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On Posterior Concentration in Misspecified
Models

R. V. Ramamoorthi∗ Karthik Sriram†, and Ryan Martin‡

Abstract. We investigate the asymptotic behavior of Bayesian posterior distri-
butions under independent and identically distributed (i.i.d.) misspecified mod-
els. More specifically, we study the concentration of the posterior distribution on
neighborhoods of f�, the density that is closest in the Kullback–Leibler sense to
the true model f0. We note, through examples, the need for assumptions beyond
the usual Kullback–Leibler support assumption. We then investigate consistency
with respect to a general metric under three assumptions, each based on a notion
of divergence measure, and then apply these to a weighted L1-metric in convex
models and non-convex models.

Although a few results on this topic are available, we believe that these are
somewhat inaccessible due, in part, to the technicalities and the subtle differences
compared to the more familiar well-specified model case. One of our goals is to
make some of the available results, especially that of Kleijn and van der Vaart
(2006), more accessible. Unlike their paper, our approach does not require con-
struction of test sequences. We also discuss a preliminary extension of the i.i.d.
results to the independent but not identically distributed (i.n.i.d.) case.

MSC 2010: Primary 62C10; secondary 62C10.
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1 Introduction

Let F0 be a family of densities with respect to a σ-finite measure on a measure space.
The object of study is the posterior distribution arising out of the model which consists
of a prior distribution Π on F0 and for any given f ∈ F0, Y1:n = (Y1, Y2, . . . , Yn)
are independent and identically distributed (i.i.d.) as f . We investigate the behavior
of the posterior distribution when the “true” model f0 is not necessarily in F0. The
posterior is typically expected to concentrate around a density f� in F0 that minimizes
the Kullback–Leibler divergence from f0.

An early investigation of this set up goes back to Berk (1966). An extensive study of
parametric model appears in Bunke and Milhaud (1998). Lee and MacEachern (2011)
investigate concentration of the posterior and its behavior in testing problems when the
prior is on an exponential model. The infinite-dimensional nonparametric case has been
studied by Kleijn and van der Vaart (2006) and De Blasi and Walker (2013) for the
i.i.d. case, and Shalizi (2009) for the non-i.i.d. case.
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For the nonparametric i.i.d. case studied in this note, Kleijn and van der Vaart (2006)
is the basic paper. The standard approach to this problem is to first identify sets whose
posterior probability goes to 0 and then relate these to the topology of interest. In their
paper, Kleijn and van der Vaart develop both these aspects together and, in addition to
consistency, also develop rates. De Blasi and Walker (2013) take a somewhat different
route towards providing sufficient conditions, specifically for Hellinger-consistency.

Our starting point is Kleijn and van der Vaart (2006). To help motivate our approach,
we first summarize key steps in their work. Let E0 denote expectation with respect
to f0.

• They start with the Kullback–Leibler support assumption on the prior Π, i.e.,

Π

(
f : E0 log

f�

f
< ε

)
> 0, for any ε > 0. (1)

• They cover the sets Sj = {f : jε ≤ d(f, f�) < (j +1)ε}, for j ≥ 1, by convex sets
A satisfying:

sup
f∈A

inf
0≤α≤1

E0

(
f

f�

)α

< e−j2ε2/4. (2)

• Then they show that, if the assumption in (1) is satisfied, posterior probability
of sets satisfying (2) goes to 0 by constructing a sequence of exponential tests
for a testing problem that involves non-probability measures. Then, based on the
number of sets satisfying (2) required to cover Sj , they develop a notion of entropy
for testing problems of a set Sj . When such entropy can be controlled suitably, it
is shown that posterior probability of {d(f, f�) ≥ ε} = ∪j≥1Sj goes to 0.

In this paper, we first provide a simple proof to show that, if the assumption in (1)
is satisfied, then probability of sets satisfying (2) goes to 0. Our proof does not in-
volve testing problems. We further observe that for a given convex set, the condition
in (2) is, in fact, equivalent to a simpler condition based on Kullback–Leibler diver-
gence.

Consistency is related to the topology on the space of densities, usually the weak
topology or the Hellinger-metric topology. Towards this, we give two examples in the
appendix that point out the need for additional assumptions beyond requiring that f�

be in the topological support or Kullback–Leibler support of Π. In order to gain in-
sight, we first study consistency with respect to a general metric under a set of three
assumptions, each based on a notion of divergence. The first assumption is based on
Kullback–Leibler divergence, the second is based on (2), and the third is based on a
relatively simpler notion. We show that for a weighted L1-metric, such assumptions
hold in convex models or when the specified family is compact. The first assumption
mainly works for compact and convex families. The second assumption along with an
appropriate metric entropy condition gives consistency for convex families. As a conse-
quence, we derive a consistency result (Theorem 4), which is analogous to Kleijn and
van der Vaart (2006). The third assumption is useful for non-convex (e.g., parametric)
models. In this case, we circumvent the convexity requirement by making a continuity



R. V. Ramamoorthi, K. Sriram, and R. Martin 761

assumption on the likelihood ratio and show posterior consistency under an appropriate
prior-summability or metric-entropy condition. As a particular consequence, Theorem 5
gives Hellinger consistency analogous to De Blasi and Walker (2013).

We believe that our methods are simple and transparent, and provide useful insights
on the requirements for the metric, while also making some of the results in Kleijn and
van der Vaart (2006) more accessible. As another small difference, we note that our
consistency results are presented in the ‘almost sure’ sense, as compared to convergence
of means. We also look at one immediate extension of the i.i.d. results to independent
but not identically distributed (i.n.i.d.) models. We note that our study in the i.n.i.d.
case is preliminary and is presented as an initial approach.

The remainder of the paper is organized as follows. Section 2 sets our notation and
provides some basic results. Section 3 presents the consistency results for a general
metric. Section 4 presents some important results specific to L1 and weak topologies.
Section 5 contains examples to demonstrate the application of our results. Finally, Sec-
tion 6 discusses an extension of the i.i.d. results to the i.n.i.d. case. In the interest of
flow, supporting results and details of some proofs are included in the appendix.

2 Notations and preliminary results

2.1 Notations

Let Y1:n = (Y1, Y2, . . . , Yn) be an i.i.d. sample from an unknown “true” density f0 with
respect to a σ-finite measure μ on a measure space (Y,Y ). F0 is a family of density
functions specified to model Y1:n. f0 is not necessarily in F0. Let Π be a prior on F0.
We let P0 and E0 denote probability and expectation with respect to f0. When talking
about joint distribution of finite or infinite i.i.d. sequences with respect to P0, we will
omit the superscript in Pn

0 or P∞
0 .

It is well known that the posterior typically concentrates around a density that
minimizes the Kullback–Leibler divergence from f0, given by

K(f0, f) := E0 log
f0
f

=

∫
log

f0
f
f0dμ.

Accordingly, we assume that there is a fixed unique f� ∈ F0 such that

K(f0, f
�) = inf

f∈F0

K(f0, f).

For any density f , we define

K�(f0, f) := K(f0, f)−K(f0, f
�).

We assume throughout that
∫
(f/f�)f0 dμ < ∞ for all f ∈ F0, and also

∫
(f0/f

�) dμ <
∞. The latter condition is useful since we will later (Section 4) consider weak and L1

topologies with respect to the measure μ0, where dμ0 = (f0/f
�) dμ. The weighted L1
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metric, L1(μ0), appears to be a natural choice in misspecified models, as opposed to the
usual L1(μ) metric.

Let 〈F0〉 be the smallest convex set containing F0. In this note, a convex set is one
that is closed under mixtures. That is, a general subset A ⊆ 〈F0〉 is called convex if,

for any probability measure ν on A, the mixture f̂ν :=
∫
A
f ν(df) belongs to A. It is

convenient to extend Π to 〈F0〉 by defining Π(A) := Π(A ∩ F0), for any measurable
subset A of 〈F0〉. Note that we do not assume that f� minimizes the Kullback–Leibler
divergence in 〈F0〉. In addition, we define:

h�
α(f0, f) := E0 (f/f

�)
α
=

∫
(f/f�)

α
f0dμ,

f (n) := f (n)(y1, y2, . . . , yn) :=

n∏
i=1

f(yi),

f̂ (n)
ν :=

∫
f (n)dν(f), where ν is a probability measure on 〈F0〉 ,

f̂
(n)
A := f̂

(n)
ΠA

, where ΠA(·) := Π(A ∩ · )/Π(A),

h�
α(f

(n)
0 , f (n)) := E0

(
f (n)/f�(n)

)α

=

∫ (
f (n)/f�(n)

)α

f
(n)
0 dμ.

Finally, we write down the formula for the posterior distribution as

Π(A|Y1:n) = Π(A)
f̂
(n)
A (Y1, . . . , Yn)/f

�(n)(Y1, . . . , Yn)

f̂
(n)
Π (Y1, . . . , Yn)/f�(n)(Y1, . . . , Yn)

. (3)

2.2 Preliminary results

We start with

Assumption 1. ∀ ε > 0, Π (f : K�(f0, f) < ε) > 0.

The following proposition, which helps handle the denominator of (3), is the main
consequence of Assumption 1.

Proposition 1. If Assumption 1 holds, then, for any β > 0,

lim inf
n→∞

enβ · f̂ (n)
Π (Y1, . . . , Yn)/f

�(n)(Y1, . . . , Yn) = ∞ P0-a.s.

The proof of the proposition is along the lines of Lemma 4.4.1 in Ghosh and Ra-
mamoorthi (2003).

In view of Proposition 1, Π(A|Y1:n) → 0 P0-a.s., if it can be ensured that for some
β0 > 0,

enβ0 ·Π(A) · f̂
(n)
A (Y1:n)

f�(n)(Y1:n)
→ 0 P0-a.s. . . (4)

Towards handling (4), we work with three notions of divergence of f from f�:



R. V. Ramamoorthi, K. Sriram, and R. Martin 763

(i) K�(f0, f), based on Kullback–Leibler divergence,

(ii) (1− inf0≤α≤1 h
�
α(f0, f)), based on Kleijn and van der Vaart (2006) and

(iii) (1− h�
α0
(f0, f)) for some 0 < α0 < 1, a notion relatively simpler than (ii).

The proposition below describes the relationship between these. The second condition
in the proposition was introduced by Kleijn and van der Vaart (2006).

Proposition 2. Consider the following three conditions for a subset A:

(i) For some ε > 0, inff∈A K�(f0, f) > ε.

(ii) For some δ > 0, supf∈A inf0≤α≤1 h
�
α(f0, f) < e−δ.

(iii) For some 0 < α0 < 1 and η > 0, supf∈A h�
α0
(f0, f) < e−η.

For any set A, (iii) ⇒ (ii) ⇒ (i). Further, if the set A is convex, then they are all
equivalent.

The proof of Proposition 2 uses the minimax theorem and is provided in Appendix A.
The easy proposition below plays a central role.

Proposition 3. Suppose A ⊂ 〈F0〉 is convex. If for some 0 < α < 1 and δ > 0,

sup
f∈A

h�
α(f0, f) ≤ e−δ,

then for any probability measure ν on A,

h�
α(f

(n)
0 , f̂ (n)

ν ) ≤ e−nδ.

Proof. The result follows by the use of convexity and induction. Here is an outline.
When n = 1, the claim holds by convexity of A.

When n = 2, f
(2)
ν (y1, y2) is the marginal density of Y1, Y2 under the model: Y1, Y2|f iid∼ f

and f ∼ ν(·). Write

[
f
(2)
ν (y1, y2)

f�(2)(y1, y2)

]α

=

[
fν(y1|y2)
f�(y1)

]α [
fν(y2)

f�(y2)

]α

where the first term inside the brackets on the right-hand side, fν(y1|y2), is the condi-
tional density of Y1 given Y2, and the second term, fν(y2), is the marginal density of Y2,

obtained from the joint density f
(2)
ν (y1, y2). By convexity of A, for all y2, fν(·|y2) ∈ A.

Hence, we have

E0

[(
fν(y1|y2)
f�(y1)

)α ∣∣∣y2
]
≤ e−δ.
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Since fν(y2) ∈ A, E0[
fν(y2)
f�(y2)

]α ≤ e−δ. Therefore,

E0

[
fν(y1, y2)

f�(y1, y2)

]α
≤ e−2δ.

A similar induction argument for general n completes the proof.

Theorem 1. Suppose Assumption 1 holds. If A ⊂ 〈F0〉 is convex and satisfies (i) (or
equivalently, (ii) or (iii)) of Proposition 2, then

Π(A|Y1:n) → 0 P0-a.s.

Proof. Suppose supf∈A h�
α(f0, f) = supf∈A E0(f/f

�)α < e−δ for some 0 < α < 1 and

δ > 0. Then, by Proposition 3, h�
α(f

(n)
0 , f̂

(n)
A ) ≤ e−nδ. Let 2β0 < δ. Then

P0

(∫
A

n∏
i=1

f(Yi)

f�(Yi)
dΠ(f) > e−2nβ0

)

= P0

((∫
A

n∏
i=1

Π(A)
f(Yi)

f�(Yi)
dΠA(f)

)α

> e−2nαβ0

)

≤ Πα(A) · h�
α(f

(n)
0 , f

(n)
A ) · e2nβ0α

Hence

P0

{∫
A

n∏
i=1

f(Yi)

f�(Yi)
dΠ(f) > e−2nβ0

}
≤ e−n(δ−2β0).

Since the expression on the right-hand side is summable, we observe by using Borel–
Cantelli lemma that (4) is satisfied. This observation, along with Proposition 1, gives
the result.

3 Consistency with general metric

Consistency requires the posterior to concentrate on neighborhoods of f� with respect to
some metric d. In developing conditions for consistency with respect to d, we encounter
a few issues.

First, a necessary condition is that f� be in the topological support of Π with respect
to this metric. Assumption 1 by itself does not ensure this. We present two examples
in Appendix B to illustrate this and point out the need for stronger assumptions. The
first example shows that while the presence of f� in the L1 support of Π is necessary for
consistency, this is not automatically guaranteed by the positivity of Kullback–Leibler
neighborhoods specified in Assumption 1. The next example demonstrates that the
presence of f� in the L1 support and Assumption 1 by themselves are not enough to
ensure consistency.

Second, since the complement of a d-neighborhood is not convex in general, the
equivalence in Proposition 2 is inapplicable. One approach is to suitably cover the
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complement by d-balls. This in turn requires that each ball satisfy one of the three
conditions in Proposition 2. Motivated by these, we investigate consequences of each of
the following set of assumptions.

Assumption 2a. Every neighborhood U = {f ∈ 〈F0〉 : d(f, f�) < ε} contains a
set of the form {f ∈ 〈F0〉 : K�(f0, f) < δ} for some δ > 0.

Assumption 2b. Every neighborhood U = {f ∈ 〈F0〉 : d(f, f�) < ε} contains a
set of the form {f ∈ 〈F0〉 : inf0≤α≤1 h

�
α(f0, f) > e−δ} for some δ > 0.

Assumption 2c. Every neighborhood U = {f ∈ F0 : d(f, f�) < ε} contains a set
of the form {f ∈ F0 : h�

α0
(f0, f) > e−δ} for some 0 < α0 < 1 and δ > 0.

We note that Assumptions 2a and 2b are stated in terms of the convexification 〈F0〉
of F0, whereas Assumption 2c is stated in terms of F0. The presence of 〈F0〉 makes it
hard to verify the first two assumptions in non-convex models. However, we study the
consequences of these assumptions in a general metric space because of the insight it
provides into the requirements on the metric for consistency and shows the usefulness of
Assumption 2c in non-convex models. In the next section, we discuss sufficient conditions
for Assumptions 2a, 2b, and 2c, with respect to L1 and weak topologies.

For the rest of this section, we study posterior consistency based on each of these
assumptions. We find that Assumption 2a is mainly useful when F0 is convex and
compact, Assumption 2b is useful when F0 is convex but may not be compact, and
Assumption 2c is useful when the family is neither convex nor compact.

The following theorem based on Assumption 2a is an easy consequence of Theorem 1.

Theorem 2. Let d be a metric such that d-balls in 〈F0〉 are convex sets and F0 is
compact with respect to d. Let U = {f ∈ 〈F0〉 : d(f, f�) < ε}. Suppose Assumptions 1
and 2a hold. Then

Π(U c|Y1:n) → 1 P0-a.s.

Proof. By Assumption 2a, let {f ∈ 〈F0〉 : K�(f0, f) < δ} ⊂ {f ∈ 〈F0〉 : d(f, f�) < ε/2}.
Since U c∩F0 is compact, it can be covered by B1, B2, . . . , Bk all contained in 〈F0〉 with
Bi = {f ∈ 〈F0〉 : d(f, fi) < ε/3} for some f1, f2, . . . , fk ∈ F0. Each of these balls is
convex and disjoint from {f ∈ 〈F0〉 : d(f, f�) < ε/2}. Assumption 2a ensures that each
Bi satisfies property (i) of Proposition 2. Since there are finitely many such sets, the
result follows using Theorem 1.

In the proof of Proposition 2 provided in Appendix A, it is clear that the choice
of α0 and η made while establishing equivalence of conditions depends on the specific
set A. Hence, it does not appear that the approach based on Assumption 2a can be
carried easily beyond convex and compact families. Below, we take an approach based on
Assumption 2b, which is more in line with Kleijn and van der Vaart (2006). Theorem 1
derives posterior consistency for convex sets. Since complement of a d-neighborhoods
will not be convex in general, the approach here is to cover with a suitable number
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of convex sets with diminishing posterior probabilities. Towards this end, we make the
following assumption.

Assumption 3. There exist subsets {Vn,Wn}n≥1 such that F0 ⊆ Vn ∪Wn and

(a) Π(Wn) < e−nΔ for some Δ > 2E0 log
f0
f∗
.

(b) For every ε > 0, Vn can be covered by Jn d-balls in 〈F0〉 of radius less than ε,
where Jn is a polynomial in n, i.e., for some r > 0, Jn ≤ anr.

The simple lemma below will be useful to derive the results that follow.

Lemma 1. Let Ti, i = 1, 2, . . . , k be non-negative random variables. Then

P

(
k∑

i=1

Ti > e−ε

)
≤ eε

k∑
i=1

inf
0≤α≤1

ETα
i .

Proof. The result follows since, P(
∑k

i=1 Ti > e−ε) = P(
∑k

i=1 min(Ti, 1) > e−ε) and
min(Ti, 1) ≤ Tαi

i for any 0 < αi < 1. Consequently,

P

(
k∑

i=1

Ti > e−ε

)
≤ P

(
k∑

i=1

Tαi

i > e−ε

)
≤ eε

k∑
i=1

ETαi

i .

Taking the infimum over α1, α2, . . . , αk on both sides, we get the result.

We now derive posterior consistency under Assumptions 2b and 3, followed by a
result that is analogous to the posterior consistency result in Kleijn and van der Vaart
(2006).

Theorem 3. Let metric d be such that d-balls in 〈F0〉 are convex sets and let Uε =
{f ∈ 〈F0〉 : d(f, f�) < ε}. If Assumptions 1, 2b and 3 hold, then

Π(U c
ε |Y1:n) → 0 P0-a.s.

Proof. Let Uε/2 = {f ∈ 〈F0〉 : d(f�, f) < ε/2}, and as guaranteed by Assumption 2b,
let

{f ∈ 〈F0〉 : inf
0≤α≤1

h�
α(f0, f) > e−δ} ⊂ Uε/2.

Let A1, A2, . . . , AJn be open d-balls of radius ε/3 that cover U c
ε ∩ Vn. Then,

P0

(∫
Uc

ε∩Vn

f (n)/f�(n)dΠ > e−nβ

)
≤ P0

(
Jn∑
i=1

∫
Ai

f (n)/f�(n)dΠ > e−nβ

)

≤ P0

(
Jn∑
i=1

∫
Ai

f (n)/f�(n)dΠi > e−nβ

)
,
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where Πi is Π normalized to 1 on Ai. Set Ti =
∫
Ai

f (n)/f�(n)dΠi so that the expression
on the right-hand side of the last inequality can be written as:

P0

(
Jn∑
i=1

Ti > e−nβ

)
.

By Lemma 1,

P0

(
Jn∑
i=1

Ti > e−nβ

)
≤ enβ

∑
i

inf
0≤α≤1

E0T
α
i .

Since Ai does not intersect Uε/2, inf0≤α≤1 E0(f/f
�)α < e−δ. By Proposition 3, for each i,

inf0≤α≤1 ET
α
i < e−nδ, so that

P0

(∫
Uc

ε∩Vn

f (n)/f�(n)dΠ > e−nβ

)
< enβnre−nδ.

A choice of small enough β and an application of Borel–Cantelli lemma with β0 < β
gives

enβ0

∫
Uc

ε∩Vn

f (n)/f�(n)dΠ → 0 P0-a.s.

This, along with Proposition 1, gives Π(U c
ε ∩ Vn|Y1:n) → 0 P0-a.s.

As for Wn, first an argument in the lines of Lemma 4.4.1 of Ghosh and Ramamoorthi
(2003) can be used to conclude that for any β > E0 log

f0
f� ,

lim inf
n→∞

enβ
∫
〈F0〉

f (n)/f
(n)
0 dΠ = ∞ P0-a.s. (5)

Then, for Δ > 2E0 log
f0
f� , an application of Markov’s inequality gives

P0

(∫
Wn

f (n)/f
(n)
0 dΠ > e−nΔ

2

)

≤ en
Δ
2 ·

∫
Wn

E0

(
f (n)/f

(n)
0

)
dΠ = en

Δ
2 Π(Wn) ≤ e−nΔ

2 . (6)

Equations (5) and (6) together imply that Π(Wn|Y1:n) → 0 P0-a.s.

The approach taken in Theorem 3 can be adapted to derive a result that is analogous
to Corollary 2.1 of Kleijn and van der Vaart (2006). The entropy condition in their
paper assumes that each set Sj = {f ∈ F0 : jε ≤ d(f, f�) < (j + 1)ε} can be covered

by Nj convex sets Bk with the property supf∈Bk
inf0≤α≤1 h

�
α(f0, f

�) < e−j2ε2/4. In our
approach, this corresponds to a stronger version of Assumption 2b as stated in the
theorem below. If supj≥1 Nj < ∞, then they show that E0[Π(d(f, f�) ≥ ε|Y1:n)] → 0.
An analogous result using our approach is as follows.
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Theorem 4. Let metric d be such that d-balls in 〈F0〉 are convex sets. Suppose As-
sumption 1 and a stronger version of Assumption 2b (where δ depends on ε) hold, i.e.,

For any ε > 0, Uε = {f ∈ 〈F0〉 : d(f, f�) < ε} contains a set of the form

{f ∈ 〈F0〉 : inf0≤α≤1 h
�
α(f0, f) > e−ε2}.

Let Nj be the minimum number of d-balls in 〈F0〉 of radius jε/3 that cover the set
Sj = {f ∈ F0 : jε ≤ d(f, f�) < (j + 1)ε}. If supj≥1 Nj < ∞, then

Π(d(f, f�) > ε|Y1:n) → 0 P0-a.s.

Proof. Along the lines of Lemma 1, we get

P0

(∫
Uc

ε

f (n)/f�(n)dΠ > e−nβ

)
≤ enβ ·

∞∑
j=1

inf
0≤α≤1

E0

(∫
Sj

f (n)/f�(n)dΠj

)α

.

Note that for any f1 such that d(f, f1) ≥ jε, Bf1 = {f : d(f, f1) < jε/3} does not

intersect with Ujε/2. Hence supf∈Bf1
inf0≤α≤1 E0(f/f

�)α < e−j2ε2/4.

Using Proposition 3 and the fact that Sj can be covered by Nj convex sets of the
form Bf1 , we get

P0

(∫
Uc

ε

f (n)

f�(n)
dΠ > e−nβ

)
≤ enβ ·

∞∑
j=1

Nj · e−nj2ε2/4 ≤ enβ · sup
j≥1

Nj ·
e−nε2/4

1− e−nε2/4
.

A suitable choice of small enough β and an application of Borel–Cantelli lemma, gives
that for β0 < β, enβ0

∫
Uc

ε
f (n)/f�(n)dΠ → 0 P0-a.s. This, along with Assumption 1,

gives the result.

As noted earlier, Assumptions 2a and 2b are stated in terms of 〈F0〉, which makes
them difficult to verify for non-convex models. Assumption 2c helps handle the case of
non-convex families. We now derive consistency results under Assumption 2c and the
following continuity assumption.

Assumption 4. For any f1, f2 ∈ F0 and for some monotonically increasing func-
tion η(·) with η(0) = 0 we have

E0

∣∣∣∣ f1f�
− f2

f�

∣∣∣∣ ≤ η(d(f1, f2)).

Note that Assumption 4 is satisfied by d = L1(μ0), in which case η(·) is just the
identity function. If f0/f

� ∈ L∞(μ) then the assumption is satisfied by L1(μ). Also if
f0/f

� ∈ L2(μ), an application of Cauchy–Schwartz inequality shows that it is satisfied
for d = L2(μ).

Towards deriving consistency, the next lemma shows that if Assumptions 2c and 4
hold then U c

ε can be covered by d-balls whose posterior probabilities diminish to zero
with increasing n.
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Lemma 2. Let U c = {f ∈ F0 : d(f, f�) ≥ ε}. Suppose Assumptions 2c and 4 hold
with respect to U and a metric d. Let α0, δ be as in Assumption 2c and η(·) as in
Assumption 4. Then, for any f1 ∈ U c there exists an open ball B(f1, r) around f1, with
the radius r depending only on δ, α0 and η(·), such that

E0

(∫
B(f1,r)

f (n)/f�(n)dΠ(f)

)α0

≤ e−n δ
2 ·Π(B (f1, r))

α0 .

Proof. Let r = η−1((e−
δ
2 − e−δ)

1
α0 ) and ν(·) be any probability measure on F0.

Since 0 < α0 < 1,

E0

(∫
B(f1,r)

f/f� dν(f)

)α0

≤ E0

(∫
B(f1,r)

∣∣∣∣ ff�
− f1

f�

∣∣∣∣ dν(f)
)α0

+ E0

(∫
B(f1,r)

f1
f�

dν(f)

)α0

(then by Jensen’s inequality)

≤
(∫

B(f1,r)

E0

∣∣∣∣ ff�
− f1

f�

∣∣∣∣ dν(f)
)α0

+ E0

(
f1
f�

)α0

ν(B (f1, r))
α0 .

By Assumption 4, the first term of the above inequality satisfies(∫
B(f1,r)

E0

∣∣∣∣ ff�
− f1

f�

∣∣∣∣ dν(f)
)α0

≤ (e−
δ
2 − e−δ) · ν(B (f1, r))

α0 .

By Assumption 2c, the second term of the inequality is bounded as

E0

(
f1
f�

)α0

· ν(B (f1, r))
α0 < e−δ · ν(B (f1, r))

α0 .

Therefore, it follows that for any probability measure ν(·) on F0 we have

E0

(∫
B(f1,r)

f/f� dν(f)

)α0

≤ e−
δ
2 · ν(B (f1, r))

α0 . (7)

Equation (7) is the result for n = 1. An induction argument on n along the lines of
Proposition 3 can now be used to obtain the result. To see this for n = 2, note that, as
in the proof of Proposition 3, we can write[

f
(2)
ν (y1, y2)

f�(2)(y1, y2)

]α0

=

[
fν(y1|y2)
f�(y1)

]α0
[
fν(y2)

f�(y2)

]α0

.

Now, by (7), E(
fν(y2)
f�(y2)

)α0 ≤ e−
δ
2 · ν(B(f1, r))

α0 . Further, since (7) holds for any proba-

bility measure, taking the measure f(y2)
fν(y2)

dν, we get

E0

[(
fν(y1|y2)
f�(y1)

)α0 ∣∣∣y2
]
≤ e−

δ
2 .
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It therefore follows that for any probability measure ν on F0,

E0

[
f
(2)
ν (y1, y2)

f�(2)(y1, y2)

]α0

≤ e−2· δ2 · ν(B (f1, r))
α0 .

A similar induction argument for general n completes the proof.

To ensure that the total posterior probability of U c goes to zero, we need to be able
to cover it with sets of the form B(f1, r) that satisfy a prior-summability assumption as
in De Blasi and Walker (2013) or metric entropy assumption as in Kleijn and van der
Vaart (2006). The following theorem is an immediate consequence of Lemma 2.

Theorem 5. Let U c = {f ∈ F0 : d(f, f�) ≥ ε}. Suppose Assumptions 1, 2c and 4 hold.
Let α0 be as in Assumption 2c and η(·) be as in Assumption 4. Suppose for any given

r > 0, rα0 = η−1(r
1

α0 ) and {B(fj , rα0), j ≥ 1} is an open cover of U c such that one of
the following two conditions (a) or (b) holds:

(a)
∑

j Π(B(fj , rα0))
α0 < ∞.

(b) Assumption 3 holds.

Then, Π(U c|Y1:n) → 0 P0-a.s.

Proof. If condition (a) holds, then since 0 < α0 < 1, we get

P0

(∫
Uc

f (n)/f�(n)dΠ > e−nβ

)
≤ enβ

∑
j≥1

E0

(∫
B(fj ,rα0 )

f (n)/f�(n)dΠ

)α0

≤ enβ · e−nδ/2 ·
∑
j≥1

Π(B (f1, r))
α0 .

A suitable β and Borel–Cantelli Lemma give that for β0 < β, enβ0
∫
Uc f

(n)/f�(n)dΠ →
0 P0-a.s. This, along with Proposition 1, gives Π(U c|Y1:n) → 0 P0-a.s.
If condition (b) holds then the proof is along the same lines as for Theorem 3.

Remark 1. As noted earlier, Assumption 4 automatically holds for d = L1(μ0). In that
case, the function η(·) is just the identity function, and the result based on condition
(a) of Theorem 5 is analogous to Corollary 1 of De Blasi and Walker (2013).

Remark 2. Theorem 5 can be easily applied to i.i.d. parametric models, i.e., when
F0 = {fθ : θ ∈ Θ}. Let f� = fθ∗ for some θ∗ ∈ Θ be the minimizer of Kullback–Leibler
divergence from f0. It is easy to see that Assumption 1 is ensured as long as the prior
Π assigns a positive probability to every open d-neighborhood of θ∗ and E0 log

fθ∗
fθ

is
continuous in θ. Further, note that Theorems 7 and 8 in Section 4 provide sufficient
conditions for Assumption 2c to hold with respect to L1(μ0). However, to apply the
results for the parametric model, we need the assumption to hold with respect to the
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metric d. This can be easily ensured if in addition to conditions of Theorems 7 or 8, it
can be verified that for some monotonically increasing function ζ(·), with ζ(0) = 0:

∫
|fθ − fθ∗ |dμ0 ≥ ζ(d(θ, θ∗)), ∀ θ ∈ Θ.

Then, by defining the metric on F0 as d(fθ1 , fθ2) := d(θ1, θ2), and using Assumption 4,
Theorem 5 can be applied. We provide examples of this approach to parametric models
in Section 5.

Remark 3. Assumption 4 is a continuity condition on E0(
f
f� ). It is possible to work

with an an alternative condition that assumes continuity of E0(
f
f1
) for any f1 ∈ F0.

In particular, if f1 ∈ U c, by Assumption 2c, E0(
f1
f� )

α0 < e−δ. Then, the conclusion
analogous to that of Lemma 2, which is crucial for Theorem 5, can be obtained by
defining an open set B1 := {θ ∈ Θ : E[ f1f� ] < e

δ
2 }. Then for α = α0

2 and any probability

measure ν(·) on B1, it can be shown (by using Cauchy–Schwartz and Jensen’s inequality)
that

E0

[(∫
B1

f

f�
dν

)α]
= E

[(
f1
f�

)α

·
(∫

B1

f

f1
dν

)α]

≤
(
E0

[(
f1
f�

)2α
]) 1

2

·
(∫

B1

E0

[
f

f1

]
dν

)α

< e−α δ
2 .

Posterior consistency can then be derived if U c can be covered by suitably many sets of
the form B1, e.g., when F0 is compact. We work with such an assumption in Section 6
(Assumption D) while extending results to the i.n.i.d. case.

4 Weak and L1 consistency

Assumptions 2a, 2b and 2c are crucial for Theorems 2, 3 and 5, respectively. These, we
feel, are in general hard to verify. Here, we focus on specific topologies and discuss cases
where these assumptions hold.

Recall dμ0 = (f0/f
�) dμ. Our interest is in two topologies on 〈F0〉. First, the weak

topology on L1(μ0) induced by L∞(μ0). The basic open neighborhoods of f� here are
finite intersections of sets of the form{

g ∈ L1(μ0) : |
∫

ϕkgdμ0 −
∫

ϕf�dμ0| < εk, ϕk ∈ L∞(μ0)

}
.

We will refer to this as the μ0-weak topology. The other topology is the L1 topology
which yields neighborhoods of the form {g :

∫
|g − f�|dμ0 < ε}. Of interest are also

the usual weak and total variation topologies on densities. These correspond to μ-
weak topology and L1(μ) topology. In the context of consistency, our interest is in the
concentration of the posterior in neighborhoods of f�. We formally define
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Definition 1. The sequence of posterior distributions {Π(·|Y1, Y2, . . . , Yn)}n≥1 is said
to be μ0-weakly consistent if, for any μ0-weak neighborhood U of f�,

Π(U |Y1:n) → 1 P0-a.s.

We will now show in the theorem below that when F0 itself is convex, Assump-
tions 2a, 2b and 2c are ensured with respect to weak and L1(μ0) topologies.

Theorem 6. If F0 is convex then Assumptions 2a, 2b and 2c hold both with respect to
the L1(μ0) topology and the μ0-weak topology.

Proof. First, using the Cauchy–Schwartz inequality, we get

∫
|f� − f |dμ0 =

∫ ∣∣∣∣1− f

f�

∣∣∣∣ f0dμ =

∫ ∣∣∣∣∣
(
1−

√
f

f�

)∣∣∣∣∣ ·
(
1 +

√
f

f�

)
f0dμ

≤

⎛
⎝∫ ∣∣∣∣∣1−

√
f

f�

∣∣∣∣∣
2

f0dμ

⎞
⎠

1
2

·

⎛
⎝∫ (

1 +

√
f

f�

)2

f0dμ

⎞
⎠

1
2

.

Since F0 is convex, by Lemma 2.3 of Kleijn and van der Vaart (2006), E0
f
f� ≤ 1.

Hence, the second term in the above inequality is bounded because

E0

(
1 +

√
f

f�

)2

= 2

(
1 + E0

f

f�

)
≤ 4.

Similarly, for the first term,

E0

(
1−

√
f

f�

)2

= E0

(
1−

√
f

f�

)2

= 1 + E0
f

f�
− 2E0

√
f

f�

≤ 2

(
1− E0

√
f

f�

)
=

1− h�
1
2

(f0, f)

1
2

≤ K∗(f0, f).

Thus using Lemma 5, we get∫
|f� − f |dμ0 ≤ 2 ·

√
1− h�

α(f0, f)

α
(with α = 0.5) ≤ 2

√
K�(f0, f).

The last inequality ensures that Assumption 2a, 2b and 2c hold with respect to L1(μ0).
Since every weak neighborhood contains an L1-neighborhood, assumptions hold with
respect to the μ0-weak topology as well.

Remark 4 (μ0-Weak Consistency). By Theorem 1, Assumption 2a along with As-
sumption 1 ensures μ0-weak consistency. This is because the complement of a weak
neighborhood is a finite union of convex sets. Further, by Theorem 6, if F0 is convex,
Assumption 1 is enough to ensure μ0-weak consistency.
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When F0 is not convex, Assumptions 2a and 2b are not easy to verify. In that case,
it may be easier to work with Assumption 2c. Next, we derive two results with sufficient
conditions for Assumption 2c to hold with respect to the L1(μ0) metric. The first simpler
result below is obtained when F0 is L1(μ0) compact.

Theorem 7. If F0 is L1(μ0)-compact, then Assumption 2c holds with respect to d =
L1(μ0).

Proof. Suppose f1 ∈ F0 is such that d(f1, f
�) ≥ ε. Since f� is assumed to be unique,

∃ η > 0 such that K�(f0, f1) > η and further by Lemma 5, ∃ 0 < α < 1 such that
h�
α(f0, f1) < 1− αη < e−αη. Here α and η may depend on f1. Now, let Bf1 = {f ∈ F0 :

d(f, f1) < rα}, where rα ≤ (e−αη/2 − e−αη)
1
α . For f ∈ Bf1 , since 0 < α < 1,

h�
α(f0, f) ≤ h�

α(f0, f1) +

∫ ∣∣∣∣
(

f

f�

)α

−
(
f1
f�

)α∣∣∣∣ f0dμ
≤ h�

α(f0, f1) +

∫ ∣∣∣∣ ff�
− f1

f�

∣∣∣∣
α

f0dμ

≤ h�
α(f0, f1) +

(∫
|f − f1| dμ0

)α

≤ e−δ, where δ = αη/2.

The last step uses Jensen’s inequality. We have essentially shown that if d(f1, f
�) ≥ ε

there is an open L1(μ0)-ball Bf1 around f1 and ∃ 0 < α < 1, δ > 0 such that h�
α(f0, f) ≤

e−δ, for all f ∈ Bf1 . Then, as noted in proof of Proposition 2 in Appendix A, we would
also have h�

α′(f0, f) < e−δ for all α′ < α. Since F0 is L1(μ0)-compact, {f : d(f, f�) ≥ ε}
can be covered by finitely many such balls Bf1 , Bf2 , . . . , Bfk , thus obtaining an α and
δ corresponding to each ball. The result is obtained by choosing the minimum of these
finitely many α’s and δ’s and noting that {f ∈ F0 : d(f, f�) ≥ ε} ⊆ ∪k

i=1Bfi ⊆ {f ∈
F0 : h�

α(f0, f
�) ≤ e−δ}.

The following theorem and the corollary give sufficient conditions for Assumption
2c to hold with respect to L1(μ0), when F0 is neither convex nor compact.

Theorem 8. If ∃ 0 < α0 < 1 such that supf∈F0
E0(

f
f� )

α0 ≤ 1 and suppose

supf∈F0
E0(

f
f� )

2 < ∞. Then Assumption 2c holds with respect to d = L1(μ0).

Proof. Without loss of generality, assume α0 = 1
2K−1 for some K > 1. Define a :=

( f
f� )

1

2K . Then

E0

∣∣∣∣ ff�
− 1

∣∣∣∣ = E0

∣∣∣a2k − 1
∣∣∣ = E0

[
|a− 1| ·

∣∣∣1 + a2 + a3 + · · ·+ a2
k−1

∣∣∣]

≤ E0

(
|a− 1|2

) 1
2 ·

(
E0

∣∣∣1 + a2 + a3 + · · ·+ a2
k−1

∣∣∣2)
1
2

.

For the first term on the right-hand side of the above inequality, we have
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E0 |a− 1|2 = E0

(
f

f�

) 1

2k−1

+ 1− 2E0

(
f

f�

) 1

2k

≤ 2

(
1− E0

(
f

f�

) 1

2k

)
.

Note that every term within the expansion E0|1+ a2 + a3 + · · ·+ a2
k−1|2 is of the form

E0a
l = E0(

f
f� )

l

2k , where l ≤ 2k+1 − 2. In particular, the second term is bounded by

some constant multiple of
√
supf∈F0

E0(
f
f� )2. Hence the result follows.

Corollary 1. If the log-likelihood ratio log f
f� is uniformly bounded, then Assumption 2c

holds with respect to d = L1(μ0).

Proof. By uniform boundedness, ∃ α that does not depend on f such that α · | log f
f� | <

1
2 . We note that when t < 1, et < 1

1−t . In particular, for t < 1/2, et− 1 < t/(1− t) < 2t.
Applying this inequality, we get

eα·log
f
f� − 1 < −2α · log f�

f
.

Therefore, E0(
f
f� )

α < 1−2α·E0 log
f�

f . Since 0 ≤ 2α·E0 log
f�

f < 1, we have E0(
f
f� )

α ≤ 1.

Clearly, uniform boundedness also ensures that E0(
f
f� )

2 is uniformly bounded. Hence
Theorem 8 implies that Assumption 2c holds.

Remark 5 (L1(μ0)-consistency). Clearly, Theorem 3 of the previous section can be
applied for d = L1(μ0), along with the sufficient conditions presented in this section
for verifying Assumptions 2b or 2c. In particular, we can conclude by Theorems 5 and
7 that, if F0 is L1(μ0) compact, Assumption 1 is enough to ensure L1(μ0)-consistency.
This is because Assumption 4 is automatically satisfied by L1(μ0), the entropy condition
will hold by compactness and Assumption 2c holds due to compactness by Theorem 7.

5 Examples

5.1 Mixture models

The mixture models discussed in Kleijn and van der Vaart (2006) are covered by our
results. In particular, let y �→ f(y|z) be a fixed density with respect to μ for each z ∈ Z,
and f(y, z) be jointly measurable. For every probability measure ν on Z let

pν(y) =

∫
f(y|z)dν(z).

Let M be the set of probability measures on Z. Consider the model F0 = {pν : ν ∈ M}.
Let f0 be the “true” distribution and assume that f� ∈ F0 satisfies K(f0, f

�) =
infν∈M K(f0, pν). As before set dμ0 = f0

f� dμ. Since F0 is convex by Theorem 6, As-
sumptions 2a, 2b, and 2c are satisfied. Therefore, as noted in Remark 4, the posterior
would be μ0-weakly consistent, provided the prior satisfies Assumption 1.
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Kleijn and van der Vaart (2006) specialize the above model to the case when
z �→ f(y|z) is continuous for all y and Z = [−M,M ] is compact. Under certain as-
sumptions (including identifiability), they show that there is a unique f� that minimizes
K(f0, f). They further argue that F0 is L1(μ) compact. When {f(y|z) : z ∈ [−M,M ]} is
the normal location family, they show that their assumptions hold for the Dirichlet prior.
Since this is a convex family, by Theorem 6, Assumptions 2a, 2b, and 2c hold with re-
spect to L1(μ0). If f0/f

� ∈ L∞(μ), then the map T : (F0, L1(μ)) �→ (F0, L1(μ0)), defined
by T (f) = f , is continuous. Therefore, L1(μ)-compactness implies L1(μ0)-compactness.
Hence, Theorem 2 implies that L1(μ0)-consistency holds. Since f0/f

� ∈ L∞(μ), this
also implies that L1(μ)-consistency holds.

5.2 Normal regression

Consider the family of bivariate densities F0 of the form fθ(y, x) = ϕ(y − θ(x))g(x)
where ϕ(·) is the standard normal density and θ ∈ Θ, a class of uniformly bounded
continuous functions on the space of X. We assume that the true density f0 is such that
Y − θ0(X) ∼ p0(·), a density with mean 0 that does not depend on X. It’s easy to see
that f�(y, x) = fθ0(y, x) = ϕ(y− θ0(x))g(x). We are interested in posterior consistency
with respect to the following metric:

d(fθ1 , fθ2) =
√
E0(θ1(X)− θ2(X))2.

Let Z = Y −θ0(X). We assume that E0[e
M |Z|] < ∞, ∀ M > 0. For notational simplicity,

we denote μX := θ(X)− θ0(X). Note that

log
fθ
fθ0

= Z · μX − μ2
X

2
,

E0 log
fθ
fθ0

= −E0
μ2
X

2
= −E0(θ(X)− θ0(X))2.

This immediately ensures that Assumption 1 holds, as long as the prior puts positive
mass on d-neighborhoods of θ0. Towards verifying Assumption 2c we note by using Tay-
lor’s approximation for h�

α(f0, fθ) as a function of α, at α = 0, that for some ξ∈ (0, α),∣∣∣∣E0

(
fθ
fθ0

)α

− 1− α · E0 log
fθ
fθ0

∣∣∣∣ ≤ α2

2
E0

[(
log

fθ
fθ0

)2

e
ξ log

fθ
fθ0

]
.

Since E0[e
M |Z|] < ∞ for any M and μx = θ(x) − θ0(x) is uniformly bounded, the

expectation on the right-hand side of the above inequality will be bounded by some
large enough constant C > 0. Hence, we get∣∣∣∣E0

(
fθ
fθ0

)α

− 1 + α · E0
μ2
X

2

∣∣∣∣ ≤ α2

2
C.

Therefore,

E0

(
fθ
fθ0

)α

≤ 1− αE0(θ(X)− θ0(X))2 +
α2

2
C.
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For any 0 < ε < 1, note that if d(θ, θ0) =
√
E0(θ(X)− θ0(X))2 > ε, then

E0

(
fθ
fθ0

)α

≤ 1− αε2 +
α2

2
C.

In particular, with α = ε2

C , when d(θ, θ0) > ε, we have

E0

(
fθ
fθ0

)α

≤ e−
ε4

2C . (8)

The above inequality ensures that Assumption 2c holds with respect to d.

Finally, to verify Assumption 4, first note that since μX is uniformly bounded and
E0(e

M |Z|) < ∞, ∀ M , for some C1 > 0,M1 > 0, we have

E0

∣∣∣∣fθ1fθ0
− fθ2

fθ0

∣∣∣∣ = E0

[∣∣∣∣fθ1fθ2
− 1

∣∣∣∣ · fθ2fθ0

]
≤ C1 · E0

[∣∣∣∣fθ1fθ2
− 1

∣∣∣∣ · eM1|Z|
]
.

Now, denote μ′(X) = θ1(X) − θ2(X). Again, using Taylor’s formula and the fact that
μ′
X is uniformly bounded, we get that for some C2 > 0,M2 > 0,

∣∣∣∣
(
fθ1
fθ2

)
− 1

∣∣∣∣ =

∣∣∣∣∣e
(
Z·μ′

X−μ′2
X
2

)
− 1

∣∣∣∣∣
≤ sup

0<ξ<1

[
|μ′

X | ·
∣∣∣∣Z − μ′

X

2

∣∣∣∣ eξ.
(
Z·μ′

X−μ′2
X
2

)]

≤ C2 ·
[
|μ′

X | ·
∣∣∣∣Z − μ′

X

2

∣∣∣∣ eM2|Z|
]
.

Therefore, putting the above two inequalities together, we get for some M > 0, C > 0,

E0

∣∣∣∣fθ1fθ0
− fθ2

fθ0

∣∣∣∣ ≤ C ·
[
|μ′

X | ·
∣∣∣∣Z − μ′

X

2

∣∣∣∣ eM |Z|
]

≤ C ·
(
E0

[
|μ′2

X

]) 1
2 ·

(
E0

[∣∣∣∣Z − μ′
X

2

∣∣∣∣
2

e2M |Z|

]) 1
2

.

The last step uses Cauchy–Schwartz inequality. Since the last term in the above in-
equality is finite, for some suitably large K > 0, we can write

E0

∣∣∣∣fθ1fθ0
− fθ2

fθ0

∣∣∣∣ ≤ (E0(θ1(X)− θ2(X))2)
1
2 ·K,

which implies that Assumption 4 holds. Hence Theorem 5 is applicable, as long as the
prior-summability (part (a)) or the entropy condition (part (b)) of the theorem holds.
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5.3 Bayesian quantile regression

Consider the family of bivariate densities F0 of the form f(y, x) = ϕ(y−θ(x))g(x) where
ϕ(·) is the asymmetric Laplace density given by ϕ(z) = τ(1 − τ)e−z(τ−I(z≤0)), z ∈
(−∞,∞) with I(·) being the indicator function, 0 < τ < 1 and θ ∈ Θ, a class of
uniformly bounded continuous functions on the space of X. It is easy to check that
the τth quantile of ϕ is 0. Hence, this is one particular formulation used for Bayesian
quantile regression (see Yu and Moyeed 2001). We assume that the true density is such
that Y − θ0(X) ∼ p0(·), a density which does not depend on X and whose τth quantile
is 0. It’s easy to see that f�(y, x) = fθ0(y, x) = ϕ(y − θ0(x))g(x) (see Proposition 1
in Sriram et al. (2013)). We are interested in posterior consistency with respect to the
following metric:

d(fθ1 , fθ2) = E0 |θ1(X)− θ2(X)| .

Let Z = Y − θ0(X). It can be seen that (see Lemma 1 of Sriram et al. 2013)∣∣∣∣log fθ1
fθ2

∣∣∣∣ ≤ |θ1(X)− θ2(X)| , (9)

E0

∣∣∣∣log fθ1
fθ2

∣∣∣∣ ≤ E0 |θ1(X)− θ2(X)| .

This immediately ensures that Assumption 1 holds, as long as the prior puts positive
mass on d-neighborhoods of θ0. Further, since θ are uniformly bounded, the first of

the above two inequalities ensures that
fθ1
fθ2

is uniformly bounded. By Corollary 1 to

Theorem 8, it follows that Assumption 2c will be satisfied with respect to L1(μ0).
Further, we argue that Assumption 2c holds with respect to the metric d. To see this,
first, it can be checked using the form of asymmetric Laplace density that

∣∣∣∣ fθfθ0 − 1

∣∣∣∣ ≥
{(

1− e−(θ−θ0)(1−τ)
)
· I(Z≤0) if θ − θ0 ≥ 0,(

1− e(θ−θ0)τ
)
· I(Z>0) if θ − θ0 < 0.

Since |θ(X)−θ0(X)| is assumed to be uniformly bounded, we can further say that there
exists a constant C0 > 0 such that∣∣∣∣ fθfθ0 − 1

∣∣∣∣ ≥ C0|θ(X)− θ0(X)| · (IZ≤0 · Iθ−θ0≥0 + IZ>0 · Iθ−θ0<0) .

Now, noting that E0[IZ≤0|X] = P0(Z ≤ 0|X) = τ , we get

E0

∣∣∣∣ fθfθ0 − 1

∣∣∣∣ ≥ C0E0 [|θ(X)− θ0(X)| · (τ · Iθ−θ0≥0 + (1− τ) · Iθ−θ0<0)]

≥ C0 min(τ, 1− τ) · E0|θ(X)− θ0(X)|
= C0 min(τ, 1− τ) · d(fθ, fθ0).

Since we have already argued that Assumption 2c holds for L1(μ0), the above inequality
ensures that it also holds with respect to d. Finally, to check Assumption 4, we use (9)
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and the fact that
fθ2(X)

fθ0(X)
is uniformly bounded, to get that for some C1 > 0,

E0

∣∣∣∣fθ1(X)

fθ0(X)
−

fθ2(X)

fθ0(X)

∣∣∣∣ = E0

[∣∣∣∣fθ1(X)

fθ2(X)
− 1

∣∣∣∣ · fθ2(X)

fθ0(X)

]
≤ C1 · E0

∣∣∣∣fθ1(X)

fθ2(X)
− 1

∣∣∣∣ .
Hence,

E0

∣∣∣∣fθ1(X)

fθ2(X)
− 1

∣∣∣∣ ≤ max
(
E0

∣∣∣e−|θ1(X)−θ2(X)| − 1
∣∣∣ ,E0

∣∣∣e|θ1(X)−θ2(X)| − 1
∣∣∣) ,

which by Taylor’s formula is

≤ C · E0 |θ1(X)− θ2(X)| for some constant C.

Therefore, Assumption 4 holds. Hence Theorem 5 is applicable, as long as the prior-
summability (part (a)) or the entropy condition (part (b)) of the theorem holds.

6 An extension to i.n.i.d. models

The ideas developed in the previous sections allow us to begin some easy and direct ap-
plications to i.i.d. parametric models and to the case of independent but non-identically
distributed (i.n.i.d.) response. In this section, we outline these ideas. In the interest of
flow, the results are presented here and the proofs are deferred to Appendix C.

We will assume that the distribution of the response Y is determined in principle by
the knowledge of a covariate vector X. In other words, there exists an unknown “true”
density function f0x(·) with x ∈ X , such that Y |X = x ∼ f0x. So, for the ith observed
response Yi with covariate value Xi = xi, Yi ∼ f0xi . The Xi could be non-random and
hence Y1, Y2, . . . , Yn are independent but non-identically distributed. Ex[·] will denote
the expectation w.r.t. the density f0x. We will denote by Px, the probability with respect
to f0x and P0 with respect to the infinite product measure f0x1 × f0x2 × · · · , and by
E0[·] the expectation w.r.t. this product measure.

Suppose we have a family of densities F0 = {ft : t ∈ [−M,M ]}. Let Θ be a class
of continuous functions from X to [−M,M ]. For ease of notation, we write θ(x) as θx.
The specified model is that Yi ∼ fθxi

, where θ ∈ Θ is the unknown possibly infinite
dimensional parameter. First, we make the following assumption with regards to the
covariates and the parameter space.

Assumption A. The covariate space X is compact w.r.t. a norm ‖ · ‖ and Θ is a
compact subset of continuous functions from X → R endowed with the sup-norm
metric, i.e., d(θ1, θ2) = supx∈X |θ1(x)− θ2(x)|.

A straightforward parametric example for Θ would be any class of smooth func-
tions defined on a compact set X and parametrized by finitely many parameters, also
taking values on some compact set. In this case, sup-norm metric would be equiva-
lent to the Euclidean metric on the finite dimensional parameter space. As an example
for a non-parametric class of functions, let X = [0, 1] and let Θ be the sup-norm clo-
sure of the collection of polynomials S defined on [0, 1] given by S := {θ : θ(x) =
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∑k
j=1 ajx

j for some k ≥ 1 and such that aj ≤ 1
j3 }. It can be checked that this class

is equi-uniformly-continuous and uniformly bounded. Hence, Θ will be compact by
Arzelà–Ascoli theorem.

Let Π(·) be a prior on the parameter space Θ and let θ∗ be the minimizer (with
respect to θ) of Ex log

f0x
fθx

for all x. As before, we can write the posterior probability of

a set U c = {θ ∈ Θ : d(θ, θ∗) > ε} as follows:

Π(U c|Y1:n) :=

∫
Uc

∏n
i=1

fθxi
(Yi)

fθ∗xi
(Yi)

dΠ(θ)

∫
Θ

∏n
i=1

fθxi
(Yi)

fθ∗xi
(Yi)

dΠ(θ)
=:

R′
1n

R′
2n

.

We will be interested in probabilities of complements of sup-norm neighborhoods of θ∗.
The following useful lemma shows that if the functions θ and θ∗ differ at a point x0,
then they will necessarily differ on a neighborhood around x0 as well.

Lemma 3. Suppose Assumption A holds. Let θ′ ∈ U c and x0 ∈ X be such that |θ′x0
−

θ∗x0
| > ε. Then ∃ δ′ such that ∀ x : ‖x− x0‖ < δ′ we have |θ′x − θ∗x| ≥ ε

2 .

Clearly, for the posterior probability of sup |θ(x)−θ∗(x)| > ε to go to 0, we need that
|θ(xi)−θ∗(xi) > ε for infinitely many of the design values xi. The following assumption
is a way to formalize this notion.

Assumption B. For any given x0 ∈ X , δ′ > 0, let Ax0,δ′ = {x : ‖x− x0‖ < δ′}
and IAx0,δ′ (x) be the indicator function which is 1 when x ∈ Ax0 and 0 otherwise.

Then, κ(x0, δ
′) = lim infn≥1

1
n

∑n
i=1 IAx0,δ′ (xi) > 0.

Such a condition can be seen to hold in various situations. A simple instance would
be when X is a finite set {a1, a2, . . . , ak} and when the covariates Xi take each of these
values aj a fixed proportion of times. Another example would be when the design set
{xi, i ≥ 1} is dense in a closed interval say [0, 1] such that the proportion of xi’s
falling in any sub-interval is proportional to the interval length or a fixed function of
the interval length. More generally, it could also be designs where the proportion of xi

could vary, for example, twice as many xi’s samples on [0, 0.5] versus [0.5, 1], etc.

Towards deriving conditions for Π(U c|Y1:n) → 0, we first note that the next two
assumptions are equivalent to Assumption 1 of the i.i.d. case and help control the
denominator of the posterior probability, as seen in Proposition 4 below.

Assumption C. ∃ θ∗ ∈ Θ such that θ∗x = argmint∈[−M,M ] Ex log
f0x
ft

, ∀ x ∈ X
and θ∗ is in the sup-norm support of Π.

Assumption D. Ex[log
ft
ft′

] and and Ex[(
ft
ft′

)α] for every α ∈ [0, 1] are continuous

functions in (x, t, t′) ∈ X × [−M,M ]2 and Ex log
2 ft

ft′
is uniformly bounded for

(x, t, t′) ∈ X × [−M,M ]2.
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This continuity assumption is in the same spirit as Assumption 4 in the i.i.d. case.

Such an assumption will hold if ft(y)
f ′
t(y)

is continuous in (t, t′) for each y and if the true

density f0x(y) is continuous in x for each y, and can be bounded by an integrable func-
tion in y. The boundedness condition on the second moment of the log-likelihood ratio
is to enable the application of the strong law of large numbers (SLLN) for independent
random variables and is used in the proof of Proposition 4.

Proposition 4. Suppose Assumptions A, C and D hold, then

for any β > 0, enβR′
2n → ∞ P0-a.s.

The next assumption helps relate the sup-norm metric with the Kullback–Leibler
divergence and is analogous to Assumption 2a.

Assumption E. For any ε > 0, ∃ δ ∈ (0, 1) and α0 ∈ (0, 1) such that{
t ∈ [−M,M ] : Ex log

fθ∗
x

ft
< δ

}
⊆ {t : |t− θ∗x| < ε} , ∀ x ∈ X .

Without delving into the details, we just note here that sufficient conditions for this
assumption to hold can be derived based on ideas developed in Section 4. For example,

as in Corollary 1, a sufficient condition would be that log
fθ(x)

fθ∗x
is uniformly bounded.

The next lemma and proposition help obtain a result that is analogous to Lemma 2.

Lemma 4. Let U c = {θ : supx∈X |θ(x) − θ∗(x)| > ε}. If Assumptions A to E hold,
then ∃ δ1 ∈ (0, 1) such that for every θ′ ∈ U c, an α′ ∈ (0, 1) can be chosen such that

E0

(
n∏

i=1

fθ′
xi
(Yi)

fθ∗
xi
(Yi)

)α′

< e−nδ1 for all sufficiently large n.

The next proposition is analogous to Lemma 2 and helps control the numerator of
the posterior probability.

Proposition 5. Suppose Assumptions A to E hold. Then for any θ′ ∈ U c, ∃ an open
set Aθ′ containing θ′ such that for some α ∈ (0, 1), δ ∈ (0, 1) and for any probability
measure ν(·) on Aθ′ , for all sufficiently large n, we have

E0

[(∫
Aθ′

n∏
i=1

fθxi
(Yi)

fθ∗
xi
(Yi)

dν(θ)

)α]
< e−nα δ

2 .

Finally, we obtain the result for the i.n.i.d. case.

Theorem 9. Suppose that Assumptions A to E hold. Then,

Π(U c|Y1:n) → 0 P0-a.s.
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Proof. Note that Proposition 5 can be applied by taking ν(·) = Π(·)
Π(Aθ′ )

. So, for any

θ′ ∈ U c, ∃ δ > 0 and an open set Aθ′ containing θ′ such that, for sufficiently large n,

P0

((
en

δ
4

∫
Aθ′

n∏
i=1

fθxi
(Yi)

fθ∗
xi
(Yi)

dΠ(θ)

)α

> εα

)

≤ Πα(Aθ′)

εα
· E0

(
en

δ
4

∫
Aθ′

n∏
i=1

fθxi
(Yi)

fθ∗
xi
(Yi)

dΠ(θ)

Π(Aθ′)

)α

≤ e−nα δ
4

εα
.

Therefore, by Borel–Cantelli lemma, we can conclude that

en
δ
4

∫
Aθ′

n∏
i=1

fθxi
(Yi)

fθ∗
xi
(Yi)

dΠ(θ) → 0 P0-a.s.

By Proposition 4, it follows in particular that

en
δ
4

∫
Θ

n∏
i=1

fθxi
(Yi)

fθ∗
xi
(Yi)

dΠ(θ) → ∞ P0-a.s.

Considering the ratio of the above two quantities immediately gives Π(Aθ′ |Y1:n) →
0 P0-a.s. By compactness, U c can be covered by finitely many sets of the form Aθ′ .
Hence the result follows.

The proofs of lemmas and propositions discussed in this section are provided in
Appendix C. As an application, we briefly discuss an example based on Bayesian quantile
regression with i.n.i.d. response.

6.1 Example: Bayesian nonlinear quantile regression

Similar to Section 5.3, consider a family of densities F0 = {ft : t ∈ [−M,M ]}, where
ft(y) = ϕ(y − θ(x))g(x) where ϕ(·) is the asymmetric Laplace density given by ϕ(z) =
τ(1 − τ)e−z(τ−I(z≤0)), z ∈ (−∞,∞) with I(·) being the indicator function, 0 < τ < 1.
Let the “true” quantile function of Y given covariate X be θ0(X).

By the properties of ALD, it can be observed (see Proposition 1, Lemmas 1 and 2 of

Sriram et al. 2013) that (a) θ∗ = θ0, (b) | log ft′
ft
| ≤ |t− t′|, and (c) that if |t− θ∗xi

| > ε
then

Exi log
fθ∗

xi

fθ
> δxi =

ε

2
·min

{
P0xi

(
0 < Yi − θ∗xi

<
ε

2

)
, P0xi

(
− ε

2
< Yi − θ∗xi

< 0
)}

.

As discussed above, there are various examples where Assumptions A and B would
hold. One may consider any of those possibilities for the current example as well.

If we consider any prior that puts positive mass on sup-norm neighborhoods of θ0,
that along with observation (a) ensures that Assumption C holds.
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It follows by Assumption A and observation (b) above that ft
ft′

is uniformly bounded

and by property of ALD that it is continuous in (t, t′). If we assume that the true density
function f0x(y) is continuous in x for each y and can be dominated by an integrable
function in y, then an application of dominated convergence theorem (DCT) would
ensure that Assumption D holds.

Finally, using observation (c), if P0x(0 < Y − θ∗x < ε
2 ) and P0x(− ε

2 < Y − θ∗x < 0)
(where Y ∼ P0x) are continuous and positive functions of x, then {δxi , i ≥ 1} can
be uniformly bounded below by a positive number. Hence, Assumption E would be
satisfied.

Appendix A: Supporting results and proofs

We now state some technical results used in the paper. The first useful result given
below is same as Lemma 6.3 of Kleijn and van der Vaart (2006).

Lemma 5. As α ↓ 0,
1−h�

α(f0,f)
α ↑ K�(f0, f).

Proposition 2 in Section 2.2 shows that the three notions of divergence we consider in
this paper are equivalent for convex sets. The proof of this result proceeds via the min-
imax theorem. We state below the minimax theorem due to Sion (1958) Corollary 3.3.
and relevant lemmas leading up to the proof of Proposition 2.

Let M,N be convex sets. A function g on M × N is quasi-concave in M if {ν :
g(μ, ν) ≥ c} is a convex set for any μ ∈ M and real c. Likewise, g is quasi-convex in N
if {μ : g(μ, ν) ≤ c} is a convex set for any ν ∈ N and real c. The function g is quasi-
concave–convex if it is quasi-concave in M and quasi-convex in N . Similarly, if g(·, ν) is
upper semi-continuous (usc) for any ν ∈ N and if g(μ, ·) is lower semi-continuous (lsc)
for any μ ∈ M , then it is said to be usc–lsc. Then Sion (1958) proved the following.

Theorem 10. Let M and N be convex sets one of which is compact, and g a quasi-
concave–convex and usc–lsc function on M ×N . Then

sup
μ∈M

inf
ν∈N

g(μ, ν) = inf
ν∈N

sup
μ∈M

g(μ, ν).

The next lemma investigates the relevant properties needed on the function h�
α(f0, f)

so as to apply the minimax theorem. For clarity, we recall the definition of h�
α and note

that

h�
α(f0, f) =

⎧⎪⎪⎨
⎪⎪⎩
E0

(
f
f�

)α

if 0 < α < 1,

1 if α = 0,

E0

(
f
f�

)
if α = 1.

Lemma 6. The function h�
α(f0, f) is concave in f and convex in α. Further, for fixed

α, it is continuous in f in the L1(μ0)-topology, where dμ0 = (f0/f
�) dμ. Also, for fixed

f , h�
α(f0, f) is continuous in α.
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Proof. Concavity and convexity are easy to check. Continuity in f follows by noting
that, for ϕ ∈ 〈F0〉,

|h�
α(f0, ϕ)− h�

α(f0, f)| =
∣∣∣∫ ( ϕ

f�

)α

f0dμ−
∫ ( f

f�

)α

f0dμ
∣∣∣

≤
∫ ∣∣∣ ϕ

f�
− f

f�

∣∣∣αf0dμ
≤

(∫
|ϕ− f |dμ0

)α

.

Continuity in α follows from the dominated convergence theorem since

(f/f�)α ≤ I{f≤f�} + (f/f�)I{f>f�},

where I{·} is the indicator function.

The following theorem is an immediate consequence of the minimax theorem and
Lemma 6.

Proposition 6. For any convex set A ⊂ 〈F0〉,

inf
0≤α≤1

sup
f∈A

h�
α(f0, f) = sup

f∈A
inf

0≤α≤1
h�
α(f0, f)

Another useful application of the minimax theorem is the following.

Proposition 7. For any convex set A ⊂ F and f ∈ A, define:

g(α, f) =

⎧⎪⎨
⎪⎩
K�(f0, f) if α = 0,

(1− h�
α(f0, f))/α if α ∈ (0, 1),

1−
∫
(f/f�)f0 dμ if α = 1.

Then
sup

0≤α≤1
inf
f∈A

g(α, f) = inf
f∈A

sup
0≤α≤1

g(α, f).

Proof. On A, we give the L1(μ0)-topology. From Lemma 6 it follows that for each
α ∈ (0, 1), g(α, f) is continuous in f . Next, we argue that g(α, f) is lsc in f when α = 0,
i.e., we need to show that, if

∫
|fk − f |dμ0 → 0, for f ∈ A, then lim infK�(f0, fk) ≥

K�(f0, f). Suppose, on the contrary, that lim infK�(f0, fk) = δ < K�(f0, f). Then,
there exists a subsequence {fk′} such that,K�(f0, fk′) is increasing and limK�(f0, fk′) =
δ. Let αn decrease to 0, and set An = {f ∈ A : g(αn, f) ≤ δ}. By Lemma 5,
g(αn, f) ≤ K�(f0, f) and hence for each n, {fk′} ⊂ An. Further, the continuity of
g(αn, f) with respect to f implies that f itself is in An. Thus f ∈

⋂
n An, which implies

K�(f0, f) ≤ δ, a contradiction. Continuity at α = 1 is trivial. Similarly, continuity of
g(α, f) in α for α ∈ (0, 1) follows from Lemma 6 and at α = 0 from Lemma 5. Fi-
nally, g(α, f) is convex in f and by monotonicity in α, quasi-concave in α. Applying the
minimax theorem gives the result.
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Proof of Proposition 2. (iii) =⇒ (ii) is immediate. Now suppose (ii) holds, i.e.,

sup
f∈A

inf
0≤α≤1

h�
α(f0, f) < e−δ for some δ > 0.

This means for a given, f ∈ A, ∃ 0 < α ≤ 1 such that h�
α(f0, f) < e−δ. Now, for any

α′ < α, setting p = α
α′ , q = p

p−1 and applying Holder’s inequality to ( f
f� )

α′
1 with respect

to the measure f0dμ, ∫ (
f

f�

)α′

f0dμ ≤
[∫ (

f

f�

)α

f0dμ

]α′
α

,

or h�
α′(f0, f) ≤ [h�

α(f0, f)]
α′
α .

Consequently, for any α′ ≤ α, h�
α′(f0, f) ≤ e−α′δ. Equivalently, for all α′ < α,

1− h�
α′(f0, f)

α′ ≥ 1− e−α′δ

α′ .

As α′ ↓ 0, from Lemma 5 the left-hand side of the last expression converges to
K�(f0, f) and the right-hand side converges to − d

dα′ e
−α′δ|α′=0 = δ. This holds for each

f ∈ A, and hence (i) holds. This completes the proof of (iii) =⇒ (ii) =⇒ (i).

We will now show that (i) =⇒ (iii) when A is a convex set, thus concluding that
in this case, the three conditions are equivalent. Suppose (i) holds, then from Lemma 7,

sup
0≤α≤1

inf
f∈A

g(α, f) = inf
f∈A

sup
0≤α≤1

g(α, f) > δ.

Since inff∈A g(α, f) is increasing as α ↓ 0, given any δ′ < δ, there is a α0 > 0, such
that for all f ∈ A,

g(α0, f) =
1− h�

α0
(f0, f)

α0
> δ′.

So that h�
α0
(f0, f) < 1 − α0δ

′ ≤ e−η where η = α0δ
′. Therefore, condition (iii)

holds.

Appendix B: Illustrating need for assumptions on
topology

Example 1. This example shows that while f� in the L1 support of Π is necessary for
consistency, this may not follow from Assumption 1.

Let f0 be the Unif(0, 1) density and f� be the Unif(0, 2) density. Let F0 = {fk : k ≥
1}, where

fk(y) =

{
bk if y ∈ (0, 1),

2(1− bk), if y ∈ (1, 3/2),
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with bk ↑ 1/2. Take any prior such that Π(fk) > 0 for all k. Then Assumption 1 is seen
to be satisfied because K�(f0, fk) ↓ K�(f0, f

�) = log 2. However, the L1-distance does
not vanish, i.e., ‖fk − f�‖ > 1/4 for all k.

Example 2. This example demonstrates that even if f� is in the L1 support of Π and
Assumption 1 is satisfied, consistency still may not hold.

Let μ be the measure obtained as a sum of the Lebesgue measure on [0, 2] and point
masses on integers k ≥ 3. For k ≥ 3 and a ∈ (0, 1], let fk and ga be densities with
respect to the measure μ, defined as follows:

fk(y) =

{
1
2 − 1

k if y ∈ [0, 1],
1
2 + 1

k if y = k,

ga(y) =

{
1
2 if y ∈ [0, a],

1− a
2 if y ∈ [1, 2].

Let F = {ga, fk : a ∈ (0, 1), k ≥ 3} endowed with the L1(μ) norm ‖ · ‖. Take the
following priors on fk and ga:

π(fk) =
1

2k−1
, k ≥ 3,

π(ga) =
1

4
a−

1
2 , a ∈ (0, 1].

Note that
∑

k≥3 π(fk) =
1
2 and

∫ 1

0
π(ga)da = 1

2 .

Let f0 be the density on (0, 1) whose distribution function F0 is

F0(y) =

⎧⎨
⎩2y

[
1−

(
− log(1− 1/21/2)

)−1/2]
if y ∈ (0, 1/2],

1−
(
− log(1− y1/2)

)−1/2
if y ∈ (1/2, 1).

We will see later that, for this f0, we get 1−M
1/2
n < e−n P0-almost surely for all large

n, where Mn = max{Y1, . . . , Yn}. Let f� be the Unif(0, 2), density, i.e., ga(·) for a = 1.
Then it is easy to see the following:∫

log
(f�

fk

)
f0 dμ = log

(
1/2

1/2− 1/k

)
,

∫
log

(f�

ga

)
f0 dμ =

{
∞ if a ∈ (0, 1),

0 if a = 1.

These show that, indeed, f� minimizes the Kullback–Leibler divergence from f0. Also,

{f : K�(f0, f) < ε} contains {fk : log( 1/2
1/2−1/k ) < ε} = {fk : k ≥ 2(1−e−ε)−1}. Clearly,

the assumed prior puts positive mass on the latter set, so Assumption 1 is satisfied.
Further, note that, for k ≥ 3 and a ∈ (0, 1),

‖fk − f�‖ > 1/2 and ‖ga − f�‖ = 1− a.
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Therefore, for any ε ∈ (0, 1/2), we have

Πn(‖f − f�‖ > ε) =

∫ 1−ε

Mn
2−n 1

4a
−1/2 da+

∑
k≥3(

1
2 − 1

k )
n 1

2k−1∫ 1

Mn
2−n 1

4a
−1/2 da+

∑
k≥3(

1
2 − 1

k )
n 1

2k−1

≥ 0 +An(Mn)

1 +An(Mn)
,

where

An(m) =

∑
k≥3(

1
2 − 1

k )
n 1

2k−1∫ 1

m
2−n 1

4a
−1/2 da

,

and Mn = max{Y1, . . . , Yn} as before. We claim that 1 − M
1/2
n < e−n for all large n

with P0-probability 1. To see this, write

P0(1−M1/2
n > e−n) = P0{Mn < (1− e−n)2} =

(
1− 1√

n

)n

≤ e−
√
n.

Since this upper bound is summable over n ≥ 1, the claim follows from the Borel–
Cantelli lemma. Therefore, when n is large,

An(Mn) ≥
∑
k≥3

en
(
1

2
− 1

k

)n
1

2k−1
.

Since for large enough k, e (12 − 1
k ) > e

2.5 , this implies that lim inf An(Mn) = ∞ P0-
almost surely. Consequently, Πn(‖f − f�‖ > ε) �→ 0, i.e., Assumption 1, together with
f� in the L1 support of Π, is not enough to guarantee L1-consistency.

Appendix C: Proofs of results for the i.n.i.d. case

Here, we provide details of proofs of results for the i.n.i.d. case discussed in Section 6.

Proof of Lemma 3. Since Assumption A holds, by Arzelà–Ascoli theorem, we have the
following:

(i) Θ is uniformly bounded, i.e., ∃ M such that |θ(x)| ≤ M ∀ θ ∈ Θ and x ∈ X .

(ii) Θ is equi-uniformly-continuous, i.e., for x0 ∈ X , given ε > 0, ∃ δ > 0 such that
∀ x : ‖x− x0‖ < δ, |θx − θx0 | < ε, ∀ θ ∈ Θ.

Without loss of generality, for θ′ ∈ U c, we have θ′x0
− θ∗x0

> ε. By (ii) above, i.e.,
equicontinuity, ∃ δ′ such that ∀ ‖x − x0‖ < δ′, we have |θx − θx0 | < ε

4 , ∀ θ ∈ Θ. In
particular, for such x, |θ∗x − θ∗x0

| < ε
4 . Therefore,

θ′x − θ∗x = θ′x − θ′x0
+ θ′x0

− θ∗x0
+ θ∗x0

− θ∗x ≥ − ε

4
+ ε− ε

4
=

ε

2
.
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Proof of Proposition 4. Due to the compactness of Θ× [−M,M ]2 (Assumption A), and
continuity (Assumption D), it follows that Ex log

ft
ft′

is uniformly continuous in (x, t, t′).

Hence, the collection {Ex log
fθ∗(xi)

fθ(xi)
, i ≥ 1} is equicontinuous w.r.t. θ ∈ Θ. Further,

Assumption D implies that {Ex log
2 fθ∗(xi)

fθ(xi)
, i ≥ 1} is uniformly bounded. Hence, ∃ δ ∈

(0, 1) such that{
sup
x∈X

|θ(x)− θ1(x)| < δ

}

⊆ Vε =

⎧⎨
⎩θ : sup

i≥1
Exi log

fθ∗
xi
(Yi)

fθxi
(Yi)

< ε,

∞∑
i=1

1

i2
Exi

(
log

fθ∗
xi
(Yi)

fθxi
(Yi)

)2

< ∞

⎫⎬
⎭ .

Assumption C will therefore ensure that the prior gives positive mass for the set Vε.

Now, observing that R′
2n ≥

∫
Vε

e

∑n
i=1 log(

fθxi
(Yi)

fθ∗xi
(Yi)

)

dΠ(θ) and an application of the strong
law of large numbers for independent random variables leads to

n∑
i=1

log

(
fθxi

(Yi)

fθ∗
xi
(Yi)

)
> −2nε a.s.

Rest of the proof is along the lines of Lemma 4.4.1 of Ghosh and Ramamoorthi
(2003).

Proof of Lemma 4. For θ′ ∈ U c, let x0 be such that |θ′(x0) − θ∗(x0)| > ε. Then by
Lemma 3, ∃ δ′ such that ∀ x ∈ Ax0,δ′ := {x : ‖x− x0‖ < δ′}, we have |θ′x − θ∗x| ≥ ε

2 .

Therefore, by Assumption E, ∃ δ ∈ (0, 1) such that Ex log
fθ∗x
fθ′x

≥ δ for all x ∈ Ax0,δ′ .

For (x, t, t′) ∈ X × [−M,M ]2, let gα(x, t, t
′) :=

1−Ex(
ft
f
t′

)α

α . By Lemma 5, we have

that, gα(x, t, t
′) increases to Ex log

ft′
ft

as α ↓ 0. By Assumption D, both gα(·, ·, ·) and the

limiting function are continuous in (x, t, t′), which is in the compact set X × [−M,M ]2.
Hence, it follows by Dini’s theorem that this convergence is uniform, i.e.,

lim
α↓0

1− Ex

(
ft
ft′

)α

α
↑ Ex log

ft′

ft
uniformly on X × [−M,M ]2.

Let κ := κ(x0, δ
′) as in Assumption B. Then, ∃ 0 < α′ < 1 such that gα′(x, t, t′) >

Ex log
ft′
ft
−κ δ

2 , ∀ (x, t, t′) ∈ X×[−M,M ]2. In particular, gα′(xi, θxi , θ
∗
xi
) ≥ Exi log

fθ∗xi

fθxi

−

κ δ
2 ∀ i ≥ 1, θ ∈ Θ. Also, in general Exi log

fθ∗xi

fθxi

≥ 0. Combining this with the observation

we made at the beginning of the proof that Ex log
fθ∗x
fθ′x

≥ δ ∀ x ∈ Ax0,δ′ , we get

gα′(xi, θ
′
xi
, θ∗xi

) ≥ δ · IAx0,δ′ (xi)− κ
δ

2
, (10)
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where IAx0,δ′ (x) is the indicator function which is 1 when x ∈ Ax0,δ′ and 0 otherwise.

Note that, by Assumption B, for sufficiently large n, 1
n

∑n
i=1 IAx0,δ′ (xi) > 3κ

4 . Using

this, along with a bit of algebra on (10), we can conclude that the following inequality
holds for sufficiently large n:

E0

(
n∏

i=1

fθ′
xi
(Yi)

fθ∗
xi
(Yi)

)α′

≤ e
−δ

∑n
i=1 ·IA

x0,δ′ (xi)+nκ δ
2 . ≤ e−nκ δ

4 .

The result follows by assigning δ1 := κ δ
4 .

Proof of Proposition 5. First, we claim by Assumption D that the collection of functions

{Ex
fθ(xi)

fθ′(xi)
, i ≥ 1} is equicontinuous w.r.t. the sup-norm metric on Θ. Note that Ex

ft
ft′

is a

continuous function on a compact set X × [−M,M ]2. Hence, it is uniformly continuous.
So, given ε > 0, ∃ δ such that if ‖x − x1‖ < δ, |t − t1| < δ and |t′ − t′1| < δ then

|Ex1

ft1
ft′1

−Ex
ft
ft′

| < ε. In particular, let θ, θ1 ∈ Θ be such that supx∈X |θ(x)− θ1(x)| < δ.

Then for any x ∈ X , taking x1 = x, t′ = t′1 = θ(x) and t = θ(x), t1 = θ1(x), we

get |Ex
fθ(x)

fθ′(x)
− Ex

fθ1(x)

fθ′(x)
| < ε. Hence the collection of functions {Ex

fθ(xi)

fθ′(xi)
, i ≥ 1} is

equicontinuous in θ w.r.t. sup-norm metric.

Define Aθ′ := {θ ∈ Θ : Exi [
fθxi

fθ′xi

] < e
δ
2 , ∀i ≥ 1}. This set clearly contains θ′ and it is

an open set due to equicontinuity. By Lemma 4, ∃ α′ ∈ (0, 1) such that

E0

(
n∏

i=1

fθ′
xi
(Yi)

fθ∗
xi
(Yi)

)α′

< e−nα′δ for all sufficiently large n.

Let α = α′/2. Then, for sufficiently large n,

E0

[(∫
Aθ′

n∏
i=1

fθxi
(Yi)

fθ∗
xi
(Yi)

dν(θ)

)α]

= E0

[(
fθ′

xi
(Yi)

fθ∗
xi
(Yi)

)α (∫
Aθ′

n∏
i=1

fθxi
(Yi)

fθ′
xi
(Yi)

dν(θ)

)α]

(By Cauchy–Schwartz inequality)

≤

⎛
⎝E0

⎡
⎣(fθ′

xi
(Yi)

fθ∗
xi
(Yi)

)2α
⎤
⎦
⎞
⎠

1
2

·

⎛
⎝E0

⎡
⎣(∫

Aθ′

n∏
i=1

fθxi
(Yi)

fθ′
xi
(Yi)

dν(θ)

)2α
⎤
⎦
⎞
⎠

1
2

(By Jensen’s inequality)

≤

⎛
⎝E0

⎡
⎣(fθ′

xi
(Yi)

fθ∗
xi
(Yi)

)α′⎤
⎦
⎞
⎠

1
2

·
(∫

Aθ′

E0

[
n∏

i=1

fθxi
(Yi)

fθ′
xi
(Yi)

]
dν(θ)

)α′
2

< e−nα′ δ
2 · enα′ δ

4 = e−nα δ
2 .
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