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Abstract. We consider some singularly perturbed ODEs and PDEs that correspond to the mean first passage time T until a 
diffusion process exits a domain fl in !Rn. We analyze the limit of small diffusion relative to convection, and assume that in 
a part of fl the convection field takes the process toward the exit boundary. In the remaining part the flow does not hit the 
exit boundary, instead taking the process toward a stable equilibrium point inside fl. Thus fl is divided into a part where the 
diffusion is with the flow and a complementary part where the diffusion is against the flow. We study such first passage problems 
asymptotically and, in particular, determine how T changes as we go between the two parts of the domain. We shall show that 
the mean first passage time may be exponentially large even in the part of fl that is with the flow, and where a typical sample 
path of the process hits the exit boundary on much shorter time scales. 
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1. Introduction 

Diffusion processes/models have been used in many applied areas, dating back to the work of Einstein 
on Brownian motion [4]. 

Subsequent early work on diffusions and stochastic differential equations was done by Smoluchowski, 
Langevin, Ornstein and Uhlenbeck, and Kramers (see [8,13,17,18] and the early survey in [l]). Such 
models have found applications in a large number of areas, including chemical kinetics, genetics, signal 
filtering, and mathematical finance (see the books of Schuss for more discussion of various applications 
[15,16]). At times diffusion models arise naturally, while at other instances they arise as continuous 
limits of discrete models, where the limit may be viewed as a type of functional central limit theorem. 
Such is often the case for problems in mathematical biology and queuing theory, where a discrete model 
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may be approximated by a continuous diffusion model as the size of the (discrete) state space becomes 
large. 

Give a diffusion process Xd(t), whose state space is ltln or a subset thereof, one is often interested in 
computing the probability, Pr[Xd(t) E SJXd(O) = x], that the process is in some set S at time t given 
that it started at the point x at time t = 0. Another important quantity is the first passage time until the 
process Xd(t) reaches some set or region. Typically we would start with Xd(O) = x, for x E n C Itln 
(dim(n) = n) and ask when the process exits n, and thus reaches the boundary an, which will typically 
be some ( n - 1 )-dimensional manifold. The physical significance of the first passage time depends on the 
particular application. For example, it may be the time for the crossing of a potential barrier leading to 
a chemical reaction [8], the time until a cycle slip in a phased-locked loop [20], the time until a queuing 
system reaches its maximum capacity of customers, or the time until a certain biological species becomes 
extinct [9]. More on first passage times and applications appears in the books [15,16] and [14], with the 
latter being devoted entirely to first passage processes, including various applications such as fractal 
networks and reaction-diffusion problems. 

For a model that incorporates both diffusive and convective (or drift) effects, the mean first passage , 
time 

where 

T = min{t: Xd(t) E an}, 

satisfies an elliptic PDE of the form L[T] = -1. This is sometimes referred to as the Dyhkin equation 
[3], and is closely related to the backward Kolmogorov equation of Markov processes. Here L is an 
elliptic partial differential operator and we have also the boundary condition that T = 0 for x E an. 
For some simple models, such as a Brownian motion or an Ornstein-Uhlenbeck process, we can solve 
explicitly for the mean passage time, at least in one dimension. But for complicated drift/diffusion fields, 
complicated geometries of an, and problems in dimension n > 1 it is usually very difficult to solve 
exactly for T, and thus approximate, e.g., asymptotic or numerical, methods must be used. A popular 
and fruitful limit to consider is where convection dominates diffusion, and then L has a form such as 
L = E Ll + a(x) · \7, so a small parameter multiplies the highest derivatives in L, and the problem becomes 
of "singular perturbation" type. Singular perturbation methods for computing the first passage times are 
developed in [10-12], and in the probability literature such an asymptotic limit is often treated using the 
theory of large deviations (see [5,19] and [2] for some classic references). 

The behavior of the first passage time T(x) as E ---+ o+ is highly dependent upon the behavior of 
the drift field a(x) and how it interacts with the boundary an which the process is to hit. We refer 
to the subcharacteristics of the PDE as the solutions to the ODE(s) x = a(x), which is an elementary 
dynamical system, and this corresponds to neglecting diffusion entirely and thus approximating Xd(t) 
by a deterministic or "fluid" process. If the subcharacteristics hit the boundary we refer to the problem as 
"diffusion with the flow". Then the diffusive effects may be small. If, however, there is a globally stable 
equilibrium point x0 that is inside the domain n, then all subcharacteristics flow toward the equilibrium 
point and possibly none of them hit the boundary. Then the effects of diffusion become more significant 
and they are needed for the process to ever reach the exit boundary. This is called "diffusion against 
the flow", and a singular perturbation method for computing Tis discussed in [10], where it was found 
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that T(x) is asymptotically a constant, say C(c:), that is exponentially large for small E (roughly O(eK/c:) 
for some K > 0). Thus the passage time is independent of the starting value, since most likely the 
process will flow along a subcharacteristic toward the.stable equilibrium at x0 , and spend a long time in 
a neighborhood of this point before finally undertaking the "large deviation" to exit the domain n. 

The purpose of this note is to study the asymptotics of the mean first passage time for problems where 
some subcharacteristics in n hit the exit boundary while others do not. Thus we study the transition from 
diffusion with the flow to that of against the flow. By studying some model problems in one and two 
dimensions, we shall gain a better understanding of this transition, for E ---+ o+. We divide [l into the two 
parts D+ and D_, where in D+ a subcharacteristic flows towards the stable equilibrium without hitting 
an while in D_ it hits the boundary. We shall show that while in D+ the solution is asymptotically 
exponentially large and constant, in D_ it may be exponentially large but highly dependent on the initial 
value of the process. In other parts of D _ the solution may be 0( 1) as E ---+ 0, and there the deterministic 
approximation is valid. The analysis carefully studies the boundary region(s) near an, and also the 
transition curve C that separates D+ from D_. Near C we shall show that there are two nested internal 
layers that lead to different expansion of T; these correspond to the distance from C being either O(c:113) 

or 0( JE"), and we note that C is (a portion of) the unique subcharacteristic that becomes tangent to the 
boundary an. The main focus here is on the mathematical (singular perturbation) methodology. 

The remainder of the paper is organized as follows. In Section 2 we consider one-dimensional models, 
that may be solved exactly, and make some observations about the structure of the first passage time as 
E ---+ 0. In Section 3 we analyze in detail a two-dimensional problem, that cannot be analyzed exactly, and 
that will show the basic asymptotic approach. A brief discussion, and possible generalizations, appears 
in Section 4. 

2. One-dimensional passage times 

We consider a Brownian particle X(t) moving in a potential field U(x), with a small diffusion coeffi­
cient c:. Then we define T = min{t: X(t) = x0 } to be the first passage time to the point x 0 . The mean 
value 

T(x) = E[TIX(O) = x:::; xo] (2.1) 

satisfies the backward Kolmogorov equation 

c:T"(x) - U'(x)T'(x) = -1, x < xo (2.2) 

with the "absorbing" boundary condition 

T(xo) = 0. (2.3) 

We assume that the potential U(x) satisfies U'(x) < 0 for x < x 2 or x > x 1, U'(x) > 0 for 
x2 < x < x 1, for some x2 < x1 < xo, U(-oo) = oo, U'(x2) = 0 = U'(x1) and U 11(x2) > 0, 
U"(x1) < 0. Hence, x 2 is a local minimum of the potential while x 1 is a local maximum. Equivalently, 
x 2 (resp., x 1) is a stable (resp., unstable) equilibrium point of the flow x = a(x) = -U'(x), which is 
a deterministic, or "fluid", approximation to the stochastic process X(t). We also assume that U(x) is 
smooth for all x :( x 0 , and in Fig. 1 we sketch a typical potential. 
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U(x) 

x 

Fig. 1. A sketch of a typical potential function U(x). (Colors are visible in the online version of the article; http://dx.doi.org/ 
10.3233/ASY-141259.) 

The mean first passage time T(x) depends also on c and the exit point x 0 , and we evaluate it in the 
limit of small diffusion (c ---+ o+) and various ranges of x and x 0 . The ODE in (2.2) is easily solved to 
give: 

Proposition 1. The mean first passage time has the integral representation 

T(x) = ! rxo1T/ exp [U(7]) - U(e)] de d77, x ~ Xo. 
c Jx -oo c 

(2.4) 

For c; ---+ 0 and initial conditions x < x 1 the drift takes the process toward the stable equilibrium at 
x = x 2, where it spends a large amount of time before finally exiting at x 0 . This type of behavior is 
essentially independent of the starting point x, unless x becomes very close to the unstable equilibrium 
at x 1, and is referred to as "small diffusion against the flow". In contrast, if x > x 1 then U'(x) < 0 for 
x E (x 1, x 0 ] and the drift a(x) = -U'(x) takes the process toward the exit point x 0 . This is called "small 
diffusion with the flow", and then we might expect that for c;---+ 0, (2.2) and (2.3) may be approximated 
by the first order equation 

-U'(x)T'(x) = -1, T(xo) = 0 (2.5) 

whose solution is 

rxo 1 
T(x) = Jx -U'(7]) d77, X1 < X ~ Xo. (2.6) 

This means that we approximate the stochastic process by its fluid limit and thus neglect diffusion 
completely. But, we show below that (2.6) may hold only in a certain subset of the interval [x 1, x 0 ], and 
in fact it may never hold. Below we summarize several asymptotic results for (2.4) as c; ---+ 0 and thus 
identify precisely the conditions under which (2.6) holds. 

Proposition 2. For c---+ 0, T(x) in (2.4) has the following asymptotic behaviors: 

(i) X < X1 

(2.7) 
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(ii) X - X1 = ..jE(3 = 0( Vc) 

T( ) J2Jt [U(x1) - U(x2)] loo -IU"(xi)lv2/2 d x rv exp e v, 
JU11(x2) E /3 

(2.8) 

(iii) x1 < x < xo and U(xo) > U(x2) 

)2JtS [U(x) - U(x2)] T(x)'"" exp 
-U'(x)JU"(x2) E ' 

(2.9) 

(iv) x - x 0 = -Ez = O(E) and U(xo) > U(x2) 

T(x)rv v'2JtS ex [U(xo)-U(x2)](elU'(xoJlz_l) 
-U'(xo)JU11(x2) p E ' 

(2.10) 

(v) x* < x < xo and U(xo) < U(x2), with x* defined by the condition U(x2) = U(x*) 

1
xo 1 

T(x)'"" x -U'(ry) dry; (2.11) 

for X1 < x < x* (2.9) holds, and for x ~ x* T(x) is asymptotic to the sum of (2.9) and (2.11), 
expanded about x = x*. More precisely, if x - x* = EO: = O(E), then 

T(x) = 1Xo 1 d J2JtS eU'(x.)a O(E) 
x. -U'(ry) rJ + -U'(x*)JU11(x2) + . (2.12) 

These results show that if U(x0 ) > U(x2), i.e., the value of the potential at the exit boundary exceeds 
that at the stable equilibrium, the "fluid" behavior in (2.6) is never observed, and the first passage time 
is always exponentially large in E. In such cases T(x) is exponentially large and independent of x for 
x < x 1 and undergoes the transition, as x increases through xi, to the behavior in (2.9) which does 
depend significantly on the starting point x. The expression in (2.10) may be viewed as a "boundary 
layer" correction to (2.9), for starting points near the exit boundary. Note that in order for T(x) to become 
roughly 0(1), z = (x0 - x)/E would need to be exponentially small, of the order O(e[U(xz)-U(xoll/0 ). 

If U(xo) < U(x2) then (2.6) applies but only in the range x E [x*, x 0 ], and for x E [x1, x,) the 
first passage time remains exponentially large. The scale x - x* = O(E) represents the transition from 
T(x) being exponentially large to being 0(1), with the deterministic approximation (2.6) taking hold as 
O'. ---+ + 00. 

The results in Proposition 2 may be explained intuitively as follows. For initial conditions x such that 
x 1 < x < min{xo, x.} a typical sample path of X(t) is taken toward x 0 by the drift, but there is a very 
small (in fact, exponentially small) fraction of sample paths that reach the range x < x 1, which is the 
domain of attraction of the stable equilibrium point at x 2• While this fraction of paths is extremely small 
they tend to lead to exponentially large exit times (similarly to the case x < x 1). So, on the one hand a 
fraction close to one leads to the 0(1) exit times in (2.7), but on the other hand a very small fraction leads 
to exponentially large times. Our analysis shows that the former sample paths dominate the mean exit 
time for x E (x., xo) (if U(x) = U(x2) has a solution for x E (x1, x0)) while the latter paths dominate 
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for x E (x 1, x*), and possibly for all x < x 0 . We also note that neither of the expansions in (2.9) and 
(2.11) exhibit any singular behavior as x --+ x*, and (2.12) shows that for x ~ x* the two classes of 
sample paths contribute roughly equally to the expansion of T(x ). 

Below we sketch only briefly the derivation of Proposition 2, since it follows from a standard applica­
tion of the Laplace method to the integral in (2.4). We write T(x) = c- 1 J:0 I(ry; c) dry with 

(2.13) 

If rJ < x2 then the minimum of U (0 in (2.13) occurs at the upper limit~ = rJ and by the Laplace method 

E 
J(ry; c) rv -U'(ry)' rJ < X2. 

If T/ ~ x2 we set T/ - x2 = JEw = O(J"E) and expand U(~) about~= T/ to obtain 

rJ - X2 
W=--VE . 

If x2 < rJ < x1 the minimum of U(~) is attained at the interior points~ = x 2 and we have 

J( . c)'"" J2TIE ex [U(TJ) - U(x2)] 
r], y'U"(x2) p E ' x 2 < rJ < Xi. 

(2.14) 

(2.15) 

(2.16) 

If rJ > x 1, U(O has local minima both at ~ = x 2 and at the upper limit ~ ry. The relative sizes 
of these two contributions depend on whether U(ry) ~ U(x2). Thus if U(ry) = U(x2) has the solution 
rJ = x* (> x,) then for TJ < x* (2.16) holds, while (2.14) applies for rJ > x*. For rJ ~ x* we simply add 
(2.14) to (2.16). 

Now we integrate c- 1 I from rJ = x to T/ = x0 , noting that different approximations (out of (2.13)­
(2.16)) may apply in different subintervals. Suppose first that x E (x1, x 0 ) and U(x0 ) > U(x2). Then 
(2.16) applies over rJ E [x, x 0 ] and the integral over rJ is a Laplace integral with the major contribution 
coming from the lower limit rJ = x; this leads to the expression in (2.9). If U(x0 ) > U(x2 ) and x ~ x 0 

(more precisely x - xo = -Ez = O(c)) then the interval of integration is small, but we may still 
approximate the integrand using (2.16). This leads to 

T(x) rv II e[U(xo)-U(x2)]/c: exp 0 (TJ - Xo) dTJ, 1xo ~Tr [U'(x ) ] 
xo-c:z cU (x2) c 

(2.17) 

where we expanded (2.16) about rJ = x0 . Evaluating the integral in (2.17) leads to the expression in 
(2.10). If U(xo) < U(x2) and x E (x*, x 0 ), (2.14) applies over the entire range of integration and we 
thus obtain (2.11). But, if x E (x1, x*), (2.16) applies and we again obtain (2.9). If x < x2, regardless of 
the sign of U(x0 ) - U(x2), we use (2.14)-(2.16) to conclude that the main contribution to the TJ-integral 
comes from rJ = x,, where U(TJ) has a local maximum; we thus obtain the constant in (2.7). If x ~ x 1, 
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specifically x - x 1 = Jc(3 = 0( yfc) then we expand (2.16) about rt= x 1 to obtain 

(2.18) 

and this leads to (2.8). This completes the derivations. 

3. A two-dimensional example 

Here we analyze a singularly perturbed two-dimensional diffusion model, which will illustrate some 
asymptotic phenomena similar to those in Section 2, but also lead to new complications. Since this model 
does not seem exactly solvable, we shall apply a singular perturbation approach. 

3.1. Problem statement 

Let n be a domain in JR.2 and let T be the random time until a diffusion process (X(t), Y(t)) ex­
its n by hitting the boundary an, i.e., T = min{t: (X(t), Y(t)) E an}. Taking the drift vector as 
(a(x, y), b(x, y)), and again assuming a small diffusion coefficient c, then mean first passage time 

T(x,y) = E[Tl(X(O), Y(O)) = (x,y) En] 

satisfies 

c[Txx + Tyy] + a(x, y)Tx + b(x, y)Ty = -1, (x, y) E n, 
T(x, y) = 0, (x, y) E an. 

(3.1) 

(3.2) 

(3.3) 

We shall assume that there is a unique stable equilibrium point at (x, y) = (0, 0) that is inside n and 
consider the drift field 

a(x, y) = -ax, b(x, y) = -y, (3.4) 

where a is a constant. The boundary will be the straight line x + y = 1 so that 

n = { (x, y): x + y ~ 1}. (3.5) 

For simplicity we shall also take a = 2, but the analysis is virtually unchanged for any a > 1. In Fig. 2 
we sketch the domain n. 

If c = 0 the problem in (3.2) becomes a deterministic one, and T becomes the time it takes for a 
"subcharacteristic" curve to reach the line that is an. The subcharacteristics are defined as the solutions 
to (i:, y) = (-ax, -y) so we get the curves y = Clxl 1/a and if a= 2 these are the parabolas y2 = kx, 
k E R The origin is thus a stable improper node of this simple dynamical system. Through each point 
(x, y) f- (0, 0) passes a unique subcharacteristic that eventually approaches the origin. But a subcharac-
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Fig. 2. A sketch of the domain fl. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/ ASY-141259.) 

teristic may hit the exit boundary x + y = 1 before reaching the origin. Thus we may naturally divide D 

into two main parts, writing 

D= D+UD_ uc, (3.6) 

where 

D+ = { (x, y): y < 2.j=x, x < -1 or y < 1 - x, x ): -1} (3.7) 

and 

D_ = {(x,y): y > 2.j=x,x < -1}. (3.8) 

The curve C = { (x, y): y = 2yf=i, x < -1} is the unique subcharacteristic that becomes tangent to 
the boundary (at the point (-1, 2)) before continuing toward the origin. 

Thus for (x, y) E D+ the drift field takes the process toward the stable equilibrium before hitting the 
boundary, while for (x, y) E D_ we hit the line x + y = 1. We would hence expect T(x, y) to be, for 
small c, very large and nearly constant in D+, but be 0(1) for (x, y) ED_. Neglecting diffusion entirely 

in (3.2) and solving the elementary PDE leads to 

[
y- Jy2 +4x] 

T(x,y) =log 
2 

, (x,y)ED- (3.9) 

and we note that the above satisfies T(x, 1 - x) = 0 for x ::;; -1. As y decreases through C the expression 
in (3.9) becomes complex and thus clearly invalid. However, we shall show that (3.9) is correct only in 
a subset of D_, just as (2.11) was only valid for x E (x*, x0) c (x 1, x 0). We shall also obtain the correct 
form of T(x, y) in the remaining part of D_, and study carefully the asymptotic transition(s) along the 
critical parabola y 2 + 4x = 0 (y > 2, x < -1 ), and near the "corner point" (2, -1) where the curve is 
tangent to the exit boundary; it is at this corner where the structure of T(x, y) is the most complicated. 
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3.2. Summary of results 

An asymptotic analysis of (3.5) leads to the following results. 

Proposition 3. The asymptotic expansions ofT(x, y) as E ---+ 0 are 

(i) (x, y) E D+ 

3J3JtE ( 1 ) T(x, y),......, C(E) = exp - , 
4 3E 

(ii) 1 - x - y = E( = O(E), x > -1 (where exit boundary meets D+) 

T(x, y),......, C(E) [ 1 - exp (- x; 
1 
()], 

213 

(3.10) 

(3.11) 

(iii) 1 - x - y = E213u = 0(E213), x + 1 = 4TE 113 = 0(E113 ) (where D+, D_ and an all meet; 
U > 0, -OO < T < oo) 

( T
3 UT)-T(x,y),......, C(E)exp 

384 
- S S(u1,T1), (3.12) 

TJ < 0. (3.13) 

Here Ai(-) is the Airy function, and the rk are tf!:e roots of Ai(-), ordered as ro > r1 > r2 > · · ·, 
so that ro = -2.3381 .... A representation of S that applies for all T1 is given by 

S(u1,T1) = e-7?!3e71 u 1 - S(ui,T1), 

S(u1, T1) = fo00 

Ai(u1 + oe-71 .; d~ 

+ roo Ai(u.1 + w~) Ai(~)e-T1w.; d~ 
} 0 A1(w~) 

where w = e2ni/3 and w2 are cube roots of unity. 
(iv) (x, y) E D_ 

(3.14) 

(3.15) 

(3.16) 
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where 

A
2 

( -4t) B
2 

( -2t) 1/J(x, y) = 1/Jo(s) - 4 1 - e - T 1 - e , 

A = s + ~ J 1 - 2s + 5s2, 
1 - s 1 v 

B = -
2

- - J81 - 2s + 5s2, 

3 2 1 1 5s - 1 . ; 
1/Jo(s) = -s - -s - - + v 1 - 2s + 5s2 

4 2 20 1ov'2 

J2 [5s - 1 + J5Jl - 2s + 5s2] + -5VS-5 108 ---2-vT0=10=--_-6 ___ ' 

and (s, t) are related to (x, y) via the mapping 

The range t > 0 ands < -1 corresponds to (x, y) E D_. Furthermore, 

and 

ro 1-1 (-3v - 1)2/3 
1/J1(s)= y'2 s JI-2v+5v2dv, s~-1, 

Ko(s) = ~ [Ai'(ro)]-\-3s - 1)1/ 6 F(s), 
y2Jt 

(
-3s-1)

1
/

3V 8 ( 2v'I0-6 )v'l0/2 

F(s) = 21 - 2s + 5s2 5s - 1 + J5Jl - 2s + 5s2 

oxoy oxoy 
~o(s, t) = at OS - OS at 

-3s - 1 ~ ~ . / 
= [(v2-5v2s+3vl-2s+5s2)e3t 

I6JI - 2s + 5s2 

- (J2- 5Vls + Vl - 2s + 5s2)et 

+ (-J2 + 5Vls +JI - 2s + 5s2)e-t 

- (-v'2 + 5v'2s + 3J1 - 2s + 5s2)e-3tJ 

is the Jacobian associated with (3.20). The equation 

1 
1/J(x,y) + 3 = 0, x ~ -1 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

defines a curve I' in the (x, y) plane, which crosses the exit boundary at (x, y) ~ (-4.615, 5.615), 
that divides D_ into the two parts D_ = D* U Df where D* corresponds toy > 2ft with 
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y below the curve I'. Then in D* the second term in (3.16) (proportional to C(E)) dominates 
and T(x, y) is exponentially large in l/E. In the complement Df the first term dominates and 

T(x, y) ""log{ HY - Jy2 + 4x]} for y above the curve I'. 
(v) 1 - x -y = E

213u = 0(E213), u > 0, -4.615 ... < x < -1 

T(x, y) "" C(E) exp [ l'l/Jo(x)] exp [ E1
1
13 1/J1 (x)] 

-2 I 1;3 ((-3x - 1)1!3 
) x [Ai'(ro)] e-u,Py(x,l-x) c F(x)Ai 

2 
u + ro , (3.25) 

with 

1 -x 1 J 
1/Jy(X, 1 - x) = B(x) = -2- - vsl - 2x + 5x2 (3.26) 

and 1/Jo(x), 7/J1(x) and F(x) are obtained by replacing s by x in (3.19), (3.21) and (3.23) (infact 
s(x, 1 - x) = x by (3.20) with t = 0). When x < -4.615 ... , (3.9) is asymptotically valid near 
the exit boundary x + y = 1. 

(vi) y = 2y1=X + E 113ry, T/ > 0, x < -1 (near curve C) 

T(x, y)"" C(E)E
1

/
6 exp [ 2~;13 1/Jyy(x, 2yCX) + ~ 1/Jyyy(x, 2yCX)] 

2(-x) 2116 

x ----;:::===--=== v-1 - xvl - 3x V2n 
oo . -2 [ rkry(-x)3/22s/3 ] 

xt;[A1
1

(rk)] exp (-l-x)(l- 3x), (3.27) 

where rk are again the Airy roots, and 

2x 
1/Jyy(x, 2yCX) = (x + 1)(3x - 1) < O, (3.28) 

v=;r(43x4 + 18x2 + 3) 
1/Jyyy(x, 2yCX) = - (3x2 + 2x - 1)3 < O. (3.29) 

(vii) y = 2y1=X + E
112 Li, -oo < Li < oo, x < -1 (even nearer curve C) 

J(-1 -x)(l - 3x) 
f(x) = . 

-x 
C(E) Joo -v2 

T(x, y) "" r.;; e dv, 
V TI Li/ j(x) 

(3.30) 

The results in Proposition 3 show that the asymptotic structure of T(x, y) is in fact quite intricate, even 
in the simple case of the linear drift functions in (3.4) and the linear exit boundary. Later we discuss 
possible generalizations. For now we note that T(x, y) has essentially different behaviors in the three 
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regions D+, D* and Df. In D+ the mean first passage time is exponentially large and independent of the 
starting point (x, y). In D* it is also exponentially large in 1/c:, with an additional subexponential factor 
that is exp[O(c:- 113)] (cf. (3.16)), and now depends intricately upon (x, y). In Df we have T = 0(1) 
and there (3.9) applies asymptotically, which neglects diffusion entirely. 

The remaining five ranges in the (x, y) plane treated in Proposition 3 represent boundary layer and 
internal layer expansions. Cases (ii) and (v) apply near the exit boundary and (ii), which applies for 
1 - x - y = O(c:), gives a boundary layer correction to (3.10), while (v) applies in the thicker range 
1 - x - y = O(c:213) and gives a boundary layer correction to the second term in the right-hand side 
of (3.6). For values of x < -4.615 ... no boundary layer correction is needed as (3.9) satisfies the 
boundary condition for all x < -1. 

The expressions in (3.27) and (3.30) represent internal layers that connect the expansions in D* and 
D+. As rJ---+ +oo the k = 0 term in the sum in (3.27) dominates the others, and then we can easily show 
that this result agrees with (3.16) as y + 2Fx (corresponding to st -1). The matching between (3.27) 
and (3.30) occurs in an intermediate limit where rJ ---+ o+ and L\ = c:- 1!6ry---+ +oo. Now the integral in 
(3.30) can be approximated by 

(3.31) 

and for rJ ---+ o+ the terms with k » 1 in the sum in (3.27) dominate. For k ---+ oo the Airy roots rk can 
be approximated by rk '"" -(~kn)213 and the sum over k approximated by an integral, via the Euler­
MacLaurin formula. Then the Airy functions disappear completely and, in view of (3.31), the matching 
between (3.27) and (3.30) follows. Note also that, by (3.28), 'l/Jyy(x, 2Fx) = -2[f(x)r2• 

For L\ ---+ +oo, the right side of (3.30) approaches the constant C(c:) and this agrees with (3.10), which 
applies in the interior of D+. Thus the condition that L\/ f(x) = [y- 2y'x]/[f(x)y'c] » 1 is needed for 
T(x, y) to become essentially independent of the starting point (x, y). With some work we can also verify 
the matching of the internal layers in (3.27) and (3.30), as x t -1, to the "comer layer" expression(s) in 
(3.12)-(3.15). Also, for u ---+ 0, T ---+ +oo with UT fixed, this comer layer will match to the boundary 
layer in (3.11), as it is expanded for x + -1, (---+ oo with (x + 1)( fixed. For u fixed and T---+ -oo, 
(3.12) Will match to the boundary layer in (3.25), for X t -1, as then ~(-3X - 1)1f 3u rv 2-2f 3u = UJ. 

More discussion of the various asymptotic matchings occurs within the derivations in Section 3.3. 
In Fig. 3 we sketch the three main regions D+, D* and Df, also indicating the separating curves I' 

and C (y = 2Fx). 

3.3. Derivations 

We establish Proposition 3, via a singular perturbation analysis of (3.2) with (3.4) and (3.3). Thus we 
analyze the PDE 

c[Txx + Tyy] - 2xTx - yTy = -1, X + y < 1. (3.32) 

In the range D+, where Tis asymptotically large and independent of (x, y), the method of Matkowsky 
and Schuss [10,11] applies, which yields the results in (3.10) and (3.11). We merely sketch the main 
points. If C(c:) ---+ oo and c: ---+ 0, T(x, y) '"" C(c:) is a possible asymptotic solution in D+, as all 
subcharacteristics reach the origin. But this solution does not satisfy the boundary condition in (3.3). 
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D' 
* y 

x 

Fig. 3. A sketch of the three main regions and the curves that separate them. (Colors are visible in the online version of the 
article; http://dx.doi.org/10.3233/ASY-141259.) 

Setting z = x + y and w = x - y the PDE in (3.32) becomes 

1 1 
2dTzz + Tww] - 2(3z + w)Tz - 2(z + 3w)Tw = -1, z < 1 (3.33) 

and (3.3) becomes Tlz=I = 0. We can easily construct a boundary layer correction to the expansion in 
D+ by setting z = 1 - c:(, so that w = 2x - 1 + c:( cv 2x - 1. Then if T cv C(c:)T0((, w) we obtain to 
leading order from (3.33) 

3+w 
2To.(( + -

2
-To.( = 0, ( > 0, Tok=o = 0. (3.34) 

Solving (3.34) subject to the matching condition To ---+ 1 as ( ---+ oo gives T0((, w) = 1 -
exp[-(w + 3)(/4], which is equivalent to (3.11), as w + 3 cv 2(x + 1). This analysis only applies 
for x > -1, i.e., where the boundary an meets D+. To determine C(c:) we multiply [10,11] (3.3) by 
exp[ -c:- 1 (x2 + y2 /2)] and integrate over all of fl. Then by the Laplace method 

J j exp [-l ( x
2 + ~)] dx dy cv Vlnc: 

x+y<I 

and after some integration by parts we are led to 

c 1: [Tx(l - u, u) + Ty(l - u, u)] exp{-l [ ~
2 

+ (1 - u)
2
]} du cv -hnc:. (3.35) 

The main contribution to the integral comes from u = 2/3, and using the boundary layer expansion 
T cv C(c:)To((, w) we have Tx +Ty cv 2C(c:)To.z cv -2c:- 1C(c:)To,( so that (Tx + Ty)(l - u, u)iu=Z/3 cv 

-~c:- 1 C(c:). By the Laplace method the left-hand side of (3.35) becomes 

4pjnc: ( 1) -- - exp -- C(c:) 
3 3 3c: 

(3.36) 

and thus C(c:) is as in (3.10), and the boundary layer correction near D+ nan is as in (3.11). 
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We next consider D_, where the subcharacteristics reach the exit boundary x + y = 1, at points that 
have x > -1, so that (3.11) does not apply. We employ the ray method of geometrical optics, where we 
seek an asymptotic solution of (3.32) in the form 

(3.37) 

Here v is a constant and for convenience we included the multiplicative factor C(E), to facilitate the 
asymptotic matching between the regions D_ and D+. As long as C(1:)e7/J/r:: is asymptotically large, 
which, in view of (3.10), requires that 'lj;(x, y) + 1 /3 > 0, the term -1 in the right-hand side of (3.32) 
will be negligible compared to the left-hand side. But, if 'lj;(x, y) + 1/3 < 0 then we can construct an 
expansion of the solution of (3.32) that remains 0(1) as E ---+ 0, and this yields precisely (3.9) as the 
leading term. By linear superposition, T(x, y) in D_ will be asymptotic to the sum of (3.9) and (3.37), 
with the condition 'lj;(x, y) + 1/3 = 0 determining a curve I' in the (x, y) plane, above (resp., below) 
which (3.9) (resp., (3.37)) is the dominant part. Of course, we have yet to determine 'lj;(x, y). 

Using (3.37) in (3.32) we obtain the eiconal and transport equations 

2x'l/Jx + Y'l/Jy - 'lfJ2; - 'l/J~ = 0, 

[2'l/Jx - 2x]Kx + [2'l/Jy - y]Ky + ['l/Jxx + 'l/Jyy]K = 0. 

In addition, the sub-exponential (O[exp(1:- 113)]) factor in (3.37) must satisfy 

[2'l/Jx - 2x]'l/J1,x + [2'l/Jy - y]'l/J1,y = 0. 

(3.38) 

(3.39) 

(3.40) 

The factor involving 'lj;1 is needed in order to accomplish the asymptotic matching between (3.37) and 
the boundary layer near x + y = 1, x < -1, as well as the internal layer( s) that we shall construct near 
the transition curve y = 2-j=x, x < -1. But since 1: 1/ 3 does not appear in (3.32), 'lj; 1 satisfies a fairly 
simple homogeneous linear PDE, once 'ljJ is computed. 

Equation (3.38) admits many different solutions, depending on the "initial manifold" on which the 
values of 'ljJ are given. The characteristic curves, or rays, for the PDE are obtained by solving the system 

d'l/Jx · · dt = 'l/Jx = -2'l/Jx, 'l/Jy = -'l/Jy, 

x = 2x - 2'l/Jx, iJ = y - 2'l/Jy 

and the solution 'ljJ follows from 

(3.41) 

(3.42) 

(3.43) 

Here "." denotes the directional derivative along a ray. We choose the initial manifold to be the exit 
boundary, where (x, y) = (s, 1 - s), s < -1, so a ray hits the exit boundary where x = s. Furthermore, 
we need the solution where each ray is tangent to the exit boundary. Then the exit boundary will become 
a caustic of these rays. That this is the appropriate ray family for this problem can be argued by examin­
ing the structure of the corner layer, where (x, y) ~ (-1, 2) and (3.12) applies, as this solution involves 
the Airy functions that are characteristic of caustic curves. By expanding (3.12) as we go away from 
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:hat (-1, 2) into D _, we can also argue that (3.37) is the appropriate form of the expansion, and in particular 
we that the sub-exponential factor must be included. We shall first analyze D_, then the boundary [)[2 for 

x < -1, and finally the comer region near ( -1, 2). However, the singular perturbation analysis could 
also be done by considering the regions in a different order. 

37) The solutions to the two ODEs in (3.41) are 

the 
·ge, 
32) 
an 

the 
17), 
)W) 

38) 

39) 

40) 

(3.44) 

where A, B are constant along a ray, so that A (resp., B) is the value of 1/Jx (resp., 1/;y) along x + y = 1, 
where t = 0. Then solving (3.42) with (3.44) subject to (x, y)lt=O = (s, 1 - s) leads to (3.20), which 
expresses (x, y) in terms of A, B, sand t. Then we solve (3.43) to get 

A
2 

( -4t) B
2 

( -2t) 'lj;(x, y) = 1/Jo(s) - 4 1 - e - T 1 - e , (3.45) 

where 'lj;0(s) is 1f; along the exit boundary. To determine A and B we first evaluate (3.38) along x = s, 
y = 1 - s, and thus 

2sA + (1 - s)B = A 2 + B 2
. (3.46) 

The tangency condition translates to dy/dxlt=O = y/xlt=O = -1 so that 

1 - s - 2B = -(2s - 2A) or 2(A + B) = 1 + s. (3.47) 

md Solving (3.46) and (3.47) for (A, B) in terms of s yields the expressions in (3.17), and we note that 
ear A = B = 0 when s = -1. The rays are discussed further in the Appendix. By differentiating 1f; along 
:rly the exit boundary we obtain 1/Jxx + 1/JyYlt=O = 1/Jb(s) =A - Band thus, in view of (3.17), 

the 
em 

41) 

42) 

43) 

~xit 

ire, 

me 
in­
ves 
~m 

I 3s - 1 1 v 
1/;0(s) = + M I - 2s + 5s2 . 

2 v2 
(3.48) 

Integrating (3.48) subject to 1/;0( -1) = 0 leads to the expression in (3.19). Note that when s = -1, A, 
Band 1/Jo(s) all vanish, so that 1/J(x, 2FJi) = 0 for x < -1. Whens = -1 the corresponding ray has 
x = -e2t, y = 2et, so that y = 2Fx, which is the subcharacteristic that goes through the origin and 
is tangent to the boundary. Thus this curve is both a ray for (3.38) and a subcharacteristic of (3.32). In 
Fig. 4 we sketch several of the caustic rays, which fill the domain D _. . 

Having computed 1f; in (3.37) we examine the higher order terms. First, Eq. (3.40) means that 1/;1 = 0 
so that 1/;1 (x, y) is constant along a ray and we write 

To integrate (3.39), which may be written as K = [ 1/Jxx + 1/;yy]K along a ray, we first note that 

Xs t ---
y- L1o' 

Yt 
Sx = - L1o, 

Xt 
Sy= L1o, 

(3.49) 

(3.50) 
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y 

x 

Fig. 4. A sketch of several of the caustic rays. (Colors are visible in the online version of the article; http://dx.doi.org/ 
10.3233/ASY-141259.) 

where L10 = L10(s, t) is the Jacobian in (3.23). Then, by the chain rule, (3.50) and (3.42), we have 

1/Jxx + 1/Jyy = 1/JxsBx + 1/Jxttx + 1/JysSy + 1/Jytty 

1 
= L1o [1/JxtYs - 1/JxsYt + 1/JysXt - 1/JytX8 ] 

= 2_ [ (x - Xt) Ys - (x - Xt) Yt 
L10 2t 2 8 

+ ( y ~ Yt) 
8 

Xt _ ( y ~ Yt) t Xs] 

1 [3 
= L1o l(XtYs - XsYt) 

+ ~(XtsYt - XttYs + YttXs - YtsXt)] 

3 1 L1o,t 
----

2 2 L1o 

Thus the general solution to (3.39) is 

(3.51) 

(3.52) 

It remains to determine the functions K 0(s) in (3.52), 'ljJ1(s) in (3.49), and the constant v in (3.37). This 
we accomplish below, by asymptotic matching to some boundary and comer layer expansions. Some 
more properties of the rays and the function 1/J(x, y) are discussed in the Appendix. 

We consider the range x + y ~ 1 with x < -1. Noting that 

1/J(x, y) = 1/J(x, 1 - x) + 1/Jy(x, 1 - x)(y + x - 1) + o(y + x - 1) 
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with 'lj;(x, 1 - x) = 1/Jo(x) and 1/Jy(x, 1 - x) = B(x), we introduce the new variable u with 

1 - X - y = E
2f 3u, U ;?! 0 

and for u, x = 0(1) with x > -1 set 

T(x, y) = Ev'C(E)e,P(x,l-x)/s exp{ E
1

1
13 

[1/J1(x) - u'l/Jy(X, 1 - x)]} 

x [Bo(x,u)+E 113B1(x,u)+O(c213
)]. 

221 

(3.53) 

(3.54) 

Here v 1 is another constant that we shall determine later. The exponential factors in (3.54) must be 
included in order for (3.54) to have a chance (as u -+ +oo) of asymptotically matching to (3.37). By 
using (3.54) in the homogeneous version of (3.32), expanding for small E, and noting that (3.38) holds 
along x + y = 1, we obtain at the first two orders in E the following equations: 

2Bo,uu + [ v; Vl - 2x + 5x2'lj;;(x) + l(3x + l)u] Bo= 0, 

2B1,uu + [ v; J 1 - 2x + 5x2'lj;; (x) + l(3x + l)u] B1 

=-~Bo - v'2 · 1I - 2x + 5x2 B 0 2 2 v ,x 

+ [(2 + J2(5
x - l) )u + 21/J;(x)] Bo,u· 

2J1 - 2x + 5x2 

In addition, (3.54) must satisfy the boundary condition (3.3), so that 

Bo(x,O) = 0, B1(x,O) = 0. 

(3.55) 

(3.56) 

(3.57) 

The PD Es in (3.55) and (3.56) are really ordinary differential equations in u, with x appearing only as 
a parameter in (3.55). The general solution to (3.55) that decays as u -+ +oo is given by 

(
(-3x - 1)

113 
[ 2v'2vl - 2x + 5x2 

] ) 
Bo(x,u) = F(x)Ai 

2 
u + 

3
x + 

1 
1/J;(x) , (3.58) 

where Ai(·) is the Airy function, and F( ·) is at this stage undetermined. In order to satisfy the first 
boundary condition in (3.57) at u = 0 we must have 

v'2v1 - 2x + 5x2 , 
- (-

3
x _ l)2/ 3 'lj;1(x) = rk; k = 0, 1,2, ... , (3.59) 

where the rk are the roots of Airy function, thus Ai(rk) = 0, and we order the roots as 0 > r 0 > r 1 > · · · . 
We choose k = 0, since the higher roots would lead to exponentially smaller terms in the ray expansion 
in (3.37). The necessity of taking k = 0 will also follow from asymptotic matching considerations, 
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between (3.37) and the comer scale, where u = 0(1) and x + 1 = O(c113). Then setting k = 0 in (3.59) 
we integrate the elementary ODE in (3.59), choosing 'lj;1 ( -1) = 0 for convenience, and thus obtain 
(3.21). So, we have determined the subexponential factor in (3.37). 

It remains to obtain K 0 (s) in (3.52) and F(x) in (3.58). We next show that the analysis of (3.56) for 
the correction term B 1 in (3.54) will imply that F(x) satisfies a certain linear differential equation. We 
note that changing variables from u to v, with 

u = 2J2v1 - 2x + 5x
2 '!/J~ (x) + 2(-3x _ l)-1/3v 

-3x- 1 

= 2(-3x - 0- 11\v - ro), 

(3.55) becomes Bo,vv = vBo and (3.56) becomes an inhomogeneous Airy equation, of the form 

L[Bi] = B1,vv - vB1 = o:(x)Ai(v) + ,6(x)Ai'(v) + /(x)v Ai'(v). 

(3.60) 

(3.61) 

Here o:, ,6 and r can be identified by using (3.58) in (3.56), and writing the result in terms of v instead 
of u. Since Ai" ( v) = v Ai( v) we have 

L[Ai'(v)) = Ai(v), L[~vAi(v)] = Ai'(v), 

L[v2 Ai(v)- 2Ai'(v)] = 2vAi'(v). 
(3.62) 

Using (3.62) we see that the general solution to (3.61) that decays as v-+ +oo is given by 

1 
B 1 = F1(x) Ai(v) + o:(x) Ai'(v) + 2,e(x)v Ai(v) 

+ 1(x) [~v2 Ai(v) - Ai'(v)]. (3.63) 

But B 1(x,0) = 0 implies that the right-hand side of (3.63) must vanish when v = r 0 (corresponding, by 
(3.60), to u = 0) and since Ai'(r0) -1- 0 we must have 

O:(X) = /(X ). (3.64). 

By using (3.58) to evaluate the right-hand side of (3.56) we find that 

o:(x) = (-3x - l)-2/3f2J1 - 2x + 5x2 F'(x) - (-3x - 1)-2/3 F(x) (3.65) 

and 

1(x) = (-3x - 1)-2/3 { J2v1 - 2x + 5x2 F(x) + [4 + J2(5x - 1) J F(x)}. (3.66) 
-(3x+l) Vl-2x+5x2 
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Using (3.64)-(3.66) leads to 

F'(x) 

F(x) 

and thus 

5x - 1 1 5 ----- + - --;::=----:;===== 
1 - 2x + 5x2 3x + 1 v'2v'l - 2x + 5x2 

21 /6(2v'IO - 6)v'10f2(-3x - 1)1/3 
F(x) = F( -1 )-----;::::c===~-----;:::::---;::=~===-----r:~ 

vl - 2x + 5x2(5x - 1 + v'Sv5x2 - 2x + l)v'l0/2 

We have thus obtained the leading term in (3.55), as 

Bo(x, u) = F(x) Ai ( ~(-3x - 1)113u + r 0 } 

up to the constant F( -1 ). 
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(3.67) 

(3.68) 

We proceed to match the expansion (3.54), as u ---+ oo, to the ray expansion (3.37), having now 
determined 'lj; 1(x, y) = 'lj;1(s) in (3.49), in view of (3.59). Using the expansion of the Airy function in the 
form 

we find that 

cv1 Bo(x, u) 

rv CVJ _1_2l/4(-3x - o-l/12u-l/4 F(x) 
2fo 

[ 
(-3x - 1)1/2 3/2] [ (-3x - 1)1/6 r:-.] 

x exp - f;l u exp - f;l rov u . 
3v2 v2 

(3.69) 

(3.70) 

Now, as we approach the boundary x + y = 1 we haves ---+ x and t ---+ 0 in (3.20) (with (3.18)). Also, 
the Jacobian in (3.23) vanishes, with 

~o(s,t) rv (-3s - l)t rv (-3x - l)t, t---+ 0. (3.71) 

From (3.17) and (3.19), after some calculation, we find that 

'lj;(x, y) - 'l/Jo(x) - 'l/Jx(x, 1 - x)(y + x - 1) 

(-3x - 1)1/2 I (-3x - 1)1/2 I 
-----(1 _ x _ y)3 2 = -s u3 2 

3v'2 3v'2 
(3.72) 
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and 

1 1 Vl - 2s + 5s2 

1/J1 (s) -1/J1(x)rv1/J1 (x)(s - x) rv 1/J1 (x) vl2 t 

rv -(-3x - 1)213ro! 
2 

1/3 1/6 ro r::: rv -E (-3x - 1) Vly U. (3.73) 

Here we also used the asymptotic relations 

E2/3U = 1 - X - y ,.__, -3s - 1 t2 ,.__, -3x - 1 t2 t ---1 0 
2 2 ' 

(3.74) 

and 

s - x rv ~ J 1 - 2x + 5x2t, t ---+ 0, (3.75) 

which follow by approximately inverting (3.20), with (3.18), fort ---+ 0. By using (3.70) in (3.54) and 
comparing the result to (3.37) (for x + y ---+ 1), we find that 

1 21/4 
Ev(-3x - l)- 1!2c 112 Ko(x) rv EV] r:;;F(x) 1/12 1/4. 

2v n ( - 3x - 1) u 
(3.76) 

But by (3.74) t ,.__, E113 foVl(-3x - 1)- 1/ 2, so that the matching condition in (3.76) may be satisfied, 
provided that 

1 
V - - = V1 

6 

(-3x - 1)1/6 
and K 0(x) = ;;c F(x). 

v2n 
(3.77) 

We have thus determined the function K 0(s) in (3.52), up to the multiplicative constant F(-1). Also, 
the expansion in (3.54) is determined up to this constant, and the factor Ev1 • 

Next we consider the "comer" region, where (x, y) is close to (-1, 2). We set, as in item (iii) of 
Proposition 3, 

1 
X + 1 = -TEl/3 

2 

and expand T(x, y) on this scale as 

T(x, y) = C(c) [ S(u, T) + o(l)]. 

Using (3.78) and (3.79) in (3.32) leads to the limiting PDE 

1 
2Suu + lTSu + 457 = 0; U > 0, -OO < T < 00. 

(3.78) 

(3.79) 

(3.80) 
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The boundary condition is S(O, T) = 0 for all T, and we can also obtain asymptotic matching conditions 
for S(u, T), as T-+ ±oo. For x > -1 the boundary layer expansion in (3.11), noting that 

1 1 TU 

2(x + 1)( = 
2

c (x + 1)(1 - x - y) = 4 , 

leads to 

S(u, T) ,..__, 1 - e-rn/4 , T-+ oo, u-+ 0 (3.81) 

with UT fixed. By expanding (3.54) as x-+ -1, noting that 

1 3 1/J(x, 1 - x) = 1/Jo(x) ,..__, 
48 

(x + 1) , 

1/J1(x) ""1/J~(-l)(x + 1) = -ro2-4 ! 3(x + 1) 

and 

1 
1/Jy(x, 1 - x) = B(x) ,..__, 4(x + 1), 

we get a second matching condition: 

S(u, T) ,..__, c:vi F(- l)eT3 /384e-uT/8 

x exp [- 2~~3 T] Ai(2-213u + r0), T-+ -oo. (3.82) 

But then we must have v1 = 0, and hence v = 1/6 by (3.77). By making the substitution 

(3.83) 

and also scaling T = 2713
T 1, u = 2213u 1 the parabolic PDE in (3.80) becomes the separable PDE 

~ ~ 

Su1u1 + STJ - u1S = 0; U] > 0, -oo < T] < 00. (3.84) 

The boundary condition is S(O, T1) = 0 and the matching conditions in (3.82) and (3.81) translate to 

T1-+ -OO, 

T] -+ 00, U] -+ 0. 

(3.85) 

(3.86) 

We previously encountered very similar PDEs when analyzing Brownian particles moving in a time­
dependent drift field [7], and problems in financial math dealing with option values evolving under the 
CEV (constant elasticity of variance) process [6]. The only difference was that in [6], TJ had the opposite 
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sign in (3.84). The s~lution to (3.84), subject to the matching conditions in (3.85) and (3.86), and the 
boundary condition S(O, T 1) = 0, is that in (3.13)-(3.15), and we have thus also determined F(-1) as 

1 
F(-l) = -[A-i-,(-ro-)]-2 " (3.87) 

This solution can also be obtained as a limiting case of some more general results in [7], where we ana­
lyzed problems similar to (3.84), but on semi-infinite T1 intervals. We have now completely determined 
the leading term in (3.37), where v = 1/6, and that in (3.54), where v1 = 0. 

It remains to analyze the vicinity of the transition curve y = 2yf=x, and its analysis can be used to 
give an alternate derivation of (3.87). We first consider the scale y - 2yf=x = c11377, with 77 > 0 and 
x < -1. On this scale we set 

T(x, y) rv c116 C(c)e'lj;(x,y)/E: K(x, y)G(x, y), (3.88) 

where 'ljJ is as in (3.17) and 

_ e3t/2 

K(x, y) = l~o(s, t)il/2 (3.89) 

~hich corresponds to K(x, y) in (3.37), divided by the factor K 0 (x). Then since 'ljJ satisfies (3.38) and 
K satisfies (3.39), we find from (3.32) that 

ac ac 
(2'1/Jx - 2x) ax + (2'1/Jy - y) ay = 0. (3.90) 

We rewrite (3.90) in terms of x and 77, noting that ass --+ -1 (which corresponds toy --+ 2yf=x) we have 

and 

'l/Jx "'A'(-l)(s + l)e-2t"' 
8 + 1, 
-4x 

I t S + 1 'l/Jy "'B (-l)(s + l)e- "' ~ 
4y-X 

1 1/3 8(-x)3/2 
s + rv c (1- 3x)(l - x)77· 

With (3.91)-(3.93), (3.90) is asymptotically equivalent to 

-2x-+ -1 + -- -- =0, ac [ 4 1 - x] ac 
ax 1 - 3x 1 + x a71 

whose general solution is 

( 
77(-x)3/2 ) 

G(x,77) =Go (1- 3x)(-l _ x) . 

We determine G0(-) by asymptotically matching (3.88) to the comer layer. 

(3.91) 

(3.92) 

(3.93) 

(3.94) 

(3.95) 
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First we have 1/J(x, y) = 1/J(x, 2v=x + c 11377) so on the 77-scale we can expand 1/J(x, y) in (3.88) about 
y = 2v=x, retaining through cubic terms and noting that B( -1) = 0, and thus 1/Jy(x, 2v=x) = 0. 
Also, in the transition layer t ,....., log( v=x) and 

- - e3t/2 2(-x) 
K(x y) rv K(x 2 CX) rv rv ' ' v -;i; I~( -1, t) I 112 -v'r=-=1=-=x=-v'--;=1 =-=3=x · (3.96) 

Expanding the corner layer (cf. (3.12) with (3.13)) for u 1 ---+ +oo and Ti ---+ -oo with T1 +JUI= 0(1), 
we obtain, using (3.69) to approximate the Airy functions, 

(3.97) 

where the series converges for T1 +JUI< 0. By comparing (3.97) to (3.88), after expanding Kand 1/J 
about y = 2v=x, we find that the exponential factors agree automatically and matching of the algebraic 
factors leads to 

Now 

and 

1/2 2(-x) G ( 77(-x)3/2 ) I 

c y-1 - xJl - 3x 
0 

(1 - 3x)(-l - x) x-+-1 

77(-x)3/2 

(1 - 3x)(-1 - x) 

y-2v=x 
4(-1 - x)c113 

y + x - 1 + ( 1 - v=x-)2 

-2Tc2/ 3 

,....., [c2/3U _ _!__c2/3T2] 1 
16 2Tc2/3 

= _1_ [16u - T2] = (JUI - TJ)(JUI + T1) 

32T 28/3T] 

rv -2-Sf3(JUI +Ti). 

Using (3.95) we conclude that 

(3.98) 

(3.99) 

(3.100) 
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This determines the functional form of Go(·), and using (3.100) in (3.95) and (3.88) leads to the ex­
pression in (3.27). We discuss in more detail the calculation of 7/Jyy and 7/Jyyy along y = 2yi=X in the 
Appendix. 

Now (3.27) applies only for T/ > 0 as then the series converges, since rk < 0. This expansion cannot 
match to the constant T(x, y) ,....., C(c) that applies for y < 2yi=X. We thus consider the scaling y -
2yi=X = JEL1 and note that fJ = E- 116TJ. Then setting 

T(x, y) = C(c) [H(x, '1) + o(l)] 

we rewrite (3.3) on the (x, '1) scale and obtain the limiting parabolic PDE 

x-1 
--H1111 - 2xHx - f1H11 = 0; x < -1, -oo < fJ < oo. 

x 

In order for H to match to the range y < 2yi=X we must have 

H(x, '1)--+ 1, fJ--+ -oo. 

(3.101) 

(3.102) 

(3.103) 

We can also derive a matching condition for Has fJ --+ +oo by requiring (3.101) to match to (3.27) 
as T/ --+ o+. We can estimate the series in (3.27) for T/ --+ 0 by noting that the Airy roots rk satisfy 
rk,....., -(~kn)213 fork--+ oo and then Ai'(rk),....., ±(~k) 1 16n- 1 1 3 . We thus have, for a--+ 0, 

00 
L e-alrkl [Ai'(rk)]-2 

k=O 

(2)1/3 [ (3 )2/3 ] ,....., 2..:: n2/3 3 k-1/3 exp -a 2n k2/3 

k 

,....., a-1 100 n2/3 (~) 1/3 u-1/3 exp [-(~n) 2/3 u2/3] du 

= a-1. (3.104) 

Here we approximated a sum by an integral via the Euler-MacLaurin formula. We use (3.104) with 
a = TJ(-x)31225! 3 /[(-1 - x)(l - 3x)] and note that T/ = o(l) and TJ2c-1/3 = fJ = 0(1). Thus we get 
the matching condition 

1 y'(-1- x)(l - 3x) ['12 
] 

H(x, '1),....., fj 
2
fiFx exp T't/Jyy(x, 2y=x) , fj--+ +oo. (3.105) 

The solution to (3.102) that satisfies (3.103) and (3.104) can be obtained by using the similarity variable 
w = '1/ f(x). Setting H(x, fJ) = Ho(f1/ f(x)) we obtain 

Hi(w) + ___:'._::'__ [2xf(x)J'(x) - f2(x)]H~(w) = 0. 
x-1 

(3.106) 
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Choosing JO to satisfy the ODE 

I 2 2 
2xff -f =2--, f(-1)=0 (3.107) 

x 

we find that 

f 
J(3x - 1)(1 + x) 

(x) = 
-x 

(3.108) 

and then (3.106) becomes Hg(w) + 2wHh(w) = 0 with H 0(-oo) = 1 so that 

1 Joo v2 Ho(w) = fi w e- dv. (3.109) 

Then as Ll ~ +oo (thus w ~ +oo) 

1 -w2 f(x) [ d
2 

] 
H(x, Ll) ,..__, 2fiw e = 2fiLl exp - J2(x) (3.110) 

and this agrees with (3.105), as 1/Jyy(x, 2~) = -2/ f 2(x). We have thus derived (3.30) and this 
completes the derivation of Proposition 3. 

4. Discussion 

We have thus studied some first passage problems, in the small diffusion limit, and where the domain 
of interest can be divided into two parts. In one part D_ the process flows towards the exit boundary 
and in the other part D+ away from it, toward a stable equilibrium point. Our analysis of the simple 
two-dimensional example showed that the asymptotic structure of the problem can be quite intricate, 
necessitating the analysis of several different regions of the domain n. The exit boundary an can also 
be divided into two parts, according to where D+ (resp., D_) meets an, and then the normal component 
of the flow points away from (resp., into) an. The key element of the analysis is to consider a vicinity of 
the point on an where the flow becomes tangent to the boundary. This analysis involves a complicated 
combination of Airy functions, and shows that as we move away from the tangency point toward where 
D_ meets an, this part of the boundary becomes caustic, and this also indicates how the first passage 
time T behaves as we cross the curve C that separates D+ from D_. Upon crossing into D_ we enter a 
range D* where the caustic ray expansion dominates and the mean first passage times are exponentially 
large but depend on the starting point. It is not until we cross the curve I', which lies entirely within 
D_ and hits the boundary an, that the mean first passage times become 0(1) as E ~ 0, and then the 
deterministic or fluid approximation becomes valid asymptotically. 

Even though we chose a particular example, we believe this type of analysis should apply for any two­
dimensional problem for which n can be divided into two parts, and where the flow has a unique stable 
equilibrium and a unique subcharacteristic that becomes tangent to an, thus causing the division of n 
into D+ and D_. The solution to the problem where the subcharacteristic is tangent to the boundary (cf. 
item (iii) in Proposition 3) should be "canonical" for these types of problems, as should be the transition 



230 C. Knessl and H. Yao I First passage times in perturbed drift-diffusion models 

scales/expansions that apply near the curve C that separates D + from D _. Of course, if, for example, the 
boundary had some curvature then the caustic boundary rays may themselves form secondary caustics or 
cusps which would lead to additional asymptotic ranges/expansions. Also, ifthe boundary an, or a part 
of it, was itself a characteristic curve, or the problem had multiple equilibrium points, then it is likely 
that the asymptotic structure would be quite different from that here. For this reason we did not attempt 
to treat two-dimensional problems in any generality. 

Appendix 

Here we discuss in more detail the caustic rays, as given by (3.20), and the behavior of 'l/J(x, y) along 
the critical parabola y = 2Fx. 

By using (3.18) in (3.20) and eliminating the radicals we obtain, after some calculation, 

-2(3s - l)y4 
- (3s - 1)2(s + l)(x2 + y2

) 

+ 8xy2 (2s 2 
- s + 1) + 2x(3s - l)(s + 1)(2s2 

- s + 1) 

- (s + 1)(2s2 
- s + 1)

2 = 0, s < -1. (A.1) 

Ifs = -1, (A.1) collapses to 8(y4 + 4xy2) = 0 which contains the curve y = 2..;=x. Fors < -1, 
(A.1) applies in the range where x < -1 and y > 2. The equation in (A. l) defines an algebraic curve 
that is quadratic in x, quartic in y (and quadratic in y2), and also quintic in s, which is the parameter that 
indexes the rays. 

Solving (A.1) explicitly we then obtain 

(2s2 
- s + 1) [4y2 + (3s - l)(s + l)] + y(s - 3)J5s2 - 2s + 1J2y2 + (3s - l)(s + 1) 

x-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

- (s + 1)(3s - 1)2 · 

(A.2) 

By implicit differentiation of (A.1) with respect to y we find that 

-8(-x)312 

syls- 1 = < 0 -- (x + 1)(3x - 1) 
(A.3) 

and 

8 
I _ = -4x(l lx4 + 36x3 

- 30x2 + 4x - 5). 
YY s--I (3x2 + 2x - 1)3 

(A.4) 

Using (3.20) to solve fort in terms of y and s we obtain 

'l/Jy = ~ [y - J y2 + ~(s + 1)(3s - l)] 
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and thus 

(A.5) 

Again by implicit differentiation we have 

87/Jy7/Jyy - 47/Jy - 4y7/Jyy = (3s + 1 )Sy (A.6) 

so that along the rays = -1 we have 7/Jyy = sy/(2y) = sy/(4.j=X) and, using also (A.3), this leads to 
(3.28). Differentiating (A.6) again with respect toy and setting s = - I leads to 

1 1 3y2 - 2 2 
7/Jyyy = -

2 
Syy - 2SY -

4 3 SY' S = -1,y = 2H, 
y y y 

(A.7) 

and then using (A.3) and (A.4) leads to the expression in (3.29). 
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