.

Then for all a, b ∈ A,

(a, b) ∈ θ =⇒ (s(a), s(b)) ∈ θ ⊆ ker r =⇒
rs(a) = rs(b) =⇒ rfs(a) = rfs(b) =⇒ s(a) = s(b).

Thus θ ≤ ker s. �
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3. Verbose algebras

We now turn to verbose algebras, that is, algebras in which every fully

invariant congruence is verbal. Obviously, every simple algebra is verbose.

More generally, we have the following observation.

Theorem 3.1. Let A be a finite algebra in a congruence-modular variety, and

suppose that Con A forms a chain. Then A is verbose.

Proof. It follows from Corollary 2.4 that every congruence is fully invariant.

So we must show that every congruence is verbal. The proof is by induction

on n = |Con A|. If n ≤ 2 then A is either trivial or simple. In either case,

every congruence is verbal. So assume the theorem holds for all finite algebras

whose congruence lattice is a chain of size less than n. By Theorem 2.8, µA is

verbal and by the induction hypothesis, A/µA is verbose. An application of

Corollary 2.11 now shows that every congruence on A is verbal. �

Example 2.9 shows that Theorem 3.1 fails without congruence-modularity

and the Prüfer groups show the necessity of finiteness.

A second important class of verbose algebras are the projectives.

Definition 3.2. An algebra P in a class K of algebras is called projective in K
if for any homomorphism h : P→ B and surjection g : A→ B with A,B ∈ K,

there exists a homomorphism f : P→ A such that h = g ◦ f .

The following characterizations of projective algebras are standard.

Proposition 3.3. Let K be a class of algebras for which K-free algebras exist.

Then for any P ∈ K the following conditions are equivalent.

(1) P is projective in K.

(2) For every A ∈ K and surjective homomorphism r : A → P there is a

homomorphism f : P→ A such that r ◦ f is the identity on P. (That

is, P is a retract of A and r is a retraction.)

(3) P is a retract of a K-free algebra.

It follows from Proposition 3.3 that every free algebra is projective. Thus

the following theorem generalizes Proposition 1.4.

Theorem 3.4. If P is projective in V(P), then P is verbose.

Proof. Let P be projective. Then P is a retract of a free algebra. That is,

there is a set X and an algebra F, free on X, and an endomorphism r of F

such that P is the image of r and r ◦ r = r.

Let θ be a congruence on F with B = F/θ and W the variety generated

by B.

Claim. Let (a, c) ∈ θ and suppose that for every g ∈ End(F) we have(
g(a), g(c)

)
∈ θ. Then (a, c) ∈ λFW .
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Proof: There are x1, . . . , xn ∈ X and terms p and q with a = pF(x1, . . . , xn)

and c = qF(x1, . . . , xn). We first show that B � p ≈ q. Let b1, . . . , bn ∈ B and

pick b′i ∈ F such that b′i/θ = bi, for i ≤ n. From the freeness of F, there is an

endomorphism g such that g(xi) = b′i, for i ≤ n. Then

pB(b) = pF(b′)/θ = g
(
pF(x)

)
/θ = g(a)/θ

and similarly, qB(b) = g(c)/θ. Since our assumption is that g(a) θ g(c), we

conclude that p(b) = q(b). Thus B � p ≈ q.
Since B is generic for W, we must have W � p ≈ q. Also, A = F/λFW

is a member of W, so a/λFW = pA(x/λFW) = qA(x/λFW) = c/λFW , proving

the claim.

Now we prove the theorem. Let θ be a congruence on P and assume that θ

is not verbal. Let B = P/θ and W the variety generated by B. Then λPW < θ.

Fix (a, c) ∈ θ \λPW . Let θ =←−r (θ). Then λFW ≤
←−r (λPW) ≤ θ, so (a, c) ∈ θ \λFW .

Therefore by the claim, there must be an endomorphism g of F such that

(g(a), g(c)) /∈ θ. Let e = r ◦ g�P ∈ End(P). Then (g(a), g(c)) /∈ θ implies that

(e(a), e(c)) = (rg(a), rg(c)) /∈ θ. Thus θ is not fully invariant. �

Subdirectly irreducible, projective algebras turn out to be useful in prov-

ing algebras verbose. The following somewhat technical theorem will have

applications in the next section.

Theorem 3.5. Let A be an algebra with these two properties:

(1) If S ∈ (H(A))si, then S is projective in V(A).

(2) If S ∈ (H(A))si and T ⊆ (H(A))si with S ∈ V(T ), then S ∈ HS(T ).

Then A is verbose.

Proof. Let θ ∈ Con A be a fully invariant congruence relation. We wish to

show θ is verbal. We may assume θ 6= 0A, 1A.

Let T =
(
H(A/θ)

)
si

. Each B ∈ T is projective in V(A) by hypothesis and

is therefore a retract of A/θ. Thus θ = δT by Lemma 2.15. Let W be the

variety generated by T . We shall show that if C ∈ Wsi ∩H(A), then C ∈ T .

From this it follows that λW = δW = δWsi∩H(A) = δT = θ.

We have C ∈ HS(T ) by hypothesis (2). So there is an algebra B ∈ T and

a subalgebra D of B such that C is a homomorphic image of D. Since C is

subdirectly irreducible, it is projective in W. As a homomorphic image of D,

it is a retract. Hence there is an embedding g : C→ B.

D �
� g1

//

����

B

C
\\

g2

AA

g = g1 ◦ g2

Since C is a subdirectly irreducible homomorphic image of A, there is a

congruence β < 1A such that A/β ∼= C. Let s denote the composite map

A � C
g
� B with kernel β. Since B ∈ T , there is a surjective map r : A→ B
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with θ ≤ ker r. Also, B is subdirectly irreducible, hence projective, so r is a

retraction. Therefore by Lemma 2.15, θ ≤ ker s, that is, C ∈ T as desired. �

As an application of these principles, let us examine finite Abelian groups.

Lemma 3.6. Let A1 and A2 be finite Abelian groups of orders r1 and r2,

respectively. If r1 and r2 are relatively prime, then

Con(A1 ×A2) = Con(A1)× Con(A2)

End(A1 ×A2) = End(A1)× End(A2).
(2)

Consequently, a congruence θ = θ1×θ2 on A1×A2 is fully invariant (resp. ver-

bal) iff both θ1 and θ2 are fully invariant (resp. verbal).

Proof. Since r1 and r2 are relatively prime, there are integers s1, s2 such that

r1s1 + r2s2 = 1. Let f(x1, x2) = r2s2x1 + r1s1x2. Then Ai � f(x1, x2) ≈ xi.

One can now use elementary group theory to verify the relationships in (2).

Alternately, we have shown that f is a decomposition term for V(A1 ×A2).

Equations (2) follow from this observation, see [15, Theorem 4.36]. �

Since every finite Abelian group is a direct product of its Sylow subgroups,

the above lemma, applied inductively to the number of distinct prime factors,

yields the following theorem.

Theorem 3.7. A finite Abelian group is verbose if and only if each of its

Sylow subgroups is verbose.

Thus the characterization of finite, verbose Abelian groups is reduced to

the case of finite Abelian p-groups.

Theorem 3.8. Let p be a prime and let A be a finite Abelian p-group. Then

A is verbose if and only if it is a direct power of a cyclic group.

Proof. If A is a power of a cyclic group, then it is of the form (Zpn)m. Thus A

is free (on m generators) in the variety V(A). By Theorem 3.4, A is verbose.

Now assume that A is not of the desired form. Then, A must be a direct

sum of cyclic subgroups, not all of which have the same order. That is, we can

write

A = 〈a1〉 ⊕ 〈a2〉 ⊕ · · · ⊕ 〈am〉 ⊕ 〈b1〉 ⊕ · · · ⊕ 〈bn〉 ⊕ 〈c1〉 ⊕ · · · ⊕ 〈cq〉

in which every ai has order p`, every bi has order pk, ` > k, every ci has order

less than pk, m,n ≥ 1, and q ≥ 0.

For this argument, it is easier to work with subgroups rather than congru-

ences. Let

S = {x ∈ A : pk · x = 0 } and T = { p`−k · x : x ∈ A }.

Both S and T are easily seen to be subgroups of A. Also, T ⊆ S since if y ∈ T
then y = p`−kx, so pky = p`x = 0, since A has exponent p`. On the other

hand, b1 ∈ S \ T so T is a proper subgroup of S.
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S is a fully invariant subgroup, for if x ∈ S and e is an endomorphism, then

pk · e(x) = e(pkx) = e(0) = 0. But S is not verbal. To see this, we compute

A/S = 〈a1〉/〈p`−ka1〉 ⊕ · · · ⊕ 〈am〉/〈p`−kam〉 ∼= (Zp`−k)m

while

A/T = 〈a1〉/〈p`−ka1〉 ⊕ · · · ⊕ 〈am〉/〈p`−kam〉 ⊕ 〈b1〉/〈p`−kb1〉 ⊕ · · ·

⊕ 〈bn〉/〈p`−kbn〉 ⊕ 〈c1〉/〈p`−kc1〉 ⊕ · · · ∼= (Zp`−k)m+n ⊕B

in which B has exponent strictly dividing p`−k. It follows that A/S and

A/T generate the same variety and T is smaller than S. Thus A fails to be

verbose. �

4. Verbose varieties

The next step in our logical progression is the consideration of varieties

in which every member is verbose. These results are not surprising. Many

varieties with nice structure turn out to be verbose.

Example 4.1. We continue our discussion of Abelian groups. Let A denote

the variety of all Abelian groups and, for each natural number n, An the

subvariety defined by the identity nx ≈ 0. Note that A0 = A and A1 is the

trivial variety. {An : n ∈ ω } constitutes the entire lattice of subvarieties of A
(see [1, Theorem 4.46]). We continue to use the conventions of Theorem 3.8.

Suppose first that n is square-free. The subdirectly irreducible members

of An are the cyclic groups of prime order, p, where p divides n, while the

free algebra on one generator is the cyclic group of order n. It is easy to see

that Zp is a retract of Zn (since n is square-free), so by Proposition 3.3, Zp
is projective in An. It is now easy to apply Theorem 3.5 to show that An is

verbose.

On the other hand, suppose that n is either 0 or is not square-free. Then for

some prime p, An contains a group isomorphic to Zp2 ⊕ Zp. By Theorem 3.8,

this group, hence this variety, fails to be verbose. Thus the verbose varieties

of Abelian groups are precisely the varieties of nonzero, square-free exponent.

Theorem 4.2. Let V be a finitely generated, congruence-distributive variety

and suppose that every subdirectly irreducible member of V is projective in V.

Then V is verbose.

Proof. The variety V has only finitely many subdirectly irreducible algebras

and all are finite since V is finitely generated, By Jónsson’s Lemma, if T ⊆ Vsi

and S ∈ (V(T ))si, then S ∈ HS(T ). Thus, Theorem 3.5 applies to every

A ∈ V. �

The converse of Theorem 4.2 is false. There are finitely generated, congru-

ence-distributive, verbose varieties containing subdirectly irreducible algebras
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which are not projective. See Example 5.5. We have been unable to determine

whether the theorem can be extended even to congruence modular varieties.

Theorem 4.3. Let V be any variety containing exactly one subdirectly irre-

ducible algebra S, and suppose that S is finite. Then V is verbose.

Proof. Since V is a minimal variety, if suffices to show that for any A ∈ V the

only fully invariant congruences of A are 0A and 1A. Clearly V is generated

by S, is locally finite, and S is strictly simple. Hence S is projective in V by a

result of K. Kearnes and Á. Szendrei [9, Theorem 3.2]. Therefore by Lemma

2.15, a fully invariant congruence on A is equal to either 1A or to δS = 0A. �

Corollary 4.4. Let V be a locally finite, congruence-modular, minimal variety.

Then V is verbose.

Proof. Let S be a strictly simple member of V. By [2, Lemma 4] S is the unique

subdirectly irreducible algebra in V. So V is verbose by Theorem 4.3. �

We now present some examples to illustrate the results of this section.

Example 4.5. The 2-element subdirectly irreducible lattice D is easily seen

to be projective in the variety of all lattices. Hence the variety of distributive

lattices, which is generated by D, is verbose by Theorem 4.2. The 5-element

nonmodular lattice N5 is also known [6] to be projective in the variety of all

lattices. Thus, the variety V(N5) is verbose.

For n ≥ 3, let Mn denote the (n+2)-element lattice of length 2. If V is any

locally finite variety of lattices that contains Mn, then Mn is projective in V.

To see this let Mn = {0, 1, a1, . . . , an}, let {x1, . . . , xn} denote the free gener-

ators of FV(n), and let h : FV(n)→Mn denote the canonical homomorphism

given by h(xi) = ai. The lattice FV(n) is finite. Let v and u in FV(n) denote∧←−
h (1) and

∨←−
h (0), respectively. Consider pi = (xi ∨ u) ∧ v for 1 ≤ i ≤ n.

Then u < pi < v and {u, v, p1, . . . , pn} is the universe of a sublattice of FV(n)

that is isomorphic to Mn, and the image of this sublattice under h is Mn.

So Mn is a retract of FV(n) and is thus a projective subdirectly irreducible

algebra in V.

Therefore, applying Theorem 4.2 to the comments in the previous two para-

graphs we conclude that the variety V generated by N5 and Mn is verbose

since the subdirectly irreducible algebras in this variety are D, N5, M3, . . . ,

Mn, which are all projective in V.

Example 4.5 demonstrates that several varieties of lattices are verbose. The

proof relies on Theorem 4.2 and, consequently, on the fact that every subdi-

rectly irreducible member of the variety is projective. The following example

demonstrates the importance of projectivity. The variety V(M3) is known

from [8] to have precisely three covers: V(M4), V(M3, N5) and V(M3,3).

The first two of these are verbose by Example 4.5. Let us consider the last

one.
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M3,3 K L

1

u

Figure 2

Example 4.6. The variety V(M3,3) is not verbose. The lattice M3,3 is shown

in Figure 2. That figure shows two additional lattices, L and K. The lattice

K is a subdirect product of M3,3 and D (the 2-element lattice), while L is a

subdirect product of M3,3 and K. From this we see that L ∈ V(M3,3). Since

M3,3 is a homomorphic image of, but not a sublattice of K, we conclude that

M3,3 fails to be projective in its own variety.

Let θ be the congruence on L generated by the pair (u, 1). This congruence

has one nontrivial class, C, namely the interval between u and 1. θ is not

verbal since θ 6= 0L but M3,3 ∈ H(L/θ).

However θ is fully invariant. Suppose e is an endomorphism of L and

(a, b) ∈ θ. If a = b then of course (e(a), e(b)) ∈ θ. So assume that a and b

are distinct. Then they must be members of C. But note that C ∼= M3,3 is

a simple lattice. Thus either e(a) = e(b), in which case we are done, or e is

one-to-one on C. But since L has only one sublattice isomorphic to M3,3, the

endomorphism e must map C onto itself. Thus
(
e(a), e(b)

)
∈ θ.

In Corollary 4.4 we considered minimal, congruence-modular varieties. We

can extend that result as follows.

Theorem 4.7. Let A be a finite simple algebra generating a congruence-

modular, Abelian variety, V. Then V is verbose.

Proof. Let us first make the following observation. For any algebra A and

positive integers m ≤ n, the algebra Am is a retract of An. For the embedding

of Am into An we can map (a1, . . . , am) to (a1, a2, . . . , am, am, . . . , am). The

projection of An onto its first m coordinates is a one-sided inverse of this

embedding.

For the proof of the theorem, we rely on the analysis in [7, Theorem 12.4].

An element a in an algebra A is called idempotent if, for every basic operation

f , f(a, a, . . . , a) = a. Suppose first that A has an idempotent element. Then

every finite algebra in V is isomorphic to a direct power of A. Moreover, for

every infinite cardinal κ, there is, up to isomorphism, a unique member of V
of cardinality κ.
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Since the finitely generated free algebras must get arbitrarily large, for every

m, there is an n ≥ m such that An is free. Using the observation in the

opening paragraph, Am is a retract of the free algebra An. Therefore, by

Proposition 3.3 and Theorem 3.4, every finite algebra is verbose.

For the infinite members of V, let κ be an infinite cardinal. Since there is a

unique algebra of cardinality κ, it must be free, hence verbose.

Now assume that A has no idempotent element. The argument is almost

the same as above. In this case, V has two subdirectly irreducible algebras, A

and B = A∇. B is a quotient of A2, is simple, has an idempotent element, and

generates the unique proper nontrivial subvariety of V. Thus the argument in

the previous two paragraphs applies to V(B), showing that this subvariety is

verbose.

Now according to [7], every finite algebra in V \ V(B) is of the form Am

for some m. Choose a sufficiently large finite V-free algebra F such that

|F | > |A|m and F /∈ V(B). The algebra F will be a power of A, so again using

our initial observation, Am is a retract of F. Thus Am is projective, hence

verbose. Finally, for every infinite κ, there is a unique algebra in V \ V(B) of

cardinality κ. This algebra must be free, hence verbose. �

Example 4.8. We examine each variety V that is generated by a 2-element al-

gebra. We use the classification of the 2-element algebras given by E. Post [17].

If V is congruence-distributive, then V has only one subdirectly irreducible

member, so by Theorem 4.3, it is verbose. If V is congruence-permutable,

but not congruence-distributive, then V is, essentially, one of four varieties:

Boolean groups, Boolean 3-groups, complemented Boolean groups, or com-

plemented Boolean 3-groups. Each of these varieties is congruence-modular,

Abelian, and is generated by a simple algebra. So these four varieties are all

verbose by Theorem 4.7.

An examination of Post’s classification reveals that the only remaining 2-

element algebras to consider are the following.

• The 2-element semilattice;

• the unary algebra 〈{0, 1}, r〉 with complementation: r(0) = 1, r(1) = 0;

• the 2-element set.

In each case, there is the possibility that the algebra also has either one or two

nullary operations.

It follows from Theorem 4.3 that the varieties generated by a 2-element

semilattice with or without constants are all verbose since there is only one

subdirectly irreducible algebra.

Next, we consider the variety V generated by a 2-element algebra having

no fundamental operations except for zero, one or two constant operations. If

A ∈ V, then every equivalence relation on A is a congruence relation of A.

Similarly, a function e : A→ A is an endomorphism if and only if e(c) = c for

every constant term c. If our similarity type has at most one nullary symbol,
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then this variety is equationally complete and it is easy to see that no proper

nontrivial equivalence relation can be fully invariant.

So suppose we have two nullary operation symbols, call them c and d. The

variety V is generated by 〈{0, 1}, 0, 1〉 and has one proper subvariety, generated

by C = 〈{0, 1}, 0, 0〉 (and satisfying the identity c ≈ d). For an algebra A ∈ V,

in addition to 0A and 1A, the only other verbal congruence relation on A is

δC, which identifies cA with dA, and nothing else. If θ is any congruence

relation of A that is not verbal, then there are distinct elements x, y, z ∈ A
such (x, y) ∈ θ, (y, z) /∈ θ, and x is neither c nor d. Let e : A → A be any

map such that e(y) = y and e(x) = z. Then e is an endomorphism of A that

witnesses θ not being fully invariant. This shows that V is verbose.

Finally, it remains to consider the 2-element unary algebra where the fun-

damental operation is complementation. Consider the variety V generated by

the algebra 2 = 〈{0, 1}, r〉. The variety has two other subdirectly irreducible

algebras: 2 + 1 and 1 + 1, where 1 denotes the trivial algebra in V and +

denotes disjoint union. We have V(2) = V(2 + 1) > V(1 + 1). The algebra 2

is simple and it is projective since it is free.

Consider the algebra A = {a0, a1}∪{b}∪{c} ∼= 2 + 1 + 1. The only proper

nontrivial verbal congruence is δ1+1, which identifies a0 and a1. Let θ be the

congruence on A generated by
{

(a0, a1), (b, c)
}

. Since δ1+1 < θ < 1, θ is not

verbal. We show θ is fully invariant. Let e be any endomorphism of A. Since

b and c are fixed points of r, it follows that {e(b), e(c)} ⊆ {b, c}. Likewise the

set {e(a0), e(a1)} is either {a0, a1}, {b}, or {c}. So e(θ) ⊆ θ. Thus θ is fully

invariant but not verbal. The addition of constant symbols does not affect this

example.

In summary, every 2-element algebra generates a verbose variety, except for

〈2, r〉, 〈2, r, 0〉, 〈2, r, 1〉 and 〈2, r, 0, 1〉.

5. Arithmetical Semisimple Varieties

The analysis in Section 4 shows that, while useful, projectivity is not the

key to understanding verbosity, even for congruence-distributive varieties. In

this section we specialize further still to obtain some positive results.

Let V be a finitely generated, congruence-distributive variety, and let A ∈ V.

We write IA for the set of completely meet-irreducible congruences on A. We

shall usually omit the superscript on I. Define a binary relation on I by

α v β ⇐⇒ A/α ∈ HS(A/β).

Note that v is a quasiorder on I and α v β v α if and only if A/α ∼= A/β.

Furthermore, for an arbitrary congruence, θ, let I(θ) = {α ∈ I : θ ≤ α }.

Lemma 5.1. The congruence θ is verbal if and only if I(θ) is a downset

under v .



18 Clifford Bergman and Joel Berman Algebra univers.

Proof. Suppose first that θ is verbal and that β v α ∈ I(θ). Then θ ≤ α, so

A/α ∈ V(A/θ). But β v α implies A/β ∈ HS(A/α) ⊆ V(A/θ). Finally since

θ is verbal, we obtain θ ≤ β, in other words, β ∈ I(θ).

Conversely, assume that I(θ) is a downset. We wish to show that if A/ψ ∈
V(A/θ), then θ ≤ ψ. Since every congruence is a meet of members of I, it is

enough to show that

β ∈ I & A/β ∈ V(A/θ) =⇒ β ∈ I(θ).

Observe that θ =
∧
I(θ) so V(A/θ) = V {A/α : α ∈ I(θ) }. Since A/β is

subdirectly irreducible, we deduce (by Jónsson’s lemma and the fact that

the variety is finitely generated and congruence-distributive) that A/β lies

in HS {A/α : α ∈ I(θ) }. Consequently, for some α ∈ I(θ) we have β v α.

But by assumption, I(θ) is a downset, so β ∈ I(θ) as desired. �

A variety is called arithmetical if it is both congruence-distributive and

congruence-permutable. The variety is semisimple if every subdirectly irre-

ducible member is simple.

Theorem 5.2. Let V be a finitely generated, semisimple, arithmetical variety.

Suppose further that

S,T ∈ Vsi & S ∈ HS(T) =⇒ S ∈ IS(T). (3)

Then every finite member of V is verbose.

Proof. Let A be a finite member of V. Since the variety is semisimple and

congruence-permutable, A is isomorphic to a product A1×· · ·×An, in which

every factor is simple (see [1, pg. 171]). Let ηi be the kernel of the projection

of A onto Ai, for i = 1, . . . , n. Congruence-distributivity implies that IA =

{η1, . . . , ηn}.
Let θ be a congruence on A and assume that θ is not verbal. Then by

Lemma 5.1 I(θ) is not a downset under v. Therefore there are indices i, j

with ηi ∈ I(θ), ηj /∈ I(θ) and ηj v ηi. This latter condition, together with our

assumption (3) implies that Aj ∈ S(Ai). Let h be an embedding of Aj into

Ai. Summarizing

θ ≤ ηi, θ � ηj , h : Aj � Ai.

Pick a = (a1, . . . , an) and b = (b1, . . . , bn) with (a,b) ∈ θ \ηj . Thus ai = bi
while aj 6= bj . Define e : A→ A by

e
(
x1, . . . , xn) = (x1, . . . , xi−1, h(xj), xi+1, . . . , xn

)
.

The map e is obviously an endomorphism. But the pair
(
e(a), e(b)

)
is ex-

cluded from ηi, so certainly from θ. Thus θ is not fully invariant. �

One assumption that implies condition (3) is subsemisimplicity, i.e., ev-

ery nontrivial subalgebra of a subdirectly irreducible algebra is simple. It is

well-known that a finitely generated, subsemisimple, arithmetical variety is a

discriminator variety.
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Corollary 5.3. The finite members of a finitely generated discriminator va-

riety are verbose.

However, there are other varieties that satisfy the conditions of Theorem 5.2.

For example, let A denote the 6-element modular ortholattice MO2 (see [1,

pg. 190]). The only subdirectly irreducible members of V(A) are A itself

and the 2-element lattice, both of which are simple, so it is easy to see that

condition (3) holds. But A has a 4-element subalgebra that is not simple.

The proof of Theorem 5.2 relies on the fact that every finite algebra in the

variety is a direct product of simple algebras. This makes it relatively easy to

construct endomorphisms with particular properties. On the other hand, the

reliance on products limits the theorem to finite algebras since on cardinality

grounds, it is never true that every algebra in a nontrivial variety is a direct

product in a significant way.

Thus we seek varieties for which there is a representation theory that is

“almost as good” as a direct product. For this we turn to the results of Davey,

Keimel and Werner [5, 10] on varieties generated by a quasiprimal algebra.

We follow the treatment in [4].

An algebra M is subalgebra-primal if the clone of term operations on M

consists of all operations that preserve each subalgebra of M. (In [4] these

algebras are called semiprimal.) It is well-known that a finite algebra M is

subalgebra-primal if and only if

M is quasiprimal and the only isomorphisms between nontrivial

subalgebras are the identity maps.
(4)

Let M be subalgebra-primal, Sub(M) denote the set of subuniverses of

M, and K the set of idempotent elements of M. Thus a ∈ K if and only

if {a} ∈ Sub(M). We define a dual M-structure to be a quadruple X =

〈X,KX, SX, TX〉 in which

(a) X is a set and TX is a Boolean topology on X;

(b) KX consists of one nullary operation, aX, on X, for each a ∈ K;

(c) SX consists of one closed subspace, PX, for each P ∈ Sub(M), such that

(i) MX = X;

(ii) {a}X = {aX}, for each a ∈ K;

(iii) (P ∩Q)X = PX ∩QX;

(iv) ∅X = ∅, if M has an empty subuniverse.

(We need KX to be present to ensure that a substructure of a dual M-structure

is again a dual M-structure.)

Let X denote the class of all dual M-structures. We turn X into a cate-

gory in which the morphisms from X to Y consist of all continuous functions

f : X → Y such that
−→
f (PX) ⊆ PY, for all P ∈ Sub(M).

Finally, let V be the variety generated by M. The “NU-Strong Duality Theo-

rem” tells us that, as categories, V and X are dually equivalent.
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To proceed, we need more details on the functors that witness this equiva-

lence. Let A be a member of V. Then D(A) = X in which

X = HomV(A,M);

KX = {a : a ∈ K };

PX = HomV(A,P), for all P ∈ Sub(M);

TX is the topology on X with subbasis {T (a,m) : a ∈ A,m ∈M }.

Here, T (a,m) = {φ ∈ X : φ(a) = m }. Also, if a is an idempotent element

of M, then a denotes the constant function on A with value a. Note that in

this case, HomV(A, {a}) = {a}. Finally, for A,B ∈ V, and a homomorphism

h : A → B, we have D(h) : D(B) → D(A) mapping φ to φ ◦ h. Then D is a

contravariant functor from V to X .

We must also describe the functor E operating in the opposite direction. We

give M the discrete topology, and turn M into a dual M-structure in the ob-

vious way. Given X ∈ X , define E(X) = HomX (X,M) ⊆MX . It is not hard

to show that HomX (X,M) is, in fact, a subuniverse of MX . Consequently,

E(X) ∈ V.

Let A ∈ V. Theorem 3.14 of [4] asserts that there is an isomorphism

εA : A→ ED(A) mapping a ∈ A to â, in which â(τ) = τ(a). We usually omit

the subscript on ε. Unwrapping all of the definitions:

Let X = D(A) = HomV(A,M)

∀a ∈ A, ε(a) = â ∈ E(X), i.e.,

â : HomV(A,M)→M such that

∀τ ∈ HomV(A,M), â(τ) = τ(a).

Let us extract from this the following relationship.(
∀a, b ∈ A

) (
∀τ ∈ HomV(A,M)

)
(a, b) ∈ ker τ ⇐⇒ τ(a) = τ(b) ⇐⇒ â(τ) = b̂(τ).

(5)

Continuing, with X = D(A), let f : X → X be an X -morphism. Then

f̌ = E(f) : E(X)→ E(X) is given by

f̌(â) = â ◦ f

see Figure 3. Finally, if we define e to be ε−1◦ f̌ ◦ε, then e is an endomorphism

of A in which, for a ∈ A, we have e(a) = ε−1f̌ ε(a), and thus

ê(a) = f̌ ε(a) = f̌(â) = â ◦ f. (6)

With this dual-equivalence in hand, we can essentially imitate the construc-

tion in Theorem 5.2.

Theorem 5.4. Every subalgebra-primal algebra generates a verbose variety.
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Proof. Let M be subalgebra-primal and V be the variety generated by M.

Choose an algebra A in V and set X = D(A) as above. Let θ be a congruence

on A that is not verbal. We must show that θ is not fully invariant. By

Lemma 5.1 there are α, β ∈ IA such that θ ≤ α, θ � β and β v α.

Since M is subalgebra-primal, we can apply the characterization in (4).

Thus the subdirectly irreducible members of V coincide with the nontrivial

subalgebras of M, all of which are simple. From the isomorphism assertion

in (4), there are unique φ, ψ ∈ X such that kerφ = β and kerψ = α. Set-

ting P =
−→
φ (A) and Q =

−→
ψ (A), we have that both P and Q are nontrivial

subalgebras of M and (since β v α), P ≤ Q.

Let Q = {u1, . . . , un}. Choose c1, . . . , cn ∈ A such that ψ(ci) = ui, for

i ≤ n. Since each ĉi : X →M is continuous, the set

N =
⋂
i≤n

←−
ĉi (ui) = { τ ∈ X : (∀i ≤ n) τ(ci) = ui }

is a clopen subset of X. Note that ψ ∈ N .

We define a function f : X → X by

f(τ) =

{
φ, if τ ∈ N,
τ, if τ /∈ N .

We shall show that f is a morphism of X . First, to see that f is continuous,

let U be an open set. Then

←−
f (U) =

{
N ∪ (U ∩N ′) = U ∪N, if φ ∈ U,
U ∩N ′, if φ /∈ U

where we write N ′ for the complement of N . Now suppose that R ∈ Sub(M).

Consider any τ ∈ RX = HomV(A,R). If τ /∈ N then f(τ) = τ ∈ RX. On the

other hand, suppose that τ ∈ N . Then f(τ) = φ. But τ ∈ N implies that

τ(ci) = ui, for i ≤ n, so Q ≤ −→τ (A) ≤ R. Since P ≤ Q and
−→
φ (A) = P , we

conclude φ = f(τ) ∈ RX.

Thus f is an endomorphism of X, so e = ε−1 ◦ f̌ ◦ ε is an endomorphism

of A. Since θ � β we can choose (a, b) ∈ θ \ β. Also α ∈ I(θ) implies

ψ(a) = ψ(b), hence, from (5), â(ψ) = b̂(ψ). By construction, ψ ∈ N , so
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f(ψ) = φ. Therefore, from (6),

ê(a)(ψ) = â
(
f(ψ)

)
= â(φ) = φ(a)

and similarly, ê(b)(ψ) = φ(b). Since φ(a) 6= φ(b), we conclude from (5) (with

ψ replacing τ and
(
e(a), e(b)

)
replacing (a, b)) that

(
e(a), e(b)

)
/∈ kerψ ≥ θ.

Hence θ is not fully invariant. �

We can use this theorem to answer a question raised in Section 4.

Example 5.5. Let A = {0, 1, 2} and B = {0, 1}. Consider the clone C of

all operations on A that preserve the subset B. The algebra A = 〈A,C〉 is

subalgebra-primal and has a single proper subuniverse, namely B. It follows

from Theorem 5.4 that V = V(A) is verbose. And of course, V is finitely

generated and congruence-distributive.

However, the simple algebra A is not projective in V. If it were, then the

first projection map A×B→ A would have a one-sided inverse, j. In that case

j followed by the second projection would yield a homomorphism from A to B.

But no such homomorphism exists, as we see by considering the cardinality of

A and B, the simplicity of A, and the fact that B has no idempotent elements.

6. Conclusion

Fully invariant congruence relations (also known as fully characteristic con-

gruence relations) have long been of interest in the study of algebraic struc-

tures. Verbal congruence relations have also been of interest, especially in

group theory where they appear as normal verbal subgroups. A verbal congru-

ence relation is always fully invariant, but the converse is not true in general.

In this paper we introduce the notion of a verbose algebra as an algebra in

which every fully invariant congruence relation is verbal. A classic example of

a verbose algebra is any free algebra in a variety. We call a variety verbose if

every algebra in the variety is verbose.

This paper contains a number of results that provide sufficient conditions

for an algebra or a variety to be verbose. We are very far from providing a

complete characterization of verbose varieties. Several of our results call out

for strengthening by relaxing their hypotheses. We present some of these as

open problems.

The hypotheses of Theorem 4.2 include congruence distributivity. A natural

question is whether this can be weakened to congruence modularity.

Problem 1. If V is a finitely generated, congruence modular variety such that

every subdirectly irreducible member of V is projective, must V be verbose?

The results of Theorem 2.8, Corollary 4.4, and Theorem 4.7 suggest such a

strengthening of Theorem 4.2 might be possible.
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There appears to be a fundamental difference between finite and infinite

algebras in our investigations. For example, compare Theorem 2.2 with Ex-

ample 2.5 or compare Theorem 3.1 with the Prüfer group discussion following

Example 2.9. The behavior of infinite algebras is central to the next two

questions.

Problem 2. Suppose V is a locally finite variety in which every finite algebra

is verbose. Must V be verbose?

The next question asks if the finiteness condition in Theorem 4.3 can be

relaxed.

Problem 3. Is a variety V verbose if it contains exactly one subdirectly irre-

ducible algebra?

Theorem 5.2 and Corollary 5.3 provide conditions on a semisimple arith-

metical variety that guarantee all finite members of the variety are verbose.

The more restrictive hypothesis of subalgebra-primal in Theorem 5.4 guaran-

tees that all algebras in the variety are verbose. These results suggest the

following two questions:

Problem 4. Let V be any semisimple arithmetical variety for which

S,T ∈ Vsi & S ∈ HS(T) =⇒ S ∈ IS(T).

Is V verbose?

Problem 5. Is every variety generated by a quasiprimal algebra verbose?

The authors thank Ralph Freese for his help with projective lattices and

the referee for a very careful reading of the manuscript and for several helpful

suggestions.
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