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Abstract. We study the Hartree-Fock approximation of graphene in infi-
nite volume, with instantaneous Coulomb interactions. First we construct its

translation-invariant ground state and we recover the well-known fact that, due

to the exchange term, the effective Fermi velocity is logarithmically divergent
at zero momentum. In a second step we prove the existence of a ground state

in the presence of local defects and we discuss some properties of the linear

response to an external electric field. All our results are non perturbative.
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1. Introduction

Graphene is a mono-crystalline graphitic film in which electrons behave like 2-
dimensional Dirac fermions without mass. It has attracted a huge interest in the
last decades [46]. The Fermi surface of metals in dimension d is usually (the union
of) (d− 1)-dimensional manifold(s), whereas for gapless semi-conductors it is often
composed of parabolic-like points. Graphene, on the other hand, has a peculiar
quasi-particle dispersion relation which is conical at the degeneracy points, leading
to the effective massless Dirac equation. This is not so exceptional, however. It was
recently shown that conical singularities are generic in (non-relativistic) quantum
crystals having the honeycomb lattice symmetry [14]. The conical dispersion rela-
tion, combined with the fact that the Fermi velocity vF is 300 times smaller than
the speed of light, makes graphene an ideal condensed matter system for testing in
the lab our understanding of 2D massless relativistic particles [47, 55].

Quantum Electrodynamics (QED) is a very powerful theory which, however,
has only been rigorously formulated in a perturbative fashion. The small value of
the Fermi velocity in graphene restricts the validity of perturbation theory and it
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is important to be able to resort to non-perturbative methods. Short range in-
teractions in graphene are well understood [23, 17, 18]. They do not modify the
general properties of the ground state as compared to the free case. The effect
of long range Coulomb interactions, however, is much less clear. For continuous
graphene described by the Dirac operator, it was argued in [22, 44] that instan-
taneous Coulomb interactions lead to an additional logarithmic divergence in the
infrared regime for the interacting Fermi velocity. When the continuous graphene
sheet interacts with the photon field, a careful renormalization group analysis for
retarded interactions with an ultraviolet cut-off [20] indicated that the Fermi veloc-
ity actually has a limit, but that it is in general smaller than the speed of light. On
the other hand, if graphene is rather described by the Hubbard model on the honey-
comb lattice with retarded interactions, then it was proved that the effective Fermi
velocity tends to the speed of light at small momentum [21], with an anomalous
exponent. The fact that the Fermi velocity is modified by the Coulombic interac-
tions has recently been observed in experiment [11]. The authors [11] even noticed
that the observed behavior fits well with the predicted logarithmic divergence at
low momentum.

In this work we shall not consider retardation effects, but instead confirm the
logarithmic divergence in the case of instantaneous Coulomb interactions, in a fully
non-perturbative setting, based on a Hartree-Fock model. Our approach closely
follows the methods developed by Hainzl, Lewin and Solovej in [31] concerning the
Hartree-Fock approximation of 3-dimensional Quantum Electrodynamics, which
relies on earlier work, jointly with É. Séré [27, 28]. All these works, which are
summarized in [30, 13], are purely non-perturbative and hold for all values of the
coupling constant 0 ≤ α < 4/π ' 1.27 in 3D. For α > 4/π, the system is known
to become unstable [7]. In the present work we extend these results to (massless)
electrons in two dimensions. We identify the exact Hartree-Fock ground state of
the system at half filling and zero temperature under the sole assumption that

0 ≤ α ≤ αc or, equivalently, vF ≥ vc,

where the critical effective coupling constant αc (defined below) is such that αc >
0.48637, or equivalently vc < 2.0560. These estimates, however, are rather crude.
Rough numerical calculations indicate for the critical velocity vc a value about 0.5,
which implies for the critical coupling αc a value about 2.

Our methodology is as follows. We consider a Hartree-Fock type model in which
particles interact through the instantaneous Coulomb potential and with a kinetic
energy given by the massless Dirac operator. Since we do not use normal-ordering,
the Hamiltonian is unbounded from below. However, we shall, as a first step,
construct the free Dirac sea (i.e., the absolute minimizer of the energy in the absence
of external fields) by means of a thermodynamic limit. This state corresponds to
filling the negative energies of an effective mean-field translation-invariant operator
of the form veff(p)σ · p. Here, veff(p) denotes an effective Fermi velocity which we
shall compute exactly. We shall show that, for small momentum, it diverges like

veff(p) ∼
p→0

1
4

log
Λ
|p|
,

where Λ is a fixed ultraviolet cut-off. In a second step, we shall introduce an external
electrostatic field and obtain a bounded-below energy by subtracting the (infinite)
energy of the free Dirac sea. This enables us to prove the existence of a ground
state in the presence of the external field, in infinite volume. In other words, we
use the translation-invariant free state as a reference and we describe variations
compared to it.
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In addition, we shall calculate the linear response function B(p) of the density
of charge of graphene to an external electrostatic field, and we shall show that, in
the limit of small momenta,

B(p) ∼
p→0

π

4 log
(

Λ
|p|

) .
It is interesting to note that the dielectric behavior of Hartree-Fock graphene is
universal at low momentum, that is, independent of the bare Fermi velocity vF. As
we shall see, this follows from the fact that the effective Fermi velocity veff(p) has
the same property.

As compared to the previously quoted results in 3 dimensions, we deal here with
massless Dirac fermions. Mathematically, this creates a certain lack of control of
the behavior of minimizing sequences in the infrared domain, which complicates the
study of the exchange term. Interestingly, though, our existence proof for ground
states heavily relies on the effective Dirac operator including the logarithmically
effective Fermi velocity, which can be used to get a better control. On the other
hand, the ultraviolet behavior which was problematic in the three dimensional case
is not an issue here. For graphene the limit Λ → ∞ would even have no meaning
since the Dirac dispersion relation is only valid for low momentum anyhow. In this
paper we consequently impose a sharp ultraviolet cut-off Λ which is kept fixed all
along our study and which mimics the presence of the underlying lattice.

The paper is organized as follows. In the next section we properly introduce the
Hartree-Fock approximation of massless 2D QED. Then, in Section 3 we construct
the free Fermi sea of graphene and we discuss the Fermi velocity divergence at
low momentum due to the Coulomb exchange term. In Section 4 we prove the
existence of a ground state in the presence of external fields, like those induced by
defects in graphene. This will allow us to compute the linear response of graphene
in Section 5. Section 6 contains the proof of our main theorem, whereas in the
Appendix we prove a useful localization formula for the massless pseudo-relativistic
kinetic operator

√
−∆.

Acknowledgment. M.L. acknowledges financial support from the French Ministry
of Research (ANR-10-BLAN-0101) and from the European Research Council under
the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant
Agreement MNIQS 258023).

2. Hartree-Fock theory of graphene

In this section we describe the Hartree-Fock approximation for graphene at half
filling, following [31]. Our (unperturbed) sheet of graphene is seen as an infinite
translation-invariant system of 2D massless electrons interacting through the 3D
instantaneous Coulomb potential. The latter is justified by the fact that while
the electrons in graphene are essentially confined in 2D, the electric field clearly
still acts in all three spatial dimensions. The corresponding formal 2D QED-type
Hamiltonian, written in Coulomb gauge, then reads [22, 23, 4, 46]

(1) HV = vF

∫
R2

Ψ∗(x) σ · (−i∇)Ψ(x) dx+
∫

R2
V (x)ρ(x) dx

+
1
2

∫∫
R2×R2

ρ(x)ρ(y)
|x− y|

dx dy

with σ = (σ1, σ2), the first two Pauli-matrices. Here, and in the following, we shall
use the notation

D0 = −iσ · ∇ = −iσ1∂x1 − iσ2∂x2
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for the massless 2D Dirac operator.
We are working in atomic units with Planck’s constant and the mass of the

electron normalized to 1, ~ = m = 1. We also assume that e2/(4πκ) = 1 where κ
is the dielectric screening constant of the substrate on which our graphene sheet is
placed [46, 45]. In these units, vF is of order 1. Thus the electrostatic interaction,
i.e., the last term of (1), and the kinetic part are of the same order. Moreover,
since the effective speed of sound in graphene is much smaller than the speed of
light, the use of instantaneous interactions is justified. The internal variable of the
electrons is a pseudo-spin which describes to which of the two interlaced triangular
lattices of carbon which make up the hexagonal lattice the electron belongs [46]. In
this paper, we have neglected the (regular) spin of the electron for simplicity. The
previous Hamiltonian describes well the electrons with energies about the Fermi
energy of graphene, provided that they live on a much larger scale than the lattice
size. In this regime graphene can be seen as a continuous medium, leading to the
2D QED-type Hamiltonian (1).

Let us now briefly explain the main objects which enter in the definition of
the Hamiltonian (1). In there Ψ(x) is the second quantized field operator which
annihilates an electron at x and satisfies the anti-commutation relation

(2) Ψ∗(x)σΨ(y)ν + Ψ(y)νΨ∗(x)σ = 2δσ,νδ(x− y),

with σ, ν ∈ {±1/2} the pseudo-spin variables. The operator ρ(x) is the density
operator defined by

(3) ρ(x) =
2∑

σ=1

[Ψ∗σ(x),Ψσ(x)]
2

,

where [a, b] = ab − ba. Finally, the function V is a local external electrostatic
potential which is applied to the system. It is for instance induced by a set of
defects in the system. The Hamiltonian HV now formally acts on the fermionic
Fock space F for the electrons. The commutator in the definition (3) of ρ(x) is
natural at half filling and it ensures charge conjugation invariance [49]. Precisely,
we have

C ρ(x)C−1 = −ρ(x), C HV C−1 = H−V ,
where C is the charge conjugation operator acting on the Fock space. The Hamil-
tonian HV is unbounded from below on F and it is not even a well-defined self-
adjoint operator. However, it is still possible to define it in a box with suitable
boundary conditions and with an ultraviolet cut-off, as was done in [31] (see Sec-
tion 3 below for more details).

We have already neglected photons in our model. We shall now make another
approximation, by restricting our attention to Hartree-Fock states. Let us recall
that the electronic one-body density matrix (two point function) of any electronic
state Ω is defined as

γ(x, y)σ,σ′ = 〈Ψ∗(x)σΨ(y)σ′〉Ω.
It is an operator on the one-body space such that 0 ≤ γ ≤ 1, due to the anti-
commutation relations. It is an orthogonal projection for (and only for) pure
Hartree-Fock states. In view of (3), it is natural to introduce a renormalized one-
body density matrix

γren(x, y)σ,σ′ =
〈

Ω
∣∣∣∣ [Ψ(x)∗σ,Ψ(y)σ′ ]

2

∣∣∣∣Ω〉.
By (2), we obtain the simple relation

γren = γ − I

2
,
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where I is the identity operator on the one-body space.
Electronic Hartree-Fock states form a subset of states which are completely de-

termined by their density matrix γ (or equivalently by their renormalized density
matrix γren = γ − I/2). The energy of any such Hartree-Fock state reads

〈HV 〉 = EVHF(γ − I/2) + C

where the constant C diverges for infinite volume, and

(4) EVHF(γren) = vF tr(D0γren) +
∫

R2
V (x)ργren(x) dx

+
1
2

∫∫
R2×R2

ργren(x)ργren(y)
|x− y|

dx dy − 1
2

∫∫
R2×R2

|γren(x, y)|2

|x− y|
dx dy,

with ργren(x) being the density corresponding to γren. On a formal basis ργren(x) =
trC2 γren(x, x). Since, however, γren is in general not trace-class this is only formal
and a precise definition is presented in Lemma 4.3. In (4) the reader can recognize
the well-known Hartree-Fock energy [42], but applied to the renormalized density
matrix γren = γ − I/2 instead of the usual density matrix γ. This is of course a
consequence of our choice of a charge-conjugation invariant density operator ρ(x)
in (3). The last two terms of the first line of (4) are, respectively, the kinetic
energy and the interaction energy of the electrons with the external potential V .
In the second line appear, respectively, the so-called direct and exchange terms.
In Relativistic Density Functional Theory [12], the latter is approximated by a
function of ργ and its derivatives only, a procedure which we shall not follow here.

One of the main goals of this paper is to construct ground states for the Hartree-
Fock energy (4) describing electrons in graphene. This energy is not bounded from
below and it is not well defined as such, because these states always have infinitely
many electrons. But following [27, 28, 31] we shall see in the next section that it is
possible to construct ground states by using a thermodynamic limit procedure.

In this section we have considered generalized (mixed) Hartree-Fock states,
whose density matrix γ only fulfills the condition 0 ≤ γ ≤ I. This technique
was first proposed by Lieb [38] and it is very convenient when proving existence
results for ground states. In view of a variational principle from [38], Hartree-Fock
ground states are always pure in the presence of repulsive interactions, i.e. their
density matrix is automatically a projection in the end.

3. Fermi velocity enhancement in Hartree-Fock graphene

In this section we consider a graphene sheet without any external field, V ≡ 0,
and we investigate the effect of the Coulomb interactions among the electrons.
In mean-field theory it is well-known that the effective Fermi dispersion relation
becomes singular at 0. This enhancement of the Fermi velocity has already been
remarked in [22, 36, 53, 4]. Our main contribution in this section is the rigorous
proof that the so-obtained state is actually the true ground state of the system.
The method thereby follows that of [31].

If the electrostatic interactions between particles are neglected and the system is
confined to a box with periodic boundary conditions, it is obvious that the unique
minimizer is the (non-interacting) free Dirac sea, which converges in the thermo-
dynamic limit to the infinite-volume (non-interacting) free Dirac sea. The latter is
an infinite Hartree-Fock state containing all the negative energy electrons (in ac-
cordance with the old Dirac picture [8, 9]), whose density matrix and renormalized
density matrix are, respectively, given by

(5) P 0
− = 1(D0 ≤ 0) and γ0

ren = − D0

2|D0|
= P 0

− −
I

2
.



6 C. HAINZL, M. LEWIN, AND C. SPARBER

When interactions are taken into account, the free Dirac sea changes but it stills
remains translation invariant. The latter was rigorously proved in the (massive)
3D case in [31], for α < 4/π. The same result will be true here.

The energy per unit volume of a translation-invariant state γren = fren(p) is
given by

(6) F(γren) =
1

(2π)2

(
vF

∫
B(0,Λ)

TrC2

(
σ · p fren(p)

)
dp− 1

2

∫
R2

|f̌ren(x)|2

|x|
dx

)
.

This energy is bounded from below provided an ultraviolet cut-off Λ is inserted.
In the context of graphene, the ultraviolet cut-off Λ mimics the presence of the
carbon lattice in graphene. Its physical value is Λ ' 1 Å

−1
. The state γren is a

multiplication operator by the 2 × 2 matrix fren(p) in Fourier space, supported in
the ball of radius Λ. Its kernel in x space is then given by (−2π)−1f̌ren(x−y) where
f̌ren is the Fourier inverse of fren. The density of charge of any such translation-
invariant state is found to be constant in space:

ργren = (2π)−1 trC2 f̌ren(0) = (2π)−2

∫
B(0,Λ)

trC2

(
fren(p)

)
dp.

The second term in the energy (6) is the exchange term per unit volume. We have
assumed that our translation-invariant state γren has no density of charge and thus
there is no direct term in the energy. We will verify below that, indeed, ργren ≡ 0 for
the minimizer. On physical ground it is clear why this must hold since the Coulomb
energy of a constant density of charge is not proportional to the volume unless it
vanishes identically. Recalling that γren = γ − I/2, the constraint 0 ≤ γ ≤ I then
takes the form

(7) −IC2

2
≤ fren(p) ≤ IC2

2
for a.e. |p| ≤ Λ,

where IC2 is the 2× 2 identity matrix.

Remark 3.1. Let us remark that adding the ultraviolet cut-off Λ is equivalent to
replacing the one-particle Hilbert space L2(R2,C2) by the Hilbert space

(8) HΛ := {ϕ ∈ L2(R2,C2) : supp(ϕ̂) ⊂ B(0,Λ)}.

In this section we will show that the non-interacting state γ0
ren, defined in (5)

and which consists in filling all the negative energies of the free Dirac operator,
is the unique ground state of the interacting energy per unit volume (6). This
surprising fact only occurs because of the absence of a mass. It is not true for
massive particles, for which the interacting ground state depends in a nonlinear
manner on interactions [41, 31].

The renormalized density matrix γ0
ren is the multiplication operator in the Fourier

domain by the matrix

f0
ren(p) = −σ · p

2|p|
= 1(−∞,0)(σ · p)−

IC2

2
.

Because the Pauli matrices are trace-less, the charge density of this state vanishes,
i.e., ργ0

ren
≡ 0, as was announced before. The mean-field (Fock) operator of this

state is given by

(9) D0 = vFD
0 − f̌0

ren(x− y)
2π|x− y|

.

It is nothing else but the derivative of the energy (6) at f0
ren. The second term on

the right is the exchange term. The following gives the formula of D0 in Fourier
space.
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Lemma 3.2 (Effective velocity of graphene). With f0
ren(p) = −σ · p/(2|p|), the

mean-field translation-invariant operator (9) can be written as

(10) D0(p) = veff(p) σ · p, where veff(p) := vF + g

(
Λ
|p|

)
and

(11) g(R) =
1

2π

∫ π

0

∫ R

0

cos θ√
r2 − 2r cos θ + 1

rdrdθ.

The function g is increasing on [1,∞). It satisfies

g(1) =
2G− 1

2π
' 0.1324

where G =
∑
n≥0(−1)n(2n+ 1)−2 ' 0.9160 is Catalan’s constant and

g(r) =
log(r)

4
+O(1)r→∞.

We see that the effective Fermi velocity veff(p) is logarithmically divergent at
p = 0, i.e.

veff(p) =
1
4

log
Λ
|p|

+O(1)|p|→0.

This is the well-known velocity enhancement mentioned in the title of the section
(for comparison see, e.g., [46, Eq. (220)]). Here the O(1) is independent of Λ.

Remark 3.3. The logarithmic divergence is sometimes called the Kohn anomaly.
It has the effect of reducing the density of states near the Dirac energy [46].

Using that g(Λ/|p|) ≥ g(1), we see that

|D0(p)| ≥ (vF + g(1))|D0(p)|,
an inequality that will play an important role later when we will show that γ0

ren

is the unique minimizer in the absence of external potentials. But before we shall
state the proof of Lemma 3.2.

Proof. Using that the Fourier transform of |x|−1 is exactly |k|−1 in 2D, we can
write the translation-invariant operator D0 defined in (9) in Fourier space as

(12) vF σ · p−D0(p) =
1

2π

∫
|k|≤Λ

f0
ren(k)
|p− k|

dk = − 1
4π
|p|σ ·

∫
|k|≤Λ/|p|

ωk
|k − ωp|

dk

with ωk := k/|k|. It is clear that the vector∫
|k|≤Λ/|p|

ωk
|k − ωp|

dk

is co-linear to p. Hence we can also write∫
|k|≤Λ/|p|

ωk
|k − ωp|

dk = ωp

∫
|k|≤Λ/|p|

ωp · ωk
|k − ωp|

dk

which leads to D0(p) = veff(p)σ · p with veff(p) as in (10) and

g(R) =
1

4π

∫
|k|≤R

ωp · ωk
|k − ωp|

dk

=
1

4π

∫ 2π

0

∫ R

0

cos θ√
r2 − 2r cos θ + 1

rdrdθ

=
1

2π

∫ π/2

0

∫ R

0

cos θ
(

1√
r2 − 2r cos θ + 1

− 1√
r2 + 2r cos θ + 1

)
rdrdθ.
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Since the integrand is non-negative, it is now clear that g is increasing on [1,∞).
For large R we have

g(R) ∼
R→∞

logR
π

∫ π/2

0

cos2 θ dθ =
logR

4
.

For the value of g(1), we integrate first in r and obtain∫ 1

0

r√
r2 − 2r cos θ + 1

dr = −1 + cos(θ) log
(
1 + sin−1(θ/2)

)
+ 2 sin(θ/2)

and we therefore get

g(1) =
1

2π

∫ π

0

(
cos2(θ) log

(
1 + sin−1(θ/2)

)
+ 2 cos(θ) sin(θ/2)

)
dθ

=
1

2π

∫ π

0

cos2(θ) log
(
1 + sin(θ/2)

)
dθ − 1

2π

∫ π

0

cos2(θ) log
(

sin(θ/2)
)
dθ − 2

3π
.

The result follows by explicit integration, using that

G = 2
∫ π/4

0

log(2 cos(θ)) dθ = −
∫ π/4

0

log(2 sin(θ)) dθ.

This concludes the proof of the lemma. �

Because D0 is equal to the original D0 multiplied by vF + g(Λ/|p|) ≥ g(1) > 0,
we have

γ0
ren = − D

0

2|D0|
= 1(−∞,0)(D0)− I

2
.

In other words, the non-interacting free Dirac sea solves the nonlinear equation of
the interacting system. This is in stark contrast with the results of [41, 31] in which
the interacting Dirac sea was found to be very different from the non-interacting
one, as we have already mentioned. With Lemma 3.2 at hand, we are now able to
prove that γ0

ren is indeed the global minimizer of F , for vF larger than a critical
velocity which is related to the best constant in a Hardy-type inequality involving
the mean-field operator |D0|.

Consider the following function

(13) h(vF) := sup
ϕ∈H1\{0}

∫
R2

|ϕ(x)|2

|x|
dx〈

ϕ, |p|
(
vF + g(1/|p|)

)
ϕ
〉 .

Note that since g(1/|p|) ≥ g(1) for |p| ≤ 1, we have

(14) h(vF) ≤ 1
vF + g(1)

sup
ϕ∈L2(R2)

∫
R2

|ϕ(x)|2

|x|
dx

〈ϕ, |p|ϕ〉
=

1
vF + g(1)

Γ(1/4)2

2Γ(3/4)2
.

In the last estimate we have used the known value of the best constant in the
Kato-Hardy (also called Hilbert) inequality

(15) |x|−1 ≤ Γ(1/4)2

2Γ(3/4)2

√
−∆

in 2D, see [33, 54] and [40, Lemma 8.2]. From all these facts is it obvious that the
function h defined in (13) is decreasing and converging to 0 at infinity. Our main
result is the following
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Theorem 1 (Ground state of free graphene). Fix any ultraviolet cut-off Λ > 0. If

vF ≥ vc := h−1(2),

for instance

(16) vF ≥
1
4

Γ(1/4)2

Γ(3/4)2
− g(1) ' 2.0560,

then the minimization problem

min
{
F(γren) : γren = fren(p), −1B(0,Λ)/2 ≤ fren ≤ 1B(0,Λ)/2, ργren ≡ 0

}
with F defined in (6), admits the unique minimizer

γ0
ren = − D0

2|D0|
= − D

0

2|D0|
.

The estimate vc ≤ 2.0560 which comes from the bound (14) is rather crude.
Rough numerical calculations suggest that vc is about 0.5.

Proof. The proof is exactly the same as in the massive case [31], since the argument
of [31] relies on the fact that the Coulomb potential can be estimated by the effective
mean-field operator, which does not require a positive mass.

Going back to Formula (6), we write

F(γ)−F(γ0
ren) =

1
(2π)2

(∫
B(0,Λ)

TrC2

(
D0(p) (f(p)− f0

ren(p))
)

− 1
2

∫
R2

|(f̌ − f̌0
ren)(x)|2

|x|
dx

)
.

Using that −1(σ · p ≤ 0) ≤ f(p)− f0
ren(p) ≤ 1(σ · p ≥ 0) exactly as in [31], we see

that

TrC2

(
D0(p) (f(p)− f0

ren(p))
)
≥ TrC2

(
|D0(p)| (f(p)− f0

ren(p))2
)

≥ h(vF)−1

∫
R2

|F |2

|x|
dx

for a.e. p ∈ B(0,Λ) and with F := f̌ − f̌0
ren. Here we are using that, by scaling, the

best constant in the Hardy-like inequality is independent of Λ,

h(vF) = sup
ϕ∈HΛ\{0}

∫
R2

|ϕ(x)|2

|x|
dx

〈ϕ, |D0|ϕ〉
.

Hence we conclude that

F(γ)−F(γ0
ren) ≥ 1

(2π)2

(
h(vF)−1 − 1

2

)∫
R2

|F |2

|x|
dx.

Since h is decreasing, the right side is non negative for vF ≥ h−1(2). Using the
estimate (14) on h(vF) we conclude that

vc := h−1(2) ≤ 1
4

Γ(1/4)2

Γ(3/4)2
− g(1) ' 2.0560

and therefore the theorem is valid for vF ≥ 2.0560. �

In summary, we have proved that γ0
ren = P 0

−−I/2 is the unique minimizer of the
energy per unit volume when V ≡ 0. Arguing exactly as in [31], it is then possible
to prove that γ0

ren is also the thermodynamic limit of the true ground states of the
Hartree-Fock energy, without the translation-invariance ansatz. The proof is even
much easier than in [31] since γ0

ren is known exactly and solves the self-consistent
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equation in a box as well. Instead of pursuing this route in detail, we accept that
γ0

ren is the actual free Dirac sea, and we now study local perturbations of it, in the
spirit of [6, 27, 28].

4. Ground states of Hartree-Fock graphene in local external
potentials

Let us now come back to the Hartree-Fock energy (4) and assume that the
external field V does not vanish. We will always make the assumption that V is
local in a sense to be made precise below, which puts us in a situation where we
can think of the sought-after Hartree-Fock ground state as a local perturbation of
the free Dirac sea.

We consider any Hartree-Fock state described by its density matrix γ (or equiv-
alently by γren = γ− I/2, its renormalized density matrix) and which we assume to
be “sufficiently close” to P 0

−. The infinite volume Hartree-Fock energy of γren is of
course infinite, it is asymptotically proportional to the surface volume like the one
of γ0

ren = P 0
− − I/2. However we can, at least formally, subtract the (infinite) con-

stant EVHF(γ0
ren) = E0

HF(γ0
ren) and obtain a perfectly well-defined energy. A formal

computation yields
EVHF(γren)− EVHF(γ0

ren) = EVBDF(Q),
where

Q = γren − γ0
ren = γ − P 0

−

and where EVBDF is the so-called Bogoliubov-Dirac-Fock energy, formally defined by

(17) EVBDF(Q) = tr(D0Q) +
∫

R2
V (x)ρQ(x) dx+

1
2

∫∫
R2×R2

ρQ(x) ρQ(y)
|x− y|

dx dy

− 1
2

∫∫
R2×R2

|Q(x, y)|2

|x− y|
dx dy,

with ρQ being the density corresponding to Q (see Lemma 4.3 for a precise defini-
tion). Again the energy functional looks like the usual Hartree-Fock energy, with
the difference that D0 now appears instead of D0 and that it is applied to the op-
erator Q which is a difference of two Hartree-Fock density matrices. The operator
Q satisfies the constraint

−P 0
− ≤ Q ≤ 1− P 0

− = P 0
+.

Remark 4.1. To our knowledge, the idea of subtracting the infinite energy of the
free Dirac sea in order to get a bounded below energy, was used for the first time
in [31]. This was generalized to positive temperature in [26]. In previous works [6,
27] dealing with the Hartree-Fock approximation of QED, another justification
based on normal ordering was employed.

Remark 4.2. Let us mention that the perturbed state γ can always be seen as a
Bogoliubov rotation of the free Dirac sea in its Fock representation, which is why
Chaix and Iracane used the name ‘Bogoliubov’ for the energy (17). We could as well
call it a relative Hartree-Fock energy but we prefer to keep the name Bogoliubov-
Dirac-Fock (BDF) for historical reasons.

Our tasks in this section are then to prove that:
(a) Q = 0 is the unique minimizer of E0

BDF for V ≡ 0, which is a “local”
version of the fact that the free Dirac sea P 0

− is the unique ground state of
the system without external field;

(b) if V 6= 0, then there exists a ground state for EVBDF which solves the self-
consistent Hartree-Fock equation.
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Before turning to these problems, we however have to properly define the BDF
energy. It is now well understood that the Hartree-Fock ground state γ of an
infinite Coulomb system can in general behave badly. Usually Q = γ − P 0

− is not
a trace-class operator and its density is sometimes not in L1, see [24, 5]. It has
long-range oscillations which are not integrable at infinity in some cases. For these
reasons, it is not fully obvious to give a clear meaning to the BDF energy (17)
and to find a suitable class of states in which minimizers will be. Following ideas
from [27], we introduce the correct functional analysis setting in the next section.

4.1. Function spaces and definition of the density. Given an operator Q, we
define Qεε

′
:= P 0

ε QP
0
ε′ where ε, ε′ ∈ {±}. Our starting point is the remark that, for

a nice-enough operator Q (say finite rank),

tr(D0Q) = tr
(
|D0|(Q++ −Q−−

)
≥ tr |D0|Q2.

Here we have used that P 0
− commutes with D0 and that

−P 0
− ≤ Q ≤ P 0

+ ⇐⇒ Q2 ≤ Q++ −Q−−,
as was remarked first in [1]. We see that a state will have a finite relative kinetic
energy when |D0|1/2Q±±|D0|1/2 are trace-class, but we cannot gain any other in-
formation on Q±∓ than |D0|1/2Q±∓ being Hilbert-Schmidt. Thus we shall assume
that

(18) |D0|1/2Q±±|D0|1/2 ∈ S1 and Q±∓|D0|1/2 ∈ S2

where Sp denotes the usual p-th Schatten space (S1 and S2 are respectively the
spaces of trace-class and Hilbert-Schmidt operators). This enables us to properly
define

tr(D0Q) := tr
(
|D0|1/2(Q++ −Q−−)|D0|1/2

)
.

Our next task is to give a clear definition of the density ρQ under the very weak
assumptions (18) on Q. To simplify our exposition we introduce the Banach space

X :=
{
Q ∈ B(HΛ) : Q∗ = Q, |p|1/2Q±±|p|1/2 ∈ S1, Q|p|1/2 ∈ S2

}
,

where we recall from (8) that HΛ is the Hilbert space of L2 functions with compact
support in B(0,Λ) in the Fourier domain. The set of bounded operators on this
space is then denoted by B(HΛ). We also introduce

X̃ :=
{
Q ∈ B(HΛ) : Q∗ = Q, |D0|1/2Q±±|D0|1/2 ∈ S1, Q|D0|1/2 ∈ S2

}
⊂ X ,

since |D0| ≥ (vF + g(1))|D0| = (vF + g(1))|p|, as we have shown before. For what
follows it will be convenient to work with states in X . By doing so, we ignore the
logarithmic divergence at 0 of D0(p), which is an additional information for us to
be used in due time. Let us remark that X̃ contains elements which are not even
compact. This makes the mathematics more involved than in the situation where
the particles have nonzero mass.

Next, we shall show that any Q ∈ X indeed has a well defined density ρQ. We
start by remarking that ρQ is locally well defined.

Lemma 4.3 (Definition of the density ρQ). Any Q ∈ X is locally trace class, i.e.,
for all χ(x) ∈ L∞(R2) with compact support, χQχ ∈ S1. Moreover, the density ρQ
is in L∞(R2).

Proof. Due to the cut-off we have

χQχ = χΠΛQΠΛχ

where ΠΛ = 1(|p| ≤ Λ). Since χ ∈ L2, then clearly χΠΛ ∈ S2, such that together
with the boundedness of Q we get χQχ ∈ S1, as stated. This proves that ρQ is a
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well defined function in L1
loc. To see that it is actually uniformly bounded, we use

that Q is self-adjoint and the ultraviolet cut-off Λ, to infer −‖Q‖ΠΛ ≤ Q ≤ ‖Q‖ΠΛ.
On the diagonal we get |ρQ(x)| ≤ ‖Q‖ρΠΛ(x) = ‖Q‖Λ2/(4π). �

Remark 4.4. Any bounded sequence (Qn) in X has a weakly−∗ convergent sub-
sequence, Qnk ⇀ Q in the sense that

tr(AQnk)→ tr(AQ), ∀A ∈ S1,

tr(K|p|1/2Q±±nk |p|
1/2)→ tr(K|p|1/2Q±±|p|1/2), ∀K compact,

and

tr(BQnk |p|1/2)→ tr(BQ|p|1/2), ∀B ∈ S2.

Using that χΠΛ ∈ S2 when χ ∈ L∞c , it is then elementary to verify that χQnkχ→
χQχ strongly in the trace-class. This implies that ρQnk → ρQ strongly in L1

loc,
hence strongly in Lploc(R2) for all 1 ≤ p < ∞, since ρQnk is uniformly bounded in
L∞.

Next, we introduce the so-called Coulomb space:

C :=
{
ϕ : D(ϕ,ϕ) := 2π

∫
R2

|ϕ̂(k)|2

|k|
dk <∞

}
which is the natural energy space for the density ρQ. If we decompose the density
of Q into

ρQ = ρQ++ + ρQ−− + ρQ+− + ρQ−+ ,

then we can deduce the following properties for the elements of X .

Lemma 4.5 (The density is in C). Assume that Q ∈ X is such that −P 0
− ≤ Q ≤ P 0

+.
Then ρQ±± ∈ Lp(R2) for 3/2 ≤ p ≤ ∞ and ρQ±∓ ∈ C, which particularly implies
that ρQ ∈ C.

Proof. Since 0 ≤ ±Q±± ≤ 1, the Lieb-Thirring inequality in 2D for the relativistic
kinetic energy [40] immediately yields

± tr
(
|p|Q±±

)
≥ c

∫
R2
|ρQ±±(x)|3/2dx.

Since we already know that ρQ±± ∈ L∞(R2), ρQ±± ∈ C now follows from the
Hardy-Littlewood-Sobolev inequality in 2D, see, e.g., [39]. The second part of the
statement follows by a duality argument, provided that we can show

| tr ξQ+−| = |〈ξ, ρQ+−〉| ≤ c
(∫

R2
|k||ξ̂(k)|2dk

)1/2

,

for all ξ ∈ C∞c (R2). To this end we first estimate

tr ξQ+− = tr
(

P 0
+

|p|1/4
ξ
P 0
−

|p|1/4
|p|1/4Q|p|1/4

)
≤
∥∥∥∥ P 0

+

|p|1/4
ξ
P 0
−

|p|1/4

∥∥∥∥
S2

‖|p|Q‖S2 .

Using

TrC2P 0
+(p)P 0

−(q) =
ωp · ωq
|p||q|

− 1,
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we can compute∥∥∥∥ P 0
+

|p|1/4
ξ
P 0
−

|p|1/4

∥∥∥∥2

S2

=

=
1

(2π)2

∫∫
|p|,|q|≤Λ

|ξ(p− q)|2TrC2P 0
+(p)P 0

−(q)
|p|1/2|q|1/2

dp dq

≤ 1
(2π)2

∫∫
R2×R2

|ξ(k)|2 |`+ k/2||`− k/2| − (`+ k/2) · (`− k/2)
|`+ k/2|3/2|`− k/2|3/2

dk d`

=
∫

R2
dk|ξ̂(k)|2|k|

∫
R2

|`+ ωk/2||`− ωk/2| − (`+ ωk/2) · (`− ωk/2)
|`+ ωk/2|3/2|`− ωk/2|3/2

d`

≤ c
∫
|ξ̂(k)|2|k| dk.

Here ωk := k/|k| and we have used the fact that

1
(2π)2

∫
|`+ ωk/2||`− ωk/2| − (`+ ωk/2) · (`− ωk/2)

|`+ ωk/2|3/2|`− ωk/2|3/2
d` = c,

is a finite integral, independent of the direction ωk ∈ S1. �

4.2. Stability of the free Dirac sea. We have shown that the density ρQ is in
the Coulomb space C whenever Q ∈ X and −P 0

− ≤ Q ≤ P 0
+. Thus we see that the

direct term is well defined for all such Q with finite relative kinetic energy. We can
now define the (free) BDF energy as

E0
BDF(Q) := tr(D0Q) +

1
2
D(ρQ, ρQ)− 1

2

∫∫
R2×R2

|Q(x, y)|2

|x− y|
dx dy.

where we recall that

D(ρ, ρ′) :=
∫∫

R2×R2

ρ(x)ρ′(y)
|x− y|

dx dy = 2π
∫

R2

ρ̂(k)ρ̂′(k)
|k|

dk

is the so-called Coulomb scalar product.
The following lemma shows that the exchange term is also well defined and that

the BDF energy E0
BDF is non-negative with Q = 0 being its unique minimizer.

Recalling that E0
BDF is the relative energy counted with respect to the free state

P 0
− and that Q = γ − P 0

−, this consequently shows that the free ground state P 0
−

is stable under local deformations. Here ‘local’ refers to perturbations such that
Q ∈ X but not necessarily small in norm.

Lemma 4.6 (Stability of P 0
−). For any fixed ultraviolet cut-off Λ, the mapping

Q 7→ E0
BDF(Q) is well defined and continuous on X̃ . If vF satisfies

(19) vF ≥ h−1(2), hence for instance vF ≥
1
4

Γ(1/4)2

Γ(3/4)2
− g(1),

then we have
0 ≤ E0

BDF(Q) <∞,
for all −P 0

− ≤ Q ≤ P 0
+ with |D0|1/2Q±±|D0|1/2 ∈ S1. Furthermore, E0

BDF(Q) = 0
if and only if Q ≡ 0.

Proof. Using the definition of h we infer, following [1] and similarly as in the proof
of Theorem 1,

1
2

∫∫
|Q(x, y)|2

|x− y|
dx dy ≤ h(vF)

2
tr(|D0|Q2),
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which is well-defined due to our assumption that Q|D0|1/2 ∈ S2. In addition, since
−P 0
− ≤ Q ≤ P 0

+, we have tr(|D0|Q2) ≤ tr(D0Q) and therefore

(20)
1
2

∫∫
|Q(x, y)|2

|x− y|
dx dy ≤ h(vF)

2
tr(D0Q).

In other words, if |D0|1/2Q±±|D0|1/2 ∈ S1 and if the Fermi velocity vF satisfies (19),
the exchange term is controlled by the kinetic energy. We have already seen that
ρQ ∈ C. Using then that D(ρQ, ρQ) ≥ 0, we see that E0

BDF(Q) ≥ 0 and that Q = 0
is the unique minimizer of E0

BDF, as stated. �

4.3. Existence of minimizers for graphene in an external field. In the next
step, we shall submit our graphene sheet to an external electrostatic field of the
form

V = −ν ∗ 1
|x|

with ν the density of charge of the defect. The corresponding BDF energy now
reads

EVBDF(Q) := E0
BDF(Q)−D(ρQ, ν).

Using our estimate (20) on the exchange term and that D(·, ·) defines a scalar
product, we immediately get the lower bound

EVBDF(Q) ≥ −1
2
D(ν, ν),

provided that vF satisfies (19). Therefore the BDF energy is bounded from below
when ν ∈ C which is our way of measuring the locality of the potential V . This
enables us to consider the minimization problem

(21) EVBDF := inf
{
EVBDF(Q) :

Q ∈ B(HΛ), −P 0
− ≤ Q = Q∗ ≤ P 0

+, |D0|1/2Q±±|D0|1/2 ∈ S1
}
.

We shall prove the existence of a corresponding minimizer, which is the Hartree-
Fock ground state of interacting graphene in the presence of defects. This existence
result is non-trivial for the simple reason that we have no mass.

Theorem 2 (Existence of a ground state for infinite volume graphene with defects).
Fix Λ > 0 and let vF be such that

(22) vF >
1
4

Γ(1/4)2

Γ(3/4)2
− g(1).

For any ν in the Coulomb space C, the problem (21) admits at least one minimizer
Q, satisfying the self-consistent equation

(23) Q+ P 0
− = 1I

(
D0 − ν ∗ 1

|x|
+ ρQ ∗

1
|x|
− Q(x, y)
|x− y|

)
where I = (−∞, 0) or I = (−∞, 0]. Equivalently, with γ = Q + P 0

− denoting the
density matrix of the optimal HF state, we have

γ = 1I

(
vF σ · (−i∇)− ν ∗ 1

|x|
+ ργ−I/2 ∗

1
|x|
− (γ − I/2)(x, y)

|x− y|

)
.

Remark that HF ground states of graphene in the presence of a defect can be
chosen pure and with the Fermi level either filled or unfilled completely, as is usual
for Hartree-Fock theories. This follows from Lieb’s variational principle [38] and
the no-unfilled shell theorem of Bach, Lieb, Loss and Solovej [2]. Note that we are
only able to prove the existence of a ground state for vF > 2.0560, and not for the
more natural condition vF ≥ vc. There are probably also ground states up to the
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critical velocity but our proof does not apply as such, as it consists of replacing
|D0| by (vF + g(1))|p| in a lower bound.

The proof of theorem 2 is a bit long and it will be given in Section 6 below. The
method is similar to the one in [28], but several modifications are needed due to
the absence of the mass. One important additional input is a localization estimate
inspired by [37] and which is detailed in the Appendix. In contrast to [28] we shall
use that the kinetic energy has an infinite velocity for p = 0, which induces a better
control of the exchange term. Our method does not seem to apply otherwise.

Remark 4.7. We do not know if the optimal state Q has a finite (relative) num-
ber of particles, that is, Q±± might be not trace-class and the charge tr(Q) :=
tr(Q++ +Q−−) could be ill defined. The operator Q could even be non compact in
general, because of the absence of a gap. This would mean that the corresponding
minimizers Q live in a Fock representation which is not equivalent to that of P 0

−,
even if the relative energy is itself finite, by the Shale-Stinespring theorem [52].
In [29] another minimization problem consisting in fixing the relative charge tr(Q)
was considered. Because there is no gap and tr(Q) can be infinite, an analogous
approach does not seem to make sense in our context. Bound states with finitely
many electrons have been constructed in a projected Dirac-Fock-type model in [10]
but there a magnetic field is used to confine the particles and create a gap.

5. Linear response to an applied external field

In this section we consider a small external field

Vλ = −λν ∗ 1
|x|
, λ� 1

and discuss the linear response of graphene within our Hartree-Fock theory. To this
end, we denote by Qλ a chosen minimizer for each λ and note that EVλBDF(Qλ) ≤ 0,
which is seen by using Q ≡ 0 as a trial state. From this we deduce that

trD0Qλ −
1
2

∫∫
R2×R2

|Qλ(x, y)|2

|x− y|
dx dy +

λ2

2
||ρλ − ν||2C ≤

λ2

2
||ν||2C

with ρλ := λ−1ρQλ . Assuming the strict inequality

(24) vF >
1
4

Γ(1/4)2

Γ(3/4)2
− g(1),

which allows to control the exchange term, in view of (20), we deduce that

tr |D0|Q2
λ +

∫∫
R2×R2

|Qλ(x, y)|2

|x− y|
dx dy + λ2 ||ρλ − ν||2C = O(λ2).

This confirms that Qλ is of order λ in X̃ .
Recall from Theorem 2 that Qλ satisfies the self-consistent equation

Qλ = 1(−∞,0)(DQλ)− P 0
− = 1(−∞,0)(DQλ)− 1(−∞,0)(D0).

For simplicity we assume here that ker(DQλ) = {0} for all λ. Denoting

DQλ = D0 − λ
(
ν ∗ 1
|x|

+ ρλ ∗
1
|x|
− Qλ(x, y)
|x− y|

)
= D0 − ϕλ −Rλ,

with ϕλ = λ
(
ν ∗ 1

|x| − ρλ ∗
1
|x|

)
, and Rλ = λ−1Qλ(x, y)/|x−y|, we can write, using

a formula of Kato, that

Qλ = − 1
2π

∫ ∞
−∞

[
1

DQλ + iη
− 1
D0 + iη

]
dη.
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In view of the resolvent formula we deduce that

Qλ ≡ Q1,D +Q1,X = − 1
2π

∫ ∞
−∞

[
1

D0 + iη
(ϕλ +Rλ)

1
D0 + iη

]
dη +O(λ2).

The remainder O(λ2) has to be estimated carefully, but for convenience we remain
formal in this discussion. Because ϕλ and Rλ are themselves affine in Qλ, the first
order term for Qλ is obtained by inverting these linear maps. There is no simple
expression for it. However, following [32, 27], it is possible to compute explicitly
the density coming from the term involving ϕλ, as will be explained now:

We look at the density associated with the operator stemming from the direct
term

Q1,D = − 1
2π

∫ ∞
−∞

1
D0 + iη

ϕλ
1

D0 + iη
dη.

In Fourier variables this reads

Q̂1,D(p, q) = − 1
(2π)2

∫ ∞
−∞

1
D0(p) + iη

ϕ̂λ(p− q) 1
D0(q) + iη

dη,

Using

M(p, q) =
1
π

∫ ∞
−∞

1
D0(p) + iη

1
D0(q) + iη

dη =
1

E(p) + E(q)
(σ · ωpσ · ωq − 1),

with

E(p) = |p|
(
vF + g

(
Λ
|p|

))
,

we can write

Q̂1,D(p, q) = − 1
4π
ϕ̂λ(p− q)M(p, q).

Using D0(p)/|E(p)| = σ · ωp, we see that the corresponding density reads

λ−1ρ̂1,D(k) =
1
λ2π

∫
|p+k/2|≤Λ,|p−k/2|≤Λ

TrC2Q̂1,D(p+ k/2, p− k/2)dp

=
1
λ2π

ϕ̂λ(k)|k|B(k) =
(
ν̂(k)− ρ̂λ(k)

)
B(k),

where we have used that in 2D

̂
ρ ∗ 1
|x|

(k) = 2πρ̂(k)
1
|k|

and we denote

B(k) = − 1
|k|2π

∫
|p+k/2|≤Λ
|p−k/2|≤Λ

(p+ k/2) · (p− k/2)− |p+ k/2||p− k/2|
|p+ k/2| |p− k/2|((E(p+ k/2) + E(p− k/2))

dp

=
1

2π

∫
|p+ωk/2|≤Λ/|k|
|p−ωk/2|≤Λ/|k|

−(p+ ωk/2) · (p− ωk/2) + |p+ ωk/2||p− ωk/2|
|p+ ωk/2| |p− ωk/2|

×

× 1

|p+ ωk/2|
(
vF + g

(
Λ

|k| |p+ωk/2|

))
+ |p− ωk/2|

(
vF + g

(
Λ

|k| |p−ωk/2|

)) dp.
Remark 5.1. In the case of three spatial dimensions there is a similar function
B(k) playing an important role. In this case, the value B(0) > 0 is logarithmically
divergent with respect to Λ, which is the reason for the requirement of charge
renormalization, giving rise to the Uehling potential, see [32, 28, 24, 25].
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In Fourier space, we can write the self-consistent equation as in [28]

ρ̂λ(k) = B(k)
(
ν̂(k)− ρ̂λ(k)

)
+ ρ̂1,X(k) +O(λ2),

where ρ1,X = O(λ) is the first-order density coming from the exchange term

Q1,X = − 1
2π

∫ ∞
∞

1
D0 + iη

Rλ
1

D0 + iη
dη.

We see that

ρ̂λ(k) =
B(k)

1 +B(k)
ν̂(k) + λ−1 ρ̂1,X(k)

1 +B(k)
+O(λ).

It is therefore natural to ask about the behavior of B(k) for low momenta. If we
neglect the density ρ1,X stemming from the exchange term, this will determine the
decay in x space of the Coulomb potential of the (first order) polarized graphene
in presence of the external density ν.

In order to answer this question, we simplify the expression of the function B(k).
First we remark that B(k) is obviously radial, hence we can take ωk = e1 := e,
such that

(25) B(k) =
1

2π

∫
|p+e/2|≤Λ/|k|
|p−e/2|≤Λ/|k|

|p+ e/2| |p− e/2| − p2 + 1/4
|p+ e/2||p− e/2|

×

× 1

|p+ e/2|
{
vF + g

(
Λ

|k| |p+e/2|

)}
+ |p− e/2|

{
vF + g

(
Λ

|k| |p−e/2|

)}dp.
As in [48, 24], we use the following change of variables,

v =
|p+ e/2| − |p− e/2|

2
, w =

|p+ e/2|+ |p− e/2|
2

.

Denoting p = (x, y), this reads

v =

√
(x+ 1/2)2 + y2 −

√
(x− 1/2)2 + y2

2
,

w =

√
(x+ 1/2)2 + y2 +

√
(x− 1/2)2 + y2

2
.

The corresponding Jacobian is∣∣∣∣∂(v, w)
∂(x, y)

∣∣∣∣ =
y

2
√

(x+ 1/2)2 + y2
√

(x− 1/2)2 + y2
=

|p2|
2|p+ e/2| |p− e/2|

.

We collect the following relations

2w2 + 2v2 = (w + v)2 + (w − v)2 = 2(p2 + 1/4),

4vw = (w + v)2 − (w − v)2 = 2p · e = 2p1 = 2x,
and

|y| = |p2| =
√
p2 − (p · e)2 =

√
w2 − 1/4− 4v2(w2 − 1/4)

= 2
√
w2 − 1/4

√
1/4− v2.

Observe that

w ≥ |(p+ e/2) + (p− e/2)|
2

= 1/2,

and

|v| ≤ |(p+ e/2)− (p− e/2)|
2

= 1/2.

Our constraints on p, i.e., |p+ωk/2| ≤ Λ/|k| and |p−ωk/2| ≤ Λ/|k| can be expressed
in terms of w, v as follows

w ≤ Λ/|k| and |v| ≤ w − Λ/|k|,
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such that {
1/2 ≤ w ≤ Λ/|k|,
|v| ≤ min{1/2,Λ/|k| − w}.

Changing variables we find

|p+ e/2||p− e/2| − p2 + 1/4
|p+ e/2||p− e/2|

dx dy

=
(v + w)(w − v)− (v2 + w2 − 1/4) + 1/4

|p+ e/2||p− e/2|
2|p+ e/2||p− e/2|

|y|
dv dw

=
2(1/4− v2)√

w2 − 1/4
√

1/4− v2
dv dw =

2
√

1/4− v2√
w2 − 1/4

dv dw.

On the other hand we can express

|p+ ωk/2|
{
vF + g

(
Λ

|k| |p+ ωk/2|

)}
+ |p− ωk/2|

{
vF + g

(
Λ

|k| |p− ωk/2|

)}
= (v + w)

{
vF + g

(
Λ

|k| (v + w)

)}
+ (w − v)

{
vF + g

(
Λ

|k| (w − v)

)}
to arrive at

(26) B(k) =
2
π

∫ Λ/|k|

1/2

dw

∫ min{1/2,Λ/|k|−w}

0

dv

√
1/4− v2√
w2 − 1/4

×

× 1

2vFw + (v + w)g
(

Λ
|k| (v+w)

)
+ (w − v)g

(
Λ

|k| (w−v)

) .
Remark 5.2 (The no-exchange case). If we discard the exchange term, then we
have exactly the same calculation with g replaced by 0 everywhere. In this case the
linear response involves the modified function

(27) B0(k) =
1
πvF

∫ Λ/|k|

1/2

dw

∫ min{1/2,Λ/|k|−w}

0

√
1/4− v2

w
√
w2 − 1/4

dv.

Let now w = t/2, and v = (cos θ)/2, such that 0 ≤ cos θ ≤ min{1, 2Λ/|k| − t}.
Then

B0(k) =
1

2πvF

∫ 2Λ/|k|

1

dt

∫ arccos[min{1,2Λ/|k|−t}]

0

1
t
√
t2 − 1

sin2 θ dθ.

Since 2Λ/|k| − t < 1 is equivalent to t > 2Λ/|k| − 1 we can decompose it into two
integrals

B0(k) =
1

2πvF

(∫ 2Λ/|k|−1

1

dt

∫ π/2

0

1
t
√
t2 − 1

sin2 θdθ

+
∫ 2Λ/|k|

2Λ/|k|−1

dt

∫ π/2

arccos[2Λ/|k|−t]

1
t
√
t2 − 1

sin2 θdθ

)

=
1

2πvF

π

4
arccos(1/(2Λ/|k| − 1)) +

1
2πvF

∫ 2Λ/|k|

2Λ/|k|−1

dt
1

4t
√
t2 − 1

×

×
(
−2 arccos

(
2

Λ
|k|
− t
)

+ π + sin
[
2 arccos

(
2

Λ
|k|
− t
)])

.

This immediately shows that

lim
k→0

B0(k) =
π

16vF
,

which obviously depends on vF in contrast to what we will find for B(k) below.
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Let us now come back to the function B(k). The following lemma says that the
function B(k) vanishes at k = 0. However, it only vanishes logarithmically.

Lemma 5.3. We have that

B(k) ∼
k→0

π

4 log
(

Λ
|k|

) .
Proof. In (26), we split the integral in w as follows:∫ Λ/|k|

1/2

dw =
∫ log2(Λ/|k|)

1/2

dw +
∫ Λ/|k|

log2(Λ/|k|)
dw.

By doing so we can write B(k) = B1(k) + B2(k) with an obvious definition. For
w ∈ [log2(Λ/|k|),Λ/|k|] we just use that g ≥ g(1) and we obtain

B2(k) ≤ 1
π(vF + g(1))

∫ Λ/|k|

log2(Λ/|k|)
dw

∫ min{1/2,Λ/|k|−w}

0

dv

√
1/4− v2

w
√
w2 − 1/4

.

Using the computation of Remark 5.2 we see that the right hand side behaves like

1
8(vF + g(1))

(
π

2
− arccos

(
1

log2(Λ/|k|)

))
∼
|k|→0

1
8(vF + g(1)) log2(Λ/|k|)

.

In particular,
lim
k→0

log(Λ/|k|)B2(k) = 0.

Now for w ∈ [1/2, log2(Λ/|k|)], we can safely expand the terms involving g. Indeed,
we have w ± v ≤ log2(Λ/|k|) + 1/2, hence

Λ
|k| (w ± v)

≥ Λ
|k| (log2(Λ/|k|) + 1/2)

−→
k→0
∞.

By the dominated convergence theorem we find that

lim
k→0

log(Λ/|k|)B1(k) = lim
k→0

4
π

∫ log2(Λ/|k|)

1/2

dw

∫ min{1/2,Λ/|k|−w}

0

dv

√
1/4− v2

w
√
w2 − 1/4

.

The right hand side is again similar to B0(k) computed in Remark 5.2 and it is
equal to π/4. �

Note that, in contrast to the no-exchange functionB0 which has the vF-dependent
finite limit π/(16vF) at k = 0, the true function B(k) tends to zero and its behavior
on first order is universal, it does not depend on vF. As we have explained, if we
neglect the exchange density coming from Rλ, then we find that in first order in λ

ρ̂Q(k) '
λ�1

λ
B(k)

1 +B(k)
ν̂(k) '

λ�1
|k|�1

λ
π

4 log
(

Λ
|k|

) ν̂(k).

That this density vanishes at k = 0 means that the response of the graphene sheet
in the presence of ν is essentially neutral. This is stark contrast with the massive
3D case, in which there is always (partial) screening, i.e., B(0) > 0. However the
fact that here B(k) → 0 only logarithmically creates some long range oscillations
in x space which induce some weak screening effects. Indeed, if we compute the
first-order polarization charge of graphene in a ball of radius R (using a smooth
localization function χ), we get∫

R2
ρQ(x)χ(x/R) dx ' λ

∫
R2

πν̂(k)

4 log
(

Λ
|k|

) χ̂(Rk)R2dk ∼
R→∞

λ
π
∫

R2 ν

4 log(R)
.
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It goes to zero when R → ∞, but very slowly. So in a finite ball of radius R we
might have the impression that

∫
BR

ρQ > 0 is not small, i.e., that the external
density ν is partially screened by the spontaneaous polarization of graphene.

In this discussion we have neglected the first order density ρ1,X coming from the
exchange term Rλ. The effect of this additional term is not clear to us.

Remark 5.4. It is reasonable to believe that the dielectric response function B(k)
is related to the conductivity of the graphene sheet. There have been several recent
works concerning the possible value of the conductivity of graphene in the low
energy regime [44, 34, 50, 45, 51, 35, 19]. Investigating this rigorously on our
Hartree-Fock model is interesting and we hope to come back to this question in the
future.

6. Proof of Theorem 2

Let (Qn) be a minimizing sequence for (21). Using the strict inequality (22), it
is easy to see from our estimates that (Qn) is uniformly bounded in X̃ :

tr
(
|D0|1/2Q2

n|D0|1/2
)
≤ C,(28)

tr
(
|D0|1/2(Q++

n −Q−−n )|D0|1/2
)
≤ C.(29)

Therefore, up to a subsequence, there exists an element Q ∈ X̃ , such that

Qn ⇀ Q weakly-∗ in X̃ ,

similarly as in Remark 4.4. This implies in particular that ρQn ⇀ ρQ weakly in C
and strongly in Lploc(R2), by Lemmas 4.3 and 4.5. Since we also have

〈ϕ,Qnϕ′〉 → 〈ϕ,Qϕ′〉, ∀ϕ,ϕ′ ∈ HΛ,

it is clear that the constraint −P 0
− ≤ Q ≤ P 0

+ is satisfied. Therefore Q is an
admissible state for the minimization problem (21).

Step 1: Our goal is to show that the energy is lower semi-continuous, i.e.

(30) lim inf
n→∞

EV (Qn) ≥ EV (Q).

Observe that the function
ρ→ D(ρ− ν, ρ− ν)

is lower semi-continuous. Therefore

lim inf
n→∞

D(ρQn − ν, ρQn − ν) ≥ D(ρQ − ν, ρQ − ν),

using the simple fact that ρQn ⇀ ρQ weakly in the Coulomb norm C. Since

tr |D0|(Q++
n −Q−−n )

= tr
(
|D0| − |p|(vF + g(1))

)
(Q++

n −Q−−n ) + (vF + g(1)) tr |p|(Q++
n −Q−−n ),

and |D0| − |p|(vF + g(1)) ≥ 0, we can use Fatou’s Lemma for trace-class operators
to obtain

tr
(
|D0| − |p|(vF + g(1))

)
(Q++

n −Q−−n ) ≥ tr
[
|D0| − |p|(vF + g(1))

]
(Q++ −Q−−),

and (30) will be achieved by showing

(31) lim inf
n

(
tr |p|(Q++

n −Q−−n )− 1
2(vF + g(1))

∫∫
R2×R2

|Qn(x, y)|2

|x− y|
dx dy

)
≥ tr |p|(Q++ −Q−−)− 1

2(vF + g(1))

∫∫
R2×R2

|Q(x, y)|2

|x− y|
dx dy.

This inequality will now be proved in Step 2.
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Step 2: The proof of (31) will heavily rely on (29), i.e., the uniform boundedness
of Qn in the energy norm D0. The first ingredient of the proof is to split the space
R2 into a region close to the defect ν, and another one far away, and to show that
the energy essentially localizes. A similar idea was used in [28] but because of the
absence of a mass, we have to argue differently.

Let us consider two real functions χ, η ∈ C∞([0,∞); [0, 1]), such that χ = 1 on
[0, 1] and χ = 0 on [2,∞) and χ2 + η2 = 1. We define

χR(x) = χ(|x|/R), ηR(x) = η(|x|/R) ∀x ∈ R2.

Now we apply the localization Lemma A.1 given in the Appendix (and which is a
consequence of the localization estimate obtained in [37]) in order to obtain

(32) tr |p|(Q++
n −Q−−n ) ≥ tr |p|χR(Q++

n −Q−−n )χR + tr |p|ηR(Q++
n −Q−−n )ηR

−c
(
tr |p|(Q++

n −Q−−n )
)1/2 (‖∇χR‖2L2 + ‖∇ηR‖2L2

)1/2 (‖∇χR‖2L4 + ‖∇ηR‖2L4

)1/2
.

Since

‖∇χR‖2L2 = ‖∇χ‖2L2 , ‖∇χR‖2L4 =
1
R
‖∇χ‖2L4 ,

and analogously for ηR, the uniform boundedness of tr |p|(Q++
n −Q−−n ), implies

tr |p|(Q++
n −Q−−n ) ≥ tr |p|χR(Q++

n −Q−−n )χR + tr |p|ηR(Q++
n −Q−−n )ηR −

C

R
,

for an n-independent constant C. On the other hand we can write∫∫
R2×R2

|Qn(x, y)|2

|x− y|
dx dy =

∫∫
R2×R2

χ2
R(x)|Qn(x, y)|2

|x− y|
dxdy

+
∫∫

R2×R2

η2
R(x)|Qn(x, y)|2

|x− y|
dx dy.

Using now
Q++
n −Q−−n ≥ Q2

n,

as well as Kato’s inequality (15), we obtain, similar to [28], that under the assump-
tions on vF

tr |p|ηR[Q++
n −Q−−n ]ηR ≥ tr |p|ηRQ2

nηR ≥
1

vF + g(1)

∫ ∫
η2
R(x)|Qn(x, y)|2

|x− y|
dxdy.

In order to conclude Step 2, it remains to show that

(33)

lim
R→∞

lim
n→∞

(
tr |p|χR(Q++

n −Q−−n )χR −
1

2(vF + g(1))

∫
χ2
R(x)|Qn(x, y)|2

|x− y|
dxdy

)
= tr |p|(Q++ −Q−−)− 1

2(vF + g(1))

∫
|Q(x, y)|2

|x− y|
dxdy,

where it is important to do the limit n → ∞ first and then the limit R → ∞. To
this end we consider the two terms

tr |p|χR(Q++
n −Q−−n )χR and

∫
χ2
R(x)|Qn(x, y)|2

|x− y|
dxdy,

separately. First, we observe that, thanks to the cut-off

(34) tr |p|χR(Q++
n −Q−−n )χR = tr |p|χRΠΛ(Q++

n −Q−−n )ΠΛχR.
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As we have already seen, the operator ΠΛχR is Hilbert-Schmidt. On the other hand

|p|χRΠΛ =
p

|p|
·
(

[p, χR]ΠΛ + χRpΠΛ

)
=

p

|p|
·
(
− i(∇χR)ΠΛ + χR pΠΛ

)
is Hilbert-Schmidt since p|p|−1 is bounded and (∇χR)ΠΛ and χR pΠΛ are both
Hilbert-Schmidt. Now we can use that Qn ⇀ Q weakly-∗ in B(HΛ) which implies
in particular that tr(BQnB′)→ tr(BQB′) for all B,B′ ∈ S2, and we obtain

lim
n→∞

tr |p|χR(Q++
n −Q−−n )χR = tr |p|χR(Q++ −Q−−)χR.

Passing then to the limit R→∞ gives

lim
R→∞

lim
n→∞

tr |p|χR(Q++
n −Q−−n )χR = tr |p|(Q++ −Q−−).

It remains to prove the convergence of the exchange term in (33). Recall

An := Qn −Q ⇀ 0 in X̃

and that tr |D0|Q2
n is uniformly bounded. Notice first that, by the Cauchy-Schwarz

inequality, it suffices to show

lim
R→∞

lim
n→∞

∫∫
R2×R2

χ2
R(x)|An(x, y)|2

|x− y|
dx dy = 0

to conclude the second step of the proof. To this end we introduce an additional
decomposition in the infrared regime in the following form:

An =
(
1(|p| ≤ ε) + 1(|p| ≥ ε)

)
An
(
1(|p| ≤ ε) + 1(|p| ≥ ε)

)
= 1(|p| ≥ ε)An1(|p| ≥ ε) +Bn,

such that the first term on the right hand side

1(|p| ≥ ε)An1(|p| ≥ ε) := Aεn

consists only of momenta larger than a given ε > 0. Since by assumption An|p|1/2 ⇀
0 weakly in S2, we see that Aεn ⇀ 0 in S2. Due to the cut-off in Fourier space, we
deduce that the kernel Aεn(x, y) of Aεn converges to zero weakly in Hs(R2×R2) for
all s ≥ 0, and hence strongly in Lploc(R2 ×R2) for all p. Now we simply decompose∫∫

R2×R2

χ2
R(x)|Aεn(x, y)|2

|x− y|
dx dy =

∫∫
R2×R2

χ2
R(x)χ2

5R(y)|Aεn(x, y)|2

|x− y|
dx dy

+
∫∫

R2×R2

χ2
R(x)η2

5R(y)|Aεn(x, y)|2

|x− y|
dx dy.

The first term on the right hand side converges to zero since Aεn(x, y)→ 0 strongly
in, say, L6(B2R × B10R) whereas χ2

R(x)χ2
5R(y)|x− y|−1 belongs to L3/2(R2 × R2).

The second term on the right hand side is bounded by∫∫
R2×R2

χ2
R(x)η2

5R(y)|Aεn(x, y)|2

|x− y|
dx dy ≤ C

R
tr(Aεn)2 ≤ C

Rε
tr |p|(An)2 ≤ C

Rε
.

It remains to consider the terms

Bn = B1
n +B2

n +B3
n

depending on the location of the cut-off function 1(|p| ≤ ε) with the only important
point being that either of the terms has one such IR-term 1(|p| ≤ ε) on at least one
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side. Again with Kato’s inequality (15) we bound for k = 1, 2, 3∫∫
R2×R2

χ2
R(x)|Bkn(x, y)|2

|x− y|
dx dy ≤

∫∫
R2×R2

|Bkn(x, y)|2

|x− y|
dx dy

≤ C min
(

tr(|p|(Bkn)∗Bkn) , tr(|p|Bkn(Bkn)∗)
)
.

Choosing on the right the term for which 1(|p| ≤ ε) hits |p|, we see that∫∫
R2×R2

χ2
R(x)|Bkn(x, y)|2

|x− y|
dx dy ≤ C tr(|p|1(|p| ≤ ε)(An)2)

for k = 1, 2, 3. At this point we use the infrared logarithmic divergence of the
effective Fermi velocity to estimate

tr
(
|p|1(|p| ≤ ε)(An)2

)
≤ C

log(Λ/ε)
tr |D0|(An)2 ≤ C

log(Λ/ε)
.

If we take first n → ∞, then R → ∞ and finally ε → 0, we have concluded Step 2
of the proof.

To summarize, we have shown that for a minimizing sequence (Qn),

EVBDF = lim inf
n→∞

EVBDF(Qn) ≥ EVBDF(Q) ≥ EVBDF

where we recall EVBDF is the infimum of the BDF energy. So we deduce that
EVBDF(Q) = EVBDF and that Q is a minimizer.

Step 3: It remains to prove that it satisfies the self-consistent equation. This can
be done as in [28, Lemma 2] with the additional problem that there is no gap in
the spectrum of the mean-field operator. For completeness let us indicate the idea
of the proof. Since Q is a minimizer, then for any other admissible state Q′, we
know by convexity of the constraint that

d

dt
EV ((1− t)Q+ tQ′)

∣∣∣
t=0
≥ 0,

which implies that

(35) trD0(Q′−Q)+D(ρQ−ν, ρQ′−Q)+<
∫

R2

∫
R2

Q(x, y)(Q′ −Q)(x, y)
|x− y|

dx dy ≥ 0

Let us remark that the operator

DQ := D0 + (ρQ − ν) ∗ 1
| · |
− Q(x, y)
|x− y|

is self-adjoint on the same domain as D0. This follows from Rellich’s theorem,
since the two self-consistent terms are relatively bounded with respect to D0, with
relative bound as small as we want. For instance, we have for any ϕ ∈ HΛ∣∣∣∣∣∣∣∣(ρQ − ν) ∗ 1

| · |
ϕ

∣∣∣∣∣∣∣∣
L2(R2)

≤
∣∣∣∣∣∣∣∣(ρQ − ν) ∗ 1

| · |

∣∣∣∣∣∣∣∣
L4(R2)

||ϕ||L4(R2)

≤ C ||ρQ − ν||C ||ϕ||L4(R2)

≤ C ||ρQ − ν||C
∣∣∣∣∣∣|p|1/2ϕ∣∣∣∣∣∣

L2

≤ C ||ρQ − ν||C

(
ε
∣∣∣∣D0ϕ

∣∣∣∣+
1

2ε(vF + g(1))
||ϕ||
)

where we have used the Sobolev inequality ||f ||L4(R2) ≤ C
∣∣∣∣|p|1/2f ∣∣∣∣

L2(R2)
and∣∣∣∣∣∣∣∣ρ ∗ 1

| · |

∣∣∣∣∣∣∣∣
L4(R2)

≤ C
∣∣∣∣∣∣∣∣|p|1/2ρ ∗ 1

| · |

∣∣∣∣∣∣∣∣
L2(R2)

= CD(ρ, ρ)1/2.
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The argument is similar for the exchange term:∣∣∣∣∫
R2

Q(x, y)
|x− y|

ϕ(y) dy
∣∣∣∣ ≤ (∫

R2

|Q(x, y)|2

|x− y|
dy

)1/2(∫
R2

|ϕ(y)|2

|x− y|
dy

)1/2

≤ C
(∫

R2

|Q(x, y)|2

|x− y|
dy

)1/2

〈ϕ, |p|ϕ〉1/2

≤ C
(∫

R2

|Q(x, y)|2

|x− y|
dy

)1/2(
ε
∣∣∣∣D0ϕ

∣∣∣∣+
1

2ε(vF + g(1))
||ϕ||
)
.

Taking the square and integrating with respect to x gives the infinitesimal relative
boundedness.

Now we choose

(36) Q′ := 1(−∞,0)(DQ)− P 0
−,

and we claim that

tr0D0(Q′ −Q) +D(ρQ − ν, ρQ′−Q) + <
∫∫

R2×R2

Q(x, y)(Q′ −Q)(x, y)
|x− y|

dx dy

= tr |DQ|
(
P ′(Q′ −Q)P ′ − (P ′)⊥(Q′ −Q)(P ′)⊥

)(37)

≤ − tr |DQ|(Q′ −Q)2

(38)

The first line (37) would just be the linearity of the trace if all the operators
were trace-class. Because of our generalized definition of the trace, it is more
complicated to verify (37). With a gap this was done in [27] and without a gap
similar arguments have been used in [15] and in [16]. We will not discuss this point
further. Putting (35) and (38) together, we reach the conclusion that Q = Q′

except possibly on the kernel of DQ. Therefore

Q+ P 0
− = 1(−∞,0)(DQ) + δ

for some 0 ≤ δ ≤ 1{0}(DQ). If ker(DQ) = {0} then of course δ = 0.
If ker(DQ) 6= {0} but has dimension ≥ 2, it is a well-known fact that δ = 0

or δ = 1{0}(DQ) that is, δ must fill the last shell completely, see [2, 3] and [29,
Prop. 3]. If dim ker(DQ) = 1, and Q + P0 is a projector, then, necessarily, δ = 0
or δ = 1{0}(DQ) and we are done. If, however, Q + P0 is not a projector, then
the argument does not work but, in this case, the energy does not change if we
subtract δ from Q, because the corresponding particle does not interact with itself,
i.e., Q′ = Q− δ is a minimizer as well. Therefore we can redo the above argument
with Q′ instead of Q. But now, thanks to our definition (36), we actually know
that Q′ + P0 is a projector. Hence, we deduce, as stated, that Q′ = 1I(DQ′)− P 0

−
with I = (−∞, 0) or I = (−∞, 0]. �

Remark 6.1. Since Q must be a minimizer for (21), we deduce that

lim
n→∞

EVBDF(Qn) = EVBDF(Q).

More precisely, we see that

lim
n→∞

D(ρQn , ρQn) = D(ρQ, ρQ)

which implies that ρQn → ρQ strongly in C. Similarly we have

lim
n→∞

tr |D0|(Q++
n −Q−−n ) = tr |D0|(Q++ −Q−−)
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and

lim
n→∞

∫∫
R2×R2

|Qn(x, y)|2

|x− y|
dx dy = lim

n→∞

∫∫
R2×R2

|Q(x, y)|2

|x− y|
dx dy.

By the reciprocal of Fatou’s lemma for operators, this proves strong convergence of
|D0|1/2Q±±n |D0|1/2 in S1, and strong convergence of Qn(x, y)|x− y|−1/2 in S2.

Appendix A. Localization of massless kinetic energy

In the following lemma, we provide an IMS-type formula for the massless rela-
tivistic energy of a fermionic density matrix 0 ≤ γ ≤ 1, based on [37]. Results of
the same form already exist in the literature, see in particular [43, Thm. 9]. There,
a simple explicit formula for the operator |p| − χ|p|χ− η|p|η is used.

Lemma A.1. Let 0 ≤ γ ≤ 1 such that tr |p|γ < ∞. Then for a partition of unity
χ2 + η2 = 1, with smooth functions χ, η one obtains in dimension d = 2

tr |p|γ ≥ tr |p|χγχ+ tr |p|ηγη

− c (tr |p|γ)1/2 (‖∇χ‖2L2 + ‖∇η‖2L2

)1/2 (‖∇χ‖2L4 + ‖∇η‖2L4

)1/2
,

and in dimension d = 3

tr |p|γ ≥ tr |p|χγχ+ tr |p|ηγη

− c (tr |p|γ)2/3 (‖∇χ‖2L2 + ‖∇η‖2L2

)1/3 (‖∇χ‖2L6 + ‖∇η‖2L6

)2/3
,

where c is a universal constant.

Proof. We use [37, Lemma A.1] which states that

|p| − χ|p|χ− η|p|η ≥ − 1
π

∫ ∞
0

√
t dt

1
t+ p2

(
|∇χ|2 + |∇η|2

) 1
t+ p2

.

So, it remains to estimate the term

tr
(∫ ∞

0

√
t dt

1
t+ p2

(
|∇χ|2 + |∇η|2

) 1
t+ p2

γ

)
.

We are going to decompose the integral into a small t and large t-part. For that
reason we will use two different estimates for the integrand. Define

f2(x) = |∇χ(x)|2 + |∇η(x)|2,

Since 0 ≤ γ ≤ 1 we obtain

(39) tr
1

t+ p2
f2 1
t+ p2

γ ≤ tr
1

t+ p2
f2 1
t+ p2

=
∫
f2(x)dx

1
(2π)d/2

∫
dp

(t+ p2)2

= td/2−2

∫
f2(x)dx

∫
dp

(1 + p2)2
,

on the other hand

(40) tr
1

t+ p2
f2 1
t+ p2

γ = tr |p|−1/2 1
t+ p2

f2 1
t+ p2

|p|−1/2|p|γ

≤
∥∥∥∥ 1

(t+ p2)|p|1/2
f2 1

(t+ p2)|p|1/2

∥∥∥∥ tr |p|γ ≤ 1
t2

∥∥∥∥ 1
|p|1/2

f

∥∥∥∥2

tr |p|γ.
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Recall that here f is seen as a multiplication operator on L2(R2). In dimension
d = 2 the Hardy-Littlewood-Sobolev inequality states∥∥∥∥ 1

|p|1/2
f

∥∥∥∥2

L2(R2)→L2(R2)

= sup
||ϕ||L2(R2)=1

∥∥∥(−∆)−1/4(fϕ)
∥∥∥2

L2(R2)

= sup
||ϕ||L2(R2)=1

∫
R2

∫
R2

f(x)ϕ(x)f(y)ϕ(y)
|x− y|

dx dy

≤ C sup
||ϕ||L2(R2)=1

‖fϕ‖2L4/3(R2) = C ||f ||2L4(R2) .

Combining these results we get in d = 2

tr
(∫ ∞

0

√
t dt

1
t+ p2

f2 1
t+ p2

γ

)
≤ C

(∫ ε

0

dt√
t
‖f‖2L2(R2) +

∫ ∞
ε

dt

t3/2
‖f‖2L4(R2) tr |p|γ

)
≤ C

(√
ε‖f‖2L2(R2) + C

1√
ε
‖f‖2L4(R2) tr |p|γ

)
≤ C‖f‖L2(R2)‖f‖L4(R2)(tr |p|γ)1/2,

after optimizing over ε, which proves the Lemma in 2D. For d = 3 one proceeds
similar with the corresponding Hardy-Littlewood-Sobolev inequality in 3D, leading
to ∥∥∥∥ 1

|p|1/2
f

∥∥∥∥2

L2(R3)→L2(R3)

≤ C ||f ||2L6(R3) .

This concludes the proof of Lemma A.1. �
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